Merge tag 'for-4.17/block-20180402' of git://git.kernel.dk/linux-block
[linux-2.6-block.git] / drivers / char / ipmi / ipmi_si_intf.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ipmi_si.c
4  *
5  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
6  * BT).
7  *
8  * Author: MontaVista Software, Inc.
9  *         Corey Minyard <minyard@mvista.com>
10  *         source@mvista.com
11  *
12  * Copyright 2002 MontaVista Software Inc.
13  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14  */
15
16 /*
17  * This file holds the "policy" for the interface to the SMI state
18  * machine.  It does the configuration, handles timers and interrupts,
19  * and drives the real SMI state machine.
20  */
21
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/sched.h>
25 #include <linux/seq_file.h>
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/spinlock.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/list.h>
32 #include <linux/notifier.h>
33 #include <linux/mutex.h>
34 #include <linux/kthread.h>
35 #include <asm/irq.h>
36 #include <linux/interrupt.h>
37 #include <linux/rcupdate.h>
38 #include <linux/ipmi.h>
39 #include <linux/ipmi_smi.h>
40 #include "ipmi_si.h"
41 #include <linux/string.h>
42 #include <linux/ctype.h>
43
44 #define PFX "ipmi_si: "
45
46 /* Measure times between events in the driver. */
47 #undef DEBUG_TIMING
48
49 /* Call every 10 ms. */
50 #define SI_TIMEOUT_TIME_USEC    10000
51 #define SI_USEC_PER_JIFFY       (1000000/HZ)
52 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
53 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
54                                       short timeout */
55
56 enum si_intf_state {
57         SI_NORMAL,
58         SI_GETTING_FLAGS,
59         SI_GETTING_EVENTS,
60         SI_CLEARING_FLAGS,
61         SI_GETTING_MESSAGES,
62         SI_CHECKING_ENABLES,
63         SI_SETTING_ENABLES
64         /* FIXME - add watchdog stuff. */
65 };
66
67 /* Some BT-specific defines we need here. */
68 #define IPMI_BT_INTMASK_REG             2
69 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
70 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
71
72 static const char * const si_to_str[] = { "invalid", "kcs", "smic", "bt" };
73
74 static int initialized;
75
76 /*
77  * Indexes into stats[] in smi_info below.
78  */
79 enum si_stat_indexes {
80         /*
81          * Number of times the driver requested a timer while an operation
82          * was in progress.
83          */
84         SI_STAT_short_timeouts = 0,
85
86         /*
87          * Number of times the driver requested a timer while nothing was in
88          * progress.
89          */
90         SI_STAT_long_timeouts,
91
92         /* Number of times the interface was idle while being polled. */
93         SI_STAT_idles,
94
95         /* Number of interrupts the driver handled. */
96         SI_STAT_interrupts,
97
98         /* Number of time the driver got an ATTN from the hardware. */
99         SI_STAT_attentions,
100
101         /* Number of times the driver requested flags from the hardware. */
102         SI_STAT_flag_fetches,
103
104         /* Number of times the hardware didn't follow the state machine. */
105         SI_STAT_hosed_count,
106
107         /* Number of completed messages. */
108         SI_STAT_complete_transactions,
109
110         /* Number of IPMI events received from the hardware. */
111         SI_STAT_events,
112
113         /* Number of watchdog pretimeouts. */
114         SI_STAT_watchdog_pretimeouts,
115
116         /* Number of asynchronous messages received. */
117         SI_STAT_incoming_messages,
118
119
120         /* This *must* remain last, add new values above this. */
121         SI_NUM_STATS
122 };
123
124 struct smi_info {
125         int                    intf_num;
126         ipmi_smi_t             intf;
127         struct si_sm_data      *si_sm;
128         const struct si_sm_handlers *handlers;
129         spinlock_t             si_lock;
130         struct ipmi_smi_msg    *waiting_msg;
131         struct ipmi_smi_msg    *curr_msg;
132         enum si_intf_state     si_state;
133
134         /*
135          * Used to handle the various types of I/O that can occur with
136          * IPMI
137          */
138         struct si_sm_io io;
139
140         /*
141          * Per-OEM handler, called from handle_flags().  Returns 1
142          * when handle_flags() needs to be re-run or 0 indicating it
143          * set si_state itself.
144          */
145         int (*oem_data_avail_handler)(struct smi_info *smi_info);
146
147         /*
148          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
149          * is set to hold the flags until we are done handling everything
150          * from the flags.
151          */
152 #define RECEIVE_MSG_AVAIL       0x01
153 #define EVENT_MSG_BUFFER_FULL   0x02
154 #define WDT_PRE_TIMEOUT_INT     0x08
155 #define OEM0_DATA_AVAIL     0x20
156 #define OEM1_DATA_AVAIL     0x40
157 #define OEM2_DATA_AVAIL     0x80
158 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
159                              OEM1_DATA_AVAIL | \
160                              OEM2_DATA_AVAIL)
161         unsigned char       msg_flags;
162
163         /* Does the BMC have an event buffer? */
164         bool                has_event_buffer;
165
166         /*
167          * If set to true, this will request events the next time the
168          * state machine is idle.
169          */
170         atomic_t            req_events;
171
172         /*
173          * If true, run the state machine to completion on every send
174          * call.  Generally used after a panic to make sure stuff goes
175          * out.
176          */
177         bool                run_to_completion;
178
179         /* The timer for this si. */
180         struct timer_list   si_timer;
181
182         /* This flag is set, if the timer can be set */
183         bool                timer_can_start;
184
185         /* This flag is set, if the timer is running (timer_pending() isn't enough) */
186         bool                timer_running;
187
188         /* The time (in jiffies) the last timeout occurred at. */
189         unsigned long       last_timeout_jiffies;
190
191         /* Are we waiting for the events, pretimeouts, received msgs? */
192         atomic_t            need_watch;
193
194         /*
195          * The driver will disable interrupts when it gets into a
196          * situation where it cannot handle messages due to lack of
197          * memory.  Once that situation clears up, it will re-enable
198          * interrupts.
199          */
200         bool interrupt_disabled;
201
202         /*
203          * Does the BMC support events?
204          */
205         bool supports_event_msg_buff;
206
207         /*
208          * Can we disable interrupts the global enables receive irq
209          * bit?  There are currently two forms of brokenness, some
210          * systems cannot disable the bit (which is technically within
211          * the spec but a bad idea) and some systems have the bit
212          * forced to zero even though interrupts work (which is
213          * clearly outside the spec).  The next bool tells which form
214          * of brokenness is present.
215          */
216         bool cannot_disable_irq;
217
218         /*
219          * Some systems are broken and cannot set the irq enable
220          * bit, even if they support interrupts.
221          */
222         bool irq_enable_broken;
223
224         /*
225          * Did we get an attention that we did not handle?
226          */
227         bool got_attn;
228
229         /* From the get device id response... */
230         struct ipmi_device_id device_id;
231
232         /* Default driver model device. */
233         struct platform_device *pdev;
234
235         /* Have we added the device group to the device? */
236         bool dev_group_added;
237
238         /* Have we added the platform device? */
239         bool pdev_registered;
240
241         /* Counters and things for the proc filesystem. */
242         atomic_t stats[SI_NUM_STATS];
243
244         struct task_struct *thread;
245
246         struct list_head link;
247 };
248
249 #define smi_inc_stat(smi, stat) \
250         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
251 #define smi_get_stat(smi, stat) \
252         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
253
254 #define IPMI_MAX_INTFS 4
255 static int force_kipmid[IPMI_MAX_INTFS];
256 static int num_force_kipmid;
257
258 static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS];
259 static int num_max_busy_us;
260
261 static bool unload_when_empty = true;
262
263 static int try_smi_init(struct smi_info *smi);
264 static void shutdown_one_si(struct smi_info *smi_info);
265 static void cleanup_one_si(struct smi_info *smi_info);
266 static void cleanup_ipmi_si(void);
267
268 #ifdef DEBUG_TIMING
269 void debug_timestamp(char *msg)
270 {
271         struct timespec64 t;
272
273         getnstimeofday64(&t);
274         pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
275 }
276 #else
277 #define debug_timestamp(x)
278 #endif
279
280 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
281 static int register_xaction_notifier(struct notifier_block *nb)
282 {
283         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
284 }
285
286 static void deliver_recv_msg(struct smi_info *smi_info,
287                              struct ipmi_smi_msg *msg)
288 {
289         /* Deliver the message to the upper layer. */
290         if (smi_info->intf)
291                 ipmi_smi_msg_received(smi_info->intf, msg);
292         else
293                 ipmi_free_smi_msg(msg);
294 }
295
296 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
297 {
298         struct ipmi_smi_msg *msg = smi_info->curr_msg;
299
300         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
301                 cCode = IPMI_ERR_UNSPECIFIED;
302         /* else use it as is */
303
304         /* Make it a response */
305         msg->rsp[0] = msg->data[0] | 4;
306         msg->rsp[1] = msg->data[1];
307         msg->rsp[2] = cCode;
308         msg->rsp_size = 3;
309
310         smi_info->curr_msg = NULL;
311         deliver_recv_msg(smi_info, msg);
312 }
313
314 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
315 {
316         int              rv;
317
318         if (!smi_info->waiting_msg) {
319                 smi_info->curr_msg = NULL;
320                 rv = SI_SM_IDLE;
321         } else {
322                 int err;
323
324                 smi_info->curr_msg = smi_info->waiting_msg;
325                 smi_info->waiting_msg = NULL;
326                 debug_timestamp("Start2");
327                 err = atomic_notifier_call_chain(&xaction_notifier_list,
328                                 0, smi_info);
329                 if (err & NOTIFY_STOP_MASK) {
330                         rv = SI_SM_CALL_WITHOUT_DELAY;
331                         goto out;
332                 }
333                 err = smi_info->handlers->start_transaction(
334                         smi_info->si_sm,
335                         smi_info->curr_msg->data,
336                         smi_info->curr_msg->data_size);
337                 if (err)
338                         return_hosed_msg(smi_info, err);
339
340                 rv = SI_SM_CALL_WITHOUT_DELAY;
341         }
342 out:
343         return rv;
344 }
345
346 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
347 {
348         if (!smi_info->timer_can_start)
349                 return;
350         smi_info->last_timeout_jiffies = jiffies;
351         mod_timer(&smi_info->si_timer, new_val);
352         smi_info->timer_running = true;
353 }
354
355 /*
356  * Start a new message and (re)start the timer and thread.
357  */
358 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
359                           unsigned int size)
360 {
361         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
362
363         if (smi_info->thread)
364                 wake_up_process(smi_info->thread);
365
366         smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
367 }
368
369 static void start_check_enables(struct smi_info *smi_info)
370 {
371         unsigned char msg[2];
372
373         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
374         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
375
376         start_new_msg(smi_info, msg, 2);
377         smi_info->si_state = SI_CHECKING_ENABLES;
378 }
379
380 static void start_clear_flags(struct smi_info *smi_info)
381 {
382         unsigned char msg[3];
383
384         /* Make sure the watchdog pre-timeout flag is not set at startup. */
385         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
386         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
387         msg[2] = WDT_PRE_TIMEOUT_INT;
388
389         start_new_msg(smi_info, msg, 3);
390         smi_info->si_state = SI_CLEARING_FLAGS;
391 }
392
393 static void start_getting_msg_queue(struct smi_info *smi_info)
394 {
395         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
396         smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
397         smi_info->curr_msg->data_size = 2;
398
399         start_new_msg(smi_info, smi_info->curr_msg->data,
400                       smi_info->curr_msg->data_size);
401         smi_info->si_state = SI_GETTING_MESSAGES;
402 }
403
404 static void start_getting_events(struct smi_info *smi_info)
405 {
406         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
407         smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
408         smi_info->curr_msg->data_size = 2;
409
410         start_new_msg(smi_info, smi_info->curr_msg->data,
411                       smi_info->curr_msg->data_size);
412         smi_info->si_state = SI_GETTING_EVENTS;
413 }
414
415 /*
416  * When we have a situtaion where we run out of memory and cannot
417  * allocate messages, we just leave them in the BMC and run the system
418  * polled until we can allocate some memory.  Once we have some
419  * memory, we will re-enable the interrupt.
420  *
421  * Note that we cannot just use disable_irq(), since the interrupt may
422  * be shared.
423  */
424 static inline bool disable_si_irq(struct smi_info *smi_info)
425 {
426         if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
427                 smi_info->interrupt_disabled = true;
428                 start_check_enables(smi_info);
429                 return true;
430         }
431         return false;
432 }
433
434 static inline bool enable_si_irq(struct smi_info *smi_info)
435 {
436         if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) {
437                 smi_info->interrupt_disabled = false;
438                 start_check_enables(smi_info);
439                 return true;
440         }
441         return false;
442 }
443
444 /*
445  * Allocate a message.  If unable to allocate, start the interrupt
446  * disable process and return NULL.  If able to allocate but
447  * interrupts are disabled, free the message and return NULL after
448  * starting the interrupt enable process.
449  */
450 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
451 {
452         struct ipmi_smi_msg *msg;
453
454         msg = ipmi_alloc_smi_msg();
455         if (!msg) {
456                 if (!disable_si_irq(smi_info))
457                         smi_info->si_state = SI_NORMAL;
458         } else if (enable_si_irq(smi_info)) {
459                 ipmi_free_smi_msg(msg);
460                 msg = NULL;
461         }
462         return msg;
463 }
464
465 static void handle_flags(struct smi_info *smi_info)
466 {
467 retry:
468         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
469                 /* Watchdog pre-timeout */
470                 smi_inc_stat(smi_info, watchdog_pretimeouts);
471
472                 start_clear_flags(smi_info);
473                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
474                 if (smi_info->intf)
475                         ipmi_smi_watchdog_pretimeout(smi_info->intf);
476         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
477                 /* Messages available. */
478                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
479                 if (!smi_info->curr_msg)
480                         return;
481
482                 start_getting_msg_queue(smi_info);
483         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
484                 /* Events available. */
485                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
486                 if (!smi_info->curr_msg)
487                         return;
488
489                 start_getting_events(smi_info);
490         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
491                    smi_info->oem_data_avail_handler) {
492                 if (smi_info->oem_data_avail_handler(smi_info))
493                         goto retry;
494         } else
495                 smi_info->si_state = SI_NORMAL;
496 }
497
498 /*
499  * Global enables we care about.
500  */
501 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
502                              IPMI_BMC_EVT_MSG_INTR)
503
504 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
505                                  bool *irq_on)
506 {
507         u8 enables = 0;
508
509         if (smi_info->supports_event_msg_buff)
510                 enables |= IPMI_BMC_EVT_MSG_BUFF;
511
512         if (((smi_info->io.irq && !smi_info->interrupt_disabled) ||
513              smi_info->cannot_disable_irq) &&
514             !smi_info->irq_enable_broken)
515                 enables |= IPMI_BMC_RCV_MSG_INTR;
516
517         if (smi_info->supports_event_msg_buff &&
518             smi_info->io.irq && !smi_info->interrupt_disabled &&
519             !smi_info->irq_enable_broken)
520                 enables |= IPMI_BMC_EVT_MSG_INTR;
521
522         *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
523
524         return enables;
525 }
526
527 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
528 {
529         u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
530
531         irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
532
533         if ((bool)irqstate == irq_on)
534                 return;
535
536         if (irq_on)
537                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
538                                      IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
539         else
540                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
541 }
542
543 static void handle_transaction_done(struct smi_info *smi_info)
544 {
545         struct ipmi_smi_msg *msg;
546
547         debug_timestamp("Done");
548         switch (smi_info->si_state) {
549         case SI_NORMAL:
550                 if (!smi_info->curr_msg)
551                         break;
552
553                 smi_info->curr_msg->rsp_size
554                         = smi_info->handlers->get_result(
555                                 smi_info->si_sm,
556                                 smi_info->curr_msg->rsp,
557                                 IPMI_MAX_MSG_LENGTH);
558
559                 /*
560                  * Do this here becase deliver_recv_msg() releases the
561                  * lock, and a new message can be put in during the
562                  * time the lock is released.
563                  */
564                 msg = smi_info->curr_msg;
565                 smi_info->curr_msg = NULL;
566                 deliver_recv_msg(smi_info, msg);
567                 break;
568
569         case SI_GETTING_FLAGS:
570         {
571                 unsigned char msg[4];
572                 unsigned int  len;
573
574                 /* We got the flags from the SMI, now handle them. */
575                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
576                 if (msg[2] != 0) {
577                         /* Error fetching flags, just give up for now. */
578                         smi_info->si_state = SI_NORMAL;
579                 } else if (len < 4) {
580                         /*
581                          * Hmm, no flags.  That's technically illegal, but
582                          * don't use uninitialized data.
583                          */
584                         smi_info->si_state = SI_NORMAL;
585                 } else {
586                         smi_info->msg_flags = msg[3];
587                         handle_flags(smi_info);
588                 }
589                 break;
590         }
591
592         case SI_CLEARING_FLAGS:
593         {
594                 unsigned char msg[3];
595
596                 /* We cleared the flags. */
597                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
598                 if (msg[2] != 0) {
599                         /* Error clearing flags */
600                         dev_warn(smi_info->io.dev,
601                                  "Error clearing flags: %2.2x\n", msg[2]);
602                 }
603                 smi_info->si_state = SI_NORMAL;
604                 break;
605         }
606
607         case SI_GETTING_EVENTS:
608         {
609                 smi_info->curr_msg->rsp_size
610                         = smi_info->handlers->get_result(
611                                 smi_info->si_sm,
612                                 smi_info->curr_msg->rsp,
613                                 IPMI_MAX_MSG_LENGTH);
614
615                 /*
616                  * Do this here becase deliver_recv_msg() releases the
617                  * lock, and a new message can be put in during the
618                  * time the lock is released.
619                  */
620                 msg = smi_info->curr_msg;
621                 smi_info->curr_msg = NULL;
622                 if (msg->rsp[2] != 0) {
623                         /* Error getting event, probably done. */
624                         msg->done(msg);
625
626                         /* Take off the event flag. */
627                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
628                         handle_flags(smi_info);
629                 } else {
630                         smi_inc_stat(smi_info, events);
631
632                         /*
633                          * Do this before we deliver the message
634                          * because delivering the message releases the
635                          * lock and something else can mess with the
636                          * state.
637                          */
638                         handle_flags(smi_info);
639
640                         deliver_recv_msg(smi_info, msg);
641                 }
642                 break;
643         }
644
645         case SI_GETTING_MESSAGES:
646         {
647                 smi_info->curr_msg->rsp_size
648                         = smi_info->handlers->get_result(
649                                 smi_info->si_sm,
650                                 smi_info->curr_msg->rsp,
651                                 IPMI_MAX_MSG_LENGTH);
652
653                 /*
654                  * Do this here becase deliver_recv_msg() releases the
655                  * lock, and a new message can be put in during the
656                  * time the lock is released.
657                  */
658                 msg = smi_info->curr_msg;
659                 smi_info->curr_msg = NULL;
660                 if (msg->rsp[2] != 0) {
661                         /* Error getting event, probably done. */
662                         msg->done(msg);
663
664                         /* Take off the msg flag. */
665                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
666                         handle_flags(smi_info);
667                 } else {
668                         smi_inc_stat(smi_info, incoming_messages);
669
670                         /*
671                          * Do this before we deliver the message
672                          * because delivering the message releases the
673                          * lock and something else can mess with the
674                          * state.
675                          */
676                         handle_flags(smi_info);
677
678                         deliver_recv_msg(smi_info, msg);
679                 }
680                 break;
681         }
682
683         case SI_CHECKING_ENABLES:
684         {
685                 unsigned char msg[4];
686                 u8 enables;
687                 bool irq_on;
688
689                 /* We got the flags from the SMI, now handle them. */
690                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
691                 if (msg[2] != 0) {
692                         dev_warn(smi_info->io.dev,
693                                  "Couldn't get irq info: %x.\n", msg[2]);
694                         dev_warn(smi_info->io.dev,
695                                  "Maybe ok, but ipmi might run very slowly.\n");
696                         smi_info->si_state = SI_NORMAL;
697                         break;
698                 }
699                 enables = current_global_enables(smi_info, 0, &irq_on);
700                 if (smi_info->io.si_type == SI_BT)
701                         /* BT has its own interrupt enable bit. */
702                         check_bt_irq(smi_info, irq_on);
703                 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
704                         /* Enables are not correct, fix them. */
705                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
706                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
707                         msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
708                         smi_info->handlers->start_transaction(
709                                 smi_info->si_sm, msg, 3);
710                         smi_info->si_state = SI_SETTING_ENABLES;
711                 } else if (smi_info->supports_event_msg_buff) {
712                         smi_info->curr_msg = ipmi_alloc_smi_msg();
713                         if (!smi_info->curr_msg) {
714                                 smi_info->si_state = SI_NORMAL;
715                                 break;
716                         }
717                         start_getting_events(smi_info);
718                 } else {
719                         smi_info->si_state = SI_NORMAL;
720                 }
721                 break;
722         }
723
724         case SI_SETTING_ENABLES:
725         {
726                 unsigned char msg[4];
727
728                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
729                 if (msg[2] != 0)
730                         dev_warn(smi_info->io.dev,
731                                  "Could not set the global enables: 0x%x.\n",
732                                  msg[2]);
733
734                 if (smi_info->supports_event_msg_buff) {
735                         smi_info->curr_msg = ipmi_alloc_smi_msg();
736                         if (!smi_info->curr_msg) {
737                                 smi_info->si_state = SI_NORMAL;
738                                 break;
739                         }
740                         start_getting_events(smi_info);
741                 } else {
742                         smi_info->si_state = SI_NORMAL;
743                 }
744                 break;
745         }
746         }
747 }
748
749 /*
750  * Called on timeouts and events.  Timeouts should pass the elapsed
751  * time, interrupts should pass in zero.  Must be called with
752  * si_lock held and interrupts disabled.
753  */
754 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
755                                            int time)
756 {
757         enum si_sm_result si_sm_result;
758
759 restart:
760         /*
761          * There used to be a loop here that waited a little while
762          * (around 25us) before giving up.  That turned out to be
763          * pointless, the minimum delays I was seeing were in the 300us
764          * range, which is far too long to wait in an interrupt.  So
765          * we just run until the state machine tells us something
766          * happened or it needs a delay.
767          */
768         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
769         time = 0;
770         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
771                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
772
773         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
774                 smi_inc_stat(smi_info, complete_transactions);
775
776                 handle_transaction_done(smi_info);
777                 goto restart;
778         } else if (si_sm_result == SI_SM_HOSED) {
779                 smi_inc_stat(smi_info, hosed_count);
780
781                 /*
782                  * Do the before return_hosed_msg, because that
783                  * releases the lock.
784                  */
785                 smi_info->si_state = SI_NORMAL;
786                 if (smi_info->curr_msg != NULL) {
787                         /*
788                          * If we were handling a user message, format
789                          * a response to send to the upper layer to
790                          * tell it about the error.
791                          */
792                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
793                 }
794                 goto restart;
795         }
796
797         /*
798          * We prefer handling attn over new messages.  But don't do
799          * this if there is not yet an upper layer to handle anything.
800          */
801         if (likely(smi_info->intf) &&
802             (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
803                 unsigned char msg[2];
804
805                 if (smi_info->si_state != SI_NORMAL) {
806                         /*
807                          * We got an ATTN, but we are doing something else.
808                          * Handle the ATTN later.
809                          */
810                         smi_info->got_attn = true;
811                 } else {
812                         smi_info->got_attn = false;
813                         smi_inc_stat(smi_info, attentions);
814
815                         /*
816                          * Got a attn, send down a get message flags to see
817                          * what's causing it.  It would be better to handle
818                          * this in the upper layer, but due to the way
819                          * interrupts work with the SMI, that's not really
820                          * possible.
821                          */
822                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
823                         msg[1] = IPMI_GET_MSG_FLAGS_CMD;
824
825                         start_new_msg(smi_info, msg, 2);
826                         smi_info->si_state = SI_GETTING_FLAGS;
827                         goto restart;
828                 }
829         }
830
831         /* If we are currently idle, try to start the next message. */
832         if (si_sm_result == SI_SM_IDLE) {
833                 smi_inc_stat(smi_info, idles);
834
835                 si_sm_result = start_next_msg(smi_info);
836                 if (si_sm_result != SI_SM_IDLE)
837                         goto restart;
838         }
839
840         if ((si_sm_result == SI_SM_IDLE)
841             && (atomic_read(&smi_info->req_events))) {
842                 /*
843                  * We are idle and the upper layer requested that I fetch
844                  * events, so do so.
845                  */
846                 atomic_set(&smi_info->req_events, 0);
847
848                 /*
849                  * Take this opportunity to check the interrupt and
850                  * message enable state for the BMC.  The BMC can be
851                  * asynchronously reset, and may thus get interrupts
852                  * disable and messages disabled.
853                  */
854                 if (smi_info->supports_event_msg_buff || smi_info->io.irq) {
855                         start_check_enables(smi_info);
856                 } else {
857                         smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
858                         if (!smi_info->curr_msg)
859                                 goto out;
860
861                         start_getting_events(smi_info);
862                 }
863                 goto restart;
864         }
865
866         if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
867                 /* Ok it if fails, the timer will just go off. */
868                 if (del_timer(&smi_info->si_timer))
869                         smi_info->timer_running = false;
870         }
871
872 out:
873         return si_sm_result;
874 }
875
876 static void check_start_timer_thread(struct smi_info *smi_info)
877 {
878         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
879                 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
880
881                 if (smi_info->thread)
882                         wake_up_process(smi_info->thread);
883
884                 start_next_msg(smi_info);
885                 smi_event_handler(smi_info, 0);
886         }
887 }
888
889 static void flush_messages(void *send_info)
890 {
891         struct smi_info *smi_info = send_info;
892         enum si_sm_result result;
893
894         /*
895          * Currently, this function is called only in run-to-completion
896          * mode.  This means we are single-threaded, no need for locks.
897          */
898         result = smi_event_handler(smi_info, 0);
899         while (result != SI_SM_IDLE) {
900                 udelay(SI_SHORT_TIMEOUT_USEC);
901                 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
902         }
903 }
904
905 static void sender(void                *send_info,
906                    struct ipmi_smi_msg *msg)
907 {
908         struct smi_info   *smi_info = send_info;
909         unsigned long     flags;
910
911         debug_timestamp("Enqueue");
912
913         if (smi_info->run_to_completion) {
914                 /*
915                  * If we are running to completion, start it.  Upper
916                  * layer will call flush_messages to clear it out.
917                  */
918                 smi_info->waiting_msg = msg;
919                 return;
920         }
921
922         spin_lock_irqsave(&smi_info->si_lock, flags);
923         /*
924          * The following two lines don't need to be under the lock for
925          * the lock's sake, but they do need SMP memory barriers to
926          * avoid getting things out of order.  We are already claiming
927          * the lock, anyway, so just do it under the lock to avoid the
928          * ordering problem.
929          */
930         BUG_ON(smi_info->waiting_msg);
931         smi_info->waiting_msg = msg;
932         check_start_timer_thread(smi_info);
933         spin_unlock_irqrestore(&smi_info->si_lock, flags);
934 }
935
936 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
937 {
938         struct smi_info   *smi_info = send_info;
939
940         smi_info->run_to_completion = i_run_to_completion;
941         if (i_run_to_completion)
942                 flush_messages(smi_info);
943 }
944
945 /*
946  * Use -1 in the nsec value of the busy waiting timespec to tell that
947  * we are spinning in kipmid looking for something and not delaying
948  * between checks
949  */
950 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
951 {
952         ts->tv_nsec = -1;
953 }
954 static inline int ipmi_si_is_busy(struct timespec64 *ts)
955 {
956         return ts->tv_nsec != -1;
957 }
958
959 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
960                                         const struct smi_info *smi_info,
961                                         struct timespec64 *busy_until)
962 {
963         unsigned int max_busy_us = 0;
964
965         if (smi_info->intf_num < num_max_busy_us)
966                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
967         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
968                 ipmi_si_set_not_busy(busy_until);
969         else if (!ipmi_si_is_busy(busy_until)) {
970                 getnstimeofday64(busy_until);
971                 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
972         } else {
973                 struct timespec64 now;
974
975                 getnstimeofday64(&now);
976                 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
977                         ipmi_si_set_not_busy(busy_until);
978                         return 0;
979                 }
980         }
981         return 1;
982 }
983
984
985 /*
986  * A busy-waiting loop for speeding up IPMI operation.
987  *
988  * Lousy hardware makes this hard.  This is only enabled for systems
989  * that are not BT and do not have interrupts.  It starts spinning
990  * when an operation is complete or until max_busy tells it to stop
991  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
992  * Documentation/IPMI.txt for details.
993  */
994 static int ipmi_thread(void *data)
995 {
996         struct smi_info *smi_info = data;
997         unsigned long flags;
998         enum si_sm_result smi_result;
999         struct timespec64 busy_until;
1000
1001         ipmi_si_set_not_busy(&busy_until);
1002         set_user_nice(current, MAX_NICE);
1003         while (!kthread_should_stop()) {
1004                 int busy_wait;
1005
1006                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1007                 smi_result = smi_event_handler(smi_info, 0);
1008
1009                 /*
1010                  * If the driver is doing something, there is a possible
1011                  * race with the timer.  If the timer handler see idle,
1012                  * and the thread here sees something else, the timer
1013                  * handler won't restart the timer even though it is
1014                  * required.  So start it here if necessary.
1015                  */
1016                 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1017                         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1018
1019                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1020                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1021                                                   &busy_until);
1022                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1023                         ; /* do nothing */
1024                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1025                         schedule();
1026                 else if (smi_result == SI_SM_IDLE) {
1027                         if (atomic_read(&smi_info->need_watch)) {
1028                                 schedule_timeout_interruptible(100);
1029                         } else {
1030                                 /* Wait to be woken up when we are needed. */
1031                                 __set_current_state(TASK_INTERRUPTIBLE);
1032                                 schedule();
1033                         }
1034                 } else
1035                         schedule_timeout_interruptible(1);
1036         }
1037         return 0;
1038 }
1039
1040
1041 static void poll(void *send_info)
1042 {
1043         struct smi_info *smi_info = send_info;
1044         unsigned long flags = 0;
1045         bool run_to_completion = smi_info->run_to_completion;
1046
1047         /*
1048          * Make sure there is some delay in the poll loop so we can
1049          * drive time forward and timeout things.
1050          */
1051         udelay(10);
1052         if (!run_to_completion)
1053                 spin_lock_irqsave(&smi_info->si_lock, flags);
1054         smi_event_handler(smi_info, 10);
1055         if (!run_to_completion)
1056                 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1057 }
1058
1059 static void request_events(void *send_info)
1060 {
1061         struct smi_info *smi_info = send_info;
1062
1063         if (!smi_info->has_event_buffer)
1064                 return;
1065
1066         atomic_set(&smi_info->req_events, 1);
1067 }
1068
1069 static void set_need_watch(void *send_info, bool enable)
1070 {
1071         struct smi_info *smi_info = send_info;
1072         unsigned long flags;
1073
1074         atomic_set(&smi_info->need_watch, enable);
1075         spin_lock_irqsave(&smi_info->si_lock, flags);
1076         check_start_timer_thread(smi_info);
1077         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1078 }
1079
1080 static void smi_timeout(struct timer_list *t)
1081 {
1082         struct smi_info   *smi_info = from_timer(smi_info, t, si_timer);
1083         enum si_sm_result smi_result;
1084         unsigned long     flags;
1085         unsigned long     jiffies_now;
1086         long              time_diff;
1087         long              timeout;
1088
1089         spin_lock_irqsave(&(smi_info->si_lock), flags);
1090         debug_timestamp("Timer");
1091
1092         jiffies_now = jiffies;
1093         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1094                      * SI_USEC_PER_JIFFY);
1095         smi_result = smi_event_handler(smi_info, time_diff);
1096
1097         if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
1098                 /* Running with interrupts, only do long timeouts. */
1099                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1100                 smi_inc_stat(smi_info, long_timeouts);
1101                 goto do_mod_timer;
1102         }
1103
1104         /*
1105          * If the state machine asks for a short delay, then shorten
1106          * the timer timeout.
1107          */
1108         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1109                 smi_inc_stat(smi_info, short_timeouts);
1110                 timeout = jiffies + 1;
1111         } else {
1112                 smi_inc_stat(smi_info, long_timeouts);
1113                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1114         }
1115
1116 do_mod_timer:
1117         if (smi_result != SI_SM_IDLE)
1118                 smi_mod_timer(smi_info, timeout);
1119         else
1120                 smi_info->timer_running = false;
1121         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1122 }
1123
1124 irqreturn_t ipmi_si_irq_handler(int irq, void *data)
1125 {
1126         struct smi_info *smi_info = data;
1127         unsigned long   flags;
1128
1129         if (smi_info->io.si_type == SI_BT)
1130                 /* We need to clear the IRQ flag for the BT interface. */
1131                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1132                                      IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1133                                      | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1134
1135         spin_lock_irqsave(&(smi_info->si_lock), flags);
1136
1137         smi_inc_stat(smi_info, interrupts);
1138
1139         debug_timestamp("Interrupt");
1140
1141         smi_event_handler(smi_info, 0);
1142         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1143         return IRQ_HANDLED;
1144 }
1145
1146 static int smi_start_processing(void       *send_info,
1147                                 ipmi_smi_t intf)
1148 {
1149         struct smi_info *new_smi = send_info;
1150         int             enable = 0;
1151
1152         new_smi->intf = intf;
1153
1154         /* Set up the timer that drives the interface. */
1155         timer_setup(&new_smi->si_timer, smi_timeout, 0);
1156         new_smi->timer_can_start = true;
1157         smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1158
1159         /* Try to claim any interrupts. */
1160         if (new_smi->io.irq_setup) {
1161                 new_smi->io.irq_handler_data = new_smi;
1162                 new_smi->io.irq_setup(&new_smi->io);
1163         }
1164
1165         /*
1166          * Check if the user forcefully enabled the daemon.
1167          */
1168         if (new_smi->intf_num < num_force_kipmid)
1169                 enable = force_kipmid[new_smi->intf_num];
1170         /*
1171          * The BT interface is efficient enough to not need a thread,
1172          * and there is no need for a thread if we have interrupts.
1173          */
1174         else if ((new_smi->io.si_type != SI_BT) && (!new_smi->io.irq))
1175                 enable = 1;
1176
1177         if (enable) {
1178                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1179                                               "kipmi%d", new_smi->intf_num);
1180                 if (IS_ERR(new_smi->thread)) {
1181                         dev_notice(new_smi->io.dev, "Could not start"
1182                                    " kernel thread due to error %ld, only using"
1183                                    " timers to drive the interface\n",
1184                                    PTR_ERR(new_smi->thread));
1185                         new_smi->thread = NULL;
1186                 }
1187         }
1188
1189         return 0;
1190 }
1191
1192 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1193 {
1194         struct smi_info *smi = send_info;
1195
1196         data->addr_src = smi->io.addr_source;
1197         data->dev = smi->io.dev;
1198         data->addr_info = smi->io.addr_info;
1199         get_device(smi->io.dev);
1200
1201         return 0;
1202 }
1203
1204 static void set_maintenance_mode(void *send_info, bool enable)
1205 {
1206         struct smi_info   *smi_info = send_info;
1207
1208         if (!enable)
1209                 atomic_set(&smi_info->req_events, 0);
1210 }
1211
1212 static const struct ipmi_smi_handlers handlers = {
1213         .owner                  = THIS_MODULE,
1214         .start_processing       = smi_start_processing,
1215         .get_smi_info           = get_smi_info,
1216         .sender                 = sender,
1217         .request_events         = request_events,
1218         .set_need_watch         = set_need_watch,
1219         .set_maintenance_mode   = set_maintenance_mode,
1220         .set_run_to_completion  = set_run_to_completion,
1221         .flush_messages         = flush_messages,
1222         .poll                   = poll,
1223 };
1224
1225 static LIST_HEAD(smi_infos);
1226 static DEFINE_MUTEX(smi_infos_lock);
1227 static int smi_num; /* Used to sequence the SMIs */
1228
1229 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1230
1231 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1232 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1233                  " disabled(0).  Normally the IPMI driver auto-detects"
1234                  " this, but the value may be overridden by this parm.");
1235 module_param(unload_when_empty, bool, 0);
1236 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1237                  " specified or found, default is 1.  Setting to 0"
1238                  " is useful for hot add of devices using hotmod.");
1239 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1240 MODULE_PARM_DESC(kipmid_max_busy_us,
1241                  "Max time (in microseconds) to busy-wait for IPMI data before"
1242                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1243                  " if kipmid is using up a lot of CPU time.");
1244
1245 void ipmi_irq_finish_setup(struct si_sm_io *io)
1246 {
1247         if (io->si_type == SI_BT)
1248                 /* Enable the interrupt in the BT interface. */
1249                 io->outputb(io, IPMI_BT_INTMASK_REG,
1250                             IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1251 }
1252
1253 void ipmi_irq_start_cleanup(struct si_sm_io *io)
1254 {
1255         if (io->si_type == SI_BT)
1256                 /* Disable the interrupt in the BT interface. */
1257                 io->outputb(io, IPMI_BT_INTMASK_REG, 0);
1258 }
1259
1260 static void std_irq_cleanup(struct si_sm_io *io)
1261 {
1262         ipmi_irq_start_cleanup(io);
1263         free_irq(io->irq, io->irq_handler_data);
1264 }
1265
1266 int ipmi_std_irq_setup(struct si_sm_io *io)
1267 {
1268         int rv;
1269
1270         if (!io->irq)
1271                 return 0;
1272
1273         rv = request_irq(io->irq,
1274                          ipmi_si_irq_handler,
1275                          IRQF_SHARED,
1276                          DEVICE_NAME,
1277                          io->irq_handler_data);
1278         if (rv) {
1279                 dev_warn(io->dev, "%s unable to claim interrupt %d,"
1280                          " running polled\n",
1281                          DEVICE_NAME, io->irq);
1282                 io->irq = 0;
1283         } else {
1284                 io->irq_cleanup = std_irq_cleanup;
1285                 ipmi_irq_finish_setup(io);
1286                 dev_info(io->dev, "Using irq %d\n", io->irq);
1287         }
1288
1289         return rv;
1290 }
1291
1292 static int wait_for_msg_done(struct smi_info *smi_info)
1293 {
1294         enum si_sm_result     smi_result;
1295
1296         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1297         for (;;) {
1298                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
1299                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
1300                         schedule_timeout_uninterruptible(1);
1301                         smi_result = smi_info->handlers->event(
1302                                 smi_info->si_sm, jiffies_to_usecs(1));
1303                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1304                         smi_result = smi_info->handlers->event(
1305                                 smi_info->si_sm, 0);
1306                 } else
1307                         break;
1308         }
1309         if (smi_result == SI_SM_HOSED)
1310                 /*
1311                  * We couldn't get the state machine to run, so whatever's at
1312                  * the port is probably not an IPMI SMI interface.
1313                  */
1314                 return -ENODEV;
1315
1316         return 0;
1317 }
1318
1319 static int try_get_dev_id(struct smi_info *smi_info)
1320 {
1321         unsigned char         msg[2];
1322         unsigned char         *resp;
1323         unsigned long         resp_len;
1324         int                   rv = 0;
1325
1326         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1327         if (!resp)
1328                 return -ENOMEM;
1329
1330         /*
1331          * Do a Get Device ID command, since it comes back with some
1332          * useful info.
1333          */
1334         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1335         msg[1] = IPMI_GET_DEVICE_ID_CMD;
1336         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1337
1338         rv = wait_for_msg_done(smi_info);
1339         if (rv)
1340                 goto out;
1341
1342         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1343                                                   resp, IPMI_MAX_MSG_LENGTH);
1344
1345         /* Check and record info from the get device id, in case we need it. */
1346         rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1],
1347                         resp + 2, resp_len - 2, &smi_info->device_id);
1348
1349 out:
1350         kfree(resp);
1351         return rv;
1352 }
1353
1354 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
1355 {
1356         unsigned char         msg[3];
1357         unsigned char         *resp;
1358         unsigned long         resp_len;
1359         int                   rv;
1360
1361         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1362         if (!resp)
1363                 return -ENOMEM;
1364
1365         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1366         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1367         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1368
1369         rv = wait_for_msg_done(smi_info);
1370         if (rv) {
1371                 dev_warn(smi_info->io.dev,
1372                          "Error getting response from get global enables command: %d\n",
1373                          rv);
1374                 goto out;
1375         }
1376
1377         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1378                                                   resp, IPMI_MAX_MSG_LENGTH);
1379
1380         if (resp_len < 4 ||
1381                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1382                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
1383                         resp[2] != 0) {
1384                 dev_warn(smi_info->io.dev,
1385                          "Invalid return from get global enables command: %ld %x %x %x\n",
1386                          resp_len, resp[0], resp[1], resp[2]);
1387                 rv = -EINVAL;
1388                 goto out;
1389         } else {
1390                 *enables = resp[3];
1391         }
1392
1393 out:
1394         kfree(resp);
1395         return rv;
1396 }
1397
1398 /*
1399  * Returns 1 if it gets an error from the command.
1400  */
1401 static int set_global_enables(struct smi_info *smi_info, u8 enables)
1402 {
1403         unsigned char         msg[3];
1404         unsigned char         *resp;
1405         unsigned long         resp_len;
1406         int                   rv;
1407
1408         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1409         if (!resp)
1410                 return -ENOMEM;
1411
1412         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1413         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1414         msg[2] = enables;
1415         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1416
1417         rv = wait_for_msg_done(smi_info);
1418         if (rv) {
1419                 dev_warn(smi_info->io.dev,
1420                          "Error getting response from set global enables command: %d\n",
1421                          rv);
1422                 goto out;
1423         }
1424
1425         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1426                                                   resp, IPMI_MAX_MSG_LENGTH);
1427
1428         if (resp_len < 3 ||
1429                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1430                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1431                 dev_warn(smi_info->io.dev,
1432                          "Invalid return from set global enables command: %ld %x %x\n",
1433                          resp_len, resp[0], resp[1]);
1434                 rv = -EINVAL;
1435                 goto out;
1436         }
1437
1438         if (resp[2] != 0)
1439                 rv = 1;
1440
1441 out:
1442         kfree(resp);
1443         return rv;
1444 }
1445
1446 /*
1447  * Some BMCs do not support clearing the receive irq bit in the global
1448  * enables (even if they don't support interrupts on the BMC).  Check
1449  * for this and handle it properly.
1450  */
1451 static void check_clr_rcv_irq(struct smi_info *smi_info)
1452 {
1453         u8 enables = 0;
1454         int rv;
1455
1456         rv = get_global_enables(smi_info, &enables);
1457         if (!rv) {
1458                 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
1459                         /* Already clear, should work ok. */
1460                         return;
1461
1462                 enables &= ~IPMI_BMC_RCV_MSG_INTR;
1463                 rv = set_global_enables(smi_info, enables);
1464         }
1465
1466         if (rv < 0) {
1467                 dev_err(smi_info->io.dev,
1468                         "Cannot check clearing the rcv irq: %d\n", rv);
1469                 return;
1470         }
1471
1472         if (rv) {
1473                 /*
1474                  * An error when setting the event buffer bit means
1475                  * clearing the bit is not supported.
1476                  */
1477                 dev_warn(smi_info->io.dev,
1478                          "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1479                 smi_info->cannot_disable_irq = true;
1480         }
1481 }
1482
1483 /*
1484  * Some BMCs do not support setting the interrupt bits in the global
1485  * enables even if they support interrupts.  Clearly bad, but we can
1486  * compensate.
1487  */
1488 static void check_set_rcv_irq(struct smi_info *smi_info)
1489 {
1490         u8 enables = 0;
1491         int rv;
1492
1493         if (!smi_info->io.irq)
1494                 return;
1495
1496         rv = get_global_enables(smi_info, &enables);
1497         if (!rv) {
1498                 enables |= IPMI_BMC_RCV_MSG_INTR;
1499                 rv = set_global_enables(smi_info, enables);
1500         }
1501
1502         if (rv < 0) {
1503                 dev_err(smi_info->io.dev,
1504                         "Cannot check setting the rcv irq: %d\n", rv);
1505                 return;
1506         }
1507
1508         if (rv) {
1509                 /*
1510                  * An error when setting the event buffer bit means
1511                  * setting the bit is not supported.
1512                  */
1513                 dev_warn(smi_info->io.dev,
1514                          "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1515                 smi_info->cannot_disable_irq = true;
1516                 smi_info->irq_enable_broken = true;
1517         }
1518 }
1519
1520 static int try_enable_event_buffer(struct smi_info *smi_info)
1521 {
1522         unsigned char         msg[3];
1523         unsigned char         *resp;
1524         unsigned long         resp_len;
1525         int                   rv = 0;
1526
1527         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1528         if (!resp)
1529                 return -ENOMEM;
1530
1531         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1532         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1533         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1534
1535         rv = wait_for_msg_done(smi_info);
1536         if (rv) {
1537                 pr_warn(PFX "Error getting response from get global enables command, the event buffer is not enabled.\n");
1538                 goto out;
1539         }
1540
1541         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1542                                                   resp, IPMI_MAX_MSG_LENGTH);
1543
1544         if (resp_len < 4 ||
1545                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1546                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
1547                         resp[2] != 0) {
1548                 pr_warn(PFX "Invalid return from get global enables command, cannot enable the event buffer.\n");
1549                 rv = -EINVAL;
1550                 goto out;
1551         }
1552
1553         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
1554                 /* buffer is already enabled, nothing to do. */
1555                 smi_info->supports_event_msg_buff = true;
1556                 goto out;
1557         }
1558
1559         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1560         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1561         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
1562         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1563
1564         rv = wait_for_msg_done(smi_info);
1565         if (rv) {
1566                 pr_warn(PFX "Error getting response from set global, enables command, the event buffer is not enabled.\n");
1567                 goto out;
1568         }
1569
1570         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1571                                                   resp, IPMI_MAX_MSG_LENGTH);
1572
1573         if (resp_len < 3 ||
1574                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1575                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1576                 pr_warn(PFX "Invalid return from get global, enables command, not enable the event buffer.\n");
1577                 rv = -EINVAL;
1578                 goto out;
1579         }
1580
1581         if (resp[2] != 0)
1582                 /*
1583                  * An error when setting the event buffer bit means
1584                  * that the event buffer is not supported.
1585                  */
1586                 rv = -ENOENT;
1587         else
1588                 smi_info->supports_event_msg_buff = true;
1589
1590 out:
1591         kfree(resp);
1592         return rv;
1593 }
1594
1595 #ifdef CONFIG_IPMI_PROC_INTERFACE
1596 static int smi_type_proc_show(struct seq_file *m, void *v)
1597 {
1598         struct smi_info *smi = m->private;
1599
1600         seq_printf(m, "%s\n", si_to_str[smi->io.si_type]);
1601
1602         return 0;
1603 }
1604
1605 static int smi_type_proc_open(struct inode *inode, struct file *file)
1606 {
1607         return single_open(file, smi_type_proc_show, PDE_DATA(inode));
1608 }
1609
1610 static const struct file_operations smi_type_proc_ops = {
1611         .open           = smi_type_proc_open,
1612         .read           = seq_read,
1613         .llseek         = seq_lseek,
1614         .release        = single_release,
1615 };
1616
1617 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
1618 {
1619         struct smi_info *smi = m->private;
1620
1621         seq_printf(m, "interrupts_enabled:    %d\n",
1622                        smi->io.irq && !smi->interrupt_disabled);
1623         seq_printf(m, "short_timeouts:        %u\n",
1624                        smi_get_stat(smi, short_timeouts));
1625         seq_printf(m, "long_timeouts:         %u\n",
1626                        smi_get_stat(smi, long_timeouts));
1627         seq_printf(m, "idles:                 %u\n",
1628                        smi_get_stat(smi, idles));
1629         seq_printf(m, "interrupts:            %u\n",
1630                        smi_get_stat(smi, interrupts));
1631         seq_printf(m, "attentions:            %u\n",
1632                        smi_get_stat(smi, attentions));
1633         seq_printf(m, "flag_fetches:          %u\n",
1634                        smi_get_stat(smi, flag_fetches));
1635         seq_printf(m, "hosed_count:           %u\n",
1636                        smi_get_stat(smi, hosed_count));
1637         seq_printf(m, "complete_transactions: %u\n",
1638                        smi_get_stat(smi, complete_transactions));
1639         seq_printf(m, "events:                %u\n",
1640                        smi_get_stat(smi, events));
1641         seq_printf(m, "watchdog_pretimeouts:  %u\n",
1642                        smi_get_stat(smi, watchdog_pretimeouts));
1643         seq_printf(m, "incoming_messages:     %u\n",
1644                        smi_get_stat(smi, incoming_messages));
1645         return 0;
1646 }
1647
1648 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
1649 {
1650         return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
1651 }
1652
1653 static const struct file_operations smi_si_stats_proc_ops = {
1654         .open           = smi_si_stats_proc_open,
1655         .read           = seq_read,
1656         .llseek         = seq_lseek,
1657         .release        = single_release,
1658 };
1659
1660 static int smi_params_proc_show(struct seq_file *m, void *v)
1661 {
1662         struct smi_info *smi = m->private;
1663
1664         seq_printf(m,
1665                    "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1666                    si_to_str[smi->io.si_type],
1667                    addr_space_to_str[smi->io.addr_type],
1668                    smi->io.addr_data,
1669                    smi->io.regspacing,
1670                    smi->io.regsize,
1671                    smi->io.regshift,
1672                    smi->io.irq,
1673                    smi->io.slave_addr);
1674
1675         return 0;
1676 }
1677
1678 static int smi_params_proc_open(struct inode *inode, struct file *file)
1679 {
1680         return single_open(file, smi_params_proc_show, PDE_DATA(inode));
1681 }
1682
1683 static const struct file_operations smi_params_proc_ops = {
1684         .open           = smi_params_proc_open,
1685         .read           = seq_read,
1686         .llseek         = seq_lseek,
1687         .release        = single_release,
1688 };
1689 #endif
1690
1691 #define IPMI_SI_ATTR(name) \
1692 static ssize_t ipmi_##name##_show(struct device *dev,                   \
1693                                   struct device_attribute *attr,        \
1694                                   char *buf)                            \
1695 {                                                                       \
1696         struct smi_info *smi_info = dev_get_drvdata(dev);               \
1697                                                                         \
1698         return snprintf(buf, 10, "%u\n", smi_get_stat(smi_info, name)); \
1699 }                                                                       \
1700 static DEVICE_ATTR(name, S_IRUGO, ipmi_##name##_show, NULL)
1701
1702 static ssize_t ipmi_type_show(struct device *dev,
1703                               struct device_attribute *attr,
1704                               char *buf)
1705 {
1706         struct smi_info *smi_info = dev_get_drvdata(dev);
1707
1708         return snprintf(buf, 10, "%s\n", si_to_str[smi_info->io.si_type]);
1709 }
1710 static DEVICE_ATTR(type, S_IRUGO, ipmi_type_show, NULL);
1711
1712 static ssize_t ipmi_interrupts_enabled_show(struct device *dev,
1713                                             struct device_attribute *attr,
1714                                             char *buf)
1715 {
1716         struct smi_info *smi_info = dev_get_drvdata(dev);
1717         int enabled = smi_info->io.irq && !smi_info->interrupt_disabled;
1718
1719         return snprintf(buf, 10, "%d\n", enabled);
1720 }
1721 static DEVICE_ATTR(interrupts_enabled, S_IRUGO,
1722                    ipmi_interrupts_enabled_show, NULL);
1723
1724 IPMI_SI_ATTR(short_timeouts);
1725 IPMI_SI_ATTR(long_timeouts);
1726 IPMI_SI_ATTR(idles);
1727 IPMI_SI_ATTR(interrupts);
1728 IPMI_SI_ATTR(attentions);
1729 IPMI_SI_ATTR(flag_fetches);
1730 IPMI_SI_ATTR(hosed_count);
1731 IPMI_SI_ATTR(complete_transactions);
1732 IPMI_SI_ATTR(events);
1733 IPMI_SI_ATTR(watchdog_pretimeouts);
1734 IPMI_SI_ATTR(incoming_messages);
1735
1736 static ssize_t ipmi_params_show(struct device *dev,
1737                                 struct device_attribute *attr,
1738                                 char *buf)
1739 {
1740         struct smi_info *smi_info = dev_get_drvdata(dev);
1741
1742         return snprintf(buf, 200,
1743                         "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1744                         si_to_str[smi_info->io.si_type],
1745                         addr_space_to_str[smi_info->io.addr_type],
1746                         smi_info->io.addr_data,
1747                         smi_info->io.regspacing,
1748                         smi_info->io.regsize,
1749                         smi_info->io.regshift,
1750                         smi_info->io.irq,
1751                         smi_info->io.slave_addr);
1752 }
1753 static DEVICE_ATTR(params, S_IRUGO, ipmi_params_show, NULL);
1754
1755 static struct attribute *ipmi_si_dev_attrs[] = {
1756         &dev_attr_type.attr,
1757         &dev_attr_interrupts_enabled.attr,
1758         &dev_attr_short_timeouts.attr,
1759         &dev_attr_long_timeouts.attr,
1760         &dev_attr_idles.attr,
1761         &dev_attr_interrupts.attr,
1762         &dev_attr_attentions.attr,
1763         &dev_attr_flag_fetches.attr,
1764         &dev_attr_hosed_count.attr,
1765         &dev_attr_complete_transactions.attr,
1766         &dev_attr_events.attr,
1767         &dev_attr_watchdog_pretimeouts.attr,
1768         &dev_attr_incoming_messages.attr,
1769         &dev_attr_params.attr,
1770         NULL
1771 };
1772
1773 static const struct attribute_group ipmi_si_dev_attr_group = {
1774         .attrs          = ipmi_si_dev_attrs,
1775 };
1776
1777 /*
1778  * oem_data_avail_to_receive_msg_avail
1779  * @info - smi_info structure with msg_flags set
1780  *
1781  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
1782  * Returns 1 indicating need to re-run handle_flags().
1783  */
1784 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
1785 {
1786         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
1787                                RECEIVE_MSG_AVAIL);
1788         return 1;
1789 }
1790
1791 /*
1792  * setup_dell_poweredge_oem_data_handler
1793  * @info - smi_info.device_id must be populated
1794  *
1795  * Systems that match, but have firmware version < 1.40 may assert
1796  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
1797  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
1798  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
1799  * as RECEIVE_MSG_AVAIL instead.
1800  *
1801  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
1802  * assert the OEM[012] bits, and if it did, the driver would have to
1803  * change to handle that properly, we don't actually check for the
1804  * firmware version.
1805  * Device ID = 0x20                BMC on PowerEdge 8G servers
1806  * Device Revision = 0x80
1807  * Firmware Revision1 = 0x01       BMC version 1.40
1808  * Firmware Revision2 = 0x40       BCD encoded
1809  * IPMI Version = 0x51             IPMI 1.5
1810  * Manufacturer ID = A2 02 00      Dell IANA
1811  *
1812  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
1813  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
1814  *
1815  */
1816 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
1817 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
1818 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
1819 #define DELL_IANA_MFR_ID 0x0002a2
1820 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
1821 {
1822         struct ipmi_device_id *id = &smi_info->device_id;
1823         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
1824                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
1825                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
1826                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
1827                         smi_info->oem_data_avail_handler =
1828                                 oem_data_avail_to_receive_msg_avail;
1829                 } else if (ipmi_version_major(id) < 1 ||
1830                            (ipmi_version_major(id) == 1 &&
1831                             ipmi_version_minor(id) < 5)) {
1832                         smi_info->oem_data_avail_handler =
1833                                 oem_data_avail_to_receive_msg_avail;
1834                 }
1835         }
1836 }
1837
1838 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
1839 static void return_hosed_msg_badsize(struct smi_info *smi_info)
1840 {
1841         struct ipmi_smi_msg *msg = smi_info->curr_msg;
1842
1843         /* Make it a response */
1844         msg->rsp[0] = msg->data[0] | 4;
1845         msg->rsp[1] = msg->data[1];
1846         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
1847         msg->rsp_size = 3;
1848         smi_info->curr_msg = NULL;
1849         deliver_recv_msg(smi_info, msg);
1850 }
1851
1852 /*
1853  * dell_poweredge_bt_xaction_handler
1854  * @info - smi_info.device_id must be populated
1855  *
1856  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
1857  * not respond to a Get SDR command if the length of the data
1858  * requested is exactly 0x3A, which leads to command timeouts and no
1859  * data returned.  This intercepts such commands, and causes userspace
1860  * callers to try again with a different-sized buffer, which succeeds.
1861  */
1862
1863 #define STORAGE_NETFN 0x0A
1864 #define STORAGE_CMD_GET_SDR 0x23
1865 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
1866                                              unsigned long unused,
1867                                              void *in)
1868 {
1869         struct smi_info *smi_info = in;
1870         unsigned char *data = smi_info->curr_msg->data;
1871         unsigned int size   = smi_info->curr_msg->data_size;
1872         if (size >= 8 &&
1873             (data[0]>>2) == STORAGE_NETFN &&
1874             data[1] == STORAGE_CMD_GET_SDR &&
1875             data[7] == 0x3A) {
1876                 return_hosed_msg_badsize(smi_info);
1877                 return NOTIFY_STOP;
1878         }
1879         return NOTIFY_DONE;
1880 }
1881
1882 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
1883         .notifier_call  = dell_poweredge_bt_xaction_handler,
1884 };
1885
1886 /*
1887  * setup_dell_poweredge_bt_xaction_handler
1888  * @info - smi_info.device_id must be filled in already
1889  *
1890  * Fills in smi_info.device_id.start_transaction_pre_hook
1891  * when we know what function to use there.
1892  */
1893 static void
1894 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
1895 {
1896         struct ipmi_device_id *id = &smi_info->device_id;
1897         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
1898             smi_info->io.si_type == SI_BT)
1899                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
1900 }
1901
1902 /*
1903  * setup_oem_data_handler
1904  * @info - smi_info.device_id must be filled in already
1905  *
1906  * Fills in smi_info.device_id.oem_data_available_handler
1907  * when we know what function to use there.
1908  */
1909
1910 static void setup_oem_data_handler(struct smi_info *smi_info)
1911 {
1912         setup_dell_poweredge_oem_data_handler(smi_info);
1913 }
1914
1915 static void setup_xaction_handlers(struct smi_info *smi_info)
1916 {
1917         setup_dell_poweredge_bt_xaction_handler(smi_info);
1918 }
1919
1920 static void check_for_broken_irqs(struct smi_info *smi_info)
1921 {
1922         check_clr_rcv_irq(smi_info);
1923         check_set_rcv_irq(smi_info);
1924 }
1925
1926 static inline void stop_timer_and_thread(struct smi_info *smi_info)
1927 {
1928         if (smi_info->thread != NULL) {
1929                 kthread_stop(smi_info->thread);
1930                 smi_info->thread = NULL;
1931         }
1932
1933         smi_info->timer_can_start = false;
1934         if (smi_info->timer_running)
1935                 del_timer_sync(&smi_info->si_timer);
1936 }
1937
1938 static struct smi_info *find_dup_si(struct smi_info *info)
1939 {
1940         struct smi_info *e;
1941
1942         list_for_each_entry(e, &smi_infos, link) {
1943                 if (e->io.addr_type != info->io.addr_type)
1944                         continue;
1945                 if (e->io.addr_data == info->io.addr_data) {
1946                         /*
1947                          * This is a cheap hack, ACPI doesn't have a defined
1948                          * slave address but SMBIOS does.  Pick it up from
1949                          * any source that has it available.
1950                          */
1951                         if (info->io.slave_addr && !e->io.slave_addr)
1952                                 e->io.slave_addr = info->io.slave_addr;
1953                         return e;
1954                 }
1955         }
1956
1957         return NULL;
1958 }
1959
1960 int ipmi_si_add_smi(struct si_sm_io *io)
1961 {
1962         int rv = 0;
1963         struct smi_info *new_smi, *dup;
1964
1965         if (!io->io_setup) {
1966                 if (io->addr_type == IPMI_IO_ADDR_SPACE) {
1967                         io->io_setup = ipmi_si_port_setup;
1968                 } else if (io->addr_type == IPMI_MEM_ADDR_SPACE) {
1969                         io->io_setup = ipmi_si_mem_setup;
1970                 } else {
1971                         return -EINVAL;
1972                 }
1973         }
1974
1975         new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL);
1976         if (!new_smi)
1977                 return -ENOMEM;
1978         spin_lock_init(&new_smi->si_lock);
1979
1980         new_smi->io = *io;
1981
1982         mutex_lock(&smi_infos_lock);
1983         dup = find_dup_si(new_smi);
1984         if (dup) {
1985                 if (new_smi->io.addr_source == SI_ACPI &&
1986                     dup->io.addr_source == SI_SMBIOS) {
1987                         /* We prefer ACPI over SMBIOS. */
1988                         dev_info(dup->io.dev,
1989                                  "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
1990                                  si_to_str[new_smi->io.si_type]);
1991                         cleanup_one_si(dup);
1992                 } else {
1993                         dev_info(new_smi->io.dev,
1994                                  "%s-specified %s state machine: duplicate\n",
1995                                  ipmi_addr_src_to_str(new_smi->io.addr_source),
1996                                  si_to_str[new_smi->io.si_type]);
1997                         rv = -EBUSY;
1998                         kfree(new_smi);
1999                         goto out_err;
2000                 }
2001         }
2002
2003         pr_info(PFX "Adding %s-specified %s state machine\n",
2004                 ipmi_addr_src_to_str(new_smi->io.addr_source),
2005                 si_to_str[new_smi->io.si_type]);
2006
2007         list_add_tail(&new_smi->link, &smi_infos);
2008
2009         if (initialized) {
2010                 rv = try_smi_init(new_smi);
2011                 if (rv) {
2012                         cleanup_one_si(new_smi);
2013                         mutex_unlock(&smi_infos_lock);
2014                         return rv;
2015                 }
2016         }
2017 out_err:
2018         mutex_unlock(&smi_infos_lock);
2019         return rv;
2020 }
2021
2022 /*
2023  * Try to start up an interface.  Must be called with smi_infos_lock
2024  * held, primarily to keep smi_num consistent, we only one to do these
2025  * one at a time.
2026  */
2027 static int try_smi_init(struct smi_info *new_smi)
2028 {
2029         int rv = 0;
2030         int i;
2031         char *init_name = NULL;
2032
2033         pr_info(PFX "Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
2034                 ipmi_addr_src_to_str(new_smi->io.addr_source),
2035                 si_to_str[new_smi->io.si_type],
2036                 addr_space_to_str[new_smi->io.addr_type],
2037                 new_smi->io.addr_data,
2038                 new_smi->io.slave_addr, new_smi->io.irq);
2039
2040         switch (new_smi->io.si_type) {
2041         case SI_KCS:
2042                 new_smi->handlers = &kcs_smi_handlers;
2043                 break;
2044
2045         case SI_SMIC:
2046                 new_smi->handlers = &smic_smi_handlers;
2047                 break;
2048
2049         case SI_BT:
2050                 new_smi->handlers = &bt_smi_handlers;
2051                 break;
2052
2053         default:
2054                 /* No support for anything else yet. */
2055                 rv = -EIO;
2056                 goto out_err;
2057         }
2058
2059         new_smi->intf_num = smi_num;
2060
2061         /* Do this early so it's available for logs. */
2062         if (!new_smi->io.dev) {
2063                 init_name = kasprintf(GFP_KERNEL, "ipmi_si.%d",
2064                                       new_smi->intf_num);
2065
2066                 /*
2067                  * If we don't already have a device from something
2068                  * else (like PCI), then register a new one.
2069                  */
2070                 new_smi->pdev = platform_device_alloc("ipmi_si",
2071                                                       new_smi->intf_num);
2072                 if (!new_smi->pdev) {
2073                         pr_err(PFX "Unable to allocate platform device\n");
2074                         rv = -ENOMEM;
2075                         goto out_err;
2076                 }
2077                 new_smi->io.dev = &new_smi->pdev->dev;
2078                 new_smi->io.dev->driver = &ipmi_platform_driver.driver;
2079                 /* Nulled by device_add() */
2080                 new_smi->io.dev->init_name = init_name;
2081         }
2082
2083         /* Allocate the state machine's data and initialize it. */
2084         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2085         if (!new_smi->si_sm) {
2086                 rv = -ENOMEM;
2087                 goto out_err;
2088         }
2089         new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm,
2090                                                            &new_smi->io);
2091
2092         /* Now that we know the I/O size, we can set up the I/O. */
2093         rv = new_smi->io.io_setup(&new_smi->io);
2094         if (rv) {
2095                 dev_err(new_smi->io.dev, "Could not set up I/O space\n");
2096                 goto out_err;
2097         }
2098
2099         /* Do low-level detection first. */
2100         if (new_smi->handlers->detect(new_smi->si_sm)) {
2101                 if (new_smi->io.addr_source)
2102                         dev_err(new_smi->io.dev,
2103                                 "Interface detection failed\n");
2104                 rv = -ENODEV;
2105                 goto out_err;
2106         }
2107
2108         /*
2109          * Attempt a get device id command.  If it fails, we probably
2110          * don't have a BMC here.
2111          */
2112         rv = try_get_dev_id(new_smi);
2113         if (rv) {
2114                 if (new_smi->io.addr_source)
2115                         dev_err(new_smi->io.dev,
2116                                "There appears to be no BMC at this location\n");
2117                 goto out_err;
2118         }
2119
2120         setup_oem_data_handler(new_smi);
2121         setup_xaction_handlers(new_smi);
2122         check_for_broken_irqs(new_smi);
2123
2124         new_smi->waiting_msg = NULL;
2125         new_smi->curr_msg = NULL;
2126         atomic_set(&new_smi->req_events, 0);
2127         new_smi->run_to_completion = false;
2128         for (i = 0; i < SI_NUM_STATS; i++)
2129                 atomic_set(&new_smi->stats[i], 0);
2130
2131         new_smi->interrupt_disabled = true;
2132         atomic_set(&new_smi->need_watch, 0);
2133
2134         rv = try_enable_event_buffer(new_smi);
2135         if (rv == 0)
2136                 new_smi->has_event_buffer = true;
2137
2138         /*
2139          * Start clearing the flags before we enable interrupts or the
2140          * timer to avoid racing with the timer.
2141          */
2142         start_clear_flags(new_smi);
2143
2144         /*
2145          * IRQ is defined to be set when non-zero.  req_events will
2146          * cause a global flags check that will enable interrupts.
2147          */
2148         if (new_smi->io.irq) {
2149                 new_smi->interrupt_disabled = false;
2150                 atomic_set(&new_smi->req_events, 1);
2151         }
2152
2153         if (new_smi->pdev && !new_smi->pdev_registered) {
2154                 rv = platform_device_add(new_smi->pdev);
2155                 if (rv) {
2156                         dev_err(new_smi->io.dev,
2157                                 "Unable to register system interface device: %d\n",
2158                                 rv);
2159                         goto out_err;
2160                 }
2161                 new_smi->pdev_registered = true;
2162         }
2163
2164         dev_set_drvdata(new_smi->io.dev, new_smi);
2165         rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group);
2166         if (rv) {
2167                 dev_err(new_smi->io.dev,
2168                         "Unable to add device attributes: error %d\n",
2169                         rv);
2170                 goto out_err;
2171         }
2172         new_smi->dev_group_added = true;
2173
2174         rv = ipmi_register_smi(&handlers,
2175                                new_smi,
2176                                new_smi->io.dev,
2177                                new_smi->io.slave_addr);
2178         if (rv) {
2179                 dev_err(new_smi->io.dev,
2180                         "Unable to register device: error %d\n",
2181                         rv);
2182                 goto out_err;
2183         }
2184
2185 #ifdef CONFIG_IPMI_PROC_INTERFACE
2186         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2187                                      &smi_type_proc_ops,
2188                                      new_smi);
2189         if (rv) {
2190                 dev_err(new_smi->io.dev,
2191                         "Unable to create proc entry: %d\n", rv);
2192                 goto out_err;
2193         }
2194
2195         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2196                                      &smi_si_stats_proc_ops,
2197                                      new_smi);
2198         if (rv) {
2199                 dev_err(new_smi->io.dev,
2200                         "Unable to create proc entry: %d\n", rv);
2201                 goto out_err;
2202         }
2203
2204         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
2205                                      &smi_params_proc_ops,
2206                                      new_smi);
2207         if (rv) {
2208                 dev_err(new_smi->io.dev,
2209                         "Unable to create proc entry: %d\n", rv);
2210                 goto out_err;
2211         }
2212 #endif
2213
2214         /* Don't increment till we know we have succeeded. */
2215         smi_num++;
2216
2217         dev_info(new_smi->io.dev, "IPMI %s interface initialized\n",
2218                  si_to_str[new_smi->io.si_type]);
2219
2220         WARN_ON(new_smi->io.dev->init_name != NULL);
2221         kfree(init_name);
2222
2223         return 0;
2224
2225 out_err:
2226         shutdown_one_si(new_smi);
2227
2228         kfree(init_name);
2229
2230         return rv;
2231 }
2232
2233 static int init_ipmi_si(void)
2234 {
2235         struct smi_info *e;
2236         enum ipmi_addr_src type = SI_INVALID;
2237
2238         if (initialized)
2239                 return 0;
2240
2241         pr_info("IPMI System Interface driver.\n");
2242
2243         /* If the user gave us a device, they presumably want us to use it */
2244         if (!ipmi_si_hardcode_find_bmc())
2245                 goto do_scan;
2246
2247         ipmi_si_platform_init();
2248
2249         ipmi_si_pci_init();
2250
2251         ipmi_si_parisc_init();
2252
2253         /* We prefer devices with interrupts, but in the case of a machine
2254            with multiple BMCs we assume that there will be several instances
2255            of a given type so if we succeed in registering a type then also
2256            try to register everything else of the same type */
2257 do_scan:
2258         mutex_lock(&smi_infos_lock);
2259         list_for_each_entry(e, &smi_infos, link) {
2260                 /* Try to register a device if it has an IRQ and we either
2261                    haven't successfully registered a device yet or this
2262                    device has the same type as one we successfully registered */
2263                 if (e->io.irq && (!type || e->io.addr_source == type)) {
2264                         if (!try_smi_init(e)) {
2265                                 type = e->io.addr_source;
2266                         }
2267                 }
2268         }
2269
2270         /* type will only have been set if we successfully registered an si */
2271         if (type)
2272                 goto skip_fallback_noirq;
2273
2274         /* Fall back to the preferred device */
2275
2276         list_for_each_entry(e, &smi_infos, link) {
2277                 if (!e->io.irq && (!type || e->io.addr_source == type)) {
2278                         if (!try_smi_init(e)) {
2279                                 type = e->io.addr_source;
2280                         }
2281                 }
2282         }
2283
2284 skip_fallback_noirq:
2285         initialized = 1;
2286         mutex_unlock(&smi_infos_lock);
2287
2288         if (type)
2289                 return 0;
2290
2291         mutex_lock(&smi_infos_lock);
2292         if (unload_when_empty && list_empty(&smi_infos)) {
2293                 mutex_unlock(&smi_infos_lock);
2294                 cleanup_ipmi_si();
2295                 pr_warn(PFX "Unable to find any System Interface(s)\n");
2296                 return -ENODEV;
2297         } else {
2298                 mutex_unlock(&smi_infos_lock);
2299                 return 0;
2300         }
2301 }
2302 module_init(init_ipmi_si);
2303
2304 static void shutdown_one_si(struct smi_info *smi_info)
2305 {
2306         int           rv = 0;
2307
2308         if (smi_info->intf) {
2309                 ipmi_smi_t intf = smi_info->intf;
2310
2311                 smi_info->intf = NULL;
2312                 rv = ipmi_unregister_smi(intf);
2313                 if (rv) {
2314                         pr_err(PFX "Unable to unregister device: errno=%d\n",
2315                                rv);
2316                 }
2317         }
2318
2319         if (smi_info->dev_group_added) {
2320                 device_remove_group(smi_info->io.dev, &ipmi_si_dev_attr_group);
2321                 smi_info->dev_group_added = false;
2322         }
2323         if (smi_info->io.dev)
2324                 dev_set_drvdata(smi_info->io.dev, NULL);
2325
2326         /*
2327          * Make sure that interrupts, the timer and the thread are
2328          * stopped and will not run again.
2329          */
2330         smi_info->interrupt_disabled = true;
2331         if (smi_info->io.irq_cleanup) {
2332                 smi_info->io.irq_cleanup(&smi_info->io);
2333                 smi_info->io.irq_cleanup = NULL;
2334         }
2335         stop_timer_and_thread(smi_info);
2336
2337         /*
2338          * Wait until we know that we are out of any interrupt
2339          * handlers might have been running before we freed the
2340          * interrupt.
2341          */
2342         synchronize_sched();
2343
2344         /*
2345          * Timeouts are stopped, now make sure the interrupts are off
2346          * in the BMC.  Note that timers and CPU interrupts are off,
2347          * so no need for locks.
2348          */
2349         while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2350                 poll(smi_info);
2351                 schedule_timeout_uninterruptible(1);
2352         }
2353         if (smi_info->handlers)
2354                 disable_si_irq(smi_info);
2355         while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2356                 poll(smi_info);
2357                 schedule_timeout_uninterruptible(1);
2358         }
2359         if (smi_info->handlers)
2360                 smi_info->handlers->cleanup(smi_info->si_sm);
2361
2362         if (smi_info->io.addr_source_cleanup) {
2363                 smi_info->io.addr_source_cleanup(&smi_info->io);
2364                 smi_info->io.addr_source_cleanup = NULL;
2365         }
2366         if (smi_info->io.io_cleanup) {
2367                 smi_info->io.io_cleanup(&smi_info->io);
2368                 smi_info->io.io_cleanup = NULL;
2369         }
2370
2371         kfree(smi_info->si_sm);
2372         smi_info->si_sm = NULL;
2373 }
2374
2375 static void cleanup_one_si(struct smi_info *smi_info)
2376 {
2377         if (!smi_info)
2378                 return;
2379
2380         list_del(&smi_info->link);
2381
2382         shutdown_one_si(smi_info);
2383
2384         if (smi_info->pdev) {
2385                 if (smi_info->pdev_registered)
2386                         platform_device_unregister(smi_info->pdev);
2387                 else
2388                         platform_device_put(smi_info->pdev);
2389         }
2390
2391         kfree(smi_info);
2392 }
2393
2394 int ipmi_si_remove_by_dev(struct device *dev)
2395 {
2396         struct smi_info *e;
2397         int rv = -ENOENT;
2398
2399         mutex_lock(&smi_infos_lock);
2400         list_for_each_entry(e, &smi_infos, link) {
2401                 if (e->io.dev == dev) {
2402                         cleanup_one_si(e);
2403                         rv = 0;
2404                         break;
2405                 }
2406         }
2407         mutex_unlock(&smi_infos_lock);
2408
2409         return rv;
2410 }
2411
2412 void ipmi_si_remove_by_data(int addr_space, enum si_type si_type,
2413                             unsigned long addr)
2414 {
2415         /* remove */
2416         struct smi_info *e, *tmp_e;
2417
2418         mutex_lock(&smi_infos_lock);
2419         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
2420                 if (e->io.addr_type != addr_space)
2421                         continue;
2422                 if (e->io.si_type != si_type)
2423                         continue;
2424                 if (e->io.addr_data == addr)
2425                         cleanup_one_si(e);
2426         }
2427         mutex_unlock(&smi_infos_lock);
2428 }
2429
2430 static void cleanup_ipmi_si(void)
2431 {
2432         struct smi_info *e, *tmp_e;
2433
2434         if (!initialized)
2435                 return;
2436
2437         ipmi_si_pci_shutdown();
2438
2439         ipmi_si_parisc_shutdown();
2440
2441         ipmi_si_platform_shutdown();
2442
2443         mutex_lock(&smi_infos_lock);
2444         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2445                 cleanup_one_si(e);
2446         mutex_unlock(&smi_infos_lock);
2447 }
2448 module_exit(cleanup_ipmi_si);
2449
2450 MODULE_ALIAS("platform:dmi-ipmi-si");
2451 MODULE_LICENSE("GPL");
2452 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2453 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
2454                    " system interfaces.");