rbd: terminate rbd_opts_tokens with Opt_err
[linux-2.6-block.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
42 #include <linux/fs.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
47
48 #include "rbd_types.h"
49
50 #define RBD_DEBUG       /* Activate rbd_assert() calls */
51
52 /*
53  * The basic unit of block I/O is a sector.  It is interpreted in a
54  * number of contexts in Linux (blk, bio, genhd), but the default is
55  * universally 512 bytes.  These symbols are just slightly more
56  * meaningful than the bare numbers they represent.
57  */
58 #define SECTOR_SHIFT    9
59 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
60
61 /*
62  * Increment the given counter and return its updated value.
63  * If the counter is already 0 it will not be incremented.
64  * If the counter is already at its maximum value returns
65  * -EINVAL without updating it.
66  */
67 static int atomic_inc_return_safe(atomic_t *v)
68 {
69         unsigned int counter;
70
71         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
72         if (counter <= (unsigned int)INT_MAX)
73                 return (int)counter;
74
75         atomic_dec(v);
76
77         return -EINVAL;
78 }
79
80 /* Decrement the counter.  Return the resulting value, or -EINVAL */
81 static int atomic_dec_return_safe(atomic_t *v)
82 {
83         int counter;
84
85         counter = atomic_dec_return(v);
86         if (counter >= 0)
87                 return counter;
88
89         atomic_inc(v);
90
91         return -EINVAL;
92 }
93
94 #define RBD_DRV_NAME "rbd"
95
96 #define RBD_MINORS_PER_MAJOR            256
97 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
98
99 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
100 #define RBD_MAX_SNAP_NAME_LEN   \
101                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
102
103 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
104
105 #define RBD_SNAP_HEAD_NAME      "-"
106
107 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
108
109 /* This allows a single page to hold an image name sent by OSD */
110 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
111 #define RBD_IMAGE_ID_LEN_MAX    64
112
113 #define RBD_OBJ_PREFIX_LEN_MAX  64
114
115 /* Feature bits */
116
117 #define RBD_FEATURE_LAYERING    (1<<0)
118 #define RBD_FEATURE_STRIPINGV2  (1<<1)
119 #define RBD_FEATURES_ALL \
120             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
121
122 /* Features supported by this (client software) implementation. */
123
124 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
125
126 /*
127  * An RBD device name will be "rbd#", where the "rbd" comes from
128  * RBD_DRV_NAME above, and # is a unique integer identifier.
129  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
130  * enough to hold all possible device names.
131  */
132 #define DEV_NAME_LEN            32
133 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
134
135 /*
136  * block device image metadata (in-memory version)
137  */
138 struct rbd_image_header {
139         /* These six fields never change for a given rbd image */
140         char *object_prefix;
141         __u8 obj_order;
142         __u8 crypt_type;
143         __u8 comp_type;
144         u64 stripe_unit;
145         u64 stripe_count;
146         u64 features;           /* Might be changeable someday? */
147
148         /* The remaining fields need to be updated occasionally */
149         u64 image_size;
150         struct ceph_snap_context *snapc;
151         char *snap_names;       /* format 1 only */
152         u64 *snap_sizes;        /* format 1 only */
153 };
154
155 /*
156  * An rbd image specification.
157  *
158  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
159  * identify an image.  Each rbd_dev structure includes a pointer to
160  * an rbd_spec structure that encapsulates this identity.
161  *
162  * Each of the id's in an rbd_spec has an associated name.  For a
163  * user-mapped image, the names are supplied and the id's associated
164  * with them are looked up.  For a layered image, a parent image is
165  * defined by the tuple, and the names are looked up.
166  *
167  * An rbd_dev structure contains a parent_spec pointer which is
168  * non-null if the image it represents is a child in a layered
169  * image.  This pointer will refer to the rbd_spec structure used
170  * by the parent rbd_dev for its own identity (i.e., the structure
171  * is shared between the parent and child).
172  *
173  * Since these structures are populated once, during the discovery
174  * phase of image construction, they are effectively immutable so
175  * we make no effort to synchronize access to them.
176  *
177  * Note that code herein does not assume the image name is known (it
178  * could be a null pointer).
179  */
180 struct rbd_spec {
181         u64             pool_id;
182         const char      *pool_name;
183
184         const char      *image_id;
185         const char      *image_name;
186
187         u64             snap_id;
188         const char      *snap_name;
189
190         struct kref     kref;
191 };
192
193 /*
194  * an instance of the client.  multiple devices may share an rbd client.
195  */
196 struct rbd_client {
197         struct ceph_client      *client;
198         struct kref             kref;
199         struct list_head        node;
200 };
201
202 struct rbd_img_request;
203 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
204
205 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
206
207 struct rbd_obj_request;
208 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
209
210 enum obj_request_type {
211         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
212 };
213
214 enum obj_operation_type {
215         OBJ_OP_WRITE,
216         OBJ_OP_READ,
217         OBJ_OP_DISCARD,
218 };
219
220 enum obj_req_flags {
221         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
222         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
223         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
224         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
225 };
226
227 struct rbd_obj_request {
228         const char              *object_name;
229         u64                     offset;         /* object start byte */
230         u64                     length;         /* bytes from offset */
231         unsigned long           flags;
232
233         /*
234          * An object request associated with an image will have its
235          * img_data flag set; a standalone object request will not.
236          *
237          * A standalone object request will have which == BAD_WHICH
238          * and a null obj_request pointer.
239          *
240          * An object request initiated in support of a layered image
241          * object (to check for its existence before a write) will
242          * have which == BAD_WHICH and a non-null obj_request pointer.
243          *
244          * Finally, an object request for rbd image data will have
245          * which != BAD_WHICH, and will have a non-null img_request
246          * pointer.  The value of which will be in the range
247          * 0..(img_request->obj_request_count-1).
248          */
249         union {
250                 struct rbd_obj_request  *obj_request;   /* STAT op */
251                 struct {
252                         struct rbd_img_request  *img_request;
253                         u64                     img_offset;
254                         /* links for img_request->obj_requests list */
255                         struct list_head        links;
256                 };
257         };
258         u32                     which;          /* posn image request list */
259
260         enum obj_request_type   type;
261         union {
262                 struct bio      *bio_list;
263                 struct {
264                         struct page     **pages;
265                         u32             page_count;
266                 };
267         };
268         struct page             **copyup_pages;
269         u32                     copyup_page_count;
270
271         struct ceph_osd_request *osd_req;
272
273         u64                     xferred;        /* bytes transferred */
274         int                     result;
275
276         rbd_obj_callback_t      callback;
277         struct completion       completion;
278
279         struct kref             kref;
280 };
281
282 enum img_req_flags {
283         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
284         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
285         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
286         IMG_REQ_DISCARD,        /* discard: normal = 0, discard request = 1 */
287 };
288
289 struct rbd_img_request {
290         struct rbd_device       *rbd_dev;
291         u64                     offset; /* starting image byte offset */
292         u64                     length; /* byte count from offset */
293         unsigned long           flags;
294         union {
295                 u64                     snap_id;        /* for reads */
296                 struct ceph_snap_context *snapc;        /* for writes */
297         };
298         union {
299                 struct request          *rq;            /* block request */
300                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
301         };
302         struct page             **copyup_pages;
303         u32                     copyup_page_count;
304         spinlock_t              completion_lock;/* protects next_completion */
305         u32                     next_completion;
306         rbd_img_callback_t      callback;
307         u64                     xferred;/* aggregate bytes transferred */
308         int                     result; /* first nonzero obj_request result */
309
310         u32                     obj_request_count;
311         struct list_head        obj_requests;   /* rbd_obj_request structs */
312
313         struct kref             kref;
314 };
315
316 #define for_each_obj_request(ireq, oreq) \
317         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
318 #define for_each_obj_request_from(ireq, oreq) \
319         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
320 #define for_each_obj_request_safe(ireq, oreq, n) \
321         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
322
323 struct rbd_mapping {
324         u64                     size;
325         u64                     features;
326         bool                    read_only;
327 };
328
329 /*
330  * a single device
331  */
332 struct rbd_device {
333         int                     dev_id;         /* blkdev unique id */
334
335         int                     major;          /* blkdev assigned major */
336         int                     minor;
337         struct gendisk          *disk;          /* blkdev's gendisk and rq */
338
339         u32                     image_format;   /* Either 1 or 2 */
340         struct rbd_client       *rbd_client;
341
342         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
343
344         spinlock_t              lock;           /* queue, flags, open_count */
345
346         struct rbd_image_header header;
347         unsigned long           flags;          /* possibly lock protected */
348         struct rbd_spec         *spec;
349
350         char                    *header_name;
351
352         struct ceph_file_layout layout;
353
354         struct ceph_osd_event   *watch_event;
355         struct rbd_obj_request  *watch_request;
356
357         struct rbd_spec         *parent_spec;
358         u64                     parent_overlap;
359         atomic_t                parent_ref;
360         struct rbd_device       *parent;
361
362         /* Block layer tags. */
363         struct blk_mq_tag_set   tag_set;
364
365         /* protects updating the header */
366         struct rw_semaphore     header_rwsem;
367
368         struct rbd_mapping      mapping;
369
370         struct list_head        node;
371
372         /* sysfs related */
373         struct device           dev;
374         unsigned long           open_count;     /* protected by lock */
375 };
376
377 /*
378  * Flag bits for rbd_dev->flags.  If atomicity is required,
379  * rbd_dev->lock is used to protect access.
380  *
381  * Currently, only the "removing" flag (which is coupled with the
382  * "open_count" field) requires atomic access.
383  */
384 enum rbd_dev_flags {
385         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
386         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
387 };
388
389 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
390
391 static LIST_HEAD(rbd_dev_list);    /* devices */
392 static DEFINE_SPINLOCK(rbd_dev_list_lock);
393
394 static LIST_HEAD(rbd_client_list);              /* clients */
395 static DEFINE_SPINLOCK(rbd_client_list_lock);
396
397 /* Slab caches for frequently-allocated structures */
398
399 static struct kmem_cache        *rbd_img_request_cache;
400 static struct kmem_cache        *rbd_obj_request_cache;
401 static struct kmem_cache        *rbd_segment_name_cache;
402
403 static int rbd_major;
404 static DEFINE_IDA(rbd_dev_id_ida);
405
406 static struct workqueue_struct *rbd_wq;
407
408 /*
409  * Default to false for now, as single-major requires >= 0.75 version of
410  * userspace rbd utility.
411  */
412 static bool single_major = false;
413 module_param(single_major, bool, S_IRUGO);
414 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
415
416 static int rbd_img_request_submit(struct rbd_img_request *img_request);
417
418 static void rbd_dev_device_release(struct device *dev);
419
420 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
421                        size_t count);
422 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
423                           size_t count);
424 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
425                                     size_t count);
426 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
427                                        size_t count);
428 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
429 static void rbd_spec_put(struct rbd_spec *spec);
430
431 static int rbd_dev_id_to_minor(int dev_id)
432 {
433         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
434 }
435
436 static int minor_to_rbd_dev_id(int minor)
437 {
438         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
439 }
440
441 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
442 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
443 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
444 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
445
446 static struct attribute *rbd_bus_attrs[] = {
447         &bus_attr_add.attr,
448         &bus_attr_remove.attr,
449         &bus_attr_add_single_major.attr,
450         &bus_attr_remove_single_major.attr,
451         NULL,
452 };
453
454 static umode_t rbd_bus_is_visible(struct kobject *kobj,
455                                   struct attribute *attr, int index)
456 {
457         if (!single_major &&
458             (attr == &bus_attr_add_single_major.attr ||
459              attr == &bus_attr_remove_single_major.attr))
460                 return 0;
461
462         return attr->mode;
463 }
464
465 static const struct attribute_group rbd_bus_group = {
466         .attrs = rbd_bus_attrs,
467         .is_visible = rbd_bus_is_visible,
468 };
469 __ATTRIBUTE_GROUPS(rbd_bus);
470
471 static struct bus_type rbd_bus_type = {
472         .name           = "rbd",
473         .bus_groups     = rbd_bus_groups,
474 };
475
476 static void rbd_root_dev_release(struct device *dev)
477 {
478 }
479
480 static struct device rbd_root_dev = {
481         .init_name =    "rbd",
482         .release =      rbd_root_dev_release,
483 };
484
485 static __printf(2, 3)
486 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
487 {
488         struct va_format vaf;
489         va_list args;
490
491         va_start(args, fmt);
492         vaf.fmt = fmt;
493         vaf.va = &args;
494
495         if (!rbd_dev)
496                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
497         else if (rbd_dev->disk)
498                 printk(KERN_WARNING "%s: %s: %pV\n",
499                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
500         else if (rbd_dev->spec && rbd_dev->spec->image_name)
501                 printk(KERN_WARNING "%s: image %s: %pV\n",
502                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
503         else if (rbd_dev->spec && rbd_dev->spec->image_id)
504                 printk(KERN_WARNING "%s: id %s: %pV\n",
505                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
506         else    /* punt */
507                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
508                         RBD_DRV_NAME, rbd_dev, &vaf);
509         va_end(args);
510 }
511
512 #ifdef RBD_DEBUG
513 #define rbd_assert(expr)                                                \
514                 if (unlikely(!(expr))) {                                \
515                         printk(KERN_ERR "\nAssertion failure in %s() "  \
516                                                 "at line %d:\n\n"       \
517                                         "\trbd_assert(%s);\n\n",        \
518                                         __func__, __LINE__, #expr);     \
519                         BUG();                                          \
520                 }
521 #else /* !RBD_DEBUG */
522 #  define rbd_assert(expr)      ((void) 0)
523 #endif /* !RBD_DEBUG */
524
525 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
526 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
527 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
528
529 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
530 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
531 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
532 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
533 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
534                                         u64 snap_id);
535 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
536                                 u8 *order, u64 *snap_size);
537 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
538                 u64 *snap_features);
539 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
540
541 static int rbd_open(struct block_device *bdev, fmode_t mode)
542 {
543         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
544         bool removing = false;
545
546         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
547                 return -EROFS;
548
549         spin_lock_irq(&rbd_dev->lock);
550         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
551                 removing = true;
552         else
553                 rbd_dev->open_count++;
554         spin_unlock_irq(&rbd_dev->lock);
555         if (removing)
556                 return -ENOENT;
557
558         (void) get_device(&rbd_dev->dev);
559
560         return 0;
561 }
562
563 static void rbd_release(struct gendisk *disk, fmode_t mode)
564 {
565         struct rbd_device *rbd_dev = disk->private_data;
566         unsigned long open_count_before;
567
568         spin_lock_irq(&rbd_dev->lock);
569         open_count_before = rbd_dev->open_count--;
570         spin_unlock_irq(&rbd_dev->lock);
571         rbd_assert(open_count_before > 0);
572
573         put_device(&rbd_dev->dev);
574 }
575
576 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
577 {
578         int ret = 0;
579         int val;
580         bool ro;
581         bool ro_changed = false;
582
583         /* get_user() may sleep, so call it before taking rbd_dev->lock */
584         if (get_user(val, (int __user *)(arg)))
585                 return -EFAULT;
586
587         ro = val ? true : false;
588         /* Snapshot doesn't allow to write*/
589         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
590                 return -EROFS;
591
592         spin_lock_irq(&rbd_dev->lock);
593         /* prevent others open this device */
594         if (rbd_dev->open_count > 1) {
595                 ret = -EBUSY;
596                 goto out;
597         }
598
599         if (rbd_dev->mapping.read_only != ro) {
600                 rbd_dev->mapping.read_only = ro;
601                 ro_changed = true;
602         }
603
604 out:
605         spin_unlock_irq(&rbd_dev->lock);
606         /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
607         if (ret == 0 && ro_changed)
608                 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
609
610         return ret;
611 }
612
613 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
614                         unsigned int cmd, unsigned long arg)
615 {
616         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
617         int ret = 0;
618
619         switch (cmd) {
620         case BLKROSET:
621                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
622                 break;
623         default:
624                 ret = -ENOTTY;
625         }
626
627         return ret;
628 }
629
630 #ifdef CONFIG_COMPAT
631 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
632                                 unsigned int cmd, unsigned long arg)
633 {
634         return rbd_ioctl(bdev, mode, cmd, arg);
635 }
636 #endif /* CONFIG_COMPAT */
637
638 static const struct block_device_operations rbd_bd_ops = {
639         .owner                  = THIS_MODULE,
640         .open                   = rbd_open,
641         .release                = rbd_release,
642         .ioctl                  = rbd_ioctl,
643 #ifdef CONFIG_COMPAT
644         .compat_ioctl           = rbd_compat_ioctl,
645 #endif
646 };
647
648 /*
649  * Initialize an rbd client instance.  Success or not, this function
650  * consumes ceph_opts.  Caller holds client_mutex.
651  */
652 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
653 {
654         struct rbd_client *rbdc;
655         int ret = -ENOMEM;
656
657         dout("%s:\n", __func__);
658         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
659         if (!rbdc)
660                 goto out_opt;
661
662         kref_init(&rbdc->kref);
663         INIT_LIST_HEAD(&rbdc->node);
664
665         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
666         if (IS_ERR(rbdc->client))
667                 goto out_rbdc;
668         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
669
670         ret = ceph_open_session(rbdc->client);
671         if (ret < 0)
672                 goto out_client;
673
674         spin_lock(&rbd_client_list_lock);
675         list_add_tail(&rbdc->node, &rbd_client_list);
676         spin_unlock(&rbd_client_list_lock);
677
678         dout("%s: rbdc %p\n", __func__, rbdc);
679
680         return rbdc;
681 out_client:
682         ceph_destroy_client(rbdc->client);
683 out_rbdc:
684         kfree(rbdc);
685 out_opt:
686         if (ceph_opts)
687                 ceph_destroy_options(ceph_opts);
688         dout("%s: error %d\n", __func__, ret);
689
690         return ERR_PTR(ret);
691 }
692
693 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
694 {
695         kref_get(&rbdc->kref);
696
697         return rbdc;
698 }
699
700 /*
701  * Find a ceph client with specific addr and configuration.  If
702  * found, bump its reference count.
703  */
704 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
705 {
706         struct rbd_client *client_node;
707         bool found = false;
708
709         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
710                 return NULL;
711
712         spin_lock(&rbd_client_list_lock);
713         list_for_each_entry(client_node, &rbd_client_list, node) {
714                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
715                         __rbd_get_client(client_node);
716
717                         found = true;
718                         break;
719                 }
720         }
721         spin_unlock(&rbd_client_list_lock);
722
723         return found ? client_node : NULL;
724 }
725
726 /*
727  * (Per device) rbd map options
728  */
729 enum {
730         Opt_last_int,
731         /* int args above */
732         Opt_last_string,
733         /* string args above */
734         Opt_read_only,
735         Opt_read_write,
736         Opt_err
737 };
738
739 static match_table_t rbd_opts_tokens = {
740         /* int args above */
741         /* string args above */
742         {Opt_read_only, "read_only"},
743         {Opt_read_only, "ro"},          /* Alternate spelling */
744         {Opt_read_write, "read_write"},
745         {Opt_read_write, "rw"},         /* Alternate spelling */
746         {Opt_err, NULL}
747 };
748
749 struct rbd_options {
750         bool    read_only;
751 };
752
753 #define RBD_READ_ONLY_DEFAULT   false
754
755 static int parse_rbd_opts_token(char *c, void *private)
756 {
757         struct rbd_options *rbd_opts = private;
758         substring_t argstr[MAX_OPT_ARGS];
759         int token, intval, ret;
760
761         token = match_token(c, rbd_opts_tokens, argstr);
762         if (token < Opt_last_int) {
763                 ret = match_int(&argstr[0], &intval);
764                 if (ret < 0) {
765                         pr_err("bad mount option arg (not int) at '%s'\n", c);
766                         return ret;
767                 }
768                 dout("got int token %d val %d\n", token, intval);
769         } else if (token > Opt_last_int && token < Opt_last_string) {
770                 dout("got string token %d val %s\n", token, argstr[0].from);
771         } else {
772                 dout("got token %d\n", token);
773         }
774
775         switch (token) {
776         case Opt_read_only:
777                 rbd_opts->read_only = true;
778                 break;
779         case Opt_read_write:
780                 rbd_opts->read_only = false;
781                 break;
782         default:
783                 /* libceph prints "bad option" msg */
784                 return -EINVAL;
785         }
786
787         return 0;
788 }
789
790 static char* obj_op_name(enum obj_operation_type op_type)
791 {
792         switch (op_type) {
793         case OBJ_OP_READ:
794                 return "read";
795         case OBJ_OP_WRITE:
796                 return "write";
797         case OBJ_OP_DISCARD:
798                 return "discard";
799         default:
800                 return "???";
801         }
802 }
803
804 /*
805  * Get a ceph client with specific addr and configuration, if one does
806  * not exist create it.  Either way, ceph_opts is consumed by this
807  * function.
808  */
809 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
810 {
811         struct rbd_client *rbdc;
812
813         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
814         rbdc = rbd_client_find(ceph_opts);
815         if (rbdc)       /* using an existing client */
816                 ceph_destroy_options(ceph_opts);
817         else
818                 rbdc = rbd_client_create(ceph_opts);
819         mutex_unlock(&client_mutex);
820
821         return rbdc;
822 }
823
824 /*
825  * Destroy ceph client
826  *
827  * Caller must hold rbd_client_list_lock.
828  */
829 static void rbd_client_release(struct kref *kref)
830 {
831         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
832
833         dout("%s: rbdc %p\n", __func__, rbdc);
834         spin_lock(&rbd_client_list_lock);
835         list_del(&rbdc->node);
836         spin_unlock(&rbd_client_list_lock);
837
838         ceph_destroy_client(rbdc->client);
839         kfree(rbdc);
840 }
841
842 /*
843  * Drop reference to ceph client node. If it's not referenced anymore, release
844  * it.
845  */
846 static void rbd_put_client(struct rbd_client *rbdc)
847 {
848         if (rbdc)
849                 kref_put(&rbdc->kref, rbd_client_release);
850 }
851
852 static bool rbd_image_format_valid(u32 image_format)
853 {
854         return image_format == 1 || image_format == 2;
855 }
856
857 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
858 {
859         size_t size;
860         u32 snap_count;
861
862         /* The header has to start with the magic rbd header text */
863         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
864                 return false;
865
866         /* The bio layer requires at least sector-sized I/O */
867
868         if (ondisk->options.order < SECTOR_SHIFT)
869                 return false;
870
871         /* If we use u64 in a few spots we may be able to loosen this */
872
873         if (ondisk->options.order > 8 * sizeof (int) - 1)
874                 return false;
875
876         /*
877          * The size of a snapshot header has to fit in a size_t, and
878          * that limits the number of snapshots.
879          */
880         snap_count = le32_to_cpu(ondisk->snap_count);
881         size = SIZE_MAX - sizeof (struct ceph_snap_context);
882         if (snap_count > size / sizeof (__le64))
883                 return false;
884
885         /*
886          * Not only that, but the size of the entire the snapshot
887          * header must also be representable in a size_t.
888          */
889         size -= snap_count * sizeof (__le64);
890         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
891                 return false;
892
893         return true;
894 }
895
896 /*
897  * Fill an rbd image header with information from the given format 1
898  * on-disk header.
899  */
900 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
901                                  struct rbd_image_header_ondisk *ondisk)
902 {
903         struct rbd_image_header *header = &rbd_dev->header;
904         bool first_time = header->object_prefix == NULL;
905         struct ceph_snap_context *snapc;
906         char *object_prefix = NULL;
907         char *snap_names = NULL;
908         u64 *snap_sizes = NULL;
909         u32 snap_count;
910         size_t size;
911         int ret = -ENOMEM;
912         u32 i;
913
914         /* Allocate this now to avoid having to handle failure below */
915
916         if (first_time) {
917                 size_t len;
918
919                 len = strnlen(ondisk->object_prefix,
920                                 sizeof (ondisk->object_prefix));
921                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
922                 if (!object_prefix)
923                         return -ENOMEM;
924                 memcpy(object_prefix, ondisk->object_prefix, len);
925                 object_prefix[len] = '\0';
926         }
927
928         /* Allocate the snapshot context and fill it in */
929
930         snap_count = le32_to_cpu(ondisk->snap_count);
931         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
932         if (!snapc)
933                 goto out_err;
934         snapc->seq = le64_to_cpu(ondisk->snap_seq);
935         if (snap_count) {
936                 struct rbd_image_snap_ondisk *snaps;
937                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
938
939                 /* We'll keep a copy of the snapshot names... */
940
941                 if (snap_names_len > (u64)SIZE_MAX)
942                         goto out_2big;
943                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
944                 if (!snap_names)
945                         goto out_err;
946
947                 /* ...as well as the array of their sizes. */
948
949                 size = snap_count * sizeof (*header->snap_sizes);
950                 snap_sizes = kmalloc(size, GFP_KERNEL);
951                 if (!snap_sizes)
952                         goto out_err;
953
954                 /*
955                  * Copy the names, and fill in each snapshot's id
956                  * and size.
957                  *
958                  * Note that rbd_dev_v1_header_info() guarantees the
959                  * ondisk buffer we're working with has
960                  * snap_names_len bytes beyond the end of the
961                  * snapshot id array, this memcpy() is safe.
962                  */
963                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
964                 snaps = ondisk->snaps;
965                 for (i = 0; i < snap_count; i++) {
966                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
967                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
968                 }
969         }
970
971         /* We won't fail any more, fill in the header */
972
973         if (first_time) {
974                 header->object_prefix = object_prefix;
975                 header->obj_order = ondisk->options.order;
976                 header->crypt_type = ondisk->options.crypt_type;
977                 header->comp_type = ondisk->options.comp_type;
978                 /* The rest aren't used for format 1 images */
979                 header->stripe_unit = 0;
980                 header->stripe_count = 0;
981                 header->features = 0;
982         } else {
983                 ceph_put_snap_context(header->snapc);
984                 kfree(header->snap_names);
985                 kfree(header->snap_sizes);
986         }
987
988         /* The remaining fields always get updated (when we refresh) */
989
990         header->image_size = le64_to_cpu(ondisk->image_size);
991         header->snapc = snapc;
992         header->snap_names = snap_names;
993         header->snap_sizes = snap_sizes;
994
995         return 0;
996 out_2big:
997         ret = -EIO;
998 out_err:
999         kfree(snap_sizes);
1000         kfree(snap_names);
1001         ceph_put_snap_context(snapc);
1002         kfree(object_prefix);
1003
1004         return ret;
1005 }
1006
1007 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1008 {
1009         const char *snap_name;
1010
1011         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1012
1013         /* Skip over names until we find the one we are looking for */
1014
1015         snap_name = rbd_dev->header.snap_names;
1016         while (which--)
1017                 snap_name += strlen(snap_name) + 1;
1018
1019         return kstrdup(snap_name, GFP_KERNEL);
1020 }
1021
1022 /*
1023  * Snapshot id comparison function for use with qsort()/bsearch().
1024  * Note that result is for snapshots in *descending* order.
1025  */
1026 static int snapid_compare_reverse(const void *s1, const void *s2)
1027 {
1028         u64 snap_id1 = *(u64 *)s1;
1029         u64 snap_id2 = *(u64 *)s2;
1030
1031         if (snap_id1 < snap_id2)
1032                 return 1;
1033         return snap_id1 == snap_id2 ? 0 : -1;
1034 }
1035
1036 /*
1037  * Search a snapshot context to see if the given snapshot id is
1038  * present.
1039  *
1040  * Returns the position of the snapshot id in the array if it's found,
1041  * or BAD_SNAP_INDEX otherwise.
1042  *
1043  * Note: The snapshot array is in kept sorted (by the osd) in
1044  * reverse order, highest snapshot id first.
1045  */
1046 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1047 {
1048         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1049         u64 *found;
1050
1051         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1052                                 sizeof (snap_id), snapid_compare_reverse);
1053
1054         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1055 }
1056
1057 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1058                                         u64 snap_id)
1059 {
1060         u32 which;
1061         const char *snap_name;
1062
1063         which = rbd_dev_snap_index(rbd_dev, snap_id);
1064         if (which == BAD_SNAP_INDEX)
1065                 return ERR_PTR(-ENOENT);
1066
1067         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1068         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1069 }
1070
1071 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1072 {
1073         if (snap_id == CEPH_NOSNAP)
1074                 return RBD_SNAP_HEAD_NAME;
1075
1076         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1077         if (rbd_dev->image_format == 1)
1078                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1079
1080         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1081 }
1082
1083 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1084                                 u64 *snap_size)
1085 {
1086         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1087         if (snap_id == CEPH_NOSNAP) {
1088                 *snap_size = rbd_dev->header.image_size;
1089         } else if (rbd_dev->image_format == 1) {
1090                 u32 which;
1091
1092                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1093                 if (which == BAD_SNAP_INDEX)
1094                         return -ENOENT;
1095
1096                 *snap_size = rbd_dev->header.snap_sizes[which];
1097         } else {
1098                 u64 size = 0;
1099                 int ret;
1100
1101                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1102                 if (ret)
1103                         return ret;
1104
1105                 *snap_size = size;
1106         }
1107         return 0;
1108 }
1109
1110 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1111                         u64 *snap_features)
1112 {
1113         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1114         if (snap_id == CEPH_NOSNAP) {
1115                 *snap_features = rbd_dev->header.features;
1116         } else if (rbd_dev->image_format == 1) {
1117                 *snap_features = 0;     /* No features for format 1 */
1118         } else {
1119                 u64 features = 0;
1120                 int ret;
1121
1122                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1123                 if (ret)
1124                         return ret;
1125
1126                 *snap_features = features;
1127         }
1128         return 0;
1129 }
1130
1131 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1132 {
1133         u64 snap_id = rbd_dev->spec->snap_id;
1134         u64 size = 0;
1135         u64 features = 0;
1136         int ret;
1137
1138         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1139         if (ret)
1140                 return ret;
1141         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1142         if (ret)
1143                 return ret;
1144
1145         rbd_dev->mapping.size = size;
1146         rbd_dev->mapping.features = features;
1147
1148         return 0;
1149 }
1150
1151 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1152 {
1153         rbd_dev->mapping.size = 0;
1154         rbd_dev->mapping.features = 0;
1155 }
1156
1157 static void rbd_segment_name_free(const char *name)
1158 {
1159         /* The explicit cast here is needed to drop the const qualifier */
1160
1161         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1162 }
1163
1164 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1165 {
1166         char *name;
1167         u64 segment;
1168         int ret;
1169         char *name_format;
1170
1171         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1172         if (!name)
1173                 return NULL;
1174         segment = offset >> rbd_dev->header.obj_order;
1175         name_format = "%s.%012llx";
1176         if (rbd_dev->image_format == 2)
1177                 name_format = "%s.%016llx";
1178         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1179                         rbd_dev->header.object_prefix, segment);
1180         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1181                 pr_err("error formatting segment name for #%llu (%d)\n",
1182                         segment, ret);
1183                 rbd_segment_name_free(name);
1184                 name = NULL;
1185         }
1186
1187         return name;
1188 }
1189
1190 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1191 {
1192         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1193
1194         return offset & (segment_size - 1);
1195 }
1196
1197 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1198                                 u64 offset, u64 length)
1199 {
1200         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1201
1202         offset &= segment_size - 1;
1203
1204         rbd_assert(length <= U64_MAX - offset);
1205         if (offset + length > segment_size)
1206                 length = segment_size - offset;
1207
1208         return length;
1209 }
1210
1211 /*
1212  * returns the size of an object in the image
1213  */
1214 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1215 {
1216         return 1 << header->obj_order;
1217 }
1218
1219 /*
1220  * bio helpers
1221  */
1222
1223 static void bio_chain_put(struct bio *chain)
1224 {
1225         struct bio *tmp;
1226
1227         while (chain) {
1228                 tmp = chain;
1229                 chain = chain->bi_next;
1230                 bio_put(tmp);
1231         }
1232 }
1233
1234 /*
1235  * zeros a bio chain, starting at specific offset
1236  */
1237 static void zero_bio_chain(struct bio *chain, int start_ofs)
1238 {
1239         struct bio_vec bv;
1240         struct bvec_iter iter;
1241         unsigned long flags;
1242         void *buf;
1243         int pos = 0;
1244
1245         while (chain) {
1246                 bio_for_each_segment(bv, chain, iter) {
1247                         if (pos + bv.bv_len > start_ofs) {
1248                                 int remainder = max(start_ofs - pos, 0);
1249                                 buf = bvec_kmap_irq(&bv, &flags);
1250                                 memset(buf + remainder, 0,
1251                                        bv.bv_len - remainder);
1252                                 flush_dcache_page(bv.bv_page);
1253                                 bvec_kunmap_irq(buf, &flags);
1254                         }
1255                         pos += bv.bv_len;
1256                 }
1257
1258                 chain = chain->bi_next;
1259         }
1260 }
1261
1262 /*
1263  * similar to zero_bio_chain(), zeros data defined by a page array,
1264  * starting at the given byte offset from the start of the array and
1265  * continuing up to the given end offset.  The pages array is
1266  * assumed to be big enough to hold all bytes up to the end.
1267  */
1268 static void zero_pages(struct page **pages, u64 offset, u64 end)
1269 {
1270         struct page **page = &pages[offset >> PAGE_SHIFT];
1271
1272         rbd_assert(end > offset);
1273         rbd_assert(end - offset <= (u64)SIZE_MAX);
1274         while (offset < end) {
1275                 size_t page_offset;
1276                 size_t length;
1277                 unsigned long flags;
1278                 void *kaddr;
1279
1280                 page_offset = offset & ~PAGE_MASK;
1281                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1282                 local_irq_save(flags);
1283                 kaddr = kmap_atomic(*page);
1284                 memset(kaddr + page_offset, 0, length);
1285                 flush_dcache_page(*page);
1286                 kunmap_atomic(kaddr);
1287                 local_irq_restore(flags);
1288
1289                 offset += length;
1290                 page++;
1291         }
1292 }
1293
1294 /*
1295  * Clone a portion of a bio, starting at the given byte offset
1296  * and continuing for the number of bytes indicated.
1297  */
1298 static struct bio *bio_clone_range(struct bio *bio_src,
1299                                         unsigned int offset,
1300                                         unsigned int len,
1301                                         gfp_t gfpmask)
1302 {
1303         struct bio *bio;
1304
1305         bio = bio_clone(bio_src, gfpmask);
1306         if (!bio)
1307                 return NULL;    /* ENOMEM */
1308
1309         bio_advance(bio, offset);
1310         bio->bi_iter.bi_size = len;
1311
1312         return bio;
1313 }
1314
1315 /*
1316  * Clone a portion of a bio chain, starting at the given byte offset
1317  * into the first bio in the source chain and continuing for the
1318  * number of bytes indicated.  The result is another bio chain of
1319  * exactly the given length, or a null pointer on error.
1320  *
1321  * The bio_src and offset parameters are both in-out.  On entry they
1322  * refer to the first source bio and the offset into that bio where
1323  * the start of data to be cloned is located.
1324  *
1325  * On return, bio_src is updated to refer to the bio in the source
1326  * chain that contains first un-cloned byte, and *offset will
1327  * contain the offset of that byte within that bio.
1328  */
1329 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1330                                         unsigned int *offset,
1331                                         unsigned int len,
1332                                         gfp_t gfpmask)
1333 {
1334         struct bio *bi = *bio_src;
1335         unsigned int off = *offset;
1336         struct bio *chain = NULL;
1337         struct bio **end;
1338
1339         /* Build up a chain of clone bios up to the limit */
1340
1341         if (!bi || off >= bi->bi_iter.bi_size || !len)
1342                 return NULL;            /* Nothing to clone */
1343
1344         end = &chain;
1345         while (len) {
1346                 unsigned int bi_size;
1347                 struct bio *bio;
1348
1349                 if (!bi) {
1350                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1351                         goto out_err;   /* EINVAL; ran out of bio's */
1352                 }
1353                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1354                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1355                 if (!bio)
1356                         goto out_err;   /* ENOMEM */
1357
1358                 *end = bio;
1359                 end = &bio->bi_next;
1360
1361                 off += bi_size;
1362                 if (off == bi->bi_iter.bi_size) {
1363                         bi = bi->bi_next;
1364                         off = 0;
1365                 }
1366                 len -= bi_size;
1367         }
1368         *bio_src = bi;
1369         *offset = off;
1370
1371         return chain;
1372 out_err:
1373         bio_chain_put(chain);
1374
1375         return NULL;
1376 }
1377
1378 /*
1379  * The default/initial value for all object request flags is 0.  For
1380  * each flag, once its value is set to 1 it is never reset to 0
1381  * again.
1382  */
1383 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1384 {
1385         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1386                 struct rbd_device *rbd_dev;
1387
1388                 rbd_dev = obj_request->img_request->rbd_dev;
1389                 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1390                         obj_request);
1391         }
1392 }
1393
1394 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1395 {
1396         smp_mb();
1397         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1398 }
1399
1400 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1401 {
1402         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1403                 struct rbd_device *rbd_dev = NULL;
1404
1405                 if (obj_request_img_data_test(obj_request))
1406                         rbd_dev = obj_request->img_request->rbd_dev;
1407                 rbd_warn(rbd_dev, "obj_request %p already marked done",
1408                         obj_request);
1409         }
1410 }
1411
1412 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1413 {
1414         smp_mb();
1415         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1416 }
1417
1418 /*
1419  * This sets the KNOWN flag after (possibly) setting the EXISTS
1420  * flag.  The latter is set based on the "exists" value provided.
1421  *
1422  * Note that for our purposes once an object exists it never goes
1423  * away again.  It's possible that the response from two existence
1424  * checks are separated by the creation of the target object, and
1425  * the first ("doesn't exist") response arrives *after* the second
1426  * ("does exist").  In that case we ignore the second one.
1427  */
1428 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1429                                 bool exists)
1430 {
1431         if (exists)
1432                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1433         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1434         smp_mb();
1435 }
1436
1437 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1438 {
1439         smp_mb();
1440         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1441 }
1442
1443 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1444 {
1445         smp_mb();
1446         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1447 }
1448
1449 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1450 {
1451         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1452
1453         return obj_request->img_offset <
1454             round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1455 }
1456
1457 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1458 {
1459         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1460                 atomic_read(&obj_request->kref.refcount));
1461         kref_get(&obj_request->kref);
1462 }
1463
1464 static void rbd_obj_request_destroy(struct kref *kref);
1465 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1466 {
1467         rbd_assert(obj_request != NULL);
1468         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1469                 atomic_read(&obj_request->kref.refcount));
1470         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1471 }
1472
1473 static void rbd_img_request_get(struct rbd_img_request *img_request)
1474 {
1475         dout("%s: img %p (was %d)\n", __func__, img_request,
1476              atomic_read(&img_request->kref.refcount));
1477         kref_get(&img_request->kref);
1478 }
1479
1480 static bool img_request_child_test(struct rbd_img_request *img_request);
1481 static void rbd_parent_request_destroy(struct kref *kref);
1482 static void rbd_img_request_destroy(struct kref *kref);
1483 static void rbd_img_request_put(struct rbd_img_request *img_request)
1484 {
1485         rbd_assert(img_request != NULL);
1486         dout("%s: img %p (was %d)\n", __func__, img_request,
1487                 atomic_read(&img_request->kref.refcount));
1488         if (img_request_child_test(img_request))
1489                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1490         else
1491                 kref_put(&img_request->kref, rbd_img_request_destroy);
1492 }
1493
1494 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1495                                         struct rbd_obj_request *obj_request)
1496 {
1497         rbd_assert(obj_request->img_request == NULL);
1498
1499         /* Image request now owns object's original reference */
1500         obj_request->img_request = img_request;
1501         obj_request->which = img_request->obj_request_count;
1502         rbd_assert(!obj_request_img_data_test(obj_request));
1503         obj_request_img_data_set(obj_request);
1504         rbd_assert(obj_request->which != BAD_WHICH);
1505         img_request->obj_request_count++;
1506         list_add_tail(&obj_request->links, &img_request->obj_requests);
1507         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1508                 obj_request->which);
1509 }
1510
1511 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1512                                         struct rbd_obj_request *obj_request)
1513 {
1514         rbd_assert(obj_request->which != BAD_WHICH);
1515
1516         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1517                 obj_request->which);
1518         list_del(&obj_request->links);
1519         rbd_assert(img_request->obj_request_count > 0);
1520         img_request->obj_request_count--;
1521         rbd_assert(obj_request->which == img_request->obj_request_count);
1522         obj_request->which = BAD_WHICH;
1523         rbd_assert(obj_request_img_data_test(obj_request));
1524         rbd_assert(obj_request->img_request == img_request);
1525         obj_request->img_request = NULL;
1526         obj_request->callback = NULL;
1527         rbd_obj_request_put(obj_request);
1528 }
1529
1530 static bool obj_request_type_valid(enum obj_request_type type)
1531 {
1532         switch (type) {
1533         case OBJ_REQUEST_NODATA:
1534         case OBJ_REQUEST_BIO:
1535         case OBJ_REQUEST_PAGES:
1536                 return true;
1537         default:
1538                 return false;
1539         }
1540 }
1541
1542 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1543                                 struct rbd_obj_request *obj_request)
1544 {
1545         dout("%s %p\n", __func__, obj_request);
1546         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1547 }
1548
1549 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1550 {
1551         dout("%s %p\n", __func__, obj_request);
1552         ceph_osdc_cancel_request(obj_request->osd_req);
1553 }
1554
1555 /*
1556  * Wait for an object request to complete.  If interrupted, cancel the
1557  * underlying osd request.
1558  *
1559  * @timeout: in jiffies, 0 means "wait forever"
1560  */
1561 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1562                                   unsigned long timeout)
1563 {
1564         long ret;
1565
1566         dout("%s %p\n", __func__, obj_request);
1567         ret = wait_for_completion_interruptible_timeout(
1568                                         &obj_request->completion,
1569                                         ceph_timeout_jiffies(timeout));
1570         if (ret <= 0) {
1571                 if (ret == 0)
1572                         ret = -ETIMEDOUT;
1573                 rbd_obj_request_end(obj_request);
1574         } else {
1575                 ret = 0;
1576         }
1577
1578         dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1579         return ret;
1580 }
1581
1582 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1583 {
1584         return __rbd_obj_request_wait(obj_request, 0);
1585 }
1586
1587 static int rbd_obj_request_wait_timeout(struct rbd_obj_request *obj_request,
1588                                         unsigned long timeout)
1589 {
1590         return __rbd_obj_request_wait(obj_request, timeout);
1591 }
1592
1593 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1594 {
1595
1596         dout("%s: img %p\n", __func__, img_request);
1597
1598         /*
1599          * If no error occurred, compute the aggregate transfer
1600          * count for the image request.  We could instead use
1601          * atomic64_cmpxchg() to update it as each object request
1602          * completes; not clear which way is better off hand.
1603          */
1604         if (!img_request->result) {
1605                 struct rbd_obj_request *obj_request;
1606                 u64 xferred = 0;
1607
1608                 for_each_obj_request(img_request, obj_request)
1609                         xferred += obj_request->xferred;
1610                 img_request->xferred = xferred;
1611         }
1612
1613         if (img_request->callback)
1614                 img_request->callback(img_request);
1615         else
1616                 rbd_img_request_put(img_request);
1617 }
1618
1619 /*
1620  * The default/initial value for all image request flags is 0.  Each
1621  * is conditionally set to 1 at image request initialization time
1622  * and currently never change thereafter.
1623  */
1624 static void img_request_write_set(struct rbd_img_request *img_request)
1625 {
1626         set_bit(IMG_REQ_WRITE, &img_request->flags);
1627         smp_mb();
1628 }
1629
1630 static bool img_request_write_test(struct rbd_img_request *img_request)
1631 {
1632         smp_mb();
1633         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1634 }
1635
1636 /*
1637  * Set the discard flag when the img_request is an discard request
1638  */
1639 static void img_request_discard_set(struct rbd_img_request *img_request)
1640 {
1641         set_bit(IMG_REQ_DISCARD, &img_request->flags);
1642         smp_mb();
1643 }
1644
1645 static bool img_request_discard_test(struct rbd_img_request *img_request)
1646 {
1647         smp_mb();
1648         return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1649 }
1650
1651 static void img_request_child_set(struct rbd_img_request *img_request)
1652 {
1653         set_bit(IMG_REQ_CHILD, &img_request->flags);
1654         smp_mb();
1655 }
1656
1657 static void img_request_child_clear(struct rbd_img_request *img_request)
1658 {
1659         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1660         smp_mb();
1661 }
1662
1663 static bool img_request_child_test(struct rbd_img_request *img_request)
1664 {
1665         smp_mb();
1666         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1667 }
1668
1669 static void img_request_layered_set(struct rbd_img_request *img_request)
1670 {
1671         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1672         smp_mb();
1673 }
1674
1675 static void img_request_layered_clear(struct rbd_img_request *img_request)
1676 {
1677         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1678         smp_mb();
1679 }
1680
1681 static bool img_request_layered_test(struct rbd_img_request *img_request)
1682 {
1683         smp_mb();
1684         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1685 }
1686
1687 static enum obj_operation_type
1688 rbd_img_request_op_type(struct rbd_img_request *img_request)
1689 {
1690         if (img_request_write_test(img_request))
1691                 return OBJ_OP_WRITE;
1692         else if (img_request_discard_test(img_request))
1693                 return OBJ_OP_DISCARD;
1694         else
1695                 return OBJ_OP_READ;
1696 }
1697
1698 static void
1699 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1700 {
1701         u64 xferred = obj_request->xferred;
1702         u64 length = obj_request->length;
1703
1704         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1705                 obj_request, obj_request->img_request, obj_request->result,
1706                 xferred, length);
1707         /*
1708          * ENOENT means a hole in the image.  We zero-fill the entire
1709          * length of the request.  A short read also implies zero-fill
1710          * to the end of the request.  An error requires the whole
1711          * length of the request to be reported finished with an error
1712          * to the block layer.  In each case we update the xferred
1713          * count to indicate the whole request was satisfied.
1714          */
1715         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1716         if (obj_request->result == -ENOENT) {
1717                 if (obj_request->type == OBJ_REQUEST_BIO)
1718                         zero_bio_chain(obj_request->bio_list, 0);
1719                 else
1720                         zero_pages(obj_request->pages, 0, length);
1721                 obj_request->result = 0;
1722         } else if (xferred < length && !obj_request->result) {
1723                 if (obj_request->type == OBJ_REQUEST_BIO)
1724                         zero_bio_chain(obj_request->bio_list, xferred);
1725                 else
1726                         zero_pages(obj_request->pages, xferred, length);
1727         }
1728         obj_request->xferred = length;
1729         obj_request_done_set(obj_request);
1730 }
1731
1732 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1733 {
1734         dout("%s: obj %p cb %p\n", __func__, obj_request,
1735                 obj_request->callback);
1736         if (obj_request->callback)
1737                 obj_request->callback(obj_request);
1738         else
1739                 complete_all(&obj_request->completion);
1740 }
1741
1742 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1743 {
1744         dout("%s: obj %p\n", __func__, obj_request);
1745         obj_request_done_set(obj_request);
1746 }
1747
1748 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1749 {
1750         struct rbd_img_request *img_request = NULL;
1751         struct rbd_device *rbd_dev = NULL;
1752         bool layered = false;
1753
1754         if (obj_request_img_data_test(obj_request)) {
1755                 img_request = obj_request->img_request;
1756                 layered = img_request && img_request_layered_test(img_request);
1757                 rbd_dev = img_request->rbd_dev;
1758         }
1759
1760         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1761                 obj_request, img_request, obj_request->result,
1762                 obj_request->xferred, obj_request->length);
1763         if (layered && obj_request->result == -ENOENT &&
1764                         obj_request->img_offset < rbd_dev->parent_overlap)
1765                 rbd_img_parent_read(obj_request);
1766         else if (img_request)
1767                 rbd_img_obj_request_read_callback(obj_request);
1768         else
1769                 obj_request_done_set(obj_request);
1770 }
1771
1772 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1773 {
1774         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1775                 obj_request->result, obj_request->length);
1776         /*
1777          * There is no such thing as a successful short write.  Set
1778          * it to our originally-requested length.
1779          */
1780         obj_request->xferred = obj_request->length;
1781         obj_request_done_set(obj_request);
1782 }
1783
1784 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1785 {
1786         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1787                 obj_request->result, obj_request->length);
1788         /*
1789          * There is no such thing as a successful short discard.  Set
1790          * it to our originally-requested length.
1791          */
1792         obj_request->xferred = obj_request->length;
1793         /* discarding a non-existent object is not a problem */
1794         if (obj_request->result == -ENOENT)
1795                 obj_request->result = 0;
1796         obj_request_done_set(obj_request);
1797 }
1798
1799 /*
1800  * For a simple stat call there's nothing to do.  We'll do more if
1801  * this is part of a write sequence for a layered image.
1802  */
1803 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1804 {
1805         dout("%s: obj %p\n", __func__, obj_request);
1806         obj_request_done_set(obj_request);
1807 }
1808
1809 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1810                                 struct ceph_msg *msg)
1811 {
1812         struct rbd_obj_request *obj_request = osd_req->r_priv;
1813         u16 opcode;
1814
1815         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1816         rbd_assert(osd_req == obj_request->osd_req);
1817         if (obj_request_img_data_test(obj_request)) {
1818                 rbd_assert(obj_request->img_request);
1819                 rbd_assert(obj_request->which != BAD_WHICH);
1820         } else {
1821                 rbd_assert(obj_request->which == BAD_WHICH);
1822         }
1823
1824         if (osd_req->r_result < 0)
1825                 obj_request->result = osd_req->r_result;
1826
1827         rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1828
1829         /*
1830          * We support a 64-bit length, but ultimately it has to be
1831          * passed to the block layer, which just supports a 32-bit
1832          * length field.
1833          */
1834         obj_request->xferred = osd_req->r_reply_op_len[0];
1835         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1836
1837         opcode = osd_req->r_ops[0].op;
1838         switch (opcode) {
1839         case CEPH_OSD_OP_READ:
1840                 rbd_osd_read_callback(obj_request);
1841                 break;
1842         case CEPH_OSD_OP_SETALLOCHINT:
1843                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1844                 /* fall through */
1845         case CEPH_OSD_OP_WRITE:
1846                 rbd_osd_write_callback(obj_request);
1847                 break;
1848         case CEPH_OSD_OP_STAT:
1849                 rbd_osd_stat_callback(obj_request);
1850                 break;
1851         case CEPH_OSD_OP_DELETE:
1852         case CEPH_OSD_OP_TRUNCATE:
1853         case CEPH_OSD_OP_ZERO:
1854                 rbd_osd_discard_callback(obj_request);
1855                 break;
1856         case CEPH_OSD_OP_CALL:
1857         case CEPH_OSD_OP_NOTIFY_ACK:
1858         case CEPH_OSD_OP_WATCH:
1859                 rbd_osd_trivial_callback(obj_request);
1860                 break;
1861         default:
1862                 rbd_warn(NULL, "%s: unsupported op %hu",
1863                         obj_request->object_name, (unsigned short) opcode);
1864                 break;
1865         }
1866
1867         if (obj_request_done_test(obj_request))
1868                 rbd_obj_request_complete(obj_request);
1869 }
1870
1871 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1872 {
1873         struct rbd_img_request *img_request = obj_request->img_request;
1874         struct ceph_osd_request *osd_req = obj_request->osd_req;
1875         u64 snap_id;
1876
1877         rbd_assert(osd_req != NULL);
1878
1879         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1880         ceph_osdc_build_request(osd_req, obj_request->offset,
1881                         NULL, snap_id, NULL);
1882 }
1883
1884 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1885 {
1886         struct rbd_img_request *img_request = obj_request->img_request;
1887         struct ceph_osd_request *osd_req = obj_request->osd_req;
1888         struct ceph_snap_context *snapc;
1889         struct timespec mtime = CURRENT_TIME;
1890
1891         rbd_assert(osd_req != NULL);
1892
1893         snapc = img_request ? img_request->snapc : NULL;
1894         ceph_osdc_build_request(osd_req, obj_request->offset,
1895                         snapc, CEPH_NOSNAP, &mtime);
1896 }
1897
1898 /*
1899  * Create an osd request.  A read request has one osd op (read).
1900  * A write request has either one (watch) or two (hint+write) osd ops.
1901  * (All rbd data writes are prefixed with an allocation hint op, but
1902  * technically osd watch is a write request, hence this distinction.)
1903  */
1904 static struct ceph_osd_request *rbd_osd_req_create(
1905                                         struct rbd_device *rbd_dev,
1906                                         enum obj_operation_type op_type,
1907                                         unsigned int num_ops,
1908                                         struct rbd_obj_request *obj_request)
1909 {
1910         struct ceph_snap_context *snapc = NULL;
1911         struct ceph_osd_client *osdc;
1912         struct ceph_osd_request *osd_req;
1913
1914         if (obj_request_img_data_test(obj_request) &&
1915                 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1916                 struct rbd_img_request *img_request = obj_request->img_request;
1917                 if (op_type == OBJ_OP_WRITE) {
1918                         rbd_assert(img_request_write_test(img_request));
1919                 } else {
1920                         rbd_assert(img_request_discard_test(img_request));
1921                 }
1922                 snapc = img_request->snapc;
1923         }
1924
1925         rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1926
1927         /* Allocate and initialize the request, for the num_ops ops */
1928
1929         osdc = &rbd_dev->rbd_client->client->osdc;
1930         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1931                                           GFP_ATOMIC);
1932         if (!osd_req)
1933                 return NULL;    /* ENOMEM */
1934
1935         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1936                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1937         else
1938                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1939
1940         osd_req->r_callback = rbd_osd_req_callback;
1941         osd_req->r_priv = obj_request;
1942
1943         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1944         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1945
1946         return osd_req;
1947 }
1948
1949 /*
1950  * Create a copyup osd request based on the information in the object
1951  * request supplied.  A copyup request has two or three osd ops, a
1952  * copyup method call, potentially a hint op, and a write or truncate
1953  * or zero op.
1954  */
1955 static struct ceph_osd_request *
1956 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1957 {
1958         struct rbd_img_request *img_request;
1959         struct ceph_snap_context *snapc;
1960         struct rbd_device *rbd_dev;
1961         struct ceph_osd_client *osdc;
1962         struct ceph_osd_request *osd_req;
1963         int num_osd_ops = 3;
1964
1965         rbd_assert(obj_request_img_data_test(obj_request));
1966         img_request = obj_request->img_request;
1967         rbd_assert(img_request);
1968         rbd_assert(img_request_write_test(img_request) ||
1969                         img_request_discard_test(img_request));
1970
1971         if (img_request_discard_test(img_request))
1972                 num_osd_ops = 2;
1973
1974         /* Allocate and initialize the request, for all the ops */
1975
1976         snapc = img_request->snapc;
1977         rbd_dev = img_request->rbd_dev;
1978         osdc = &rbd_dev->rbd_client->client->osdc;
1979         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
1980                                                 false, GFP_ATOMIC);
1981         if (!osd_req)
1982                 return NULL;    /* ENOMEM */
1983
1984         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1985         osd_req->r_callback = rbd_osd_req_callback;
1986         osd_req->r_priv = obj_request;
1987
1988         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1989         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1990
1991         return osd_req;
1992 }
1993
1994
1995 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1996 {
1997         ceph_osdc_put_request(osd_req);
1998 }
1999
2000 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2001
2002 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2003                                                 u64 offset, u64 length,
2004                                                 enum obj_request_type type)
2005 {
2006         struct rbd_obj_request *obj_request;
2007         size_t size;
2008         char *name;
2009
2010         rbd_assert(obj_request_type_valid(type));
2011
2012         size = strlen(object_name) + 1;
2013         name = kmalloc(size, GFP_KERNEL);
2014         if (!name)
2015                 return NULL;
2016
2017         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
2018         if (!obj_request) {
2019                 kfree(name);
2020                 return NULL;
2021         }
2022
2023         obj_request->object_name = memcpy(name, object_name, size);
2024         obj_request->offset = offset;
2025         obj_request->length = length;
2026         obj_request->flags = 0;
2027         obj_request->which = BAD_WHICH;
2028         obj_request->type = type;
2029         INIT_LIST_HEAD(&obj_request->links);
2030         init_completion(&obj_request->completion);
2031         kref_init(&obj_request->kref);
2032
2033         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2034                 offset, length, (int)type, obj_request);
2035
2036         return obj_request;
2037 }
2038
2039 static void rbd_obj_request_destroy(struct kref *kref)
2040 {
2041         struct rbd_obj_request *obj_request;
2042
2043         obj_request = container_of(kref, struct rbd_obj_request, kref);
2044
2045         dout("%s: obj %p\n", __func__, obj_request);
2046
2047         rbd_assert(obj_request->img_request == NULL);
2048         rbd_assert(obj_request->which == BAD_WHICH);
2049
2050         if (obj_request->osd_req)
2051                 rbd_osd_req_destroy(obj_request->osd_req);
2052
2053         rbd_assert(obj_request_type_valid(obj_request->type));
2054         switch (obj_request->type) {
2055         case OBJ_REQUEST_NODATA:
2056                 break;          /* Nothing to do */
2057         case OBJ_REQUEST_BIO:
2058                 if (obj_request->bio_list)
2059                         bio_chain_put(obj_request->bio_list);
2060                 break;
2061         case OBJ_REQUEST_PAGES:
2062                 if (obj_request->pages)
2063                         ceph_release_page_vector(obj_request->pages,
2064                                                 obj_request->page_count);
2065                 break;
2066         }
2067
2068         kfree(obj_request->object_name);
2069         obj_request->object_name = NULL;
2070         kmem_cache_free(rbd_obj_request_cache, obj_request);
2071 }
2072
2073 /* It's OK to call this for a device with no parent */
2074
2075 static void rbd_spec_put(struct rbd_spec *spec);
2076 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2077 {
2078         rbd_dev_remove_parent(rbd_dev);
2079         rbd_spec_put(rbd_dev->parent_spec);
2080         rbd_dev->parent_spec = NULL;
2081         rbd_dev->parent_overlap = 0;
2082 }
2083
2084 /*
2085  * Parent image reference counting is used to determine when an
2086  * image's parent fields can be safely torn down--after there are no
2087  * more in-flight requests to the parent image.  When the last
2088  * reference is dropped, cleaning them up is safe.
2089  */
2090 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2091 {
2092         int counter;
2093
2094         if (!rbd_dev->parent_spec)
2095                 return;
2096
2097         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2098         if (counter > 0)
2099                 return;
2100
2101         /* Last reference; clean up parent data structures */
2102
2103         if (!counter)
2104                 rbd_dev_unparent(rbd_dev);
2105         else
2106                 rbd_warn(rbd_dev, "parent reference underflow");
2107 }
2108
2109 /*
2110  * If an image has a non-zero parent overlap, get a reference to its
2111  * parent.
2112  *
2113  * Returns true if the rbd device has a parent with a non-zero
2114  * overlap and a reference for it was successfully taken, or
2115  * false otherwise.
2116  */
2117 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2118 {
2119         int counter = 0;
2120
2121         if (!rbd_dev->parent_spec)
2122                 return false;
2123
2124         down_read(&rbd_dev->header_rwsem);
2125         if (rbd_dev->parent_overlap)
2126                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2127         up_read(&rbd_dev->header_rwsem);
2128
2129         if (counter < 0)
2130                 rbd_warn(rbd_dev, "parent reference overflow");
2131
2132         return counter > 0;
2133 }
2134
2135 /*
2136  * Caller is responsible for filling in the list of object requests
2137  * that comprises the image request, and the Linux request pointer
2138  * (if there is one).
2139  */
2140 static struct rbd_img_request *rbd_img_request_create(
2141                                         struct rbd_device *rbd_dev,
2142                                         u64 offset, u64 length,
2143                                         enum obj_operation_type op_type,
2144                                         struct ceph_snap_context *snapc)
2145 {
2146         struct rbd_img_request *img_request;
2147
2148         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2149         if (!img_request)
2150                 return NULL;
2151
2152         img_request->rq = NULL;
2153         img_request->rbd_dev = rbd_dev;
2154         img_request->offset = offset;
2155         img_request->length = length;
2156         img_request->flags = 0;
2157         if (op_type == OBJ_OP_DISCARD) {
2158                 img_request_discard_set(img_request);
2159                 img_request->snapc = snapc;
2160         } else if (op_type == OBJ_OP_WRITE) {
2161                 img_request_write_set(img_request);
2162                 img_request->snapc = snapc;
2163         } else {
2164                 img_request->snap_id = rbd_dev->spec->snap_id;
2165         }
2166         if (rbd_dev_parent_get(rbd_dev))
2167                 img_request_layered_set(img_request);
2168         spin_lock_init(&img_request->completion_lock);
2169         img_request->next_completion = 0;
2170         img_request->callback = NULL;
2171         img_request->result = 0;
2172         img_request->obj_request_count = 0;
2173         INIT_LIST_HEAD(&img_request->obj_requests);
2174         kref_init(&img_request->kref);
2175
2176         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2177                 obj_op_name(op_type), offset, length, img_request);
2178
2179         return img_request;
2180 }
2181
2182 static void rbd_img_request_destroy(struct kref *kref)
2183 {
2184         struct rbd_img_request *img_request;
2185         struct rbd_obj_request *obj_request;
2186         struct rbd_obj_request *next_obj_request;
2187
2188         img_request = container_of(kref, struct rbd_img_request, kref);
2189
2190         dout("%s: img %p\n", __func__, img_request);
2191
2192         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2193                 rbd_img_obj_request_del(img_request, obj_request);
2194         rbd_assert(img_request->obj_request_count == 0);
2195
2196         if (img_request_layered_test(img_request)) {
2197                 img_request_layered_clear(img_request);
2198                 rbd_dev_parent_put(img_request->rbd_dev);
2199         }
2200
2201         if (img_request_write_test(img_request) ||
2202                 img_request_discard_test(img_request))
2203                 ceph_put_snap_context(img_request->snapc);
2204
2205         kmem_cache_free(rbd_img_request_cache, img_request);
2206 }
2207
2208 static struct rbd_img_request *rbd_parent_request_create(
2209                                         struct rbd_obj_request *obj_request,
2210                                         u64 img_offset, u64 length)
2211 {
2212         struct rbd_img_request *parent_request;
2213         struct rbd_device *rbd_dev;
2214
2215         rbd_assert(obj_request->img_request);
2216         rbd_dev = obj_request->img_request->rbd_dev;
2217
2218         parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2219                                                 length, OBJ_OP_READ, NULL);
2220         if (!parent_request)
2221                 return NULL;
2222
2223         img_request_child_set(parent_request);
2224         rbd_obj_request_get(obj_request);
2225         parent_request->obj_request = obj_request;
2226
2227         return parent_request;
2228 }
2229
2230 static void rbd_parent_request_destroy(struct kref *kref)
2231 {
2232         struct rbd_img_request *parent_request;
2233         struct rbd_obj_request *orig_request;
2234
2235         parent_request = container_of(kref, struct rbd_img_request, kref);
2236         orig_request = parent_request->obj_request;
2237
2238         parent_request->obj_request = NULL;
2239         rbd_obj_request_put(orig_request);
2240         img_request_child_clear(parent_request);
2241
2242         rbd_img_request_destroy(kref);
2243 }
2244
2245 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2246 {
2247         struct rbd_img_request *img_request;
2248         unsigned int xferred;
2249         int result;
2250         bool more;
2251
2252         rbd_assert(obj_request_img_data_test(obj_request));
2253         img_request = obj_request->img_request;
2254
2255         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2256         xferred = (unsigned int)obj_request->xferred;
2257         result = obj_request->result;
2258         if (result) {
2259                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2260                 enum obj_operation_type op_type;
2261
2262                 if (img_request_discard_test(img_request))
2263                         op_type = OBJ_OP_DISCARD;
2264                 else if (img_request_write_test(img_request))
2265                         op_type = OBJ_OP_WRITE;
2266                 else
2267                         op_type = OBJ_OP_READ;
2268
2269                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2270                         obj_op_name(op_type), obj_request->length,
2271                         obj_request->img_offset, obj_request->offset);
2272                 rbd_warn(rbd_dev, "  result %d xferred %x",
2273                         result, xferred);
2274                 if (!img_request->result)
2275                         img_request->result = result;
2276                 /*
2277                  * Need to end I/O on the entire obj_request worth of
2278                  * bytes in case of error.
2279                  */
2280                 xferred = obj_request->length;
2281         }
2282
2283         /* Image object requests don't own their page array */
2284
2285         if (obj_request->type == OBJ_REQUEST_PAGES) {
2286                 obj_request->pages = NULL;
2287                 obj_request->page_count = 0;
2288         }
2289
2290         if (img_request_child_test(img_request)) {
2291                 rbd_assert(img_request->obj_request != NULL);
2292                 more = obj_request->which < img_request->obj_request_count - 1;
2293         } else {
2294                 rbd_assert(img_request->rq != NULL);
2295
2296                 more = blk_update_request(img_request->rq, result, xferred);
2297                 if (!more)
2298                         __blk_mq_end_request(img_request->rq, result);
2299         }
2300
2301         return more;
2302 }
2303
2304 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2305 {
2306         struct rbd_img_request *img_request;
2307         u32 which = obj_request->which;
2308         bool more = true;
2309
2310         rbd_assert(obj_request_img_data_test(obj_request));
2311         img_request = obj_request->img_request;
2312
2313         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2314         rbd_assert(img_request != NULL);
2315         rbd_assert(img_request->obj_request_count > 0);
2316         rbd_assert(which != BAD_WHICH);
2317         rbd_assert(which < img_request->obj_request_count);
2318
2319         spin_lock_irq(&img_request->completion_lock);
2320         if (which != img_request->next_completion)
2321                 goto out;
2322
2323         for_each_obj_request_from(img_request, obj_request) {
2324                 rbd_assert(more);
2325                 rbd_assert(which < img_request->obj_request_count);
2326
2327                 if (!obj_request_done_test(obj_request))
2328                         break;
2329                 more = rbd_img_obj_end_request(obj_request);
2330                 which++;
2331         }
2332
2333         rbd_assert(more ^ (which == img_request->obj_request_count));
2334         img_request->next_completion = which;
2335 out:
2336         spin_unlock_irq(&img_request->completion_lock);
2337         rbd_img_request_put(img_request);
2338
2339         if (!more)
2340                 rbd_img_request_complete(img_request);
2341 }
2342
2343 /*
2344  * Add individual osd ops to the given ceph_osd_request and prepare
2345  * them for submission. num_ops is the current number of
2346  * osd operations already to the object request.
2347  */
2348 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2349                                 struct ceph_osd_request *osd_request,
2350                                 enum obj_operation_type op_type,
2351                                 unsigned int num_ops)
2352 {
2353         struct rbd_img_request *img_request = obj_request->img_request;
2354         struct rbd_device *rbd_dev = img_request->rbd_dev;
2355         u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2356         u64 offset = obj_request->offset;
2357         u64 length = obj_request->length;
2358         u64 img_end;
2359         u16 opcode;
2360
2361         if (op_type == OBJ_OP_DISCARD) {
2362                 if (!offset && length == object_size &&
2363                     (!img_request_layered_test(img_request) ||
2364                      !obj_request_overlaps_parent(obj_request))) {
2365                         opcode = CEPH_OSD_OP_DELETE;
2366                 } else if ((offset + length == object_size)) {
2367                         opcode = CEPH_OSD_OP_TRUNCATE;
2368                 } else {
2369                         down_read(&rbd_dev->header_rwsem);
2370                         img_end = rbd_dev->header.image_size;
2371                         up_read(&rbd_dev->header_rwsem);
2372
2373                         if (obj_request->img_offset + length == img_end)
2374                                 opcode = CEPH_OSD_OP_TRUNCATE;
2375                         else
2376                                 opcode = CEPH_OSD_OP_ZERO;
2377                 }
2378         } else if (op_type == OBJ_OP_WRITE) {
2379                 opcode = CEPH_OSD_OP_WRITE;
2380                 osd_req_op_alloc_hint_init(osd_request, num_ops,
2381                                         object_size, object_size);
2382                 num_ops++;
2383         } else {
2384                 opcode = CEPH_OSD_OP_READ;
2385         }
2386
2387         if (opcode == CEPH_OSD_OP_DELETE)
2388                 osd_req_op_init(osd_request, num_ops, opcode, 0);
2389         else
2390                 osd_req_op_extent_init(osd_request, num_ops, opcode,
2391                                        offset, length, 0, 0);
2392
2393         if (obj_request->type == OBJ_REQUEST_BIO)
2394                 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2395                                         obj_request->bio_list, length);
2396         else if (obj_request->type == OBJ_REQUEST_PAGES)
2397                 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2398                                         obj_request->pages, length,
2399                                         offset & ~PAGE_MASK, false, false);
2400
2401         /* Discards are also writes */
2402         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2403                 rbd_osd_req_format_write(obj_request);
2404         else
2405                 rbd_osd_req_format_read(obj_request);
2406 }
2407
2408 /*
2409  * Split up an image request into one or more object requests, each
2410  * to a different object.  The "type" parameter indicates whether
2411  * "data_desc" is the pointer to the head of a list of bio
2412  * structures, or the base of a page array.  In either case this
2413  * function assumes data_desc describes memory sufficient to hold
2414  * all data described by the image request.
2415  */
2416 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2417                                         enum obj_request_type type,
2418                                         void *data_desc)
2419 {
2420         struct rbd_device *rbd_dev = img_request->rbd_dev;
2421         struct rbd_obj_request *obj_request = NULL;
2422         struct rbd_obj_request *next_obj_request;
2423         struct bio *bio_list = NULL;
2424         unsigned int bio_offset = 0;
2425         struct page **pages = NULL;
2426         enum obj_operation_type op_type;
2427         u64 img_offset;
2428         u64 resid;
2429
2430         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2431                 (int)type, data_desc);
2432
2433         img_offset = img_request->offset;
2434         resid = img_request->length;
2435         rbd_assert(resid > 0);
2436         op_type = rbd_img_request_op_type(img_request);
2437
2438         if (type == OBJ_REQUEST_BIO) {
2439                 bio_list = data_desc;
2440                 rbd_assert(img_offset ==
2441                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2442         } else if (type == OBJ_REQUEST_PAGES) {
2443                 pages = data_desc;
2444         }
2445
2446         while (resid) {
2447                 struct ceph_osd_request *osd_req;
2448                 const char *object_name;
2449                 u64 offset;
2450                 u64 length;
2451
2452                 object_name = rbd_segment_name(rbd_dev, img_offset);
2453                 if (!object_name)
2454                         goto out_unwind;
2455                 offset = rbd_segment_offset(rbd_dev, img_offset);
2456                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2457                 obj_request = rbd_obj_request_create(object_name,
2458                                                 offset, length, type);
2459                 /* object request has its own copy of the object name */
2460                 rbd_segment_name_free(object_name);
2461                 if (!obj_request)
2462                         goto out_unwind;
2463
2464                 /*
2465                  * set obj_request->img_request before creating the
2466                  * osd_request so that it gets the right snapc
2467                  */
2468                 rbd_img_obj_request_add(img_request, obj_request);
2469
2470                 if (type == OBJ_REQUEST_BIO) {
2471                         unsigned int clone_size;
2472
2473                         rbd_assert(length <= (u64)UINT_MAX);
2474                         clone_size = (unsigned int)length;
2475                         obj_request->bio_list =
2476                                         bio_chain_clone_range(&bio_list,
2477                                                                 &bio_offset,
2478                                                                 clone_size,
2479                                                                 GFP_ATOMIC);
2480                         if (!obj_request->bio_list)
2481                                 goto out_unwind;
2482                 } else if (type == OBJ_REQUEST_PAGES) {
2483                         unsigned int page_count;
2484
2485                         obj_request->pages = pages;
2486                         page_count = (u32)calc_pages_for(offset, length);
2487                         obj_request->page_count = page_count;
2488                         if ((offset + length) & ~PAGE_MASK)
2489                                 page_count--;   /* more on last page */
2490                         pages += page_count;
2491                 }
2492
2493                 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2494                                         (op_type == OBJ_OP_WRITE) ? 2 : 1,
2495                                         obj_request);
2496                 if (!osd_req)
2497                         goto out_unwind;
2498
2499                 obj_request->osd_req = osd_req;
2500                 obj_request->callback = rbd_img_obj_callback;
2501                 obj_request->img_offset = img_offset;
2502
2503                 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2504
2505                 rbd_img_request_get(img_request);
2506
2507                 img_offset += length;
2508                 resid -= length;
2509         }
2510
2511         return 0;
2512
2513 out_unwind:
2514         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2515                 rbd_img_obj_request_del(img_request, obj_request);
2516
2517         return -ENOMEM;
2518 }
2519
2520 static void
2521 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2522 {
2523         struct rbd_img_request *img_request;
2524         struct rbd_device *rbd_dev;
2525         struct page **pages;
2526         u32 page_count;
2527
2528         rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2529                 obj_request->type == OBJ_REQUEST_NODATA);
2530         rbd_assert(obj_request_img_data_test(obj_request));
2531         img_request = obj_request->img_request;
2532         rbd_assert(img_request);
2533
2534         rbd_dev = img_request->rbd_dev;
2535         rbd_assert(rbd_dev);
2536
2537         pages = obj_request->copyup_pages;
2538         rbd_assert(pages != NULL);
2539         obj_request->copyup_pages = NULL;
2540         page_count = obj_request->copyup_page_count;
2541         rbd_assert(page_count);
2542         obj_request->copyup_page_count = 0;
2543         ceph_release_page_vector(pages, page_count);
2544
2545         /*
2546          * We want the transfer count to reflect the size of the
2547          * original write request.  There is no such thing as a
2548          * successful short write, so if the request was successful
2549          * we can just set it to the originally-requested length.
2550          */
2551         if (!obj_request->result)
2552                 obj_request->xferred = obj_request->length;
2553
2554         /* Finish up with the normal image object callback */
2555
2556         rbd_img_obj_callback(obj_request);
2557 }
2558
2559 static void
2560 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2561 {
2562         struct rbd_obj_request *orig_request;
2563         struct ceph_osd_request *osd_req;
2564         struct ceph_osd_client *osdc;
2565         struct rbd_device *rbd_dev;
2566         struct page **pages;
2567         enum obj_operation_type op_type;
2568         u32 page_count;
2569         int img_result;
2570         u64 parent_length;
2571
2572         rbd_assert(img_request_child_test(img_request));
2573
2574         /* First get what we need from the image request */
2575
2576         pages = img_request->copyup_pages;
2577         rbd_assert(pages != NULL);
2578         img_request->copyup_pages = NULL;
2579         page_count = img_request->copyup_page_count;
2580         rbd_assert(page_count);
2581         img_request->copyup_page_count = 0;
2582
2583         orig_request = img_request->obj_request;
2584         rbd_assert(orig_request != NULL);
2585         rbd_assert(obj_request_type_valid(orig_request->type));
2586         img_result = img_request->result;
2587         parent_length = img_request->length;
2588         rbd_assert(parent_length == img_request->xferred);
2589         rbd_img_request_put(img_request);
2590
2591         rbd_assert(orig_request->img_request);
2592         rbd_dev = orig_request->img_request->rbd_dev;
2593         rbd_assert(rbd_dev);
2594
2595         /*
2596          * If the overlap has become 0 (most likely because the
2597          * image has been flattened) we need to free the pages
2598          * and re-submit the original write request.
2599          */
2600         if (!rbd_dev->parent_overlap) {
2601                 struct ceph_osd_client *osdc;
2602
2603                 ceph_release_page_vector(pages, page_count);
2604                 osdc = &rbd_dev->rbd_client->client->osdc;
2605                 img_result = rbd_obj_request_submit(osdc, orig_request);
2606                 if (!img_result)
2607                         return;
2608         }
2609
2610         if (img_result)
2611                 goto out_err;
2612
2613         /*
2614          * The original osd request is of no use to use any more.
2615          * We need a new one that can hold the three ops in a copyup
2616          * request.  Allocate the new copyup osd request for the
2617          * original request, and release the old one.
2618          */
2619         img_result = -ENOMEM;
2620         osd_req = rbd_osd_req_create_copyup(orig_request);
2621         if (!osd_req)
2622                 goto out_err;
2623         rbd_osd_req_destroy(orig_request->osd_req);
2624         orig_request->osd_req = osd_req;
2625         orig_request->copyup_pages = pages;
2626         orig_request->copyup_page_count = page_count;
2627
2628         /* Initialize the copyup op */
2629
2630         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2631         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2632                                                 false, false);
2633
2634         /* Add the other op(s) */
2635
2636         op_type = rbd_img_request_op_type(orig_request->img_request);
2637         rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2638
2639         /* All set, send it off. */
2640
2641         orig_request->callback = rbd_img_obj_copyup_callback;
2642         osdc = &rbd_dev->rbd_client->client->osdc;
2643         img_result = rbd_obj_request_submit(osdc, orig_request);
2644         if (!img_result)
2645                 return;
2646 out_err:
2647         /* Record the error code and complete the request */
2648
2649         orig_request->result = img_result;
2650         orig_request->xferred = 0;
2651         obj_request_done_set(orig_request);
2652         rbd_obj_request_complete(orig_request);
2653 }
2654
2655 /*
2656  * Read from the parent image the range of data that covers the
2657  * entire target of the given object request.  This is used for
2658  * satisfying a layered image write request when the target of an
2659  * object request from the image request does not exist.
2660  *
2661  * A page array big enough to hold the returned data is allocated
2662  * and supplied to rbd_img_request_fill() as the "data descriptor."
2663  * When the read completes, this page array will be transferred to
2664  * the original object request for the copyup operation.
2665  *
2666  * If an error occurs, record it as the result of the original
2667  * object request and mark it done so it gets completed.
2668  */
2669 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2670 {
2671         struct rbd_img_request *img_request = NULL;
2672         struct rbd_img_request *parent_request = NULL;
2673         struct rbd_device *rbd_dev;
2674         u64 img_offset;
2675         u64 length;
2676         struct page **pages = NULL;
2677         u32 page_count;
2678         int result;
2679
2680         rbd_assert(obj_request_img_data_test(obj_request));
2681         rbd_assert(obj_request_type_valid(obj_request->type));
2682
2683         img_request = obj_request->img_request;
2684         rbd_assert(img_request != NULL);
2685         rbd_dev = img_request->rbd_dev;
2686         rbd_assert(rbd_dev->parent != NULL);
2687
2688         /*
2689          * Determine the byte range covered by the object in the
2690          * child image to which the original request was to be sent.
2691          */
2692         img_offset = obj_request->img_offset - obj_request->offset;
2693         length = (u64)1 << rbd_dev->header.obj_order;
2694
2695         /*
2696          * There is no defined parent data beyond the parent
2697          * overlap, so limit what we read at that boundary if
2698          * necessary.
2699          */
2700         if (img_offset + length > rbd_dev->parent_overlap) {
2701                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2702                 length = rbd_dev->parent_overlap - img_offset;
2703         }
2704
2705         /*
2706          * Allocate a page array big enough to receive the data read
2707          * from the parent.
2708          */
2709         page_count = (u32)calc_pages_for(0, length);
2710         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2711         if (IS_ERR(pages)) {
2712                 result = PTR_ERR(pages);
2713                 pages = NULL;
2714                 goto out_err;
2715         }
2716
2717         result = -ENOMEM;
2718         parent_request = rbd_parent_request_create(obj_request,
2719                                                 img_offset, length);
2720         if (!parent_request)
2721                 goto out_err;
2722
2723         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2724         if (result)
2725                 goto out_err;
2726         parent_request->copyup_pages = pages;
2727         parent_request->copyup_page_count = page_count;
2728
2729         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2730         result = rbd_img_request_submit(parent_request);
2731         if (!result)
2732                 return 0;
2733
2734         parent_request->copyup_pages = NULL;
2735         parent_request->copyup_page_count = 0;
2736         parent_request->obj_request = NULL;
2737         rbd_obj_request_put(obj_request);
2738 out_err:
2739         if (pages)
2740                 ceph_release_page_vector(pages, page_count);
2741         if (parent_request)
2742                 rbd_img_request_put(parent_request);
2743         obj_request->result = result;
2744         obj_request->xferred = 0;
2745         obj_request_done_set(obj_request);
2746
2747         return result;
2748 }
2749
2750 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2751 {
2752         struct rbd_obj_request *orig_request;
2753         struct rbd_device *rbd_dev;
2754         int result;
2755
2756         rbd_assert(!obj_request_img_data_test(obj_request));
2757
2758         /*
2759          * All we need from the object request is the original
2760          * request and the result of the STAT op.  Grab those, then
2761          * we're done with the request.
2762          */
2763         orig_request = obj_request->obj_request;
2764         obj_request->obj_request = NULL;
2765         rbd_obj_request_put(orig_request);
2766         rbd_assert(orig_request);
2767         rbd_assert(orig_request->img_request);
2768
2769         result = obj_request->result;
2770         obj_request->result = 0;
2771
2772         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2773                 obj_request, orig_request, result,
2774                 obj_request->xferred, obj_request->length);
2775         rbd_obj_request_put(obj_request);
2776
2777         /*
2778          * If the overlap has become 0 (most likely because the
2779          * image has been flattened) we need to free the pages
2780          * and re-submit the original write request.
2781          */
2782         rbd_dev = orig_request->img_request->rbd_dev;
2783         if (!rbd_dev->parent_overlap) {
2784                 struct ceph_osd_client *osdc;
2785
2786                 osdc = &rbd_dev->rbd_client->client->osdc;
2787                 result = rbd_obj_request_submit(osdc, orig_request);
2788                 if (!result)
2789                         return;
2790         }
2791
2792         /*
2793          * Our only purpose here is to determine whether the object
2794          * exists, and we don't want to treat the non-existence as
2795          * an error.  If something else comes back, transfer the
2796          * error to the original request and complete it now.
2797          */
2798         if (!result) {
2799                 obj_request_existence_set(orig_request, true);
2800         } else if (result == -ENOENT) {
2801                 obj_request_existence_set(orig_request, false);
2802         } else if (result) {
2803                 orig_request->result = result;
2804                 goto out;
2805         }
2806
2807         /*
2808          * Resubmit the original request now that we have recorded
2809          * whether the target object exists.
2810          */
2811         orig_request->result = rbd_img_obj_request_submit(orig_request);
2812 out:
2813         if (orig_request->result)
2814                 rbd_obj_request_complete(orig_request);
2815 }
2816
2817 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2818 {
2819         struct rbd_obj_request *stat_request;
2820         struct rbd_device *rbd_dev;
2821         struct ceph_osd_client *osdc;
2822         struct page **pages = NULL;
2823         u32 page_count;
2824         size_t size;
2825         int ret;
2826
2827         /*
2828          * The response data for a STAT call consists of:
2829          *     le64 length;
2830          *     struct {
2831          *         le32 tv_sec;
2832          *         le32 tv_nsec;
2833          *     } mtime;
2834          */
2835         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2836         page_count = (u32)calc_pages_for(0, size);
2837         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2838         if (IS_ERR(pages))
2839                 return PTR_ERR(pages);
2840
2841         ret = -ENOMEM;
2842         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2843                                                         OBJ_REQUEST_PAGES);
2844         if (!stat_request)
2845                 goto out;
2846
2847         rbd_obj_request_get(obj_request);
2848         stat_request->obj_request = obj_request;
2849         stat_request->pages = pages;
2850         stat_request->page_count = page_count;
2851
2852         rbd_assert(obj_request->img_request);
2853         rbd_dev = obj_request->img_request->rbd_dev;
2854         stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2855                                                    stat_request);
2856         if (!stat_request->osd_req)
2857                 goto out;
2858         stat_request->callback = rbd_img_obj_exists_callback;
2859
2860         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2861         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2862                                         false, false);
2863         rbd_osd_req_format_read(stat_request);
2864
2865         osdc = &rbd_dev->rbd_client->client->osdc;
2866         ret = rbd_obj_request_submit(osdc, stat_request);
2867 out:
2868         if (ret)
2869                 rbd_obj_request_put(obj_request);
2870
2871         return ret;
2872 }
2873
2874 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2875 {
2876         struct rbd_img_request *img_request;
2877         struct rbd_device *rbd_dev;
2878
2879         rbd_assert(obj_request_img_data_test(obj_request));
2880
2881         img_request = obj_request->img_request;
2882         rbd_assert(img_request);
2883         rbd_dev = img_request->rbd_dev;
2884
2885         /* Reads */
2886         if (!img_request_write_test(img_request) &&
2887             !img_request_discard_test(img_request))
2888                 return true;
2889
2890         /* Non-layered writes */
2891         if (!img_request_layered_test(img_request))
2892                 return true;
2893
2894         /*
2895          * Layered writes outside of the parent overlap range don't
2896          * share any data with the parent.
2897          */
2898         if (!obj_request_overlaps_parent(obj_request))
2899                 return true;
2900
2901         /*
2902          * Entire-object layered writes - we will overwrite whatever
2903          * parent data there is anyway.
2904          */
2905         if (!obj_request->offset &&
2906             obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2907                 return true;
2908
2909         /*
2910          * If the object is known to already exist, its parent data has
2911          * already been copied.
2912          */
2913         if (obj_request_known_test(obj_request) &&
2914             obj_request_exists_test(obj_request))
2915                 return true;
2916
2917         return false;
2918 }
2919
2920 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2921 {
2922         if (img_obj_request_simple(obj_request)) {
2923                 struct rbd_device *rbd_dev;
2924                 struct ceph_osd_client *osdc;
2925
2926                 rbd_dev = obj_request->img_request->rbd_dev;
2927                 osdc = &rbd_dev->rbd_client->client->osdc;
2928
2929                 return rbd_obj_request_submit(osdc, obj_request);
2930         }
2931
2932         /*
2933          * It's a layered write.  The target object might exist but
2934          * we may not know that yet.  If we know it doesn't exist,
2935          * start by reading the data for the full target object from
2936          * the parent so we can use it for a copyup to the target.
2937          */
2938         if (obj_request_known_test(obj_request))
2939                 return rbd_img_obj_parent_read_full(obj_request);
2940
2941         /* We don't know whether the target exists.  Go find out. */
2942
2943         return rbd_img_obj_exists_submit(obj_request);
2944 }
2945
2946 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2947 {
2948         struct rbd_obj_request *obj_request;
2949         struct rbd_obj_request *next_obj_request;
2950
2951         dout("%s: img %p\n", __func__, img_request);
2952         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2953                 int ret;
2954
2955                 ret = rbd_img_obj_request_submit(obj_request);
2956                 if (ret)
2957                         return ret;
2958         }
2959
2960         return 0;
2961 }
2962
2963 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2964 {
2965         struct rbd_obj_request *obj_request;
2966         struct rbd_device *rbd_dev;
2967         u64 obj_end;
2968         u64 img_xferred;
2969         int img_result;
2970
2971         rbd_assert(img_request_child_test(img_request));
2972
2973         /* First get what we need from the image request and release it */
2974
2975         obj_request = img_request->obj_request;
2976         img_xferred = img_request->xferred;
2977         img_result = img_request->result;
2978         rbd_img_request_put(img_request);
2979
2980         /*
2981          * If the overlap has become 0 (most likely because the
2982          * image has been flattened) we need to re-submit the
2983          * original request.
2984          */
2985         rbd_assert(obj_request);
2986         rbd_assert(obj_request->img_request);
2987         rbd_dev = obj_request->img_request->rbd_dev;
2988         if (!rbd_dev->parent_overlap) {
2989                 struct ceph_osd_client *osdc;
2990
2991                 osdc = &rbd_dev->rbd_client->client->osdc;
2992                 img_result = rbd_obj_request_submit(osdc, obj_request);
2993                 if (!img_result)
2994                         return;
2995         }
2996
2997         obj_request->result = img_result;
2998         if (obj_request->result)
2999                 goto out;
3000
3001         /*
3002          * We need to zero anything beyond the parent overlap
3003          * boundary.  Since rbd_img_obj_request_read_callback()
3004          * will zero anything beyond the end of a short read, an
3005          * easy way to do this is to pretend the data from the
3006          * parent came up short--ending at the overlap boundary.
3007          */
3008         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3009         obj_end = obj_request->img_offset + obj_request->length;
3010         if (obj_end > rbd_dev->parent_overlap) {
3011                 u64 xferred = 0;
3012
3013                 if (obj_request->img_offset < rbd_dev->parent_overlap)
3014                         xferred = rbd_dev->parent_overlap -
3015                                         obj_request->img_offset;
3016
3017                 obj_request->xferred = min(img_xferred, xferred);
3018         } else {
3019                 obj_request->xferred = img_xferred;
3020         }
3021 out:
3022         rbd_img_obj_request_read_callback(obj_request);
3023         rbd_obj_request_complete(obj_request);
3024 }
3025
3026 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3027 {
3028         struct rbd_img_request *img_request;
3029         int result;
3030
3031         rbd_assert(obj_request_img_data_test(obj_request));
3032         rbd_assert(obj_request->img_request != NULL);
3033         rbd_assert(obj_request->result == (s32) -ENOENT);
3034         rbd_assert(obj_request_type_valid(obj_request->type));
3035
3036         /* rbd_read_finish(obj_request, obj_request->length); */
3037         img_request = rbd_parent_request_create(obj_request,
3038                                                 obj_request->img_offset,
3039                                                 obj_request->length);
3040         result = -ENOMEM;
3041         if (!img_request)
3042                 goto out_err;
3043
3044         if (obj_request->type == OBJ_REQUEST_BIO)
3045                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3046                                                 obj_request->bio_list);
3047         else
3048                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3049                                                 obj_request->pages);
3050         if (result)
3051                 goto out_err;
3052
3053         img_request->callback = rbd_img_parent_read_callback;
3054         result = rbd_img_request_submit(img_request);
3055         if (result)
3056                 goto out_err;
3057
3058         return;
3059 out_err:
3060         if (img_request)
3061                 rbd_img_request_put(img_request);
3062         obj_request->result = result;
3063         obj_request->xferred = 0;
3064         obj_request_done_set(obj_request);
3065 }
3066
3067 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3068 {
3069         struct rbd_obj_request *obj_request;
3070         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3071         int ret;
3072
3073         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3074                                                         OBJ_REQUEST_NODATA);
3075         if (!obj_request)
3076                 return -ENOMEM;
3077
3078         ret = -ENOMEM;
3079         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3080                                                   obj_request);
3081         if (!obj_request->osd_req)
3082                 goto out;
3083
3084         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3085                                         notify_id, 0, 0);
3086         rbd_osd_req_format_read(obj_request);
3087
3088         ret = rbd_obj_request_submit(osdc, obj_request);
3089         if (ret)
3090                 goto out;
3091         ret = rbd_obj_request_wait(obj_request);
3092 out:
3093         rbd_obj_request_put(obj_request);
3094
3095         return ret;
3096 }
3097
3098 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3099 {
3100         struct rbd_device *rbd_dev = (struct rbd_device *)data;
3101         int ret;
3102
3103         if (!rbd_dev)
3104                 return;
3105
3106         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3107                 rbd_dev->header_name, (unsigned long long)notify_id,
3108                 (unsigned int)opcode);
3109
3110         /*
3111          * Until adequate refresh error handling is in place, there is
3112          * not much we can do here, except warn.
3113          *
3114          * See http://tracker.ceph.com/issues/5040
3115          */
3116         ret = rbd_dev_refresh(rbd_dev);
3117         if (ret)
3118                 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3119
3120         ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3121         if (ret)
3122                 rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3123 }
3124
3125 /*
3126  * Send a (un)watch request and wait for the ack.  Return a request
3127  * with a ref held on success or error.
3128  */
3129 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3130                                                 struct rbd_device *rbd_dev,
3131                                                 bool watch)
3132 {
3133         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3134         struct ceph_options *opts = osdc->client->options;
3135         struct rbd_obj_request *obj_request;
3136         int ret;
3137
3138         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3139                                              OBJ_REQUEST_NODATA);
3140         if (!obj_request)
3141                 return ERR_PTR(-ENOMEM);
3142
3143         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3144                                                   obj_request);
3145         if (!obj_request->osd_req) {
3146                 ret = -ENOMEM;
3147                 goto out;
3148         }
3149
3150         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3151                               rbd_dev->watch_event->cookie, 0, watch);
3152         rbd_osd_req_format_write(obj_request);
3153
3154         if (watch)
3155                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3156
3157         ret = rbd_obj_request_submit(osdc, obj_request);
3158         if (ret)
3159                 goto out;
3160
3161         ret = rbd_obj_request_wait_timeout(obj_request, opts->mount_timeout);
3162         if (ret)
3163                 goto out;
3164
3165         ret = obj_request->result;
3166         if (ret) {
3167                 if (watch)
3168                         rbd_obj_request_end(obj_request);
3169                 goto out;
3170         }
3171
3172         return obj_request;
3173
3174 out:
3175         rbd_obj_request_put(obj_request);
3176         return ERR_PTR(ret);
3177 }
3178
3179 /*
3180  * Initiate a watch request, synchronously.
3181  */
3182 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3183 {
3184         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3185         struct rbd_obj_request *obj_request;
3186         int ret;
3187
3188         rbd_assert(!rbd_dev->watch_event);
3189         rbd_assert(!rbd_dev->watch_request);
3190
3191         ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3192                                      &rbd_dev->watch_event);
3193         if (ret < 0)
3194                 return ret;
3195
3196         obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3197         if (IS_ERR(obj_request)) {
3198                 ceph_osdc_cancel_event(rbd_dev->watch_event);
3199                 rbd_dev->watch_event = NULL;
3200                 return PTR_ERR(obj_request);
3201         }
3202
3203         /*
3204          * A watch request is set to linger, so the underlying osd
3205          * request won't go away until we unregister it.  We retain
3206          * a pointer to the object request during that time (in
3207          * rbd_dev->watch_request), so we'll keep a reference to it.
3208          * We'll drop that reference after we've unregistered it in
3209          * rbd_dev_header_unwatch_sync().
3210          */
3211         rbd_dev->watch_request = obj_request;
3212
3213         return 0;
3214 }
3215
3216 /*
3217  * Tear down a watch request, synchronously.
3218  */
3219 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3220 {
3221         struct rbd_obj_request *obj_request;
3222
3223         rbd_assert(rbd_dev->watch_event);
3224         rbd_assert(rbd_dev->watch_request);
3225
3226         rbd_obj_request_end(rbd_dev->watch_request);
3227         rbd_obj_request_put(rbd_dev->watch_request);
3228         rbd_dev->watch_request = NULL;
3229
3230         obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3231         if (!IS_ERR(obj_request))
3232                 rbd_obj_request_put(obj_request);
3233         else
3234                 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3235                          PTR_ERR(obj_request));
3236
3237         ceph_osdc_cancel_event(rbd_dev->watch_event);
3238         rbd_dev->watch_event = NULL;
3239 }
3240
3241 /*
3242  * Synchronous osd object method call.  Returns the number of bytes
3243  * returned in the outbound buffer, or a negative error code.
3244  */
3245 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3246                              const char *object_name,
3247                              const char *class_name,
3248                              const char *method_name,
3249                              const void *outbound,
3250                              size_t outbound_size,
3251                              void *inbound,
3252                              size_t inbound_size)
3253 {
3254         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3255         struct rbd_obj_request *obj_request;
3256         struct page **pages;
3257         u32 page_count;
3258         int ret;
3259
3260         /*
3261          * Method calls are ultimately read operations.  The result
3262          * should placed into the inbound buffer provided.  They
3263          * also supply outbound data--parameters for the object
3264          * method.  Currently if this is present it will be a
3265          * snapshot id.
3266          */
3267         page_count = (u32)calc_pages_for(0, inbound_size);
3268         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3269         if (IS_ERR(pages))
3270                 return PTR_ERR(pages);
3271
3272         ret = -ENOMEM;
3273         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3274                                                         OBJ_REQUEST_PAGES);
3275         if (!obj_request)
3276                 goto out;
3277
3278         obj_request->pages = pages;
3279         obj_request->page_count = page_count;
3280
3281         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3282                                                   obj_request);
3283         if (!obj_request->osd_req)
3284                 goto out;
3285
3286         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3287                                         class_name, method_name);
3288         if (outbound_size) {
3289                 struct ceph_pagelist *pagelist;
3290
3291                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3292                 if (!pagelist)
3293                         goto out;
3294
3295                 ceph_pagelist_init(pagelist);
3296                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3297                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3298                                                 pagelist);
3299         }
3300         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3301                                         obj_request->pages, inbound_size,
3302                                         0, false, false);
3303         rbd_osd_req_format_read(obj_request);
3304
3305         ret = rbd_obj_request_submit(osdc, obj_request);
3306         if (ret)
3307                 goto out;
3308         ret = rbd_obj_request_wait(obj_request);
3309         if (ret)
3310                 goto out;
3311
3312         ret = obj_request->result;
3313         if (ret < 0)
3314                 goto out;
3315
3316         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3317         ret = (int)obj_request->xferred;
3318         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3319 out:
3320         if (obj_request)
3321                 rbd_obj_request_put(obj_request);
3322         else
3323                 ceph_release_page_vector(pages, page_count);
3324
3325         return ret;
3326 }
3327
3328 static void rbd_queue_workfn(struct work_struct *work)
3329 {
3330         struct request *rq = blk_mq_rq_from_pdu(work);
3331         struct rbd_device *rbd_dev = rq->q->queuedata;
3332         struct rbd_img_request *img_request;
3333         struct ceph_snap_context *snapc = NULL;
3334         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3335         u64 length = blk_rq_bytes(rq);
3336         enum obj_operation_type op_type;
3337         u64 mapping_size;
3338         int result;
3339
3340         if (rq->cmd_type != REQ_TYPE_FS) {
3341                 dout("%s: non-fs request type %d\n", __func__,
3342                         (int) rq->cmd_type);
3343                 result = -EIO;
3344                 goto err;
3345         }
3346
3347         if (rq->cmd_flags & REQ_DISCARD)
3348                 op_type = OBJ_OP_DISCARD;
3349         else if (rq->cmd_flags & REQ_WRITE)
3350                 op_type = OBJ_OP_WRITE;
3351         else
3352                 op_type = OBJ_OP_READ;
3353
3354         /* Ignore/skip any zero-length requests */
3355
3356         if (!length) {
3357                 dout("%s: zero-length request\n", __func__);
3358                 result = 0;
3359                 goto err_rq;
3360         }
3361
3362         /* Only reads are allowed to a read-only device */
3363
3364         if (op_type != OBJ_OP_READ) {
3365                 if (rbd_dev->mapping.read_only) {
3366                         result = -EROFS;
3367                         goto err_rq;
3368                 }
3369                 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3370         }
3371
3372         /*
3373          * Quit early if the mapped snapshot no longer exists.  It's
3374          * still possible the snapshot will have disappeared by the
3375          * time our request arrives at the osd, but there's no sense in
3376          * sending it if we already know.
3377          */
3378         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3379                 dout("request for non-existent snapshot");
3380                 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3381                 result = -ENXIO;
3382                 goto err_rq;
3383         }
3384
3385         if (offset && length > U64_MAX - offset + 1) {
3386                 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3387                          length);
3388                 result = -EINVAL;
3389                 goto err_rq;    /* Shouldn't happen */
3390         }
3391
3392         blk_mq_start_request(rq);
3393
3394         down_read(&rbd_dev->header_rwsem);
3395         mapping_size = rbd_dev->mapping.size;
3396         if (op_type != OBJ_OP_READ) {
3397                 snapc = rbd_dev->header.snapc;
3398                 ceph_get_snap_context(snapc);
3399         }
3400         up_read(&rbd_dev->header_rwsem);
3401
3402         if (offset + length > mapping_size) {
3403                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3404                          length, mapping_size);
3405                 result = -EIO;
3406                 goto err_rq;
3407         }
3408
3409         img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3410                                              snapc);
3411         if (!img_request) {
3412                 result = -ENOMEM;
3413                 goto err_rq;
3414         }
3415         img_request->rq = rq;
3416
3417         if (op_type == OBJ_OP_DISCARD)
3418                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3419                                               NULL);
3420         else
3421                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3422                                               rq->bio);
3423         if (result)
3424                 goto err_img_request;
3425
3426         result = rbd_img_request_submit(img_request);
3427         if (result)
3428                 goto err_img_request;
3429
3430         return;
3431
3432 err_img_request:
3433         rbd_img_request_put(img_request);
3434 err_rq:
3435         if (result)
3436                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3437                          obj_op_name(op_type), length, offset, result);
3438         ceph_put_snap_context(snapc);
3439 err:
3440         blk_mq_end_request(rq, result);
3441 }
3442
3443 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3444                 const struct blk_mq_queue_data *bd)
3445 {
3446         struct request *rq = bd->rq;
3447         struct work_struct *work = blk_mq_rq_to_pdu(rq);
3448
3449         queue_work(rbd_wq, work);
3450         return BLK_MQ_RQ_QUEUE_OK;
3451 }
3452
3453 /*
3454  * a queue callback. Makes sure that we don't create a bio that spans across
3455  * multiple osd objects. One exception would be with a single page bios,
3456  * which we handle later at bio_chain_clone_range()
3457  */
3458 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3459                           struct bio_vec *bvec)
3460 {
3461         struct rbd_device *rbd_dev = q->queuedata;
3462         sector_t sector_offset;
3463         sector_t sectors_per_obj;
3464         sector_t obj_sector_offset;
3465         int ret;
3466
3467         /*
3468          * Find how far into its rbd object the partition-relative
3469          * bio start sector is to offset relative to the enclosing
3470          * device.
3471          */
3472         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3473         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3474         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3475
3476         /*
3477          * Compute the number of bytes from that offset to the end
3478          * of the object.  Account for what's already used by the bio.
3479          */
3480         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3481         if (ret > bmd->bi_size)
3482                 ret -= bmd->bi_size;
3483         else
3484                 ret = 0;
3485
3486         /*
3487          * Don't send back more than was asked for.  And if the bio
3488          * was empty, let the whole thing through because:  "Note
3489          * that a block device *must* allow a single page to be
3490          * added to an empty bio."
3491          */
3492         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3493         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3494                 ret = (int) bvec->bv_len;
3495
3496         return ret;
3497 }
3498
3499 static void rbd_free_disk(struct rbd_device *rbd_dev)
3500 {
3501         struct gendisk *disk = rbd_dev->disk;
3502
3503         if (!disk)
3504                 return;
3505
3506         rbd_dev->disk = NULL;
3507         if (disk->flags & GENHD_FL_UP) {
3508                 del_gendisk(disk);
3509                 if (disk->queue)
3510                         blk_cleanup_queue(disk->queue);
3511                 blk_mq_free_tag_set(&rbd_dev->tag_set);
3512         }
3513         put_disk(disk);
3514 }
3515
3516 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3517                                 const char *object_name,
3518                                 u64 offset, u64 length, void *buf)
3519
3520 {
3521         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3522         struct rbd_obj_request *obj_request;
3523         struct page **pages = NULL;
3524         u32 page_count;
3525         size_t size;
3526         int ret;
3527
3528         page_count = (u32) calc_pages_for(offset, length);
3529         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3530         if (IS_ERR(pages))
3531                 return PTR_ERR(pages);
3532
3533         ret = -ENOMEM;
3534         obj_request = rbd_obj_request_create(object_name, offset, length,
3535                                                         OBJ_REQUEST_PAGES);
3536         if (!obj_request)
3537                 goto out;
3538
3539         obj_request->pages = pages;
3540         obj_request->page_count = page_count;
3541
3542         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3543                                                   obj_request);
3544         if (!obj_request->osd_req)
3545                 goto out;
3546
3547         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3548                                         offset, length, 0, 0);
3549         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3550                                         obj_request->pages,
3551                                         obj_request->length,
3552                                         obj_request->offset & ~PAGE_MASK,
3553                                         false, false);
3554         rbd_osd_req_format_read(obj_request);
3555
3556         ret = rbd_obj_request_submit(osdc, obj_request);
3557         if (ret)
3558                 goto out;
3559         ret = rbd_obj_request_wait(obj_request);
3560         if (ret)
3561                 goto out;
3562
3563         ret = obj_request->result;
3564         if (ret < 0)
3565                 goto out;
3566
3567         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3568         size = (size_t) obj_request->xferred;
3569         ceph_copy_from_page_vector(pages, buf, 0, size);
3570         rbd_assert(size <= (size_t)INT_MAX);
3571         ret = (int)size;
3572 out:
3573         if (obj_request)
3574                 rbd_obj_request_put(obj_request);
3575         else
3576                 ceph_release_page_vector(pages, page_count);
3577
3578         return ret;
3579 }
3580
3581 /*
3582  * Read the complete header for the given rbd device.  On successful
3583  * return, the rbd_dev->header field will contain up-to-date
3584  * information about the image.
3585  */
3586 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3587 {
3588         struct rbd_image_header_ondisk *ondisk = NULL;
3589         u32 snap_count = 0;
3590         u64 names_size = 0;
3591         u32 want_count;
3592         int ret;
3593
3594         /*
3595          * The complete header will include an array of its 64-bit
3596          * snapshot ids, followed by the names of those snapshots as
3597          * a contiguous block of NUL-terminated strings.  Note that
3598          * the number of snapshots could change by the time we read
3599          * it in, in which case we re-read it.
3600          */
3601         do {
3602                 size_t size;
3603
3604                 kfree(ondisk);
3605
3606                 size = sizeof (*ondisk);
3607                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3608                 size += names_size;
3609                 ondisk = kmalloc(size, GFP_KERNEL);
3610                 if (!ondisk)
3611                         return -ENOMEM;
3612
3613                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3614                                        0, size, ondisk);
3615                 if (ret < 0)
3616                         goto out;
3617                 if ((size_t)ret < size) {
3618                         ret = -ENXIO;
3619                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3620                                 size, ret);
3621                         goto out;
3622                 }
3623                 if (!rbd_dev_ondisk_valid(ondisk)) {
3624                         ret = -ENXIO;
3625                         rbd_warn(rbd_dev, "invalid header");
3626                         goto out;
3627                 }
3628
3629                 names_size = le64_to_cpu(ondisk->snap_names_len);
3630                 want_count = snap_count;
3631                 snap_count = le32_to_cpu(ondisk->snap_count);
3632         } while (snap_count != want_count);
3633
3634         ret = rbd_header_from_disk(rbd_dev, ondisk);
3635 out:
3636         kfree(ondisk);
3637
3638         return ret;
3639 }
3640
3641 /*
3642  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3643  * has disappeared from the (just updated) snapshot context.
3644  */
3645 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3646 {
3647         u64 snap_id;
3648
3649         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3650                 return;
3651
3652         snap_id = rbd_dev->spec->snap_id;
3653         if (snap_id == CEPH_NOSNAP)
3654                 return;
3655
3656         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3657                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3658 }
3659
3660 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3661 {
3662         sector_t size;
3663         bool removing;
3664
3665         /*
3666          * Don't hold the lock while doing disk operations,
3667          * or lock ordering will conflict with the bdev mutex via:
3668          * rbd_add() -> blkdev_get() -> rbd_open()
3669          */
3670         spin_lock_irq(&rbd_dev->lock);
3671         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3672         spin_unlock_irq(&rbd_dev->lock);
3673         /*
3674          * If the device is being removed, rbd_dev->disk has
3675          * been destroyed, so don't try to update its size
3676          */
3677         if (!removing) {
3678                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3679                 dout("setting size to %llu sectors", (unsigned long long)size);
3680                 set_capacity(rbd_dev->disk, size);
3681                 revalidate_disk(rbd_dev->disk);
3682         }
3683 }
3684
3685 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3686 {
3687         u64 mapping_size;
3688         int ret;
3689
3690         down_write(&rbd_dev->header_rwsem);
3691         mapping_size = rbd_dev->mapping.size;
3692
3693         ret = rbd_dev_header_info(rbd_dev);
3694         if (ret)
3695                 goto out;
3696
3697         /*
3698          * If there is a parent, see if it has disappeared due to the
3699          * mapped image getting flattened.
3700          */
3701         if (rbd_dev->parent) {
3702                 ret = rbd_dev_v2_parent_info(rbd_dev);
3703                 if (ret)
3704                         goto out;
3705         }
3706
3707         if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3708                 rbd_dev->mapping.size = rbd_dev->header.image_size;
3709         } else {
3710                 /* validate mapped snapshot's EXISTS flag */
3711                 rbd_exists_validate(rbd_dev);
3712         }
3713
3714 out:
3715         up_write(&rbd_dev->header_rwsem);
3716         if (!ret && mapping_size != rbd_dev->mapping.size)
3717                 rbd_dev_update_size(rbd_dev);
3718
3719         return ret;
3720 }
3721
3722 static int rbd_init_request(void *data, struct request *rq,
3723                 unsigned int hctx_idx, unsigned int request_idx,
3724                 unsigned int numa_node)
3725 {
3726         struct work_struct *work = blk_mq_rq_to_pdu(rq);
3727
3728         INIT_WORK(work, rbd_queue_workfn);
3729         return 0;
3730 }
3731
3732 static struct blk_mq_ops rbd_mq_ops = {
3733         .queue_rq       = rbd_queue_rq,
3734         .map_queue      = blk_mq_map_queue,
3735         .init_request   = rbd_init_request,
3736 };
3737
3738 static int rbd_init_disk(struct rbd_device *rbd_dev)
3739 {
3740         struct gendisk *disk;
3741         struct request_queue *q;
3742         u64 segment_size;
3743         int err;
3744
3745         /* create gendisk info */
3746         disk = alloc_disk(single_major ?
3747                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3748                           RBD_MINORS_PER_MAJOR);
3749         if (!disk)
3750                 return -ENOMEM;
3751
3752         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3753                  rbd_dev->dev_id);
3754         disk->major = rbd_dev->major;
3755         disk->first_minor = rbd_dev->minor;
3756         if (single_major)
3757                 disk->flags |= GENHD_FL_EXT_DEVT;
3758         disk->fops = &rbd_bd_ops;
3759         disk->private_data = rbd_dev;
3760
3761         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3762         rbd_dev->tag_set.ops = &rbd_mq_ops;
3763         rbd_dev->tag_set.queue_depth = BLKDEV_MAX_RQ;
3764         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3765         rbd_dev->tag_set.flags =
3766                 BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3767         rbd_dev->tag_set.nr_hw_queues = 1;
3768         rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3769
3770         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3771         if (err)
3772                 goto out_disk;
3773
3774         q = blk_mq_init_queue(&rbd_dev->tag_set);
3775         if (IS_ERR(q)) {
3776                 err = PTR_ERR(q);
3777                 goto out_tag_set;
3778         }
3779
3780         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
3781         /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3782
3783         /* set io sizes to object size */
3784         segment_size = rbd_obj_bytes(&rbd_dev->header);
3785         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3786         blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
3787         blk_queue_max_segment_size(q, segment_size);
3788         blk_queue_io_min(q, segment_size);
3789         blk_queue_io_opt(q, segment_size);
3790
3791         /* enable the discard support */
3792         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3793         q->limits.discard_granularity = segment_size;
3794         q->limits.discard_alignment = segment_size;
3795         q->limits.max_discard_sectors = segment_size / SECTOR_SIZE;
3796         q->limits.discard_zeroes_data = 1;
3797
3798         blk_queue_merge_bvec(q, rbd_merge_bvec);
3799         disk->queue = q;
3800
3801         q->queuedata = rbd_dev;
3802
3803         rbd_dev->disk = disk;
3804
3805         return 0;
3806 out_tag_set:
3807         blk_mq_free_tag_set(&rbd_dev->tag_set);
3808 out_disk:
3809         put_disk(disk);
3810         return err;
3811 }
3812
3813 /*
3814   sysfs
3815 */
3816
3817 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3818 {
3819         return container_of(dev, struct rbd_device, dev);
3820 }
3821
3822 static ssize_t rbd_size_show(struct device *dev,
3823                              struct device_attribute *attr, char *buf)
3824 {
3825         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3826
3827         return sprintf(buf, "%llu\n",
3828                 (unsigned long long)rbd_dev->mapping.size);
3829 }
3830
3831 /*
3832  * Note this shows the features for whatever's mapped, which is not
3833  * necessarily the base image.
3834  */
3835 static ssize_t rbd_features_show(struct device *dev,
3836                              struct device_attribute *attr, char *buf)
3837 {
3838         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3839
3840         return sprintf(buf, "0x%016llx\n",
3841                         (unsigned long long)rbd_dev->mapping.features);
3842 }
3843
3844 static ssize_t rbd_major_show(struct device *dev,
3845                               struct device_attribute *attr, char *buf)
3846 {
3847         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3848
3849         if (rbd_dev->major)
3850                 return sprintf(buf, "%d\n", rbd_dev->major);
3851
3852         return sprintf(buf, "(none)\n");
3853 }
3854
3855 static ssize_t rbd_minor_show(struct device *dev,
3856                               struct device_attribute *attr, char *buf)
3857 {
3858         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3859
3860         return sprintf(buf, "%d\n", rbd_dev->minor);
3861 }
3862
3863 static ssize_t rbd_client_id_show(struct device *dev,
3864                                   struct device_attribute *attr, char *buf)
3865 {
3866         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3867
3868         return sprintf(buf, "client%lld\n",
3869                         ceph_client_id(rbd_dev->rbd_client->client));
3870 }
3871
3872 static ssize_t rbd_pool_show(struct device *dev,
3873                              struct device_attribute *attr, char *buf)
3874 {
3875         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3876
3877         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3878 }
3879
3880 static ssize_t rbd_pool_id_show(struct device *dev,
3881                              struct device_attribute *attr, char *buf)
3882 {
3883         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3884
3885         return sprintf(buf, "%llu\n",
3886                         (unsigned long long) rbd_dev->spec->pool_id);
3887 }
3888
3889 static ssize_t rbd_name_show(struct device *dev,
3890                              struct device_attribute *attr, char *buf)
3891 {
3892         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3893
3894         if (rbd_dev->spec->image_name)
3895                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3896
3897         return sprintf(buf, "(unknown)\n");
3898 }
3899
3900 static ssize_t rbd_image_id_show(struct device *dev,
3901                              struct device_attribute *attr, char *buf)
3902 {
3903         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3904
3905         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3906 }
3907
3908 /*
3909  * Shows the name of the currently-mapped snapshot (or
3910  * RBD_SNAP_HEAD_NAME for the base image).
3911  */
3912 static ssize_t rbd_snap_show(struct device *dev,
3913                              struct device_attribute *attr,
3914                              char *buf)
3915 {
3916         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3917
3918         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3919 }
3920
3921 /*
3922  * For a v2 image, shows the chain of parent images, separated by empty
3923  * lines.  For v1 images or if there is no parent, shows "(no parent
3924  * image)".
3925  */
3926 static ssize_t rbd_parent_show(struct device *dev,
3927                                struct device_attribute *attr,
3928                                char *buf)
3929 {
3930         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3931         ssize_t count = 0;
3932
3933         if (!rbd_dev->parent)
3934                 return sprintf(buf, "(no parent image)\n");
3935
3936         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3937                 struct rbd_spec *spec = rbd_dev->parent_spec;
3938
3939                 count += sprintf(&buf[count], "%s"
3940                             "pool_id %llu\npool_name %s\n"
3941                             "image_id %s\nimage_name %s\n"
3942                             "snap_id %llu\nsnap_name %s\n"
3943                             "overlap %llu\n",
3944                             !count ? "" : "\n", /* first? */
3945                             spec->pool_id, spec->pool_name,
3946                             spec->image_id, spec->image_name ?: "(unknown)",
3947                             spec->snap_id, spec->snap_name,
3948                             rbd_dev->parent_overlap);
3949         }
3950
3951         return count;
3952 }
3953
3954 static ssize_t rbd_image_refresh(struct device *dev,
3955                                  struct device_attribute *attr,
3956                                  const char *buf,
3957                                  size_t size)
3958 {
3959         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3960         int ret;
3961
3962         ret = rbd_dev_refresh(rbd_dev);
3963         if (ret)
3964                 return ret;
3965
3966         return size;
3967 }
3968
3969 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3970 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3971 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3972 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3973 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3974 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3975 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3976 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3977 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3978 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3979 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3980 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3981
3982 static struct attribute *rbd_attrs[] = {
3983         &dev_attr_size.attr,
3984         &dev_attr_features.attr,
3985         &dev_attr_major.attr,
3986         &dev_attr_minor.attr,
3987         &dev_attr_client_id.attr,
3988         &dev_attr_pool.attr,
3989         &dev_attr_pool_id.attr,
3990         &dev_attr_name.attr,
3991         &dev_attr_image_id.attr,
3992         &dev_attr_current_snap.attr,
3993         &dev_attr_parent.attr,
3994         &dev_attr_refresh.attr,
3995         NULL
3996 };
3997
3998 static struct attribute_group rbd_attr_group = {
3999         .attrs = rbd_attrs,
4000 };
4001
4002 static const struct attribute_group *rbd_attr_groups[] = {
4003         &rbd_attr_group,
4004         NULL
4005 };
4006
4007 static void rbd_sysfs_dev_release(struct device *dev)
4008 {
4009 }
4010
4011 static struct device_type rbd_device_type = {
4012         .name           = "rbd",
4013         .groups         = rbd_attr_groups,
4014         .release        = rbd_sysfs_dev_release,
4015 };
4016
4017 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4018 {
4019         kref_get(&spec->kref);
4020
4021         return spec;
4022 }
4023
4024 static void rbd_spec_free(struct kref *kref);
4025 static void rbd_spec_put(struct rbd_spec *spec)
4026 {
4027         if (spec)
4028                 kref_put(&spec->kref, rbd_spec_free);
4029 }
4030
4031 static struct rbd_spec *rbd_spec_alloc(void)
4032 {
4033         struct rbd_spec *spec;
4034
4035         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4036         if (!spec)
4037                 return NULL;
4038
4039         spec->pool_id = CEPH_NOPOOL;
4040         spec->snap_id = CEPH_NOSNAP;
4041         kref_init(&spec->kref);
4042
4043         return spec;
4044 }
4045
4046 static void rbd_spec_free(struct kref *kref)
4047 {
4048         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4049
4050         kfree(spec->pool_name);
4051         kfree(spec->image_id);
4052         kfree(spec->image_name);
4053         kfree(spec->snap_name);
4054         kfree(spec);
4055 }
4056
4057 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4058                                 struct rbd_spec *spec)
4059 {
4060         struct rbd_device *rbd_dev;
4061
4062         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4063         if (!rbd_dev)
4064                 return NULL;
4065
4066         spin_lock_init(&rbd_dev->lock);
4067         rbd_dev->flags = 0;
4068         atomic_set(&rbd_dev->parent_ref, 0);
4069         INIT_LIST_HEAD(&rbd_dev->node);
4070         init_rwsem(&rbd_dev->header_rwsem);
4071
4072         rbd_dev->spec = spec;
4073         rbd_dev->rbd_client = rbdc;
4074
4075         /* Initialize the layout used for all rbd requests */
4076
4077         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4078         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4079         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4080         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4081
4082         return rbd_dev;
4083 }
4084
4085 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4086 {
4087         rbd_put_client(rbd_dev->rbd_client);
4088         rbd_spec_put(rbd_dev->spec);
4089         kfree(rbd_dev);
4090 }
4091
4092 /*
4093  * Get the size and object order for an image snapshot, or if
4094  * snap_id is CEPH_NOSNAP, gets this information for the base
4095  * image.
4096  */
4097 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4098                                 u8 *order, u64 *snap_size)
4099 {
4100         __le64 snapid = cpu_to_le64(snap_id);
4101         int ret;
4102         struct {
4103                 u8 order;
4104                 __le64 size;
4105         } __attribute__ ((packed)) size_buf = { 0 };
4106
4107         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4108                                 "rbd", "get_size",
4109                                 &snapid, sizeof (snapid),
4110                                 &size_buf, sizeof (size_buf));
4111         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4112         if (ret < 0)
4113                 return ret;
4114         if (ret < sizeof (size_buf))
4115                 return -ERANGE;
4116
4117         if (order) {
4118                 *order = size_buf.order;
4119                 dout("  order %u", (unsigned int)*order);
4120         }
4121         *snap_size = le64_to_cpu(size_buf.size);
4122
4123         dout("  snap_id 0x%016llx snap_size = %llu\n",
4124                 (unsigned long long)snap_id,
4125                 (unsigned long long)*snap_size);
4126
4127         return 0;
4128 }
4129
4130 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4131 {
4132         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4133                                         &rbd_dev->header.obj_order,
4134                                         &rbd_dev->header.image_size);
4135 }
4136
4137 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4138 {
4139         void *reply_buf;
4140         int ret;
4141         void *p;
4142
4143         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4144         if (!reply_buf)
4145                 return -ENOMEM;
4146
4147         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4148                                 "rbd", "get_object_prefix", NULL, 0,
4149                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4150         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4151         if (ret < 0)
4152                 goto out;
4153
4154         p = reply_buf;
4155         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4156                                                 p + ret, NULL, GFP_NOIO);
4157         ret = 0;
4158
4159         if (IS_ERR(rbd_dev->header.object_prefix)) {
4160                 ret = PTR_ERR(rbd_dev->header.object_prefix);
4161                 rbd_dev->header.object_prefix = NULL;
4162         } else {
4163                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4164         }
4165 out:
4166         kfree(reply_buf);
4167
4168         return ret;
4169 }
4170
4171 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4172                 u64 *snap_features)
4173 {
4174         __le64 snapid = cpu_to_le64(snap_id);
4175         struct {
4176                 __le64 features;
4177                 __le64 incompat;
4178         } __attribute__ ((packed)) features_buf = { 0 };
4179         u64 incompat;
4180         int ret;
4181
4182         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4183                                 "rbd", "get_features",
4184                                 &snapid, sizeof (snapid),
4185                                 &features_buf, sizeof (features_buf));
4186         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4187         if (ret < 0)
4188                 return ret;
4189         if (ret < sizeof (features_buf))
4190                 return -ERANGE;
4191
4192         incompat = le64_to_cpu(features_buf.incompat);
4193         if (incompat & ~RBD_FEATURES_SUPPORTED)
4194                 return -ENXIO;
4195
4196         *snap_features = le64_to_cpu(features_buf.features);
4197
4198         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4199                 (unsigned long long)snap_id,
4200                 (unsigned long long)*snap_features,
4201                 (unsigned long long)le64_to_cpu(features_buf.incompat));
4202
4203         return 0;
4204 }
4205
4206 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4207 {
4208         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4209                                                 &rbd_dev->header.features);
4210 }
4211
4212 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4213 {
4214         struct rbd_spec *parent_spec;
4215         size_t size;
4216         void *reply_buf = NULL;
4217         __le64 snapid;
4218         void *p;
4219         void *end;
4220         u64 pool_id;
4221         char *image_id;
4222         u64 snap_id;
4223         u64 overlap;
4224         int ret;
4225
4226         parent_spec = rbd_spec_alloc();
4227         if (!parent_spec)
4228                 return -ENOMEM;
4229
4230         size = sizeof (__le64) +                                /* pool_id */
4231                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
4232                 sizeof (__le64) +                               /* snap_id */
4233                 sizeof (__le64);                                /* overlap */
4234         reply_buf = kmalloc(size, GFP_KERNEL);
4235         if (!reply_buf) {
4236                 ret = -ENOMEM;
4237                 goto out_err;
4238         }
4239
4240         snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4241         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4242                                 "rbd", "get_parent",
4243                                 &snapid, sizeof (snapid),
4244                                 reply_buf, size);
4245         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4246         if (ret < 0)
4247                 goto out_err;
4248
4249         p = reply_buf;
4250         end = reply_buf + ret;
4251         ret = -ERANGE;
4252         ceph_decode_64_safe(&p, end, pool_id, out_err);
4253         if (pool_id == CEPH_NOPOOL) {
4254                 /*
4255                  * Either the parent never existed, or we have
4256                  * record of it but the image got flattened so it no
4257                  * longer has a parent.  When the parent of a
4258                  * layered image disappears we immediately set the
4259                  * overlap to 0.  The effect of this is that all new
4260                  * requests will be treated as if the image had no
4261                  * parent.
4262                  */
4263                 if (rbd_dev->parent_overlap) {
4264                         rbd_dev->parent_overlap = 0;
4265                         rbd_dev_parent_put(rbd_dev);
4266                         pr_info("%s: clone image has been flattened\n",
4267                                 rbd_dev->disk->disk_name);
4268                 }
4269
4270                 goto out;       /* No parent?  No problem. */
4271         }
4272
4273         /* The ceph file layout needs to fit pool id in 32 bits */
4274
4275         ret = -EIO;
4276         if (pool_id > (u64)U32_MAX) {
4277                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4278                         (unsigned long long)pool_id, U32_MAX);
4279                 goto out_err;
4280         }
4281
4282         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4283         if (IS_ERR(image_id)) {
4284                 ret = PTR_ERR(image_id);
4285                 goto out_err;
4286         }
4287         ceph_decode_64_safe(&p, end, snap_id, out_err);
4288         ceph_decode_64_safe(&p, end, overlap, out_err);
4289
4290         /*
4291          * The parent won't change (except when the clone is
4292          * flattened, already handled that).  So we only need to
4293          * record the parent spec we have not already done so.
4294          */
4295         if (!rbd_dev->parent_spec) {
4296                 parent_spec->pool_id = pool_id;
4297                 parent_spec->image_id = image_id;
4298                 parent_spec->snap_id = snap_id;
4299                 rbd_dev->parent_spec = parent_spec;
4300                 parent_spec = NULL;     /* rbd_dev now owns this */
4301         } else {
4302                 kfree(image_id);
4303         }
4304
4305         /*
4306          * We always update the parent overlap.  If it's zero we issue
4307          * a warning, as we will proceed as if there was no parent.
4308          */
4309         if (!overlap) {
4310                 if (parent_spec) {
4311                         /* refresh, careful to warn just once */
4312                         if (rbd_dev->parent_overlap)
4313                                 rbd_warn(rbd_dev,
4314                                     "clone now standalone (overlap became 0)");
4315                 } else {
4316                         /* initial probe */
4317                         rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4318                 }
4319         }
4320         rbd_dev->parent_overlap = overlap;
4321
4322 out:
4323         ret = 0;
4324 out_err:
4325         kfree(reply_buf);
4326         rbd_spec_put(parent_spec);
4327
4328         return ret;
4329 }
4330
4331 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4332 {
4333         struct {
4334                 __le64 stripe_unit;
4335                 __le64 stripe_count;
4336         } __attribute__ ((packed)) striping_info_buf = { 0 };
4337         size_t size = sizeof (striping_info_buf);
4338         void *p;
4339         u64 obj_size;
4340         u64 stripe_unit;
4341         u64 stripe_count;
4342         int ret;
4343
4344         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4345                                 "rbd", "get_stripe_unit_count", NULL, 0,
4346                                 (char *)&striping_info_buf, size);
4347         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4348         if (ret < 0)
4349                 return ret;
4350         if (ret < size)
4351                 return -ERANGE;
4352
4353         /*
4354          * We don't actually support the "fancy striping" feature
4355          * (STRIPINGV2) yet, but if the striping sizes are the
4356          * defaults the behavior is the same as before.  So find
4357          * out, and only fail if the image has non-default values.
4358          */
4359         ret = -EINVAL;
4360         obj_size = (u64)1 << rbd_dev->header.obj_order;
4361         p = &striping_info_buf;
4362         stripe_unit = ceph_decode_64(&p);
4363         if (stripe_unit != obj_size) {
4364                 rbd_warn(rbd_dev, "unsupported stripe unit "
4365                                 "(got %llu want %llu)",
4366                                 stripe_unit, obj_size);
4367                 return -EINVAL;
4368         }
4369         stripe_count = ceph_decode_64(&p);
4370         if (stripe_count != 1) {
4371                 rbd_warn(rbd_dev, "unsupported stripe count "
4372                                 "(got %llu want 1)", stripe_count);
4373                 return -EINVAL;
4374         }
4375         rbd_dev->header.stripe_unit = stripe_unit;
4376         rbd_dev->header.stripe_count = stripe_count;
4377
4378         return 0;
4379 }
4380
4381 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4382 {
4383         size_t image_id_size;
4384         char *image_id;
4385         void *p;
4386         void *end;
4387         size_t size;
4388         void *reply_buf = NULL;
4389         size_t len = 0;
4390         char *image_name = NULL;
4391         int ret;
4392
4393         rbd_assert(!rbd_dev->spec->image_name);
4394
4395         len = strlen(rbd_dev->spec->image_id);
4396         image_id_size = sizeof (__le32) + len;
4397         image_id = kmalloc(image_id_size, GFP_KERNEL);
4398         if (!image_id)
4399                 return NULL;
4400
4401         p = image_id;
4402         end = image_id + image_id_size;
4403         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4404
4405         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4406         reply_buf = kmalloc(size, GFP_KERNEL);
4407         if (!reply_buf)
4408                 goto out;
4409
4410         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4411                                 "rbd", "dir_get_name",
4412                                 image_id, image_id_size,
4413                                 reply_buf, size);
4414         if (ret < 0)
4415                 goto out;
4416         p = reply_buf;
4417         end = reply_buf + ret;
4418
4419         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4420         if (IS_ERR(image_name))
4421                 image_name = NULL;
4422         else
4423                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4424 out:
4425         kfree(reply_buf);
4426         kfree(image_id);
4427
4428         return image_name;
4429 }
4430
4431 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4432 {
4433         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4434         const char *snap_name;
4435         u32 which = 0;
4436
4437         /* Skip over names until we find the one we are looking for */
4438
4439         snap_name = rbd_dev->header.snap_names;
4440         while (which < snapc->num_snaps) {
4441                 if (!strcmp(name, snap_name))
4442                         return snapc->snaps[which];
4443                 snap_name += strlen(snap_name) + 1;
4444                 which++;
4445         }
4446         return CEPH_NOSNAP;
4447 }
4448
4449 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4450 {
4451         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4452         u32 which;
4453         bool found = false;
4454         u64 snap_id;
4455
4456         for (which = 0; !found && which < snapc->num_snaps; which++) {
4457                 const char *snap_name;
4458
4459                 snap_id = snapc->snaps[which];
4460                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4461                 if (IS_ERR(snap_name)) {
4462                         /* ignore no-longer existing snapshots */
4463                         if (PTR_ERR(snap_name) == -ENOENT)
4464                                 continue;
4465                         else
4466                                 break;
4467                 }
4468                 found = !strcmp(name, snap_name);
4469                 kfree(snap_name);
4470         }
4471         return found ? snap_id : CEPH_NOSNAP;
4472 }
4473
4474 /*
4475  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4476  * no snapshot by that name is found, or if an error occurs.
4477  */
4478 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4479 {
4480         if (rbd_dev->image_format == 1)
4481                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4482
4483         return rbd_v2_snap_id_by_name(rbd_dev, name);
4484 }
4485
4486 /*
4487  * An image being mapped will have everything but the snap id.
4488  */
4489 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4490 {
4491         struct rbd_spec *spec = rbd_dev->spec;
4492
4493         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4494         rbd_assert(spec->image_id && spec->image_name);
4495         rbd_assert(spec->snap_name);
4496
4497         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4498                 u64 snap_id;
4499
4500                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4501                 if (snap_id == CEPH_NOSNAP)
4502                         return -ENOENT;
4503
4504                 spec->snap_id = snap_id;
4505         } else {
4506                 spec->snap_id = CEPH_NOSNAP;
4507         }
4508
4509         return 0;
4510 }
4511
4512 /*
4513  * A parent image will have all ids but none of the names.
4514  *
4515  * All names in an rbd spec are dynamically allocated.  It's OK if we
4516  * can't figure out the name for an image id.
4517  */
4518 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4519 {
4520         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4521         struct rbd_spec *spec = rbd_dev->spec;
4522         const char *pool_name;
4523         const char *image_name;
4524         const char *snap_name;
4525         int ret;
4526
4527         rbd_assert(spec->pool_id != CEPH_NOPOOL);
4528         rbd_assert(spec->image_id);
4529         rbd_assert(spec->snap_id != CEPH_NOSNAP);
4530
4531         /* Get the pool name; we have to make our own copy of this */
4532
4533         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4534         if (!pool_name) {
4535                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4536                 return -EIO;
4537         }
4538         pool_name = kstrdup(pool_name, GFP_KERNEL);
4539         if (!pool_name)
4540                 return -ENOMEM;
4541
4542         /* Fetch the image name; tolerate failure here */
4543
4544         image_name = rbd_dev_image_name(rbd_dev);
4545         if (!image_name)
4546                 rbd_warn(rbd_dev, "unable to get image name");
4547
4548         /* Fetch the snapshot name */
4549
4550         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4551         if (IS_ERR(snap_name)) {
4552                 ret = PTR_ERR(snap_name);
4553                 goto out_err;
4554         }
4555
4556         spec->pool_name = pool_name;
4557         spec->image_name = image_name;
4558         spec->snap_name = snap_name;
4559
4560         return 0;
4561
4562 out_err:
4563         kfree(image_name);
4564         kfree(pool_name);
4565         return ret;
4566 }
4567
4568 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4569 {
4570         size_t size;
4571         int ret;
4572         void *reply_buf;
4573         void *p;
4574         void *end;
4575         u64 seq;
4576         u32 snap_count;
4577         struct ceph_snap_context *snapc;
4578         u32 i;
4579
4580         /*
4581          * We'll need room for the seq value (maximum snapshot id),
4582          * snapshot count, and array of that many snapshot ids.
4583          * For now we have a fixed upper limit on the number we're
4584          * prepared to receive.
4585          */
4586         size = sizeof (__le64) + sizeof (__le32) +
4587                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4588         reply_buf = kzalloc(size, GFP_KERNEL);
4589         if (!reply_buf)
4590                 return -ENOMEM;
4591
4592         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4593                                 "rbd", "get_snapcontext", NULL, 0,
4594                                 reply_buf, size);
4595         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4596         if (ret < 0)
4597                 goto out;
4598
4599         p = reply_buf;
4600         end = reply_buf + ret;
4601         ret = -ERANGE;
4602         ceph_decode_64_safe(&p, end, seq, out);
4603         ceph_decode_32_safe(&p, end, snap_count, out);
4604
4605         /*
4606          * Make sure the reported number of snapshot ids wouldn't go
4607          * beyond the end of our buffer.  But before checking that,
4608          * make sure the computed size of the snapshot context we
4609          * allocate is representable in a size_t.
4610          */
4611         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4612                                  / sizeof (u64)) {
4613                 ret = -EINVAL;
4614                 goto out;
4615         }
4616         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4617                 goto out;
4618         ret = 0;
4619
4620         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4621         if (!snapc) {
4622                 ret = -ENOMEM;
4623                 goto out;
4624         }
4625         snapc->seq = seq;
4626         for (i = 0; i < snap_count; i++)
4627                 snapc->snaps[i] = ceph_decode_64(&p);
4628
4629         ceph_put_snap_context(rbd_dev->header.snapc);
4630         rbd_dev->header.snapc = snapc;
4631
4632         dout("  snap context seq = %llu, snap_count = %u\n",
4633                 (unsigned long long)seq, (unsigned int)snap_count);
4634 out:
4635         kfree(reply_buf);
4636
4637         return ret;
4638 }
4639
4640 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4641                                         u64 snap_id)
4642 {
4643         size_t size;
4644         void *reply_buf;
4645         __le64 snapid;
4646         int ret;
4647         void *p;
4648         void *end;
4649         char *snap_name;
4650
4651         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4652         reply_buf = kmalloc(size, GFP_KERNEL);
4653         if (!reply_buf)
4654                 return ERR_PTR(-ENOMEM);
4655
4656         snapid = cpu_to_le64(snap_id);
4657         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4658                                 "rbd", "get_snapshot_name",
4659                                 &snapid, sizeof (snapid),
4660                                 reply_buf, size);
4661         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4662         if (ret < 0) {
4663                 snap_name = ERR_PTR(ret);
4664                 goto out;
4665         }
4666
4667         p = reply_buf;
4668         end = reply_buf + ret;
4669         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4670         if (IS_ERR(snap_name))
4671                 goto out;
4672
4673         dout("  snap_id 0x%016llx snap_name = %s\n",
4674                 (unsigned long long)snap_id, snap_name);
4675 out:
4676         kfree(reply_buf);
4677
4678         return snap_name;
4679 }
4680
4681 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4682 {
4683         bool first_time = rbd_dev->header.object_prefix == NULL;
4684         int ret;
4685
4686         ret = rbd_dev_v2_image_size(rbd_dev);
4687         if (ret)
4688                 return ret;
4689
4690         if (first_time) {
4691                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4692                 if (ret)
4693                         return ret;
4694         }
4695
4696         ret = rbd_dev_v2_snap_context(rbd_dev);
4697         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4698
4699         return ret;
4700 }
4701
4702 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4703 {
4704         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4705
4706         if (rbd_dev->image_format == 1)
4707                 return rbd_dev_v1_header_info(rbd_dev);
4708
4709         return rbd_dev_v2_header_info(rbd_dev);
4710 }
4711
4712 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4713 {
4714         struct device *dev;
4715         int ret;
4716
4717         dev = &rbd_dev->dev;
4718         dev->bus = &rbd_bus_type;
4719         dev->type = &rbd_device_type;
4720         dev->parent = &rbd_root_dev;
4721         dev->release = rbd_dev_device_release;
4722         dev_set_name(dev, "%d", rbd_dev->dev_id);
4723         ret = device_register(dev);
4724
4725         return ret;
4726 }
4727
4728 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4729 {
4730         device_unregister(&rbd_dev->dev);
4731 }
4732
4733 /*
4734  * Get a unique rbd identifier for the given new rbd_dev, and add
4735  * the rbd_dev to the global list.
4736  */
4737 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4738 {
4739         int new_dev_id;
4740
4741         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4742                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4743                                     GFP_KERNEL);
4744         if (new_dev_id < 0)
4745                 return new_dev_id;
4746
4747         rbd_dev->dev_id = new_dev_id;
4748
4749         spin_lock(&rbd_dev_list_lock);
4750         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4751         spin_unlock(&rbd_dev_list_lock);
4752
4753         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4754
4755         return 0;
4756 }
4757
4758 /*
4759  * Remove an rbd_dev from the global list, and record that its
4760  * identifier is no longer in use.
4761  */
4762 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4763 {
4764         spin_lock(&rbd_dev_list_lock);
4765         list_del_init(&rbd_dev->node);
4766         spin_unlock(&rbd_dev_list_lock);
4767
4768         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4769
4770         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4771 }
4772
4773 /*
4774  * Skips over white space at *buf, and updates *buf to point to the
4775  * first found non-space character (if any). Returns the length of
4776  * the token (string of non-white space characters) found.  Note
4777  * that *buf must be terminated with '\0'.
4778  */
4779 static inline size_t next_token(const char **buf)
4780 {
4781         /*
4782         * These are the characters that produce nonzero for
4783         * isspace() in the "C" and "POSIX" locales.
4784         */
4785         const char *spaces = " \f\n\r\t\v";
4786
4787         *buf += strspn(*buf, spaces);   /* Find start of token */
4788
4789         return strcspn(*buf, spaces);   /* Return token length */
4790 }
4791
4792 /*
4793  * Finds the next token in *buf, dynamically allocates a buffer big
4794  * enough to hold a copy of it, and copies the token into the new
4795  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4796  * that a duplicate buffer is created even for a zero-length token.
4797  *
4798  * Returns a pointer to the newly-allocated duplicate, or a null
4799  * pointer if memory for the duplicate was not available.  If
4800  * the lenp argument is a non-null pointer, the length of the token
4801  * (not including the '\0') is returned in *lenp.
4802  *
4803  * If successful, the *buf pointer will be updated to point beyond
4804  * the end of the found token.
4805  *
4806  * Note: uses GFP_KERNEL for allocation.
4807  */
4808 static inline char *dup_token(const char **buf, size_t *lenp)
4809 {
4810         char *dup;
4811         size_t len;
4812
4813         len = next_token(buf);
4814         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4815         if (!dup)
4816                 return NULL;
4817         *(dup + len) = '\0';
4818         *buf += len;
4819
4820         if (lenp)
4821                 *lenp = len;
4822
4823         return dup;
4824 }
4825
4826 /*
4827  * Parse the options provided for an "rbd add" (i.e., rbd image
4828  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4829  * and the data written is passed here via a NUL-terminated buffer.
4830  * Returns 0 if successful or an error code otherwise.
4831  *
4832  * The information extracted from these options is recorded in
4833  * the other parameters which return dynamically-allocated
4834  * structures:
4835  *  ceph_opts
4836  *      The address of a pointer that will refer to a ceph options
4837  *      structure.  Caller must release the returned pointer using
4838  *      ceph_destroy_options() when it is no longer needed.
4839  *  rbd_opts
4840  *      Address of an rbd options pointer.  Fully initialized by
4841  *      this function; caller must release with kfree().
4842  *  spec
4843  *      Address of an rbd image specification pointer.  Fully
4844  *      initialized by this function based on parsed options.
4845  *      Caller must release with rbd_spec_put().
4846  *
4847  * The options passed take this form:
4848  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4849  * where:
4850  *  <mon_addrs>
4851  *      A comma-separated list of one or more monitor addresses.
4852  *      A monitor address is an ip address, optionally followed
4853  *      by a port number (separated by a colon).
4854  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4855  *  <options>
4856  *      A comma-separated list of ceph and/or rbd options.
4857  *  <pool_name>
4858  *      The name of the rados pool containing the rbd image.
4859  *  <image_name>
4860  *      The name of the image in that pool to map.
4861  *  <snap_id>
4862  *      An optional snapshot id.  If provided, the mapping will
4863  *      present data from the image at the time that snapshot was
4864  *      created.  The image head is used if no snapshot id is
4865  *      provided.  Snapshot mappings are always read-only.
4866  */
4867 static int rbd_add_parse_args(const char *buf,
4868                                 struct ceph_options **ceph_opts,
4869                                 struct rbd_options **opts,
4870                                 struct rbd_spec **rbd_spec)
4871 {
4872         size_t len;
4873         char *options;
4874         const char *mon_addrs;
4875         char *snap_name;
4876         size_t mon_addrs_size;
4877         struct rbd_spec *spec = NULL;
4878         struct rbd_options *rbd_opts = NULL;
4879         struct ceph_options *copts;
4880         int ret;
4881
4882         /* The first four tokens are required */
4883
4884         len = next_token(&buf);
4885         if (!len) {
4886                 rbd_warn(NULL, "no monitor address(es) provided");
4887                 return -EINVAL;
4888         }
4889         mon_addrs = buf;
4890         mon_addrs_size = len + 1;
4891         buf += len;
4892
4893         ret = -EINVAL;
4894         options = dup_token(&buf, NULL);
4895         if (!options)
4896                 return -ENOMEM;
4897         if (!*options) {
4898                 rbd_warn(NULL, "no options provided");
4899                 goto out_err;
4900         }
4901
4902         spec = rbd_spec_alloc();
4903         if (!spec)
4904                 goto out_mem;
4905
4906         spec->pool_name = dup_token(&buf, NULL);
4907         if (!spec->pool_name)
4908                 goto out_mem;
4909         if (!*spec->pool_name) {
4910                 rbd_warn(NULL, "no pool name provided");
4911                 goto out_err;
4912         }
4913
4914         spec->image_name = dup_token(&buf, NULL);
4915         if (!spec->image_name)
4916                 goto out_mem;
4917         if (!*spec->image_name) {
4918                 rbd_warn(NULL, "no image name provided");
4919                 goto out_err;
4920         }
4921
4922         /*
4923          * Snapshot name is optional; default is to use "-"
4924          * (indicating the head/no snapshot).
4925          */
4926         len = next_token(&buf);
4927         if (!len) {
4928                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4929                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4930         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4931                 ret = -ENAMETOOLONG;
4932                 goto out_err;
4933         }
4934         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4935         if (!snap_name)
4936                 goto out_mem;
4937         *(snap_name + len) = '\0';
4938         spec->snap_name = snap_name;
4939
4940         /* Initialize all rbd options to the defaults */
4941
4942         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4943         if (!rbd_opts)
4944                 goto out_mem;
4945
4946         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4947
4948         copts = ceph_parse_options(options, mon_addrs,
4949                                         mon_addrs + mon_addrs_size - 1,
4950                                         parse_rbd_opts_token, rbd_opts);
4951         if (IS_ERR(copts)) {
4952                 ret = PTR_ERR(copts);
4953                 goto out_err;
4954         }
4955         kfree(options);
4956
4957         *ceph_opts = copts;
4958         *opts = rbd_opts;
4959         *rbd_spec = spec;
4960
4961         return 0;
4962 out_mem:
4963         ret = -ENOMEM;
4964 out_err:
4965         kfree(rbd_opts);
4966         rbd_spec_put(spec);
4967         kfree(options);
4968
4969         return ret;
4970 }
4971
4972 /*
4973  * Return pool id (>= 0) or a negative error code.
4974  */
4975 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4976 {
4977         struct ceph_options *opts = rbdc->client->options;
4978         u64 newest_epoch;
4979         int tries = 0;
4980         int ret;
4981
4982 again:
4983         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4984         if (ret == -ENOENT && tries++ < 1) {
4985                 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4986                                                &newest_epoch);
4987                 if (ret < 0)
4988                         return ret;
4989
4990                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4991                         ceph_monc_request_next_osdmap(&rbdc->client->monc);
4992                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4993                                                      newest_epoch,
4994                                                      opts->mount_timeout);
4995                         goto again;
4996                 } else {
4997                         /* the osdmap we have is new enough */
4998                         return -ENOENT;
4999                 }
5000         }
5001
5002         return ret;
5003 }
5004
5005 /*
5006  * An rbd format 2 image has a unique identifier, distinct from the
5007  * name given to it by the user.  Internally, that identifier is
5008  * what's used to specify the names of objects related to the image.
5009  *
5010  * A special "rbd id" object is used to map an rbd image name to its
5011  * id.  If that object doesn't exist, then there is no v2 rbd image
5012  * with the supplied name.
5013  *
5014  * This function will record the given rbd_dev's image_id field if
5015  * it can be determined, and in that case will return 0.  If any
5016  * errors occur a negative errno will be returned and the rbd_dev's
5017  * image_id field will be unchanged (and should be NULL).
5018  */
5019 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5020 {
5021         int ret;
5022         size_t size;
5023         char *object_name;
5024         void *response;
5025         char *image_id;
5026
5027         /*
5028          * When probing a parent image, the image id is already
5029          * known (and the image name likely is not).  There's no
5030          * need to fetch the image id again in this case.  We
5031          * do still need to set the image format though.
5032          */
5033         if (rbd_dev->spec->image_id) {
5034                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5035
5036                 return 0;
5037         }
5038
5039         /*
5040          * First, see if the format 2 image id file exists, and if
5041          * so, get the image's persistent id from it.
5042          */
5043         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5044         object_name = kmalloc(size, GFP_NOIO);
5045         if (!object_name)
5046                 return -ENOMEM;
5047         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5048         dout("rbd id object name is %s\n", object_name);
5049
5050         /* Response will be an encoded string, which includes a length */
5051
5052         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5053         response = kzalloc(size, GFP_NOIO);
5054         if (!response) {
5055                 ret = -ENOMEM;
5056                 goto out;
5057         }
5058
5059         /* If it doesn't exist we'll assume it's a format 1 image */
5060
5061         ret = rbd_obj_method_sync(rbd_dev, object_name,
5062                                 "rbd", "get_id", NULL, 0,
5063                                 response, RBD_IMAGE_ID_LEN_MAX);
5064         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5065         if (ret == -ENOENT) {
5066                 image_id = kstrdup("", GFP_KERNEL);
5067                 ret = image_id ? 0 : -ENOMEM;
5068                 if (!ret)
5069                         rbd_dev->image_format = 1;
5070         } else if (ret >= 0) {
5071                 void *p = response;
5072
5073                 image_id = ceph_extract_encoded_string(&p, p + ret,
5074                                                 NULL, GFP_NOIO);
5075                 ret = PTR_ERR_OR_ZERO(image_id);
5076                 if (!ret)
5077                         rbd_dev->image_format = 2;
5078         }
5079
5080         if (!ret) {
5081                 rbd_dev->spec->image_id = image_id;
5082                 dout("image_id is %s\n", image_id);
5083         }
5084 out:
5085         kfree(response);
5086         kfree(object_name);
5087
5088         return ret;
5089 }
5090
5091 /*
5092  * Undo whatever state changes are made by v1 or v2 header info
5093  * call.
5094  */
5095 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5096 {
5097         struct rbd_image_header *header;
5098
5099         rbd_dev_parent_put(rbd_dev);
5100
5101         /* Free dynamic fields from the header, then zero it out */
5102
5103         header = &rbd_dev->header;
5104         ceph_put_snap_context(header->snapc);
5105         kfree(header->snap_sizes);
5106         kfree(header->snap_names);
5107         kfree(header->object_prefix);
5108         memset(header, 0, sizeof (*header));
5109 }
5110
5111 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5112 {
5113         int ret;
5114
5115         ret = rbd_dev_v2_object_prefix(rbd_dev);
5116         if (ret)
5117                 goto out_err;
5118
5119         /*
5120          * Get the and check features for the image.  Currently the
5121          * features are assumed to never change.
5122          */
5123         ret = rbd_dev_v2_features(rbd_dev);
5124         if (ret)
5125                 goto out_err;
5126
5127         /* If the image supports fancy striping, get its parameters */
5128
5129         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5130                 ret = rbd_dev_v2_striping_info(rbd_dev);
5131                 if (ret < 0)
5132                         goto out_err;
5133         }
5134         /* No support for crypto and compression type format 2 images */
5135
5136         return 0;
5137 out_err:
5138         rbd_dev->header.features = 0;
5139         kfree(rbd_dev->header.object_prefix);
5140         rbd_dev->header.object_prefix = NULL;
5141
5142         return ret;
5143 }
5144
5145 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5146 {
5147         struct rbd_device *parent = NULL;
5148         struct rbd_spec *parent_spec;
5149         struct rbd_client *rbdc;
5150         int ret;
5151
5152         if (!rbd_dev->parent_spec)
5153                 return 0;
5154         /*
5155          * We need to pass a reference to the client and the parent
5156          * spec when creating the parent rbd_dev.  Images related by
5157          * parent/child relationships always share both.
5158          */
5159         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5160         rbdc = __rbd_get_client(rbd_dev->rbd_client);
5161
5162         ret = -ENOMEM;
5163         parent = rbd_dev_create(rbdc, parent_spec);
5164         if (!parent)
5165                 goto out_err;
5166
5167         ret = rbd_dev_image_probe(parent, false);
5168         if (ret < 0)
5169                 goto out_err;
5170         rbd_dev->parent = parent;
5171         atomic_set(&rbd_dev->parent_ref, 1);
5172
5173         return 0;
5174 out_err:
5175         if (parent) {
5176                 rbd_dev_unparent(rbd_dev);
5177                 kfree(rbd_dev->header_name);
5178                 rbd_dev_destroy(parent);
5179         } else {
5180                 rbd_put_client(rbdc);
5181                 rbd_spec_put(parent_spec);
5182         }
5183
5184         return ret;
5185 }
5186
5187 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5188 {
5189         int ret;
5190
5191         /* Get an id and fill in device name. */
5192
5193         ret = rbd_dev_id_get(rbd_dev);
5194         if (ret)
5195                 return ret;
5196
5197         BUILD_BUG_ON(DEV_NAME_LEN
5198                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5199         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5200
5201         /* Record our major and minor device numbers. */
5202
5203         if (!single_major) {
5204                 ret = register_blkdev(0, rbd_dev->name);
5205                 if (ret < 0)
5206                         goto err_out_id;
5207
5208                 rbd_dev->major = ret;
5209                 rbd_dev->minor = 0;
5210         } else {
5211                 rbd_dev->major = rbd_major;
5212                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5213         }
5214
5215         /* Set up the blkdev mapping. */
5216
5217         ret = rbd_init_disk(rbd_dev);
5218         if (ret)
5219                 goto err_out_blkdev;
5220
5221         ret = rbd_dev_mapping_set(rbd_dev);
5222         if (ret)
5223                 goto err_out_disk;
5224
5225         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5226         set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5227
5228         ret = rbd_bus_add_dev(rbd_dev);
5229         if (ret)
5230                 goto err_out_mapping;
5231
5232         /* Everything's ready.  Announce the disk to the world. */
5233
5234         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5235         add_disk(rbd_dev->disk);
5236
5237         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5238                 (unsigned long long) rbd_dev->mapping.size);
5239
5240         return ret;
5241
5242 err_out_mapping:
5243         rbd_dev_mapping_clear(rbd_dev);
5244 err_out_disk:
5245         rbd_free_disk(rbd_dev);
5246 err_out_blkdev:
5247         if (!single_major)
5248                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5249 err_out_id:
5250         rbd_dev_id_put(rbd_dev);
5251         rbd_dev_mapping_clear(rbd_dev);
5252
5253         return ret;
5254 }
5255
5256 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5257 {
5258         struct rbd_spec *spec = rbd_dev->spec;
5259         size_t size;
5260
5261         /* Record the header object name for this rbd image. */
5262
5263         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5264
5265         if (rbd_dev->image_format == 1)
5266                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5267         else
5268                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5269
5270         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5271         if (!rbd_dev->header_name)
5272                 return -ENOMEM;
5273
5274         if (rbd_dev->image_format == 1)
5275                 sprintf(rbd_dev->header_name, "%s%s",
5276                         spec->image_name, RBD_SUFFIX);
5277         else
5278                 sprintf(rbd_dev->header_name, "%s%s",
5279                         RBD_HEADER_PREFIX, spec->image_id);
5280         return 0;
5281 }
5282
5283 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5284 {
5285         rbd_dev_unprobe(rbd_dev);
5286         kfree(rbd_dev->header_name);
5287         rbd_dev->header_name = NULL;
5288         rbd_dev->image_format = 0;
5289         kfree(rbd_dev->spec->image_id);
5290         rbd_dev->spec->image_id = NULL;
5291
5292         rbd_dev_destroy(rbd_dev);
5293 }
5294
5295 /*
5296  * Probe for the existence of the header object for the given rbd
5297  * device.  If this image is the one being mapped (i.e., not a
5298  * parent), initiate a watch on its header object before using that
5299  * object to get detailed information about the rbd image.
5300  */
5301 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5302 {
5303         int ret;
5304
5305         /*
5306          * Get the id from the image id object.  Unless there's an
5307          * error, rbd_dev->spec->image_id will be filled in with
5308          * a dynamically-allocated string, and rbd_dev->image_format
5309          * will be set to either 1 or 2.
5310          */
5311         ret = rbd_dev_image_id(rbd_dev);
5312         if (ret)
5313                 return ret;
5314
5315         ret = rbd_dev_header_name(rbd_dev);
5316         if (ret)
5317                 goto err_out_format;
5318
5319         if (mapping) {
5320                 ret = rbd_dev_header_watch_sync(rbd_dev);
5321                 if (ret) {
5322                         if (ret == -ENOENT)
5323                                 pr_info("image %s/%s does not exist\n",
5324                                         rbd_dev->spec->pool_name,
5325                                         rbd_dev->spec->image_name);
5326                         goto out_header_name;
5327                 }
5328         }
5329
5330         ret = rbd_dev_header_info(rbd_dev);
5331         if (ret)
5332                 goto err_out_watch;
5333
5334         /*
5335          * If this image is the one being mapped, we have pool name and
5336          * id, image name and id, and snap name - need to fill snap id.
5337          * Otherwise this is a parent image, identified by pool, image
5338          * and snap ids - need to fill in names for those ids.
5339          */
5340         if (mapping)
5341                 ret = rbd_spec_fill_snap_id(rbd_dev);
5342         else
5343                 ret = rbd_spec_fill_names(rbd_dev);
5344         if (ret) {
5345                 if (ret == -ENOENT)
5346                         pr_info("snap %s/%s@%s does not exist\n",
5347                                 rbd_dev->spec->pool_name,
5348                                 rbd_dev->spec->image_name,
5349                                 rbd_dev->spec->snap_name);
5350                 goto err_out_probe;
5351         }
5352
5353         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5354                 ret = rbd_dev_v2_parent_info(rbd_dev);
5355                 if (ret)
5356                         goto err_out_probe;
5357
5358                 /*
5359                  * Need to warn users if this image is the one being
5360                  * mapped and has a parent.
5361                  */
5362                 if (mapping && rbd_dev->parent_spec)
5363                         rbd_warn(rbd_dev,
5364                                  "WARNING: kernel layering is EXPERIMENTAL!");
5365         }
5366
5367         ret = rbd_dev_probe_parent(rbd_dev);
5368         if (ret)
5369                 goto err_out_probe;
5370
5371         dout("discovered format %u image, header name is %s\n",
5372                 rbd_dev->image_format, rbd_dev->header_name);
5373         return 0;
5374
5375 err_out_probe:
5376         rbd_dev_unprobe(rbd_dev);
5377 err_out_watch:
5378         if (mapping)
5379                 rbd_dev_header_unwatch_sync(rbd_dev);
5380 out_header_name:
5381         kfree(rbd_dev->header_name);
5382         rbd_dev->header_name = NULL;
5383 err_out_format:
5384         rbd_dev->image_format = 0;
5385         kfree(rbd_dev->spec->image_id);
5386         rbd_dev->spec->image_id = NULL;
5387         return ret;
5388 }
5389
5390 static ssize_t do_rbd_add(struct bus_type *bus,
5391                           const char *buf,
5392                           size_t count)
5393 {
5394         struct rbd_device *rbd_dev = NULL;
5395         struct ceph_options *ceph_opts = NULL;
5396         struct rbd_options *rbd_opts = NULL;
5397         struct rbd_spec *spec = NULL;
5398         struct rbd_client *rbdc;
5399         bool read_only;
5400         int rc = -ENOMEM;
5401
5402         if (!try_module_get(THIS_MODULE))
5403                 return -ENODEV;
5404
5405         /* parse add command */
5406         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5407         if (rc < 0)
5408                 goto err_out_module;
5409         read_only = rbd_opts->read_only;
5410         kfree(rbd_opts);
5411         rbd_opts = NULL;        /* done with this */
5412
5413         rbdc = rbd_get_client(ceph_opts);
5414         if (IS_ERR(rbdc)) {
5415                 rc = PTR_ERR(rbdc);
5416                 goto err_out_args;
5417         }
5418
5419         /* pick the pool */
5420         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5421         if (rc < 0) {
5422                 if (rc == -ENOENT)
5423                         pr_info("pool %s does not exist\n", spec->pool_name);
5424                 goto err_out_client;
5425         }
5426         spec->pool_id = (u64)rc;
5427
5428         /* The ceph file layout needs to fit pool id in 32 bits */
5429
5430         if (spec->pool_id > (u64)U32_MAX) {
5431                 rbd_warn(NULL, "pool id too large (%llu > %u)",
5432                                 (unsigned long long)spec->pool_id, U32_MAX);
5433                 rc = -EIO;
5434                 goto err_out_client;
5435         }
5436
5437         rbd_dev = rbd_dev_create(rbdc, spec);
5438         if (!rbd_dev)
5439                 goto err_out_client;
5440         rbdc = NULL;            /* rbd_dev now owns this */
5441         spec = NULL;            /* rbd_dev now owns this */
5442
5443         rc = rbd_dev_image_probe(rbd_dev, true);
5444         if (rc < 0)
5445                 goto err_out_rbd_dev;
5446
5447         /* If we are mapping a snapshot it must be marked read-only */
5448
5449         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5450                 read_only = true;
5451         rbd_dev->mapping.read_only = read_only;
5452
5453         rc = rbd_dev_device_setup(rbd_dev);
5454         if (rc) {
5455                 /*
5456                  * rbd_dev_header_unwatch_sync() can't be moved into
5457                  * rbd_dev_image_release() without refactoring, see
5458                  * commit 1f3ef78861ac.
5459                  */
5460                 rbd_dev_header_unwatch_sync(rbd_dev);
5461                 rbd_dev_image_release(rbd_dev);
5462                 goto err_out_module;
5463         }
5464
5465         return count;
5466
5467 err_out_rbd_dev:
5468         rbd_dev_destroy(rbd_dev);
5469 err_out_client:
5470         rbd_put_client(rbdc);
5471 err_out_args:
5472         rbd_spec_put(spec);
5473 err_out_module:
5474         module_put(THIS_MODULE);
5475
5476         dout("Error adding device %s\n", buf);
5477
5478         return (ssize_t)rc;
5479 }
5480
5481 static ssize_t rbd_add(struct bus_type *bus,
5482                        const char *buf,
5483                        size_t count)
5484 {
5485         if (single_major)
5486                 return -EINVAL;
5487
5488         return do_rbd_add(bus, buf, count);
5489 }
5490
5491 static ssize_t rbd_add_single_major(struct bus_type *bus,
5492                                     const char *buf,
5493                                     size_t count)
5494 {
5495         return do_rbd_add(bus, buf, count);
5496 }
5497
5498 static void rbd_dev_device_release(struct device *dev)
5499 {
5500         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5501
5502         rbd_free_disk(rbd_dev);
5503         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5504         rbd_dev_mapping_clear(rbd_dev);
5505         if (!single_major)
5506                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5507         rbd_dev_id_put(rbd_dev);
5508         rbd_dev_mapping_clear(rbd_dev);
5509 }
5510
5511 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5512 {
5513         while (rbd_dev->parent) {
5514                 struct rbd_device *first = rbd_dev;
5515                 struct rbd_device *second = first->parent;
5516                 struct rbd_device *third;
5517
5518                 /*
5519                  * Follow to the parent with no grandparent and
5520                  * remove it.
5521                  */
5522                 while (second && (third = second->parent)) {
5523                         first = second;
5524                         second = third;
5525                 }
5526                 rbd_assert(second);
5527                 rbd_dev_image_release(second);
5528                 first->parent = NULL;
5529                 first->parent_overlap = 0;
5530
5531                 rbd_assert(first->parent_spec);
5532                 rbd_spec_put(first->parent_spec);
5533                 first->parent_spec = NULL;
5534         }
5535 }
5536
5537 static ssize_t do_rbd_remove(struct bus_type *bus,
5538                              const char *buf,
5539                              size_t count)
5540 {
5541         struct rbd_device *rbd_dev = NULL;
5542         struct list_head *tmp;
5543         int dev_id;
5544         unsigned long ul;
5545         bool already = false;
5546         int ret;
5547
5548         ret = kstrtoul(buf, 10, &ul);
5549         if (ret)
5550                 return ret;
5551
5552         /* convert to int; abort if we lost anything in the conversion */
5553         dev_id = (int)ul;
5554         if (dev_id != ul)
5555                 return -EINVAL;
5556
5557         ret = -ENOENT;
5558         spin_lock(&rbd_dev_list_lock);
5559         list_for_each(tmp, &rbd_dev_list) {
5560                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5561                 if (rbd_dev->dev_id == dev_id) {
5562                         ret = 0;
5563                         break;
5564                 }
5565         }
5566         if (!ret) {
5567                 spin_lock_irq(&rbd_dev->lock);
5568                 if (rbd_dev->open_count)
5569                         ret = -EBUSY;
5570                 else
5571                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5572                                                         &rbd_dev->flags);
5573                 spin_unlock_irq(&rbd_dev->lock);
5574         }
5575         spin_unlock(&rbd_dev_list_lock);
5576         if (ret < 0 || already)
5577                 return ret;
5578
5579         rbd_dev_header_unwatch_sync(rbd_dev);
5580         /*
5581          * flush remaining watch callbacks - these must be complete
5582          * before the osd_client is shutdown
5583          */
5584         dout("%s: flushing notifies", __func__);
5585         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5586
5587         /*
5588          * Don't free anything from rbd_dev->disk until after all
5589          * notifies are completely processed. Otherwise
5590          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5591          * in a potential use after free of rbd_dev->disk or rbd_dev.
5592          */
5593         rbd_bus_del_dev(rbd_dev);
5594         rbd_dev_image_release(rbd_dev);
5595         module_put(THIS_MODULE);
5596
5597         return count;
5598 }
5599
5600 static ssize_t rbd_remove(struct bus_type *bus,
5601                           const char *buf,
5602                           size_t count)
5603 {
5604         if (single_major)
5605                 return -EINVAL;
5606
5607         return do_rbd_remove(bus, buf, count);
5608 }
5609
5610 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5611                                        const char *buf,
5612                                        size_t count)
5613 {
5614         return do_rbd_remove(bus, buf, count);
5615 }
5616
5617 /*
5618  * create control files in sysfs
5619  * /sys/bus/rbd/...
5620  */
5621 static int rbd_sysfs_init(void)
5622 {
5623         int ret;
5624
5625         ret = device_register(&rbd_root_dev);
5626         if (ret < 0)
5627                 return ret;
5628
5629         ret = bus_register(&rbd_bus_type);
5630         if (ret < 0)
5631                 device_unregister(&rbd_root_dev);
5632
5633         return ret;
5634 }
5635
5636 static void rbd_sysfs_cleanup(void)
5637 {
5638         bus_unregister(&rbd_bus_type);
5639         device_unregister(&rbd_root_dev);
5640 }
5641
5642 static int rbd_slab_init(void)
5643 {
5644         rbd_assert(!rbd_img_request_cache);
5645         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5646                                         sizeof (struct rbd_img_request),
5647                                         __alignof__(struct rbd_img_request),
5648                                         0, NULL);
5649         if (!rbd_img_request_cache)
5650                 return -ENOMEM;
5651
5652         rbd_assert(!rbd_obj_request_cache);
5653         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5654                                         sizeof (struct rbd_obj_request),
5655                                         __alignof__(struct rbd_obj_request),
5656                                         0, NULL);
5657         if (!rbd_obj_request_cache)
5658                 goto out_err;
5659
5660         rbd_assert(!rbd_segment_name_cache);
5661         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5662                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5663         if (rbd_segment_name_cache)
5664                 return 0;
5665 out_err:
5666         if (rbd_obj_request_cache) {
5667                 kmem_cache_destroy(rbd_obj_request_cache);
5668                 rbd_obj_request_cache = NULL;
5669         }
5670
5671         kmem_cache_destroy(rbd_img_request_cache);
5672         rbd_img_request_cache = NULL;
5673
5674         return -ENOMEM;
5675 }
5676
5677 static void rbd_slab_exit(void)
5678 {
5679         rbd_assert(rbd_segment_name_cache);
5680         kmem_cache_destroy(rbd_segment_name_cache);
5681         rbd_segment_name_cache = NULL;
5682
5683         rbd_assert(rbd_obj_request_cache);
5684         kmem_cache_destroy(rbd_obj_request_cache);
5685         rbd_obj_request_cache = NULL;
5686
5687         rbd_assert(rbd_img_request_cache);
5688         kmem_cache_destroy(rbd_img_request_cache);
5689         rbd_img_request_cache = NULL;
5690 }
5691
5692 static int __init rbd_init(void)
5693 {
5694         int rc;
5695
5696         if (!libceph_compatible(NULL)) {
5697                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5698                 return -EINVAL;
5699         }
5700
5701         rc = rbd_slab_init();
5702         if (rc)
5703                 return rc;
5704
5705         /*
5706          * The number of active work items is limited by the number of
5707          * rbd devices * queue depth, so leave @max_active at default.
5708          */
5709         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5710         if (!rbd_wq) {
5711                 rc = -ENOMEM;
5712                 goto err_out_slab;
5713         }
5714
5715         if (single_major) {
5716                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5717                 if (rbd_major < 0) {
5718                         rc = rbd_major;
5719                         goto err_out_wq;
5720                 }
5721         }
5722
5723         rc = rbd_sysfs_init();
5724         if (rc)
5725                 goto err_out_blkdev;
5726
5727         if (single_major)
5728                 pr_info("loaded (major %d)\n", rbd_major);
5729         else
5730                 pr_info("loaded\n");
5731
5732         return 0;
5733
5734 err_out_blkdev:
5735         if (single_major)
5736                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5737 err_out_wq:
5738         destroy_workqueue(rbd_wq);
5739 err_out_slab:
5740         rbd_slab_exit();
5741         return rc;
5742 }
5743
5744 static void __exit rbd_exit(void)
5745 {
5746         ida_destroy(&rbd_dev_id_ida);
5747         rbd_sysfs_cleanup();
5748         if (single_major)
5749                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5750         destroy_workqueue(rbd_wq);
5751         rbd_slab_exit();
5752 }
5753
5754 module_init(rbd_init);
5755 module_exit(rbd_exit);
5756
5757 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5758 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5759 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5760 /* following authorship retained from original osdblk.c */
5761 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5762
5763 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5764 MODULE_LICENSE("GPL");