3557aaac0610e35b66caae0fcb5a6c1c74eaf0db
[blktrace.git] / blkparse.c
1 /*
2  * block queue tracing parse application
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, write to the Free Software
19  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  *
21  */
22 #include <sys/types.h>
23 #include <sys/stat.h>
24 #include <unistd.h>
25 #include <stdio.h>
26 #include <fcntl.h>
27 #include <stdlib.h>
28 #include <string.h>
29 #include <getopt.h>
30 #include <errno.h>
31 #include <signal.h>
32 #include <locale.h>
33 #include <libgen.h>
34
35 #include "blktrace.h"
36 #include "rbtree.h"
37 #include "jhash.h"
38
39 static char blkparse_version[] = "0.99.2";
40
41 struct skip_info {
42         unsigned long start, end;
43         struct skip_info *prev, *next;
44 };
45
46 struct per_dev_info {
47         dev_t dev;
48         char *name;
49
50         int backwards;
51         unsigned long long events;
52         unsigned long long first_reported_time;
53         unsigned long long last_reported_time;
54         unsigned long long last_read_time;
55         struct io_stats io_stats;
56         unsigned long skips;
57         unsigned long long seq_skips;
58         unsigned int max_depth[2];
59         unsigned int cur_depth[2];
60
61         struct rb_root rb_track;
62
63         int nfiles;
64         int ncpus;
65
66         unsigned long *cpu_map;
67         unsigned int cpu_map_max;
68
69         struct per_cpu_info *cpus;
70 };
71
72 /*
73  * some duplicated effort here, we can unify this hash and the ppi hash later
74  */
75 struct process_pid_map {
76         pid_t pid;
77         char comm[16];
78         struct process_pid_map *hash_next, *list_next;
79 };
80
81 #define PPM_HASH_SHIFT  (8)
82 #define PPM_HASH_SIZE   (1 << PPM_HASH_SHIFT)
83 #define PPM_HASH_MASK   (PPM_HASH_SIZE - 1)
84 static struct process_pid_map *ppm_hash_table[PPM_HASH_SIZE];
85
86 struct per_process_info {
87         struct process_pid_map *ppm;
88         struct io_stats io_stats;
89         struct per_process_info *hash_next, *list_next;
90         int more_than_one;
91
92         /*
93          * individual io stats
94          */
95         unsigned long long longest_allocation_wait[2];
96         unsigned long long longest_dispatch_wait[2];
97         unsigned long long longest_completion_wait[2];
98 };
99
100 #define PPI_HASH_SHIFT  (8)
101 #define PPI_HASH_SIZE   (1 << PPI_HASH_SHIFT)
102 #define PPI_HASH_MASK   (PPI_HASH_SIZE - 1)
103 static struct per_process_info *ppi_hash_table[PPI_HASH_SIZE];
104 static struct per_process_info *ppi_list;
105 static int ppi_list_entries;
106
107 #define S_OPTS  "a:A:b:D:d:f:F:hi:o:Oqstw:vV"
108 static struct option l_opts[] = {
109         {
110                 .name = "act-mask",
111                 .has_arg = required_argument,
112                 .flag = NULL,
113                 .val = 'a'
114         },
115         {
116                 .name = "set-mask",
117                 .has_arg = required_argument,
118                 .flag = NULL,
119                 .val = 'A'
120         },
121         {
122                 .name = "batch",
123                 .has_arg = required_argument,
124                 .flag = NULL,
125                 .val = 'b'
126         },
127         {
128                 .name = "input-directory",
129                 .has_arg = required_argument,
130                 .flag = NULL,
131                 .val = 'D'
132         },
133         {
134                 .name = "dump-binary",
135                 .has_arg = required_argument,
136                 .flag = NULL,
137                 .val = 'd'
138         },
139         {
140                 .name = "format",
141                 .has_arg = required_argument,
142                 .flag = NULL,
143                 .val = 'f'
144         },
145         {
146                 .name = "format-spec",
147                 .has_arg = required_argument,
148                 .flag = NULL,
149                 .val = 'F'
150         },
151         {
152                 .name = "hash-by-name",
153                 .has_arg = no_argument,
154                 .flag = NULL,
155                 .val = 'h'
156         },
157         {
158                 .name = "input",
159                 .has_arg = required_argument,
160                 .flag = NULL,
161                 .val = 'i'
162         },
163         {
164                 .name = "output",
165                 .has_arg = required_argument,
166                 .flag = NULL,
167                 .val = 'o'
168         },
169         {
170                 .name = "no-text-output",
171                 .has_arg = no_argument,
172                 .flag = NULL,
173                 .val = 'O'
174         },
175         {
176                 .name = "quiet",
177                 .has_arg = no_argument,
178                 .flag = NULL,
179                 .val = 'q'
180         },
181         {
182                 .name = "per-program-stats",
183                 .has_arg = no_argument,
184                 .flag = NULL,
185                 .val = 's'
186         },
187         {
188                 .name = "track-ios",
189                 .has_arg = no_argument,
190                 .flag = NULL,
191                 .val = 't'
192         },
193         {
194                 .name = "stopwatch",
195                 .has_arg = required_argument,
196                 .flag = NULL,
197                 .val = 'w'
198         },
199         {
200                 .name = "verbose",
201                 .has_arg = no_argument,
202                 .flag = NULL,
203                 .val = 'v'
204         },
205         {
206                 .name = "version",
207                 .has_arg = no_argument,
208                 .flag = NULL,
209                 .val = 'V'
210         },
211         {
212                 .name = NULL,
213         }
214 };
215
216 /*
217  * for sorting the displayed output
218  */
219 struct trace {
220         struct blk_io_trace *bit;
221         struct rb_node rb_node;
222         struct trace *next;
223         unsigned long read_sequence;
224 };
225
226 static struct rb_root rb_sort_root;
227 static unsigned long rb_sort_entries;
228
229 static struct trace *trace_list;
230
231 /*
232  * allocation cache
233  */
234 static struct blk_io_trace *bit_alloc_list;
235 static struct trace *t_alloc_list;
236
237 /*
238  * for tracking individual ios
239  */
240 struct io_track {
241         struct rb_node rb_node;
242
243         struct process_pid_map *ppm;
244         __u64 sector;
245         unsigned long long allocation_time;
246         unsigned long long queue_time;
247         unsigned long long dispatch_time;
248         unsigned long long completion_time;
249 };
250
251 static int ndevices;
252 static struct per_dev_info *devices;
253 static char *get_dev_name(struct per_dev_info *, char *, int);
254 static int trace_rb_insert_last(struct per_dev_info *, struct trace *);
255
256 FILE *ofp = NULL;
257 static char *output_name;
258 static char *input_dir;
259
260 static unsigned long long genesis_time;
261 static unsigned long long last_allowed_time;
262 static unsigned long long stopwatch_start;      /* start from zero by default */
263 static unsigned long long stopwatch_end = -1ULL;        /* "infinity" */
264 static unsigned long read_sequence;
265
266 static int per_process_stats;
267 static int per_device_and_cpu_stats = 1;
268 static int track_ios;
269 static int ppi_hash_by_pid = 1;
270 static int verbose;
271 static unsigned int act_mask = -1U;
272 static int stats_printed;
273 int data_is_native = -1;
274
275 static FILE *dump_fp;
276 static char *dump_binary;
277
278 static unsigned int t_alloc_cache;
279 static unsigned int bit_alloc_cache;
280
281 #define RB_BATCH_DEFAULT        (512)
282 static unsigned int rb_batch = RB_BATCH_DEFAULT;
283
284 static int pipeline;
285 static char *pipename;
286
287 static int text_output = 1;
288
289 #define is_done()       (*(volatile int *)(&done))
290 static volatile int done;
291
292 struct timespec         abs_start_time;
293 static unsigned long long start_timestamp;
294
295 #define JHASH_RANDOM    (0x3af5f2ee)
296
297 #define CPUS_PER_LONG   (8 * sizeof(unsigned long))
298 #define CPU_IDX(cpu)    ((cpu) / CPUS_PER_LONG)
299 #define CPU_BIT(cpu)    ((cpu) & (CPUS_PER_LONG - 1))
300
301 static void output_binary(void *buf, int len)
302 {
303         if (dump_binary) {
304                 size_t n = fwrite(buf, len, 1, dump_fp);
305                 if (n != 1) {
306                         perror(dump_binary);
307                         fclose(dump_fp);
308                         dump_binary = NULL;
309                 }
310         }
311 }
312
313 static void resize_cpu_info(struct per_dev_info *pdi, int cpu)
314 {
315         struct per_cpu_info *cpus = pdi->cpus;
316         int ncpus = pdi->ncpus;
317         int new_count = cpu + 1;
318         int new_space, size;
319         char *new_start;
320
321         size = new_count * sizeof(struct per_cpu_info);
322         cpus = realloc(cpus, size);
323         if (!cpus) {
324                 char name[20];
325                 fprintf(stderr, "Out of memory, CPU info for device %s (%d)\n",
326                         get_dev_name(pdi, name, sizeof(name)), size);
327                 exit(1);
328         }
329
330         new_start = (char *)cpus + (ncpus * sizeof(struct per_cpu_info));
331         new_space = (new_count - ncpus) * sizeof(struct per_cpu_info);
332         memset(new_start, 0, new_space);
333
334         pdi->ncpus = new_count;
335         pdi->cpus = cpus;
336
337         for (new_count = 0; new_count < pdi->ncpus; new_count++) {
338                 struct per_cpu_info *pci = &pdi->cpus[new_count];
339
340                 if (!pci->fd) {
341                         pci->fd = -1;
342                         memset(&pci->rb_last, 0, sizeof(pci->rb_last));
343                         pci->rb_last_entries = 0;
344                         pci->last_sequence = -1;
345                 }
346         }
347 }
348
349 static struct per_cpu_info *get_cpu_info(struct per_dev_info *pdi, int cpu)
350 {
351         struct per_cpu_info *pci;
352
353         if (cpu >= pdi->ncpus)
354                 resize_cpu_info(pdi, cpu);
355
356         pci = &pdi->cpus[cpu];
357         pci->cpu = cpu;
358         return pci;
359 }
360
361
362 static int resize_devices(char *name)
363 {
364         int size = (ndevices + 1) * sizeof(struct per_dev_info);
365
366         devices = realloc(devices, size);
367         if (!devices) {
368                 fprintf(stderr, "Out of memory, device %s (%d)\n", name, size);
369                 return 1;
370         }
371         memset(&devices[ndevices], 0, sizeof(struct per_dev_info));
372         devices[ndevices].name = name;
373         ndevices++;
374         return 0;
375 }
376
377 static struct per_dev_info *get_dev_info(dev_t dev)
378 {
379         struct per_dev_info *pdi;
380         int i;
381
382         for (i = 0; i < ndevices; i++) {
383                 if (!devices[i].dev)
384                         devices[i].dev = dev;
385                 if (devices[i].dev == dev)
386                         return &devices[i];
387         }
388
389         if (resize_devices(NULL))
390                 return NULL;
391
392         pdi = &devices[ndevices - 1];
393         pdi->dev = dev;
394         pdi->first_reported_time = 0;
395         pdi->last_read_time = 0;
396
397         return pdi;
398 }
399
400 static void insert_skip(struct per_cpu_info *pci, unsigned long start,
401                         unsigned long end)
402 {
403         struct skip_info *sip;
404
405         for (sip = pci->skips_tail; sip != NULL; sip = sip->prev) {
406                 if (end == (sip->start - 1)) {
407                         sip->start = start;
408                         return;
409                 } else if (start == (sip->end + 1)) {
410                         sip->end = end;
411                         return;
412                 }
413         }
414
415         sip = malloc(sizeof(struct skip_info));
416         sip->start = start;
417         sip->end = end;
418         sip->prev = sip->next = NULL;
419         if (pci->skips_tail == NULL)
420                 pci->skips_head = pci->skips_tail = sip;
421         else {
422                 sip->prev = pci->skips_tail;
423                 pci->skips_tail->next = sip;
424                 pci->skips_tail = sip;
425         }
426 }
427
428 static void remove_sip(struct per_cpu_info *pci, struct skip_info *sip)
429 {
430         if (sip->prev == NULL) {
431                 if (sip->next == NULL)
432                         pci->skips_head = pci->skips_tail = NULL;
433                 else {
434                         pci->skips_head = sip->next;
435                         sip->next->prev = NULL;
436                 }
437         } else if (sip->next == NULL) {
438                 pci->skips_tail = sip->prev;
439                 sip->prev->next = NULL;
440         } else {
441                 sip->prev->next = sip->next;
442                 sip->next->prev = sip->prev;
443         }
444
445         sip->prev = sip->next = NULL;
446         free(sip);
447 }
448
449 #define IN_SKIP(sip,seq) (((sip)->start <= (seq)) && ((seq) <= sip->end))
450 static int check_current_skips(struct per_cpu_info *pci, unsigned long seq)
451 {
452         struct skip_info *sip;
453
454         for (sip = pci->skips_tail; sip != NULL; sip = sip->prev) {
455                 if (IN_SKIP(sip, seq)) {
456                         if (sip->start == seq) {
457                                 if (sip->end == seq)
458                                         remove_sip(pci, sip);
459                                 else
460                                         sip->start += 1;
461                         } else if (sip->end == seq)
462                                 sip->end -= 1;
463                         else {
464                                 sip->end = seq - 1;
465                                 insert_skip(pci, seq + 1, sip->end);
466                         }
467                         return 1;
468                 }
469         }
470
471         return 0;
472 }
473
474 static void collect_pdi_skips(struct per_dev_info *pdi)
475 {
476         struct skip_info *sip;
477         int cpu;
478
479         pdi->skips = 0;
480         pdi->seq_skips = 0;
481
482         for (cpu = 0; cpu < pdi->ncpus; cpu++) {
483                 struct per_cpu_info *pci = &pdi->cpus[cpu];
484
485                 for (sip = pci->skips_head; sip != NULL; sip = sip->next) {
486                         pdi->skips++;
487                         pdi->seq_skips += (sip->end - sip->start + 1);
488                         if (verbose)
489                                 fprintf(stderr,"(%d,%d): skipping %lu -> %lu\n",
490                                         MAJOR(pdi->dev), MINOR(pdi->dev),
491                                         sip->start, sip->end);
492                 }
493         }
494 }
495
496 static void cpu_mark_online(struct per_dev_info *pdi, unsigned int cpu)
497 {
498         if (cpu >= pdi->cpu_map_max || !pdi->cpu_map) {
499                 int new_max = (cpu + CPUS_PER_LONG) & ~(CPUS_PER_LONG - 1);
500                 unsigned long *map = malloc(new_max / sizeof(long));
501
502                 memset(map, 0, new_max / sizeof(long));
503
504                 if (pdi->cpu_map) {
505                         memcpy(map, pdi->cpu_map, pdi->cpu_map_max / sizeof(long));
506                         free(pdi->cpu_map);
507                 }
508
509                 pdi->cpu_map = map;
510                 pdi->cpu_map_max = new_max;
511         }
512
513         pdi->cpu_map[CPU_IDX(cpu)] |= (1UL << CPU_BIT(cpu));
514 }
515
516 static inline void cpu_mark_offline(struct per_dev_info *pdi, int cpu)
517 {
518         pdi->cpu_map[CPU_IDX(cpu)] &= ~(1UL << CPU_BIT(cpu));
519 }
520
521 static inline int cpu_is_online(struct per_dev_info *pdi, int cpu)
522 {
523         return (pdi->cpu_map[CPU_IDX(cpu)] & (1UL << CPU_BIT(cpu))) != 0;
524 }
525
526 static inline int ppm_hash_pid(pid_t pid)
527 {
528         return jhash_1word(pid, JHASH_RANDOM) & PPM_HASH_MASK;
529 }
530
531 static struct process_pid_map *find_ppm(pid_t pid)
532 {
533         const int hash_idx = ppm_hash_pid(pid);
534         struct process_pid_map *ppm;
535
536         ppm = ppm_hash_table[hash_idx];
537         while (ppm) {
538                 if (ppm->pid == pid)
539                         return ppm;
540
541                 ppm = ppm->hash_next;
542         }
543
544         return NULL;
545 }
546
547 static void add_ppm_hash(pid_t pid, const char *name)
548 {
549         const int hash_idx = ppm_hash_pid(pid);
550         struct process_pid_map *ppm;
551
552         ppm = find_ppm(pid);
553         if (!ppm) {
554                 ppm = malloc(sizeof(*ppm));
555                 memset(ppm, 0, sizeof(*ppm));
556                 ppm->pid = pid;
557                 strcpy(ppm->comm, name);
558                 ppm->hash_next = ppm_hash_table[hash_idx];
559                 ppm_hash_table[hash_idx] = ppm;
560         }
561 }
562
563 static void handle_notify(struct blk_io_trace *bit)
564 {
565         void    *payload = (caddr_t) bit + sizeof(*bit);
566         __u32   two32[2];
567
568         switch (bit->action) {
569         case BLK_TN_PROCESS:
570                 add_ppm_hash(bit->pid, payload);
571                 break;
572
573         case BLK_TN_TIMESTAMP:
574                 if (bit->pdu_len != sizeof(two32))
575                         return;
576                 memcpy(two32, payload, sizeof(two32));
577                 if (!data_is_native) {
578                         two32[0] = be32_to_cpu(two32[0]);
579                         two32[1] = be32_to_cpu(two32[1]);
580                 }
581                 start_timestamp = bit->time;
582                 abs_start_time.tv_sec  = two32[0];
583                 abs_start_time.tv_nsec = two32[1];
584                 if (abs_start_time.tv_nsec < 0) {
585                         abs_start_time.tv_sec--;
586                         abs_start_time.tv_nsec += 1000000000;
587                 }
588
589                 break;
590
591         default:
592                 /* Ignore unknown notify events */
593                 ;
594         }
595 }
596
597 char *find_process_name(pid_t pid)
598 {
599         struct process_pid_map *ppm = find_ppm(pid);
600
601         if (ppm)
602                 return ppm->comm;
603
604         return NULL;
605 }
606
607 static inline int ppi_hash_pid(pid_t pid)
608 {
609         return jhash_1word(pid, JHASH_RANDOM) & PPI_HASH_MASK;
610 }
611
612 static inline int ppi_hash_name(const char *name)
613 {
614         return jhash(name, 16, JHASH_RANDOM) & PPI_HASH_MASK;
615 }
616
617 static inline int ppi_hash(struct per_process_info *ppi)
618 {
619         struct process_pid_map *ppm = ppi->ppm;
620
621         if (ppi_hash_by_pid)
622                 return ppi_hash_pid(ppm->pid);
623
624         return ppi_hash_name(ppm->comm);
625 }
626
627 static inline void add_ppi_to_hash(struct per_process_info *ppi)
628 {
629         const int hash_idx = ppi_hash(ppi);
630
631         ppi->hash_next = ppi_hash_table[hash_idx];
632         ppi_hash_table[hash_idx] = ppi;
633 }
634
635 static inline void add_ppi_to_list(struct per_process_info *ppi)
636 {
637         ppi->list_next = ppi_list;
638         ppi_list = ppi;
639         ppi_list_entries++;
640 }
641
642 static struct per_process_info *find_ppi_by_name(char *name)
643 {
644         const int hash_idx = ppi_hash_name(name);
645         struct per_process_info *ppi;
646
647         ppi = ppi_hash_table[hash_idx];
648         while (ppi) {
649                 struct process_pid_map *ppm = ppi->ppm;
650
651                 if (!strcmp(ppm->comm, name))
652                         return ppi;
653
654                 ppi = ppi->hash_next;
655         }
656
657         return NULL;
658 }
659
660 static struct per_process_info *find_ppi_by_pid(pid_t pid)
661 {
662         const int hash_idx = ppi_hash_pid(pid);
663         struct per_process_info *ppi;
664
665         ppi = ppi_hash_table[hash_idx];
666         while (ppi) {
667                 struct process_pid_map *ppm = ppi->ppm;
668
669                 if (ppm->pid == pid)
670                         return ppi;
671
672                 ppi = ppi->hash_next;
673         }
674
675         return NULL;
676 }
677
678 static struct per_process_info *find_ppi(pid_t pid)
679 {
680         struct per_process_info *ppi;
681         char *name;
682
683         if (ppi_hash_by_pid)
684                 return find_ppi_by_pid(pid);
685
686         name = find_process_name(pid);
687         if (!name)
688                 return NULL;
689
690         ppi = find_ppi_by_name(name);
691         if (ppi && ppi->ppm->pid != pid)
692                 ppi->more_than_one = 1;
693
694         return ppi;
695 }
696
697 /*
698  * struct trace and blktrace allocation cache, we do potentially
699  * millions of mallocs for these structures while only using at most
700  * a few thousand at the time
701  */
702 static inline void t_free(struct trace *t)
703 {
704         if (t_alloc_cache < 1024) {
705                 t->next = t_alloc_list;
706                 t_alloc_list = t;
707                 t_alloc_cache++;
708         } else
709                 free(t);
710 }
711
712 static inline struct trace *t_alloc(void)
713 {
714         struct trace *t = t_alloc_list;
715
716         if (t) {
717                 t_alloc_list = t->next;
718                 t_alloc_cache--;
719                 return t;
720         }
721
722         return malloc(sizeof(*t));
723 }
724
725 static inline void bit_free(struct blk_io_trace *bit)
726 {
727         if (bit_alloc_cache < 1024 && !bit->pdu_len) {
728                 /*
729                  * abuse a 64-bit field for a next pointer for the free item
730                  */
731                 bit->time = (__u64) (unsigned long) bit_alloc_list;
732                 bit_alloc_list = (struct blk_io_trace *) bit;
733                 bit_alloc_cache++;
734         } else
735                 free(bit);
736 }
737
738 static inline struct blk_io_trace *bit_alloc(void)
739 {
740         struct blk_io_trace *bit = bit_alloc_list;
741
742         if (bit) {
743                 bit_alloc_list = (struct blk_io_trace *) (unsigned long) \
744                                  bit->time;
745                 bit_alloc_cache--;
746                 return bit;
747         }
748
749         return malloc(sizeof(*bit));
750 }
751
752 static inline void __put_trace_last(struct per_dev_info *pdi, struct trace *t)
753 {
754         struct per_cpu_info *pci = get_cpu_info(pdi, t->bit->cpu);
755
756         rb_erase(&t->rb_node, &pci->rb_last);
757         pci->rb_last_entries--;
758
759         bit_free(t->bit);
760         t_free(t);
761 }
762
763 static void put_trace(struct per_dev_info *pdi, struct trace *t)
764 {
765         rb_erase(&t->rb_node, &rb_sort_root);
766         rb_sort_entries--;
767
768         trace_rb_insert_last(pdi, t);
769 }
770
771 static inline int trace_rb_insert(struct trace *t, struct rb_root *root)
772 {
773         struct rb_node **p = &root->rb_node;
774         struct rb_node *parent = NULL;
775         struct trace *__t;
776
777         while (*p) {
778                 parent = *p;
779
780                 __t = rb_entry(parent, struct trace, rb_node);
781
782                 if (t->bit->time < __t->bit->time)
783                         p = &(*p)->rb_left;
784                 else if (t->bit->time > __t->bit->time)
785                         p = &(*p)->rb_right;
786                 else if (t->bit->device < __t->bit->device)
787                         p = &(*p)->rb_left;
788                 else if (t->bit->device > __t->bit->device)
789                         p = &(*p)->rb_right;
790                 else if (t->bit->sequence < __t->bit->sequence)
791                         p = &(*p)->rb_left;
792                 else    /* >= sequence */
793                         p = &(*p)->rb_right;
794         }
795
796         rb_link_node(&t->rb_node, parent, p);
797         rb_insert_color(&t->rb_node, root);
798         return 0;
799 }
800
801 static inline int trace_rb_insert_sort(struct trace *t)
802 {
803         if (!trace_rb_insert(t, &rb_sort_root)) {
804                 rb_sort_entries++;
805                 return 0;
806         }
807
808         return 1;
809 }
810
811 static int trace_rb_insert_last(struct per_dev_info *pdi, struct trace *t)
812 {
813         struct per_cpu_info *pci = get_cpu_info(pdi, t->bit->cpu);
814
815         if (trace_rb_insert(t, &pci->rb_last))
816                 return 1;
817
818         pci->rb_last_entries++;
819
820         if (pci->rb_last_entries > rb_batch * pdi->nfiles) {
821                 struct rb_node *n = rb_first(&pci->rb_last);
822
823                 t = rb_entry(n, struct trace, rb_node);
824                 __put_trace_last(pdi, t);
825         }
826
827         return 0;
828 }
829
830 static struct trace *trace_rb_find(dev_t device, unsigned long sequence,
831                                    struct rb_root *root, int order)
832 {
833         struct rb_node *n = root->rb_node;
834         struct rb_node *prev = NULL;
835         struct trace *__t;
836
837         while (n) {
838                 __t = rb_entry(n, struct trace, rb_node);
839                 prev = n;
840
841                 if (device < __t->bit->device)
842                         n = n->rb_left;
843                 else if (device > __t->bit->device)
844                         n = n->rb_right;
845                 else if (sequence < __t->bit->sequence)
846                         n = n->rb_left;
847                 else if (sequence > __t->bit->sequence)
848                         n = n->rb_right;
849                 else
850                         return __t;
851         }
852
853         /*
854          * hack - the list may not be sequence ordered because some
855          * events don't have sequence and time matched. so we end up
856          * being a little off in the rb lookup here, because we don't
857          * know the time we are looking for. compensate by browsing
858          * a little ahead from the last entry to find the match
859          */
860         if (order && prev) {
861                 int max = 5;
862
863                 while (((n = rb_next(prev)) != NULL) && max--) {
864                         __t = rb_entry(n, struct trace, rb_node);
865
866                         if (__t->bit->device == device &&
867                             __t->bit->sequence == sequence)
868                                 return __t;
869
870                         prev = n;
871                 }
872         }
873
874         return NULL;
875 }
876
877 static inline struct trace *trace_rb_find_last(struct per_dev_info *pdi,
878                                                struct per_cpu_info *pci,
879                                                unsigned long seq)
880 {
881         return trace_rb_find(pdi->dev, seq, &pci->rb_last, 0);
882 }
883
884 static inline int track_rb_insert(struct per_dev_info *pdi,struct io_track *iot)
885 {
886         struct rb_node **p = &pdi->rb_track.rb_node;
887         struct rb_node *parent = NULL;
888         struct io_track *__iot;
889
890         while (*p) {
891                 parent = *p;
892                 __iot = rb_entry(parent, struct io_track, rb_node);
893
894                 if (iot->sector < __iot->sector)
895                         p = &(*p)->rb_left;
896                 else if (iot->sector > __iot->sector)
897                         p = &(*p)->rb_right;
898                 else {
899                         fprintf(stderr,
900                                 "sector alias (%Lu) on device %d,%d!\n",
901                                 (unsigned long long) iot->sector,
902                                 MAJOR(pdi->dev), MINOR(pdi->dev));
903                         return 1;
904                 }
905         }
906
907         rb_link_node(&iot->rb_node, parent, p);
908         rb_insert_color(&iot->rb_node, &pdi->rb_track);
909         return 0;
910 }
911
912 static struct io_track *__find_track(struct per_dev_info *pdi, __u64 sector)
913 {
914         struct rb_node *n = pdi->rb_track.rb_node;
915         struct io_track *__iot;
916
917         while (n) {
918                 __iot = rb_entry(n, struct io_track, rb_node);
919
920                 if (sector < __iot->sector)
921                         n = n->rb_left;
922                 else if (sector > __iot->sector)
923                         n = n->rb_right;
924                 else
925                         return __iot;
926         }
927
928         return NULL;
929 }
930
931 static struct io_track *find_track(struct per_dev_info *pdi, pid_t pid,
932                                    __u64 sector)
933 {
934         struct io_track *iot;
935
936         iot = __find_track(pdi, sector);
937         if (!iot) {
938                 iot = malloc(sizeof(*iot));
939                 iot->ppm = find_ppm(pid);
940                 iot->sector = sector;
941                 track_rb_insert(pdi, iot);
942         }
943
944         return iot;
945 }
946
947 static void log_track_frontmerge(struct per_dev_info *pdi,
948                                  struct blk_io_trace *t)
949 {
950         struct io_track *iot;
951
952         if (!track_ios)
953                 return;
954
955         iot = __find_track(pdi, t->sector + t_sec(t));
956         if (!iot) {
957                 if (verbose)
958                         fprintf(stderr, "merge not found for (%d,%d): %llu\n",
959                                 MAJOR(pdi->dev), MINOR(pdi->dev),
960                                 (unsigned long long) t->sector + t_sec(t));
961                 return;
962         }
963
964         rb_erase(&iot->rb_node, &pdi->rb_track);
965         iot->sector -= t_sec(t);
966         track_rb_insert(pdi, iot);
967 }
968
969 static void log_track_getrq(struct per_dev_info *pdi, struct blk_io_trace *t)
970 {
971         struct io_track *iot;
972
973         if (!track_ios)
974                 return;
975
976         iot = find_track(pdi, t->pid, t->sector);
977         iot->allocation_time = t->time;
978 }
979
980 static inline int is_remapper(struct per_dev_info *pdi)
981 {
982         int major = MAJOR(pdi->dev);
983
984         return (major == 253 || major == 9);
985 }
986
987 /*
988  * for md/dm setups, the interesting cycle is Q -> C. So track queueing
989  * time here, as dispatch time
990  */
991 static void log_track_queue(struct per_dev_info *pdi, struct blk_io_trace *t)
992 {
993         struct io_track *iot;
994
995         if (!track_ios)
996                 return;
997         if (!is_remapper(pdi))
998                 return;
999
1000         iot = find_track(pdi, t->pid, t->sector);
1001         iot->dispatch_time = t->time;
1002 }
1003
1004 /*
1005  * return time between rq allocation and insertion
1006  */
1007 static unsigned long long log_track_insert(struct per_dev_info *pdi,
1008                                            struct blk_io_trace *t)
1009 {
1010         unsigned long long elapsed;
1011         struct io_track *iot;
1012
1013         if (!track_ios)
1014                 return -1;
1015
1016         iot = find_track(pdi, t->pid, t->sector);
1017         iot->queue_time = t->time;
1018
1019         if (!iot->allocation_time)
1020                 return -1;
1021
1022         elapsed = iot->queue_time - iot->allocation_time;
1023
1024         if (per_process_stats) {
1025                 struct per_process_info *ppi = find_ppi(iot->ppm->pid);
1026                 int w = (t->action & BLK_TC_ACT(BLK_TC_WRITE)) != 0;
1027
1028                 if (ppi && elapsed > ppi->longest_allocation_wait[w])
1029                         ppi->longest_allocation_wait[w] = elapsed;
1030         }
1031
1032         return elapsed;
1033 }
1034
1035 /*
1036  * return time between queue and issue
1037  */
1038 static unsigned long long log_track_issue(struct per_dev_info *pdi,
1039                                           struct blk_io_trace *t)
1040 {
1041         unsigned long long elapsed;
1042         struct io_track *iot;
1043
1044         if (!track_ios)
1045                 return -1;
1046         if ((t->action & BLK_TC_ACT(BLK_TC_FS)) == 0)
1047                 return -1;
1048
1049         iot = __find_track(pdi, t->sector);
1050         if (!iot) {
1051                 if (verbose)
1052                         fprintf(stderr, "issue not found for (%d,%d): %llu\n",
1053                                 MAJOR(pdi->dev), MINOR(pdi->dev),
1054                                 (unsigned long long) t->sector);
1055                 return -1;
1056         }
1057
1058         iot->dispatch_time = t->time;
1059         elapsed = iot->dispatch_time - iot->queue_time;
1060
1061         if (per_process_stats) {
1062                 struct per_process_info *ppi = find_ppi(iot->ppm->pid);
1063                 int w = (t->action & BLK_TC_ACT(BLK_TC_WRITE)) != 0;
1064
1065                 if (ppi && elapsed > ppi->longest_dispatch_wait[w])
1066                         ppi->longest_dispatch_wait[w] = elapsed;
1067         }
1068
1069         return elapsed;
1070 }
1071
1072 /*
1073  * return time between dispatch and complete
1074  */
1075 static unsigned long long log_track_complete(struct per_dev_info *pdi,
1076                                              struct blk_io_trace *t)
1077 {
1078         unsigned long long elapsed;
1079         struct io_track *iot;
1080
1081         if (!track_ios)
1082                 return -1;
1083
1084         iot = __find_track(pdi, t->sector);
1085         if (!iot) {
1086                 if (verbose)
1087                         fprintf(stderr,"complete not found for (%d,%d): %llu\n",
1088                                 MAJOR(pdi->dev), MINOR(pdi->dev),
1089                                 (unsigned long long) t->sector);
1090                 return -1;
1091         }
1092
1093         iot->completion_time = t->time;
1094         elapsed = iot->completion_time - iot->dispatch_time;
1095
1096         if (per_process_stats) {
1097                 struct per_process_info *ppi = find_ppi(iot->ppm->pid);
1098                 int w = (t->action & BLK_TC_ACT(BLK_TC_WRITE)) != 0;
1099
1100                 if (ppi && elapsed > ppi->longest_completion_wait[w])
1101                         ppi->longest_completion_wait[w] = elapsed;
1102         }
1103
1104         /*
1105          * kill the trace, we don't need it after completion
1106          */
1107         rb_erase(&iot->rb_node, &pdi->rb_track);
1108         free(iot);
1109
1110         return elapsed;
1111 }
1112
1113
1114 static struct io_stats *find_process_io_stats(pid_t pid)
1115 {
1116         struct per_process_info *ppi = find_ppi(pid);
1117
1118         if (!ppi) {
1119                 ppi = malloc(sizeof(*ppi));
1120                 memset(ppi, 0, sizeof(*ppi));
1121                 ppi->ppm = find_ppm(pid);
1122                 add_ppi_to_hash(ppi);
1123                 add_ppi_to_list(ppi);
1124         }
1125
1126         return &ppi->io_stats;
1127 }
1128
1129 static char *get_dev_name(struct per_dev_info *pdi, char *buffer, int size)
1130 {
1131         if (pdi->name)
1132                 snprintf(buffer, size, "%s", pdi->name);
1133         else
1134                 snprintf(buffer, size, "%d,%d",MAJOR(pdi->dev),MINOR(pdi->dev));
1135         return buffer;
1136 }
1137
1138 static void check_time(struct per_dev_info *pdi, struct blk_io_trace *bit)
1139 {
1140         unsigned long long this = bit->time;
1141         unsigned long long last = pdi->last_reported_time;
1142
1143         pdi->backwards = (this < last) ? 'B' : ' ';
1144         pdi->last_reported_time = this;
1145 }
1146
1147 static inline void __account_m(struct io_stats *ios, struct blk_io_trace *t,
1148                                int rw)
1149 {
1150         if (rw) {
1151                 ios->mwrites++;
1152                 ios->qwrite_kb += t_kb(t);
1153         } else {
1154                 ios->mreads++;
1155                 ios->qread_kb += t_kb(t);
1156         }
1157 }
1158
1159 static inline void account_m(struct blk_io_trace *t, struct per_cpu_info *pci,
1160                              int rw)
1161 {
1162         __account_m(&pci->io_stats, t, rw);
1163
1164         if (per_process_stats) {
1165                 struct io_stats *ios = find_process_io_stats(t->pid);
1166
1167                 __account_m(ios, t, rw);
1168         }
1169 }
1170
1171 static inline void __account_queue(struct io_stats *ios, struct blk_io_trace *t,
1172                                    int rw)
1173 {
1174         if (rw) {
1175                 ios->qwrites++;
1176                 ios->qwrite_kb += t_kb(t);
1177         } else {
1178                 ios->qreads++;
1179                 ios->qread_kb += t_kb(t);
1180         }
1181 }
1182
1183 static inline void account_queue(struct blk_io_trace *t,
1184                                  struct per_cpu_info *pci, int rw)
1185 {
1186         __account_queue(&pci->io_stats, t, rw);
1187
1188         if (per_process_stats) {
1189                 struct io_stats *ios = find_process_io_stats(t->pid);
1190
1191                 __account_queue(ios, t, rw);
1192         }
1193 }
1194
1195 static inline void __account_c(struct io_stats *ios, int rw, int bytes)
1196 {
1197         if (rw) {
1198                 ios->cwrites++;
1199                 ios->cwrite_kb += bytes >> 10;
1200         } else {
1201                 ios->creads++;
1202                 ios->cread_kb += bytes >> 10;
1203         }
1204 }
1205
1206 static inline void account_c(struct blk_io_trace *t, struct per_cpu_info *pci,
1207                              int rw, int bytes)
1208 {
1209         __account_c(&pci->io_stats, rw, bytes);
1210
1211         if (per_process_stats) {
1212                 struct io_stats *ios = find_process_io_stats(t->pid);
1213
1214                 __account_c(ios, rw, bytes);
1215         }
1216 }
1217
1218 static inline void __account_issue(struct io_stats *ios, int rw,
1219                                    unsigned int bytes)
1220 {
1221         if (rw) {
1222                 ios->iwrites++;
1223                 ios->iwrite_kb += bytes >> 10;
1224         } else {
1225                 ios->ireads++;
1226                 ios->iread_kb += bytes >> 10;
1227         }
1228 }
1229
1230 static inline void account_issue(struct blk_io_trace *t,
1231                                  struct per_cpu_info *pci, int rw)
1232 {
1233         __account_issue(&pci->io_stats, rw, t->bytes);
1234
1235         if (per_process_stats) {
1236                 struct io_stats *ios = find_process_io_stats(t->pid);
1237
1238                 __account_issue(ios, rw, t->bytes);
1239         }
1240 }
1241
1242 static inline void __account_unplug(struct io_stats *ios, int timer)
1243 {
1244         if (timer)
1245                 ios->timer_unplugs++;
1246         else
1247                 ios->io_unplugs++;
1248 }
1249
1250 static inline void account_unplug(struct blk_io_trace *t,
1251                                   struct per_cpu_info *pci, int timer)
1252 {
1253         __account_unplug(&pci->io_stats, timer);
1254
1255         if (per_process_stats) {
1256                 struct io_stats *ios = find_process_io_stats(t->pid);
1257
1258                 __account_unplug(ios, timer);
1259         }
1260 }
1261
1262 static inline void __account_requeue(struct io_stats *ios,
1263                                      struct blk_io_trace *t, int rw)
1264 {
1265         if (rw) {
1266                 ios->wrqueue++;
1267                 ios->iwrite_kb -= t_kb(t);
1268         } else {
1269                 ios->rrqueue++;
1270                 ios->iread_kb -= t_kb(t);
1271         }
1272 }
1273
1274 static inline void account_requeue(struct blk_io_trace *t,
1275                                    struct per_cpu_info *pci, int rw)
1276 {
1277         __account_requeue(&pci->io_stats, t, rw);
1278
1279         if (per_process_stats) {
1280                 struct io_stats *ios = find_process_io_stats(t->pid);
1281
1282                 __account_requeue(ios, t, rw);
1283         }
1284 }
1285
1286 static void log_complete(struct per_dev_info *pdi, struct per_cpu_info *pci,
1287                          struct blk_io_trace *t, char *act)
1288 {
1289         process_fmt(act, pci, t, log_track_complete(pdi, t), 0, NULL);
1290 }
1291
1292 static void log_insert(struct per_dev_info *pdi, struct per_cpu_info *pci,
1293                        struct blk_io_trace *t, char *act)
1294 {
1295         process_fmt(act, pci, t, log_track_insert(pdi, t), 0, NULL);
1296 }
1297
1298 static void log_queue(struct per_cpu_info *pci, struct blk_io_trace *t,
1299                       char *act)
1300 {
1301         process_fmt(act, pci, t, -1, 0, NULL);
1302 }
1303
1304 static void log_issue(struct per_dev_info *pdi, struct per_cpu_info *pci,
1305                       struct blk_io_trace *t, char *act)
1306 {
1307         process_fmt(act, pci, t, log_track_issue(pdi, t), 0, NULL);
1308 }
1309
1310 static void log_merge(struct per_dev_info *pdi, struct per_cpu_info *pci,
1311                       struct blk_io_trace *t, char *act)
1312 {
1313         if (act[0] == 'F')
1314                 log_track_frontmerge(pdi, t);
1315
1316         process_fmt(act, pci, t, -1ULL, 0, NULL);
1317 }
1318
1319 static void log_action(struct per_cpu_info *pci, struct blk_io_trace *t,
1320                         char *act)
1321 {
1322         process_fmt(act, pci, t, -1ULL, 0, NULL);
1323 }
1324
1325 static void log_generic(struct per_cpu_info *pci, struct blk_io_trace *t,
1326                         char *act)
1327 {
1328         process_fmt(act, pci, t, -1ULL, 0, NULL);
1329 }
1330
1331 static void log_unplug(struct per_cpu_info *pci, struct blk_io_trace *t,
1332                       char *act)
1333 {
1334         process_fmt(act, pci, t, -1ULL, 0, NULL);
1335 }
1336
1337 static void log_split(struct per_cpu_info *pci, struct blk_io_trace *t,
1338                       char *act)
1339 {
1340         process_fmt(act, pci, t, -1ULL, 0, NULL);
1341 }
1342
1343 static void log_pc(struct per_cpu_info *pci, struct blk_io_trace *t, char *act)
1344 {
1345         unsigned char *buf = (unsigned char *) t + sizeof(*t);
1346
1347         process_fmt(act, pci, t, -1ULL, t->pdu_len, buf);
1348 }
1349
1350 static void dump_trace_pc(struct blk_io_trace *t, struct per_cpu_info *pci)
1351 {
1352         int act = t->action & 0xffff;
1353
1354         switch (act) {
1355                 case __BLK_TA_QUEUE:
1356                         log_generic(pci, t, "Q");
1357                         break;
1358                 case __BLK_TA_GETRQ:
1359                         log_generic(pci, t, "G");
1360                         break;
1361                 case __BLK_TA_SLEEPRQ:
1362                         log_generic(pci, t, "S");
1363                         break;
1364                 case __BLK_TA_REQUEUE:
1365                         log_generic(pci, t, "R");
1366                         break;
1367                 case __BLK_TA_ISSUE:
1368                         log_pc(pci, t, "D");
1369                         break;
1370                 case __BLK_TA_COMPLETE:
1371                         log_pc(pci, t, "C");
1372                         break;
1373                 case __BLK_TA_INSERT:
1374                         log_pc(pci, t, "I");
1375                         break;
1376                 default:
1377                         fprintf(stderr, "Bad pc action %x\n", act);
1378                         break;
1379         }
1380 }
1381
1382 static void dump_trace_fs(struct blk_io_trace *t, struct per_dev_info *pdi,
1383                           struct per_cpu_info *pci)
1384 {
1385         int w = (t->action & BLK_TC_ACT(BLK_TC_WRITE)) != 0;
1386         int act = t->action & 0xffff;
1387
1388         switch (act) {
1389                 case __BLK_TA_QUEUE:
1390                         log_track_queue(pdi, t);
1391                         account_queue(t, pci, w);
1392                         log_queue(pci, t, "Q");
1393                         break;
1394                 case __BLK_TA_INSERT:
1395                         log_insert(pdi, pci, t, "I");
1396                         break;
1397                 case __BLK_TA_BACKMERGE:
1398                         account_m(t, pci, w);
1399                         log_merge(pdi, pci, t, "M");
1400                         break;
1401                 case __BLK_TA_FRONTMERGE:
1402                         account_m(t, pci, w);
1403                         log_merge(pdi, pci, t, "F");
1404                         break;
1405                 case __BLK_TA_GETRQ:
1406                         log_track_getrq(pdi, t);
1407                         log_generic(pci, t, "G");
1408                         break;
1409                 case __BLK_TA_SLEEPRQ:
1410                         log_generic(pci, t, "S");
1411                         break;
1412                 case __BLK_TA_REQUEUE:
1413                         /*
1414                          * can happen if we miss traces, don't let it go
1415                          * below zero
1416                          */
1417                         if (pdi->cur_depth[w])
1418                                 pdi->cur_depth[w]--;
1419                         account_requeue(t, pci, w);
1420                         log_queue(pci, t, "R");
1421                         break;
1422                 case __BLK_TA_ISSUE:
1423                         account_issue(t, pci, w);
1424                         pdi->cur_depth[w]++;
1425                         if (pdi->cur_depth[w] > pdi->max_depth[w])
1426                                 pdi->max_depth[w] = pdi->cur_depth[w];
1427                         log_issue(pdi, pci, t, "D");
1428                         break;
1429                 case __BLK_TA_COMPLETE:
1430                         if (pdi->cur_depth[w])
1431                                 pdi->cur_depth[w]--;
1432                         account_c(t, pci, w, t->bytes);
1433                         log_complete(pdi, pci, t, "C");
1434                         break;
1435                 case __BLK_TA_PLUG:
1436                         log_action(pci, t, "P");
1437                         break;
1438                 case __BLK_TA_UNPLUG_IO:
1439                         account_unplug(t, pci, 0);
1440                         log_unplug(pci, t, "U");
1441                         break;
1442                 case __BLK_TA_UNPLUG_TIMER:
1443                         account_unplug(t, pci, 1);
1444                         log_unplug(pci, t, "UT");
1445                         break;
1446                 case __BLK_TA_SPLIT:
1447                         log_split(pci, t, "X");
1448                         break;
1449                 case __BLK_TA_BOUNCE:
1450                         log_generic(pci, t, "B");
1451                         break;
1452                 case __BLK_TA_REMAP:
1453                         log_generic(pci, t, "A");
1454                         break;
1455                 default:
1456                         fprintf(stderr, "Bad fs action %x\n", t->action);
1457                         break;
1458         }
1459 }
1460
1461 static void dump_trace(struct blk_io_trace *t, struct per_cpu_info *pci,
1462                        struct per_dev_info *pdi)
1463 {
1464         if (text_output) {
1465                 if (t->action & BLK_TC_ACT(BLK_TC_PC))
1466                         dump_trace_pc(t, pci);
1467                 else
1468                         dump_trace_fs(t, pdi, pci);
1469         }
1470
1471         if (!pdi->events)
1472                 pdi->first_reported_time = t->time;
1473
1474         pdi->events++;
1475
1476         output_binary(t, sizeof(*t) + t->pdu_len);
1477 }
1478
1479 /*
1480  * print in a proper way, not too small and not too big. if more than
1481  * 1000,000K, turn into M and so on
1482  */
1483 static char *size_cnv(char *dst, unsigned long long num, int in_kb)
1484 {
1485         char suff[] = { '\0', 'K', 'M', 'G', 'P' };
1486         unsigned int i = 0;
1487
1488         if (in_kb)
1489                 i++;
1490
1491         while (num > 1000 * 1000ULL && (i < sizeof(suff) - 1)) {
1492                 i++;
1493                 num /= 1000;
1494         }
1495
1496         sprintf(dst, "%'8Lu%c", num, suff[i]);
1497         return dst;
1498 }
1499
1500 static void dump_io_stats(struct per_dev_info *pdi, struct io_stats *ios,
1501                           char *msg)
1502 {
1503         static char x[256], y[256];
1504
1505         fprintf(ofp, "%s\n", msg);
1506
1507         fprintf(ofp, " Reads Queued:    %s, %siB\t", size_cnv(x, ios->qreads, 0), size_cnv(y, ios->qread_kb, 1));
1508         fprintf(ofp, " Writes Queued:    %s, %siB\n", size_cnv(x, ios->qwrites, 0), size_cnv(y, ios->qwrite_kb, 1));
1509
1510         fprintf(ofp, " Read Dispatches: %s, %siB\t", size_cnv(x, ios->ireads, 0), size_cnv(y, ios->iread_kb, 1));
1511         fprintf(ofp, " Write Dispatches: %s, %siB\n", size_cnv(x, ios->iwrites, 0), size_cnv(y, ios->iwrite_kb, 1));
1512         fprintf(ofp, " Reads Requeued:  %s\t\t", size_cnv(x, ios->rrqueue, 0));
1513         fprintf(ofp, " Writes Requeued:  %s\n", size_cnv(x, ios->wrqueue, 0));
1514         fprintf(ofp, " Reads Completed: %s, %siB\t", size_cnv(x, ios->creads, 0), size_cnv(y, ios->cread_kb, 1));
1515         fprintf(ofp, " Writes Completed: %s, %siB\n", size_cnv(x, ios->cwrites, 0), size_cnv(y, ios->cwrite_kb, 1));
1516         fprintf(ofp, " Read Merges:     %'8lu%8c\t", ios->mreads, ' ');
1517         fprintf(ofp, " Write Merges:     %'8lu\n", ios->mwrites);
1518         if (pdi) {
1519                 fprintf(ofp, " Read depth:      %'8u%8c\t", pdi->max_depth[0], ' ');
1520                 fprintf(ofp, " Write depth:      %'8u\n", pdi->max_depth[1]);
1521         }
1522         fprintf(ofp, " IO unplugs:      %'8lu%8c\t", ios->io_unplugs, ' ');
1523         fprintf(ofp, " Timer unplugs:    %'8lu\n", ios->timer_unplugs);
1524 }
1525
1526 static void dump_wait_stats(struct per_process_info *ppi)
1527 {
1528         unsigned long rawait = ppi->longest_allocation_wait[0] / 1000;
1529         unsigned long rdwait = ppi->longest_dispatch_wait[0] / 1000;
1530         unsigned long rcwait = ppi->longest_completion_wait[0] / 1000;
1531         unsigned long wawait = ppi->longest_allocation_wait[1] / 1000;
1532         unsigned long wdwait = ppi->longest_dispatch_wait[1] / 1000;
1533         unsigned long wcwait = ppi->longest_completion_wait[1] / 1000;
1534
1535         fprintf(ofp, " Allocation wait: %'8lu%8c\t", rawait, ' ');
1536         fprintf(ofp, " Allocation wait:  %'8lu\n", wawait);
1537         fprintf(ofp, " Dispatch wait:   %'8lu%8c\t", rdwait, ' ');
1538         fprintf(ofp, " Dispatch wait:    %'8lu\n", wdwait);
1539         fprintf(ofp, " Completion wait: %'8lu%8c\t", rcwait, ' ');
1540         fprintf(ofp, " Completion wait:  %'8lu\n", wcwait);
1541 }
1542
1543 static int ppi_name_compare(const void *p1, const void *p2)
1544 {
1545         struct per_process_info *ppi1 = *((struct per_process_info **) p1);
1546         struct per_process_info *ppi2 = *((struct per_process_info **) p2);
1547         int res;
1548
1549         res = strverscmp(ppi1->ppm->comm, ppi2->ppm->comm);
1550         if (!res)
1551                 res = ppi1->ppm->pid > ppi2->ppm->pid;
1552
1553         return res;
1554 }
1555
1556 static void sort_process_list(void)
1557 {
1558         struct per_process_info **ppis;
1559         struct per_process_info *ppi;
1560         int i = 0;
1561
1562         ppis = malloc(ppi_list_entries * sizeof(struct per_process_info *));
1563
1564         ppi = ppi_list;
1565         while (ppi) {
1566                 ppis[i++] = ppi;
1567                 ppi = ppi->list_next;
1568         }
1569
1570         qsort(ppis, ppi_list_entries, sizeof(ppi), ppi_name_compare);
1571
1572         i = ppi_list_entries - 1;
1573         ppi_list = NULL;
1574         while (i >= 0) {
1575                 ppi = ppis[i];
1576
1577                 ppi->list_next = ppi_list;
1578                 ppi_list = ppi;
1579                 i--;
1580         }
1581
1582         free(ppis);
1583 }
1584
1585 static void show_process_stats(void)
1586 {
1587         struct per_process_info *ppi;
1588
1589         sort_process_list();
1590
1591         ppi = ppi_list;
1592         while (ppi) {
1593                 struct process_pid_map *ppm = ppi->ppm;
1594                 char name[64];
1595
1596                 if (ppi->more_than_one)
1597                         sprintf(name, "%s (%u, ...)", ppm->comm, ppm->pid);
1598                 else
1599                         sprintf(name, "%s (%u)", ppm->comm, ppm->pid);
1600
1601                 dump_io_stats(NULL, &ppi->io_stats, name);
1602                 dump_wait_stats(ppi);
1603                 ppi = ppi->list_next;
1604         }
1605
1606         fprintf(ofp, "\n");
1607 }
1608
1609 static void show_device_and_cpu_stats(void)
1610 {
1611         struct per_dev_info *pdi;
1612         struct per_cpu_info *pci;
1613         struct io_stats total, *ios;
1614         unsigned long long rrate, wrate, msec;
1615         int i, j, pci_events;
1616         char line[3 + 8/*cpu*/ + 2 + 32/*dev*/ + 3];
1617         char name[32];
1618         double ratio;
1619
1620         for (pdi = devices, i = 0; i < ndevices; i++, pdi++) {
1621
1622                 memset(&total, 0, sizeof(total));
1623                 pci_events = 0;
1624
1625                 if (i > 0)
1626                         fprintf(ofp, "\n");
1627
1628                 for (pci = pdi->cpus, j = 0; j < pdi->ncpus; j++, pci++) {
1629                         if (!pci->nelems)
1630                                 continue;
1631
1632                         ios = &pci->io_stats;
1633                         total.qreads += ios->qreads;
1634                         total.qwrites += ios->qwrites;
1635                         total.creads += ios->creads;
1636                         total.cwrites += ios->cwrites;
1637                         total.mreads += ios->mreads;
1638                         total.mwrites += ios->mwrites;
1639                         total.ireads += ios->ireads;
1640                         total.iwrites += ios->iwrites;
1641                         total.rrqueue += ios->rrqueue;
1642                         total.wrqueue += ios->wrqueue;
1643                         total.qread_kb += ios->qread_kb;
1644                         total.qwrite_kb += ios->qwrite_kb;
1645                         total.cread_kb += ios->cread_kb;
1646                         total.cwrite_kb += ios->cwrite_kb;
1647                         total.iread_kb += ios->iread_kb;
1648                         total.iwrite_kb += ios->iwrite_kb;
1649                         total.timer_unplugs += ios->timer_unplugs;
1650                         total.io_unplugs += ios->io_unplugs;
1651
1652                         snprintf(line, sizeof(line) - 1, "CPU%d (%s):",
1653                                  j, get_dev_name(pdi, name, sizeof(name)));
1654                         dump_io_stats(pdi, ios, line);
1655                         pci_events++;
1656                 }
1657
1658                 if (pci_events > 1) {
1659                         fprintf(ofp, "\n");
1660                         snprintf(line, sizeof(line) - 1, "Total (%s):",
1661                                  get_dev_name(pdi, name, sizeof(name)));
1662                         dump_io_stats(NULL, &total, line);
1663                 }
1664
1665                 wrate = rrate = 0;
1666                 msec = (pdi->last_reported_time - pdi->first_reported_time) / 1000000;
1667                 if (msec) {
1668                         rrate = 1000 * total.cread_kb / msec;
1669                         wrate = 1000 * total.cwrite_kb / msec;
1670                 }
1671
1672                 fprintf(ofp, "\nThroughput (R/W): %'LuKiB/s / %'LuKiB/s\n",
1673                         rrate, wrate);
1674                 fprintf(ofp, "Events (%s): %'Lu entries\n",
1675                         get_dev_name(pdi, line, sizeof(line)), pdi->events);
1676
1677                 collect_pdi_skips(pdi);
1678                 if (!pdi->skips && !pdi->events)
1679                         ratio = 0.0;
1680                 else
1681                         ratio = 100.0 * ((double)pdi->seq_skips /
1682                                         (double)(pdi->events + pdi->seq_skips));
1683                 fprintf(ofp, "Skips: %'lu forward (%'llu - %5.1lf%%)\n",
1684                         pdi->skips, pdi->seq_skips, ratio);
1685         }
1686 }
1687
1688 static void find_genesis(void)
1689 {
1690         struct trace *t = trace_list;
1691
1692         genesis_time = -1ULL;
1693         while (t != NULL) {
1694                 if (t->bit->time < genesis_time)
1695                         genesis_time = t->bit->time;
1696
1697                 t = t->next;
1698         }
1699
1700         /* The time stamp record will usually be the first
1701          * record in the trace, but not always.
1702          */
1703         if (start_timestamp
1704          && start_timestamp != genesis_time) {
1705                 long delta = genesis_time - start_timestamp;
1706
1707                 abs_start_time.tv_sec  += SECONDS(delta);
1708                 abs_start_time.tv_nsec += NANO_SECONDS(delta);
1709                 if (abs_start_time.tv_nsec < 0) {
1710                         abs_start_time.tv_nsec += 1000000000;
1711                         abs_start_time.tv_sec -= 1;
1712                 } else
1713                 if (abs_start_time.tv_nsec > 1000000000) {
1714                         abs_start_time.tv_nsec -= 1000000000;
1715                         abs_start_time.tv_sec += 1;
1716                 }
1717         }
1718 }
1719
1720 static inline int check_stopwatch(struct blk_io_trace *bit)
1721 {
1722         if (bit->time < stopwatch_end &&
1723             bit->time >= stopwatch_start)
1724                 return 0;
1725
1726         return 1;
1727 }
1728
1729 /*
1730  * return youngest entry read
1731  */
1732 static int sort_entries(unsigned long long *youngest)
1733 {
1734         struct per_dev_info *pdi = NULL;
1735         struct per_cpu_info *pci = NULL;
1736         struct trace *t;
1737
1738         if (!genesis_time)
1739                 find_genesis();
1740
1741         *youngest = 0;
1742         while ((t = trace_list) != NULL) {
1743                 struct blk_io_trace *bit = t->bit;
1744
1745                 trace_list = t->next;
1746
1747                 bit->time -= genesis_time;
1748
1749                 if (bit->time < *youngest || !*youngest)
1750                         *youngest = bit->time;
1751
1752                 if (!pdi || pdi->dev != bit->device) {
1753                         pdi = get_dev_info(bit->device);
1754                         pci = NULL;
1755                 }
1756
1757                 if (!pci || pci->cpu != bit->cpu)
1758                         pci = get_cpu_info(pdi, bit->cpu);
1759
1760                 if (bit->sequence < pci->smallest_seq_read)
1761                         pci->smallest_seq_read = bit->sequence;
1762
1763                 if (check_stopwatch(bit)) {
1764                         bit_free(bit);
1765                         t_free(t);
1766                         continue;
1767                 }
1768
1769                 if (trace_rb_insert_sort(t))
1770                         return -1;
1771         }
1772
1773         return 0;
1774 }
1775
1776 /*
1777  * to continue, we must have traces from all online cpus in the tree
1778  */
1779 static int check_cpu_map(struct per_dev_info *pdi)
1780 {
1781         unsigned long *cpu_map;
1782         struct rb_node *n;
1783         struct trace *__t;
1784         unsigned int i;
1785         int ret, cpu;
1786
1787         /*
1788          * create a map of the cpus we have traces for
1789          */
1790         cpu_map = malloc(pdi->cpu_map_max / sizeof(long));
1791         n = rb_first(&rb_sort_root);
1792         while (n) {
1793                 __t = rb_entry(n, struct trace, rb_node);
1794                 cpu = __t->bit->cpu;
1795
1796                 cpu_map[CPU_IDX(cpu)] |= (1UL << CPU_BIT(cpu));
1797                 n = rb_next(n);
1798         }
1799
1800         /*
1801          * we can't continue if pdi->cpu_map has entries set that we don't
1802          * have in the sort rbtree. the opposite is not a problem, though
1803          */
1804         ret = 0;
1805         for (i = 0; i < pdi->cpu_map_max / CPUS_PER_LONG; i++) {
1806                 if (pdi->cpu_map[i] & ~(cpu_map[i])) {
1807                         ret = 1;
1808                         break;
1809                 }
1810         }
1811
1812         free(cpu_map);
1813         return ret;
1814 }
1815
1816 static int check_sequence(struct per_dev_info *pdi, struct trace *t, int force)
1817 {
1818         struct blk_io_trace *bit = t->bit;
1819         unsigned long expected_sequence;
1820         struct per_cpu_info *pci;
1821         struct trace *__t;
1822
1823         pci = get_cpu_info(pdi, bit->cpu);
1824         expected_sequence = pci->last_sequence + 1;
1825
1826         if (!expected_sequence) {
1827                 /*
1828                  * 1 should be the first entry, just allow it
1829                  */
1830                 if (bit->sequence == 1)
1831                         return 0;
1832                 if (bit->sequence == pci->smallest_seq_read)
1833                         return 0;
1834
1835                 return check_cpu_map(pdi);
1836         }
1837
1838         if (bit->sequence == expected_sequence)
1839                 return 0;
1840
1841         /*
1842          * we may not have seen that sequence yet. if we are not doing
1843          * the final run, break and wait for more entries.
1844          */
1845         if (expected_sequence < pci->smallest_seq_read) {
1846                 __t = trace_rb_find_last(pdi, pci, expected_sequence);
1847                 if (!__t)
1848                         goto skip;
1849
1850                 __put_trace_last(pdi, __t);
1851                 return 0;
1852         } else if (!force) {
1853                 return 1;
1854         } else {
1855 skip:
1856                 if (check_current_skips(pci, bit->sequence))
1857                         return 0;
1858
1859                 if (expected_sequence < bit->sequence)
1860                         insert_skip(pci, expected_sequence, bit->sequence - 1);
1861                 return 0;
1862         }
1863 }
1864
1865 static void show_entries_rb(int force)
1866 {
1867         struct per_dev_info *pdi = NULL;
1868         struct per_cpu_info *pci = NULL;
1869         struct blk_io_trace *bit;
1870         struct rb_node *n;
1871         struct trace *t;
1872
1873         while ((n = rb_first(&rb_sort_root)) != NULL) {
1874                 if (is_done() && !force && !pipeline)
1875                         break;
1876
1877                 t = rb_entry(n, struct trace, rb_node);
1878                 bit = t->bit;
1879
1880                 if (read_sequence - t->read_sequence < 1 && !force)
1881                         break;
1882
1883                 if (!pdi || pdi->dev != bit->device) {
1884                         pdi = get_dev_info(bit->device);
1885                         pci = NULL;
1886                 }
1887
1888                 if (!pdi) {
1889                         fprintf(stderr, "Unknown device ID? (%d,%d)\n",
1890                                 MAJOR(bit->device), MINOR(bit->device));
1891                         break;
1892                 }
1893
1894                 if (check_sequence(pdi, t, force))
1895                         break;
1896
1897                 if (!force && bit->time > last_allowed_time)
1898                         break;
1899
1900                 check_time(pdi, bit);
1901
1902                 if (!pci || pci->cpu != bit->cpu)
1903                         pci = get_cpu_info(pdi, bit->cpu);
1904
1905                 pci->last_sequence = bit->sequence;
1906
1907                 pci->nelems++;
1908
1909                 if (bit->action & (act_mask << BLK_TC_SHIFT))
1910                         dump_trace(bit, pci, pdi);
1911
1912                 put_trace(pdi, t);
1913         }
1914 }
1915
1916 static int read_data(int fd, void *buffer, int bytes, int block, int *fdblock)
1917 {
1918         int ret, bytes_left, fl;
1919         void *p;
1920
1921         if (block != *fdblock) {
1922                 fl = fcntl(fd, F_GETFL);
1923
1924                 if (!block) {
1925                         *fdblock = 0;
1926                         fcntl(fd, F_SETFL, fl | O_NONBLOCK);
1927                 } else {
1928                         *fdblock = 1;
1929                         fcntl(fd, F_SETFL, fl & ~O_NONBLOCK);
1930                 }
1931         }
1932
1933         bytes_left = bytes;
1934         p = buffer;
1935         while (bytes_left > 0) {
1936                 ret = read(fd, p, bytes_left);
1937                 if (!ret)
1938                         return 1;
1939                 else if (ret < 0) {
1940                         if (errno != EAGAIN) {
1941                                 perror("read");
1942                                 return -1;
1943                         }
1944
1945                         /*
1946                          * never do partial reads. we can return if we
1947                          * didn't read anything and we should not block,
1948                          * otherwise wait for data
1949                          */
1950                         if ((bytes_left == bytes) && !block)
1951                                 return 1;
1952
1953                         usleep(10);
1954                         continue;
1955                 } else {
1956                         p += ret;
1957                         bytes_left -= ret;
1958                 }
1959         }
1960
1961         return 0;
1962 }
1963
1964 static inline __u16 get_pdulen(struct blk_io_trace *bit)
1965 {
1966         if (data_is_native)
1967                 return bit->pdu_len;
1968
1969         return __bswap_16(bit->pdu_len);
1970 }
1971
1972 static inline __u32 get_magic(struct blk_io_trace *bit)
1973 {
1974         if (data_is_native)
1975                 return bit->magic;
1976
1977         return __bswap_32(bit->magic);
1978 }
1979
1980 static int read_events(int fd, int always_block, int *fdblock)
1981 {
1982         struct per_dev_info *pdi = NULL;
1983         unsigned int events = 0;
1984
1985         while (!is_done() && events < rb_batch) {
1986                 struct blk_io_trace *bit;
1987                 struct trace *t;
1988                 int pdu_len, should_block, ret;
1989                 __u32 magic;
1990
1991                 bit = bit_alloc();
1992
1993                 should_block = !events || always_block;
1994
1995                 ret = read_data(fd, bit, sizeof(*bit), should_block, fdblock);
1996                 if (ret) {
1997                         bit_free(bit);
1998                         if (!events && ret < 0)
1999                                 events = ret;
2000                         break;
2001                 }
2002
2003                 /*
2004                  * look at first trace to check whether we need to convert
2005                  * data in the future
2006                  */
2007                 if (data_is_native == -1 && check_data_endianness(bit->magic))
2008                         break;
2009
2010                 magic = get_magic(bit);
2011                 if ((magic & 0xffffff00) != BLK_IO_TRACE_MAGIC) {
2012                         fprintf(stderr, "Bad magic %x\n", magic);
2013                         break;
2014                 }
2015
2016                 pdu_len = get_pdulen(bit);
2017                 if (pdu_len) {
2018                         void *ptr = realloc(bit, sizeof(*bit) + pdu_len);
2019
2020                         if (read_data(fd, ptr + sizeof(*bit), pdu_len, 1, fdblock)) {
2021                                 bit_free(ptr);
2022                                 break;
2023                         }
2024
2025                         bit = ptr;
2026                 }
2027
2028                 trace_to_cpu(bit);
2029
2030                 if (verify_trace(bit)) {
2031                         bit_free(bit);
2032                         continue;
2033                 }
2034
2035                 /*
2036                  * not a real trace, so grab and handle it here
2037                  */
2038                 if (bit->action & BLK_TC_ACT(BLK_TC_NOTIFY)) {
2039                         handle_notify(bit);
2040                         output_binary(bit, sizeof(*bit) + bit->pdu_len);
2041                         continue;
2042                 }
2043
2044                 t = t_alloc();
2045                 memset(t, 0, sizeof(*t));
2046                 t->bit = bit;
2047                 t->read_sequence = read_sequence;
2048
2049                 t->next = trace_list;
2050                 trace_list = t;
2051
2052                 if (!pdi || pdi->dev != bit->device)
2053                         pdi = get_dev_info(bit->device);
2054
2055                 if (bit->time > pdi->last_read_time)
2056                         pdi->last_read_time = bit->time;
2057
2058                 events++;
2059         }
2060
2061         return events;
2062 }
2063
2064 /*
2065  * Managing input streams
2066  */
2067
2068 struct ms_stream {
2069         struct ms_stream *next;
2070         struct trace *first, *last;
2071         struct per_dev_info *pdi;
2072         unsigned int cpu;
2073 };
2074
2075 #define MS_HASH(d, c) ((MAJOR(d) & 0xff) ^ (MINOR(d) & 0xff) ^ (cpu & 0xff))
2076
2077 struct ms_stream *ms_head;
2078 struct ms_stream *ms_hash[256];
2079
2080 static void ms_sort(struct ms_stream *msp);
2081 static int ms_prime(struct ms_stream *msp);
2082
2083 static inline struct trace *ms_peek(struct ms_stream *msp)
2084 {
2085         return (msp == NULL) ? NULL : msp->first;
2086 }
2087
2088 static inline __u64 ms_peek_time(struct ms_stream *msp)
2089 {
2090         return ms_peek(msp)->bit->time;
2091 }
2092
2093 static inline void ms_resort(struct ms_stream *msp)
2094 {
2095         if (msp->next && ms_peek_time(msp) > ms_peek_time(msp->next)) {
2096                 ms_head = msp->next;
2097                 msp->next = NULL;
2098                 ms_sort(msp);
2099         }
2100 }
2101
2102 static inline void ms_deq(struct ms_stream *msp)
2103 {
2104         msp->first = msp->first->next;
2105         if (!msp->first) {
2106                 msp->last = NULL;
2107                 if (!ms_prime(msp)) {
2108                         ms_head = msp->next;
2109                         msp->next = NULL;
2110                         return;
2111                 }
2112         }
2113
2114         ms_resort(msp);
2115 }
2116
2117 static void ms_sort(struct ms_stream *msp)
2118 {
2119         __u64 msp_t = ms_peek_time(msp);
2120         struct ms_stream *this_msp = ms_head;
2121
2122         if (this_msp == NULL)
2123                 ms_head = msp;
2124         else if (msp_t < ms_peek_time(this_msp)) {
2125                 msp->next = this_msp;
2126                 ms_head = msp;
2127         }
2128         else {
2129                 while (this_msp->next && ms_peek_time(this_msp->next) < msp_t)
2130                         this_msp = this_msp->next;
2131
2132                 msp->next = this_msp->next;
2133                 this_msp->next = msp;
2134         }
2135 }
2136
2137 static int ms_prime(struct ms_stream *msp)
2138 {
2139         __u32 magic;
2140         unsigned int i;
2141         struct trace *t;
2142         struct per_dev_info *pdi = msp->pdi;
2143         struct per_cpu_info *pci = get_cpu_info(pdi, msp->cpu);
2144         struct blk_io_trace *bit = NULL;
2145         int ret, pdu_len, ndone = 0;
2146
2147         for (i = 0; !is_done() && pci->fd >= 0 && i < rb_batch; i++) {
2148                 bit = bit_alloc();
2149                 ret = read_data(pci->fd, bit, sizeof(*bit), 1, &pci->fdblock);
2150                 if (ret)
2151                         goto err;
2152
2153                 if (data_is_native == -1 && check_data_endianness(bit->magic))
2154                         goto err;
2155
2156                 magic = get_magic(bit);
2157                 if ((magic & 0xffffff00) != BLK_IO_TRACE_MAGIC) {
2158                         fprintf(stderr, "Bad magic %x\n", magic);
2159                         goto err;
2160
2161                 }
2162
2163                 pdu_len = get_pdulen(bit);
2164                 if (pdu_len) {
2165                         void *ptr = realloc(bit, sizeof(*bit) + pdu_len);
2166                         ret = read_data(pci->fd, ptr + sizeof(*bit), pdu_len,
2167                                                              1, &pci->fdblock);
2168                         if (ret) {
2169                                 free(ptr);
2170                                 bit = NULL;
2171                                 goto err;
2172                         }
2173
2174                         bit = ptr;
2175                 }
2176
2177                 trace_to_cpu(bit);
2178                 if (verify_trace(bit))
2179                         goto err;
2180
2181                 if (bit->action & BLK_TC_ACT(BLK_TC_NOTIFY)) {
2182                         handle_notify(bit);
2183                         output_binary(bit, sizeof(*bit) + bit->pdu_len);
2184                         bit_free(bit);
2185
2186                         i -= 1;
2187                         continue;
2188                 }
2189
2190                 if (bit->time > pdi->last_read_time)
2191                         pdi->last_read_time = bit->time;
2192
2193                 t = t_alloc();
2194                 memset(t, 0, sizeof(*t));
2195                 t->bit = bit;
2196
2197                 if (msp->first == NULL)
2198                         msp->first = msp->last = t;
2199                 else {
2200                         msp->last->next = t;
2201                         msp->last = t;
2202                 }
2203
2204                 ndone++;
2205         }
2206
2207         return ndone;
2208
2209 err:
2210         if (bit) bit_free(bit);
2211
2212         cpu_mark_offline(pdi, pci->cpu);
2213         close(pci->fd);
2214         pci->fd = -1;
2215
2216         return ndone;
2217 }
2218
2219 static struct ms_stream *ms_alloc(struct per_dev_info *pdi, int cpu)
2220 {
2221         struct ms_stream *msp = malloc(sizeof(*msp));
2222
2223         msp->next = NULL;
2224         msp->first = msp->last = NULL;
2225         msp->pdi = pdi;
2226         msp->cpu = cpu;
2227
2228         if (ms_prime(msp))
2229                 ms_sort(msp);
2230
2231         return msp;
2232 }
2233
2234 static int setup_file(struct per_dev_info *pdi, int cpu)
2235 {
2236         int len = 0;
2237         struct stat st;
2238         char *p, *dname;
2239         struct per_cpu_info *pci = get_cpu_info(pdi, cpu);
2240
2241         pci->cpu = cpu;
2242         pci->fdblock = -1;
2243
2244         p = strdup(pdi->name);
2245         dname = dirname(p);
2246         if (strcmp(dname, ".")) {
2247                 input_dir = dname;
2248                 p = strdup(pdi->name);
2249                 strcpy(pdi->name, basename(p));
2250         }
2251         free(p);
2252
2253         if (input_dir)
2254                 len = sprintf(pci->fname, "%s/", input_dir);
2255
2256         snprintf(pci->fname + len, sizeof(pci->fname)-1-len,
2257                  "%s.blktrace.%d", pdi->name, pci->cpu);
2258         if (stat(pci->fname, &st) < 0)
2259                 return 0;
2260         if (!st.st_size)
2261                 return 1;
2262
2263         pci->fd = open(pci->fname, O_RDONLY);
2264         if (pci->fd < 0) {
2265                 perror(pci->fname);
2266                 return 0;
2267         }
2268
2269         printf("Input file %s added\n", pci->fname);
2270         cpu_mark_online(pdi, pci->cpu);
2271
2272         pdi->nfiles++;
2273         ms_alloc(pdi, pci->cpu);
2274
2275         return 1;
2276 }
2277
2278 static int handle(struct ms_stream *msp)
2279 {
2280         struct trace *t;
2281         struct per_dev_info *pdi;
2282         struct per_cpu_info *pci;
2283         struct blk_io_trace *bit;
2284
2285         t = ms_peek(msp);
2286         if (t->bit->time > stopwatch_end)
2287                 return 0;
2288
2289         bit = t->bit;
2290         pdi = msp->pdi;
2291         pci = get_cpu_info(pdi, msp->cpu);
2292         pci->nelems++;
2293
2294         bit->time -= genesis_time;
2295         pdi->last_reported_time = bit->time;
2296         if (bit->action & (act_mask << BLK_TC_SHIFT))
2297                 dump_trace(bit, pci, pdi);
2298
2299         ms_deq(msp);
2300
2301         if (text_output)
2302                 trace_rb_insert_last(pdi, t);
2303         else {
2304                 bit_free(t->bit);
2305                 t_free(t);
2306         }
2307
2308         return 1;
2309 }
2310
2311 /*
2312  * Check if we need to sanitize the name. We allow 'foo', or if foo.blktrace.X
2313  * is given, then strip back down to 'foo' to avoid missing files.
2314  */
2315 static int name_fixup(char *name)
2316 {
2317         char *b;
2318
2319         if (!name)
2320                 return 1;
2321
2322         b = strstr(name, ".blktrace.");
2323         if (b)
2324                 *b = '\0';
2325
2326         return 0;
2327 }
2328
2329 static int do_file(void)
2330 {
2331         int i, cpu, ret;
2332         struct per_dev_info *pdi;
2333
2334         /*
2335          * first prepare all files for reading
2336          */
2337         for (i = 0; i < ndevices; i++) {
2338                 pdi = &devices[i];
2339                 ret = name_fixup(pdi->name);
2340                 if (ret)
2341                         return ret;
2342
2343                 for (cpu = 0; setup_file(pdi, cpu); cpu++)
2344                         ;
2345         }
2346
2347         /*
2348          * Get the initial time stamp
2349          */
2350         if (ms_head)
2351                 genesis_time = ms_peek_time(ms_head);
2352
2353         /*
2354          * Keep processing traces while any are left
2355          */
2356         while (!is_done() && ms_head && handle(ms_head))
2357                 ;
2358
2359         return 0;
2360 }
2361
2362 static void do_pipe(int fd)
2363 {
2364         unsigned long long youngest;
2365         int events, fdblock;
2366
2367         last_allowed_time = -1ULL;
2368         fdblock = -1;
2369         while ((events = read_events(fd, 0, &fdblock)) > 0) {
2370                 read_sequence++;
2371         
2372 #if 0
2373                 smallest_seq_read = -1U;
2374 #endif
2375
2376                 if (sort_entries(&youngest))
2377                         break;
2378
2379                 if (youngest > stopwatch_end)
2380                         break;
2381
2382                 show_entries_rb(0);
2383         }
2384
2385         if (rb_sort_entries)
2386                 show_entries_rb(1);
2387 }
2388
2389 static int do_fifo(void)
2390 {
2391         int fd;
2392
2393         if (!strcmp(pipename, "-"))
2394                 fd = dup(STDIN_FILENO);
2395         else
2396                 fd = open(pipename, O_RDONLY);
2397
2398         if (fd == -1) {
2399                 perror("dup stdin");
2400                 return -1;
2401         }
2402
2403         do_pipe(fd);
2404         close(fd);
2405         return 0;
2406 }
2407
2408 static void show_stats(void)
2409 {
2410         if (!ofp)
2411                 return;
2412         if (stats_printed)
2413                 return;
2414
2415         stats_printed = 1;
2416
2417         if (per_process_stats)
2418                 show_process_stats();
2419
2420         if (per_device_and_cpu_stats)
2421                 show_device_and_cpu_stats();
2422
2423         fflush(ofp);
2424 }
2425
2426 static void handle_sigint(__attribute__((__unused__)) int sig)
2427 {
2428         done = 1;
2429 }
2430
2431 /*
2432  * Extract start and duration times from a string, allowing
2433  * us to specify a time interval of interest within a trace.
2434  * Format: "duration" (start is zero) or "start:duration".
2435  */
2436 static int find_stopwatch_interval(char *string)
2437 {
2438         double value;
2439         char *sp;
2440
2441         value = strtod(string, &sp);
2442         if (sp == string) {
2443                 fprintf(stderr,"Invalid stopwatch timer: %s\n", string);
2444                 return 1;
2445         }
2446         if (*sp == ':') {
2447                 stopwatch_start = DOUBLE_TO_NANO_ULL(value);
2448                 string = sp + 1;
2449                 value = strtod(string, &sp);
2450                 if (sp == string || *sp != '\0') {
2451                         fprintf(stderr,"Invalid stopwatch duration time: %s\n",
2452                                 string);
2453                         return 1;
2454                 }
2455         } else if (*sp != '\0') {
2456                 fprintf(stderr,"Invalid stopwatch start timer: %s\n", string);
2457                 return 1;
2458         }
2459         stopwatch_end = DOUBLE_TO_NANO_ULL(value);
2460         if (stopwatch_end <= stopwatch_start) {
2461                 fprintf(stderr, "Invalid stopwatch interval: %Lu -> %Lu\n",
2462                         stopwatch_start, stopwatch_end);
2463                 return 1;
2464         }
2465
2466         return 0;
2467 }
2468
2469 static int is_pipe(const char *str)
2470 {
2471         struct stat st;
2472
2473         if (!strcmp(str, "-"))
2474                 return 1;
2475         if (!stat(str, &st) && S_ISFIFO(st.st_mode))
2476                 return 1;
2477
2478         return 0;
2479 }
2480
2481 #define S_OPTS  "a:A:b:D:d:f:F:hi:o:Oqstw:vV"
2482 static char usage_str[] =    "\n\n" \
2483         "-i <file>           | --input=<file>\n" \
2484         "[ -a <action field> | --act-mask=<action field> ]\n" \
2485         "[ -A <action mask>  | --set-mask=<action mask> ]\n" \
2486         "[ -b <traces>       | --batch=<traces> ]\n" \
2487         "[ -d <file>         | --dump-binary=<file> ]\n" \
2488         "[ -D <dir>          | --input-directory=<dir> ]\n" \
2489         "[ -f <format>       | --format=<format> ]\n" \
2490         "[ -F <spec>         | --format-spec=<spec> ]\n" \
2491         "[ -h                | --hash-by-name ]\n" \
2492         "[ -o <file>         | --output=<file> ]\n" \
2493         "[ -O                | --no-text-output ]\n" \
2494         "[ -q                | --quiet ]\n" \
2495         "[ -s                | --per-program-stats ]\n" \
2496         "[ -t                | --track-ios ]\n" \
2497         "[ -w <time>         | --stopwatch=<time> ]\n" \
2498         "[ -v                | --verbose ]\n" \
2499         "[ -V                | --version ]\n\n" \
2500         "\t-b stdin read batching\n" \
2501         "\t-d Output file. If specified, binary data is written to file\n" \
2502         "\t-D Directory to prepend to input file names\n" \
2503         "\t-f Output format. Customize the output format. The format field\n" \
2504         "\t   identifies can be found in the documentation\n" \
2505         "\t-F Format specification. Can be found in the documentation\n" \
2506         "\t-h Hash processes by name, not pid\n" \
2507         "\t-i Input file containing trace data, or '-' for stdin\n" \
2508         "\t-o Output file. If not given, output is stdout\n" \
2509         "\t-O Do NOT output text data\n" \
2510         "\t-q Quiet. Don't display any stats at the end of the trace\n" \
2511         "\t-s Show per-program io statistics\n" \
2512         "\t-t Track individual ios. Will tell you the time a request took\n" \
2513         "\t   to get queued, to get dispatched, and to get completed\n" \
2514         "\t-w Only parse data between the given time interval in seconds.\n" \
2515         "\t   If 'start' isn't given, blkparse defaults the start time to 0\n" \
2516         "\t-v More verbose for marginal errors\n" \
2517         "\t-V Print program version info\n\n";
2518
2519 static void usage(char *prog)
2520 {
2521         fprintf(stderr, "Usage: %s %s %s", prog, blkparse_version, usage_str);
2522 }
2523
2524 int main(int argc, char *argv[])
2525 {
2526         int i, c, ret, mode;
2527         int act_mask_tmp = 0;
2528         char *ofp_buffer = NULL;
2529         char *bin_ofp_buffer = NULL;
2530
2531         while ((c = getopt_long(argc, argv, S_OPTS, l_opts, NULL)) != -1) {
2532                 switch (c) {
2533                 case 'a':
2534                         i = find_mask_map(optarg);
2535                         if (i < 0) {
2536                                 fprintf(stderr,"Invalid action mask %s\n",
2537                                         optarg);
2538                                 return 1;
2539                         }
2540                         act_mask_tmp |= i;
2541                         break;
2542
2543                 case 'A':
2544                         if ((sscanf(optarg, "%x", &i) != 1) || 
2545                                                         !valid_act_opt(i)) {
2546                                 fprintf(stderr,
2547                                         "Invalid set action mask %s/0x%x\n",
2548                                         optarg, i);
2549                                 return 1;
2550                         }
2551                         act_mask_tmp = i;
2552                         break;
2553                 case 'i':
2554                         if (is_pipe(optarg) && !pipeline) {
2555                                 pipeline = 1;
2556                                 pipename = strdup(optarg);
2557                         } else if (resize_devices(optarg) != 0)
2558                                 return 1;
2559                         break;
2560                 case 'D':
2561                         input_dir = optarg;
2562                         break;
2563                 case 'o':
2564                         output_name = optarg;
2565                         break;
2566                 case 'O':
2567                         text_output = 0;
2568                         break;
2569                 case 'b':
2570                         rb_batch = atoi(optarg);
2571                         if (rb_batch <= 0)
2572                                 rb_batch = RB_BATCH_DEFAULT;
2573                         break;
2574                 case 's':
2575                         per_process_stats = 1;
2576                         break;
2577                 case 't':
2578                         track_ios = 1;
2579                         break;
2580                 case 'q':
2581                         per_device_and_cpu_stats = 0;
2582                         break;
2583                 case 'w':
2584                         if (find_stopwatch_interval(optarg) != 0)
2585                                 return 1;
2586                         break;
2587                 case 'f':
2588                         set_all_format_specs(optarg);
2589                         break;
2590                 case 'F':
2591                         if (add_format_spec(optarg) != 0)
2592                                 return 1;
2593                         break;
2594                 case 'h':
2595                         ppi_hash_by_pid = 0;
2596                         break;
2597                 case 'v':
2598                         verbose++;
2599                         break;
2600                 case 'V':
2601                         printf("%s version %s\n", argv[0], blkparse_version);
2602                         return 0;
2603                 case 'd':
2604                         dump_binary = optarg;
2605                         break;
2606                 default:
2607                         usage(argv[0]);
2608                         return 1;
2609                 }
2610         }
2611
2612         while (optind < argc) {
2613                 if (is_pipe(argv[optind]) && !pipeline) {
2614                         pipeline = 1;
2615                         pipename = strdup(argv[optind]);
2616                 } else if (resize_devices(argv[optind]) != 0)
2617                         return 1;
2618                 optind++;
2619         }
2620
2621         if (!pipeline && !ndevices) {
2622                 usage(argv[0]);
2623                 return 1;
2624         }
2625
2626         if (act_mask_tmp != 0)
2627                 act_mask = act_mask_tmp;
2628
2629         memset(&rb_sort_root, 0, sizeof(rb_sort_root));
2630
2631         signal(SIGINT, handle_sigint);
2632         signal(SIGHUP, handle_sigint);
2633         signal(SIGTERM, handle_sigint);
2634
2635         setlocale(LC_NUMERIC, "en_US");
2636
2637         if (text_output) {
2638                 if (!output_name) {
2639                         ofp = fdopen(STDOUT_FILENO, "w");
2640                         mode = _IOLBF;
2641                 } else {
2642                         char ofname[128];
2643
2644                         snprintf(ofname, sizeof(ofname) - 1, "%s", output_name);
2645                         ofp = fopen(ofname, "w");
2646                         mode = _IOFBF;
2647                 }
2648
2649                 if (!ofp) {
2650                         perror("fopen");
2651                         return 1;
2652                 }
2653
2654                 ofp_buffer = malloc(4096);
2655                 if (setvbuf(ofp, ofp_buffer, mode, 4096)) {
2656                         perror("setvbuf");
2657                         return 1;
2658                 }
2659         }
2660
2661         if (dump_binary) {
2662                 dump_fp = fopen(dump_binary, "w");
2663                 if (!dump_fp) {
2664                         perror(dump_binary);
2665                         dump_binary = NULL;
2666                         return 1;
2667                 }
2668                 bin_ofp_buffer = malloc(128 * 1024);
2669                 if (setvbuf(dump_fp, bin_ofp_buffer, _IOFBF, 128 * 1024)) {
2670                         perror("setvbuf binary");
2671                         return 1;
2672                 }
2673         }
2674
2675         if (pipeline)
2676                 ret = do_fifo();
2677         else
2678                 ret = do_file();
2679
2680         if (!ret)
2681                 show_stats();
2682
2683         if (ofp_buffer) {
2684                 fflush(ofp);
2685                 free(ofp_buffer);
2686         }
2687         if (bin_ofp_buffer) {
2688                 fflush(dump_fp);
2689                 free(bin_ofp_buffer);
2690         }
2691         return ret;
2692 }