Merge tag 'dma-mapping-6.10-2024-05-31' of git://git.infradead.org/users/hch/dma...
[linux-2.6-block.git] / arch / x86 / platform / uv / uv_time.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * SGI RTC clock/timer routines.
4  *
5  *  (C) Copyright 2020 Hewlett Packard Enterprise Development LP
6  *  Copyright (c) 2009-2013 Silicon Graphics, Inc.  All Rights Reserved.
7  *  Copyright (c) Dimitri Sivanich
8  */
9 #include <linux/clockchips.h>
10 #include <linux/slab.h>
11
12 #include <asm/uv/uv_mmrs.h>
13 #include <asm/uv/uv_hub.h>
14 #include <asm/uv/bios.h>
15 #include <asm/uv/uv.h>
16 #include <asm/apic.h>
17 #include <asm/cpu.h>
18
19 #define RTC_NAME                "sgi_rtc"
20
21 static u64 uv_read_rtc(struct clocksource *cs);
22 static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
23 static int uv_rtc_shutdown(struct clock_event_device *evt);
24
25 static struct clocksource clocksource_uv = {
26         .name           = RTC_NAME,
27         .rating         = 299,
28         .read           = uv_read_rtc,
29         .mask           = (u64)UVH_RTC_REAL_TIME_CLOCK_MASK,
30         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
31 };
32
33 static struct clock_event_device clock_event_device_uv = {
34         .name                   = RTC_NAME,
35         .features               = CLOCK_EVT_FEAT_ONESHOT,
36         .shift                  = 20,
37         .rating                 = 400,
38         .irq                    = -1,
39         .set_next_event         = uv_rtc_next_event,
40         .set_state_shutdown     = uv_rtc_shutdown,
41         .event_handler          = NULL,
42 };
43
44 static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
45
46 /* There is one of these allocated per node */
47 struct uv_rtc_timer_head {
48         spinlock_t      lock;
49         /* next cpu waiting for timer, local node relative: */
50         int             next_cpu;
51         /* number of cpus on this node: */
52         int             ncpus;
53         struct {
54                 int     lcpu;           /* systemwide logical cpu number */
55                 u64     expires;        /* next timer expiration for this cpu */
56         } cpu[] __counted_by(ncpus);
57 };
58
59 /*
60  * Access to uv_rtc_timer_head via blade id.
61  */
62 static struct uv_rtc_timer_head         **blade_info __read_mostly;
63
64 static int                              uv_rtc_evt_enable;
65
66 /*
67  * Hardware interface routines
68  */
69
70 /* Send IPIs to another node */
71 static void uv_rtc_send_IPI(int cpu)
72 {
73         unsigned long apicid, val;
74         int pnode;
75
76         apicid = cpu_physical_id(cpu);
77         pnode = uv_apicid_to_pnode(apicid);
78         val = (1UL << UVH_IPI_INT_SEND_SHFT) |
79               (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
80               (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
81
82         uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
83 }
84
85 /* Check for an RTC interrupt pending */
86 static int uv_intr_pending(int pnode)
87 {
88         return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED2) &
89                 UVH_EVENT_OCCURRED2_RTC_1_MASK;
90 }
91
92 /* Setup interrupt and return non-zero if early expiration occurred. */
93 static int uv_setup_intr(int cpu, u64 expires)
94 {
95         u64 val;
96         unsigned long apicid = cpu_physical_id(cpu);
97         int pnode = uv_cpu_to_pnode(cpu);
98
99         uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
100                 UVH_RTC1_INT_CONFIG_M_MASK);
101         uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
102
103         uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED2_ALIAS,
104                               UVH_EVENT_OCCURRED2_RTC_1_MASK);
105
106         val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
107                 ((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
108
109         /* Set configuration */
110         uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
111         /* Initialize comparator value */
112         uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
113
114         if (uv_read_rtc(NULL) <= expires)
115                 return 0;
116
117         return !uv_intr_pending(pnode);
118 }
119
120 /*
121  * Per-cpu timer tracking routines
122  */
123
124 static __init void uv_rtc_deallocate_timers(void)
125 {
126         int bid;
127
128         for_each_possible_blade(bid) {
129                 kfree(blade_info[bid]);
130         }
131         kfree(blade_info);
132 }
133
134 /* Allocate per-node list of cpu timer expiration times. */
135 static __init int uv_rtc_allocate_timers(void)
136 {
137         int cpu;
138
139         blade_info = kcalloc(uv_possible_blades, sizeof(void *), GFP_KERNEL);
140         if (!blade_info)
141                 return -ENOMEM;
142
143         for_each_present_cpu(cpu) {
144                 int nid = cpu_to_node(cpu);
145                 int bid = uv_cpu_to_blade_id(cpu);
146                 int bcpu = uv_cpu_blade_processor_id(cpu);
147                 struct uv_rtc_timer_head *head = blade_info[bid];
148
149                 if (!head) {
150                         head = kmalloc_node(struct_size(head, cpu,
151                                 uv_blade_nr_possible_cpus(bid)),
152                                 GFP_KERNEL, nid);
153                         if (!head) {
154                                 uv_rtc_deallocate_timers();
155                                 return -ENOMEM;
156                         }
157                         spin_lock_init(&head->lock);
158                         head->ncpus = uv_blade_nr_possible_cpus(bid);
159                         head->next_cpu = -1;
160                         blade_info[bid] = head;
161                 }
162
163                 head->cpu[bcpu].lcpu = cpu;
164                 head->cpu[bcpu].expires = ULLONG_MAX;
165         }
166
167         return 0;
168 }
169
170 /* Find and set the next expiring timer.  */
171 static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
172 {
173         u64 lowest = ULLONG_MAX;
174         int c, bcpu = -1;
175
176         head->next_cpu = -1;
177         for (c = 0; c < head->ncpus; c++) {
178                 u64 exp = head->cpu[c].expires;
179                 if (exp < lowest) {
180                         bcpu = c;
181                         lowest = exp;
182                 }
183         }
184         if (bcpu >= 0) {
185                 head->next_cpu = bcpu;
186                 c = head->cpu[bcpu].lcpu;
187                 if (uv_setup_intr(c, lowest))
188                         /* If we didn't set it up in time, trigger */
189                         uv_rtc_send_IPI(c);
190         } else {
191                 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
192                         UVH_RTC1_INT_CONFIG_M_MASK);
193         }
194 }
195
196 /*
197  * Set expiration time for current cpu.
198  *
199  * Returns 1 if we missed the expiration time.
200  */
201 static int uv_rtc_set_timer(int cpu, u64 expires)
202 {
203         int pnode = uv_cpu_to_pnode(cpu);
204         int bid = uv_cpu_to_blade_id(cpu);
205         struct uv_rtc_timer_head *head = blade_info[bid];
206         int bcpu = uv_cpu_blade_processor_id(cpu);
207         u64 *t = &head->cpu[bcpu].expires;
208         unsigned long flags;
209         int next_cpu;
210
211         spin_lock_irqsave(&head->lock, flags);
212
213         next_cpu = head->next_cpu;
214         *t = expires;
215
216         /* Will this one be next to go off? */
217         if (next_cpu < 0 || bcpu == next_cpu ||
218                         expires < head->cpu[next_cpu].expires) {
219                 head->next_cpu = bcpu;
220                 if (uv_setup_intr(cpu, expires)) {
221                         *t = ULLONG_MAX;
222                         uv_rtc_find_next_timer(head, pnode);
223                         spin_unlock_irqrestore(&head->lock, flags);
224                         return -ETIME;
225                 }
226         }
227
228         spin_unlock_irqrestore(&head->lock, flags);
229         return 0;
230 }
231
232 /*
233  * Unset expiration time for current cpu.
234  *
235  * Returns 1 if this timer was pending.
236  */
237 static int uv_rtc_unset_timer(int cpu, int force)
238 {
239         int pnode = uv_cpu_to_pnode(cpu);
240         int bid = uv_cpu_to_blade_id(cpu);
241         struct uv_rtc_timer_head *head = blade_info[bid];
242         int bcpu = uv_cpu_blade_processor_id(cpu);
243         u64 *t = &head->cpu[bcpu].expires;
244         unsigned long flags;
245         int rc = 0;
246
247         spin_lock_irqsave(&head->lock, flags);
248
249         if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
250                 rc = 1;
251
252         if (rc) {
253                 *t = ULLONG_MAX;
254                 /* Was the hardware setup for this timer? */
255                 if (head->next_cpu == bcpu)
256                         uv_rtc_find_next_timer(head, pnode);
257         }
258
259         spin_unlock_irqrestore(&head->lock, flags);
260
261         return rc;
262 }
263
264
265 /*
266  * Kernel interface routines.
267  */
268
269 /*
270  * Read the RTC.
271  *
272  * Starting with HUB rev 2.0, the UV RTC register is replicated across all
273  * cachelines of its own page.  This allows faster simultaneous reads
274  * from a given socket.
275  */
276 static u64 uv_read_rtc(struct clocksource *cs)
277 {
278         unsigned long offset;
279
280         if (uv_get_min_hub_revision_id() == 1)
281                 offset = 0;
282         else
283                 offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
284
285         return (u64)uv_read_local_mmr(UVH_RTC | offset);
286 }
287
288 /*
289  * Program the next event, relative to now
290  */
291 static int uv_rtc_next_event(unsigned long delta,
292                              struct clock_event_device *ced)
293 {
294         int ced_cpu = cpumask_first(ced->cpumask);
295
296         return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
297 }
298
299 /*
300  * Shutdown the RTC timer
301  */
302 static int uv_rtc_shutdown(struct clock_event_device *evt)
303 {
304         int ced_cpu = cpumask_first(evt->cpumask);
305
306         uv_rtc_unset_timer(ced_cpu, 1);
307         return 0;
308 }
309
310 static void uv_rtc_interrupt(void)
311 {
312         int cpu = smp_processor_id();
313         struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
314
315         if (!ced || !ced->event_handler)
316                 return;
317
318         if (uv_rtc_unset_timer(cpu, 0) != 1)
319                 return;
320
321         ced->event_handler(ced);
322 }
323
324 static int __init uv_enable_evt_rtc(char *str)
325 {
326         uv_rtc_evt_enable = 1;
327
328         return 1;
329 }
330 __setup("uvrtcevt", uv_enable_evt_rtc);
331
332 static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
333 {
334         struct clock_event_device *ced = this_cpu_ptr(&cpu_ced);
335
336         *ced = clock_event_device_uv;
337         ced->cpumask = cpumask_of(smp_processor_id());
338         clockevents_register_device(ced);
339 }
340
341 static __init int uv_rtc_setup_clock(void)
342 {
343         int rc;
344
345         if (!is_uv_system())
346                 return -ENODEV;
347
348         rc = clocksource_register_hz(&clocksource_uv, sn_rtc_cycles_per_second);
349         if (rc)
350                 printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
351         else
352                 printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
353                         sn_rtc_cycles_per_second/(unsigned long)1E6);
354
355         if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
356                 return rc;
357
358         /* Setup and register clockevents */
359         rc = uv_rtc_allocate_timers();
360         if (rc)
361                 goto error;
362
363         x86_platform_ipi_callback = uv_rtc_interrupt;
364
365         clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
366                                 NSEC_PER_SEC, clock_event_device_uv.shift);
367
368         clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
369                                                 sn_rtc_cycles_per_second;
370         clock_event_device_uv.min_delta_ticks = 1;
371
372         clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
373                                 (NSEC_PER_SEC / sn_rtc_cycles_per_second);
374         clock_event_device_uv.max_delta_ticks = clocksource_uv.mask;
375
376         rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
377         if (rc) {
378                 x86_platform_ipi_callback = NULL;
379                 uv_rtc_deallocate_timers();
380                 goto error;
381         }
382
383         printk(KERN_INFO "UV RTC clockevents registered\n");
384
385         return 0;
386
387 error:
388         clocksource_unregister(&clocksource_uv);
389         printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
390
391         return rc;
392 }
393 arch_initcall(uv_rtc_setup_clock);