Merge tag 'ceph-for-4.17-rc1' of git://github.com/ceph/ceph-client
[linux-2.6-block.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/parser.h>
38 #include <linux/bsearch.h>
39
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49
50 #include "rbd_types.h"
51
52 #define RBD_DEBUG       /* Activate rbd_assert() calls */
53
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62         unsigned int counter;
63
64         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
65         if (counter <= (unsigned int)INT_MAX)
66                 return (int)counter;
67
68         atomic_dec(v);
69
70         return -EINVAL;
71 }
72
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76         int counter;
77
78         counter = atomic_dec_return(v);
79         if (counter >= 0)
80                 return counter;
81
82         atomic_inc(v);
83
84         return -EINVAL;
85 }
86
87 #define RBD_DRV_NAME "rbd"
88
89 #define RBD_MINORS_PER_MAJOR            256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
91
92 #define RBD_MAX_PARENT_CHAIN_LEN        16
93
94 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
95 #define RBD_MAX_SNAP_NAME_LEN   \
96                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97
98 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
99
100 #define RBD_SNAP_HEAD_NAME      "-"
101
102 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
103
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX    64
107
108 #define RBD_OBJ_PREFIX_LEN_MAX  64
109
110 #define RBD_NOTIFY_TIMEOUT      5       /* seconds */
111 #define RBD_RETRY_DELAY         msecs_to_jiffies(1000)
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING            (1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2          (1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK      (1ULL<<2)
118 #define RBD_FEATURE_DATA_POOL           (1ULL<<7)
119 #define RBD_FEATURE_OPERATIONS          (1ULL<<8)
120
121 #define RBD_FEATURES_ALL        (RBD_FEATURE_LAYERING |         \
122                                  RBD_FEATURE_STRIPINGV2 |       \
123                                  RBD_FEATURE_EXCLUSIVE_LOCK |   \
124                                  RBD_FEATURE_DATA_POOL |        \
125                                  RBD_FEATURE_OPERATIONS)
126
127 /* Features supported by this (client software) implementation. */
128
129 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
130
131 /*
132  * An RBD device name will be "rbd#", where the "rbd" comes from
133  * RBD_DRV_NAME above, and # is a unique integer identifier.
134  */
135 #define DEV_NAME_LEN            32
136
137 /*
138  * block device image metadata (in-memory version)
139  */
140 struct rbd_image_header {
141         /* These six fields never change for a given rbd image */
142         char *object_prefix;
143         __u8 obj_order;
144         u64 stripe_unit;
145         u64 stripe_count;
146         s64 data_pool_id;
147         u64 features;           /* Might be changeable someday? */
148
149         /* The remaining fields need to be updated occasionally */
150         u64 image_size;
151         struct ceph_snap_context *snapc;
152         char *snap_names;       /* format 1 only */
153         u64 *snap_sizes;        /* format 1 only */
154 };
155
156 /*
157  * An rbd image specification.
158  *
159  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
160  * identify an image.  Each rbd_dev structure includes a pointer to
161  * an rbd_spec structure that encapsulates this identity.
162  *
163  * Each of the id's in an rbd_spec has an associated name.  For a
164  * user-mapped image, the names are supplied and the id's associated
165  * with them are looked up.  For a layered image, a parent image is
166  * defined by the tuple, and the names are looked up.
167  *
168  * An rbd_dev structure contains a parent_spec pointer which is
169  * non-null if the image it represents is a child in a layered
170  * image.  This pointer will refer to the rbd_spec structure used
171  * by the parent rbd_dev for its own identity (i.e., the structure
172  * is shared between the parent and child).
173  *
174  * Since these structures are populated once, during the discovery
175  * phase of image construction, they are effectively immutable so
176  * we make no effort to synchronize access to them.
177  *
178  * Note that code herein does not assume the image name is known (it
179  * could be a null pointer).
180  */
181 struct rbd_spec {
182         u64             pool_id;
183         const char      *pool_name;
184
185         const char      *image_id;
186         const char      *image_name;
187
188         u64             snap_id;
189         const char      *snap_name;
190
191         struct kref     kref;
192 };
193
194 /*
195  * an instance of the client.  multiple devices may share an rbd client.
196  */
197 struct rbd_client {
198         struct ceph_client      *client;
199         struct kref             kref;
200         struct list_head        node;
201 };
202
203 struct rbd_img_request;
204
205 enum obj_request_type {
206         OBJ_REQUEST_NODATA = 1,
207         OBJ_REQUEST_BIO,        /* pointer into provided bio (list) */
208         OBJ_REQUEST_BVECS,      /* pointer into provided bio_vec array */
209         OBJ_REQUEST_OWN_BVECS,  /* private bio_vec array, doesn't own pages */
210 };
211
212 enum obj_operation_type {
213         OBJ_OP_READ = 1,
214         OBJ_OP_WRITE,
215         OBJ_OP_DISCARD,
216 };
217
218 /*
219  * Writes go through the following state machine to deal with
220  * layering:
221  *
222  *                       need copyup
223  * RBD_OBJ_WRITE_GUARD ---------------> RBD_OBJ_WRITE_COPYUP
224  *        |     ^                              |
225  *        v     \------------------------------/
226  *      done
227  *        ^
228  *        |
229  * RBD_OBJ_WRITE_FLAT
230  *
231  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
232  * there is a parent or not.
233  */
234 enum rbd_obj_write_state {
235         RBD_OBJ_WRITE_FLAT = 1,
236         RBD_OBJ_WRITE_GUARD,
237         RBD_OBJ_WRITE_COPYUP,
238 };
239
240 struct rbd_obj_request {
241         struct ceph_object_extent ex;
242         union {
243                 bool                    tried_parent;   /* for reads */
244                 enum rbd_obj_write_state write_state;   /* for writes */
245         };
246
247         struct rbd_img_request  *img_request;
248         struct ceph_file_extent *img_extents;
249         u32                     num_img_extents;
250
251         union {
252                 struct ceph_bio_iter    bio_pos;
253                 struct {
254                         struct ceph_bvec_iter   bvec_pos;
255                         u32                     bvec_count;
256                         u32                     bvec_idx;
257                 };
258         };
259         struct bio_vec          *copyup_bvecs;
260         u32                     copyup_bvec_count;
261
262         struct ceph_osd_request *osd_req;
263
264         u64                     xferred;        /* bytes transferred */
265         int                     result;
266
267         struct kref             kref;
268 };
269
270 enum img_req_flags {
271         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
272         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
273 };
274
275 struct rbd_img_request {
276         struct rbd_device       *rbd_dev;
277         enum obj_operation_type op_type;
278         enum obj_request_type   data_type;
279         unsigned long           flags;
280         union {
281                 u64                     snap_id;        /* for reads */
282                 struct ceph_snap_context *snapc;        /* for writes */
283         };
284         union {
285                 struct request          *rq;            /* block request */
286                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
287         };
288         spinlock_t              completion_lock;
289         u64                     xferred;/* aggregate bytes transferred */
290         int                     result; /* first nonzero obj_request result */
291
292         struct list_head        object_extents; /* obj_req.ex structs */
293         u32                     obj_request_count;
294         u32                     pending_count;
295
296         struct kref             kref;
297 };
298
299 #define for_each_obj_request(ireq, oreq) \
300         list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
301 #define for_each_obj_request_safe(ireq, oreq, n) \
302         list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
303
304 enum rbd_watch_state {
305         RBD_WATCH_STATE_UNREGISTERED,
306         RBD_WATCH_STATE_REGISTERED,
307         RBD_WATCH_STATE_ERROR,
308 };
309
310 enum rbd_lock_state {
311         RBD_LOCK_STATE_UNLOCKED,
312         RBD_LOCK_STATE_LOCKED,
313         RBD_LOCK_STATE_RELEASING,
314 };
315
316 /* WatchNotify::ClientId */
317 struct rbd_client_id {
318         u64 gid;
319         u64 handle;
320 };
321
322 struct rbd_mapping {
323         u64                     size;
324         u64                     features;
325 };
326
327 /*
328  * a single device
329  */
330 struct rbd_device {
331         int                     dev_id;         /* blkdev unique id */
332
333         int                     major;          /* blkdev assigned major */
334         int                     minor;
335         struct gendisk          *disk;          /* blkdev's gendisk and rq */
336
337         u32                     image_format;   /* Either 1 or 2 */
338         struct rbd_client       *rbd_client;
339
340         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
341
342         spinlock_t              lock;           /* queue, flags, open_count */
343
344         struct rbd_image_header header;
345         unsigned long           flags;          /* possibly lock protected */
346         struct rbd_spec         *spec;
347         struct rbd_options      *opts;
348         char                    *config_info;   /* add{,_single_major} string */
349
350         struct ceph_object_id   header_oid;
351         struct ceph_object_locator header_oloc;
352
353         struct ceph_file_layout layout;         /* used for all rbd requests */
354
355         struct mutex            watch_mutex;
356         enum rbd_watch_state    watch_state;
357         struct ceph_osd_linger_request *watch_handle;
358         u64                     watch_cookie;
359         struct delayed_work     watch_dwork;
360
361         struct rw_semaphore     lock_rwsem;
362         enum rbd_lock_state     lock_state;
363         char                    lock_cookie[32];
364         struct rbd_client_id    owner_cid;
365         struct work_struct      acquired_lock_work;
366         struct work_struct      released_lock_work;
367         struct delayed_work     lock_dwork;
368         struct work_struct      unlock_work;
369         wait_queue_head_t       lock_waitq;
370
371         struct workqueue_struct *task_wq;
372
373         struct rbd_spec         *parent_spec;
374         u64                     parent_overlap;
375         atomic_t                parent_ref;
376         struct rbd_device       *parent;
377
378         /* Block layer tags. */
379         struct blk_mq_tag_set   tag_set;
380
381         /* protects updating the header */
382         struct rw_semaphore     header_rwsem;
383
384         struct rbd_mapping      mapping;
385
386         struct list_head        node;
387
388         /* sysfs related */
389         struct device           dev;
390         unsigned long           open_count;     /* protected by lock */
391 };
392
393 /*
394  * Flag bits for rbd_dev->flags:
395  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
396  *   by rbd_dev->lock
397  * - BLACKLISTED is protected by rbd_dev->lock_rwsem
398  */
399 enum rbd_dev_flags {
400         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
401         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
402         RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */
403 };
404
405 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
406
407 static LIST_HEAD(rbd_dev_list);    /* devices */
408 static DEFINE_SPINLOCK(rbd_dev_list_lock);
409
410 static LIST_HEAD(rbd_client_list);              /* clients */
411 static DEFINE_SPINLOCK(rbd_client_list_lock);
412
413 /* Slab caches for frequently-allocated structures */
414
415 static struct kmem_cache        *rbd_img_request_cache;
416 static struct kmem_cache        *rbd_obj_request_cache;
417
418 static int rbd_major;
419 static DEFINE_IDA(rbd_dev_id_ida);
420
421 static struct workqueue_struct *rbd_wq;
422
423 /*
424  * single-major requires >= 0.75 version of userspace rbd utility.
425  */
426 static bool single_major = true;
427 module_param(single_major, bool, S_IRUGO);
428 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
429
430 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
431                        size_t count);
432 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
433                           size_t count);
434 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
435                                     size_t count);
436 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
437                                        size_t count);
438 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
439
440 static int rbd_dev_id_to_minor(int dev_id)
441 {
442         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
443 }
444
445 static int minor_to_rbd_dev_id(int minor)
446 {
447         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
448 }
449
450 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
451 {
452         return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
453                rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
454 }
455
456 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
457 {
458         bool is_lock_owner;
459
460         down_read(&rbd_dev->lock_rwsem);
461         is_lock_owner = __rbd_is_lock_owner(rbd_dev);
462         up_read(&rbd_dev->lock_rwsem);
463         return is_lock_owner;
464 }
465
466 static ssize_t rbd_supported_features_show(struct bus_type *bus, char *buf)
467 {
468         return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
469 }
470
471 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
472 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
473 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
474 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
475 static BUS_ATTR(supported_features, S_IRUGO, rbd_supported_features_show, NULL);
476
477 static struct attribute *rbd_bus_attrs[] = {
478         &bus_attr_add.attr,
479         &bus_attr_remove.attr,
480         &bus_attr_add_single_major.attr,
481         &bus_attr_remove_single_major.attr,
482         &bus_attr_supported_features.attr,
483         NULL,
484 };
485
486 static umode_t rbd_bus_is_visible(struct kobject *kobj,
487                                   struct attribute *attr, int index)
488 {
489         if (!single_major &&
490             (attr == &bus_attr_add_single_major.attr ||
491              attr == &bus_attr_remove_single_major.attr))
492                 return 0;
493
494         return attr->mode;
495 }
496
497 static const struct attribute_group rbd_bus_group = {
498         .attrs = rbd_bus_attrs,
499         .is_visible = rbd_bus_is_visible,
500 };
501 __ATTRIBUTE_GROUPS(rbd_bus);
502
503 static struct bus_type rbd_bus_type = {
504         .name           = "rbd",
505         .bus_groups     = rbd_bus_groups,
506 };
507
508 static void rbd_root_dev_release(struct device *dev)
509 {
510 }
511
512 static struct device rbd_root_dev = {
513         .init_name =    "rbd",
514         .release =      rbd_root_dev_release,
515 };
516
517 static __printf(2, 3)
518 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
519 {
520         struct va_format vaf;
521         va_list args;
522
523         va_start(args, fmt);
524         vaf.fmt = fmt;
525         vaf.va = &args;
526
527         if (!rbd_dev)
528                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
529         else if (rbd_dev->disk)
530                 printk(KERN_WARNING "%s: %s: %pV\n",
531                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
532         else if (rbd_dev->spec && rbd_dev->spec->image_name)
533                 printk(KERN_WARNING "%s: image %s: %pV\n",
534                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
535         else if (rbd_dev->spec && rbd_dev->spec->image_id)
536                 printk(KERN_WARNING "%s: id %s: %pV\n",
537                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
538         else    /* punt */
539                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
540                         RBD_DRV_NAME, rbd_dev, &vaf);
541         va_end(args);
542 }
543
544 #ifdef RBD_DEBUG
545 #define rbd_assert(expr)                                                \
546                 if (unlikely(!(expr))) {                                \
547                         printk(KERN_ERR "\nAssertion failure in %s() "  \
548                                                 "at line %d:\n\n"       \
549                                         "\trbd_assert(%s);\n\n",        \
550                                         __func__, __LINE__, #expr);     \
551                         BUG();                                          \
552                 }
553 #else /* !RBD_DEBUG */
554 #  define rbd_assert(expr)      ((void) 0)
555 #endif /* !RBD_DEBUG */
556
557 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
558
559 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
560 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
561 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
562 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
563 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
564                                         u64 snap_id);
565 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
566                                 u8 *order, u64 *snap_size);
567 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
568                 u64 *snap_features);
569
570 static int rbd_open(struct block_device *bdev, fmode_t mode)
571 {
572         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
573         bool removing = false;
574
575         spin_lock_irq(&rbd_dev->lock);
576         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
577                 removing = true;
578         else
579                 rbd_dev->open_count++;
580         spin_unlock_irq(&rbd_dev->lock);
581         if (removing)
582                 return -ENOENT;
583
584         (void) get_device(&rbd_dev->dev);
585
586         return 0;
587 }
588
589 static void rbd_release(struct gendisk *disk, fmode_t mode)
590 {
591         struct rbd_device *rbd_dev = disk->private_data;
592         unsigned long open_count_before;
593
594         spin_lock_irq(&rbd_dev->lock);
595         open_count_before = rbd_dev->open_count--;
596         spin_unlock_irq(&rbd_dev->lock);
597         rbd_assert(open_count_before > 0);
598
599         put_device(&rbd_dev->dev);
600 }
601
602 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
603 {
604         int ro;
605
606         if (get_user(ro, (int __user *)arg))
607                 return -EFAULT;
608
609         /* Snapshots can't be marked read-write */
610         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
611                 return -EROFS;
612
613         /* Let blkdev_roset() handle it */
614         return -ENOTTY;
615 }
616
617 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
618                         unsigned int cmd, unsigned long arg)
619 {
620         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
621         int ret;
622
623         switch (cmd) {
624         case BLKROSET:
625                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
626                 break;
627         default:
628                 ret = -ENOTTY;
629         }
630
631         return ret;
632 }
633
634 #ifdef CONFIG_COMPAT
635 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
636                                 unsigned int cmd, unsigned long arg)
637 {
638         return rbd_ioctl(bdev, mode, cmd, arg);
639 }
640 #endif /* CONFIG_COMPAT */
641
642 static const struct block_device_operations rbd_bd_ops = {
643         .owner                  = THIS_MODULE,
644         .open                   = rbd_open,
645         .release                = rbd_release,
646         .ioctl                  = rbd_ioctl,
647 #ifdef CONFIG_COMPAT
648         .compat_ioctl           = rbd_compat_ioctl,
649 #endif
650 };
651
652 /*
653  * Initialize an rbd client instance.  Success or not, this function
654  * consumes ceph_opts.  Caller holds client_mutex.
655  */
656 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
657 {
658         struct rbd_client *rbdc;
659         int ret = -ENOMEM;
660
661         dout("%s:\n", __func__);
662         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
663         if (!rbdc)
664                 goto out_opt;
665
666         kref_init(&rbdc->kref);
667         INIT_LIST_HEAD(&rbdc->node);
668
669         rbdc->client = ceph_create_client(ceph_opts, rbdc);
670         if (IS_ERR(rbdc->client))
671                 goto out_rbdc;
672         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
673
674         ret = ceph_open_session(rbdc->client);
675         if (ret < 0)
676                 goto out_client;
677
678         spin_lock(&rbd_client_list_lock);
679         list_add_tail(&rbdc->node, &rbd_client_list);
680         spin_unlock(&rbd_client_list_lock);
681
682         dout("%s: rbdc %p\n", __func__, rbdc);
683
684         return rbdc;
685 out_client:
686         ceph_destroy_client(rbdc->client);
687 out_rbdc:
688         kfree(rbdc);
689 out_opt:
690         if (ceph_opts)
691                 ceph_destroy_options(ceph_opts);
692         dout("%s: error %d\n", __func__, ret);
693
694         return ERR_PTR(ret);
695 }
696
697 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
698 {
699         kref_get(&rbdc->kref);
700
701         return rbdc;
702 }
703
704 /*
705  * Find a ceph client with specific addr and configuration.  If
706  * found, bump its reference count.
707  */
708 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
709 {
710         struct rbd_client *client_node;
711         bool found = false;
712
713         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
714                 return NULL;
715
716         spin_lock(&rbd_client_list_lock);
717         list_for_each_entry(client_node, &rbd_client_list, node) {
718                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
719                         __rbd_get_client(client_node);
720
721                         found = true;
722                         break;
723                 }
724         }
725         spin_unlock(&rbd_client_list_lock);
726
727         return found ? client_node : NULL;
728 }
729
730 /*
731  * (Per device) rbd map options
732  */
733 enum {
734         Opt_queue_depth,
735         Opt_last_int,
736         /* int args above */
737         Opt_last_string,
738         /* string args above */
739         Opt_read_only,
740         Opt_read_write,
741         Opt_lock_on_read,
742         Opt_exclusive,
743         Opt_err
744 };
745
746 static match_table_t rbd_opts_tokens = {
747         {Opt_queue_depth, "queue_depth=%d"},
748         /* int args above */
749         /* string args above */
750         {Opt_read_only, "read_only"},
751         {Opt_read_only, "ro"},          /* Alternate spelling */
752         {Opt_read_write, "read_write"},
753         {Opt_read_write, "rw"},         /* Alternate spelling */
754         {Opt_lock_on_read, "lock_on_read"},
755         {Opt_exclusive, "exclusive"},
756         {Opt_err, NULL}
757 };
758
759 struct rbd_options {
760         int     queue_depth;
761         bool    read_only;
762         bool    lock_on_read;
763         bool    exclusive;
764 };
765
766 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
767 #define RBD_READ_ONLY_DEFAULT   false
768 #define RBD_LOCK_ON_READ_DEFAULT false
769 #define RBD_EXCLUSIVE_DEFAULT   false
770
771 static int parse_rbd_opts_token(char *c, void *private)
772 {
773         struct rbd_options *rbd_opts = private;
774         substring_t argstr[MAX_OPT_ARGS];
775         int token, intval, ret;
776
777         token = match_token(c, rbd_opts_tokens, argstr);
778         if (token < Opt_last_int) {
779                 ret = match_int(&argstr[0], &intval);
780                 if (ret < 0) {
781                         pr_err("bad mount option arg (not int) at '%s'\n", c);
782                         return ret;
783                 }
784                 dout("got int token %d val %d\n", token, intval);
785         } else if (token > Opt_last_int && token < Opt_last_string) {
786                 dout("got string token %d val %s\n", token, argstr[0].from);
787         } else {
788                 dout("got token %d\n", token);
789         }
790
791         switch (token) {
792         case Opt_queue_depth:
793                 if (intval < 1) {
794                         pr_err("queue_depth out of range\n");
795                         return -EINVAL;
796                 }
797                 rbd_opts->queue_depth = intval;
798                 break;
799         case Opt_read_only:
800                 rbd_opts->read_only = true;
801                 break;
802         case Opt_read_write:
803                 rbd_opts->read_only = false;
804                 break;
805         case Opt_lock_on_read:
806                 rbd_opts->lock_on_read = true;
807                 break;
808         case Opt_exclusive:
809                 rbd_opts->exclusive = true;
810                 break;
811         default:
812                 /* libceph prints "bad option" msg */
813                 return -EINVAL;
814         }
815
816         return 0;
817 }
818
819 static char* obj_op_name(enum obj_operation_type op_type)
820 {
821         switch (op_type) {
822         case OBJ_OP_READ:
823                 return "read";
824         case OBJ_OP_WRITE:
825                 return "write";
826         case OBJ_OP_DISCARD:
827                 return "discard";
828         default:
829                 return "???";
830         }
831 }
832
833 /*
834  * Destroy ceph client
835  *
836  * Caller must hold rbd_client_list_lock.
837  */
838 static void rbd_client_release(struct kref *kref)
839 {
840         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
841
842         dout("%s: rbdc %p\n", __func__, rbdc);
843         spin_lock(&rbd_client_list_lock);
844         list_del(&rbdc->node);
845         spin_unlock(&rbd_client_list_lock);
846
847         ceph_destroy_client(rbdc->client);
848         kfree(rbdc);
849 }
850
851 /*
852  * Drop reference to ceph client node. If it's not referenced anymore, release
853  * it.
854  */
855 static void rbd_put_client(struct rbd_client *rbdc)
856 {
857         if (rbdc)
858                 kref_put(&rbdc->kref, rbd_client_release);
859 }
860
861 static int wait_for_latest_osdmap(struct ceph_client *client)
862 {
863         u64 newest_epoch;
864         int ret;
865
866         ret = ceph_monc_get_version(&client->monc, "osdmap", &newest_epoch);
867         if (ret)
868                 return ret;
869
870         if (client->osdc.osdmap->epoch >= newest_epoch)
871                 return 0;
872
873         ceph_osdc_maybe_request_map(&client->osdc);
874         return ceph_monc_wait_osdmap(&client->monc, newest_epoch,
875                                      client->options->mount_timeout);
876 }
877
878 /*
879  * Get a ceph client with specific addr and configuration, if one does
880  * not exist create it.  Either way, ceph_opts is consumed by this
881  * function.
882  */
883 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
884 {
885         struct rbd_client *rbdc;
886         int ret;
887
888         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
889         rbdc = rbd_client_find(ceph_opts);
890         if (rbdc) {
891                 ceph_destroy_options(ceph_opts);
892
893                 /*
894                  * Using an existing client.  Make sure ->pg_pools is up to
895                  * date before we look up the pool id in do_rbd_add().
896                  */
897                 ret = wait_for_latest_osdmap(rbdc->client);
898                 if (ret) {
899                         rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
900                         rbd_put_client(rbdc);
901                         rbdc = ERR_PTR(ret);
902                 }
903         } else {
904                 rbdc = rbd_client_create(ceph_opts);
905         }
906         mutex_unlock(&client_mutex);
907
908         return rbdc;
909 }
910
911 static bool rbd_image_format_valid(u32 image_format)
912 {
913         return image_format == 1 || image_format == 2;
914 }
915
916 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
917 {
918         size_t size;
919         u32 snap_count;
920
921         /* The header has to start with the magic rbd header text */
922         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
923                 return false;
924
925         /* The bio layer requires at least sector-sized I/O */
926
927         if (ondisk->options.order < SECTOR_SHIFT)
928                 return false;
929
930         /* If we use u64 in a few spots we may be able to loosen this */
931
932         if (ondisk->options.order > 8 * sizeof (int) - 1)
933                 return false;
934
935         /*
936          * The size of a snapshot header has to fit in a size_t, and
937          * that limits the number of snapshots.
938          */
939         snap_count = le32_to_cpu(ondisk->snap_count);
940         size = SIZE_MAX - sizeof (struct ceph_snap_context);
941         if (snap_count > size / sizeof (__le64))
942                 return false;
943
944         /*
945          * Not only that, but the size of the entire the snapshot
946          * header must also be representable in a size_t.
947          */
948         size -= snap_count * sizeof (__le64);
949         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
950                 return false;
951
952         return true;
953 }
954
955 /*
956  * returns the size of an object in the image
957  */
958 static u32 rbd_obj_bytes(struct rbd_image_header *header)
959 {
960         return 1U << header->obj_order;
961 }
962
963 static void rbd_init_layout(struct rbd_device *rbd_dev)
964 {
965         if (rbd_dev->header.stripe_unit == 0 ||
966             rbd_dev->header.stripe_count == 0) {
967                 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
968                 rbd_dev->header.stripe_count = 1;
969         }
970
971         rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
972         rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
973         rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
974         rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
975                           rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
976         RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
977 }
978
979 /*
980  * Fill an rbd image header with information from the given format 1
981  * on-disk header.
982  */
983 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
984                                  struct rbd_image_header_ondisk *ondisk)
985 {
986         struct rbd_image_header *header = &rbd_dev->header;
987         bool first_time = header->object_prefix == NULL;
988         struct ceph_snap_context *snapc;
989         char *object_prefix = NULL;
990         char *snap_names = NULL;
991         u64 *snap_sizes = NULL;
992         u32 snap_count;
993         int ret = -ENOMEM;
994         u32 i;
995
996         /* Allocate this now to avoid having to handle failure below */
997
998         if (first_time) {
999                 object_prefix = kstrndup(ondisk->object_prefix,
1000                                          sizeof(ondisk->object_prefix),
1001                                          GFP_KERNEL);
1002                 if (!object_prefix)
1003                         return -ENOMEM;
1004         }
1005
1006         /* Allocate the snapshot context and fill it in */
1007
1008         snap_count = le32_to_cpu(ondisk->snap_count);
1009         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1010         if (!snapc)
1011                 goto out_err;
1012         snapc->seq = le64_to_cpu(ondisk->snap_seq);
1013         if (snap_count) {
1014                 struct rbd_image_snap_ondisk *snaps;
1015                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1016
1017                 /* We'll keep a copy of the snapshot names... */
1018
1019                 if (snap_names_len > (u64)SIZE_MAX)
1020                         goto out_2big;
1021                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1022                 if (!snap_names)
1023                         goto out_err;
1024
1025                 /* ...as well as the array of their sizes. */
1026                 snap_sizes = kmalloc_array(snap_count,
1027                                            sizeof(*header->snap_sizes),
1028                                            GFP_KERNEL);
1029                 if (!snap_sizes)
1030                         goto out_err;
1031
1032                 /*
1033                  * Copy the names, and fill in each snapshot's id
1034                  * and size.
1035                  *
1036                  * Note that rbd_dev_v1_header_info() guarantees the
1037                  * ondisk buffer we're working with has
1038                  * snap_names_len bytes beyond the end of the
1039                  * snapshot id array, this memcpy() is safe.
1040                  */
1041                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1042                 snaps = ondisk->snaps;
1043                 for (i = 0; i < snap_count; i++) {
1044                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1045                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1046                 }
1047         }
1048
1049         /* We won't fail any more, fill in the header */
1050
1051         if (first_time) {
1052                 header->object_prefix = object_prefix;
1053                 header->obj_order = ondisk->options.order;
1054                 rbd_init_layout(rbd_dev);
1055         } else {
1056                 ceph_put_snap_context(header->snapc);
1057                 kfree(header->snap_names);
1058                 kfree(header->snap_sizes);
1059         }
1060
1061         /* The remaining fields always get updated (when we refresh) */
1062
1063         header->image_size = le64_to_cpu(ondisk->image_size);
1064         header->snapc = snapc;
1065         header->snap_names = snap_names;
1066         header->snap_sizes = snap_sizes;
1067
1068         return 0;
1069 out_2big:
1070         ret = -EIO;
1071 out_err:
1072         kfree(snap_sizes);
1073         kfree(snap_names);
1074         ceph_put_snap_context(snapc);
1075         kfree(object_prefix);
1076
1077         return ret;
1078 }
1079
1080 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1081 {
1082         const char *snap_name;
1083
1084         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1085
1086         /* Skip over names until we find the one we are looking for */
1087
1088         snap_name = rbd_dev->header.snap_names;
1089         while (which--)
1090                 snap_name += strlen(snap_name) + 1;
1091
1092         return kstrdup(snap_name, GFP_KERNEL);
1093 }
1094
1095 /*
1096  * Snapshot id comparison function for use with qsort()/bsearch().
1097  * Note that result is for snapshots in *descending* order.
1098  */
1099 static int snapid_compare_reverse(const void *s1, const void *s2)
1100 {
1101         u64 snap_id1 = *(u64 *)s1;
1102         u64 snap_id2 = *(u64 *)s2;
1103
1104         if (snap_id1 < snap_id2)
1105                 return 1;
1106         return snap_id1 == snap_id2 ? 0 : -1;
1107 }
1108
1109 /*
1110  * Search a snapshot context to see if the given snapshot id is
1111  * present.
1112  *
1113  * Returns the position of the snapshot id in the array if it's found,
1114  * or BAD_SNAP_INDEX otherwise.
1115  *
1116  * Note: The snapshot array is in kept sorted (by the osd) in
1117  * reverse order, highest snapshot id first.
1118  */
1119 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1120 {
1121         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1122         u64 *found;
1123
1124         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1125                                 sizeof (snap_id), snapid_compare_reverse);
1126
1127         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1128 }
1129
1130 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1131                                         u64 snap_id)
1132 {
1133         u32 which;
1134         const char *snap_name;
1135
1136         which = rbd_dev_snap_index(rbd_dev, snap_id);
1137         if (which == BAD_SNAP_INDEX)
1138                 return ERR_PTR(-ENOENT);
1139
1140         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1141         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1142 }
1143
1144 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1145 {
1146         if (snap_id == CEPH_NOSNAP)
1147                 return RBD_SNAP_HEAD_NAME;
1148
1149         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1150         if (rbd_dev->image_format == 1)
1151                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1152
1153         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1154 }
1155
1156 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1157                                 u64 *snap_size)
1158 {
1159         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1160         if (snap_id == CEPH_NOSNAP) {
1161                 *snap_size = rbd_dev->header.image_size;
1162         } else if (rbd_dev->image_format == 1) {
1163                 u32 which;
1164
1165                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1166                 if (which == BAD_SNAP_INDEX)
1167                         return -ENOENT;
1168
1169                 *snap_size = rbd_dev->header.snap_sizes[which];
1170         } else {
1171                 u64 size = 0;
1172                 int ret;
1173
1174                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1175                 if (ret)
1176                         return ret;
1177
1178                 *snap_size = size;
1179         }
1180         return 0;
1181 }
1182
1183 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1184                         u64 *snap_features)
1185 {
1186         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1187         if (snap_id == CEPH_NOSNAP) {
1188                 *snap_features = rbd_dev->header.features;
1189         } else if (rbd_dev->image_format == 1) {
1190                 *snap_features = 0;     /* No features for format 1 */
1191         } else {
1192                 u64 features = 0;
1193                 int ret;
1194
1195                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1196                 if (ret)
1197                         return ret;
1198
1199                 *snap_features = features;
1200         }
1201         return 0;
1202 }
1203
1204 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1205 {
1206         u64 snap_id = rbd_dev->spec->snap_id;
1207         u64 size = 0;
1208         u64 features = 0;
1209         int ret;
1210
1211         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1212         if (ret)
1213                 return ret;
1214         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1215         if (ret)
1216                 return ret;
1217
1218         rbd_dev->mapping.size = size;
1219         rbd_dev->mapping.features = features;
1220
1221         return 0;
1222 }
1223
1224 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1225 {
1226         rbd_dev->mapping.size = 0;
1227         rbd_dev->mapping.features = 0;
1228 }
1229
1230 static void zero_bvec(struct bio_vec *bv)
1231 {
1232         void *buf;
1233         unsigned long flags;
1234
1235         buf = bvec_kmap_irq(bv, &flags);
1236         memset(buf, 0, bv->bv_len);
1237         flush_dcache_page(bv->bv_page);
1238         bvec_kunmap_irq(buf, &flags);
1239 }
1240
1241 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1242 {
1243         struct ceph_bio_iter it = *bio_pos;
1244
1245         ceph_bio_iter_advance(&it, off);
1246         ceph_bio_iter_advance_step(&it, bytes, ({
1247                 zero_bvec(&bv);
1248         }));
1249 }
1250
1251 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1252 {
1253         struct ceph_bvec_iter it = *bvec_pos;
1254
1255         ceph_bvec_iter_advance(&it, off);
1256         ceph_bvec_iter_advance_step(&it, bytes, ({
1257                 zero_bvec(&bv);
1258         }));
1259 }
1260
1261 /*
1262  * Zero a range in @obj_req data buffer defined by a bio (list) or
1263  * (private) bio_vec array.
1264  *
1265  * @off is relative to the start of the data buffer.
1266  */
1267 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1268                                u32 bytes)
1269 {
1270         switch (obj_req->img_request->data_type) {
1271         case OBJ_REQUEST_BIO:
1272                 zero_bios(&obj_req->bio_pos, off, bytes);
1273                 break;
1274         case OBJ_REQUEST_BVECS:
1275         case OBJ_REQUEST_OWN_BVECS:
1276                 zero_bvecs(&obj_req->bvec_pos, off, bytes);
1277                 break;
1278         default:
1279                 rbd_assert(0);
1280         }
1281 }
1282
1283 static void rbd_obj_request_destroy(struct kref *kref);
1284 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1285 {
1286         rbd_assert(obj_request != NULL);
1287         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1288                 kref_read(&obj_request->kref));
1289         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1290 }
1291
1292 static void rbd_img_request_get(struct rbd_img_request *img_request)
1293 {
1294         dout("%s: img %p (was %d)\n", __func__, img_request,
1295              kref_read(&img_request->kref));
1296         kref_get(&img_request->kref);
1297 }
1298
1299 static void rbd_img_request_destroy(struct kref *kref);
1300 static void rbd_img_request_put(struct rbd_img_request *img_request)
1301 {
1302         rbd_assert(img_request != NULL);
1303         dout("%s: img %p (was %d)\n", __func__, img_request,
1304                 kref_read(&img_request->kref));
1305         kref_put(&img_request->kref, rbd_img_request_destroy);
1306 }
1307
1308 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1309                                         struct rbd_obj_request *obj_request)
1310 {
1311         rbd_assert(obj_request->img_request == NULL);
1312
1313         /* Image request now owns object's original reference */
1314         obj_request->img_request = img_request;
1315         img_request->obj_request_count++;
1316         img_request->pending_count++;
1317         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1318 }
1319
1320 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1321                                         struct rbd_obj_request *obj_request)
1322 {
1323         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1324         list_del(&obj_request->ex.oe_item);
1325         rbd_assert(img_request->obj_request_count > 0);
1326         img_request->obj_request_count--;
1327         rbd_assert(obj_request->img_request == img_request);
1328         rbd_obj_request_put(obj_request);
1329 }
1330
1331 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request)
1332 {
1333         struct ceph_osd_request *osd_req = obj_request->osd_req;
1334
1335         dout("%s %p object_no %016llx %llu~%llu osd_req %p\n", __func__,
1336              obj_request, obj_request->ex.oe_objno, obj_request->ex.oe_off,
1337              obj_request->ex.oe_len, osd_req);
1338         ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1339 }
1340
1341 /*
1342  * The default/initial value for all image request flags is 0.  Each
1343  * is conditionally set to 1 at image request initialization time
1344  * and currently never change thereafter.
1345  */
1346 static void img_request_layered_set(struct rbd_img_request *img_request)
1347 {
1348         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1349         smp_mb();
1350 }
1351
1352 static void img_request_layered_clear(struct rbd_img_request *img_request)
1353 {
1354         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1355         smp_mb();
1356 }
1357
1358 static bool img_request_layered_test(struct rbd_img_request *img_request)
1359 {
1360         smp_mb();
1361         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1362 }
1363
1364 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1365 {
1366         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1367
1368         return !obj_req->ex.oe_off &&
1369                obj_req->ex.oe_len == rbd_dev->layout.object_size;
1370 }
1371
1372 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1373 {
1374         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1375
1376         return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1377                                         rbd_dev->layout.object_size;
1378 }
1379
1380 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1381 {
1382         return ceph_file_extents_bytes(obj_req->img_extents,
1383                                        obj_req->num_img_extents);
1384 }
1385
1386 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1387 {
1388         switch (img_req->op_type) {
1389         case OBJ_OP_READ:
1390                 return false;
1391         case OBJ_OP_WRITE:
1392         case OBJ_OP_DISCARD:
1393                 return true;
1394         default:
1395                 rbd_assert(0);
1396         }
1397 }
1398
1399 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req);
1400
1401 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1402 {
1403         struct rbd_obj_request *obj_req = osd_req->r_priv;
1404
1405         dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1406              osd_req->r_result, obj_req);
1407         rbd_assert(osd_req == obj_req->osd_req);
1408
1409         obj_req->result = osd_req->r_result < 0 ? osd_req->r_result : 0;
1410         if (!obj_req->result && !rbd_img_is_write(obj_req->img_request))
1411                 obj_req->xferred = osd_req->r_result;
1412         else
1413                 /*
1414                  * Writes aren't allowed to return a data payload.  In some
1415                  * guarded write cases (e.g. stat + zero on an empty object)
1416                  * a stat response makes it through, but we don't care.
1417                  */
1418                 obj_req->xferred = 0;
1419
1420         rbd_obj_handle_request(obj_req);
1421 }
1422
1423 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1424 {
1425         struct ceph_osd_request *osd_req = obj_request->osd_req;
1426
1427         osd_req->r_flags = CEPH_OSD_FLAG_READ;
1428         osd_req->r_snapid = obj_request->img_request->snap_id;
1429 }
1430
1431 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1432 {
1433         struct ceph_osd_request *osd_req = obj_request->osd_req;
1434
1435         osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1436         ktime_get_real_ts(&osd_req->r_mtime);
1437         osd_req->r_data_offset = obj_request->ex.oe_off;
1438 }
1439
1440 static struct ceph_osd_request *
1441 rbd_osd_req_create(struct rbd_obj_request *obj_req, unsigned int num_ops)
1442 {
1443         struct rbd_img_request *img_req = obj_req->img_request;
1444         struct rbd_device *rbd_dev = img_req->rbd_dev;
1445         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1446         struct ceph_osd_request *req;
1447         const char *name_format = rbd_dev->image_format == 1 ?
1448                                       RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1449
1450         req = ceph_osdc_alloc_request(osdc,
1451                         (rbd_img_is_write(img_req) ? img_req->snapc : NULL),
1452                         num_ops, false, GFP_NOIO);
1453         if (!req)
1454                 return NULL;
1455
1456         req->r_callback = rbd_osd_req_callback;
1457         req->r_priv = obj_req;
1458
1459         req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1460         if (ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1461                         rbd_dev->header.object_prefix, obj_req->ex.oe_objno))
1462                 goto err_req;
1463
1464         if (ceph_osdc_alloc_messages(req, GFP_NOIO))
1465                 goto err_req;
1466
1467         return req;
1468
1469 err_req:
1470         ceph_osdc_put_request(req);
1471         return NULL;
1472 }
1473
1474 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1475 {
1476         ceph_osdc_put_request(osd_req);
1477 }
1478
1479 static struct rbd_obj_request *rbd_obj_request_create(void)
1480 {
1481         struct rbd_obj_request *obj_request;
1482
1483         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1484         if (!obj_request)
1485                 return NULL;
1486
1487         ceph_object_extent_init(&obj_request->ex);
1488         kref_init(&obj_request->kref);
1489
1490         dout("%s %p\n", __func__, obj_request);
1491         return obj_request;
1492 }
1493
1494 static void rbd_obj_request_destroy(struct kref *kref)
1495 {
1496         struct rbd_obj_request *obj_request;
1497         u32 i;
1498
1499         obj_request = container_of(kref, struct rbd_obj_request, kref);
1500
1501         dout("%s: obj %p\n", __func__, obj_request);
1502
1503         if (obj_request->osd_req)
1504                 rbd_osd_req_destroy(obj_request->osd_req);
1505
1506         switch (obj_request->img_request->data_type) {
1507         case OBJ_REQUEST_NODATA:
1508         case OBJ_REQUEST_BIO:
1509         case OBJ_REQUEST_BVECS:
1510                 break;          /* Nothing to do */
1511         case OBJ_REQUEST_OWN_BVECS:
1512                 kfree(obj_request->bvec_pos.bvecs);
1513                 break;
1514         default:
1515                 rbd_assert(0);
1516         }
1517
1518         kfree(obj_request->img_extents);
1519         if (obj_request->copyup_bvecs) {
1520                 for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1521                         if (obj_request->copyup_bvecs[i].bv_page)
1522                                 __free_page(obj_request->copyup_bvecs[i].bv_page);
1523                 }
1524                 kfree(obj_request->copyup_bvecs);
1525         }
1526
1527         kmem_cache_free(rbd_obj_request_cache, obj_request);
1528 }
1529
1530 /* It's OK to call this for a device with no parent */
1531
1532 static void rbd_spec_put(struct rbd_spec *spec);
1533 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1534 {
1535         rbd_dev_remove_parent(rbd_dev);
1536         rbd_spec_put(rbd_dev->parent_spec);
1537         rbd_dev->parent_spec = NULL;
1538         rbd_dev->parent_overlap = 0;
1539 }
1540
1541 /*
1542  * Parent image reference counting is used to determine when an
1543  * image's parent fields can be safely torn down--after there are no
1544  * more in-flight requests to the parent image.  When the last
1545  * reference is dropped, cleaning them up is safe.
1546  */
1547 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1548 {
1549         int counter;
1550
1551         if (!rbd_dev->parent_spec)
1552                 return;
1553
1554         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1555         if (counter > 0)
1556                 return;
1557
1558         /* Last reference; clean up parent data structures */
1559
1560         if (!counter)
1561                 rbd_dev_unparent(rbd_dev);
1562         else
1563                 rbd_warn(rbd_dev, "parent reference underflow");
1564 }
1565
1566 /*
1567  * If an image has a non-zero parent overlap, get a reference to its
1568  * parent.
1569  *
1570  * Returns true if the rbd device has a parent with a non-zero
1571  * overlap and a reference for it was successfully taken, or
1572  * false otherwise.
1573  */
1574 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1575 {
1576         int counter = 0;
1577
1578         if (!rbd_dev->parent_spec)
1579                 return false;
1580
1581         down_read(&rbd_dev->header_rwsem);
1582         if (rbd_dev->parent_overlap)
1583                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1584         up_read(&rbd_dev->header_rwsem);
1585
1586         if (counter < 0)
1587                 rbd_warn(rbd_dev, "parent reference overflow");
1588
1589         return counter > 0;
1590 }
1591
1592 /*
1593  * Caller is responsible for filling in the list of object requests
1594  * that comprises the image request, and the Linux request pointer
1595  * (if there is one).
1596  */
1597 static struct rbd_img_request *rbd_img_request_create(
1598                                         struct rbd_device *rbd_dev,
1599                                         enum obj_operation_type op_type,
1600                                         struct ceph_snap_context *snapc)
1601 {
1602         struct rbd_img_request *img_request;
1603
1604         img_request = kmem_cache_zalloc(rbd_img_request_cache, GFP_NOIO);
1605         if (!img_request)
1606                 return NULL;
1607
1608         img_request->rbd_dev = rbd_dev;
1609         img_request->op_type = op_type;
1610         if (!rbd_img_is_write(img_request))
1611                 img_request->snap_id = rbd_dev->spec->snap_id;
1612         else
1613                 img_request->snapc = snapc;
1614
1615         if (rbd_dev_parent_get(rbd_dev))
1616                 img_request_layered_set(img_request);
1617
1618         spin_lock_init(&img_request->completion_lock);
1619         INIT_LIST_HEAD(&img_request->object_extents);
1620         kref_init(&img_request->kref);
1621
1622         dout("%s: rbd_dev %p %s -> img %p\n", __func__, rbd_dev,
1623              obj_op_name(op_type), img_request);
1624         return img_request;
1625 }
1626
1627 static void rbd_img_request_destroy(struct kref *kref)
1628 {
1629         struct rbd_img_request *img_request;
1630         struct rbd_obj_request *obj_request;
1631         struct rbd_obj_request *next_obj_request;
1632
1633         img_request = container_of(kref, struct rbd_img_request, kref);
1634
1635         dout("%s: img %p\n", __func__, img_request);
1636
1637         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1638                 rbd_img_obj_request_del(img_request, obj_request);
1639         rbd_assert(img_request->obj_request_count == 0);
1640
1641         if (img_request_layered_test(img_request)) {
1642                 img_request_layered_clear(img_request);
1643                 rbd_dev_parent_put(img_request->rbd_dev);
1644         }
1645
1646         if (rbd_img_is_write(img_request))
1647                 ceph_put_snap_context(img_request->snapc);
1648
1649         kmem_cache_free(rbd_img_request_cache, img_request);
1650 }
1651
1652 static void prune_extents(struct ceph_file_extent *img_extents,
1653                           u32 *num_img_extents, u64 overlap)
1654 {
1655         u32 cnt = *num_img_extents;
1656
1657         /* drop extents completely beyond the overlap */
1658         while (cnt && img_extents[cnt - 1].fe_off >= overlap)
1659                 cnt--;
1660
1661         if (cnt) {
1662                 struct ceph_file_extent *ex = &img_extents[cnt - 1];
1663
1664                 /* trim final overlapping extent */
1665                 if (ex->fe_off + ex->fe_len > overlap)
1666                         ex->fe_len = overlap - ex->fe_off;
1667         }
1668
1669         *num_img_extents = cnt;
1670 }
1671
1672 /*
1673  * Determine the byte range(s) covered by either just the object extent
1674  * or the entire object in the parent image.
1675  */
1676 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
1677                                     bool entire)
1678 {
1679         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1680         int ret;
1681
1682         if (!rbd_dev->parent_overlap)
1683                 return 0;
1684
1685         ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
1686                                   entire ? 0 : obj_req->ex.oe_off,
1687                                   entire ? rbd_dev->layout.object_size :
1688                                                         obj_req->ex.oe_len,
1689                                   &obj_req->img_extents,
1690                                   &obj_req->num_img_extents);
1691         if (ret)
1692                 return ret;
1693
1694         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
1695                       rbd_dev->parent_overlap);
1696         return 0;
1697 }
1698
1699 static void rbd_osd_req_setup_data(struct rbd_obj_request *obj_req, u32 which)
1700 {
1701         switch (obj_req->img_request->data_type) {
1702         case OBJ_REQUEST_BIO:
1703                 osd_req_op_extent_osd_data_bio(obj_req->osd_req, which,
1704                                                &obj_req->bio_pos,
1705                                                obj_req->ex.oe_len);
1706                 break;
1707         case OBJ_REQUEST_BVECS:
1708         case OBJ_REQUEST_OWN_BVECS:
1709                 rbd_assert(obj_req->bvec_pos.iter.bi_size ==
1710                                                         obj_req->ex.oe_len);
1711                 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
1712                 osd_req_op_extent_osd_data_bvec_pos(obj_req->osd_req, which,
1713                                                     &obj_req->bvec_pos);
1714                 break;
1715         default:
1716                 rbd_assert(0);
1717         }
1718 }
1719
1720 static int rbd_obj_setup_read(struct rbd_obj_request *obj_req)
1721 {
1722         obj_req->osd_req = rbd_osd_req_create(obj_req, 1);
1723         if (!obj_req->osd_req)
1724                 return -ENOMEM;
1725
1726         osd_req_op_extent_init(obj_req->osd_req, 0, CEPH_OSD_OP_READ,
1727                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
1728         rbd_osd_req_setup_data(obj_req, 0);
1729
1730         rbd_osd_req_format_read(obj_req);
1731         return 0;
1732 }
1733
1734 static int __rbd_obj_setup_stat(struct rbd_obj_request *obj_req,
1735                                 unsigned int which)
1736 {
1737         struct page **pages;
1738
1739         /*
1740          * The response data for a STAT call consists of:
1741          *     le64 length;
1742          *     struct {
1743          *         le32 tv_sec;
1744          *         le32 tv_nsec;
1745          *     } mtime;
1746          */
1747         pages = ceph_alloc_page_vector(1, GFP_NOIO);
1748         if (IS_ERR(pages))
1749                 return PTR_ERR(pages);
1750
1751         osd_req_op_init(obj_req->osd_req, which, CEPH_OSD_OP_STAT, 0);
1752         osd_req_op_raw_data_in_pages(obj_req->osd_req, which, pages,
1753                                      8 + sizeof(struct ceph_timespec),
1754                                      0, false, true);
1755         return 0;
1756 }
1757
1758 static void __rbd_obj_setup_write(struct rbd_obj_request *obj_req,
1759                                   unsigned int which)
1760 {
1761         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1762         u16 opcode;
1763
1764         osd_req_op_alloc_hint_init(obj_req->osd_req, which++,
1765                                    rbd_dev->layout.object_size,
1766                                    rbd_dev->layout.object_size);
1767
1768         if (rbd_obj_is_entire(obj_req))
1769                 opcode = CEPH_OSD_OP_WRITEFULL;
1770         else
1771                 opcode = CEPH_OSD_OP_WRITE;
1772
1773         osd_req_op_extent_init(obj_req->osd_req, which, opcode,
1774                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
1775         rbd_osd_req_setup_data(obj_req, which++);
1776
1777         rbd_assert(which == obj_req->osd_req->r_num_ops);
1778         rbd_osd_req_format_write(obj_req);
1779 }
1780
1781 static int rbd_obj_setup_write(struct rbd_obj_request *obj_req)
1782 {
1783         unsigned int num_osd_ops, which = 0;
1784         int ret;
1785
1786         /* reverse map the entire object onto the parent */
1787         ret = rbd_obj_calc_img_extents(obj_req, true);
1788         if (ret)
1789                 return ret;
1790
1791         if (obj_req->num_img_extents) {
1792                 obj_req->write_state = RBD_OBJ_WRITE_GUARD;
1793                 num_osd_ops = 3; /* stat + setallochint + write/writefull */
1794         } else {
1795                 obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1796                 num_osd_ops = 2; /* setallochint + write/writefull */
1797         }
1798
1799         obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
1800         if (!obj_req->osd_req)
1801                 return -ENOMEM;
1802
1803         if (obj_req->num_img_extents) {
1804                 ret = __rbd_obj_setup_stat(obj_req, which++);
1805                 if (ret)
1806                         return ret;
1807         }
1808
1809         __rbd_obj_setup_write(obj_req, which);
1810         return 0;
1811 }
1812
1813 static void __rbd_obj_setup_discard(struct rbd_obj_request *obj_req,
1814                                     unsigned int which)
1815 {
1816         u16 opcode;
1817
1818         if (rbd_obj_is_entire(obj_req)) {
1819                 if (obj_req->num_img_extents) {
1820                         osd_req_op_init(obj_req->osd_req, which++,
1821                                         CEPH_OSD_OP_CREATE, 0);
1822                         opcode = CEPH_OSD_OP_TRUNCATE;
1823                 } else {
1824                         osd_req_op_init(obj_req->osd_req, which++,
1825                                         CEPH_OSD_OP_DELETE, 0);
1826                         opcode = 0;
1827                 }
1828         } else if (rbd_obj_is_tail(obj_req)) {
1829                 opcode = CEPH_OSD_OP_TRUNCATE;
1830         } else {
1831                 opcode = CEPH_OSD_OP_ZERO;
1832         }
1833
1834         if (opcode)
1835                 osd_req_op_extent_init(obj_req->osd_req, which++, opcode,
1836                                        obj_req->ex.oe_off, obj_req->ex.oe_len,
1837                                        0, 0);
1838
1839         rbd_assert(which == obj_req->osd_req->r_num_ops);
1840         rbd_osd_req_format_write(obj_req);
1841 }
1842
1843 static int rbd_obj_setup_discard(struct rbd_obj_request *obj_req)
1844 {
1845         unsigned int num_osd_ops, which = 0;
1846         int ret;
1847
1848         /* reverse map the entire object onto the parent */
1849         ret = rbd_obj_calc_img_extents(obj_req, true);
1850         if (ret)
1851                 return ret;
1852
1853         if (rbd_obj_is_entire(obj_req)) {
1854                 obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1855                 if (obj_req->num_img_extents)
1856                         num_osd_ops = 2; /* create + truncate */
1857                 else
1858                         num_osd_ops = 1; /* delete */
1859         } else {
1860                 if (obj_req->num_img_extents) {
1861                         obj_req->write_state = RBD_OBJ_WRITE_GUARD;
1862                         num_osd_ops = 2; /* stat + truncate/zero */
1863                 } else {
1864                         obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1865                         num_osd_ops = 1; /* truncate/zero */
1866                 }
1867         }
1868
1869         obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
1870         if (!obj_req->osd_req)
1871                 return -ENOMEM;
1872
1873         if (!rbd_obj_is_entire(obj_req) && obj_req->num_img_extents) {
1874                 ret = __rbd_obj_setup_stat(obj_req, which++);
1875                 if (ret)
1876                         return ret;
1877         }
1878
1879         __rbd_obj_setup_discard(obj_req, which);
1880         return 0;
1881 }
1882
1883 /*
1884  * For each object request in @img_req, allocate an OSD request, add
1885  * individual OSD ops and prepare them for submission.  The number of
1886  * OSD ops depends on op_type and the overlap point (if any).
1887  */
1888 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
1889 {
1890         struct rbd_obj_request *obj_req;
1891         int ret;
1892
1893         for_each_obj_request(img_req, obj_req) {
1894                 switch (img_req->op_type) {
1895                 case OBJ_OP_READ:
1896                         ret = rbd_obj_setup_read(obj_req);
1897                         break;
1898                 case OBJ_OP_WRITE:
1899                         ret = rbd_obj_setup_write(obj_req);
1900                         break;
1901                 case OBJ_OP_DISCARD:
1902                         ret = rbd_obj_setup_discard(obj_req);
1903                         break;
1904                 default:
1905                         rbd_assert(0);
1906                 }
1907                 if (ret)
1908                         return ret;
1909         }
1910
1911         return 0;
1912 }
1913
1914 union rbd_img_fill_iter {
1915         struct ceph_bio_iter    bio_iter;
1916         struct ceph_bvec_iter   bvec_iter;
1917 };
1918
1919 struct rbd_img_fill_ctx {
1920         enum obj_request_type   pos_type;
1921         union rbd_img_fill_iter *pos;
1922         union rbd_img_fill_iter iter;
1923         ceph_object_extent_fn_t set_pos_fn;
1924         ceph_object_extent_fn_t count_fn;
1925         ceph_object_extent_fn_t copy_fn;
1926 };
1927
1928 static struct ceph_object_extent *alloc_object_extent(void *arg)
1929 {
1930         struct rbd_img_request *img_req = arg;
1931         struct rbd_obj_request *obj_req;
1932
1933         obj_req = rbd_obj_request_create();
1934         if (!obj_req)
1935                 return NULL;
1936
1937         rbd_img_obj_request_add(img_req, obj_req);
1938         return &obj_req->ex;
1939 }
1940
1941 /*
1942  * While su != os && sc == 1 is technically not fancy (it's the same
1943  * layout as su == os && sc == 1), we can't use the nocopy path for it
1944  * because ->set_pos_fn() should be called only once per object.
1945  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
1946  * treat su != os && sc == 1 as fancy.
1947  */
1948 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
1949 {
1950         return l->stripe_unit != l->object_size;
1951 }
1952
1953 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
1954                                        struct ceph_file_extent *img_extents,
1955                                        u32 num_img_extents,
1956                                        struct rbd_img_fill_ctx *fctx)
1957 {
1958         u32 i;
1959         int ret;
1960
1961         img_req->data_type = fctx->pos_type;
1962
1963         /*
1964          * Create object requests and set each object request's starting
1965          * position in the provided bio (list) or bio_vec array.
1966          */
1967         fctx->iter = *fctx->pos;
1968         for (i = 0; i < num_img_extents; i++) {
1969                 ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
1970                                            img_extents[i].fe_off,
1971                                            img_extents[i].fe_len,
1972                                            &img_req->object_extents,
1973                                            alloc_object_extent, img_req,
1974                                            fctx->set_pos_fn, &fctx->iter);
1975                 if (ret)
1976                         return ret;
1977         }
1978
1979         return __rbd_img_fill_request(img_req);
1980 }
1981
1982 /*
1983  * Map a list of image extents to a list of object extents, create the
1984  * corresponding object requests (normally each to a different object,
1985  * but not always) and add them to @img_req.  For each object request,
1986  * set up its data descriptor to point to the corresponding chunk(s) of
1987  * @fctx->pos data buffer.
1988  *
1989  * Because ceph_file_to_extents() will merge adjacent object extents
1990  * together, each object request's data descriptor may point to multiple
1991  * different chunks of @fctx->pos data buffer.
1992  *
1993  * @fctx->pos data buffer is assumed to be large enough.
1994  */
1995 static int rbd_img_fill_request(struct rbd_img_request *img_req,
1996                                 struct ceph_file_extent *img_extents,
1997                                 u32 num_img_extents,
1998                                 struct rbd_img_fill_ctx *fctx)
1999 {
2000         struct rbd_device *rbd_dev = img_req->rbd_dev;
2001         struct rbd_obj_request *obj_req;
2002         u32 i;
2003         int ret;
2004
2005         if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2006             !rbd_layout_is_fancy(&rbd_dev->layout))
2007                 return rbd_img_fill_request_nocopy(img_req, img_extents,
2008                                                    num_img_extents, fctx);
2009
2010         img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2011
2012         /*
2013          * Create object requests and determine ->bvec_count for each object
2014          * request.  Note that ->bvec_count sum over all object requests may
2015          * be greater than the number of bio_vecs in the provided bio (list)
2016          * or bio_vec array because when mapped, those bio_vecs can straddle
2017          * stripe unit boundaries.
2018          */
2019         fctx->iter = *fctx->pos;
2020         for (i = 0; i < num_img_extents; i++) {
2021                 ret = ceph_file_to_extents(&rbd_dev->layout,
2022                                            img_extents[i].fe_off,
2023                                            img_extents[i].fe_len,
2024                                            &img_req->object_extents,
2025                                            alloc_object_extent, img_req,
2026                                            fctx->count_fn, &fctx->iter);
2027                 if (ret)
2028                         return ret;
2029         }
2030
2031         for_each_obj_request(img_req, obj_req) {
2032                 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2033                                               sizeof(*obj_req->bvec_pos.bvecs),
2034                                               GFP_NOIO);
2035                 if (!obj_req->bvec_pos.bvecs)
2036                         return -ENOMEM;
2037         }
2038
2039         /*
2040          * Fill in each object request's private bio_vec array, splitting and
2041          * rearranging the provided bio_vecs in stripe unit chunks as needed.
2042          */
2043         fctx->iter = *fctx->pos;
2044         for (i = 0; i < num_img_extents; i++) {
2045                 ret = ceph_iterate_extents(&rbd_dev->layout,
2046                                            img_extents[i].fe_off,
2047                                            img_extents[i].fe_len,
2048                                            &img_req->object_extents,
2049                                            fctx->copy_fn, &fctx->iter);
2050                 if (ret)
2051                         return ret;
2052         }
2053
2054         return __rbd_img_fill_request(img_req);
2055 }
2056
2057 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2058                                u64 off, u64 len)
2059 {
2060         struct ceph_file_extent ex = { off, len };
2061         union rbd_img_fill_iter dummy;
2062         struct rbd_img_fill_ctx fctx = {
2063                 .pos_type = OBJ_REQUEST_NODATA,
2064                 .pos = &dummy,
2065         };
2066
2067         return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2068 }
2069
2070 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2071 {
2072         struct rbd_obj_request *obj_req =
2073             container_of(ex, struct rbd_obj_request, ex);
2074         struct ceph_bio_iter *it = arg;
2075
2076         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2077         obj_req->bio_pos = *it;
2078         ceph_bio_iter_advance(it, bytes);
2079 }
2080
2081 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2082 {
2083         struct rbd_obj_request *obj_req =
2084             container_of(ex, struct rbd_obj_request, ex);
2085         struct ceph_bio_iter *it = arg;
2086
2087         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2088         ceph_bio_iter_advance_step(it, bytes, ({
2089                 obj_req->bvec_count++;
2090         }));
2091
2092 }
2093
2094 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2095 {
2096         struct rbd_obj_request *obj_req =
2097             container_of(ex, struct rbd_obj_request, ex);
2098         struct ceph_bio_iter *it = arg;
2099
2100         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2101         ceph_bio_iter_advance_step(it, bytes, ({
2102                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2103                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2104         }));
2105 }
2106
2107 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2108                                    struct ceph_file_extent *img_extents,
2109                                    u32 num_img_extents,
2110                                    struct ceph_bio_iter *bio_pos)
2111 {
2112         struct rbd_img_fill_ctx fctx = {
2113                 .pos_type = OBJ_REQUEST_BIO,
2114                 .pos = (union rbd_img_fill_iter *)bio_pos,
2115                 .set_pos_fn = set_bio_pos,
2116                 .count_fn = count_bio_bvecs,
2117                 .copy_fn = copy_bio_bvecs,
2118         };
2119
2120         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2121                                     &fctx);
2122 }
2123
2124 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2125                                  u64 off, u64 len, struct bio *bio)
2126 {
2127         struct ceph_file_extent ex = { off, len };
2128         struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2129
2130         return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2131 }
2132
2133 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2134 {
2135         struct rbd_obj_request *obj_req =
2136             container_of(ex, struct rbd_obj_request, ex);
2137         struct ceph_bvec_iter *it = arg;
2138
2139         obj_req->bvec_pos = *it;
2140         ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2141         ceph_bvec_iter_advance(it, bytes);
2142 }
2143
2144 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2145 {
2146         struct rbd_obj_request *obj_req =
2147             container_of(ex, struct rbd_obj_request, ex);
2148         struct ceph_bvec_iter *it = arg;
2149
2150         ceph_bvec_iter_advance_step(it, bytes, ({
2151                 obj_req->bvec_count++;
2152         }));
2153 }
2154
2155 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2156 {
2157         struct rbd_obj_request *obj_req =
2158             container_of(ex, struct rbd_obj_request, ex);
2159         struct ceph_bvec_iter *it = arg;
2160
2161         ceph_bvec_iter_advance_step(it, bytes, ({
2162                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2163                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2164         }));
2165 }
2166
2167 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2168                                      struct ceph_file_extent *img_extents,
2169                                      u32 num_img_extents,
2170                                      struct ceph_bvec_iter *bvec_pos)
2171 {
2172         struct rbd_img_fill_ctx fctx = {
2173                 .pos_type = OBJ_REQUEST_BVECS,
2174                 .pos = (union rbd_img_fill_iter *)bvec_pos,
2175                 .set_pos_fn = set_bvec_pos,
2176                 .count_fn = count_bvecs,
2177                 .copy_fn = copy_bvecs,
2178         };
2179
2180         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2181                                     &fctx);
2182 }
2183
2184 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2185                                    struct ceph_file_extent *img_extents,
2186                                    u32 num_img_extents,
2187                                    struct bio_vec *bvecs)
2188 {
2189         struct ceph_bvec_iter it = {
2190                 .bvecs = bvecs,
2191                 .iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2192                                                              num_img_extents) },
2193         };
2194
2195         return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2196                                          &it);
2197 }
2198
2199 static void rbd_img_request_submit(struct rbd_img_request *img_request)
2200 {
2201         struct rbd_obj_request *obj_request;
2202
2203         dout("%s: img %p\n", __func__, img_request);
2204
2205         rbd_img_request_get(img_request);
2206         for_each_obj_request(img_request, obj_request)
2207                 rbd_obj_request_submit(obj_request);
2208
2209         rbd_img_request_put(img_request);
2210 }
2211
2212 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2213 {
2214         struct rbd_img_request *img_req = obj_req->img_request;
2215         struct rbd_img_request *child_img_req;
2216         int ret;
2217
2218         child_img_req = rbd_img_request_create(img_req->rbd_dev->parent,
2219                                                OBJ_OP_READ, NULL);
2220         if (!child_img_req)
2221                 return -ENOMEM;
2222
2223         __set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2224         child_img_req->obj_request = obj_req;
2225
2226         if (!rbd_img_is_write(img_req)) {
2227                 switch (img_req->data_type) {
2228                 case OBJ_REQUEST_BIO:
2229                         ret = __rbd_img_fill_from_bio(child_img_req,
2230                                                       obj_req->img_extents,
2231                                                       obj_req->num_img_extents,
2232                                                       &obj_req->bio_pos);
2233                         break;
2234                 case OBJ_REQUEST_BVECS:
2235                 case OBJ_REQUEST_OWN_BVECS:
2236                         ret = __rbd_img_fill_from_bvecs(child_img_req,
2237                                                       obj_req->img_extents,
2238                                                       obj_req->num_img_extents,
2239                                                       &obj_req->bvec_pos);
2240                         break;
2241                 default:
2242                         rbd_assert(0);
2243                 }
2244         } else {
2245                 ret = rbd_img_fill_from_bvecs(child_img_req,
2246                                               obj_req->img_extents,
2247                                               obj_req->num_img_extents,
2248                                               obj_req->copyup_bvecs);
2249         }
2250         if (ret) {
2251                 rbd_img_request_put(child_img_req);
2252                 return ret;
2253         }
2254
2255         rbd_img_request_submit(child_img_req);
2256         return 0;
2257 }
2258
2259 static bool rbd_obj_handle_read(struct rbd_obj_request *obj_req)
2260 {
2261         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2262         int ret;
2263
2264         if (obj_req->result == -ENOENT &&
2265             rbd_dev->parent_overlap && !obj_req->tried_parent) {
2266                 /* reverse map this object extent onto the parent */
2267                 ret = rbd_obj_calc_img_extents(obj_req, false);
2268                 if (ret) {
2269                         obj_req->result = ret;
2270                         return true;
2271                 }
2272
2273                 if (obj_req->num_img_extents) {
2274                         obj_req->tried_parent = true;
2275                         ret = rbd_obj_read_from_parent(obj_req);
2276                         if (ret) {
2277                                 obj_req->result = ret;
2278                                 return true;
2279                         }
2280                         return false;
2281                 }
2282         }
2283
2284         /*
2285          * -ENOENT means a hole in the image -- zero-fill the entire
2286          * length of the request.  A short read also implies zero-fill
2287          * to the end of the request.  In both cases we update xferred
2288          * count to indicate the whole request was satisfied.
2289          */
2290         if (obj_req->result == -ENOENT ||
2291             (!obj_req->result && obj_req->xferred < obj_req->ex.oe_len)) {
2292                 rbd_assert(!obj_req->xferred || !obj_req->result);
2293                 rbd_obj_zero_range(obj_req, obj_req->xferred,
2294                                    obj_req->ex.oe_len - obj_req->xferred);
2295                 obj_req->result = 0;
2296                 obj_req->xferred = obj_req->ex.oe_len;
2297         }
2298
2299         return true;
2300 }
2301
2302 /*
2303  * copyup_bvecs pages are never highmem pages
2304  */
2305 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2306 {
2307         struct ceph_bvec_iter it = {
2308                 .bvecs = bvecs,
2309                 .iter = { .bi_size = bytes },
2310         };
2311
2312         ceph_bvec_iter_advance_step(&it, bytes, ({
2313                 if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
2314                                bv.bv_len))
2315                         return false;
2316         }));
2317         return true;
2318 }
2319
2320 static int rbd_obj_issue_copyup(struct rbd_obj_request *obj_req, u32 bytes)
2321 {
2322         unsigned int num_osd_ops = obj_req->osd_req->r_num_ops;
2323
2324         dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
2325         rbd_assert(obj_req->osd_req->r_ops[0].op == CEPH_OSD_OP_STAT);
2326         rbd_osd_req_destroy(obj_req->osd_req);
2327
2328         /*
2329          * Create a copyup request with the same number of OSD ops as
2330          * the original request.  The original request was stat + op(s),
2331          * the new copyup request will be copyup + the same op(s).
2332          */
2333         obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
2334         if (!obj_req->osd_req)
2335                 return -ENOMEM;
2336
2337         /*
2338          * Only send non-zero copyup data to save some I/O and network
2339          * bandwidth -- zero copyup data is equivalent to the object not
2340          * existing.
2341          */
2342         if (is_zero_bvecs(obj_req->copyup_bvecs, bytes)) {
2343                 dout("%s obj_req %p detected zeroes\n", __func__, obj_req);
2344                 bytes = 0;
2345         }
2346
2347         osd_req_op_cls_init(obj_req->osd_req, 0, CEPH_OSD_OP_CALL, "rbd",
2348                             "copyup");
2349         osd_req_op_cls_request_data_bvecs(obj_req->osd_req, 0,
2350                                           obj_req->copyup_bvecs, bytes);
2351
2352         switch (obj_req->img_request->op_type) {
2353         case OBJ_OP_WRITE:
2354                 __rbd_obj_setup_write(obj_req, 1);
2355                 break;
2356         case OBJ_OP_DISCARD:
2357                 rbd_assert(!rbd_obj_is_entire(obj_req));
2358                 __rbd_obj_setup_discard(obj_req, 1);
2359                 break;
2360         default:
2361                 rbd_assert(0);
2362         }
2363
2364         rbd_obj_request_submit(obj_req);
2365         return 0;
2366 }
2367
2368 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
2369 {
2370         u32 i;
2371
2372         rbd_assert(!obj_req->copyup_bvecs);
2373         obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
2374         obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
2375                                         sizeof(*obj_req->copyup_bvecs),
2376                                         GFP_NOIO);
2377         if (!obj_req->copyup_bvecs)
2378                 return -ENOMEM;
2379
2380         for (i = 0; i < obj_req->copyup_bvec_count; i++) {
2381                 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
2382
2383                 obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
2384                 if (!obj_req->copyup_bvecs[i].bv_page)
2385                         return -ENOMEM;
2386
2387                 obj_req->copyup_bvecs[i].bv_offset = 0;
2388                 obj_req->copyup_bvecs[i].bv_len = len;
2389                 obj_overlap -= len;
2390         }
2391
2392         rbd_assert(!obj_overlap);
2393         return 0;
2394 }
2395
2396 static int rbd_obj_handle_write_guard(struct rbd_obj_request *obj_req)
2397 {
2398         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2399         int ret;
2400
2401         rbd_assert(obj_req->num_img_extents);
2402         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2403                       rbd_dev->parent_overlap);
2404         if (!obj_req->num_img_extents) {
2405                 /*
2406                  * The overlap has become 0 (most likely because the
2407                  * image has been flattened).  Use rbd_obj_issue_copyup()
2408                  * to re-submit the original write request -- the copyup
2409                  * operation itself will be a no-op, since someone must
2410                  * have populated the child object while we weren't
2411                  * looking.  Move to WRITE_FLAT state as we'll be done
2412                  * with the operation once the null copyup completes.
2413                  */
2414                 obj_req->write_state = RBD_OBJ_WRITE_FLAT;
2415                 return rbd_obj_issue_copyup(obj_req, 0);
2416         }
2417
2418         ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
2419         if (ret)
2420                 return ret;
2421
2422         obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
2423         return rbd_obj_read_from_parent(obj_req);
2424 }
2425
2426 static bool rbd_obj_handle_write(struct rbd_obj_request *obj_req)
2427 {
2428         int ret;
2429
2430 again:
2431         switch (obj_req->write_state) {
2432         case RBD_OBJ_WRITE_GUARD:
2433                 rbd_assert(!obj_req->xferred);
2434                 if (obj_req->result == -ENOENT) {
2435                         /*
2436                          * The target object doesn't exist.  Read the data for
2437                          * the entire target object up to the overlap point (if
2438                          * any) from the parent, so we can use it for a copyup.
2439                          */
2440                         ret = rbd_obj_handle_write_guard(obj_req);
2441                         if (ret) {
2442                                 obj_req->result = ret;
2443                                 return true;
2444                         }
2445                         return false;
2446                 }
2447                 /* fall through */
2448         case RBD_OBJ_WRITE_FLAT:
2449                 if (!obj_req->result)
2450                         /*
2451                          * There is no such thing as a successful short
2452                          * write -- indicate the whole request was satisfied.
2453                          */
2454                         obj_req->xferred = obj_req->ex.oe_len;
2455                 return true;
2456         case RBD_OBJ_WRITE_COPYUP:
2457                 obj_req->write_state = RBD_OBJ_WRITE_GUARD;
2458                 if (obj_req->result)
2459                         goto again;
2460
2461                 rbd_assert(obj_req->xferred);
2462                 ret = rbd_obj_issue_copyup(obj_req, obj_req->xferred);
2463                 if (ret) {
2464                         obj_req->result = ret;
2465                         return true;
2466                 }
2467                 return false;
2468         default:
2469                 rbd_assert(0);
2470         }
2471 }
2472
2473 /*
2474  * Returns true if @obj_req is completed, or false otherwise.
2475  */
2476 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req)
2477 {
2478         switch (obj_req->img_request->op_type) {
2479         case OBJ_OP_READ:
2480                 return rbd_obj_handle_read(obj_req);
2481         case OBJ_OP_WRITE:
2482                 return rbd_obj_handle_write(obj_req);
2483         case OBJ_OP_DISCARD:
2484                 if (rbd_obj_handle_write(obj_req)) {
2485                         /*
2486                          * Hide -ENOENT from delete/truncate/zero -- discarding
2487                          * a non-existent object is not a problem.
2488                          */
2489                         if (obj_req->result == -ENOENT) {
2490                                 obj_req->result = 0;
2491                                 obj_req->xferred = obj_req->ex.oe_len;
2492                         }
2493                         return true;
2494                 }
2495                 return false;
2496         default:
2497                 rbd_assert(0);
2498         }
2499 }
2500
2501 static void rbd_obj_end_request(struct rbd_obj_request *obj_req)
2502 {
2503         struct rbd_img_request *img_req = obj_req->img_request;
2504
2505         rbd_assert((!obj_req->result &&
2506                     obj_req->xferred == obj_req->ex.oe_len) ||
2507                    (obj_req->result < 0 && !obj_req->xferred));
2508         if (!obj_req->result) {
2509                 img_req->xferred += obj_req->xferred;
2510                 return;
2511         }
2512
2513         rbd_warn(img_req->rbd_dev,
2514                  "%s at objno %llu %llu~%llu result %d xferred %llu",
2515                  obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
2516                  obj_req->ex.oe_off, obj_req->ex.oe_len, obj_req->result,
2517                  obj_req->xferred);
2518         if (!img_req->result) {
2519                 img_req->result = obj_req->result;
2520                 img_req->xferred = 0;
2521         }
2522 }
2523
2524 static void rbd_img_end_child_request(struct rbd_img_request *img_req)
2525 {
2526         struct rbd_obj_request *obj_req = img_req->obj_request;
2527
2528         rbd_assert(test_bit(IMG_REQ_CHILD, &img_req->flags));
2529         rbd_assert((!img_req->result &&
2530                     img_req->xferred == rbd_obj_img_extents_bytes(obj_req)) ||
2531                    (img_req->result < 0 && !img_req->xferred));
2532
2533         obj_req->result = img_req->result;
2534         obj_req->xferred = img_req->xferred;
2535         rbd_img_request_put(img_req);
2536 }
2537
2538 static void rbd_img_end_request(struct rbd_img_request *img_req)
2539 {
2540         rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
2541         rbd_assert((!img_req->result &&
2542                     img_req->xferred == blk_rq_bytes(img_req->rq)) ||
2543                    (img_req->result < 0 && !img_req->xferred));
2544
2545         blk_mq_end_request(img_req->rq,
2546                            errno_to_blk_status(img_req->result));
2547         rbd_img_request_put(img_req);
2548 }
2549
2550 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req)
2551 {
2552         struct rbd_img_request *img_req;
2553
2554 again:
2555         if (!__rbd_obj_handle_request(obj_req))
2556                 return;
2557
2558         img_req = obj_req->img_request;
2559         spin_lock(&img_req->completion_lock);
2560         rbd_obj_end_request(obj_req);
2561         rbd_assert(img_req->pending_count);
2562         if (--img_req->pending_count) {
2563                 spin_unlock(&img_req->completion_lock);
2564                 return;
2565         }
2566
2567         spin_unlock(&img_req->completion_lock);
2568         if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
2569                 obj_req = img_req->obj_request;
2570                 rbd_img_end_child_request(img_req);
2571                 goto again;
2572         }
2573         rbd_img_end_request(img_req);
2574 }
2575
2576 static const struct rbd_client_id rbd_empty_cid;
2577
2578 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
2579                           const struct rbd_client_id *rhs)
2580 {
2581         return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
2582 }
2583
2584 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
2585 {
2586         struct rbd_client_id cid;
2587
2588         mutex_lock(&rbd_dev->watch_mutex);
2589         cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
2590         cid.handle = rbd_dev->watch_cookie;
2591         mutex_unlock(&rbd_dev->watch_mutex);
2592         return cid;
2593 }
2594
2595 /*
2596  * lock_rwsem must be held for write
2597  */
2598 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
2599                               const struct rbd_client_id *cid)
2600 {
2601         dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
2602              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
2603              cid->gid, cid->handle);
2604         rbd_dev->owner_cid = *cid; /* struct */
2605 }
2606
2607 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
2608 {
2609         mutex_lock(&rbd_dev->watch_mutex);
2610         sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
2611         mutex_unlock(&rbd_dev->watch_mutex);
2612 }
2613
2614 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
2615 {
2616         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
2617
2618         strcpy(rbd_dev->lock_cookie, cookie);
2619         rbd_set_owner_cid(rbd_dev, &cid);
2620         queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
2621 }
2622
2623 /*
2624  * lock_rwsem must be held for write
2625  */
2626 static int rbd_lock(struct rbd_device *rbd_dev)
2627 {
2628         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2629         char cookie[32];
2630         int ret;
2631
2632         WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
2633                 rbd_dev->lock_cookie[0] != '\0');
2634
2635         format_lock_cookie(rbd_dev, cookie);
2636         ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
2637                             RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
2638                             RBD_LOCK_TAG, "", 0);
2639         if (ret)
2640                 return ret;
2641
2642         rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
2643         __rbd_lock(rbd_dev, cookie);
2644         return 0;
2645 }
2646
2647 /*
2648  * lock_rwsem must be held for write
2649  */
2650 static void rbd_unlock(struct rbd_device *rbd_dev)
2651 {
2652         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2653         int ret;
2654
2655         WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
2656                 rbd_dev->lock_cookie[0] == '\0');
2657
2658         ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
2659                               RBD_LOCK_NAME, rbd_dev->lock_cookie);
2660         if (ret && ret != -ENOENT)
2661                 rbd_warn(rbd_dev, "failed to unlock: %d", ret);
2662
2663         /* treat errors as the image is unlocked */
2664         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
2665         rbd_dev->lock_cookie[0] = '\0';
2666         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
2667         queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
2668 }
2669
2670 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
2671                                 enum rbd_notify_op notify_op,
2672                                 struct page ***preply_pages,
2673                                 size_t *preply_len)
2674 {
2675         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2676         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
2677         char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
2678         int buf_size = sizeof(buf);
2679         void *p = buf;
2680
2681         dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
2682
2683         /* encode *LockPayload NotifyMessage (op + ClientId) */
2684         ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
2685         ceph_encode_32(&p, notify_op);
2686         ceph_encode_64(&p, cid.gid);
2687         ceph_encode_64(&p, cid.handle);
2688
2689         return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
2690                                 &rbd_dev->header_oloc, buf, buf_size,
2691                                 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
2692 }
2693
2694 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
2695                                enum rbd_notify_op notify_op)
2696 {
2697         struct page **reply_pages;
2698         size_t reply_len;
2699
2700         __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
2701         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
2702 }
2703
2704 static void rbd_notify_acquired_lock(struct work_struct *work)
2705 {
2706         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
2707                                                   acquired_lock_work);
2708
2709         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
2710 }
2711
2712 static void rbd_notify_released_lock(struct work_struct *work)
2713 {
2714         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
2715                                                   released_lock_work);
2716
2717         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
2718 }
2719
2720 static int rbd_request_lock(struct rbd_device *rbd_dev)
2721 {
2722         struct page **reply_pages;
2723         size_t reply_len;
2724         bool lock_owner_responded = false;
2725         int ret;
2726
2727         dout("%s rbd_dev %p\n", __func__, rbd_dev);
2728
2729         ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
2730                                    &reply_pages, &reply_len);
2731         if (ret && ret != -ETIMEDOUT) {
2732                 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
2733                 goto out;
2734         }
2735
2736         if (reply_len > 0 && reply_len <= PAGE_SIZE) {
2737                 void *p = page_address(reply_pages[0]);
2738                 void *const end = p + reply_len;
2739                 u32 n;
2740
2741                 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
2742                 while (n--) {
2743                         u8 struct_v;
2744                         u32 len;
2745
2746                         ceph_decode_need(&p, end, 8 + 8, e_inval);
2747                         p += 8 + 8; /* skip gid and cookie */
2748
2749                         ceph_decode_32_safe(&p, end, len, e_inval);
2750                         if (!len)
2751                                 continue;
2752
2753                         if (lock_owner_responded) {
2754                                 rbd_warn(rbd_dev,
2755                                          "duplicate lock owners detected");
2756                                 ret = -EIO;
2757                                 goto out;
2758                         }
2759
2760                         lock_owner_responded = true;
2761                         ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
2762                                                   &struct_v, &len);
2763                         if (ret) {
2764                                 rbd_warn(rbd_dev,
2765                                          "failed to decode ResponseMessage: %d",
2766                                          ret);
2767                                 goto e_inval;
2768                         }
2769
2770                         ret = ceph_decode_32(&p);
2771                 }
2772         }
2773
2774         if (!lock_owner_responded) {
2775                 rbd_warn(rbd_dev, "no lock owners detected");
2776                 ret = -ETIMEDOUT;
2777         }
2778
2779 out:
2780         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
2781         return ret;
2782
2783 e_inval:
2784         ret = -EINVAL;
2785         goto out;
2786 }
2787
2788 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all)
2789 {
2790         dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all);
2791
2792         cancel_delayed_work(&rbd_dev->lock_dwork);
2793         if (wake_all)
2794                 wake_up_all(&rbd_dev->lock_waitq);
2795         else
2796                 wake_up(&rbd_dev->lock_waitq);
2797 }
2798
2799 static int get_lock_owner_info(struct rbd_device *rbd_dev,
2800                                struct ceph_locker **lockers, u32 *num_lockers)
2801 {
2802         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2803         u8 lock_type;
2804         char *lock_tag;
2805         int ret;
2806
2807         dout("%s rbd_dev %p\n", __func__, rbd_dev);
2808
2809         ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
2810                                  &rbd_dev->header_oloc, RBD_LOCK_NAME,
2811                                  &lock_type, &lock_tag, lockers, num_lockers);
2812         if (ret)
2813                 return ret;
2814
2815         if (*num_lockers == 0) {
2816                 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
2817                 goto out;
2818         }
2819
2820         if (strcmp(lock_tag, RBD_LOCK_TAG)) {
2821                 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
2822                          lock_tag);
2823                 ret = -EBUSY;
2824                 goto out;
2825         }
2826
2827         if (lock_type == CEPH_CLS_LOCK_SHARED) {
2828                 rbd_warn(rbd_dev, "shared lock type detected");
2829                 ret = -EBUSY;
2830                 goto out;
2831         }
2832
2833         if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
2834                     strlen(RBD_LOCK_COOKIE_PREFIX))) {
2835                 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
2836                          (*lockers)[0].id.cookie);
2837                 ret = -EBUSY;
2838                 goto out;
2839         }
2840
2841 out:
2842         kfree(lock_tag);
2843         return ret;
2844 }
2845
2846 static int find_watcher(struct rbd_device *rbd_dev,
2847                         const struct ceph_locker *locker)
2848 {
2849         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2850         struct ceph_watch_item *watchers;
2851         u32 num_watchers;
2852         u64 cookie;
2853         int i;
2854         int ret;
2855
2856         ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
2857                                       &rbd_dev->header_oloc, &watchers,
2858                                       &num_watchers);
2859         if (ret)
2860                 return ret;
2861
2862         sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
2863         for (i = 0; i < num_watchers; i++) {
2864                 if (!memcmp(&watchers[i].addr, &locker->info.addr,
2865                             sizeof(locker->info.addr)) &&
2866                     watchers[i].cookie == cookie) {
2867                         struct rbd_client_id cid = {
2868                                 .gid = le64_to_cpu(watchers[i].name.num),
2869                                 .handle = cookie,
2870                         };
2871
2872                         dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
2873                              rbd_dev, cid.gid, cid.handle);
2874                         rbd_set_owner_cid(rbd_dev, &cid);
2875                         ret = 1;
2876                         goto out;
2877                 }
2878         }
2879
2880         dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
2881         ret = 0;
2882 out:
2883         kfree(watchers);
2884         return ret;
2885 }
2886
2887 /*
2888  * lock_rwsem must be held for write
2889  */
2890 static int rbd_try_lock(struct rbd_device *rbd_dev)
2891 {
2892         struct ceph_client *client = rbd_dev->rbd_client->client;
2893         struct ceph_locker *lockers;
2894         u32 num_lockers;
2895         int ret;
2896
2897         for (;;) {
2898                 ret = rbd_lock(rbd_dev);
2899                 if (ret != -EBUSY)
2900                         return ret;
2901
2902                 /* determine if the current lock holder is still alive */
2903                 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
2904                 if (ret)
2905                         return ret;
2906
2907                 if (num_lockers == 0)
2908                         goto again;
2909
2910                 ret = find_watcher(rbd_dev, lockers);
2911                 if (ret) {
2912                         if (ret > 0)
2913                                 ret = 0; /* have to request lock */
2914                         goto out;
2915                 }
2916
2917                 rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock",
2918                          ENTITY_NAME(lockers[0].id.name));
2919
2920                 ret = ceph_monc_blacklist_add(&client->monc,
2921                                               &lockers[0].info.addr);
2922                 if (ret) {
2923                         rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
2924                                  ENTITY_NAME(lockers[0].id.name), ret);
2925                         goto out;
2926                 }
2927
2928                 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
2929                                           &rbd_dev->header_oloc, RBD_LOCK_NAME,
2930                                           lockers[0].id.cookie,
2931                                           &lockers[0].id.name);
2932                 if (ret && ret != -ENOENT)
2933                         goto out;
2934
2935 again:
2936                 ceph_free_lockers(lockers, num_lockers);
2937         }
2938
2939 out:
2940         ceph_free_lockers(lockers, num_lockers);
2941         return ret;
2942 }
2943
2944 /*
2945  * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED
2946  */
2947 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev,
2948                                                 int *pret)
2949 {
2950         enum rbd_lock_state lock_state;
2951
2952         down_read(&rbd_dev->lock_rwsem);
2953         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
2954              rbd_dev->lock_state);
2955         if (__rbd_is_lock_owner(rbd_dev)) {
2956                 lock_state = rbd_dev->lock_state;
2957                 up_read(&rbd_dev->lock_rwsem);
2958                 return lock_state;
2959         }
2960
2961         up_read(&rbd_dev->lock_rwsem);
2962         down_write(&rbd_dev->lock_rwsem);
2963         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
2964              rbd_dev->lock_state);
2965         if (!__rbd_is_lock_owner(rbd_dev)) {
2966                 *pret = rbd_try_lock(rbd_dev);
2967                 if (*pret)
2968                         rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret);
2969         }
2970
2971         lock_state = rbd_dev->lock_state;
2972         up_write(&rbd_dev->lock_rwsem);
2973         return lock_state;
2974 }
2975
2976 static void rbd_acquire_lock(struct work_struct *work)
2977 {
2978         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
2979                                             struct rbd_device, lock_dwork);
2980         enum rbd_lock_state lock_state;
2981         int ret = 0;
2982
2983         dout("%s rbd_dev %p\n", __func__, rbd_dev);
2984 again:
2985         lock_state = rbd_try_acquire_lock(rbd_dev, &ret);
2986         if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) {
2987                 if (lock_state == RBD_LOCK_STATE_LOCKED)
2988                         wake_requests(rbd_dev, true);
2989                 dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__,
2990                      rbd_dev, lock_state, ret);
2991                 return;
2992         }
2993
2994         ret = rbd_request_lock(rbd_dev);
2995         if (ret == -ETIMEDOUT) {
2996                 goto again; /* treat this as a dead client */
2997         } else if (ret == -EROFS) {
2998                 rbd_warn(rbd_dev, "peer will not release lock");
2999                 /*
3000                  * If this is rbd_add_acquire_lock(), we want to fail
3001                  * immediately -- reuse BLACKLISTED flag.  Otherwise we
3002                  * want to block.
3003                  */
3004                 if (!(rbd_dev->disk->flags & GENHD_FL_UP)) {
3005                         set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3006                         /* wake "rbd map --exclusive" process */
3007                         wake_requests(rbd_dev, false);
3008                 }
3009         } else if (ret < 0) {
3010                 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
3011                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3012                                  RBD_RETRY_DELAY);
3013         } else {
3014                 /*
3015                  * lock owner acked, but resend if we don't see them
3016                  * release the lock
3017                  */
3018                 dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
3019                      rbd_dev);
3020                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3021                     msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
3022         }
3023 }
3024
3025 /*
3026  * lock_rwsem must be held for write
3027  */
3028 static bool rbd_release_lock(struct rbd_device *rbd_dev)
3029 {
3030         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3031              rbd_dev->lock_state);
3032         if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
3033                 return false;
3034
3035         rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
3036         downgrade_write(&rbd_dev->lock_rwsem);
3037         /*
3038          * Ensure that all in-flight IO is flushed.
3039          *
3040          * FIXME: ceph_osdc_sync() flushes the entire OSD client, which
3041          * may be shared with other devices.
3042          */
3043         ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc);
3044         up_read(&rbd_dev->lock_rwsem);
3045
3046         down_write(&rbd_dev->lock_rwsem);
3047         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3048              rbd_dev->lock_state);
3049         if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
3050                 return false;
3051
3052         rbd_unlock(rbd_dev);
3053         /*
3054          * Give others a chance to grab the lock - we would re-acquire
3055          * almost immediately if we got new IO during ceph_osdc_sync()
3056          * otherwise.  We need to ack our own notifications, so this
3057          * lock_dwork will be requeued from rbd_wait_state_locked()
3058          * after wake_requests() in rbd_handle_released_lock().
3059          */
3060         cancel_delayed_work(&rbd_dev->lock_dwork);
3061         return true;
3062 }
3063
3064 static void rbd_release_lock_work(struct work_struct *work)
3065 {
3066         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3067                                                   unlock_work);
3068
3069         down_write(&rbd_dev->lock_rwsem);
3070         rbd_release_lock(rbd_dev);
3071         up_write(&rbd_dev->lock_rwsem);
3072 }
3073
3074 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
3075                                      void **p)
3076 {
3077         struct rbd_client_id cid = { 0 };
3078
3079         if (struct_v >= 2) {
3080                 cid.gid = ceph_decode_64(p);
3081                 cid.handle = ceph_decode_64(p);
3082         }
3083
3084         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3085              cid.handle);
3086         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3087                 down_write(&rbd_dev->lock_rwsem);
3088                 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3089                         /*
3090                          * we already know that the remote client is
3091                          * the owner
3092                          */
3093                         up_write(&rbd_dev->lock_rwsem);
3094                         return;
3095                 }
3096
3097                 rbd_set_owner_cid(rbd_dev, &cid);
3098                 downgrade_write(&rbd_dev->lock_rwsem);
3099         } else {
3100                 down_read(&rbd_dev->lock_rwsem);
3101         }
3102
3103         if (!__rbd_is_lock_owner(rbd_dev))
3104                 wake_requests(rbd_dev, false);
3105         up_read(&rbd_dev->lock_rwsem);
3106 }
3107
3108 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
3109                                      void **p)
3110 {
3111         struct rbd_client_id cid = { 0 };
3112
3113         if (struct_v >= 2) {
3114                 cid.gid = ceph_decode_64(p);
3115                 cid.handle = ceph_decode_64(p);
3116         }
3117
3118         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3119              cid.handle);
3120         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3121                 down_write(&rbd_dev->lock_rwsem);
3122                 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3123                         dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
3124                              __func__, rbd_dev, cid.gid, cid.handle,
3125                              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
3126                         up_write(&rbd_dev->lock_rwsem);
3127                         return;
3128                 }
3129
3130                 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3131                 downgrade_write(&rbd_dev->lock_rwsem);
3132         } else {
3133                 down_read(&rbd_dev->lock_rwsem);
3134         }
3135
3136         if (!__rbd_is_lock_owner(rbd_dev))
3137                 wake_requests(rbd_dev, false);
3138         up_read(&rbd_dev->lock_rwsem);
3139 }
3140
3141 /*
3142  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
3143  * ResponseMessage is needed.
3144  */
3145 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
3146                                    void **p)
3147 {
3148         struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
3149         struct rbd_client_id cid = { 0 };
3150         int result = 1;
3151
3152         if (struct_v >= 2) {
3153                 cid.gid = ceph_decode_64(p);
3154                 cid.handle = ceph_decode_64(p);
3155         }
3156
3157         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3158              cid.handle);
3159         if (rbd_cid_equal(&cid, &my_cid))
3160                 return result;
3161
3162         down_read(&rbd_dev->lock_rwsem);
3163         if (__rbd_is_lock_owner(rbd_dev)) {
3164                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
3165                     rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
3166                         goto out_unlock;
3167
3168                 /*
3169                  * encode ResponseMessage(0) so the peer can detect
3170                  * a missing owner
3171                  */
3172                 result = 0;
3173
3174                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
3175                         if (!rbd_dev->opts->exclusive) {
3176                                 dout("%s rbd_dev %p queueing unlock_work\n",
3177                                      __func__, rbd_dev);
3178                                 queue_work(rbd_dev->task_wq,
3179                                            &rbd_dev->unlock_work);
3180                         } else {
3181                                 /* refuse to release the lock */
3182                                 result = -EROFS;
3183                         }
3184                 }
3185         }
3186
3187 out_unlock:
3188         up_read(&rbd_dev->lock_rwsem);
3189         return result;
3190 }
3191
3192 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
3193                                      u64 notify_id, u64 cookie, s32 *result)
3194 {
3195         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3196         char buf[4 + CEPH_ENCODING_START_BLK_LEN];
3197         int buf_size = sizeof(buf);
3198         int ret;
3199
3200         if (result) {
3201                 void *p = buf;
3202
3203                 /* encode ResponseMessage */
3204                 ceph_start_encoding(&p, 1, 1,
3205                                     buf_size - CEPH_ENCODING_START_BLK_LEN);
3206                 ceph_encode_32(&p, *result);
3207         } else {
3208                 buf_size = 0;
3209         }
3210
3211         ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
3212                                    &rbd_dev->header_oloc, notify_id, cookie,
3213                                    buf, buf_size);
3214         if (ret)
3215                 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
3216 }
3217
3218 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
3219                                    u64 cookie)
3220 {
3221         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3222         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
3223 }
3224
3225 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
3226                                           u64 notify_id, u64 cookie, s32 result)
3227 {
3228         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3229         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
3230 }
3231
3232 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
3233                          u64 notifier_id, void *data, size_t data_len)
3234 {
3235         struct rbd_device *rbd_dev = arg;
3236         void *p = data;
3237         void *const end = p + data_len;
3238         u8 struct_v = 0;
3239         u32 len;
3240         u32 notify_op;
3241         int ret;
3242
3243         dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
3244              __func__, rbd_dev, cookie, notify_id, data_len);
3245         if (data_len) {
3246                 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
3247                                           &struct_v, &len);
3248                 if (ret) {
3249                         rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
3250                                  ret);
3251                         return;
3252                 }
3253
3254                 notify_op = ceph_decode_32(&p);
3255         } else {
3256                 /* legacy notification for header updates */
3257                 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
3258                 len = 0;
3259         }
3260
3261         dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
3262         switch (notify_op) {
3263         case RBD_NOTIFY_OP_ACQUIRED_LOCK:
3264                 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
3265                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3266                 break;
3267         case RBD_NOTIFY_OP_RELEASED_LOCK:
3268                 rbd_handle_released_lock(rbd_dev, struct_v, &p);
3269                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3270                 break;
3271         case RBD_NOTIFY_OP_REQUEST_LOCK:
3272                 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
3273                 if (ret <= 0)
3274                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
3275                                                       cookie, ret);
3276                 else
3277                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3278                 break;
3279         case RBD_NOTIFY_OP_HEADER_UPDATE:
3280                 ret = rbd_dev_refresh(rbd_dev);
3281                 if (ret)
3282                         rbd_warn(rbd_dev, "refresh failed: %d", ret);
3283
3284                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3285                 break;
3286         default:
3287                 if (rbd_is_lock_owner(rbd_dev))
3288                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
3289                                                       cookie, -EOPNOTSUPP);
3290                 else
3291                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3292                 break;
3293         }
3294 }
3295
3296 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
3297
3298 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
3299 {
3300         struct rbd_device *rbd_dev = arg;
3301
3302         rbd_warn(rbd_dev, "encountered watch error: %d", err);
3303
3304         down_write(&rbd_dev->lock_rwsem);
3305         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3306         up_write(&rbd_dev->lock_rwsem);
3307
3308         mutex_lock(&rbd_dev->watch_mutex);
3309         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
3310                 __rbd_unregister_watch(rbd_dev);
3311                 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
3312
3313                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
3314         }
3315         mutex_unlock(&rbd_dev->watch_mutex);
3316 }
3317
3318 /*
3319  * watch_mutex must be locked
3320  */
3321 static int __rbd_register_watch(struct rbd_device *rbd_dev)
3322 {
3323         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3324         struct ceph_osd_linger_request *handle;
3325
3326         rbd_assert(!rbd_dev->watch_handle);
3327         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3328
3329         handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
3330                                  &rbd_dev->header_oloc, rbd_watch_cb,
3331                                  rbd_watch_errcb, rbd_dev);
3332         if (IS_ERR(handle))
3333                 return PTR_ERR(handle);
3334
3335         rbd_dev->watch_handle = handle;
3336         return 0;
3337 }
3338
3339 /*
3340  * watch_mutex must be locked
3341  */
3342 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
3343 {
3344         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3345         int ret;
3346
3347         rbd_assert(rbd_dev->watch_handle);
3348         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3349
3350         ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
3351         if (ret)
3352                 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
3353
3354         rbd_dev->watch_handle = NULL;
3355 }
3356
3357 static int rbd_register_watch(struct rbd_device *rbd_dev)
3358 {
3359         int ret;
3360
3361         mutex_lock(&rbd_dev->watch_mutex);
3362         rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
3363         ret = __rbd_register_watch(rbd_dev);
3364         if (ret)
3365                 goto out;
3366
3367         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3368         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3369
3370 out:
3371         mutex_unlock(&rbd_dev->watch_mutex);
3372         return ret;
3373 }
3374
3375 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
3376 {
3377         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3378
3379         cancel_delayed_work_sync(&rbd_dev->watch_dwork);
3380         cancel_work_sync(&rbd_dev->acquired_lock_work);
3381         cancel_work_sync(&rbd_dev->released_lock_work);
3382         cancel_delayed_work_sync(&rbd_dev->lock_dwork);
3383         cancel_work_sync(&rbd_dev->unlock_work);
3384 }
3385
3386 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
3387 {
3388         WARN_ON(waitqueue_active(&rbd_dev->lock_waitq));
3389         cancel_tasks_sync(rbd_dev);
3390
3391         mutex_lock(&rbd_dev->watch_mutex);
3392         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
3393                 __rbd_unregister_watch(rbd_dev);
3394         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
3395         mutex_unlock(&rbd_dev->watch_mutex);
3396
3397         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3398 }
3399
3400 /*
3401  * lock_rwsem must be held for write
3402  */
3403 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
3404 {
3405         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3406         char cookie[32];
3407         int ret;
3408
3409         WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
3410
3411         format_lock_cookie(rbd_dev, cookie);
3412         ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
3413                                   &rbd_dev->header_oloc, RBD_LOCK_NAME,
3414                                   CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
3415                                   RBD_LOCK_TAG, cookie);
3416         if (ret) {
3417                 if (ret != -EOPNOTSUPP)
3418                         rbd_warn(rbd_dev, "failed to update lock cookie: %d",
3419                                  ret);
3420
3421                 /*
3422                  * Lock cookie cannot be updated on older OSDs, so do
3423                  * a manual release and queue an acquire.
3424                  */
3425                 if (rbd_release_lock(rbd_dev))
3426                         queue_delayed_work(rbd_dev->task_wq,
3427                                            &rbd_dev->lock_dwork, 0);
3428         } else {
3429                 __rbd_lock(rbd_dev, cookie);
3430         }
3431 }
3432
3433 static void rbd_reregister_watch(struct work_struct *work)
3434 {
3435         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3436                                             struct rbd_device, watch_dwork);
3437         int ret;
3438
3439         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3440
3441         mutex_lock(&rbd_dev->watch_mutex);
3442         if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
3443                 mutex_unlock(&rbd_dev->watch_mutex);
3444                 return;
3445         }
3446
3447         ret = __rbd_register_watch(rbd_dev);
3448         if (ret) {
3449                 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
3450                 if (ret == -EBLACKLISTED || ret == -ENOENT) {
3451                         set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3452                         wake_requests(rbd_dev, true);
3453                 } else {
3454                         queue_delayed_work(rbd_dev->task_wq,
3455                                            &rbd_dev->watch_dwork,
3456                                            RBD_RETRY_DELAY);
3457                 }
3458                 mutex_unlock(&rbd_dev->watch_mutex);
3459                 return;
3460         }
3461
3462         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3463         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3464         mutex_unlock(&rbd_dev->watch_mutex);
3465
3466         down_write(&rbd_dev->lock_rwsem);
3467         if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3468                 rbd_reacquire_lock(rbd_dev);
3469         up_write(&rbd_dev->lock_rwsem);
3470
3471         ret = rbd_dev_refresh(rbd_dev);
3472         if (ret)
3473                 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
3474 }
3475
3476 /*
3477  * Synchronous osd object method call.  Returns the number of bytes
3478  * returned in the outbound buffer, or a negative error code.
3479  */
3480 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3481                              struct ceph_object_id *oid,
3482                              struct ceph_object_locator *oloc,
3483                              const char *method_name,
3484                              const void *outbound,
3485                              size_t outbound_size,
3486                              void *inbound,
3487                              size_t inbound_size)
3488 {
3489         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3490         struct page *req_page = NULL;
3491         struct page *reply_page;
3492         int ret;
3493
3494         /*
3495          * Method calls are ultimately read operations.  The result
3496          * should placed into the inbound buffer provided.  They
3497          * also supply outbound data--parameters for the object
3498          * method.  Currently if this is present it will be a
3499          * snapshot id.
3500          */
3501         if (outbound) {
3502                 if (outbound_size > PAGE_SIZE)
3503                         return -E2BIG;
3504
3505                 req_page = alloc_page(GFP_KERNEL);
3506                 if (!req_page)
3507                         return -ENOMEM;
3508
3509                 memcpy(page_address(req_page), outbound, outbound_size);
3510         }
3511
3512         reply_page = alloc_page(GFP_KERNEL);
3513         if (!reply_page) {
3514                 if (req_page)
3515                         __free_page(req_page);
3516                 return -ENOMEM;
3517         }
3518
3519         ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
3520                              CEPH_OSD_FLAG_READ, req_page, outbound_size,
3521                              reply_page, &inbound_size);
3522         if (!ret) {
3523                 memcpy(inbound, page_address(reply_page), inbound_size);
3524                 ret = inbound_size;
3525         }
3526
3527         if (req_page)
3528                 __free_page(req_page);
3529         __free_page(reply_page);
3530         return ret;
3531 }
3532
3533 /*
3534  * lock_rwsem must be held for read
3535  */
3536 static void rbd_wait_state_locked(struct rbd_device *rbd_dev)
3537 {
3538         DEFINE_WAIT(wait);
3539
3540         do {
3541                 /*
3542                  * Note the use of mod_delayed_work() in rbd_acquire_lock()
3543                  * and cancel_delayed_work() in wake_requests().
3544                  */
3545                 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3546                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3547                 prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait,
3548                                           TASK_UNINTERRUPTIBLE);
3549                 up_read(&rbd_dev->lock_rwsem);
3550                 schedule();
3551                 down_read(&rbd_dev->lock_rwsem);
3552         } while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED &&
3553                  !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags));
3554
3555         finish_wait(&rbd_dev->lock_waitq, &wait);
3556 }
3557
3558 static void rbd_queue_workfn(struct work_struct *work)
3559 {
3560         struct request *rq = blk_mq_rq_from_pdu(work);
3561         struct rbd_device *rbd_dev = rq->q->queuedata;
3562         struct rbd_img_request *img_request;
3563         struct ceph_snap_context *snapc = NULL;
3564         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3565         u64 length = blk_rq_bytes(rq);
3566         enum obj_operation_type op_type;
3567         u64 mapping_size;
3568         bool must_be_locked;
3569         int result;
3570
3571         switch (req_op(rq)) {
3572         case REQ_OP_DISCARD:
3573         case REQ_OP_WRITE_ZEROES:
3574                 op_type = OBJ_OP_DISCARD;
3575                 break;
3576         case REQ_OP_WRITE:
3577                 op_type = OBJ_OP_WRITE;
3578                 break;
3579         case REQ_OP_READ:
3580                 op_type = OBJ_OP_READ;
3581                 break;
3582         default:
3583                 dout("%s: non-fs request type %d\n", __func__, req_op(rq));
3584                 result = -EIO;
3585                 goto err;
3586         }
3587
3588         /* Ignore/skip any zero-length requests */
3589
3590         if (!length) {
3591                 dout("%s: zero-length request\n", __func__);
3592                 result = 0;
3593                 goto err_rq;
3594         }
3595
3596         rbd_assert(op_type == OBJ_OP_READ ||
3597                    rbd_dev->spec->snap_id == CEPH_NOSNAP);
3598
3599         /*
3600          * Quit early if the mapped snapshot no longer exists.  It's
3601          * still possible the snapshot will have disappeared by the
3602          * time our request arrives at the osd, but there's no sense in
3603          * sending it if we already know.
3604          */
3605         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3606                 dout("request for non-existent snapshot");
3607                 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3608                 result = -ENXIO;
3609                 goto err_rq;
3610         }
3611
3612         if (offset && length > U64_MAX - offset + 1) {
3613                 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3614                          length);
3615                 result = -EINVAL;
3616                 goto err_rq;    /* Shouldn't happen */
3617         }
3618
3619         blk_mq_start_request(rq);
3620
3621         down_read(&rbd_dev->header_rwsem);
3622         mapping_size = rbd_dev->mapping.size;
3623         if (op_type != OBJ_OP_READ) {
3624                 snapc = rbd_dev->header.snapc;
3625                 ceph_get_snap_context(snapc);
3626         }
3627         up_read(&rbd_dev->header_rwsem);
3628
3629         if (offset + length > mapping_size) {
3630                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3631                          length, mapping_size);
3632                 result = -EIO;
3633                 goto err_rq;
3634         }
3635
3636         must_be_locked =
3637             (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) &&
3638             (op_type != OBJ_OP_READ || rbd_dev->opts->lock_on_read);
3639         if (must_be_locked) {
3640                 down_read(&rbd_dev->lock_rwsem);
3641                 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED &&
3642                     !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
3643                         if (rbd_dev->opts->exclusive) {
3644                                 rbd_warn(rbd_dev, "exclusive lock required");
3645                                 result = -EROFS;
3646                                 goto err_unlock;
3647                         }
3648                         rbd_wait_state_locked(rbd_dev);
3649                 }
3650                 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
3651                         result = -EBLACKLISTED;
3652                         goto err_unlock;
3653                 }
3654         }
3655
3656         img_request = rbd_img_request_create(rbd_dev, op_type, snapc);
3657         if (!img_request) {
3658                 result = -ENOMEM;
3659                 goto err_unlock;
3660         }
3661         img_request->rq = rq;
3662         snapc = NULL; /* img_request consumes a ref */
3663
3664         if (op_type == OBJ_OP_DISCARD)
3665                 result = rbd_img_fill_nodata(img_request, offset, length);
3666         else
3667                 result = rbd_img_fill_from_bio(img_request, offset, length,
3668                                                rq->bio);
3669         if (result)
3670                 goto err_img_request;
3671
3672         rbd_img_request_submit(img_request);
3673         if (must_be_locked)
3674                 up_read(&rbd_dev->lock_rwsem);
3675         return;
3676
3677 err_img_request:
3678         rbd_img_request_put(img_request);
3679 err_unlock:
3680         if (must_be_locked)
3681                 up_read(&rbd_dev->lock_rwsem);
3682 err_rq:
3683         if (result)
3684                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3685                          obj_op_name(op_type), length, offset, result);
3686         ceph_put_snap_context(snapc);
3687 err:
3688         blk_mq_end_request(rq, errno_to_blk_status(result));
3689 }
3690
3691 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3692                 const struct blk_mq_queue_data *bd)
3693 {
3694         struct request *rq = bd->rq;
3695         struct work_struct *work = blk_mq_rq_to_pdu(rq);
3696
3697         queue_work(rbd_wq, work);
3698         return BLK_STS_OK;
3699 }
3700
3701 static void rbd_free_disk(struct rbd_device *rbd_dev)
3702 {
3703         blk_cleanup_queue(rbd_dev->disk->queue);
3704         blk_mq_free_tag_set(&rbd_dev->tag_set);
3705         put_disk(rbd_dev->disk);
3706         rbd_dev->disk = NULL;
3707 }
3708
3709 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3710                              struct ceph_object_id *oid,
3711                              struct ceph_object_locator *oloc,
3712                              void *buf, int buf_len)
3713
3714 {
3715         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3716         struct ceph_osd_request *req;
3717         struct page **pages;
3718         int num_pages = calc_pages_for(0, buf_len);
3719         int ret;
3720
3721         req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
3722         if (!req)
3723                 return -ENOMEM;
3724
3725         ceph_oid_copy(&req->r_base_oid, oid);
3726         ceph_oloc_copy(&req->r_base_oloc, oloc);
3727         req->r_flags = CEPH_OSD_FLAG_READ;
3728
3729         ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
3730         if (ret)
3731                 goto out_req;
3732
3733         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
3734         if (IS_ERR(pages)) {
3735                 ret = PTR_ERR(pages);
3736                 goto out_req;
3737         }
3738
3739         osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
3740         osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
3741                                          true);
3742
3743         ceph_osdc_start_request(osdc, req, false);
3744         ret = ceph_osdc_wait_request(osdc, req);
3745         if (ret >= 0)
3746                 ceph_copy_from_page_vector(pages, buf, 0, ret);
3747
3748 out_req:
3749         ceph_osdc_put_request(req);
3750         return ret;
3751 }
3752
3753 /*
3754  * Read the complete header for the given rbd device.  On successful
3755  * return, the rbd_dev->header field will contain up-to-date
3756  * information about the image.
3757  */
3758 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3759 {
3760         struct rbd_image_header_ondisk *ondisk = NULL;
3761         u32 snap_count = 0;
3762         u64 names_size = 0;
3763         u32 want_count;
3764         int ret;
3765
3766         /*
3767          * The complete header will include an array of its 64-bit
3768          * snapshot ids, followed by the names of those snapshots as
3769          * a contiguous block of NUL-terminated strings.  Note that
3770          * the number of snapshots could change by the time we read
3771          * it in, in which case we re-read it.
3772          */
3773         do {
3774                 size_t size;
3775
3776                 kfree(ondisk);
3777
3778                 size = sizeof (*ondisk);
3779                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3780                 size += names_size;
3781                 ondisk = kmalloc(size, GFP_KERNEL);
3782                 if (!ondisk)
3783                         return -ENOMEM;
3784
3785                 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
3786                                         &rbd_dev->header_oloc, ondisk, size);
3787                 if (ret < 0)
3788                         goto out;
3789                 if ((size_t)ret < size) {
3790                         ret = -ENXIO;
3791                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3792                                 size, ret);
3793                         goto out;
3794                 }
3795                 if (!rbd_dev_ondisk_valid(ondisk)) {
3796                         ret = -ENXIO;
3797                         rbd_warn(rbd_dev, "invalid header");
3798                         goto out;
3799                 }
3800
3801                 names_size = le64_to_cpu(ondisk->snap_names_len);
3802                 want_count = snap_count;
3803                 snap_count = le32_to_cpu(ondisk->snap_count);
3804         } while (snap_count != want_count);
3805
3806         ret = rbd_header_from_disk(rbd_dev, ondisk);
3807 out:
3808         kfree(ondisk);
3809
3810         return ret;
3811 }
3812
3813 /*
3814  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3815  * has disappeared from the (just updated) snapshot context.
3816  */
3817 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3818 {
3819         u64 snap_id;
3820
3821         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3822                 return;
3823
3824         snap_id = rbd_dev->spec->snap_id;
3825         if (snap_id == CEPH_NOSNAP)
3826                 return;
3827
3828         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3829                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3830 }
3831
3832 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3833 {
3834         sector_t size;
3835
3836         /*
3837          * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
3838          * try to update its size.  If REMOVING is set, updating size
3839          * is just useless work since the device can't be opened.
3840          */
3841         if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
3842             !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
3843                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3844                 dout("setting size to %llu sectors", (unsigned long long)size);
3845                 set_capacity(rbd_dev->disk, size);
3846                 revalidate_disk(rbd_dev->disk);
3847         }
3848 }
3849
3850 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3851 {
3852         u64 mapping_size;
3853         int ret;
3854
3855         down_write(&rbd_dev->header_rwsem);
3856         mapping_size = rbd_dev->mapping.size;
3857
3858         ret = rbd_dev_header_info(rbd_dev);
3859         if (ret)
3860                 goto out;
3861
3862         /*
3863          * If there is a parent, see if it has disappeared due to the
3864          * mapped image getting flattened.
3865          */
3866         if (rbd_dev->parent) {
3867                 ret = rbd_dev_v2_parent_info(rbd_dev);
3868                 if (ret)
3869                         goto out;
3870         }
3871
3872         if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3873                 rbd_dev->mapping.size = rbd_dev->header.image_size;
3874         } else {
3875                 /* validate mapped snapshot's EXISTS flag */
3876                 rbd_exists_validate(rbd_dev);
3877         }
3878
3879 out:
3880         up_write(&rbd_dev->header_rwsem);
3881         if (!ret && mapping_size != rbd_dev->mapping.size)
3882                 rbd_dev_update_size(rbd_dev);
3883
3884         return ret;
3885 }
3886
3887 static int rbd_init_request(struct blk_mq_tag_set *set, struct request *rq,
3888                 unsigned int hctx_idx, unsigned int numa_node)
3889 {
3890         struct work_struct *work = blk_mq_rq_to_pdu(rq);
3891
3892         INIT_WORK(work, rbd_queue_workfn);
3893         return 0;
3894 }
3895
3896 static const struct blk_mq_ops rbd_mq_ops = {
3897         .queue_rq       = rbd_queue_rq,
3898         .init_request   = rbd_init_request,
3899 };
3900
3901 static int rbd_init_disk(struct rbd_device *rbd_dev)
3902 {
3903         struct gendisk *disk;
3904         struct request_queue *q;
3905         u64 segment_size;
3906         int err;
3907
3908         /* create gendisk info */
3909         disk = alloc_disk(single_major ?
3910                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3911                           RBD_MINORS_PER_MAJOR);
3912         if (!disk)
3913                 return -ENOMEM;
3914
3915         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3916                  rbd_dev->dev_id);
3917         disk->major = rbd_dev->major;
3918         disk->first_minor = rbd_dev->minor;
3919         if (single_major)
3920                 disk->flags |= GENHD_FL_EXT_DEVT;
3921         disk->fops = &rbd_bd_ops;
3922         disk->private_data = rbd_dev;
3923
3924         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3925         rbd_dev->tag_set.ops = &rbd_mq_ops;
3926         rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3927         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3928         rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3929         rbd_dev->tag_set.nr_hw_queues = 1;
3930         rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3931
3932         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3933         if (err)
3934                 goto out_disk;
3935
3936         q = blk_mq_init_queue(&rbd_dev->tag_set);
3937         if (IS_ERR(q)) {
3938                 err = PTR_ERR(q);
3939                 goto out_tag_set;
3940         }
3941
3942         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3943         /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3944
3945         /* set io sizes to object size */
3946         segment_size = rbd_obj_bytes(&rbd_dev->header);
3947         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3948         q->limits.max_sectors = queue_max_hw_sectors(q);
3949         blk_queue_max_segments(q, USHRT_MAX);
3950         blk_queue_max_segment_size(q, UINT_MAX);
3951         blk_queue_io_min(q, segment_size);
3952         blk_queue_io_opt(q, segment_size);
3953
3954         /* enable the discard support */
3955         blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
3956         q->limits.discard_granularity = segment_size;
3957         blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
3958         blk_queue_max_write_zeroes_sectors(q, segment_size / SECTOR_SIZE);
3959
3960         if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
3961                 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
3962
3963         /*
3964          * disk_release() expects a queue ref from add_disk() and will
3965          * put it.  Hold an extra ref until add_disk() is called.
3966          */
3967         WARN_ON(!blk_get_queue(q));
3968         disk->queue = q;
3969         q->queuedata = rbd_dev;
3970
3971         rbd_dev->disk = disk;
3972
3973         return 0;
3974 out_tag_set:
3975         blk_mq_free_tag_set(&rbd_dev->tag_set);
3976 out_disk:
3977         put_disk(disk);
3978         return err;
3979 }
3980
3981 /*
3982   sysfs
3983 */
3984
3985 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3986 {
3987         return container_of(dev, struct rbd_device, dev);
3988 }
3989
3990 static ssize_t rbd_size_show(struct device *dev,
3991                              struct device_attribute *attr, char *buf)
3992 {
3993         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3994
3995         return sprintf(buf, "%llu\n",
3996                 (unsigned long long)rbd_dev->mapping.size);
3997 }
3998
3999 /*
4000  * Note this shows the features for whatever's mapped, which is not
4001  * necessarily the base image.
4002  */
4003 static ssize_t rbd_features_show(struct device *dev,
4004                              struct device_attribute *attr, char *buf)
4005 {
4006         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4007
4008         return sprintf(buf, "0x%016llx\n",
4009                         (unsigned long long)rbd_dev->mapping.features);
4010 }
4011
4012 static ssize_t rbd_major_show(struct device *dev,
4013                               struct device_attribute *attr, char *buf)
4014 {
4015         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4016
4017         if (rbd_dev->major)
4018                 return sprintf(buf, "%d\n", rbd_dev->major);
4019
4020         return sprintf(buf, "(none)\n");
4021 }
4022
4023 static ssize_t rbd_minor_show(struct device *dev,
4024                               struct device_attribute *attr, char *buf)
4025 {
4026         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4027
4028         return sprintf(buf, "%d\n", rbd_dev->minor);
4029 }
4030
4031 static ssize_t rbd_client_addr_show(struct device *dev,
4032                                     struct device_attribute *attr, char *buf)
4033 {
4034         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4035         struct ceph_entity_addr *client_addr =
4036             ceph_client_addr(rbd_dev->rbd_client->client);
4037
4038         return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
4039                        le32_to_cpu(client_addr->nonce));
4040 }
4041
4042 static ssize_t rbd_client_id_show(struct device *dev,
4043                                   struct device_attribute *attr, char *buf)
4044 {
4045         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4046
4047         return sprintf(buf, "client%lld\n",
4048                        ceph_client_gid(rbd_dev->rbd_client->client));
4049 }
4050
4051 static ssize_t rbd_cluster_fsid_show(struct device *dev,
4052                                      struct device_attribute *attr, char *buf)
4053 {
4054         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4055
4056         return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
4057 }
4058
4059 static ssize_t rbd_config_info_show(struct device *dev,
4060                                     struct device_attribute *attr, char *buf)
4061 {
4062         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4063
4064         return sprintf(buf, "%s\n", rbd_dev->config_info);
4065 }
4066
4067 static ssize_t rbd_pool_show(struct device *dev,
4068                              struct device_attribute *attr, char *buf)
4069 {
4070         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4071
4072         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
4073 }
4074
4075 static ssize_t rbd_pool_id_show(struct device *dev,
4076                              struct device_attribute *attr, char *buf)
4077 {
4078         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4079
4080         return sprintf(buf, "%llu\n",
4081                         (unsigned long long) rbd_dev->spec->pool_id);
4082 }
4083
4084 static ssize_t rbd_name_show(struct device *dev,
4085                              struct device_attribute *attr, char *buf)
4086 {
4087         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4088
4089         if (rbd_dev->spec->image_name)
4090                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
4091
4092         return sprintf(buf, "(unknown)\n");
4093 }
4094
4095 static ssize_t rbd_image_id_show(struct device *dev,
4096                              struct device_attribute *attr, char *buf)
4097 {
4098         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4099
4100         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
4101 }
4102
4103 /*
4104  * Shows the name of the currently-mapped snapshot (or
4105  * RBD_SNAP_HEAD_NAME for the base image).
4106  */
4107 static ssize_t rbd_snap_show(struct device *dev,
4108                              struct device_attribute *attr,
4109                              char *buf)
4110 {
4111         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4112
4113         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
4114 }
4115
4116 static ssize_t rbd_snap_id_show(struct device *dev,
4117                                 struct device_attribute *attr, char *buf)
4118 {
4119         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4120
4121         return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
4122 }
4123
4124 /*
4125  * For a v2 image, shows the chain of parent images, separated by empty
4126  * lines.  For v1 images or if there is no parent, shows "(no parent
4127  * image)".
4128  */
4129 static ssize_t rbd_parent_show(struct device *dev,
4130                                struct device_attribute *attr,
4131                                char *buf)
4132 {
4133         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4134         ssize_t count = 0;
4135
4136         if (!rbd_dev->parent)
4137                 return sprintf(buf, "(no parent image)\n");
4138
4139         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
4140                 struct rbd_spec *spec = rbd_dev->parent_spec;
4141
4142                 count += sprintf(&buf[count], "%s"
4143                             "pool_id %llu\npool_name %s\n"
4144                             "image_id %s\nimage_name %s\n"
4145                             "snap_id %llu\nsnap_name %s\n"
4146                             "overlap %llu\n",
4147                             !count ? "" : "\n", /* first? */
4148                             spec->pool_id, spec->pool_name,
4149                             spec->image_id, spec->image_name ?: "(unknown)",
4150                             spec->snap_id, spec->snap_name,
4151                             rbd_dev->parent_overlap);
4152         }
4153
4154         return count;
4155 }
4156
4157 static ssize_t rbd_image_refresh(struct device *dev,
4158                                  struct device_attribute *attr,
4159                                  const char *buf,
4160                                  size_t size)
4161 {
4162         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4163         int ret;
4164
4165         ret = rbd_dev_refresh(rbd_dev);
4166         if (ret)
4167                 return ret;
4168
4169         return size;
4170 }
4171
4172 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
4173 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
4174 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
4175 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
4176 static DEVICE_ATTR(client_addr, S_IRUGO, rbd_client_addr_show, NULL);
4177 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
4178 static DEVICE_ATTR(cluster_fsid, S_IRUGO, rbd_cluster_fsid_show, NULL);
4179 static DEVICE_ATTR(config_info, S_IRUSR, rbd_config_info_show, NULL);
4180 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
4181 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
4182 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
4183 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
4184 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
4185 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
4186 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
4187 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
4188
4189 static struct attribute *rbd_attrs[] = {
4190         &dev_attr_size.attr,
4191         &dev_attr_features.attr,
4192         &dev_attr_major.attr,
4193         &dev_attr_minor.attr,
4194         &dev_attr_client_addr.attr,
4195         &dev_attr_client_id.attr,
4196         &dev_attr_cluster_fsid.attr,
4197         &dev_attr_config_info.attr,
4198         &dev_attr_pool.attr,
4199         &dev_attr_pool_id.attr,
4200         &dev_attr_name.attr,
4201         &dev_attr_image_id.attr,
4202         &dev_attr_current_snap.attr,
4203         &dev_attr_snap_id.attr,
4204         &dev_attr_parent.attr,
4205         &dev_attr_refresh.attr,
4206         NULL
4207 };
4208
4209 static struct attribute_group rbd_attr_group = {
4210         .attrs = rbd_attrs,
4211 };
4212
4213 static const struct attribute_group *rbd_attr_groups[] = {
4214         &rbd_attr_group,
4215         NULL
4216 };
4217
4218 static void rbd_dev_release(struct device *dev);
4219
4220 static const struct device_type rbd_device_type = {
4221         .name           = "rbd",
4222         .groups         = rbd_attr_groups,
4223         .release        = rbd_dev_release,
4224 };
4225
4226 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4227 {
4228         kref_get(&spec->kref);
4229
4230         return spec;
4231 }
4232
4233 static void rbd_spec_free(struct kref *kref);
4234 static void rbd_spec_put(struct rbd_spec *spec)
4235 {
4236         if (spec)
4237                 kref_put(&spec->kref, rbd_spec_free);
4238 }
4239
4240 static struct rbd_spec *rbd_spec_alloc(void)
4241 {
4242         struct rbd_spec *spec;
4243
4244         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4245         if (!spec)
4246                 return NULL;
4247
4248         spec->pool_id = CEPH_NOPOOL;
4249         spec->snap_id = CEPH_NOSNAP;
4250         kref_init(&spec->kref);
4251
4252         return spec;
4253 }
4254
4255 static void rbd_spec_free(struct kref *kref)
4256 {
4257         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4258
4259         kfree(spec->pool_name);
4260         kfree(spec->image_id);
4261         kfree(spec->image_name);
4262         kfree(spec->snap_name);
4263         kfree(spec);
4264 }
4265
4266 static void rbd_dev_free(struct rbd_device *rbd_dev)
4267 {
4268         WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
4269         WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
4270
4271         ceph_oid_destroy(&rbd_dev->header_oid);
4272         ceph_oloc_destroy(&rbd_dev->header_oloc);
4273         kfree(rbd_dev->config_info);
4274
4275         rbd_put_client(rbd_dev->rbd_client);
4276         rbd_spec_put(rbd_dev->spec);
4277         kfree(rbd_dev->opts);
4278         kfree(rbd_dev);
4279 }
4280
4281 static void rbd_dev_release(struct device *dev)
4282 {
4283         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4284         bool need_put = !!rbd_dev->opts;
4285
4286         if (need_put) {
4287                 destroy_workqueue(rbd_dev->task_wq);
4288                 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4289         }
4290
4291         rbd_dev_free(rbd_dev);
4292
4293         /*
4294          * This is racy, but way better than putting module outside of
4295          * the release callback.  The race window is pretty small, so
4296          * doing something similar to dm (dm-builtin.c) is overkill.
4297          */
4298         if (need_put)
4299                 module_put(THIS_MODULE);
4300 }
4301
4302 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
4303                                            struct rbd_spec *spec)
4304 {
4305         struct rbd_device *rbd_dev;
4306
4307         rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
4308         if (!rbd_dev)
4309                 return NULL;
4310
4311         spin_lock_init(&rbd_dev->lock);
4312         INIT_LIST_HEAD(&rbd_dev->node);
4313         init_rwsem(&rbd_dev->header_rwsem);
4314
4315         rbd_dev->header.data_pool_id = CEPH_NOPOOL;
4316         ceph_oid_init(&rbd_dev->header_oid);
4317         rbd_dev->header_oloc.pool = spec->pool_id;
4318
4319         mutex_init(&rbd_dev->watch_mutex);
4320         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4321         INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
4322
4323         init_rwsem(&rbd_dev->lock_rwsem);
4324         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
4325         INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
4326         INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
4327         INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
4328         INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
4329         init_waitqueue_head(&rbd_dev->lock_waitq);
4330
4331         rbd_dev->dev.bus = &rbd_bus_type;
4332         rbd_dev->dev.type = &rbd_device_type;
4333         rbd_dev->dev.parent = &rbd_root_dev;
4334         device_initialize(&rbd_dev->dev);
4335
4336         rbd_dev->rbd_client = rbdc;
4337         rbd_dev->spec = spec;
4338
4339         return rbd_dev;
4340 }
4341
4342 /*
4343  * Create a mapping rbd_dev.
4344  */
4345 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4346                                          struct rbd_spec *spec,
4347                                          struct rbd_options *opts)
4348 {
4349         struct rbd_device *rbd_dev;
4350
4351         rbd_dev = __rbd_dev_create(rbdc, spec);
4352         if (!rbd_dev)
4353                 return NULL;
4354
4355         rbd_dev->opts = opts;
4356
4357         /* get an id and fill in device name */
4358         rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
4359                                          minor_to_rbd_dev_id(1 << MINORBITS),
4360                                          GFP_KERNEL);
4361         if (rbd_dev->dev_id < 0)
4362                 goto fail_rbd_dev;
4363
4364         sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
4365         rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
4366                                                    rbd_dev->name);
4367         if (!rbd_dev->task_wq)
4368                 goto fail_dev_id;
4369
4370         /* we have a ref from do_rbd_add() */
4371         __module_get(THIS_MODULE);
4372
4373         dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
4374         return rbd_dev;
4375
4376 fail_dev_id:
4377         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4378 fail_rbd_dev:
4379         rbd_dev_free(rbd_dev);
4380         return NULL;
4381 }
4382
4383 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4384 {
4385         if (rbd_dev)
4386                 put_device(&rbd_dev->dev);
4387 }
4388
4389 /*
4390  * Get the size and object order for an image snapshot, or if
4391  * snap_id is CEPH_NOSNAP, gets this information for the base
4392  * image.
4393  */
4394 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4395                                 u8 *order, u64 *snap_size)
4396 {
4397         __le64 snapid = cpu_to_le64(snap_id);
4398         int ret;
4399         struct {
4400                 u8 order;
4401                 __le64 size;
4402         } __attribute__ ((packed)) size_buf = { 0 };
4403
4404         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4405                                   &rbd_dev->header_oloc, "get_size",
4406                                   &snapid, sizeof(snapid),
4407                                   &size_buf, sizeof(size_buf));
4408         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4409         if (ret < 0)
4410                 return ret;
4411         if (ret < sizeof (size_buf))
4412                 return -ERANGE;
4413
4414         if (order) {
4415                 *order = size_buf.order;
4416                 dout("  order %u", (unsigned int)*order);
4417         }
4418         *snap_size = le64_to_cpu(size_buf.size);
4419
4420         dout("  snap_id 0x%016llx snap_size = %llu\n",
4421                 (unsigned long long)snap_id,
4422                 (unsigned long long)*snap_size);
4423
4424         return 0;
4425 }
4426
4427 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4428 {
4429         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4430                                         &rbd_dev->header.obj_order,
4431                                         &rbd_dev->header.image_size);
4432 }
4433
4434 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4435 {
4436         void *reply_buf;
4437         int ret;
4438         void *p;
4439
4440         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4441         if (!reply_buf)
4442                 return -ENOMEM;
4443
4444         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4445                                   &rbd_dev->header_oloc, "get_object_prefix",
4446                                   NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4447         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4448         if (ret < 0)
4449                 goto out;
4450
4451         p = reply_buf;
4452         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4453                                                 p + ret, NULL, GFP_NOIO);
4454         ret = 0;
4455
4456         if (IS_ERR(rbd_dev->header.object_prefix)) {
4457                 ret = PTR_ERR(rbd_dev->header.object_prefix);
4458                 rbd_dev->header.object_prefix = NULL;
4459         } else {
4460                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4461         }
4462 out:
4463         kfree(reply_buf);
4464
4465         return ret;
4466 }
4467
4468 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4469                 u64 *snap_features)
4470 {
4471         __le64 snapid = cpu_to_le64(snap_id);
4472         struct {
4473                 __le64 features;
4474                 __le64 incompat;
4475         } __attribute__ ((packed)) features_buf = { 0 };
4476         u64 unsup;
4477         int ret;
4478
4479         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4480                                   &rbd_dev->header_oloc, "get_features",
4481                                   &snapid, sizeof(snapid),
4482                                   &features_buf, sizeof(features_buf));
4483         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4484         if (ret < 0)
4485                 return ret;
4486         if (ret < sizeof (features_buf))
4487                 return -ERANGE;
4488
4489         unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
4490         if (unsup) {
4491                 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
4492                          unsup);
4493                 return -ENXIO;
4494         }
4495
4496         *snap_features = le64_to_cpu(features_buf.features);
4497
4498         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4499                 (unsigned long long)snap_id,
4500                 (unsigned long long)*snap_features,
4501                 (unsigned long long)le64_to_cpu(features_buf.incompat));
4502
4503         return 0;
4504 }
4505
4506 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4507 {
4508         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4509                                                 &rbd_dev->header.features);
4510 }
4511
4512 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4513 {
4514         struct rbd_spec *parent_spec;
4515         size_t size;
4516         void *reply_buf = NULL;
4517         __le64 snapid;
4518         void *p;
4519         void *end;
4520         u64 pool_id;
4521         char *image_id;
4522         u64 snap_id;
4523         u64 overlap;
4524         int ret;
4525
4526         parent_spec = rbd_spec_alloc();
4527         if (!parent_spec)
4528                 return -ENOMEM;
4529
4530         size = sizeof (__le64) +                                /* pool_id */
4531                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
4532                 sizeof (__le64) +                               /* snap_id */
4533                 sizeof (__le64);                                /* overlap */
4534         reply_buf = kmalloc(size, GFP_KERNEL);
4535         if (!reply_buf) {
4536                 ret = -ENOMEM;
4537                 goto out_err;
4538         }
4539
4540         snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4541         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4542                                   &rbd_dev->header_oloc, "get_parent",
4543                                   &snapid, sizeof(snapid), reply_buf, size);
4544         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4545         if (ret < 0)
4546                 goto out_err;
4547
4548         p = reply_buf;
4549         end = reply_buf + ret;
4550         ret = -ERANGE;
4551         ceph_decode_64_safe(&p, end, pool_id, out_err);
4552         if (pool_id == CEPH_NOPOOL) {
4553                 /*
4554                  * Either the parent never existed, or we have
4555                  * record of it but the image got flattened so it no
4556                  * longer has a parent.  When the parent of a
4557                  * layered image disappears we immediately set the
4558                  * overlap to 0.  The effect of this is that all new
4559                  * requests will be treated as if the image had no
4560                  * parent.
4561                  */
4562                 if (rbd_dev->parent_overlap) {
4563                         rbd_dev->parent_overlap = 0;
4564                         rbd_dev_parent_put(rbd_dev);
4565                         pr_info("%s: clone image has been flattened\n",
4566                                 rbd_dev->disk->disk_name);
4567                 }
4568
4569                 goto out;       /* No parent?  No problem. */
4570         }
4571
4572         /* The ceph file layout needs to fit pool id in 32 bits */
4573
4574         ret = -EIO;
4575         if (pool_id > (u64)U32_MAX) {
4576                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4577                         (unsigned long long)pool_id, U32_MAX);
4578                 goto out_err;
4579         }
4580
4581         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4582         if (IS_ERR(image_id)) {
4583                 ret = PTR_ERR(image_id);
4584                 goto out_err;
4585         }
4586         ceph_decode_64_safe(&p, end, snap_id, out_err);
4587         ceph_decode_64_safe(&p, end, overlap, out_err);
4588
4589         /*
4590          * The parent won't change (except when the clone is
4591          * flattened, already handled that).  So we only need to
4592          * record the parent spec we have not already done so.
4593          */
4594         if (!rbd_dev->parent_spec) {
4595                 parent_spec->pool_id = pool_id;
4596                 parent_spec->image_id = image_id;
4597                 parent_spec->snap_id = snap_id;
4598                 rbd_dev->parent_spec = parent_spec;
4599                 parent_spec = NULL;     /* rbd_dev now owns this */
4600         } else {
4601                 kfree(image_id);
4602         }
4603
4604         /*
4605          * We always update the parent overlap.  If it's zero we issue
4606          * a warning, as we will proceed as if there was no parent.
4607          */
4608         if (!overlap) {
4609                 if (parent_spec) {
4610                         /* refresh, careful to warn just once */
4611                         if (rbd_dev->parent_overlap)
4612                                 rbd_warn(rbd_dev,
4613                                     "clone now standalone (overlap became 0)");
4614                 } else {
4615                         /* initial probe */
4616                         rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4617                 }
4618         }
4619         rbd_dev->parent_overlap = overlap;
4620
4621 out:
4622         ret = 0;
4623 out_err:
4624         kfree(reply_buf);
4625         rbd_spec_put(parent_spec);
4626
4627         return ret;
4628 }
4629
4630 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4631 {
4632         struct {
4633                 __le64 stripe_unit;
4634                 __le64 stripe_count;
4635         } __attribute__ ((packed)) striping_info_buf = { 0 };
4636         size_t size = sizeof (striping_info_buf);
4637         void *p;
4638         int ret;
4639
4640         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4641                                 &rbd_dev->header_oloc, "get_stripe_unit_count",
4642                                 NULL, 0, &striping_info_buf, size);
4643         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4644         if (ret < 0)
4645                 return ret;
4646         if (ret < size)
4647                 return -ERANGE;
4648
4649         p = &striping_info_buf;
4650         rbd_dev->header.stripe_unit = ceph_decode_64(&p);
4651         rbd_dev->header.stripe_count = ceph_decode_64(&p);
4652         return 0;
4653 }
4654
4655 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
4656 {
4657         __le64 data_pool_id;
4658         int ret;
4659
4660         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4661                                   &rbd_dev->header_oloc, "get_data_pool",
4662                                   NULL, 0, &data_pool_id, sizeof(data_pool_id));
4663         if (ret < 0)
4664                 return ret;
4665         if (ret < sizeof(data_pool_id))
4666                 return -EBADMSG;
4667
4668         rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
4669         WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
4670         return 0;
4671 }
4672
4673 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4674 {
4675         CEPH_DEFINE_OID_ONSTACK(oid);
4676         size_t image_id_size;
4677         char *image_id;
4678         void *p;
4679         void *end;
4680         size_t size;
4681         void *reply_buf = NULL;
4682         size_t len = 0;
4683         char *image_name = NULL;
4684         int ret;
4685
4686         rbd_assert(!rbd_dev->spec->image_name);
4687
4688         len = strlen(rbd_dev->spec->image_id);
4689         image_id_size = sizeof (__le32) + len;
4690         image_id = kmalloc(image_id_size, GFP_KERNEL);
4691         if (!image_id)
4692                 return NULL;
4693
4694         p = image_id;
4695         end = image_id + image_id_size;
4696         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4697
4698         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4699         reply_buf = kmalloc(size, GFP_KERNEL);
4700         if (!reply_buf)
4701                 goto out;
4702
4703         ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
4704         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
4705                                   "dir_get_name", image_id, image_id_size,
4706                                   reply_buf, size);
4707         if (ret < 0)
4708                 goto out;
4709         p = reply_buf;
4710         end = reply_buf + ret;
4711
4712         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4713         if (IS_ERR(image_name))
4714                 image_name = NULL;
4715         else
4716                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4717 out:
4718         kfree(reply_buf);
4719         kfree(image_id);
4720
4721         return image_name;
4722 }
4723
4724 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4725 {
4726         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4727         const char *snap_name;
4728         u32 which = 0;
4729
4730         /* Skip over names until we find the one we are looking for */
4731
4732         snap_name = rbd_dev->header.snap_names;
4733         while (which < snapc->num_snaps) {
4734                 if (!strcmp(name, snap_name))
4735                         return snapc->snaps[which];
4736                 snap_name += strlen(snap_name) + 1;
4737                 which++;
4738         }
4739         return CEPH_NOSNAP;
4740 }
4741
4742 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4743 {
4744         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4745         u32 which;
4746         bool found = false;
4747         u64 snap_id;
4748
4749         for (which = 0; !found && which < snapc->num_snaps; which++) {
4750                 const char *snap_name;
4751
4752                 snap_id = snapc->snaps[which];
4753                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4754                 if (IS_ERR(snap_name)) {
4755                         /* ignore no-longer existing snapshots */
4756                         if (PTR_ERR(snap_name) == -ENOENT)
4757                                 continue;
4758                         else
4759                                 break;
4760                 }
4761                 found = !strcmp(name, snap_name);
4762                 kfree(snap_name);
4763         }
4764         return found ? snap_id : CEPH_NOSNAP;
4765 }
4766
4767 /*
4768  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4769  * no snapshot by that name is found, or if an error occurs.
4770  */
4771 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4772 {
4773         if (rbd_dev->image_format == 1)
4774                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4775
4776         return rbd_v2_snap_id_by_name(rbd_dev, name);
4777 }
4778
4779 /*
4780  * An image being mapped will have everything but the snap id.
4781  */
4782 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4783 {
4784         struct rbd_spec *spec = rbd_dev->spec;
4785
4786         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4787         rbd_assert(spec->image_id && spec->image_name);
4788         rbd_assert(spec->snap_name);
4789
4790         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4791                 u64 snap_id;
4792
4793                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4794                 if (snap_id == CEPH_NOSNAP)
4795                         return -ENOENT;
4796
4797                 spec->snap_id = snap_id;
4798         } else {
4799                 spec->snap_id = CEPH_NOSNAP;
4800         }
4801
4802         return 0;
4803 }
4804
4805 /*
4806  * A parent image will have all ids but none of the names.
4807  *
4808  * All names in an rbd spec are dynamically allocated.  It's OK if we
4809  * can't figure out the name for an image id.
4810  */
4811 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4812 {
4813         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4814         struct rbd_spec *spec = rbd_dev->spec;
4815         const char *pool_name;
4816         const char *image_name;
4817         const char *snap_name;
4818         int ret;
4819
4820         rbd_assert(spec->pool_id != CEPH_NOPOOL);
4821         rbd_assert(spec->image_id);
4822         rbd_assert(spec->snap_id != CEPH_NOSNAP);
4823
4824         /* Get the pool name; we have to make our own copy of this */
4825
4826         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4827         if (!pool_name) {
4828                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4829                 return -EIO;
4830         }
4831         pool_name = kstrdup(pool_name, GFP_KERNEL);
4832         if (!pool_name)
4833                 return -ENOMEM;
4834
4835         /* Fetch the image name; tolerate failure here */
4836
4837         image_name = rbd_dev_image_name(rbd_dev);
4838         if (!image_name)
4839                 rbd_warn(rbd_dev, "unable to get image name");
4840
4841         /* Fetch the snapshot name */
4842
4843         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4844         if (IS_ERR(snap_name)) {
4845                 ret = PTR_ERR(snap_name);
4846                 goto out_err;
4847         }
4848
4849         spec->pool_name = pool_name;
4850         spec->image_name = image_name;
4851         spec->snap_name = snap_name;
4852
4853         return 0;
4854
4855 out_err:
4856         kfree(image_name);
4857         kfree(pool_name);
4858         return ret;
4859 }
4860
4861 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4862 {
4863         size_t size;
4864         int ret;
4865         void *reply_buf;
4866         void *p;
4867         void *end;
4868         u64 seq;
4869         u32 snap_count;
4870         struct ceph_snap_context *snapc;
4871         u32 i;
4872
4873         /*
4874          * We'll need room for the seq value (maximum snapshot id),
4875          * snapshot count, and array of that many snapshot ids.
4876          * For now we have a fixed upper limit on the number we're
4877          * prepared to receive.
4878          */
4879         size = sizeof (__le64) + sizeof (__le32) +
4880                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4881         reply_buf = kzalloc(size, GFP_KERNEL);
4882         if (!reply_buf)
4883                 return -ENOMEM;
4884
4885         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4886                                   &rbd_dev->header_oloc, "get_snapcontext",
4887                                   NULL, 0, reply_buf, size);
4888         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4889         if (ret < 0)
4890                 goto out;
4891
4892         p = reply_buf;
4893         end = reply_buf + ret;
4894         ret = -ERANGE;
4895         ceph_decode_64_safe(&p, end, seq, out);
4896         ceph_decode_32_safe(&p, end, snap_count, out);
4897
4898         /*
4899          * Make sure the reported number of snapshot ids wouldn't go
4900          * beyond the end of our buffer.  But before checking that,
4901          * make sure the computed size of the snapshot context we
4902          * allocate is representable in a size_t.
4903          */
4904         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4905                                  / sizeof (u64)) {
4906                 ret = -EINVAL;
4907                 goto out;
4908         }
4909         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4910                 goto out;
4911         ret = 0;
4912
4913         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4914         if (!snapc) {
4915                 ret = -ENOMEM;
4916                 goto out;
4917         }
4918         snapc->seq = seq;
4919         for (i = 0; i < snap_count; i++)
4920                 snapc->snaps[i] = ceph_decode_64(&p);
4921
4922         ceph_put_snap_context(rbd_dev->header.snapc);
4923         rbd_dev->header.snapc = snapc;
4924
4925         dout("  snap context seq = %llu, snap_count = %u\n",
4926                 (unsigned long long)seq, (unsigned int)snap_count);
4927 out:
4928         kfree(reply_buf);
4929
4930         return ret;
4931 }
4932
4933 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4934                                         u64 snap_id)
4935 {
4936         size_t size;
4937         void *reply_buf;
4938         __le64 snapid;
4939         int ret;
4940         void *p;
4941         void *end;
4942         char *snap_name;
4943
4944         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4945         reply_buf = kmalloc(size, GFP_KERNEL);
4946         if (!reply_buf)
4947                 return ERR_PTR(-ENOMEM);
4948
4949         snapid = cpu_to_le64(snap_id);
4950         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4951                                   &rbd_dev->header_oloc, "get_snapshot_name",
4952                                   &snapid, sizeof(snapid), reply_buf, size);
4953         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4954         if (ret < 0) {
4955                 snap_name = ERR_PTR(ret);
4956                 goto out;
4957         }
4958
4959         p = reply_buf;
4960         end = reply_buf + ret;
4961         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4962         if (IS_ERR(snap_name))
4963                 goto out;
4964
4965         dout("  snap_id 0x%016llx snap_name = %s\n",
4966                 (unsigned long long)snap_id, snap_name);
4967 out:
4968         kfree(reply_buf);
4969
4970         return snap_name;
4971 }
4972
4973 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4974 {
4975         bool first_time = rbd_dev->header.object_prefix == NULL;
4976         int ret;
4977
4978         ret = rbd_dev_v2_image_size(rbd_dev);
4979         if (ret)
4980                 return ret;
4981
4982         if (first_time) {
4983                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4984                 if (ret)
4985                         return ret;
4986         }
4987
4988         ret = rbd_dev_v2_snap_context(rbd_dev);
4989         if (ret && first_time) {
4990                 kfree(rbd_dev->header.object_prefix);
4991                 rbd_dev->header.object_prefix = NULL;
4992         }
4993
4994         return ret;
4995 }
4996
4997 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4998 {
4999         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5000
5001         if (rbd_dev->image_format == 1)
5002                 return rbd_dev_v1_header_info(rbd_dev);
5003
5004         return rbd_dev_v2_header_info(rbd_dev);
5005 }
5006
5007 /*
5008  * Skips over white space at *buf, and updates *buf to point to the
5009  * first found non-space character (if any). Returns the length of
5010  * the token (string of non-white space characters) found.  Note
5011  * that *buf must be terminated with '\0'.
5012  */
5013 static inline size_t next_token(const char **buf)
5014 {
5015         /*
5016         * These are the characters that produce nonzero for
5017         * isspace() in the "C" and "POSIX" locales.
5018         */
5019         const char *spaces = " \f\n\r\t\v";
5020
5021         *buf += strspn(*buf, spaces);   /* Find start of token */
5022
5023         return strcspn(*buf, spaces);   /* Return token length */
5024 }
5025
5026 /*
5027  * Finds the next token in *buf, dynamically allocates a buffer big
5028  * enough to hold a copy of it, and copies the token into the new
5029  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
5030  * that a duplicate buffer is created even for a zero-length token.
5031  *
5032  * Returns a pointer to the newly-allocated duplicate, or a null
5033  * pointer if memory for the duplicate was not available.  If
5034  * the lenp argument is a non-null pointer, the length of the token
5035  * (not including the '\0') is returned in *lenp.
5036  *
5037  * If successful, the *buf pointer will be updated to point beyond
5038  * the end of the found token.
5039  *
5040  * Note: uses GFP_KERNEL for allocation.
5041  */
5042 static inline char *dup_token(const char **buf, size_t *lenp)
5043 {
5044         char *dup;
5045         size_t len;
5046
5047         len = next_token(buf);
5048         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
5049         if (!dup)
5050                 return NULL;
5051         *(dup + len) = '\0';
5052         *buf += len;
5053
5054         if (lenp)
5055                 *lenp = len;
5056
5057         return dup;
5058 }
5059
5060 /*
5061  * Parse the options provided for an "rbd add" (i.e., rbd image
5062  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
5063  * and the data written is passed here via a NUL-terminated buffer.
5064  * Returns 0 if successful or an error code otherwise.
5065  *
5066  * The information extracted from these options is recorded in
5067  * the other parameters which return dynamically-allocated
5068  * structures:
5069  *  ceph_opts
5070  *      The address of a pointer that will refer to a ceph options
5071  *      structure.  Caller must release the returned pointer using
5072  *      ceph_destroy_options() when it is no longer needed.
5073  *  rbd_opts
5074  *      Address of an rbd options pointer.  Fully initialized by
5075  *      this function; caller must release with kfree().
5076  *  spec
5077  *      Address of an rbd image specification pointer.  Fully
5078  *      initialized by this function based on parsed options.
5079  *      Caller must release with rbd_spec_put().
5080  *
5081  * The options passed take this form:
5082  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
5083  * where:
5084  *  <mon_addrs>
5085  *      A comma-separated list of one or more monitor addresses.
5086  *      A monitor address is an ip address, optionally followed
5087  *      by a port number (separated by a colon).
5088  *        I.e.:  ip1[:port1][,ip2[:port2]...]
5089  *  <options>
5090  *      A comma-separated list of ceph and/or rbd options.
5091  *  <pool_name>
5092  *      The name of the rados pool containing the rbd image.
5093  *  <image_name>
5094  *      The name of the image in that pool to map.
5095  *  <snap_id>
5096  *      An optional snapshot id.  If provided, the mapping will
5097  *      present data from the image at the time that snapshot was
5098  *      created.  The image head is used if no snapshot id is
5099  *      provided.  Snapshot mappings are always read-only.
5100  */
5101 static int rbd_add_parse_args(const char *buf,
5102                                 struct ceph_options **ceph_opts,
5103                                 struct rbd_options **opts,
5104                                 struct rbd_spec **rbd_spec)
5105 {
5106         size_t len;
5107         char *options;
5108         const char *mon_addrs;
5109         char *snap_name;
5110         size_t mon_addrs_size;
5111         struct rbd_spec *spec = NULL;
5112         struct rbd_options *rbd_opts = NULL;
5113         struct ceph_options *copts;
5114         int ret;
5115
5116         /* The first four tokens are required */
5117
5118         len = next_token(&buf);
5119         if (!len) {
5120                 rbd_warn(NULL, "no monitor address(es) provided");
5121                 return -EINVAL;
5122         }
5123         mon_addrs = buf;
5124         mon_addrs_size = len + 1;
5125         buf += len;
5126
5127         ret = -EINVAL;
5128         options = dup_token(&buf, NULL);
5129         if (!options)
5130                 return -ENOMEM;
5131         if (!*options) {
5132                 rbd_warn(NULL, "no options provided");
5133                 goto out_err;
5134         }
5135
5136         spec = rbd_spec_alloc();
5137         if (!spec)
5138                 goto out_mem;
5139
5140         spec->pool_name = dup_token(&buf, NULL);
5141         if (!spec->pool_name)
5142                 goto out_mem;
5143         if (!*spec->pool_name) {
5144                 rbd_warn(NULL, "no pool name provided");
5145                 goto out_err;
5146         }
5147
5148         spec->image_name = dup_token(&buf, NULL);
5149         if (!spec->image_name)
5150                 goto out_mem;
5151         if (!*spec->image_name) {
5152                 rbd_warn(NULL, "no image name provided");
5153                 goto out_err;
5154         }
5155
5156         /*
5157          * Snapshot name is optional; default is to use "-"
5158          * (indicating the head/no snapshot).
5159          */
5160         len = next_token(&buf);
5161         if (!len) {
5162                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
5163                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
5164         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
5165                 ret = -ENAMETOOLONG;
5166                 goto out_err;
5167         }
5168         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
5169         if (!snap_name)
5170                 goto out_mem;
5171         *(snap_name + len) = '\0';
5172         spec->snap_name = snap_name;
5173
5174         /* Initialize all rbd options to the defaults */
5175
5176         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
5177         if (!rbd_opts)
5178                 goto out_mem;
5179
5180         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
5181         rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
5182         rbd_opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
5183         rbd_opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
5184
5185         copts = ceph_parse_options(options, mon_addrs,
5186                                         mon_addrs + mon_addrs_size - 1,
5187                                         parse_rbd_opts_token, rbd_opts);
5188         if (IS_ERR(copts)) {
5189                 ret = PTR_ERR(copts);
5190                 goto out_err;
5191         }
5192         kfree(options);
5193
5194         *ceph_opts = copts;
5195         *opts = rbd_opts;
5196         *rbd_spec = spec;
5197
5198         return 0;
5199 out_mem:
5200         ret = -ENOMEM;
5201 out_err:
5202         kfree(rbd_opts);
5203         rbd_spec_put(spec);
5204         kfree(options);
5205
5206         return ret;
5207 }
5208
5209 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
5210 {
5211         down_write(&rbd_dev->lock_rwsem);
5212         if (__rbd_is_lock_owner(rbd_dev))
5213                 rbd_unlock(rbd_dev);
5214         up_write(&rbd_dev->lock_rwsem);
5215 }
5216
5217 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
5218 {
5219         if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
5220                 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
5221                 return -EINVAL;
5222         }
5223
5224         /* FIXME: "rbd map --exclusive" should be in interruptible */
5225         down_read(&rbd_dev->lock_rwsem);
5226         rbd_wait_state_locked(rbd_dev);
5227         up_read(&rbd_dev->lock_rwsem);
5228         if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
5229                 rbd_warn(rbd_dev, "failed to acquire exclusive lock");
5230                 return -EROFS;
5231         }
5232
5233         return 0;
5234 }
5235
5236 /*
5237  * An rbd format 2 image has a unique identifier, distinct from the
5238  * name given to it by the user.  Internally, that identifier is
5239  * what's used to specify the names of objects related to the image.
5240  *
5241  * A special "rbd id" object is used to map an rbd image name to its
5242  * id.  If that object doesn't exist, then there is no v2 rbd image
5243  * with the supplied name.
5244  *
5245  * This function will record the given rbd_dev's image_id field if
5246  * it can be determined, and in that case will return 0.  If any
5247  * errors occur a negative errno will be returned and the rbd_dev's
5248  * image_id field will be unchanged (and should be NULL).
5249  */
5250 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5251 {
5252         int ret;
5253         size_t size;
5254         CEPH_DEFINE_OID_ONSTACK(oid);
5255         void *response;
5256         char *image_id;
5257
5258         /*
5259          * When probing a parent image, the image id is already
5260          * known (and the image name likely is not).  There's no
5261          * need to fetch the image id again in this case.  We
5262          * do still need to set the image format though.
5263          */
5264         if (rbd_dev->spec->image_id) {
5265                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5266
5267                 return 0;
5268         }
5269
5270         /*
5271          * First, see if the format 2 image id file exists, and if
5272          * so, get the image's persistent id from it.
5273          */
5274         ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
5275                                rbd_dev->spec->image_name);
5276         if (ret)
5277                 return ret;
5278
5279         dout("rbd id object name is %s\n", oid.name);
5280
5281         /* Response will be an encoded string, which includes a length */
5282
5283         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5284         response = kzalloc(size, GFP_NOIO);
5285         if (!response) {
5286                 ret = -ENOMEM;
5287                 goto out;
5288         }
5289
5290         /* If it doesn't exist we'll assume it's a format 1 image */
5291
5292         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5293                                   "get_id", NULL, 0,
5294                                   response, RBD_IMAGE_ID_LEN_MAX);
5295         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5296         if (ret == -ENOENT) {
5297                 image_id = kstrdup("", GFP_KERNEL);
5298                 ret = image_id ? 0 : -ENOMEM;
5299                 if (!ret)
5300                         rbd_dev->image_format = 1;
5301         } else if (ret >= 0) {
5302                 void *p = response;
5303
5304                 image_id = ceph_extract_encoded_string(&p, p + ret,
5305                                                 NULL, GFP_NOIO);
5306                 ret = PTR_ERR_OR_ZERO(image_id);
5307                 if (!ret)
5308                         rbd_dev->image_format = 2;
5309         }
5310
5311         if (!ret) {
5312                 rbd_dev->spec->image_id = image_id;
5313                 dout("image_id is %s\n", image_id);
5314         }
5315 out:
5316         kfree(response);
5317         ceph_oid_destroy(&oid);
5318         return ret;
5319 }
5320
5321 /*
5322  * Undo whatever state changes are made by v1 or v2 header info
5323  * call.
5324  */
5325 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5326 {
5327         struct rbd_image_header *header;
5328
5329         rbd_dev_parent_put(rbd_dev);
5330
5331         /* Free dynamic fields from the header, then zero it out */
5332
5333         header = &rbd_dev->header;
5334         ceph_put_snap_context(header->snapc);
5335         kfree(header->snap_sizes);
5336         kfree(header->snap_names);
5337         kfree(header->object_prefix);
5338         memset(header, 0, sizeof (*header));
5339 }
5340
5341 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5342 {
5343         int ret;
5344
5345         ret = rbd_dev_v2_object_prefix(rbd_dev);
5346         if (ret)
5347                 goto out_err;
5348
5349         /*
5350          * Get the and check features for the image.  Currently the
5351          * features are assumed to never change.
5352          */
5353         ret = rbd_dev_v2_features(rbd_dev);
5354         if (ret)
5355                 goto out_err;
5356
5357         /* If the image supports fancy striping, get its parameters */
5358
5359         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5360                 ret = rbd_dev_v2_striping_info(rbd_dev);
5361                 if (ret < 0)
5362                         goto out_err;
5363         }
5364
5365         if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
5366                 ret = rbd_dev_v2_data_pool(rbd_dev);
5367                 if (ret)
5368                         goto out_err;
5369         }
5370
5371         rbd_init_layout(rbd_dev);
5372         return 0;
5373
5374 out_err:
5375         rbd_dev->header.features = 0;
5376         kfree(rbd_dev->header.object_prefix);
5377         rbd_dev->header.object_prefix = NULL;
5378         return ret;
5379 }
5380
5381 /*
5382  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5383  * rbd_dev_image_probe() recursion depth, which means it's also the
5384  * length of the already discovered part of the parent chain.
5385  */
5386 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5387 {
5388         struct rbd_device *parent = NULL;
5389         int ret;
5390
5391         if (!rbd_dev->parent_spec)
5392                 return 0;
5393
5394         if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5395                 pr_info("parent chain is too long (%d)\n", depth);
5396                 ret = -EINVAL;
5397                 goto out_err;
5398         }
5399
5400         parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
5401         if (!parent) {
5402                 ret = -ENOMEM;
5403                 goto out_err;
5404         }
5405
5406         /*
5407          * Images related by parent/child relationships always share
5408          * rbd_client and spec/parent_spec, so bump their refcounts.
5409          */
5410         __rbd_get_client(rbd_dev->rbd_client);
5411         rbd_spec_get(rbd_dev->parent_spec);
5412
5413         ret = rbd_dev_image_probe(parent, depth);
5414         if (ret < 0)
5415                 goto out_err;
5416
5417         rbd_dev->parent = parent;
5418         atomic_set(&rbd_dev->parent_ref, 1);
5419         return 0;
5420
5421 out_err:
5422         rbd_dev_unparent(rbd_dev);
5423         rbd_dev_destroy(parent);
5424         return ret;
5425 }
5426
5427 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5428 {
5429         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5430         rbd_dev_mapping_clear(rbd_dev);
5431         rbd_free_disk(rbd_dev);
5432         if (!single_major)
5433                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5434 }
5435
5436 /*
5437  * rbd_dev->header_rwsem must be locked for write and will be unlocked
5438  * upon return.
5439  */
5440 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5441 {
5442         int ret;
5443
5444         /* Record our major and minor device numbers. */
5445
5446         if (!single_major) {
5447                 ret = register_blkdev(0, rbd_dev->name);
5448                 if (ret < 0)
5449                         goto err_out_unlock;
5450
5451                 rbd_dev->major = ret;
5452                 rbd_dev->minor = 0;
5453         } else {
5454                 rbd_dev->major = rbd_major;
5455                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5456         }
5457
5458         /* Set up the blkdev mapping. */
5459
5460         ret = rbd_init_disk(rbd_dev);
5461         if (ret)
5462                 goto err_out_blkdev;
5463
5464         ret = rbd_dev_mapping_set(rbd_dev);
5465         if (ret)
5466                 goto err_out_disk;
5467
5468         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5469         set_disk_ro(rbd_dev->disk, rbd_dev->opts->read_only);
5470
5471         ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5472         if (ret)
5473                 goto err_out_mapping;
5474
5475         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5476         up_write(&rbd_dev->header_rwsem);
5477         return 0;
5478
5479 err_out_mapping:
5480         rbd_dev_mapping_clear(rbd_dev);
5481 err_out_disk:
5482         rbd_free_disk(rbd_dev);
5483 err_out_blkdev:
5484         if (!single_major)
5485                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5486 err_out_unlock:
5487         up_write(&rbd_dev->header_rwsem);
5488         return ret;
5489 }
5490
5491 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5492 {
5493         struct rbd_spec *spec = rbd_dev->spec;
5494         int ret;
5495
5496         /* Record the header object name for this rbd image. */
5497
5498         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5499         if (rbd_dev->image_format == 1)
5500                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5501                                        spec->image_name, RBD_SUFFIX);
5502         else
5503                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5504                                        RBD_HEADER_PREFIX, spec->image_id);
5505
5506         return ret;
5507 }
5508
5509 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5510 {
5511         rbd_dev_unprobe(rbd_dev);
5512         if (rbd_dev->opts)
5513                 rbd_unregister_watch(rbd_dev);
5514         rbd_dev->image_format = 0;
5515         kfree(rbd_dev->spec->image_id);
5516         rbd_dev->spec->image_id = NULL;
5517 }
5518
5519 /*
5520  * Probe for the existence of the header object for the given rbd
5521  * device.  If this image is the one being mapped (i.e., not a
5522  * parent), initiate a watch on its header object before using that
5523  * object to get detailed information about the rbd image.
5524  */
5525 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5526 {
5527         int ret;
5528
5529         /*
5530          * Get the id from the image id object.  Unless there's an
5531          * error, rbd_dev->spec->image_id will be filled in with
5532          * a dynamically-allocated string, and rbd_dev->image_format
5533          * will be set to either 1 or 2.
5534          */
5535         ret = rbd_dev_image_id(rbd_dev);
5536         if (ret)
5537                 return ret;
5538
5539         ret = rbd_dev_header_name(rbd_dev);
5540         if (ret)
5541                 goto err_out_format;
5542
5543         if (!depth) {
5544                 ret = rbd_register_watch(rbd_dev);
5545                 if (ret) {
5546                         if (ret == -ENOENT)
5547                                 pr_info("image %s/%s does not exist\n",
5548                                         rbd_dev->spec->pool_name,
5549                                         rbd_dev->spec->image_name);
5550                         goto err_out_format;
5551                 }
5552         }
5553
5554         ret = rbd_dev_header_info(rbd_dev);
5555         if (ret)
5556                 goto err_out_watch;
5557
5558         /*
5559          * If this image is the one being mapped, we have pool name and
5560          * id, image name and id, and snap name - need to fill snap id.
5561          * Otherwise this is a parent image, identified by pool, image
5562          * and snap ids - need to fill in names for those ids.
5563          */
5564         if (!depth)
5565                 ret = rbd_spec_fill_snap_id(rbd_dev);
5566         else
5567                 ret = rbd_spec_fill_names(rbd_dev);
5568         if (ret) {
5569                 if (ret == -ENOENT)
5570                         pr_info("snap %s/%s@%s does not exist\n",
5571                                 rbd_dev->spec->pool_name,
5572                                 rbd_dev->spec->image_name,
5573                                 rbd_dev->spec->snap_name);
5574                 goto err_out_probe;
5575         }
5576
5577         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5578                 ret = rbd_dev_v2_parent_info(rbd_dev);
5579                 if (ret)
5580                         goto err_out_probe;
5581
5582                 /*
5583                  * Need to warn users if this image is the one being
5584                  * mapped and has a parent.
5585                  */
5586                 if (!depth && rbd_dev->parent_spec)
5587                         rbd_warn(rbd_dev,
5588                                  "WARNING: kernel layering is EXPERIMENTAL!");
5589         }
5590
5591         ret = rbd_dev_probe_parent(rbd_dev, depth);
5592         if (ret)
5593                 goto err_out_probe;
5594
5595         dout("discovered format %u image, header name is %s\n",
5596                 rbd_dev->image_format, rbd_dev->header_oid.name);
5597         return 0;
5598
5599 err_out_probe:
5600         rbd_dev_unprobe(rbd_dev);
5601 err_out_watch:
5602         if (!depth)
5603                 rbd_unregister_watch(rbd_dev);
5604 err_out_format:
5605         rbd_dev->image_format = 0;
5606         kfree(rbd_dev->spec->image_id);
5607         rbd_dev->spec->image_id = NULL;
5608         return ret;
5609 }
5610
5611 static ssize_t do_rbd_add(struct bus_type *bus,
5612                           const char *buf,
5613                           size_t count)
5614 {
5615         struct rbd_device *rbd_dev = NULL;
5616         struct ceph_options *ceph_opts = NULL;
5617         struct rbd_options *rbd_opts = NULL;
5618         struct rbd_spec *spec = NULL;
5619         struct rbd_client *rbdc;
5620         int rc;
5621
5622         if (!try_module_get(THIS_MODULE))
5623                 return -ENODEV;
5624
5625         /* parse add command */
5626         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5627         if (rc < 0)
5628                 goto out;
5629
5630         rbdc = rbd_get_client(ceph_opts);
5631         if (IS_ERR(rbdc)) {
5632                 rc = PTR_ERR(rbdc);
5633                 goto err_out_args;
5634         }
5635
5636         /* pick the pool */
5637         rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
5638         if (rc < 0) {
5639                 if (rc == -ENOENT)
5640                         pr_info("pool %s does not exist\n", spec->pool_name);
5641                 goto err_out_client;
5642         }
5643         spec->pool_id = (u64)rc;
5644
5645         rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5646         if (!rbd_dev) {
5647                 rc = -ENOMEM;
5648                 goto err_out_client;
5649         }
5650         rbdc = NULL;            /* rbd_dev now owns this */
5651         spec = NULL;            /* rbd_dev now owns this */
5652         rbd_opts = NULL;        /* rbd_dev now owns this */
5653
5654         rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
5655         if (!rbd_dev->config_info) {
5656                 rc = -ENOMEM;
5657                 goto err_out_rbd_dev;
5658         }
5659
5660         down_write(&rbd_dev->header_rwsem);
5661         rc = rbd_dev_image_probe(rbd_dev, 0);
5662         if (rc < 0) {
5663                 up_write(&rbd_dev->header_rwsem);
5664                 goto err_out_rbd_dev;
5665         }
5666
5667         /* If we are mapping a snapshot it must be marked read-only */
5668         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5669                 rbd_dev->opts->read_only = true;
5670
5671         rc = rbd_dev_device_setup(rbd_dev);
5672         if (rc)
5673                 goto err_out_image_probe;
5674
5675         if (rbd_dev->opts->exclusive) {
5676                 rc = rbd_add_acquire_lock(rbd_dev);
5677                 if (rc)
5678                         goto err_out_device_setup;
5679         }
5680
5681         /* Everything's ready.  Announce the disk to the world. */
5682
5683         rc = device_add(&rbd_dev->dev);
5684         if (rc)
5685                 goto err_out_image_lock;
5686
5687         add_disk(rbd_dev->disk);
5688         /* see rbd_init_disk() */
5689         blk_put_queue(rbd_dev->disk->queue);
5690
5691         spin_lock(&rbd_dev_list_lock);
5692         list_add_tail(&rbd_dev->node, &rbd_dev_list);
5693         spin_unlock(&rbd_dev_list_lock);
5694
5695         pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
5696                 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
5697                 rbd_dev->header.features);
5698         rc = count;
5699 out:
5700         module_put(THIS_MODULE);
5701         return rc;
5702
5703 err_out_image_lock:
5704         rbd_dev_image_unlock(rbd_dev);
5705 err_out_device_setup:
5706         rbd_dev_device_release(rbd_dev);
5707 err_out_image_probe:
5708         rbd_dev_image_release(rbd_dev);
5709 err_out_rbd_dev:
5710         rbd_dev_destroy(rbd_dev);
5711 err_out_client:
5712         rbd_put_client(rbdc);
5713 err_out_args:
5714         rbd_spec_put(spec);
5715         kfree(rbd_opts);
5716         goto out;
5717 }
5718
5719 static ssize_t rbd_add(struct bus_type *bus,
5720                        const char *buf,
5721                        size_t count)
5722 {
5723         if (single_major)
5724                 return -EINVAL;
5725
5726         return do_rbd_add(bus, buf, count);
5727 }
5728
5729 static ssize_t rbd_add_single_major(struct bus_type *bus,
5730                                     const char *buf,
5731                                     size_t count)
5732 {
5733         return do_rbd_add(bus, buf, count);
5734 }
5735
5736 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5737 {
5738         while (rbd_dev->parent) {
5739                 struct rbd_device *first = rbd_dev;
5740                 struct rbd_device *second = first->parent;
5741                 struct rbd_device *third;
5742
5743                 /*
5744                  * Follow to the parent with no grandparent and
5745                  * remove it.
5746                  */
5747                 while (second && (third = second->parent)) {
5748                         first = second;
5749                         second = third;
5750                 }
5751                 rbd_assert(second);
5752                 rbd_dev_image_release(second);
5753                 rbd_dev_destroy(second);
5754                 first->parent = NULL;
5755                 first->parent_overlap = 0;
5756
5757                 rbd_assert(first->parent_spec);
5758                 rbd_spec_put(first->parent_spec);
5759                 first->parent_spec = NULL;
5760         }
5761 }
5762
5763 static ssize_t do_rbd_remove(struct bus_type *bus,
5764                              const char *buf,
5765                              size_t count)
5766 {
5767         struct rbd_device *rbd_dev = NULL;
5768         struct list_head *tmp;
5769         int dev_id;
5770         char opt_buf[6];
5771         bool already = false;
5772         bool force = false;
5773         int ret;
5774
5775         dev_id = -1;
5776         opt_buf[0] = '\0';
5777         sscanf(buf, "%d %5s", &dev_id, opt_buf);
5778         if (dev_id < 0) {
5779                 pr_err("dev_id out of range\n");
5780                 return -EINVAL;
5781         }
5782         if (opt_buf[0] != '\0') {
5783                 if (!strcmp(opt_buf, "force")) {
5784                         force = true;
5785                 } else {
5786                         pr_err("bad remove option at '%s'\n", opt_buf);
5787                         return -EINVAL;
5788                 }
5789         }
5790
5791         ret = -ENOENT;
5792         spin_lock(&rbd_dev_list_lock);
5793         list_for_each(tmp, &rbd_dev_list) {
5794                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5795                 if (rbd_dev->dev_id == dev_id) {
5796                         ret = 0;
5797                         break;
5798                 }
5799         }
5800         if (!ret) {
5801                 spin_lock_irq(&rbd_dev->lock);
5802                 if (rbd_dev->open_count && !force)
5803                         ret = -EBUSY;
5804                 else
5805                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5806                                                         &rbd_dev->flags);
5807                 spin_unlock_irq(&rbd_dev->lock);
5808         }
5809         spin_unlock(&rbd_dev_list_lock);
5810         if (ret < 0 || already)
5811                 return ret;
5812
5813         if (force) {
5814                 /*
5815                  * Prevent new IO from being queued and wait for existing
5816                  * IO to complete/fail.
5817                  */
5818                 blk_mq_freeze_queue(rbd_dev->disk->queue);
5819                 blk_set_queue_dying(rbd_dev->disk->queue);
5820         }
5821
5822         del_gendisk(rbd_dev->disk);
5823         spin_lock(&rbd_dev_list_lock);
5824         list_del_init(&rbd_dev->node);
5825         spin_unlock(&rbd_dev_list_lock);
5826         device_del(&rbd_dev->dev);
5827
5828         rbd_dev_image_unlock(rbd_dev);
5829         rbd_dev_device_release(rbd_dev);
5830         rbd_dev_image_release(rbd_dev);
5831         rbd_dev_destroy(rbd_dev);
5832         return count;
5833 }
5834
5835 static ssize_t rbd_remove(struct bus_type *bus,
5836                           const char *buf,
5837                           size_t count)
5838 {
5839         if (single_major)
5840                 return -EINVAL;
5841
5842         return do_rbd_remove(bus, buf, count);
5843 }
5844
5845 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5846                                        const char *buf,
5847                                        size_t count)
5848 {
5849         return do_rbd_remove(bus, buf, count);
5850 }
5851
5852 /*
5853  * create control files in sysfs
5854  * /sys/bus/rbd/...
5855  */
5856 static int rbd_sysfs_init(void)
5857 {
5858         int ret;
5859
5860         ret = device_register(&rbd_root_dev);
5861         if (ret < 0)
5862                 return ret;
5863
5864         ret = bus_register(&rbd_bus_type);
5865         if (ret < 0)
5866                 device_unregister(&rbd_root_dev);
5867
5868         return ret;
5869 }
5870
5871 static void rbd_sysfs_cleanup(void)
5872 {
5873         bus_unregister(&rbd_bus_type);
5874         device_unregister(&rbd_root_dev);
5875 }
5876
5877 static int rbd_slab_init(void)
5878 {
5879         rbd_assert(!rbd_img_request_cache);
5880         rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
5881         if (!rbd_img_request_cache)
5882                 return -ENOMEM;
5883
5884         rbd_assert(!rbd_obj_request_cache);
5885         rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
5886         if (!rbd_obj_request_cache)
5887                 goto out_err;
5888
5889         return 0;
5890
5891 out_err:
5892         kmem_cache_destroy(rbd_img_request_cache);
5893         rbd_img_request_cache = NULL;
5894         return -ENOMEM;
5895 }
5896
5897 static void rbd_slab_exit(void)
5898 {
5899         rbd_assert(rbd_obj_request_cache);
5900         kmem_cache_destroy(rbd_obj_request_cache);
5901         rbd_obj_request_cache = NULL;
5902
5903         rbd_assert(rbd_img_request_cache);
5904         kmem_cache_destroy(rbd_img_request_cache);
5905         rbd_img_request_cache = NULL;
5906 }
5907
5908 static int __init rbd_init(void)
5909 {
5910         int rc;
5911
5912         if (!libceph_compatible(NULL)) {
5913                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5914                 return -EINVAL;
5915         }
5916
5917         rc = rbd_slab_init();
5918         if (rc)
5919                 return rc;
5920
5921         /*
5922          * The number of active work items is limited by the number of
5923          * rbd devices * queue depth, so leave @max_active at default.
5924          */
5925         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5926         if (!rbd_wq) {
5927                 rc = -ENOMEM;
5928                 goto err_out_slab;
5929         }
5930
5931         if (single_major) {
5932                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5933                 if (rbd_major < 0) {
5934                         rc = rbd_major;
5935                         goto err_out_wq;
5936                 }
5937         }
5938
5939         rc = rbd_sysfs_init();
5940         if (rc)
5941                 goto err_out_blkdev;
5942
5943         if (single_major)
5944                 pr_info("loaded (major %d)\n", rbd_major);
5945         else
5946                 pr_info("loaded\n");
5947
5948         return 0;
5949
5950 err_out_blkdev:
5951         if (single_major)
5952                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5953 err_out_wq:
5954         destroy_workqueue(rbd_wq);
5955 err_out_slab:
5956         rbd_slab_exit();
5957         return rc;
5958 }
5959
5960 static void __exit rbd_exit(void)
5961 {
5962         ida_destroy(&rbd_dev_id_ida);
5963         rbd_sysfs_cleanup();
5964         if (single_major)
5965                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5966         destroy_workqueue(rbd_wq);
5967         rbd_slab_exit();
5968 }
5969
5970 module_init(rbd_init);
5971 module_exit(rbd_exit);
5972
5973 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5974 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5975 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5976 /* following authorship retained from original osdblk.c */
5977 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5978
5979 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5980 MODULE_LICENSE("GPL");