eb0efc2f9d3c0046cddf00cbd6bd0d2b160a8561
[linux-2.6-block.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35
36 #include <xen/xen.h>
37 #include <xen/events.h>
38 #include <xen/interface/xen.h>
39 #include <xen/interface/version.h>
40 #include <xen/interface/physdev.h>
41 #include <xen/interface/vcpu.h>
42 #include <xen/interface/memory.h>
43 #include <xen/interface/xen-mca.h>
44 #include <xen/features.h>
45 #include <xen/page.h>
46 #include <xen/hvm.h>
47 #include <xen/hvc-console.h>
48 #include <xen/acpi.h>
49 #include <xen/features.h>
50
51 #include <asm/paravirt.h>
52 #include <asm/apic.h>
53 #include <asm/page.h>
54 #include <asm/xen/pci.h>
55 #include <asm/xen/hypercall.h>
56 #include <asm/xen/hypervisor.h>
57 #include <asm/fixmap.h>
58 #include <asm/processor.h>
59 #include <asm/proto.h>
60 #include <asm/msr-index.h>
61 #include <asm/traps.h>
62 #include <asm/setup.h>
63 #include <asm/desc.h>
64 #include <asm/pgalloc.h>
65 #include <asm/pgtable.h>
66 #include <asm/tlbflush.h>
67 #include <asm/reboot.h>
68 #include <asm/stackprotector.h>
69 #include <asm/hypervisor.h>
70 #include <asm/mwait.h>
71 #include <asm/pci_x86.h>
72 #include <asm/pat.h>
73
74 #ifdef CONFIG_ACPI
75 #include <linux/acpi.h>
76 #include <asm/acpi.h>
77 #include <acpi/pdc_intel.h>
78 #include <acpi/processor.h>
79 #include <xen/interface/platform.h>
80 #endif
81
82 #include "xen-ops.h"
83 #include "mmu.h"
84 #include "smp.h"
85 #include "multicalls.h"
86
87 EXPORT_SYMBOL_GPL(hypercall_page);
88
89 /*
90  * Pointer to the xen_vcpu_info structure or
91  * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
92  * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
93  * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
94  * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
95  * acknowledge pending events.
96  * Also more subtly it is used by the patched version of irq enable/disable
97  * e.g. xen_irq_enable_direct and xen_iret in PV mode.
98  *
99  * The desire to be able to do those mask/unmask operations as a single
100  * instruction by using the per-cpu offset held in %gs is the real reason
101  * vcpu info is in a per-cpu pointer and the original reason for this
102  * hypercall.
103  *
104  */
105 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
106
107 /*
108  * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
109  * hypercall. This can be used both in PV and PVHVM mode. The structure
110  * overrides the default per_cpu(xen_vcpu, cpu) value.
111  */
112 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
113
114 enum xen_domain_type xen_domain_type = XEN_NATIVE;
115 EXPORT_SYMBOL_GPL(xen_domain_type);
116
117 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
118 EXPORT_SYMBOL(machine_to_phys_mapping);
119 unsigned long  machine_to_phys_nr;
120 EXPORT_SYMBOL(machine_to_phys_nr);
121
122 struct start_info *xen_start_info;
123 EXPORT_SYMBOL_GPL(xen_start_info);
124
125 struct shared_info xen_dummy_shared_info;
126
127 void *xen_initial_gdt;
128
129 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
130 __read_mostly int xen_have_vector_callback;
131 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
132
133 /*
134  * Point at some empty memory to start with. We map the real shared_info
135  * page as soon as fixmap is up and running.
136  */
137 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
138
139 /*
140  * Flag to determine whether vcpu info placement is available on all
141  * VCPUs.  We assume it is to start with, and then set it to zero on
142  * the first failure.  This is because it can succeed on some VCPUs
143  * and not others, since it can involve hypervisor memory allocation,
144  * or because the guest failed to guarantee all the appropriate
145  * constraints on all VCPUs (ie buffer can't cross a page boundary).
146  *
147  * Note that any particular CPU may be using a placed vcpu structure,
148  * but we can only optimise if the all are.
149  *
150  * 0: not available, 1: available
151  */
152 static int have_vcpu_info_placement = 1;
153
154 struct tls_descs {
155         struct desc_struct desc[3];
156 };
157
158 /*
159  * Updating the 3 TLS descriptors in the GDT on every task switch is
160  * surprisingly expensive so we avoid updating them if they haven't
161  * changed.  Since Xen writes different descriptors than the one
162  * passed in the update_descriptor hypercall we keep shadow copies to
163  * compare against.
164  */
165 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
166
167 static void clamp_max_cpus(void)
168 {
169 #ifdef CONFIG_SMP
170         if (setup_max_cpus > MAX_VIRT_CPUS)
171                 setup_max_cpus = MAX_VIRT_CPUS;
172 #endif
173 }
174
175 static void xen_vcpu_setup(int cpu)
176 {
177         struct vcpu_register_vcpu_info info;
178         int err;
179         struct vcpu_info *vcpup;
180
181         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
182
183         /*
184          * This path is called twice on PVHVM - first during bootup via
185          * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
186          * hotplugged: cpu_up -> xen_hvm_cpu_notify.
187          * As we can only do the VCPUOP_register_vcpu_info once lets
188          * not over-write its result.
189          *
190          * For PV it is called during restore (xen_vcpu_restore) and bootup
191          * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
192          * use this function.
193          */
194         if (xen_hvm_domain()) {
195                 if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
196                         return;
197         }
198         if (cpu < MAX_VIRT_CPUS)
199                 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
200
201         if (!have_vcpu_info_placement) {
202                 if (cpu >= MAX_VIRT_CPUS)
203                         clamp_max_cpus();
204                 return;
205         }
206
207         vcpup = &per_cpu(xen_vcpu_info, cpu);
208         info.mfn = arbitrary_virt_to_mfn(vcpup);
209         info.offset = offset_in_page(vcpup);
210
211         /* Check to see if the hypervisor will put the vcpu_info
212            structure where we want it, which allows direct access via
213            a percpu-variable.
214            N.B. This hypercall can _only_ be called once per CPU. Subsequent
215            calls will error out with -EINVAL. This is due to the fact that
216            hypervisor has no unregister variant and this hypercall does not
217            allow to over-write info.mfn and info.offset.
218          */
219         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
220
221         if (err) {
222                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
223                 have_vcpu_info_placement = 0;
224                 clamp_max_cpus();
225         } else {
226                 /* This cpu is using the registered vcpu info, even if
227                    later ones fail to. */
228                 per_cpu(xen_vcpu, cpu) = vcpup;
229         }
230 }
231
232 /*
233  * On restore, set the vcpu placement up again.
234  * If it fails, then we're in a bad state, since
235  * we can't back out from using it...
236  */
237 void xen_vcpu_restore(void)
238 {
239         int cpu;
240
241         for_each_possible_cpu(cpu) {
242                 bool other_cpu = (cpu != smp_processor_id());
243                 bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL);
244
245                 if (other_cpu && is_up &&
246                     HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
247                         BUG();
248
249                 xen_setup_runstate_info(cpu);
250
251                 if (have_vcpu_info_placement)
252                         xen_vcpu_setup(cpu);
253
254                 if (other_cpu && is_up &&
255                     HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
256                         BUG();
257         }
258 }
259
260 static void __init xen_banner(void)
261 {
262         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
263         struct xen_extraversion extra;
264         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
265
266         pr_info("Booting paravirtualized kernel %son %s\n",
267                 xen_feature(XENFEAT_auto_translated_physmap) ?
268                         "with PVH extensions " : "", pv_info.name);
269         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
270                version >> 16, version & 0xffff, extra.extraversion,
271                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
272 }
273 /* Check if running on Xen version (major, minor) or later */
274 bool
275 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
276 {
277         unsigned int version;
278
279         if (!xen_domain())
280                 return false;
281
282         version = HYPERVISOR_xen_version(XENVER_version, NULL);
283         if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
284                 ((version >> 16) > major))
285                 return true;
286         return false;
287 }
288
289 #define CPUID_THERM_POWER_LEAF 6
290 #define APERFMPERF_PRESENT 0
291
292 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
293 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
294
295 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
296 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
297 static __read_mostly unsigned int cpuid_leaf5_edx_val;
298
299 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
300                       unsigned int *cx, unsigned int *dx)
301 {
302         unsigned maskebx = ~0;
303         unsigned maskecx = ~0;
304         unsigned maskedx = ~0;
305         unsigned setecx = 0;
306         /*
307          * Mask out inconvenient features, to try and disable as many
308          * unsupported kernel subsystems as possible.
309          */
310         switch (*ax) {
311         case 1:
312                 maskecx = cpuid_leaf1_ecx_mask;
313                 setecx = cpuid_leaf1_ecx_set_mask;
314                 maskedx = cpuid_leaf1_edx_mask;
315                 break;
316
317         case CPUID_MWAIT_LEAF:
318                 /* Synthesize the values.. */
319                 *ax = 0;
320                 *bx = 0;
321                 *cx = cpuid_leaf5_ecx_val;
322                 *dx = cpuid_leaf5_edx_val;
323                 return;
324
325         case CPUID_THERM_POWER_LEAF:
326                 /* Disabling APERFMPERF for kernel usage */
327                 maskecx = ~(1 << APERFMPERF_PRESENT);
328                 break;
329
330         case 0xb:
331                 /* Suppress extended topology stuff */
332                 maskebx = 0;
333                 break;
334         }
335
336         asm(XEN_EMULATE_PREFIX "cpuid"
337                 : "=a" (*ax),
338                   "=b" (*bx),
339                   "=c" (*cx),
340                   "=d" (*dx)
341                 : "0" (*ax), "2" (*cx));
342
343         *bx &= maskebx;
344         *cx &= maskecx;
345         *cx |= setecx;
346         *dx &= maskedx;
347
348 }
349
350 static bool __init xen_check_mwait(void)
351 {
352 #ifdef CONFIG_ACPI
353         struct xen_platform_op op = {
354                 .cmd                    = XENPF_set_processor_pminfo,
355                 .u.set_pminfo.id        = -1,
356                 .u.set_pminfo.type      = XEN_PM_PDC,
357         };
358         uint32_t buf[3];
359         unsigned int ax, bx, cx, dx;
360         unsigned int mwait_mask;
361
362         /* We need to determine whether it is OK to expose the MWAIT
363          * capability to the kernel to harvest deeper than C3 states from ACPI
364          * _CST using the processor_harvest_xen.c module. For this to work, we
365          * need to gather the MWAIT_LEAF values (which the cstate.c code
366          * checks against). The hypervisor won't expose the MWAIT flag because
367          * it would break backwards compatibility; so we will find out directly
368          * from the hardware and hypercall.
369          */
370         if (!xen_initial_domain())
371                 return false;
372
373         /*
374          * When running under platform earlier than Xen4.2, do not expose
375          * mwait, to avoid the risk of loading native acpi pad driver
376          */
377         if (!xen_running_on_version_or_later(4, 2))
378                 return false;
379
380         ax = 1;
381         cx = 0;
382
383         native_cpuid(&ax, &bx, &cx, &dx);
384
385         mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
386                      (1 << (X86_FEATURE_MWAIT % 32));
387
388         if ((cx & mwait_mask) != mwait_mask)
389                 return false;
390
391         /* We need to emulate the MWAIT_LEAF and for that we need both
392          * ecx and edx. The hypercall provides only partial information.
393          */
394
395         ax = CPUID_MWAIT_LEAF;
396         bx = 0;
397         cx = 0;
398         dx = 0;
399
400         native_cpuid(&ax, &bx, &cx, &dx);
401
402         /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
403          * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
404          */
405         buf[0] = ACPI_PDC_REVISION_ID;
406         buf[1] = 1;
407         buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
408
409         set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
410
411         if ((HYPERVISOR_dom0_op(&op) == 0) &&
412             (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
413                 cpuid_leaf5_ecx_val = cx;
414                 cpuid_leaf5_edx_val = dx;
415         }
416         return true;
417 #else
418         return false;
419 #endif
420 }
421 static void __init xen_init_cpuid_mask(void)
422 {
423         unsigned int ax, bx, cx, dx;
424         unsigned int xsave_mask;
425
426         cpuid_leaf1_edx_mask =
427                 ~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
428                   (1 << X86_FEATURE_ACC));   /* thermal monitoring */
429
430         if (!xen_initial_domain())
431                 cpuid_leaf1_edx_mask &=
432                         ~((1 << X86_FEATURE_ACPI));  /* disable ACPI */
433
434         cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
435
436         ax = 1;
437         cx = 0;
438         cpuid(1, &ax, &bx, &cx, &dx);
439
440         xsave_mask =
441                 (1 << (X86_FEATURE_XSAVE % 32)) |
442                 (1 << (X86_FEATURE_OSXSAVE % 32));
443
444         /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
445         if ((cx & xsave_mask) != xsave_mask)
446                 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
447         if (xen_check_mwait())
448                 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
449 }
450
451 static void xen_set_debugreg(int reg, unsigned long val)
452 {
453         HYPERVISOR_set_debugreg(reg, val);
454 }
455
456 static unsigned long xen_get_debugreg(int reg)
457 {
458         return HYPERVISOR_get_debugreg(reg);
459 }
460
461 static void xen_end_context_switch(struct task_struct *next)
462 {
463         xen_mc_flush();
464         paravirt_end_context_switch(next);
465 }
466
467 static unsigned long xen_store_tr(void)
468 {
469         return 0;
470 }
471
472 /*
473  * Set the page permissions for a particular virtual address.  If the
474  * address is a vmalloc mapping (or other non-linear mapping), then
475  * find the linear mapping of the page and also set its protections to
476  * match.
477  */
478 static void set_aliased_prot(void *v, pgprot_t prot)
479 {
480         int level;
481         pte_t *ptep;
482         pte_t pte;
483         unsigned long pfn;
484         struct page *page;
485
486         ptep = lookup_address((unsigned long)v, &level);
487         BUG_ON(ptep == NULL);
488
489         pfn = pte_pfn(*ptep);
490         page = pfn_to_page(pfn);
491
492         pte = pfn_pte(pfn, prot);
493
494         if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
495                 BUG();
496
497         if (!PageHighMem(page)) {
498                 void *av = __va(PFN_PHYS(pfn));
499
500                 if (av != v)
501                         if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
502                                 BUG();
503         } else
504                 kmap_flush_unused();
505 }
506
507 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
508 {
509         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
510         int i;
511
512         for(i = 0; i < entries; i += entries_per_page)
513                 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
514 }
515
516 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
517 {
518         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
519         int i;
520
521         for(i = 0; i < entries; i += entries_per_page)
522                 set_aliased_prot(ldt + i, PAGE_KERNEL);
523 }
524
525 static void xen_set_ldt(const void *addr, unsigned entries)
526 {
527         struct mmuext_op *op;
528         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
529
530         trace_xen_cpu_set_ldt(addr, entries);
531
532         op = mcs.args;
533         op->cmd = MMUEXT_SET_LDT;
534         op->arg1.linear_addr = (unsigned long)addr;
535         op->arg2.nr_ents = entries;
536
537         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
538
539         xen_mc_issue(PARAVIRT_LAZY_CPU);
540 }
541
542 static void xen_load_gdt(const struct desc_ptr *dtr)
543 {
544         unsigned long va = dtr->address;
545         unsigned int size = dtr->size + 1;
546         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
547         unsigned long frames[pages];
548         int f;
549
550         /*
551          * A GDT can be up to 64k in size, which corresponds to 8192
552          * 8-byte entries, or 16 4k pages..
553          */
554
555         BUG_ON(size > 65536);
556         BUG_ON(va & ~PAGE_MASK);
557
558         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
559                 int level;
560                 pte_t *ptep;
561                 unsigned long pfn, mfn;
562                 void *virt;
563
564                 /*
565                  * The GDT is per-cpu and is in the percpu data area.
566                  * That can be virtually mapped, so we need to do a
567                  * page-walk to get the underlying MFN for the
568                  * hypercall.  The page can also be in the kernel's
569                  * linear range, so we need to RO that mapping too.
570                  */
571                 ptep = lookup_address(va, &level);
572                 BUG_ON(ptep == NULL);
573
574                 pfn = pte_pfn(*ptep);
575                 mfn = pfn_to_mfn(pfn);
576                 virt = __va(PFN_PHYS(pfn));
577
578                 frames[f] = mfn;
579
580                 make_lowmem_page_readonly((void *)va);
581                 make_lowmem_page_readonly(virt);
582         }
583
584         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
585                 BUG();
586 }
587
588 /*
589  * load_gdt for early boot, when the gdt is only mapped once
590  */
591 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
592 {
593         unsigned long va = dtr->address;
594         unsigned int size = dtr->size + 1;
595         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
596         unsigned long frames[pages];
597         int f;
598
599         /*
600          * A GDT can be up to 64k in size, which corresponds to 8192
601          * 8-byte entries, or 16 4k pages..
602          */
603
604         BUG_ON(size > 65536);
605         BUG_ON(va & ~PAGE_MASK);
606
607         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
608                 pte_t pte;
609                 unsigned long pfn, mfn;
610
611                 pfn = virt_to_pfn(va);
612                 mfn = pfn_to_mfn(pfn);
613
614                 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
615
616                 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
617                         BUG();
618
619                 frames[f] = mfn;
620         }
621
622         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
623                 BUG();
624 }
625
626 static inline bool desc_equal(const struct desc_struct *d1,
627                               const struct desc_struct *d2)
628 {
629         return d1->a == d2->a && d1->b == d2->b;
630 }
631
632 static void load_TLS_descriptor(struct thread_struct *t,
633                                 unsigned int cpu, unsigned int i)
634 {
635         struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
636         struct desc_struct *gdt;
637         xmaddr_t maddr;
638         struct multicall_space mc;
639
640         if (desc_equal(shadow, &t->tls_array[i]))
641                 return;
642
643         *shadow = t->tls_array[i];
644
645         gdt = get_cpu_gdt_table(cpu);
646         maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
647         mc = __xen_mc_entry(0);
648
649         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
650 }
651
652 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
653 {
654         /*
655          * XXX sleazy hack: If we're being called in a lazy-cpu zone
656          * and lazy gs handling is enabled, it means we're in a
657          * context switch, and %gs has just been saved.  This means we
658          * can zero it out to prevent faults on exit from the
659          * hypervisor if the next process has no %gs.  Either way, it
660          * has been saved, and the new value will get loaded properly.
661          * This will go away as soon as Xen has been modified to not
662          * save/restore %gs for normal hypercalls.
663          *
664          * On x86_64, this hack is not used for %gs, because gs points
665          * to KERNEL_GS_BASE (and uses it for PDA references), so we
666          * must not zero %gs on x86_64
667          *
668          * For x86_64, we need to zero %fs, otherwise we may get an
669          * exception between the new %fs descriptor being loaded and
670          * %fs being effectively cleared at __switch_to().
671          */
672         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
673 #ifdef CONFIG_X86_32
674                 lazy_load_gs(0);
675 #else
676                 loadsegment(fs, 0);
677 #endif
678         }
679
680         xen_mc_batch();
681
682         load_TLS_descriptor(t, cpu, 0);
683         load_TLS_descriptor(t, cpu, 1);
684         load_TLS_descriptor(t, cpu, 2);
685
686         xen_mc_issue(PARAVIRT_LAZY_CPU);
687 }
688
689 #ifdef CONFIG_X86_64
690 static void xen_load_gs_index(unsigned int idx)
691 {
692         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
693                 BUG();
694 }
695 #endif
696
697 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
698                                 const void *ptr)
699 {
700         xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
701         u64 entry = *(u64 *)ptr;
702
703         trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
704
705         preempt_disable();
706
707         xen_mc_flush();
708         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
709                 BUG();
710
711         preempt_enable();
712 }
713
714 static int cvt_gate_to_trap(int vector, const gate_desc *val,
715                             struct trap_info *info)
716 {
717         unsigned long addr;
718
719         if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
720                 return 0;
721
722         info->vector = vector;
723
724         addr = gate_offset(*val);
725 #ifdef CONFIG_X86_64
726         /*
727          * Look for known traps using IST, and substitute them
728          * appropriately.  The debugger ones are the only ones we care
729          * about.  Xen will handle faults like double_fault,
730          * so we should never see them.  Warn if
731          * there's an unexpected IST-using fault handler.
732          */
733         if (addr == (unsigned long)debug)
734                 addr = (unsigned long)xen_debug;
735         else if (addr == (unsigned long)int3)
736                 addr = (unsigned long)xen_int3;
737         else if (addr == (unsigned long)stack_segment)
738                 addr = (unsigned long)xen_stack_segment;
739         else if (addr == (unsigned long)double_fault) {
740                 /* Don't need to handle these */
741                 return 0;
742 #ifdef CONFIG_X86_MCE
743         } else if (addr == (unsigned long)machine_check) {
744                 /*
745                  * when xen hypervisor inject vMCE to guest,
746                  * use native mce handler to handle it
747                  */
748                 ;
749 #endif
750         } else if (addr == (unsigned long)nmi)
751                 /*
752                  * Use the native version as well.
753                  */
754                 ;
755         else {
756                 /* Some other trap using IST? */
757                 if (WARN_ON(val->ist != 0))
758                         return 0;
759         }
760 #endif  /* CONFIG_X86_64 */
761         info->address = addr;
762
763         info->cs = gate_segment(*val);
764         info->flags = val->dpl;
765         /* interrupt gates clear IF */
766         if (val->type == GATE_INTERRUPT)
767                 info->flags |= 1 << 2;
768
769         return 1;
770 }
771
772 /* Locations of each CPU's IDT */
773 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
774
775 /* Set an IDT entry.  If the entry is part of the current IDT, then
776    also update Xen. */
777 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
778 {
779         unsigned long p = (unsigned long)&dt[entrynum];
780         unsigned long start, end;
781
782         trace_xen_cpu_write_idt_entry(dt, entrynum, g);
783
784         preempt_disable();
785
786         start = __this_cpu_read(idt_desc.address);
787         end = start + __this_cpu_read(idt_desc.size) + 1;
788
789         xen_mc_flush();
790
791         native_write_idt_entry(dt, entrynum, g);
792
793         if (p >= start && (p + 8) <= end) {
794                 struct trap_info info[2];
795
796                 info[1].address = 0;
797
798                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
799                         if (HYPERVISOR_set_trap_table(info))
800                                 BUG();
801         }
802
803         preempt_enable();
804 }
805
806 static void xen_convert_trap_info(const struct desc_ptr *desc,
807                                   struct trap_info *traps)
808 {
809         unsigned in, out, count;
810
811         count = (desc->size+1) / sizeof(gate_desc);
812         BUG_ON(count > 256);
813
814         for (in = out = 0; in < count; in++) {
815                 gate_desc *entry = (gate_desc*)(desc->address) + in;
816
817                 if (cvt_gate_to_trap(in, entry, &traps[out]))
818                         out++;
819         }
820         traps[out].address = 0;
821 }
822
823 void xen_copy_trap_info(struct trap_info *traps)
824 {
825         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
826
827         xen_convert_trap_info(desc, traps);
828 }
829
830 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
831    hold a spinlock to protect the static traps[] array (static because
832    it avoids allocation, and saves stack space). */
833 static void xen_load_idt(const struct desc_ptr *desc)
834 {
835         static DEFINE_SPINLOCK(lock);
836         static struct trap_info traps[257];
837
838         trace_xen_cpu_load_idt(desc);
839
840         spin_lock(&lock);
841
842         __get_cpu_var(idt_desc) = *desc;
843
844         xen_convert_trap_info(desc, traps);
845
846         xen_mc_flush();
847         if (HYPERVISOR_set_trap_table(traps))
848                 BUG();
849
850         spin_unlock(&lock);
851 }
852
853 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
854    they're handled differently. */
855 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
856                                 const void *desc, int type)
857 {
858         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
859
860         preempt_disable();
861
862         switch (type) {
863         case DESC_LDT:
864         case DESC_TSS:
865                 /* ignore */
866                 break;
867
868         default: {
869                 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
870
871                 xen_mc_flush();
872                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
873                         BUG();
874         }
875
876         }
877
878         preempt_enable();
879 }
880
881 /*
882  * Version of write_gdt_entry for use at early boot-time needed to
883  * update an entry as simply as possible.
884  */
885 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
886                                             const void *desc, int type)
887 {
888         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
889
890         switch (type) {
891         case DESC_LDT:
892         case DESC_TSS:
893                 /* ignore */
894                 break;
895
896         default: {
897                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
898
899                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
900                         dt[entry] = *(struct desc_struct *)desc;
901         }
902
903         }
904 }
905
906 static void xen_load_sp0(struct tss_struct *tss,
907                          struct thread_struct *thread)
908 {
909         struct multicall_space mcs;
910
911         mcs = xen_mc_entry(0);
912         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
913         xen_mc_issue(PARAVIRT_LAZY_CPU);
914 }
915
916 static void xen_set_iopl_mask(unsigned mask)
917 {
918         struct physdev_set_iopl set_iopl;
919
920         /* Force the change at ring 0. */
921         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
922         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
923 }
924
925 static void xen_io_delay(void)
926 {
927 }
928
929 #ifdef CONFIG_X86_LOCAL_APIC
930 static unsigned long xen_set_apic_id(unsigned int x)
931 {
932         WARN_ON(1);
933         return x;
934 }
935 static unsigned int xen_get_apic_id(unsigned long x)
936 {
937         return ((x)>>24) & 0xFFu;
938 }
939 static u32 xen_apic_read(u32 reg)
940 {
941         struct xen_platform_op op = {
942                 .cmd = XENPF_get_cpuinfo,
943                 .interface_version = XENPF_INTERFACE_VERSION,
944                 .u.pcpu_info.xen_cpuid = 0,
945         };
946         int ret = 0;
947
948         /* Shouldn't need this as APIC is turned off for PV, and we only
949          * get called on the bootup processor. But just in case. */
950         if (!xen_initial_domain() || smp_processor_id())
951                 return 0;
952
953         if (reg == APIC_LVR)
954                 return 0x10;
955
956         if (reg != APIC_ID)
957                 return 0;
958
959         ret = HYPERVISOR_dom0_op(&op);
960         if (ret)
961                 return 0;
962
963         return op.u.pcpu_info.apic_id << 24;
964 }
965
966 static void xen_apic_write(u32 reg, u32 val)
967 {
968         /* Warn to see if there's any stray references */
969         WARN_ON(1);
970 }
971
972 static u64 xen_apic_icr_read(void)
973 {
974         return 0;
975 }
976
977 static void xen_apic_icr_write(u32 low, u32 id)
978 {
979         /* Warn to see if there's any stray references */
980         WARN_ON(1);
981 }
982
983 static void xen_apic_wait_icr_idle(void)
984 {
985         return;
986 }
987
988 static u32 xen_safe_apic_wait_icr_idle(void)
989 {
990         return 0;
991 }
992
993 static void set_xen_basic_apic_ops(void)
994 {
995         apic->read = xen_apic_read;
996         apic->write = xen_apic_write;
997         apic->icr_read = xen_apic_icr_read;
998         apic->icr_write = xen_apic_icr_write;
999         apic->wait_icr_idle = xen_apic_wait_icr_idle;
1000         apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
1001         apic->set_apic_id = xen_set_apic_id;
1002         apic->get_apic_id = xen_get_apic_id;
1003
1004 #ifdef CONFIG_SMP
1005         apic->send_IPI_allbutself = xen_send_IPI_allbutself;
1006         apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
1007         apic->send_IPI_mask = xen_send_IPI_mask;
1008         apic->send_IPI_all = xen_send_IPI_all;
1009         apic->send_IPI_self = xen_send_IPI_self;
1010 #endif
1011 }
1012
1013 #endif
1014
1015 static void xen_clts(void)
1016 {
1017         struct multicall_space mcs;
1018
1019         mcs = xen_mc_entry(0);
1020
1021         MULTI_fpu_taskswitch(mcs.mc, 0);
1022
1023         xen_mc_issue(PARAVIRT_LAZY_CPU);
1024 }
1025
1026 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
1027
1028 static unsigned long xen_read_cr0(void)
1029 {
1030         unsigned long cr0 = this_cpu_read(xen_cr0_value);
1031
1032         if (unlikely(cr0 == 0)) {
1033                 cr0 = native_read_cr0();
1034                 this_cpu_write(xen_cr0_value, cr0);
1035         }
1036
1037         return cr0;
1038 }
1039
1040 static void xen_write_cr0(unsigned long cr0)
1041 {
1042         struct multicall_space mcs;
1043
1044         this_cpu_write(xen_cr0_value, cr0);
1045
1046         /* Only pay attention to cr0.TS; everything else is
1047            ignored. */
1048         mcs = xen_mc_entry(0);
1049
1050         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1051
1052         xen_mc_issue(PARAVIRT_LAZY_CPU);
1053 }
1054
1055 static void xen_write_cr4(unsigned long cr4)
1056 {
1057         cr4 &= ~X86_CR4_PGE;
1058         cr4 &= ~X86_CR4_PSE;
1059
1060         native_write_cr4(cr4);
1061 }
1062 #ifdef CONFIG_X86_64
1063 static inline unsigned long xen_read_cr8(void)
1064 {
1065         return 0;
1066 }
1067 static inline void xen_write_cr8(unsigned long val)
1068 {
1069         BUG_ON(val);
1070 }
1071 #endif
1072 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1073 {
1074         int ret;
1075
1076         ret = 0;
1077
1078         switch (msr) {
1079 #ifdef CONFIG_X86_64
1080                 unsigned which;
1081                 u64 base;
1082
1083         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
1084         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
1085         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
1086
1087         set:
1088                 base = ((u64)high << 32) | low;
1089                 if (HYPERVISOR_set_segment_base(which, base) != 0)
1090                         ret = -EIO;
1091                 break;
1092 #endif
1093
1094         case MSR_STAR:
1095         case MSR_CSTAR:
1096         case MSR_LSTAR:
1097         case MSR_SYSCALL_MASK:
1098         case MSR_IA32_SYSENTER_CS:
1099         case MSR_IA32_SYSENTER_ESP:
1100         case MSR_IA32_SYSENTER_EIP:
1101                 /* Fast syscall setup is all done in hypercalls, so
1102                    these are all ignored.  Stub them out here to stop
1103                    Xen console noise. */
1104                 break;
1105
1106         case MSR_IA32_CR_PAT:
1107                 if (smp_processor_id() == 0)
1108                         xen_set_pat(((u64)high << 32) | low);
1109                 break;
1110
1111         default:
1112                 ret = native_write_msr_safe(msr, low, high);
1113         }
1114
1115         return ret;
1116 }
1117
1118 void xen_setup_shared_info(void)
1119 {
1120         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1121                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1122                            xen_start_info->shared_info);
1123
1124                 HYPERVISOR_shared_info =
1125                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1126         } else
1127                 HYPERVISOR_shared_info =
1128                         (struct shared_info *)__va(xen_start_info->shared_info);
1129
1130 #ifndef CONFIG_SMP
1131         /* In UP this is as good a place as any to set up shared info */
1132         xen_setup_vcpu_info_placement();
1133 #endif
1134
1135         xen_setup_mfn_list_list();
1136 }
1137
1138 /* This is called once we have the cpu_possible_mask */
1139 void xen_setup_vcpu_info_placement(void)
1140 {
1141         int cpu;
1142
1143         for_each_possible_cpu(cpu)
1144                 xen_vcpu_setup(cpu);
1145
1146         /* xen_vcpu_setup managed to place the vcpu_info within the
1147            percpu area for all cpus, so make use of it */
1148         if (have_vcpu_info_placement) {
1149                 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1150                 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1151                 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1152                 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1153                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1154         }
1155 }
1156
1157 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1158                           unsigned long addr, unsigned len)
1159 {
1160         char *start, *end, *reloc;
1161         unsigned ret;
1162
1163         start = end = reloc = NULL;
1164
1165 #define SITE(op, x)                                                     \
1166         case PARAVIRT_PATCH(op.x):                                      \
1167         if (have_vcpu_info_placement) {                                 \
1168                 start = (char *)xen_##x##_direct;                       \
1169                 end = xen_##x##_direct_end;                             \
1170                 reloc = xen_##x##_direct_reloc;                         \
1171         }                                                               \
1172         goto patch_site
1173
1174         switch (type) {
1175                 SITE(pv_irq_ops, irq_enable);
1176                 SITE(pv_irq_ops, irq_disable);
1177                 SITE(pv_irq_ops, save_fl);
1178                 SITE(pv_irq_ops, restore_fl);
1179 #undef SITE
1180
1181         patch_site:
1182                 if (start == NULL || (end-start) > len)
1183                         goto default_patch;
1184
1185                 ret = paravirt_patch_insns(insnbuf, len, start, end);
1186
1187                 /* Note: because reloc is assigned from something that
1188                    appears to be an array, gcc assumes it's non-null,
1189                    but doesn't know its relationship with start and
1190                    end. */
1191                 if (reloc > start && reloc < end) {
1192                         int reloc_off = reloc - start;
1193                         long *relocp = (long *)(insnbuf + reloc_off);
1194                         long delta = start - (char *)addr;
1195
1196                         *relocp += delta;
1197                 }
1198                 break;
1199
1200         default_patch:
1201         default:
1202                 ret = paravirt_patch_default(type, clobbers, insnbuf,
1203                                              addr, len);
1204                 break;
1205         }
1206
1207         return ret;
1208 }
1209
1210 static const struct pv_info xen_info __initconst = {
1211         .paravirt_enabled = 1,
1212         .shared_kernel_pmd = 0,
1213
1214 #ifdef CONFIG_X86_64
1215         .extra_user_64bit_cs = FLAT_USER_CS64,
1216 #endif
1217
1218         .name = "Xen",
1219 };
1220
1221 static const struct pv_init_ops xen_init_ops __initconst = {
1222         .patch = xen_patch,
1223 };
1224
1225 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1226         .cpuid = xen_cpuid,
1227
1228         .set_debugreg = xen_set_debugreg,
1229         .get_debugreg = xen_get_debugreg,
1230
1231         .clts = xen_clts,
1232
1233         .read_cr0 = xen_read_cr0,
1234         .write_cr0 = xen_write_cr0,
1235
1236         .read_cr4 = native_read_cr4,
1237         .read_cr4_safe = native_read_cr4_safe,
1238         .write_cr4 = xen_write_cr4,
1239
1240 #ifdef CONFIG_X86_64
1241         .read_cr8 = xen_read_cr8,
1242         .write_cr8 = xen_write_cr8,
1243 #endif
1244
1245         .wbinvd = native_wbinvd,
1246
1247         .read_msr = native_read_msr_safe,
1248         .write_msr = xen_write_msr_safe,
1249
1250         .read_tsc = native_read_tsc,
1251         .read_pmc = native_read_pmc,
1252
1253         .read_tscp = native_read_tscp,
1254
1255         .iret = xen_iret,
1256         .irq_enable_sysexit = xen_sysexit,
1257 #ifdef CONFIG_X86_64
1258         .usergs_sysret32 = xen_sysret32,
1259         .usergs_sysret64 = xen_sysret64,
1260 #endif
1261
1262         .load_tr_desc = paravirt_nop,
1263         .set_ldt = xen_set_ldt,
1264         .load_gdt = xen_load_gdt,
1265         .load_idt = xen_load_idt,
1266         .load_tls = xen_load_tls,
1267 #ifdef CONFIG_X86_64
1268         .load_gs_index = xen_load_gs_index,
1269 #endif
1270
1271         .alloc_ldt = xen_alloc_ldt,
1272         .free_ldt = xen_free_ldt,
1273
1274         .store_idt = native_store_idt,
1275         .store_tr = xen_store_tr,
1276
1277         .write_ldt_entry = xen_write_ldt_entry,
1278         .write_gdt_entry = xen_write_gdt_entry,
1279         .write_idt_entry = xen_write_idt_entry,
1280         .load_sp0 = xen_load_sp0,
1281
1282         .set_iopl_mask = xen_set_iopl_mask,
1283         .io_delay = xen_io_delay,
1284
1285         /* Xen takes care of %gs when switching to usermode for us */
1286         .swapgs = paravirt_nop,
1287
1288         .start_context_switch = paravirt_start_context_switch,
1289         .end_context_switch = xen_end_context_switch,
1290 };
1291
1292 static const struct pv_apic_ops xen_apic_ops __initconst = {
1293 #ifdef CONFIG_X86_LOCAL_APIC
1294         .startup_ipi_hook = paravirt_nop,
1295 #endif
1296 };
1297
1298 static void xen_reboot(int reason)
1299 {
1300         struct sched_shutdown r = { .reason = reason };
1301
1302         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1303                 BUG();
1304 }
1305
1306 static void xen_restart(char *msg)
1307 {
1308         xen_reboot(SHUTDOWN_reboot);
1309 }
1310
1311 static void xen_emergency_restart(void)
1312 {
1313         xen_reboot(SHUTDOWN_reboot);
1314 }
1315
1316 static void xen_machine_halt(void)
1317 {
1318         xen_reboot(SHUTDOWN_poweroff);
1319 }
1320
1321 static void xen_machine_power_off(void)
1322 {
1323         if (pm_power_off)
1324                 pm_power_off();
1325         xen_reboot(SHUTDOWN_poweroff);
1326 }
1327
1328 static void xen_crash_shutdown(struct pt_regs *regs)
1329 {
1330         xen_reboot(SHUTDOWN_crash);
1331 }
1332
1333 static int
1334 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1335 {
1336         xen_reboot(SHUTDOWN_crash);
1337         return NOTIFY_DONE;
1338 }
1339
1340 static struct notifier_block xen_panic_block = {
1341         .notifier_call= xen_panic_event,
1342 };
1343
1344 int xen_panic_handler_init(void)
1345 {
1346         atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1347         return 0;
1348 }
1349
1350 static const struct machine_ops xen_machine_ops __initconst = {
1351         .restart = xen_restart,
1352         .halt = xen_machine_halt,
1353         .power_off = xen_machine_power_off,
1354         .shutdown = xen_machine_halt,
1355         .crash_shutdown = xen_crash_shutdown,
1356         .emergency_restart = xen_emergency_restart,
1357 };
1358
1359 static void __init xen_boot_params_init_edd(void)
1360 {
1361 #if IS_ENABLED(CONFIG_EDD)
1362         struct xen_platform_op op;
1363         struct edd_info *edd_info;
1364         u32 *mbr_signature;
1365         unsigned nr;
1366         int ret;
1367
1368         edd_info = boot_params.eddbuf;
1369         mbr_signature = boot_params.edd_mbr_sig_buffer;
1370
1371         op.cmd = XENPF_firmware_info;
1372
1373         op.u.firmware_info.type = XEN_FW_DISK_INFO;
1374         for (nr = 0; nr < EDDMAXNR; nr++) {
1375                 struct edd_info *info = edd_info + nr;
1376
1377                 op.u.firmware_info.index = nr;
1378                 info->params.length = sizeof(info->params);
1379                 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1380                                      &info->params);
1381                 ret = HYPERVISOR_dom0_op(&op);
1382                 if (ret)
1383                         break;
1384
1385 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1386                 C(device);
1387                 C(version);
1388                 C(interface_support);
1389                 C(legacy_max_cylinder);
1390                 C(legacy_max_head);
1391                 C(legacy_sectors_per_track);
1392 #undef C
1393         }
1394         boot_params.eddbuf_entries = nr;
1395
1396         op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1397         for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1398                 op.u.firmware_info.index = nr;
1399                 ret = HYPERVISOR_dom0_op(&op);
1400                 if (ret)
1401                         break;
1402                 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1403         }
1404         boot_params.edd_mbr_sig_buf_entries = nr;
1405 #endif
1406 }
1407
1408 /*
1409  * Set up the GDT and segment registers for -fstack-protector.  Until
1410  * we do this, we have to be careful not to call any stack-protected
1411  * function, which is most of the kernel.
1412  */
1413 static void __init xen_setup_stackprotector(void)
1414 {
1415         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1416         pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1417
1418         setup_stack_canary_segment(0);
1419         switch_to_new_gdt(0);
1420
1421         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1422         pv_cpu_ops.load_gdt = xen_load_gdt;
1423 }
1424
1425 static void __init xen_pvh_early_guest_init(void)
1426 {
1427         if (!xen_feature(XENFEAT_auto_translated_physmap))
1428                 return;
1429
1430         if (xen_feature(XENFEAT_hvm_callback_vector))
1431                 xen_have_vector_callback = 1;
1432
1433 #ifdef CONFIG_X86_32
1434         BUG(); /* PVH: Implement proper support. */
1435 #endif
1436 }
1437
1438 /* First C function to be called on Xen boot */
1439 asmlinkage void __init xen_start_kernel(void)
1440 {
1441         struct physdev_set_iopl set_iopl;
1442         int rc;
1443
1444         if (!xen_start_info)
1445                 return;
1446
1447         xen_domain_type = XEN_PV_DOMAIN;
1448
1449         xen_setup_features();
1450         xen_pvh_early_guest_init();
1451         xen_setup_machphys_mapping();
1452
1453         /* Install Xen paravirt ops */
1454         pv_info = xen_info;
1455         pv_init_ops = xen_init_ops;
1456         pv_apic_ops = xen_apic_ops;
1457         if (!xen_pvh_domain())
1458                 pv_cpu_ops = xen_cpu_ops;
1459
1460         x86_init.resources.memory_setup = xen_memory_setup;
1461         x86_init.oem.arch_setup = xen_arch_setup;
1462         x86_init.oem.banner = xen_banner;
1463
1464         xen_init_time_ops();
1465
1466         /*
1467          * Set up some pagetable state before starting to set any ptes.
1468          */
1469
1470         xen_init_mmu_ops();
1471
1472         /* Prevent unwanted bits from being set in PTEs. */
1473         __supported_pte_mask &= ~_PAGE_GLOBAL;
1474 #if 0
1475         if (!xen_initial_domain())
1476 #endif
1477                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1478
1479         __supported_pte_mask |= _PAGE_IOMAP;
1480
1481         /*
1482          * Prevent page tables from being allocated in highmem, even
1483          * if CONFIG_HIGHPTE is enabled.
1484          */
1485         __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1486
1487         /* Work out if we support NX */
1488         x86_configure_nx();
1489
1490         /* Get mfn list */
1491         if (!xen_feature(XENFEAT_auto_translated_physmap))
1492                 xen_build_dynamic_phys_to_machine();
1493
1494         /*
1495          * Set up kernel GDT and segment registers, mainly so that
1496          * -fstack-protector code can be executed.
1497          */
1498         xen_setup_stackprotector();
1499
1500         xen_init_irq_ops();
1501         xen_init_cpuid_mask();
1502
1503 #ifdef CONFIG_X86_LOCAL_APIC
1504         /*
1505          * set up the basic apic ops.
1506          */
1507         set_xen_basic_apic_ops();
1508 #endif
1509
1510         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1511                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1512                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1513         }
1514
1515         machine_ops = xen_machine_ops;
1516
1517         /*
1518          * The only reliable way to retain the initial address of the
1519          * percpu gdt_page is to remember it here, so we can go and
1520          * mark it RW later, when the initial percpu area is freed.
1521          */
1522         xen_initial_gdt = &per_cpu(gdt_page, 0);
1523
1524         xen_smp_init();
1525
1526 #ifdef CONFIG_ACPI_NUMA
1527         /*
1528          * The pages we from Xen are not related to machine pages, so
1529          * any NUMA information the kernel tries to get from ACPI will
1530          * be meaningless.  Prevent it from trying.
1531          */
1532         acpi_numa = -1;
1533 #endif
1534 #ifdef CONFIG_X86_PAT
1535         /*
1536          * For right now disable the PAT. We should remove this once
1537          * git commit 8eaffa67b43e99ae581622c5133e20b0f48bcef1
1538          * (xen/pat: Disable PAT support for now) is reverted.
1539          */
1540         pat_enabled = 0;
1541 #endif
1542         /* Don't do the full vcpu_info placement stuff until we have a
1543            possible map and a non-dummy shared_info. */
1544         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1545
1546         local_irq_disable();
1547         early_boot_irqs_disabled = true;
1548
1549         xen_raw_console_write("mapping kernel into physical memory\n");
1550         xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, xen_start_info->nr_pages);
1551
1552         /* Allocate and initialize top and mid mfn levels for p2m structure */
1553         xen_build_mfn_list_list();
1554
1555         /* keep using Xen gdt for now; no urgent need to change it */
1556
1557 #ifdef CONFIG_X86_32
1558         pv_info.kernel_rpl = 1;
1559         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1560                 pv_info.kernel_rpl = 0;
1561 #else
1562         pv_info.kernel_rpl = 0;
1563 #endif
1564         /* set the limit of our address space */
1565         xen_reserve_top();
1566
1567         /* PVH: runs at default kernel iopl of 0 */
1568         if (!xen_pvh_domain()) {
1569                 /*
1570                  * We used to do this in xen_arch_setup, but that is too late
1571                  * on AMD were early_cpu_init (run before ->arch_setup()) calls
1572                  * early_amd_init which pokes 0xcf8 port.
1573                  */
1574                 set_iopl.iopl = 1;
1575                 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1576                 if (rc != 0)
1577                         xen_raw_printk("physdev_op failed %d\n", rc);
1578         }
1579
1580 #ifdef CONFIG_X86_32
1581         /* set up basic CPUID stuff */
1582         cpu_detect(&new_cpu_data);
1583         set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1584         new_cpu_data.wp_works_ok = 1;
1585         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1586 #endif
1587
1588         /* Poke various useful things into boot_params */
1589         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1590         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1591                 ? __pa(xen_start_info->mod_start) : 0;
1592         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1593         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1594
1595         if (!xen_initial_domain()) {
1596                 add_preferred_console("xenboot", 0, NULL);
1597                 add_preferred_console("tty", 0, NULL);
1598                 add_preferred_console("hvc", 0, NULL);
1599                 if (pci_xen)
1600                         x86_init.pci.arch_init = pci_xen_init;
1601         } else {
1602                 const struct dom0_vga_console_info *info =
1603                         (void *)((char *)xen_start_info +
1604                                  xen_start_info->console.dom0.info_off);
1605                 struct xen_platform_op op = {
1606                         .cmd = XENPF_firmware_info,
1607                         .interface_version = XENPF_INTERFACE_VERSION,
1608                         .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1609                 };
1610
1611                 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1612                 xen_start_info->console.domU.mfn = 0;
1613                 xen_start_info->console.domU.evtchn = 0;
1614
1615                 if (HYPERVISOR_dom0_op(&op) == 0)
1616                         boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1617
1618                 xen_init_apic();
1619
1620                 /* Make sure ACS will be enabled */
1621                 pci_request_acs();
1622
1623                 xen_acpi_sleep_register();
1624
1625                 /* Avoid searching for BIOS MP tables */
1626                 x86_init.mpparse.find_smp_config = x86_init_noop;
1627                 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1628
1629                 xen_boot_params_init_edd();
1630         }
1631 #ifdef CONFIG_PCI
1632         /* PCI BIOS service won't work from a PV guest. */
1633         pci_probe &= ~PCI_PROBE_BIOS;
1634 #endif
1635         xen_raw_console_write("about to get started...\n");
1636
1637         xen_setup_runstate_info(0);
1638
1639         /* Start the world */
1640 #ifdef CONFIG_X86_32
1641         i386_start_kernel();
1642 #else
1643         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1644 #endif
1645 }
1646
1647 void __ref xen_hvm_init_shared_info(void)
1648 {
1649         int cpu;
1650         struct xen_add_to_physmap xatp;
1651         static struct shared_info *shared_info_page = 0;
1652
1653         if (!shared_info_page)
1654                 shared_info_page = (struct shared_info *)
1655                         extend_brk(PAGE_SIZE, PAGE_SIZE);
1656         xatp.domid = DOMID_SELF;
1657         xatp.idx = 0;
1658         xatp.space = XENMAPSPACE_shared_info;
1659         xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1660         if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1661                 BUG();
1662
1663         HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1664
1665         /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1666          * page, we use it in the event channel upcall and in some pvclock
1667          * related functions. We don't need the vcpu_info placement
1668          * optimizations because we don't use any pv_mmu or pv_irq op on
1669          * HVM.
1670          * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1671          * online but xen_hvm_init_shared_info is run at resume time too and
1672          * in that case multiple vcpus might be online. */
1673         for_each_online_cpu(cpu) {
1674                 /* Leave it to be NULL. */
1675                 if (cpu >= MAX_VIRT_CPUS)
1676                         continue;
1677                 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1678         }
1679 }
1680
1681 #ifdef CONFIG_XEN_PVHVM
1682 static void __init init_hvm_pv_info(void)
1683 {
1684         int major, minor;
1685         uint32_t eax, ebx, ecx, edx, pages, msr, base;
1686         u64 pfn;
1687
1688         base = xen_cpuid_base();
1689         cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1690
1691         major = eax >> 16;
1692         minor = eax & 0xffff;
1693         printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1694
1695         cpuid(base + 2, &pages, &msr, &ecx, &edx);
1696
1697         pfn = __pa(hypercall_page);
1698         wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1699
1700         xen_setup_features();
1701
1702         pv_info.name = "Xen HVM";
1703
1704         xen_domain_type = XEN_HVM_DOMAIN;
1705 }
1706
1707 static int xen_hvm_cpu_notify(struct notifier_block *self, unsigned long action,
1708                               void *hcpu)
1709 {
1710         int cpu = (long)hcpu;
1711         switch (action) {
1712         case CPU_UP_PREPARE:
1713                 xen_vcpu_setup(cpu);
1714                 if (xen_have_vector_callback) {
1715                         if (xen_feature(XENFEAT_hvm_safe_pvclock))
1716                                 xen_setup_timer(cpu);
1717                 }
1718                 break;
1719         default:
1720                 break;
1721         }
1722         return NOTIFY_OK;
1723 }
1724
1725 static struct notifier_block xen_hvm_cpu_notifier = {
1726         .notifier_call  = xen_hvm_cpu_notify,
1727 };
1728
1729 static void __init xen_hvm_guest_init(void)
1730 {
1731         init_hvm_pv_info();
1732
1733         xen_hvm_init_shared_info();
1734
1735         xen_panic_handler_init();
1736
1737         if (xen_feature(XENFEAT_hvm_callback_vector))
1738                 xen_have_vector_callback = 1;
1739         xen_hvm_smp_init();
1740         register_cpu_notifier(&xen_hvm_cpu_notifier);
1741         xen_unplug_emulated_devices();
1742         x86_init.irqs.intr_init = xen_init_IRQ;
1743         xen_hvm_init_time_ops();
1744         xen_hvm_init_mmu_ops();
1745 }
1746
1747 static uint32_t __init xen_hvm_platform(void)
1748 {
1749         if (xen_pv_domain())
1750                 return 0;
1751
1752         return xen_cpuid_base();
1753 }
1754
1755 bool xen_hvm_need_lapic(void)
1756 {
1757         if (xen_pv_domain())
1758                 return false;
1759         if (!xen_hvm_domain())
1760                 return false;
1761         if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1762                 return false;
1763         return true;
1764 }
1765 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1766
1767 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1768         .name                   = "Xen HVM",
1769         .detect                 = xen_hvm_platform,
1770         .init_platform          = xen_hvm_guest_init,
1771         .x2apic_available       = xen_x2apic_para_available,
1772 };
1773 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1774 #endif