Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux-2.6-block.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72 #include <asm/intel_pt.h>
73
74 #define CREATE_TRACE_POINTS
75 #include "trace.h"
76
77 #define MAX_IO_MSRS 256
78 #define KVM_MAX_MCE_BANKS 32
79 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
80 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
81
82 #define emul_to_vcpu(ctxt) \
83         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
84
85 /* EFER defaults:
86  * - enable syscall per default because its emulated by KVM
87  * - enable LME and LMA per default on 64 bit KVM
88  */
89 #ifdef CONFIG_X86_64
90 static
91 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
92 #else
93 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
94 #endif
95
96 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
97 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
98
99 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
100                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
101
102 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
103 static void process_nmi(struct kvm_vcpu *vcpu);
104 static void enter_smm(struct kvm_vcpu *vcpu);
105 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
106 static void store_regs(struct kvm_vcpu *vcpu);
107 static int sync_regs(struct kvm_vcpu *vcpu);
108
109 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
110 EXPORT_SYMBOL_GPL(kvm_x86_ops);
111
112 static bool __read_mostly ignore_msrs = 0;
113 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
114
115 static bool __read_mostly report_ignored_msrs = true;
116 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
117
118 unsigned int min_timer_period_us = 200;
119 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
120
121 static bool __read_mostly kvmclock_periodic_sync = true;
122 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
123
124 bool __read_mostly kvm_has_tsc_control;
125 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
126 u32  __read_mostly kvm_max_guest_tsc_khz;
127 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
128 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
129 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
130 u64  __read_mostly kvm_max_tsc_scaling_ratio;
131 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
132 u64 __read_mostly kvm_default_tsc_scaling_ratio;
133 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
134
135 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
136 static u32 __read_mostly tsc_tolerance_ppm = 250;
137 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
138
139 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
140 unsigned int __read_mostly lapic_timer_advance_ns = 1000;
141 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
142 EXPORT_SYMBOL_GPL(lapic_timer_advance_ns);
143
144 static bool __read_mostly vector_hashing = true;
145 module_param(vector_hashing, bool, S_IRUGO);
146
147 bool __read_mostly enable_vmware_backdoor = false;
148 module_param(enable_vmware_backdoor, bool, S_IRUGO);
149 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
150
151 static bool __read_mostly force_emulation_prefix = false;
152 module_param(force_emulation_prefix, bool, S_IRUGO);
153
154 #define KVM_NR_SHARED_MSRS 16
155
156 struct kvm_shared_msrs_global {
157         int nr;
158         u32 msrs[KVM_NR_SHARED_MSRS];
159 };
160
161 struct kvm_shared_msrs {
162         struct user_return_notifier urn;
163         bool registered;
164         struct kvm_shared_msr_values {
165                 u64 host;
166                 u64 curr;
167         } values[KVM_NR_SHARED_MSRS];
168 };
169
170 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
171 static struct kvm_shared_msrs __percpu *shared_msrs;
172
173 struct kvm_stats_debugfs_item debugfs_entries[] = {
174         { "pf_fixed", VCPU_STAT(pf_fixed) },
175         { "pf_guest", VCPU_STAT(pf_guest) },
176         { "tlb_flush", VCPU_STAT(tlb_flush) },
177         { "invlpg", VCPU_STAT(invlpg) },
178         { "exits", VCPU_STAT(exits) },
179         { "io_exits", VCPU_STAT(io_exits) },
180         { "mmio_exits", VCPU_STAT(mmio_exits) },
181         { "signal_exits", VCPU_STAT(signal_exits) },
182         { "irq_window", VCPU_STAT(irq_window_exits) },
183         { "nmi_window", VCPU_STAT(nmi_window_exits) },
184         { "halt_exits", VCPU_STAT(halt_exits) },
185         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
186         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
187         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
188         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
189         { "hypercalls", VCPU_STAT(hypercalls) },
190         { "request_irq", VCPU_STAT(request_irq_exits) },
191         { "irq_exits", VCPU_STAT(irq_exits) },
192         { "host_state_reload", VCPU_STAT(host_state_reload) },
193         { "fpu_reload", VCPU_STAT(fpu_reload) },
194         { "insn_emulation", VCPU_STAT(insn_emulation) },
195         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
196         { "irq_injections", VCPU_STAT(irq_injections) },
197         { "nmi_injections", VCPU_STAT(nmi_injections) },
198         { "req_event", VCPU_STAT(req_event) },
199         { "l1d_flush", VCPU_STAT(l1d_flush) },
200         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
201         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
202         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
203         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
204         { "mmu_flooded", VM_STAT(mmu_flooded) },
205         { "mmu_recycled", VM_STAT(mmu_recycled) },
206         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
207         { "mmu_unsync", VM_STAT(mmu_unsync) },
208         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
209         { "largepages", VM_STAT(lpages) },
210         { "max_mmu_page_hash_collisions",
211                 VM_STAT(max_mmu_page_hash_collisions) },
212         { NULL }
213 };
214
215 u64 __read_mostly host_xcr0;
216
217 struct kmem_cache *x86_fpu_cache;
218 EXPORT_SYMBOL_GPL(x86_fpu_cache);
219
220 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
221
222 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
223 {
224         int i;
225         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
226                 vcpu->arch.apf.gfns[i] = ~0;
227 }
228
229 static void kvm_on_user_return(struct user_return_notifier *urn)
230 {
231         unsigned slot;
232         struct kvm_shared_msrs *locals
233                 = container_of(urn, struct kvm_shared_msrs, urn);
234         struct kvm_shared_msr_values *values;
235         unsigned long flags;
236
237         /*
238          * Disabling irqs at this point since the following code could be
239          * interrupted and executed through kvm_arch_hardware_disable()
240          */
241         local_irq_save(flags);
242         if (locals->registered) {
243                 locals->registered = false;
244                 user_return_notifier_unregister(urn);
245         }
246         local_irq_restore(flags);
247         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
248                 values = &locals->values[slot];
249                 if (values->host != values->curr) {
250                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
251                         values->curr = values->host;
252                 }
253         }
254 }
255
256 static void shared_msr_update(unsigned slot, u32 msr)
257 {
258         u64 value;
259         unsigned int cpu = smp_processor_id();
260         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
261
262         /* only read, and nobody should modify it at this time,
263          * so don't need lock */
264         if (slot >= shared_msrs_global.nr) {
265                 printk(KERN_ERR "kvm: invalid MSR slot!");
266                 return;
267         }
268         rdmsrl_safe(msr, &value);
269         smsr->values[slot].host = value;
270         smsr->values[slot].curr = value;
271 }
272
273 void kvm_define_shared_msr(unsigned slot, u32 msr)
274 {
275         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
276         shared_msrs_global.msrs[slot] = msr;
277         if (slot >= shared_msrs_global.nr)
278                 shared_msrs_global.nr = slot + 1;
279 }
280 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
281
282 static void kvm_shared_msr_cpu_online(void)
283 {
284         unsigned i;
285
286         for (i = 0; i < shared_msrs_global.nr; ++i)
287                 shared_msr_update(i, shared_msrs_global.msrs[i]);
288 }
289
290 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
291 {
292         unsigned int cpu = smp_processor_id();
293         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
294         int err;
295
296         if (((value ^ smsr->values[slot].curr) & mask) == 0)
297                 return 0;
298         smsr->values[slot].curr = value;
299         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
300         if (err)
301                 return 1;
302
303         if (!smsr->registered) {
304                 smsr->urn.on_user_return = kvm_on_user_return;
305                 user_return_notifier_register(&smsr->urn);
306                 smsr->registered = true;
307         }
308         return 0;
309 }
310 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
311
312 static void drop_user_return_notifiers(void)
313 {
314         unsigned int cpu = smp_processor_id();
315         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
316
317         if (smsr->registered)
318                 kvm_on_user_return(&smsr->urn);
319 }
320
321 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
322 {
323         return vcpu->arch.apic_base;
324 }
325 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
326
327 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
328 {
329         return kvm_apic_mode(kvm_get_apic_base(vcpu));
330 }
331 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
332
333 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
334 {
335         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
336         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
337         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
338                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
339
340         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
341                 return 1;
342         if (!msr_info->host_initiated) {
343                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
344                         return 1;
345                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
346                         return 1;
347         }
348
349         kvm_lapic_set_base(vcpu, msr_info->data);
350         return 0;
351 }
352 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
353
354 asmlinkage __visible void kvm_spurious_fault(void)
355 {
356         /* Fault while not rebooting.  We want the trace. */
357         BUG();
358 }
359 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
360
361 #define EXCPT_BENIGN            0
362 #define EXCPT_CONTRIBUTORY      1
363 #define EXCPT_PF                2
364
365 static int exception_class(int vector)
366 {
367         switch (vector) {
368         case PF_VECTOR:
369                 return EXCPT_PF;
370         case DE_VECTOR:
371         case TS_VECTOR:
372         case NP_VECTOR:
373         case SS_VECTOR:
374         case GP_VECTOR:
375                 return EXCPT_CONTRIBUTORY;
376         default:
377                 break;
378         }
379         return EXCPT_BENIGN;
380 }
381
382 #define EXCPT_FAULT             0
383 #define EXCPT_TRAP              1
384 #define EXCPT_ABORT             2
385 #define EXCPT_INTERRUPT         3
386
387 static int exception_type(int vector)
388 {
389         unsigned int mask;
390
391         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
392                 return EXCPT_INTERRUPT;
393
394         mask = 1 << vector;
395
396         /* #DB is trap, as instruction watchpoints are handled elsewhere */
397         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
398                 return EXCPT_TRAP;
399
400         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
401                 return EXCPT_ABORT;
402
403         /* Reserved exceptions will result in fault */
404         return EXCPT_FAULT;
405 }
406
407 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
408 {
409         unsigned nr = vcpu->arch.exception.nr;
410         bool has_payload = vcpu->arch.exception.has_payload;
411         unsigned long payload = vcpu->arch.exception.payload;
412
413         if (!has_payload)
414                 return;
415
416         switch (nr) {
417         case DB_VECTOR:
418                 /*
419                  * "Certain debug exceptions may clear bit 0-3.  The
420                  * remaining contents of the DR6 register are never
421                  * cleared by the processor".
422                  */
423                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
424                 /*
425                  * DR6.RTM is set by all #DB exceptions that don't clear it.
426                  */
427                 vcpu->arch.dr6 |= DR6_RTM;
428                 vcpu->arch.dr6 |= payload;
429                 /*
430                  * Bit 16 should be set in the payload whenever the #DB
431                  * exception should clear DR6.RTM. This makes the payload
432                  * compatible with the pending debug exceptions under VMX.
433                  * Though not currently documented in the SDM, this also
434                  * makes the payload compatible with the exit qualification
435                  * for #DB exceptions under VMX.
436                  */
437                 vcpu->arch.dr6 ^= payload & DR6_RTM;
438                 break;
439         case PF_VECTOR:
440                 vcpu->arch.cr2 = payload;
441                 break;
442         }
443
444         vcpu->arch.exception.has_payload = false;
445         vcpu->arch.exception.payload = 0;
446 }
447 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
448
449 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
450                 unsigned nr, bool has_error, u32 error_code,
451                 bool has_payload, unsigned long payload, bool reinject)
452 {
453         u32 prev_nr;
454         int class1, class2;
455
456         kvm_make_request(KVM_REQ_EVENT, vcpu);
457
458         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
459         queue:
460                 if (has_error && !is_protmode(vcpu))
461                         has_error = false;
462                 if (reinject) {
463                         /*
464                          * On vmentry, vcpu->arch.exception.pending is only
465                          * true if an event injection was blocked by
466                          * nested_run_pending.  In that case, however,
467                          * vcpu_enter_guest requests an immediate exit,
468                          * and the guest shouldn't proceed far enough to
469                          * need reinjection.
470                          */
471                         WARN_ON_ONCE(vcpu->arch.exception.pending);
472                         vcpu->arch.exception.injected = true;
473                         if (WARN_ON_ONCE(has_payload)) {
474                                 /*
475                                  * A reinjected event has already
476                                  * delivered its payload.
477                                  */
478                                 has_payload = false;
479                                 payload = 0;
480                         }
481                 } else {
482                         vcpu->arch.exception.pending = true;
483                         vcpu->arch.exception.injected = false;
484                 }
485                 vcpu->arch.exception.has_error_code = has_error;
486                 vcpu->arch.exception.nr = nr;
487                 vcpu->arch.exception.error_code = error_code;
488                 vcpu->arch.exception.has_payload = has_payload;
489                 vcpu->arch.exception.payload = payload;
490                 /*
491                  * In guest mode, payload delivery should be deferred,
492                  * so that the L1 hypervisor can intercept #PF before
493                  * CR2 is modified (or intercept #DB before DR6 is
494                  * modified under nVMX).  However, for ABI
495                  * compatibility with KVM_GET_VCPU_EVENTS and
496                  * KVM_SET_VCPU_EVENTS, we can't delay payload
497                  * delivery unless userspace has enabled this
498                  * functionality via the per-VM capability,
499                  * KVM_CAP_EXCEPTION_PAYLOAD.
500                  */
501                 if (!vcpu->kvm->arch.exception_payload_enabled ||
502                     !is_guest_mode(vcpu))
503                         kvm_deliver_exception_payload(vcpu);
504                 return;
505         }
506
507         /* to check exception */
508         prev_nr = vcpu->arch.exception.nr;
509         if (prev_nr == DF_VECTOR) {
510                 /* triple fault -> shutdown */
511                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
512                 return;
513         }
514         class1 = exception_class(prev_nr);
515         class2 = exception_class(nr);
516         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
517                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
518                 /*
519                  * Generate double fault per SDM Table 5-5.  Set
520                  * exception.pending = true so that the double fault
521                  * can trigger a nested vmexit.
522                  */
523                 vcpu->arch.exception.pending = true;
524                 vcpu->arch.exception.injected = false;
525                 vcpu->arch.exception.has_error_code = true;
526                 vcpu->arch.exception.nr = DF_VECTOR;
527                 vcpu->arch.exception.error_code = 0;
528                 vcpu->arch.exception.has_payload = false;
529                 vcpu->arch.exception.payload = 0;
530         } else
531                 /* replace previous exception with a new one in a hope
532                    that instruction re-execution will regenerate lost
533                    exception */
534                 goto queue;
535 }
536
537 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
538 {
539         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
540 }
541 EXPORT_SYMBOL_GPL(kvm_queue_exception);
542
543 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
544 {
545         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
546 }
547 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
548
549 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
550                                   unsigned long payload)
551 {
552         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
553 }
554
555 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
556                                     u32 error_code, unsigned long payload)
557 {
558         kvm_multiple_exception(vcpu, nr, true, error_code,
559                                true, payload, false);
560 }
561
562 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
563 {
564         if (err)
565                 kvm_inject_gp(vcpu, 0);
566         else
567                 return kvm_skip_emulated_instruction(vcpu);
568
569         return 1;
570 }
571 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
572
573 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
574 {
575         ++vcpu->stat.pf_guest;
576         vcpu->arch.exception.nested_apf =
577                 is_guest_mode(vcpu) && fault->async_page_fault;
578         if (vcpu->arch.exception.nested_apf) {
579                 vcpu->arch.apf.nested_apf_token = fault->address;
580                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
581         } else {
582                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
583                                         fault->address);
584         }
585 }
586 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
587
588 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
589 {
590         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
591                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
592         else
593                 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
594
595         return fault->nested_page_fault;
596 }
597
598 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
599 {
600         atomic_inc(&vcpu->arch.nmi_queued);
601         kvm_make_request(KVM_REQ_NMI, vcpu);
602 }
603 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
604
605 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
606 {
607         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
608 }
609 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
610
611 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
612 {
613         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
614 }
615 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
616
617 /*
618  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
619  * a #GP and return false.
620  */
621 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
622 {
623         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
624                 return true;
625         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
626         return false;
627 }
628 EXPORT_SYMBOL_GPL(kvm_require_cpl);
629
630 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
631 {
632         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
633                 return true;
634
635         kvm_queue_exception(vcpu, UD_VECTOR);
636         return false;
637 }
638 EXPORT_SYMBOL_GPL(kvm_require_dr);
639
640 /*
641  * This function will be used to read from the physical memory of the currently
642  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
643  * can read from guest physical or from the guest's guest physical memory.
644  */
645 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
646                             gfn_t ngfn, void *data, int offset, int len,
647                             u32 access)
648 {
649         struct x86_exception exception;
650         gfn_t real_gfn;
651         gpa_t ngpa;
652
653         ngpa     = gfn_to_gpa(ngfn);
654         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
655         if (real_gfn == UNMAPPED_GVA)
656                 return -EFAULT;
657
658         real_gfn = gpa_to_gfn(real_gfn);
659
660         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
661 }
662 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
663
664 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
665                                void *data, int offset, int len, u32 access)
666 {
667         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
668                                        data, offset, len, access);
669 }
670
671 /*
672  * Load the pae pdptrs.  Return true is they are all valid.
673  */
674 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
675 {
676         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
677         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
678         int i;
679         int ret;
680         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
681
682         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
683                                       offset * sizeof(u64), sizeof(pdpte),
684                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
685         if (ret < 0) {
686                 ret = 0;
687                 goto out;
688         }
689         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
690                 if ((pdpte[i] & PT_PRESENT_MASK) &&
691                     (pdpte[i] &
692                      vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) {
693                         ret = 0;
694                         goto out;
695                 }
696         }
697         ret = 1;
698
699         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
700         __set_bit(VCPU_EXREG_PDPTR,
701                   (unsigned long *)&vcpu->arch.regs_avail);
702         __set_bit(VCPU_EXREG_PDPTR,
703                   (unsigned long *)&vcpu->arch.regs_dirty);
704 out:
705
706         return ret;
707 }
708 EXPORT_SYMBOL_GPL(load_pdptrs);
709
710 bool pdptrs_changed(struct kvm_vcpu *vcpu)
711 {
712         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
713         bool changed = true;
714         int offset;
715         gfn_t gfn;
716         int r;
717
718         if (is_long_mode(vcpu) || !is_pae(vcpu) || !is_paging(vcpu))
719                 return false;
720
721         if (!test_bit(VCPU_EXREG_PDPTR,
722                       (unsigned long *)&vcpu->arch.regs_avail))
723                 return true;
724
725         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
726         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
727         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
728                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
729         if (r < 0)
730                 goto out;
731         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
732 out:
733
734         return changed;
735 }
736 EXPORT_SYMBOL_GPL(pdptrs_changed);
737
738 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
739 {
740         unsigned long old_cr0 = kvm_read_cr0(vcpu);
741         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
742
743         cr0 |= X86_CR0_ET;
744
745 #ifdef CONFIG_X86_64
746         if (cr0 & 0xffffffff00000000UL)
747                 return 1;
748 #endif
749
750         cr0 &= ~CR0_RESERVED_BITS;
751
752         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
753                 return 1;
754
755         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
756                 return 1;
757
758         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
759 #ifdef CONFIG_X86_64
760                 if ((vcpu->arch.efer & EFER_LME)) {
761                         int cs_db, cs_l;
762
763                         if (!is_pae(vcpu))
764                                 return 1;
765                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
766                         if (cs_l)
767                                 return 1;
768                 } else
769 #endif
770                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
771                                                  kvm_read_cr3(vcpu)))
772                         return 1;
773         }
774
775         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
776                 return 1;
777
778         kvm_x86_ops->set_cr0(vcpu, cr0);
779
780         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
781                 kvm_clear_async_pf_completion_queue(vcpu);
782                 kvm_async_pf_hash_reset(vcpu);
783         }
784
785         if ((cr0 ^ old_cr0) & update_bits)
786                 kvm_mmu_reset_context(vcpu);
787
788         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
789             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
790             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
791                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
792
793         return 0;
794 }
795 EXPORT_SYMBOL_GPL(kvm_set_cr0);
796
797 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
798 {
799         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
800 }
801 EXPORT_SYMBOL_GPL(kvm_lmsw);
802
803 void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
804 {
805         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
806                         !vcpu->guest_xcr0_loaded) {
807                 /* kvm_set_xcr() also depends on this */
808                 if (vcpu->arch.xcr0 != host_xcr0)
809                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
810                 vcpu->guest_xcr0_loaded = 1;
811         }
812 }
813 EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0);
814
815 void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
816 {
817         if (vcpu->guest_xcr0_loaded) {
818                 if (vcpu->arch.xcr0 != host_xcr0)
819                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
820                 vcpu->guest_xcr0_loaded = 0;
821         }
822 }
823 EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0);
824
825 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
826 {
827         u64 xcr0 = xcr;
828         u64 old_xcr0 = vcpu->arch.xcr0;
829         u64 valid_bits;
830
831         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
832         if (index != XCR_XFEATURE_ENABLED_MASK)
833                 return 1;
834         if (!(xcr0 & XFEATURE_MASK_FP))
835                 return 1;
836         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
837                 return 1;
838
839         /*
840          * Do not allow the guest to set bits that we do not support
841          * saving.  However, xcr0 bit 0 is always set, even if the
842          * emulated CPU does not support XSAVE (see fx_init).
843          */
844         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
845         if (xcr0 & ~valid_bits)
846                 return 1;
847
848         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
849             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
850                 return 1;
851
852         if (xcr0 & XFEATURE_MASK_AVX512) {
853                 if (!(xcr0 & XFEATURE_MASK_YMM))
854                         return 1;
855                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
856                         return 1;
857         }
858         vcpu->arch.xcr0 = xcr0;
859
860         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
861                 kvm_update_cpuid(vcpu);
862         return 0;
863 }
864
865 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
866 {
867         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
868             __kvm_set_xcr(vcpu, index, xcr)) {
869                 kvm_inject_gp(vcpu, 0);
870                 return 1;
871         }
872         return 0;
873 }
874 EXPORT_SYMBOL_GPL(kvm_set_xcr);
875
876 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
877 {
878         unsigned long old_cr4 = kvm_read_cr4(vcpu);
879         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
880                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
881
882         if (cr4 & CR4_RESERVED_BITS)
883                 return 1;
884
885         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
886                 return 1;
887
888         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
889                 return 1;
890
891         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
892                 return 1;
893
894         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
895                 return 1;
896
897         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
898                 return 1;
899
900         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
901                 return 1;
902
903         if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
904                 return 1;
905
906         if (is_long_mode(vcpu)) {
907                 if (!(cr4 & X86_CR4_PAE))
908                         return 1;
909         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
910                    && ((cr4 ^ old_cr4) & pdptr_bits)
911                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
912                                    kvm_read_cr3(vcpu)))
913                 return 1;
914
915         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
916                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
917                         return 1;
918
919                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
920                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
921                         return 1;
922         }
923
924         if (kvm_x86_ops->set_cr4(vcpu, cr4))
925                 return 1;
926
927         if (((cr4 ^ old_cr4) & pdptr_bits) ||
928             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
929                 kvm_mmu_reset_context(vcpu);
930
931         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
932                 kvm_update_cpuid(vcpu);
933
934         return 0;
935 }
936 EXPORT_SYMBOL_GPL(kvm_set_cr4);
937
938 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
939 {
940         bool skip_tlb_flush = false;
941 #ifdef CONFIG_X86_64
942         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
943
944         if (pcid_enabled) {
945                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
946                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
947         }
948 #endif
949
950         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
951                 if (!skip_tlb_flush) {
952                         kvm_mmu_sync_roots(vcpu);
953                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
954                 }
955                 return 0;
956         }
957
958         if (is_long_mode(vcpu) &&
959             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
960                 return 1;
961         else if (is_pae(vcpu) && is_paging(vcpu) &&
962                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
963                 return 1;
964
965         kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
966         vcpu->arch.cr3 = cr3;
967         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
968
969         return 0;
970 }
971 EXPORT_SYMBOL_GPL(kvm_set_cr3);
972
973 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
974 {
975         if (cr8 & CR8_RESERVED_BITS)
976                 return 1;
977         if (lapic_in_kernel(vcpu))
978                 kvm_lapic_set_tpr(vcpu, cr8);
979         else
980                 vcpu->arch.cr8 = cr8;
981         return 0;
982 }
983 EXPORT_SYMBOL_GPL(kvm_set_cr8);
984
985 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
986 {
987         if (lapic_in_kernel(vcpu))
988                 return kvm_lapic_get_cr8(vcpu);
989         else
990                 return vcpu->arch.cr8;
991 }
992 EXPORT_SYMBOL_GPL(kvm_get_cr8);
993
994 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
995 {
996         int i;
997
998         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
999                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1000                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1001                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1002         }
1003 }
1004
1005 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1006 {
1007         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1008                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1009 }
1010
1011 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1012 {
1013         unsigned long dr7;
1014
1015         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1016                 dr7 = vcpu->arch.guest_debug_dr7;
1017         else
1018                 dr7 = vcpu->arch.dr7;
1019         kvm_x86_ops->set_dr7(vcpu, dr7);
1020         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1021         if (dr7 & DR7_BP_EN_MASK)
1022                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1023 }
1024
1025 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1026 {
1027         u64 fixed = DR6_FIXED_1;
1028
1029         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1030                 fixed |= DR6_RTM;
1031         return fixed;
1032 }
1033
1034 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1035 {
1036         switch (dr) {
1037         case 0 ... 3:
1038                 vcpu->arch.db[dr] = val;
1039                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1040                         vcpu->arch.eff_db[dr] = val;
1041                 break;
1042         case 4:
1043                 /* fall through */
1044         case 6:
1045                 if (val & 0xffffffff00000000ULL)
1046                         return -1; /* #GP */
1047                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1048                 kvm_update_dr6(vcpu);
1049                 break;
1050         case 5:
1051                 /* fall through */
1052         default: /* 7 */
1053                 if (val & 0xffffffff00000000ULL)
1054                         return -1; /* #GP */
1055                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1056                 kvm_update_dr7(vcpu);
1057                 break;
1058         }
1059
1060         return 0;
1061 }
1062
1063 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1064 {
1065         if (__kvm_set_dr(vcpu, dr, val)) {
1066                 kvm_inject_gp(vcpu, 0);
1067                 return 1;
1068         }
1069         return 0;
1070 }
1071 EXPORT_SYMBOL_GPL(kvm_set_dr);
1072
1073 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1074 {
1075         switch (dr) {
1076         case 0 ... 3:
1077                 *val = vcpu->arch.db[dr];
1078                 break;
1079         case 4:
1080                 /* fall through */
1081         case 6:
1082                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1083                         *val = vcpu->arch.dr6;
1084                 else
1085                         *val = kvm_x86_ops->get_dr6(vcpu);
1086                 break;
1087         case 5:
1088                 /* fall through */
1089         default: /* 7 */
1090                 *val = vcpu->arch.dr7;
1091                 break;
1092         }
1093         return 0;
1094 }
1095 EXPORT_SYMBOL_GPL(kvm_get_dr);
1096
1097 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1098 {
1099         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
1100         u64 data;
1101         int err;
1102
1103         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1104         if (err)
1105                 return err;
1106         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1107         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1108         return err;
1109 }
1110 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1111
1112 /*
1113  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1114  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1115  *
1116  * This list is modified at module load time to reflect the
1117  * capabilities of the host cpu. This capabilities test skips MSRs that are
1118  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1119  * may depend on host virtualization features rather than host cpu features.
1120  */
1121
1122 static u32 msrs_to_save[] = {
1123         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1124         MSR_STAR,
1125 #ifdef CONFIG_X86_64
1126         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1127 #endif
1128         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1129         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1130         MSR_IA32_SPEC_CTRL,
1131         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1132         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1133         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1134         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1135         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1136         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1137 };
1138
1139 static unsigned num_msrs_to_save;
1140
1141 static u32 emulated_msrs[] = {
1142         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1143         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1144         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1145         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1146         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1147         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1148         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1149         HV_X64_MSR_RESET,
1150         HV_X64_MSR_VP_INDEX,
1151         HV_X64_MSR_VP_RUNTIME,
1152         HV_X64_MSR_SCONTROL,
1153         HV_X64_MSR_STIMER0_CONFIG,
1154         HV_X64_MSR_VP_ASSIST_PAGE,
1155         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1156         HV_X64_MSR_TSC_EMULATION_STATUS,
1157
1158         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1159         MSR_KVM_PV_EOI_EN,
1160
1161         MSR_IA32_TSC_ADJUST,
1162         MSR_IA32_TSCDEADLINE,
1163         MSR_IA32_ARCH_CAPABILITIES,
1164         MSR_IA32_MISC_ENABLE,
1165         MSR_IA32_MCG_STATUS,
1166         MSR_IA32_MCG_CTL,
1167         MSR_IA32_MCG_EXT_CTL,
1168         MSR_IA32_SMBASE,
1169         MSR_SMI_COUNT,
1170         MSR_PLATFORM_INFO,
1171         MSR_MISC_FEATURES_ENABLES,
1172         MSR_AMD64_VIRT_SPEC_CTRL,
1173 };
1174
1175 static unsigned num_emulated_msrs;
1176
1177 /*
1178  * List of msr numbers which are used to expose MSR-based features that
1179  * can be used by a hypervisor to validate requested CPU features.
1180  */
1181 static u32 msr_based_features[] = {
1182         MSR_IA32_VMX_BASIC,
1183         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1184         MSR_IA32_VMX_PINBASED_CTLS,
1185         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1186         MSR_IA32_VMX_PROCBASED_CTLS,
1187         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1188         MSR_IA32_VMX_EXIT_CTLS,
1189         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1190         MSR_IA32_VMX_ENTRY_CTLS,
1191         MSR_IA32_VMX_MISC,
1192         MSR_IA32_VMX_CR0_FIXED0,
1193         MSR_IA32_VMX_CR0_FIXED1,
1194         MSR_IA32_VMX_CR4_FIXED0,
1195         MSR_IA32_VMX_CR4_FIXED1,
1196         MSR_IA32_VMX_VMCS_ENUM,
1197         MSR_IA32_VMX_PROCBASED_CTLS2,
1198         MSR_IA32_VMX_EPT_VPID_CAP,
1199         MSR_IA32_VMX_VMFUNC,
1200
1201         MSR_F10H_DECFG,
1202         MSR_IA32_UCODE_REV,
1203         MSR_IA32_ARCH_CAPABILITIES,
1204 };
1205
1206 static unsigned int num_msr_based_features;
1207
1208 u64 kvm_get_arch_capabilities(void)
1209 {
1210         u64 data;
1211
1212         rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1213
1214         /*
1215          * If we're doing cache flushes (either "always" or "cond")
1216          * we will do one whenever the guest does a vmlaunch/vmresume.
1217          * If an outer hypervisor is doing the cache flush for us
1218          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1219          * capability to the guest too, and if EPT is disabled we're not
1220          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1221          * require a nested hypervisor to do a flush of its own.
1222          */
1223         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1224                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1225
1226         return data;
1227 }
1228 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1229
1230 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1231 {
1232         switch (msr->index) {
1233         case MSR_IA32_ARCH_CAPABILITIES:
1234                 msr->data = kvm_get_arch_capabilities();
1235                 break;
1236         case MSR_IA32_UCODE_REV:
1237                 rdmsrl_safe(msr->index, &msr->data);
1238                 break;
1239         default:
1240                 if (kvm_x86_ops->get_msr_feature(msr))
1241                         return 1;
1242         }
1243         return 0;
1244 }
1245
1246 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1247 {
1248         struct kvm_msr_entry msr;
1249         int r;
1250
1251         msr.index = index;
1252         r = kvm_get_msr_feature(&msr);
1253         if (r)
1254                 return r;
1255
1256         *data = msr.data;
1257
1258         return 0;
1259 }
1260
1261 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1262 {
1263         if (efer & efer_reserved_bits)
1264                 return false;
1265
1266         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1267                         return false;
1268
1269         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1270                         return false;
1271
1272         return true;
1273 }
1274 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1275
1276 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1277 {
1278         u64 old_efer = vcpu->arch.efer;
1279
1280         if (!kvm_valid_efer(vcpu, efer))
1281                 return 1;
1282
1283         if (is_paging(vcpu)
1284             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1285                 return 1;
1286
1287         efer &= ~EFER_LMA;
1288         efer |= vcpu->arch.efer & EFER_LMA;
1289
1290         kvm_x86_ops->set_efer(vcpu, efer);
1291
1292         /* Update reserved bits */
1293         if ((efer ^ old_efer) & EFER_NX)
1294                 kvm_mmu_reset_context(vcpu);
1295
1296         return 0;
1297 }
1298
1299 void kvm_enable_efer_bits(u64 mask)
1300 {
1301        efer_reserved_bits &= ~mask;
1302 }
1303 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1304
1305 /*
1306  * Writes msr value into into the appropriate "register".
1307  * Returns 0 on success, non-0 otherwise.
1308  * Assumes vcpu_load() was already called.
1309  */
1310 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1311 {
1312         switch (msr->index) {
1313         case MSR_FS_BASE:
1314         case MSR_GS_BASE:
1315         case MSR_KERNEL_GS_BASE:
1316         case MSR_CSTAR:
1317         case MSR_LSTAR:
1318                 if (is_noncanonical_address(msr->data, vcpu))
1319                         return 1;
1320                 break;
1321         case MSR_IA32_SYSENTER_EIP:
1322         case MSR_IA32_SYSENTER_ESP:
1323                 /*
1324                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1325                  * non-canonical address is written on Intel but not on
1326                  * AMD (which ignores the top 32-bits, because it does
1327                  * not implement 64-bit SYSENTER).
1328                  *
1329                  * 64-bit code should hence be able to write a non-canonical
1330                  * value on AMD.  Making the address canonical ensures that
1331                  * vmentry does not fail on Intel after writing a non-canonical
1332                  * value, and that something deterministic happens if the guest
1333                  * invokes 64-bit SYSENTER.
1334                  */
1335                 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1336         }
1337         return kvm_x86_ops->set_msr(vcpu, msr);
1338 }
1339 EXPORT_SYMBOL_GPL(kvm_set_msr);
1340
1341 /*
1342  * Adapt set_msr() to msr_io()'s calling convention
1343  */
1344 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1345 {
1346         struct msr_data msr;
1347         int r;
1348
1349         msr.index = index;
1350         msr.host_initiated = true;
1351         r = kvm_get_msr(vcpu, &msr);
1352         if (r)
1353                 return r;
1354
1355         *data = msr.data;
1356         return 0;
1357 }
1358
1359 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1360 {
1361         struct msr_data msr;
1362
1363         msr.data = *data;
1364         msr.index = index;
1365         msr.host_initiated = true;
1366         return kvm_set_msr(vcpu, &msr);
1367 }
1368
1369 #ifdef CONFIG_X86_64
1370 struct pvclock_gtod_data {
1371         seqcount_t      seq;
1372
1373         struct { /* extract of a clocksource struct */
1374                 int vclock_mode;
1375                 u64     cycle_last;
1376                 u64     mask;
1377                 u32     mult;
1378                 u32     shift;
1379         } clock;
1380
1381         u64             boot_ns;
1382         u64             nsec_base;
1383         u64             wall_time_sec;
1384 };
1385
1386 static struct pvclock_gtod_data pvclock_gtod_data;
1387
1388 static void update_pvclock_gtod(struct timekeeper *tk)
1389 {
1390         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1391         u64 boot_ns;
1392
1393         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1394
1395         write_seqcount_begin(&vdata->seq);
1396
1397         /* copy pvclock gtod data */
1398         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1399         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1400         vdata->clock.mask               = tk->tkr_mono.mask;
1401         vdata->clock.mult               = tk->tkr_mono.mult;
1402         vdata->clock.shift              = tk->tkr_mono.shift;
1403
1404         vdata->boot_ns                  = boot_ns;
1405         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1406
1407         vdata->wall_time_sec            = tk->xtime_sec;
1408
1409         write_seqcount_end(&vdata->seq);
1410 }
1411 #endif
1412
1413 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1414 {
1415         /*
1416          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1417          * vcpu_enter_guest.  This function is only called from
1418          * the physical CPU that is running vcpu.
1419          */
1420         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1421 }
1422
1423 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1424 {
1425         int version;
1426         int r;
1427         struct pvclock_wall_clock wc;
1428         struct timespec64 boot;
1429
1430         if (!wall_clock)
1431                 return;
1432
1433         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1434         if (r)
1435                 return;
1436
1437         if (version & 1)
1438                 ++version;  /* first time write, random junk */
1439
1440         ++version;
1441
1442         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1443                 return;
1444
1445         /*
1446          * The guest calculates current wall clock time by adding
1447          * system time (updated by kvm_guest_time_update below) to the
1448          * wall clock specified here.  guest system time equals host
1449          * system time for us, thus we must fill in host boot time here.
1450          */
1451         getboottime64(&boot);
1452
1453         if (kvm->arch.kvmclock_offset) {
1454                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1455                 boot = timespec64_sub(boot, ts);
1456         }
1457         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1458         wc.nsec = boot.tv_nsec;
1459         wc.version = version;
1460
1461         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1462
1463         version++;
1464         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1465 }
1466
1467 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1468 {
1469         do_shl32_div32(dividend, divisor);
1470         return dividend;
1471 }
1472
1473 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1474                                s8 *pshift, u32 *pmultiplier)
1475 {
1476         uint64_t scaled64;
1477         int32_t  shift = 0;
1478         uint64_t tps64;
1479         uint32_t tps32;
1480
1481         tps64 = base_hz;
1482         scaled64 = scaled_hz;
1483         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1484                 tps64 >>= 1;
1485                 shift--;
1486         }
1487
1488         tps32 = (uint32_t)tps64;
1489         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1490                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1491                         scaled64 >>= 1;
1492                 else
1493                         tps32 <<= 1;
1494                 shift++;
1495         }
1496
1497         *pshift = shift;
1498         *pmultiplier = div_frac(scaled64, tps32);
1499
1500         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1501                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1502 }
1503
1504 #ifdef CONFIG_X86_64
1505 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1506 #endif
1507
1508 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1509 static unsigned long max_tsc_khz;
1510
1511 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1512 {
1513         u64 v = (u64)khz * (1000000 + ppm);
1514         do_div(v, 1000000);
1515         return v;
1516 }
1517
1518 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1519 {
1520         u64 ratio;
1521
1522         /* Guest TSC same frequency as host TSC? */
1523         if (!scale) {
1524                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1525                 return 0;
1526         }
1527
1528         /* TSC scaling supported? */
1529         if (!kvm_has_tsc_control) {
1530                 if (user_tsc_khz > tsc_khz) {
1531                         vcpu->arch.tsc_catchup = 1;
1532                         vcpu->arch.tsc_always_catchup = 1;
1533                         return 0;
1534                 } else {
1535                         WARN(1, "user requested TSC rate below hardware speed\n");
1536                         return -1;
1537                 }
1538         }
1539
1540         /* TSC scaling required  - calculate ratio */
1541         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1542                                 user_tsc_khz, tsc_khz);
1543
1544         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1545                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1546                           user_tsc_khz);
1547                 return -1;
1548         }
1549
1550         vcpu->arch.tsc_scaling_ratio = ratio;
1551         return 0;
1552 }
1553
1554 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1555 {
1556         u32 thresh_lo, thresh_hi;
1557         int use_scaling = 0;
1558
1559         /* tsc_khz can be zero if TSC calibration fails */
1560         if (user_tsc_khz == 0) {
1561                 /* set tsc_scaling_ratio to a safe value */
1562                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1563                 return -1;
1564         }
1565
1566         /* Compute a scale to convert nanoseconds in TSC cycles */
1567         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1568                            &vcpu->arch.virtual_tsc_shift,
1569                            &vcpu->arch.virtual_tsc_mult);
1570         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1571
1572         /*
1573          * Compute the variation in TSC rate which is acceptable
1574          * within the range of tolerance and decide if the
1575          * rate being applied is within that bounds of the hardware
1576          * rate.  If so, no scaling or compensation need be done.
1577          */
1578         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1579         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1580         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1581                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1582                 use_scaling = 1;
1583         }
1584         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1585 }
1586
1587 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1588 {
1589         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1590                                       vcpu->arch.virtual_tsc_mult,
1591                                       vcpu->arch.virtual_tsc_shift);
1592         tsc += vcpu->arch.this_tsc_write;
1593         return tsc;
1594 }
1595
1596 static inline int gtod_is_based_on_tsc(int mode)
1597 {
1598         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1599 }
1600
1601 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1602 {
1603 #ifdef CONFIG_X86_64
1604         bool vcpus_matched;
1605         struct kvm_arch *ka = &vcpu->kvm->arch;
1606         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1607
1608         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1609                          atomic_read(&vcpu->kvm->online_vcpus));
1610
1611         /*
1612          * Once the masterclock is enabled, always perform request in
1613          * order to update it.
1614          *
1615          * In order to enable masterclock, the host clocksource must be TSC
1616          * and the vcpus need to have matched TSCs.  When that happens,
1617          * perform request to enable masterclock.
1618          */
1619         if (ka->use_master_clock ||
1620             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1621                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1622
1623         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1624                             atomic_read(&vcpu->kvm->online_vcpus),
1625                             ka->use_master_clock, gtod->clock.vclock_mode);
1626 #endif
1627 }
1628
1629 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1630 {
1631         u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1632         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1633 }
1634
1635 /*
1636  * Multiply tsc by a fixed point number represented by ratio.
1637  *
1638  * The most significant 64-N bits (mult) of ratio represent the
1639  * integral part of the fixed point number; the remaining N bits
1640  * (frac) represent the fractional part, ie. ratio represents a fixed
1641  * point number (mult + frac * 2^(-N)).
1642  *
1643  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1644  */
1645 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1646 {
1647         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1648 }
1649
1650 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1651 {
1652         u64 _tsc = tsc;
1653         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1654
1655         if (ratio != kvm_default_tsc_scaling_ratio)
1656                 _tsc = __scale_tsc(ratio, tsc);
1657
1658         return _tsc;
1659 }
1660 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1661
1662 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1663 {
1664         u64 tsc;
1665
1666         tsc = kvm_scale_tsc(vcpu, rdtsc());
1667
1668         return target_tsc - tsc;
1669 }
1670
1671 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1672 {
1673         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1674
1675         return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1676 }
1677 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1678
1679 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1680 {
1681         vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1682 }
1683
1684 static inline bool kvm_check_tsc_unstable(void)
1685 {
1686 #ifdef CONFIG_X86_64
1687         /*
1688          * TSC is marked unstable when we're running on Hyper-V,
1689          * 'TSC page' clocksource is good.
1690          */
1691         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1692                 return false;
1693 #endif
1694         return check_tsc_unstable();
1695 }
1696
1697 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1698 {
1699         struct kvm *kvm = vcpu->kvm;
1700         u64 offset, ns, elapsed;
1701         unsigned long flags;
1702         bool matched;
1703         bool already_matched;
1704         u64 data = msr->data;
1705         bool synchronizing = false;
1706
1707         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1708         offset = kvm_compute_tsc_offset(vcpu, data);
1709         ns = ktime_get_boot_ns();
1710         elapsed = ns - kvm->arch.last_tsc_nsec;
1711
1712         if (vcpu->arch.virtual_tsc_khz) {
1713                 if (data == 0 && msr->host_initiated) {
1714                         /*
1715                          * detection of vcpu initialization -- need to sync
1716                          * with other vCPUs. This particularly helps to keep
1717                          * kvm_clock stable after CPU hotplug
1718                          */
1719                         synchronizing = true;
1720                 } else {
1721                         u64 tsc_exp = kvm->arch.last_tsc_write +
1722                                                 nsec_to_cycles(vcpu, elapsed);
1723                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1724                         /*
1725                          * Special case: TSC write with a small delta (1 second)
1726                          * of virtual cycle time against real time is
1727                          * interpreted as an attempt to synchronize the CPU.
1728                          */
1729                         synchronizing = data < tsc_exp + tsc_hz &&
1730                                         data + tsc_hz > tsc_exp;
1731                 }
1732         }
1733
1734         /*
1735          * For a reliable TSC, we can match TSC offsets, and for an unstable
1736          * TSC, we add elapsed time in this computation.  We could let the
1737          * compensation code attempt to catch up if we fall behind, but
1738          * it's better to try to match offsets from the beginning.
1739          */
1740         if (synchronizing &&
1741             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1742                 if (!kvm_check_tsc_unstable()) {
1743                         offset = kvm->arch.cur_tsc_offset;
1744                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1745                 } else {
1746                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1747                         data += delta;
1748                         offset = kvm_compute_tsc_offset(vcpu, data);
1749                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1750                 }
1751                 matched = true;
1752                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1753         } else {
1754                 /*
1755                  * We split periods of matched TSC writes into generations.
1756                  * For each generation, we track the original measured
1757                  * nanosecond time, offset, and write, so if TSCs are in
1758                  * sync, we can match exact offset, and if not, we can match
1759                  * exact software computation in compute_guest_tsc()
1760                  *
1761                  * These values are tracked in kvm->arch.cur_xxx variables.
1762                  */
1763                 kvm->arch.cur_tsc_generation++;
1764                 kvm->arch.cur_tsc_nsec = ns;
1765                 kvm->arch.cur_tsc_write = data;
1766                 kvm->arch.cur_tsc_offset = offset;
1767                 matched = false;
1768                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1769                          kvm->arch.cur_tsc_generation, data);
1770         }
1771
1772         /*
1773          * We also track th most recent recorded KHZ, write and time to
1774          * allow the matching interval to be extended at each write.
1775          */
1776         kvm->arch.last_tsc_nsec = ns;
1777         kvm->arch.last_tsc_write = data;
1778         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1779
1780         vcpu->arch.last_guest_tsc = data;
1781
1782         /* Keep track of which generation this VCPU has synchronized to */
1783         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1784         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1785         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1786
1787         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1788                 update_ia32_tsc_adjust_msr(vcpu, offset);
1789
1790         kvm_vcpu_write_tsc_offset(vcpu, offset);
1791         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1792
1793         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1794         if (!matched) {
1795                 kvm->arch.nr_vcpus_matched_tsc = 0;
1796         } else if (!already_matched) {
1797                 kvm->arch.nr_vcpus_matched_tsc++;
1798         }
1799
1800         kvm_track_tsc_matching(vcpu);
1801         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1802 }
1803
1804 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1805
1806 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1807                                            s64 adjustment)
1808 {
1809         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1810         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1811 }
1812
1813 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1814 {
1815         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1816                 WARN_ON(adjustment < 0);
1817         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1818         adjust_tsc_offset_guest(vcpu, adjustment);
1819 }
1820
1821 #ifdef CONFIG_X86_64
1822
1823 static u64 read_tsc(void)
1824 {
1825         u64 ret = (u64)rdtsc_ordered();
1826         u64 last = pvclock_gtod_data.clock.cycle_last;
1827
1828         if (likely(ret >= last))
1829                 return ret;
1830
1831         /*
1832          * GCC likes to generate cmov here, but this branch is extremely
1833          * predictable (it's just a function of time and the likely is
1834          * very likely) and there's a data dependence, so force GCC
1835          * to generate a branch instead.  I don't barrier() because
1836          * we don't actually need a barrier, and if this function
1837          * ever gets inlined it will generate worse code.
1838          */
1839         asm volatile ("");
1840         return last;
1841 }
1842
1843 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1844 {
1845         long v;
1846         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1847         u64 tsc_pg_val;
1848
1849         switch (gtod->clock.vclock_mode) {
1850         case VCLOCK_HVCLOCK:
1851                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1852                                                   tsc_timestamp);
1853                 if (tsc_pg_val != U64_MAX) {
1854                         /* TSC page valid */
1855                         *mode = VCLOCK_HVCLOCK;
1856                         v = (tsc_pg_val - gtod->clock.cycle_last) &
1857                                 gtod->clock.mask;
1858                 } else {
1859                         /* TSC page invalid */
1860                         *mode = VCLOCK_NONE;
1861                 }
1862                 break;
1863         case VCLOCK_TSC:
1864                 *mode = VCLOCK_TSC;
1865                 *tsc_timestamp = read_tsc();
1866                 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1867                         gtod->clock.mask;
1868                 break;
1869         default:
1870                 *mode = VCLOCK_NONE;
1871         }
1872
1873         if (*mode == VCLOCK_NONE)
1874                 *tsc_timestamp = v = 0;
1875
1876         return v * gtod->clock.mult;
1877 }
1878
1879 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1880 {
1881         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1882         unsigned long seq;
1883         int mode;
1884         u64 ns;
1885
1886         do {
1887                 seq = read_seqcount_begin(&gtod->seq);
1888                 ns = gtod->nsec_base;
1889                 ns += vgettsc(tsc_timestamp, &mode);
1890                 ns >>= gtod->clock.shift;
1891                 ns += gtod->boot_ns;
1892         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1893         *t = ns;
1894
1895         return mode;
1896 }
1897
1898 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1899 {
1900         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1901         unsigned long seq;
1902         int mode;
1903         u64 ns;
1904
1905         do {
1906                 seq = read_seqcount_begin(&gtod->seq);
1907                 ts->tv_sec = gtod->wall_time_sec;
1908                 ns = gtod->nsec_base;
1909                 ns += vgettsc(tsc_timestamp, &mode);
1910                 ns >>= gtod->clock.shift;
1911         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1912
1913         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1914         ts->tv_nsec = ns;
1915
1916         return mode;
1917 }
1918
1919 /* returns true if host is using TSC based clocksource */
1920 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1921 {
1922         /* checked again under seqlock below */
1923         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1924                 return false;
1925
1926         return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1927                                                       tsc_timestamp));
1928 }
1929
1930 /* returns true if host is using TSC based clocksource */
1931 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1932                                            u64 *tsc_timestamp)
1933 {
1934         /* checked again under seqlock below */
1935         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1936                 return false;
1937
1938         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1939 }
1940 #endif
1941
1942 /*
1943  *
1944  * Assuming a stable TSC across physical CPUS, and a stable TSC
1945  * across virtual CPUs, the following condition is possible.
1946  * Each numbered line represents an event visible to both
1947  * CPUs at the next numbered event.
1948  *
1949  * "timespecX" represents host monotonic time. "tscX" represents
1950  * RDTSC value.
1951  *
1952  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1953  *
1954  * 1.  read timespec0,tsc0
1955  * 2.                                   | timespec1 = timespec0 + N
1956  *                                      | tsc1 = tsc0 + M
1957  * 3. transition to guest               | transition to guest
1958  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1959  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1960  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1961  *
1962  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1963  *
1964  *      - ret0 < ret1
1965  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1966  *              ...
1967  *      - 0 < N - M => M < N
1968  *
1969  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1970  * always the case (the difference between two distinct xtime instances
1971  * might be smaller then the difference between corresponding TSC reads,
1972  * when updating guest vcpus pvclock areas).
1973  *
1974  * To avoid that problem, do not allow visibility of distinct
1975  * system_timestamp/tsc_timestamp values simultaneously: use a master
1976  * copy of host monotonic time values. Update that master copy
1977  * in lockstep.
1978  *
1979  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1980  *
1981  */
1982
1983 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1984 {
1985 #ifdef CONFIG_X86_64
1986         struct kvm_arch *ka = &kvm->arch;
1987         int vclock_mode;
1988         bool host_tsc_clocksource, vcpus_matched;
1989
1990         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1991                         atomic_read(&kvm->online_vcpus));
1992
1993         /*
1994          * If the host uses TSC clock, then passthrough TSC as stable
1995          * to the guest.
1996          */
1997         host_tsc_clocksource = kvm_get_time_and_clockread(
1998                                         &ka->master_kernel_ns,
1999                                         &ka->master_cycle_now);
2000
2001         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2002                                 && !ka->backwards_tsc_observed
2003                                 && !ka->boot_vcpu_runs_old_kvmclock;
2004
2005         if (ka->use_master_clock)
2006                 atomic_set(&kvm_guest_has_master_clock, 1);
2007
2008         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2009         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2010                                         vcpus_matched);
2011 #endif
2012 }
2013
2014 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2015 {
2016         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2017 }
2018
2019 static void kvm_gen_update_masterclock(struct kvm *kvm)
2020 {
2021 #ifdef CONFIG_X86_64
2022         int i;
2023         struct kvm_vcpu *vcpu;
2024         struct kvm_arch *ka = &kvm->arch;
2025
2026         spin_lock(&ka->pvclock_gtod_sync_lock);
2027         kvm_make_mclock_inprogress_request(kvm);
2028         /* no guest entries from this point */
2029         pvclock_update_vm_gtod_copy(kvm);
2030
2031         kvm_for_each_vcpu(i, vcpu, kvm)
2032                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2033
2034         /* guest entries allowed */
2035         kvm_for_each_vcpu(i, vcpu, kvm)
2036                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2037
2038         spin_unlock(&ka->pvclock_gtod_sync_lock);
2039 #endif
2040 }
2041
2042 u64 get_kvmclock_ns(struct kvm *kvm)
2043 {
2044         struct kvm_arch *ka = &kvm->arch;
2045         struct pvclock_vcpu_time_info hv_clock;
2046         u64 ret;
2047
2048         spin_lock(&ka->pvclock_gtod_sync_lock);
2049         if (!ka->use_master_clock) {
2050                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2051                 return ktime_get_boot_ns() + ka->kvmclock_offset;
2052         }
2053
2054         hv_clock.tsc_timestamp = ka->master_cycle_now;
2055         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2056         spin_unlock(&ka->pvclock_gtod_sync_lock);
2057
2058         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2059         get_cpu();
2060
2061         if (__this_cpu_read(cpu_tsc_khz)) {
2062                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2063                                    &hv_clock.tsc_shift,
2064                                    &hv_clock.tsc_to_system_mul);
2065                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2066         } else
2067                 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
2068
2069         put_cpu();
2070
2071         return ret;
2072 }
2073
2074 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2075 {
2076         struct kvm_vcpu_arch *vcpu = &v->arch;
2077         struct pvclock_vcpu_time_info guest_hv_clock;
2078
2079         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2080                 &guest_hv_clock, sizeof(guest_hv_clock))))
2081                 return;
2082
2083         /* This VCPU is paused, but it's legal for a guest to read another
2084          * VCPU's kvmclock, so we really have to follow the specification where
2085          * it says that version is odd if data is being modified, and even after
2086          * it is consistent.
2087          *
2088          * Version field updates must be kept separate.  This is because
2089          * kvm_write_guest_cached might use a "rep movs" instruction, and
2090          * writes within a string instruction are weakly ordered.  So there
2091          * are three writes overall.
2092          *
2093          * As a small optimization, only write the version field in the first
2094          * and third write.  The vcpu->pv_time cache is still valid, because the
2095          * version field is the first in the struct.
2096          */
2097         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2098
2099         if (guest_hv_clock.version & 1)
2100                 ++guest_hv_clock.version;  /* first time write, random junk */
2101
2102         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2103         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2104                                 &vcpu->hv_clock,
2105                                 sizeof(vcpu->hv_clock.version));
2106
2107         smp_wmb();
2108
2109         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2110         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2111
2112         if (vcpu->pvclock_set_guest_stopped_request) {
2113                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2114                 vcpu->pvclock_set_guest_stopped_request = false;
2115         }
2116
2117         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2118
2119         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2120                                 &vcpu->hv_clock,
2121                                 sizeof(vcpu->hv_clock));
2122
2123         smp_wmb();
2124
2125         vcpu->hv_clock.version++;
2126         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2127                                 &vcpu->hv_clock,
2128                                 sizeof(vcpu->hv_clock.version));
2129 }
2130
2131 static int kvm_guest_time_update(struct kvm_vcpu *v)
2132 {
2133         unsigned long flags, tgt_tsc_khz;
2134         struct kvm_vcpu_arch *vcpu = &v->arch;
2135         struct kvm_arch *ka = &v->kvm->arch;
2136         s64 kernel_ns;
2137         u64 tsc_timestamp, host_tsc;
2138         u8 pvclock_flags;
2139         bool use_master_clock;
2140
2141         kernel_ns = 0;
2142         host_tsc = 0;
2143
2144         /*
2145          * If the host uses TSC clock, then passthrough TSC as stable
2146          * to the guest.
2147          */
2148         spin_lock(&ka->pvclock_gtod_sync_lock);
2149         use_master_clock = ka->use_master_clock;
2150         if (use_master_clock) {
2151                 host_tsc = ka->master_cycle_now;
2152                 kernel_ns = ka->master_kernel_ns;
2153         }
2154         spin_unlock(&ka->pvclock_gtod_sync_lock);
2155
2156         /* Keep irq disabled to prevent changes to the clock */
2157         local_irq_save(flags);
2158         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2159         if (unlikely(tgt_tsc_khz == 0)) {
2160                 local_irq_restore(flags);
2161                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2162                 return 1;
2163         }
2164         if (!use_master_clock) {
2165                 host_tsc = rdtsc();
2166                 kernel_ns = ktime_get_boot_ns();
2167         }
2168
2169         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2170
2171         /*
2172          * We may have to catch up the TSC to match elapsed wall clock
2173          * time for two reasons, even if kvmclock is used.
2174          *   1) CPU could have been running below the maximum TSC rate
2175          *   2) Broken TSC compensation resets the base at each VCPU
2176          *      entry to avoid unknown leaps of TSC even when running
2177          *      again on the same CPU.  This may cause apparent elapsed
2178          *      time to disappear, and the guest to stand still or run
2179          *      very slowly.
2180          */
2181         if (vcpu->tsc_catchup) {
2182                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2183                 if (tsc > tsc_timestamp) {
2184                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2185                         tsc_timestamp = tsc;
2186                 }
2187         }
2188
2189         local_irq_restore(flags);
2190
2191         /* With all the info we got, fill in the values */
2192
2193         if (kvm_has_tsc_control)
2194                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2195
2196         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2197                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2198                                    &vcpu->hv_clock.tsc_shift,
2199                                    &vcpu->hv_clock.tsc_to_system_mul);
2200                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2201         }
2202
2203         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2204         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2205         vcpu->last_guest_tsc = tsc_timestamp;
2206
2207         /* If the host uses TSC clocksource, then it is stable */
2208         pvclock_flags = 0;
2209         if (use_master_clock)
2210                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2211
2212         vcpu->hv_clock.flags = pvclock_flags;
2213
2214         if (vcpu->pv_time_enabled)
2215                 kvm_setup_pvclock_page(v);
2216         if (v == kvm_get_vcpu(v->kvm, 0))
2217                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2218         return 0;
2219 }
2220
2221 /*
2222  * kvmclock updates which are isolated to a given vcpu, such as
2223  * vcpu->cpu migration, should not allow system_timestamp from
2224  * the rest of the vcpus to remain static. Otherwise ntp frequency
2225  * correction applies to one vcpu's system_timestamp but not
2226  * the others.
2227  *
2228  * So in those cases, request a kvmclock update for all vcpus.
2229  * We need to rate-limit these requests though, as they can
2230  * considerably slow guests that have a large number of vcpus.
2231  * The time for a remote vcpu to update its kvmclock is bound
2232  * by the delay we use to rate-limit the updates.
2233  */
2234
2235 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2236
2237 static void kvmclock_update_fn(struct work_struct *work)
2238 {
2239         int i;
2240         struct delayed_work *dwork = to_delayed_work(work);
2241         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2242                                            kvmclock_update_work);
2243         struct kvm *kvm = container_of(ka, struct kvm, arch);
2244         struct kvm_vcpu *vcpu;
2245
2246         kvm_for_each_vcpu(i, vcpu, kvm) {
2247                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2248                 kvm_vcpu_kick(vcpu);
2249         }
2250 }
2251
2252 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2253 {
2254         struct kvm *kvm = v->kvm;
2255
2256         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2257         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2258                                         KVMCLOCK_UPDATE_DELAY);
2259 }
2260
2261 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2262
2263 static void kvmclock_sync_fn(struct work_struct *work)
2264 {
2265         struct delayed_work *dwork = to_delayed_work(work);
2266         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2267                                            kvmclock_sync_work);
2268         struct kvm *kvm = container_of(ka, struct kvm, arch);
2269
2270         if (!kvmclock_periodic_sync)
2271                 return;
2272
2273         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2274         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2275                                         KVMCLOCK_SYNC_PERIOD);
2276 }
2277
2278 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2279 {
2280         u64 mcg_cap = vcpu->arch.mcg_cap;
2281         unsigned bank_num = mcg_cap & 0xff;
2282         u32 msr = msr_info->index;
2283         u64 data = msr_info->data;
2284
2285         switch (msr) {
2286         case MSR_IA32_MCG_STATUS:
2287                 vcpu->arch.mcg_status = data;
2288                 break;
2289         case MSR_IA32_MCG_CTL:
2290                 if (!(mcg_cap & MCG_CTL_P) &&
2291                     (data || !msr_info->host_initiated))
2292                         return 1;
2293                 if (data != 0 && data != ~(u64)0)
2294                         return 1;
2295                 vcpu->arch.mcg_ctl = data;
2296                 break;
2297         default:
2298                 if (msr >= MSR_IA32_MC0_CTL &&
2299                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2300                         u32 offset = msr - MSR_IA32_MC0_CTL;
2301                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2302                          * some Linux kernels though clear bit 10 in bank 4 to
2303                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2304                          * this to avoid an uncatched #GP in the guest
2305                          */
2306                         if ((offset & 0x3) == 0 &&
2307                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2308                                 return -1;
2309                         if (!msr_info->host_initiated &&
2310                                 (offset & 0x3) == 1 && data != 0)
2311                                 return -1;
2312                         vcpu->arch.mce_banks[offset] = data;
2313                         break;
2314                 }
2315                 return 1;
2316         }
2317         return 0;
2318 }
2319
2320 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2321 {
2322         struct kvm *kvm = vcpu->kvm;
2323         int lm = is_long_mode(vcpu);
2324         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2325                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2326         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2327                 : kvm->arch.xen_hvm_config.blob_size_32;
2328         u32 page_num = data & ~PAGE_MASK;
2329         u64 page_addr = data & PAGE_MASK;
2330         u8 *page;
2331         int r;
2332
2333         r = -E2BIG;
2334         if (page_num >= blob_size)
2335                 goto out;
2336         r = -ENOMEM;
2337         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2338         if (IS_ERR(page)) {
2339                 r = PTR_ERR(page);
2340                 goto out;
2341         }
2342         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2343                 goto out_free;
2344         r = 0;
2345 out_free:
2346         kfree(page);
2347 out:
2348         return r;
2349 }
2350
2351 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2352 {
2353         gpa_t gpa = data & ~0x3f;
2354
2355         /* Bits 3:5 are reserved, Should be zero */
2356         if (data & 0x38)
2357                 return 1;
2358
2359         vcpu->arch.apf.msr_val = data;
2360
2361         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2362                 kvm_clear_async_pf_completion_queue(vcpu);
2363                 kvm_async_pf_hash_reset(vcpu);
2364                 return 0;
2365         }
2366
2367         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2368                                         sizeof(u32)))
2369                 return 1;
2370
2371         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2372         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2373         kvm_async_pf_wakeup_all(vcpu);
2374         return 0;
2375 }
2376
2377 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2378 {
2379         vcpu->arch.pv_time_enabled = false;
2380 }
2381
2382 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2383 {
2384         ++vcpu->stat.tlb_flush;
2385         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2386 }
2387
2388 static void record_steal_time(struct kvm_vcpu *vcpu)
2389 {
2390         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2391                 return;
2392
2393         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2394                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2395                 return;
2396
2397         /*
2398          * Doing a TLB flush here, on the guest's behalf, can avoid
2399          * expensive IPIs.
2400          */
2401         if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2402                 kvm_vcpu_flush_tlb(vcpu, false);
2403
2404         if (vcpu->arch.st.steal.version & 1)
2405                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2406
2407         vcpu->arch.st.steal.version += 1;
2408
2409         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2410                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2411
2412         smp_wmb();
2413
2414         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2415                 vcpu->arch.st.last_steal;
2416         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2417
2418         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2419                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2420
2421         smp_wmb();
2422
2423         vcpu->arch.st.steal.version += 1;
2424
2425         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2426                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2427 }
2428
2429 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2430 {
2431         bool pr = false;
2432         u32 msr = msr_info->index;
2433         u64 data = msr_info->data;
2434
2435         switch (msr) {
2436         case MSR_AMD64_NB_CFG:
2437         case MSR_IA32_UCODE_WRITE:
2438         case MSR_VM_HSAVE_PA:
2439         case MSR_AMD64_PATCH_LOADER:
2440         case MSR_AMD64_BU_CFG2:
2441         case MSR_AMD64_DC_CFG:
2442         case MSR_F15H_EX_CFG:
2443                 break;
2444
2445         case MSR_IA32_UCODE_REV:
2446                 if (msr_info->host_initiated)
2447                         vcpu->arch.microcode_version = data;
2448                 break;
2449         case MSR_IA32_ARCH_CAPABILITIES:
2450                 if (!msr_info->host_initiated)
2451                         return 1;
2452                 vcpu->arch.arch_capabilities = data;
2453                 break;
2454         case MSR_EFER:
2455                 return set_efer(vcpu, data);
2456         case MSR_K7_HWCR:
2457                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2458                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2459                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2460                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2461                 if (data != 0) {
2462                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2463                                     data);
2464                         return 1;
2465                 }
2466                 break;
2467         case MSR_FAM10H_MMIO_CONF_BASE:
2468                 if (data != 0) {
2469                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2470                                     "0x%llx\n", data);
2471                         return 1;
2472                 }
2473                 break;
2474         case MSR_IA32_DEBUGCTLMSR:
2475                 if (!data) {
2476                         /* We support the non-activated case already */
2477                         break;
2478                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2479                         /* Values other than LBR and BTF are vendor-specific,
2480                            thus reserved and should throw a #GP */
2481                         return 1;
2482                 }
2483                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2484                             __func__, data);
2485                 break;
2486         case 0x200 ... 0x2ff:
2487                 return kvm_mtrr_set_msr(vcpu, msr, data);
2488         case MSR_IA32_APICBASE:
2489                 return kvm_set_apic_base(vcpu, msr_info);
2490         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2491                 return kvm_x2apic_msr_write(vcpu, msr, data);
2492         case MSR_IA32_TSCDEADLINE:
2493                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2494                 break;
2495         case MSR_IA32_TSC_ADJUST:
2496                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2497                         if (!msr_info->host_initiated) {
2498                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2499                                 adjust_tsc_offset_guest(vcpu, adj);
2500                         }
2501                         vcpu->arch.ia32_tsc_adjust_msr = data;
2502                 }
2503                 break;
2504         case MSR_IA32_MISC_ENABLE:
2505                 vcpu->arch.ia32_misc_enable_msr = data;
2506                 break;
2507         case MSR_IA32_SMBASE:
2508                 if (!msr_info->host_initiated)
2509                         return 1;
2510                 vcpu->arch.smbase = data;
2511                 break;
2512         case MSR_IA32_TSC:
2513                 kvm_write_tsc(vcpu, msr_info);
2514                 break;
2515         case MSR_SMI_COUNT:
2516                 if (!msr_info->host_initiated)
2517                         return 1;
2518                 vcpu->arch.smi_count = data;
2519                 break;
2520         case MSR_KVM_WALL_CLOCK_NEW:
2521         case MSR_KVM_WALL_CLOCK:
2522                 vcpu->kvm->arch.wall_clock = data;
2523                 kvm_write_wall_clock(vcpu->kvm, data);
2524                 break;
2525         case MSR_KVM_SYSTEM_TIME_NEW:
2526         case MSR_KVM_SYSTEM_TIME: {
2527                 struct kvm_arch *ka = &vcpu->kvm->arch;
2528
2529                 kvmclock_reset(vcpu);
2530
2531                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2532                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2533
2534                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2535                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2536
2537                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2538                 }
2539
2540                 vcpu->arch.time = data;
2541                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2542
2543                 /* we verify if the enable bit is set... */
2544                 if (!(data & 1))
2545                         break;
2546
2547                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2548                      &vcpu->arch.pv_time, data & ~1ULL,
2549                      sizeof(struct pvclock_vcpu_time_info)))
2550                         vcpu->arch.pv_time_enabled = false;
2551                 else
2552                         vcpu->arch.pv_time_enabled = true;
2553
2554                 break;
2555         }
2556         case MSR_KVM_ASYNC_PF_EN:
2557                 if (kvm_pv_enable_async_pf(vcpu, data))
2558                         return 1;
2559                 break;
2560         case MSR_KVM_STEAL_TIME:
2561
2562                 if (unlikely(!sched_info_on()))
2563                         return 1;
2564
2565                 if (data & KVM_STEAL_RESERVED_MASK)
2566                         return 1;
2567
2568                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2569                                                 data & KVM_STEAL_VALID_BITS,
2570                                                 sizeof(struct kvm_steal_time)))
2571                         return 1;
2572
2573                 vcpu->arch.st.msr_val = data;
2574
2575                 if (!(data & KVM_MSR_ENABLED))
2576                         break;
2577
2578                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2579
2580                 break;
2581         case MSR_KVM_PV_EOI_EN:
2582                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2583                         return 1;
2584                 break;
2585
2586         case MSR_IA32_MCG_CTL:
2587         case MSR_IA32_MCG_STATUS:
2588         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2589                 return set_msr_mce(vcpu, msr_info);
2590
2591         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2592         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2593                 pr = true; /* fall through */
2594         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2595         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2596                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2597                         return kvm_pmu_set_msr(vcpu, msr_info);
2598
2599                 if (pr || data != 0)
2600                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2601                                     "0x%x data 0x%llx\n", msr, data);
2602                 break;
2603         case MSR_K7_CLK_CTL:
2604                 /*
2605                  * Ignore all writes to this no longer documented MSR.
2606                  * Writes are only relevant for old K7 processors,
2607                  * all pre-dating SVM, but a recommended workaround from
2608                  * AMD for these chips. It is possible to specify the
2609                  * affected processor models on the command line, hence
2610                  * the need to ignore the workaround.
2611                  */
2612                 break;
2613         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2614         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2615         case HV_X64_MSR_CRASH_CTL:
2616         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2617         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2618         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2619         case HV_X64_MSR_TSC_EMULATION_STATUS:
2620                 return kvm_hv_set_msr_common(vcpu, msr, data,
2621                                              msr_info->host_initiated);
2622         case MSR_IA32_BBL_CR_CTL3:
2623                 /* Drop writes to this legacy MSR -- see rdmsr
2624                  * counterpart for further detail.
2625                  */
2626                 if (report_ignored_msrs)
2627                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2628                                 msr, data);
2629                 break;
2630         case MSR_AMD64_OSVW_ID_LENGTH:
2631                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2632                         return 1;
2633                 vcpu->arch.osvw.length = data;
2634                 break;
2635         case MSR_AMD64_OSVW_STATUS:
2636                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2637                         return 1;
2638                 vcpu->arch.osvw.status = data;
2639                 break;
2640         case MSR_PLATFORM_INFO:
2641                 if (!msr_info->host_initiated ||
2642                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2643                      cpuid_fault_enabled(vcpu)))
2644                         return 1;
2645                 vcpu->arch.msr_platform_info = data;
2646                 break;
2647         case MSR_MISC_FEATURES_ENABLES:
2648                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2649                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2650                      !supports_cpuid_fault(vcpu)))
2651                         return 1;
2652                 vcpu->arch.msr_misc_features_enables = data;
2653                 break;
2654         default:
2655                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2656                         return xen_hvm_config(vcpu, data);
2657                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2658                         return kvm_pmu_set_msr(vcpu, msr_info);
2659                 if (!ignore_msrs) {
2660                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2661                                     msr, data);
2662                         return 1;
2663                 } else {
2664                         if (report_ignored_msrs)
2665                                 vcpu_unimpl(vcpu,
2666                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2667                                         msr, data);
2668                         break;
2669                 }
2670         }
2671         return 0;
2672 }
2673 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2674
2675
2676 /*
2677  * Reads an msr value (of 'msr_index') into 'pdata'.
2678  * Returns 0 on success, non-0 otherwise.
2679  * Assumes vcpu_load() was already called.
2680  */
2681 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2682 {
2683         return kvm_x86_ops->get_msr(vcpu, msr);
2684 }
2685 EXPORT_SYMBOL_GPL(kvm_get_msr);
2686
2687 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2688 {
2689         u64 data;
2690         u64 mcg_cap = vcpu->arch.mcg_cap;
2691         unsigned bank_num = mcg_cap & 0xff;
2692
2693         switch (msr) {
2694         case MSR_IA32_P5_MC_ADDR:
2695         case MSR_IA32_P5_MC_TYPE:
2696                 data = 0;
2697                 break;
2698         case MSR_IA32_MCG_CAP:
2699                 data = vcpu->arch.mcg_cap;
2700                 break;
2701         case MSR_IA32_MCG_CTL:
2702                 if (!(mcg_cap & MCG_CTL_P) && !host)
2703                         return 1;
2704                 data = vcpu->arch.mcg_ctl;
2705                 break;
2706         case MSR_IA32_MCG_STATUS:
2707                 data = vcpu->arch.mcg_status;
2708                 break;
2709         default:
2710                 if (msr >= MSR_IA32_MC0_CTL &&
2711                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2712                         u32 offset = msr - MSR_IA32_MC0_CTL;
2713                         data = vcpu->arch.mce_banks[offset];
2714                         break;
2715                 }
2716                 return 1;
2717         }
2718         *pdata = data;
2719         return 0;
2720 }
2721
2722 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2723 {
2724         switch (msr_info->index) {
2725         case MSR_IA32_PLATFORM_ID:
2726         case MSR_IA32_EBL_CR_POWERON:
2727         case MSR_IA32_DEBUGCTLMSR:
2728         case MSR_IA32_LASTBRANCHFROMIP:
2729         case MSR_IA32_LASTBRANCHTOIP:
2730         case MSR_IA32_LASTINTFROMIP:
2731         case MSR_IA32_LASTINTTOIP:
2732         case MSR_K8_SYSCFG:
2733         case MSR_K8_TSEG_ADDR:
2734         case MSR_K8_TSEG_MASK:
2735         case MSR_K7_HWCR:
2736         case MSR_VM_HSAVE_PA:
2737         case MSR_K8_INT_PENDING_MSG:
2738         case MSR_AMD64_NB_CFG:
2739         case MSR_FAM10H_MMIO_CONF_BASE:
2740         case MSR_AMD64_BU_CFG2:
2741         case MSR_IA32_PERF_CTL:
2742         case MSR_AMD64_DC_CFG:
2743         case MSR_F15H_EX_CFG:
2744                 msr_info->data = 0;
2745                 break;
2746         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2747         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2748         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2749         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2750         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2751                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2752                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2753                 msr_info->data = 0;
2754                 break;
2755         case MSR_IA32_UCODE_REV:
2756                 msr_info->data = vcpu->arch.microcode_version;
2757                 break;
2758         case MSR_IA32_ARCH_CAPABILITIES:
2759                 if (!msr_info->host_initiated &&
2760                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2761                         return 1;
2762                 msr_info->data = vcpu->arch.arch_capabilities;
2763                 break;
2764         case MSR_IA32_TSC:
2765                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2766                 break;
2767         case MSR_MTRRcap:
2768         case 0x200 ... 0x2ff:
2769                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2770         case 0xcd: /* fsb frequency */
2771                 msr_info->data = 3;
2772                 break;
2773                 /*
2774                  * MSR_EBC_FREQUENCY_ID
2775                  * Conservative value valid for even the basic CPU models.
2776                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2777                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2778                  * and 266MHz for model 3, or 4. Set Core Clock
2779                  * Frequency to System Bus Frequency Ratio to 1 (bits
2780                  * 31:24) even though these are only valid for CPU
2781                  * models > 2, however guests may end up dividing or
2782                  * multiplying by zero otherwise.
2783                  */
2784         case MSR_EBC_FREQUENCY_ID:
2785                 msr_info->data = 1 << 24;
2786                 break;
2787         case MSR_IA32_APICBASE:
2788                 msr_info->data = kvm_get_apic_base(vcpu);
2789                 break;
2790         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2791                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2792                 break;
2793         case MSR_IA32_TSCDEADLINE:
2794                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2795                 break;
2796         case MSR_IA32_TSC_ADJUST:
2797                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2798                 break;
2799         case MSR_IA32_MISC_ENABLE:
2800                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2801                 break;
2802         case MSR_IA32_SMBASE:
2803                 if (!msr_info->host_initiated)
2804                         return 1;
2805                 msr_info->data = vcpu->arch.smbase;
2806                 break;
2807         case MSR_SMI_COUNT:
2808                 msr_info->data = vcpu->arch.smi_count;
2809                 break;
2810         case MSR_IA32_PERF_STATUS:
2811                 /* TSC increment by tick */
2812                 msr_info->data = 1000ULL;
2813                 /* CPU multiplier */
2814                 msr_info->data |= (((uint64_t)4ULL) << 40);
2815                 break;
2816         case MSR_EFER:
2817                 msr_info->data = vcpu->arch.efer;
2818                 break;
2819         case MSR_KVM_WALL_CLOCK:
2820         case MSR_KVM_WALL_CLOCK_NEW:
2821                 msr_info->data = vcpu->kvm->arch.wall_clock;
2822                 break;
2823         case MSR_KVM_SYSTEM_TIME:
2824         case MSR_KVM_SYSTEM_TIME_NEW:
2825                 msr_info->data = vcpu->arch.time;
2826                 break;
2827         case MSR_KVM_ASYNC_PF_EN:
2828                 msr_info->data = vcpu->arch.apf.msr_val;
2829                 break;
2830         case MSR_KVM_STEAL_TIME:
2831                 msr_info->data = vcpu->arch.st.msr_val;
2832                 break;
2833         case MSR_KVM_PV_EOI_EN:
2834                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2835                 break;
2836         case MSR_IA32_P5_MC_ADDR:
2837         case MSR_IA32_P5_MC_TYPE:
2838         case MSR_IA32_MCG_CAP:
2839         case MSR_IA32_MCG_CTL:
2840         case MSR_IA32_MCG_STATUS:
2841         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2842                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2843                                    msr_info->host_initiated);
2844         case MSR_K7_CLK_CTL:
2845                 /*
2846                  * Provide expected ramp-up count for K7. All other
2847                  * are set to zero, indicating minimum divisors for
2848                  * every field.
2849                  *
2850                  * This prevents guest kernels on AMD host with CPU
2851                  * type 6, model 8 and higher from exploding due to
2852                  * the rdmsr failing.
2853                  */
2854                 msr_info->data = 0x20000000;
2855                 break;
2856         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2857         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2858         case HV_X64_MSR_CRASH_CTL:
2859         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2860         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2861         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2862         case HV_X64_MSR_TSC_EMULATION_STATUS:
2863                 return kvm_hv_get_msr_common(vcpu,
2864                                              msr_info->index, &msr_info->data,
2865                                              msr_info->host_initiated);
2866                 break;
2867         case MSR_IA32_BBL_CR_CTL3:
2868                 /* This legacy MSR exists but isn't fully documented in current
2869                  * silicon.  It is however accessed by winxp in very narrow
2870                  * scenarios where it sets bit #19, itself documented as
2871                  * a "reserved" bit.  Best effort attempt to source coherent
2872                  * read data here should the balance of the register be
2873                  * interpreted by the guest:
2874                  *
2875                  * L2 cache control register 3: 64GB range, 256KB size,
2876                  * enabled, latency 0x1, configured
2877                  */
2878                 msr_info->data = 0xbe702111;
2879                 break;
2880         case MSR_AMD64_OSVW_ID_LENGTH:
2881                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2882                         return 1;
2883                 msr_info->data = vcpu->arch.osvw.length;
2884                 break;
2885         case MSR_AMD64_OSVW_STATUS:
2886                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2887                         return 1;
2888                 msr_info->data = vcpu->arch.osvw.status;
2889                 break;
2890         case MSR_PLATFORM_INFO:
2891                 if (!msr_info->host_initiated &&
2892                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2893                         return 1;
2894                 msr_info->data = vcpu->arch.msr_platform_info;
2895                 break;
2896         case MSR_MISC_FEATURES_ENABLES:
2897                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2898                 break;
2899         default:
2900                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2901                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2902                 if (!ignore_msrs) {
2903                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2904                                                msr_info->index);
2905                         return 1;
2906                 } else {
2907                         if (report_ignored_msrs)
2908                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2909                                         msr_info->index);
2910                         msr_info->data = 0;
2911                 }
2912                 break;
2913         }
2914         return 0;
2915 }
2916 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2917
2918 /*
2919  * Read or write a bunch of msrs. All parameters are kernel addresses.
2920  *
2921  * @return number of msrs set successfully.
2922  */
2923 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2924                     struct kvm_msr_entry *entries,
2925                     int (*do_msr)(struct kvm_vcpu *vcpu,
2926                                   unsigned index, u64 *data))
2927 {
2928         int i;
2929
2930         for (i = 0; i < msrs->nmsrs; ++i)
2931                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2932                         break;
2933
2934         return i;
2935 }
2936
2937 /*
2938  * Read or write a bunch of msrs. Parameters are user addresses.
2939  *
2940  * @return number of msrs set successfully.
2941  */
2942 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2943                   int (*do_msr)(struct kvm_vcpu *vcpu,
2944                                 unsigned index, u64 *data),
2945                   int writeback)
2946 {
2947         struct kvm_msrs msrs;
2948         struct kvm_msr_entry *entries;
2949         int r, n;
2950         unsigned size;
2951
2952         r = -EFAULT;
2953         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
2954                 goto out;
2955
2956         r = -E2BIG;
2957         if (msrs.nmsrs >= MAX_IO_MSRS)
2958                 goto out;
2959
2960         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2961         entries = memdup_user(user_msrs->entries, size);
2962         if (IS_ERR(entries)) {
2963                 r = PTR_ERR(entries);
2964                 goto out;
2965         }
2966
2967         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2968         if (r < 0)
2969                 goto out_free;
2970
2971         r = -EFAULT;
2972         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2973                 goto out_free;
2974
2975         r = n;
2976
2977 out_free:
2978         kfree(entries);
2979 out:
2980         return r;
2981 }
2982
2983 static inline bool kvm_can_mwait_in_guest(void)
2984 {
2985         return boot_cpu_has(X86_FEATURE_MWAIT) &&
2986                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
2987                 boot_cpu_has(X86_FEATURE_ARAT);
2988 }
2989
2990 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2991 {
2992         int r = 0;
2993
2994         switch (ext) {
2995         case KVM_CAP_IRQCHIP:
2996         case KVM_CAP_HLT:
2997         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2998         case KVM_CAP_SET_TSS_ADDR:
2999         case KVM_CAP_EXT_CPUID:
3000         case KVM_CAP_EXT_EMUL_CPUID:
3001         case KVM_CAP_CLOCKSOURCE:
3002         case KVM_CAP_PIT:
3003         case KVM_CAP_NOP_IO_DELAY:
3004         case KVM_CAP_MP_STATE:
3005         case KVM_CAP_SYNC_MMU:
3006         case KVM_CAP_USER_NMI:
3007         case KVM_CAP_REINJECT_CONTROL:
3008         case KVM_CAP_IRQ_INJECT_STATUS:
3009         case KVM_CAP_IOEVENTFD:
3010         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3011         case KVM_CAP_PIT2:
3012         case KVM_CAP_PIT_STATE2:
3013         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3014         case KVM_CAP_XEN_HVM:
3015         case KVM_CAP_VCPU_EVENTS:
3016         case KVM_CAP_HYPERV:
3017         case KVM_CAP_HYPERV_VAPIC:
3018         case KVM_CAP_HYPERV_SPIN:
3019         case KVM_CAP_HYPERV_SYNIC:
3020         case KVM_CAP_HYPERV_SYNIC2:
3021         case KVM_CAP_HYPERV_VP_INDEX:
3022         case KVM_CAP_HYPERV_EVENTFD:
3023         case KVM_CAP_HYPERV_TLBFLUSH:
3024         case KVM_CAP_HYPERV_SEND_IPI:
3025         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3026         case KVM_CAP_HYPERV_CPUID:
3027         case KVM_CAP_PCI_SEGMENT:
3028         case KVM_CAP_DEBUGREGS:
3029         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3030         case KVM_CAP_XSAVE:
3031         case KVM_CAP_ASYNC_PF:
3032         case KVM_CAP_GET_TSC_KHZ:
3033         case KVM_CAP_KVMCLOCK_CTRL:
3034         case KVM_CAP_READONLY_MEM:
3035         case KVM_CAP_HYPERV_TIME:
3036         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3037         case KVM_CAP_TSC_DEADLINE_TIMER:
3038         case KVM_CAP_DISABLE_QUIRKS:
3039         case KVM_CAP_SET_BOOT_CPU_ID:
3040         case KVM_CAP_SPLIT_IRQCHIP:
3041         case KVM_CAP_IMMEDIATE_EXIT:
3042         case KVM_CAP_GET_MSR_FEATURES:
3043         case KVM_CAP_MSR_PLATFORM_INFO:
3044         case KVM_CAP_EXCEPTION_PAYLOAD:
3045                 r = 1;
3046                 break;
3047         case KVM_CAP_SYNC_REGS:
3048                 r = KVM_SYNC_X86_VALID_FIELDS;
3049                 break;
3050         case KVM_CAP_ADJUST_CLOCK:
3051                 r = KVM_CLOCK_TSC_STABLE;
3052                 break;
3053         case KVM_CAP_X86_DISABLE_EXITS:
3054                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
3055                 if(kvm_can_mwait_in_guest())
3056                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3057                 break;
3058         case KVM_CAP_X86_SMM:
3059                 /* SMBASE is usually relocated above 1M on modern chipsets,
3060                  * and SMM handlers might indeed rely on 4G segment limits,
3061                  * so do not report SMM to be available if real mode is
3062                  * emulated via vm86 mode.  Still, do not go to great lengths
3063                  * to avoid userspace's usage of the feature, because it is a
3064                  * fringe case that is not enabled except via specific settings
3065                  * of the module parameters.
3066                  */
3067                 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3068                 break;
3069         case KVM_CAP_VAPIC:
3070                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3071                 break;
3072         case KVM_CAP_NR_VCPUS:
3073                 r = KVM_SOFT_MAX_VCPUS;
3074                 break;
3075         case KVM_CAP_MAX_VCPUS:
3076                 r = KVM_MAX_VCPUS;
3077                 break;
3078         case KVM_CAP_NR_MEMSLOTS:
3079                 r = KVM_USER_MEM_SLOTS;
3080                 break;
3081         case KVM_CAP_PV_MMU:    /* obsolete */
3082                 r = 0;
3083                 break;
3084         case KVM_CAP_MCE:
3085                 r = KVM_MAX_MCE_BANKS;
3086                 break;
3087         case KVM_CAP_XCRS:
3088                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3089                 break;
3090         case KVM_CAP_TSC_CONTROL:
3091                 r = kvm_has_tsc_control;
3092                 break;
3093         case KVM_CAP_X2APIC_API:
3094                 r = KVM_X2APIC_API_VALID_FLAGS;
3095                 break;
3096         case KVM_CAP_NESTED_STATE:
3097                 r = kvm_x86_ops->get_nested_state ?
3098                         kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3099                 break;
3100         default:
3101                 break;
3102         }
3103         return r;
3104
3105 }
3106
3107 long kvm_arch_dev_ioctl(struct file *filp,
3108                         unsigned int ioctl, unsigned long arg)
3109 {
3110         void __user *argp = (void __user *)arg;
3111         long r;
3112
3113         switch (ioctl) {
3114         case KVM_GET_MSR_INDEX_LIST: {
3115                 struct kvm_msr_list __user *user_msr_list = argp;
3116                 struct kvm_msr_list msr_list;
3117                 unsigned n;
3118
3119                 r = -EFAULT;
3120                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3121                         goto out;
3122                 n = msr_list.nmsrs;
3123                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3124                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3125                         goto out;
3126                 r = -E2BIG;
3127                 if (n < msr_list.nmsrs)
3128                         goto out;
3129                 r = -EFAULT;
3130                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3131                                  num_msrs_to_save * sizeof(u32)))
3132                         goto out;
3133                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3134                                  &emulated_msrs,
3135                                  num_emulated_msrs * sizeof(u32)))
3136                         goto out;
3137                 r = 0;
3138                 break;
3139         }
3140         case KVM_GET_SUPPORTED_CPUID:
3141         case KVM_GET_EMULATED_CPUID: {
3142                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3143                 struct kvm_cpuid2 cpuid;
3144
3145                 r = -EFAULT;
3146                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3147                         goto out;
3148
3149                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3150                                             ioctl);
3151                 if (r)
3152                         goto out;
3153
3154                 r = -EFAULT;
3155                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3156                         goto out;
3157                 r = 0;
3158                 break;
3159         }
3160         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3161                 r = -EFAULT;
3162                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3163                                  sizeof(kvm_mce_cap_supported)))
3164                         goto out;
3165                 r = 0;
3166                 break;
3167         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3168                 struct kvm_msr_list __user *user_msr_list = argp;
3169                 struct kvm_msr_list msr_list;
3170                 unsigned int n;
3171
3172                 r = -EFAULT;
3173                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3174                         goto out;
3175                 n = msr_list.nmsrs;
3176                 msr_list.nmsrs = num_msr_based_features;
3177                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3178                         goto out;
3179                 r = -E2BIG;
3180                 if (n < msr_list.nmsrs)
3181                         goto out;
3182                 r = -EFAULT;
3183                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3184                                  num_msr_based_features * sizeof(u32)))
3185                         goto out;
3186                 r = 0;
3187                 break;
3188         }
3189         case KVM_GET_MSRS:
3190                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3191                 break;
3192         }
3193         default:
3194                 r = -EINVAL;
3195         }
3196 out:
3197         return r;
3198 }
3199
3200 static void wbinvd_ipi(void *garbage)
3201 {
3202         wbinvd();
3203 }
3204
3205 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3206 {
3207         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3208 }
3209
3210 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3211 {
3212         /* Address WBINVD may be executed by guest */
3213         if (need_emulate_wbinvd(vcpu)) {
3214                 if (kvm_x86_ops->has_wbinvd_exit())
3215                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3216                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3217                         smp_call_function_single(vcpu->cpu,
3218                                         wbinvd_ipi, NULL, 1);
3219         }
3220
3221         kvm_x86_ops->vcpu_load(vcpu, cpu);
3222
3223         /* Apply any externally detected TSC adjustments (due to suspend) */
3224         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3225                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3226                 vcpu->arch.tsc_offset_adjustment = 0;
3227                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3228         }
3229
3230         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3231                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3232                                 rdtsc() - vcpu->arch.last_host_tsc;
3233                 if (tsc_delta < 0)
3234                         mark_tsc_unstable("KVM discovered backwards TSC");
3235
3236                 if (kvm_check_tsc_unstable()) {
3237                         u64 offset = kvm_compute_tsc_offset(vcpu,
3238                                                 vcpu->arch.last_guest_tsc);
3239                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3240                         vcpu->arch.tsc_catchup = 1;
3241                 }
3242
3243                 if (kvm_lapic_hv_timer_in_use(vcpu))
3244                         kvm_lapic_restart_hv_timer(vcpu);
3245
3246                 /*
3247                  * On a host with synchronized TSC, there is no need to update
3248                  * kvmclock on vcpu->cpu migration
3249                  */
3250                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3251                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3252                 if (vcpu->cpu != cpu)
3253                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3254                 vcpu->cpu = cpu;
3255         }
3256
3257         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3258 }
3259
3260 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3261 {
3262         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3263                 return;
3264
3265         vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3266
3267         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3268                         &vcpu->arch.st.steal.preempted,
3269                         offsetof(struct kvm_steal_time, preempted),
3270                         sizeof(vcpu->arch.st.steal.preempted));
3271 }
3272
3273 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3274 {
3275         int idx;
3276
3277         if (vcpu->preempted)
3278                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3279
3280         /*
3281          * Disable page faults because we're in atomic context here.
3282          * kvm_write_guest_offset_cached() would call might_fault()
3283          * that relies on pagefault_disable() to tell if there's a
3284          * bug. NOTE: the write to guest memory may not go through if
3285          * during postcopy live migration or if there's heavy guest
3286          * paging.
3287          */
3288         pagefault_disable();
3289         /*
3290          * kvm_memslots() will be called by
3291          * kvm_write_guest_offset_cached() so take the srcu lock.
3292          */
3293         idx = srcu_read_lock(&vcpu->kvm->srcu);
3294         kvm_steal_time_set_preempted(vcpu);
3295         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3296         pagefault_enable();
3297         kvm_x86_ops->vcpu_put(vcpu);
3298         vcpu->arch.last_host_tsc = rdtsc();
3299         /*
3300          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3301          * on every vmexit, but if not, we might have a stale dr6 from the
3302          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3303          */
3304         set_debugreg(0, 6);
3305 }
3306
3307 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3308                                     struct kvm_lapic_state *s)
3309 {
3310         if (vcpu->arch.apicv_active)
3311                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3312
3313         return kvm_apic_get_state(vcpu, s);
3314 }
3315
3316 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3317                                     struct kvm_lapic_state *s)
3318 {
3319         int r;
3320
3321         r = kvm_apic_set_state(vcpu, s);
3322         if (r)
3323                 return r;
3324         update_cr8_intercept(vcpu);
3325
3326         return 0;
3327 }
3328
3329 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3330 {
3331         return (!lapic_in_kernel(vcpu) ||
3332                 kvm_apic_accept_pic_intr(vcpu));
3333 }
3334
3335 /*
3336  * if userspace requested an interrupt window, check that the
3337  * interrupt window is open.
3338  *
3339  * No need to exit to userspace if we already have an interrupt queued.
3340  */
3341 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3342 {
3343         return kvm_arch_interrupt_allowed(vcpu) &&
3344                 !kvm_cpu_has_interrupt(vcpu) &&
3345                 !kvm_event_needs_reinjection(vcpu) &&
3346                 kvm_cpu_accept_dm_intr(vcpu);
3347 }
3348
3349 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3350                                     struct kvm_interrupt *irq)
3351 {
3352         if (irq->irq >= KVM_NR_INTERRUPTS)
3353                 return -EINVAL;
3354
3355         if (!irqchip_in_kernel(vcpu->kvm)) {
3356                 kvm_queue_interrupt(vcpu, irq->irq, false);
3357                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3358                 return 0;
3359         }
3360
3361         /*
3362          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3363          * fail for in-kernel 8259.
3364          */
3365         if (pic_in_kernel(vcpu->kvm))
3366                 return -ENXIO;
3367
3368         if (vcpu->arch.pending_external_vector != -1)
3369                 return -EEXIST;
3370
3371         vcpu->arch.pending_external_vector = irq->irq;
3372         kvm_make_request(KVM_REQ_EVENT, vcpu);
3373         return 0;
3374 }
3375
3376 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3377 {
3378         kvm_inject_nmi(vcpu);
3379
3380         return 0;
3381 }
3382
3383 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3384 {
3385         kvm_make_request(KVM_REQ_SMI, vcpu);
3386
3387         return 0;
3388 }
3389
3390 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3391                                            struct kvm_tpr_access_ctl *tac)
3392 {
3393         if (tac->flags)
3394                 return -EINVAL;
3395         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3396         return 0;
3397 }
3398
3399 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3400                                         u64 mcg_cap)
3401 {
3402         int r;
3403         unsigned bank_num = mcg_cap & 0xff, bank;
3404
3405         r = -EINVAL;
3406         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3407                 goto out;
3408         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3409                 goto out;
3410         r = 0;
3411         vcpu->arch.mcg_cap = mcg_cap;
3412         /* Init IA32_MCG_CTL to all 1s */
3413         if (mcg_cap & MCG_CTL_P)
3414                 vcpu->arch.mcg_ctl = ~(u64)0;
3415         /* Init IA32_MCi_CTL to all 1s */
3416         for (bank = 0; bank < bank_num; bank++)
3417                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3418
3419         if (kvm_x86_ops->setup_mce)
3420                 kvm_x86_ops->setup_mce(vcpu);
3421 out:
3422         return r;
3423 }
3424
3425 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3426                                       struct kvm_x86_mce *mce)
3427 {
3428         u64 mcg_cap = vcpu->arch.mcg_cap;
3429         unsigned bank_num = mcg_cap & 0xff;
3430         u64 *banks = vcpu->arch.mce_banks;
3431
3432         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3433                 return -EINVAL;
3434         /*
3435          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3436          * reporting is disabled
3437          */
3438         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3439             vcpu->arch.mcg_ctl != ~(u64)0)
3440                 return 0;
3441         banks += 4 * mce->bank;
3442         /*
3443          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3444          * reporting is disabled for the bank
3445          */
3446         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3447                 return 0;
3448         if (mce->status & MCI_STATUS_UC) {
3449                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3450                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3451                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3452                         return 0;
3453                 }
3454                 if (banks[1] & MCI_STATUS_VAL)
3455                         mce->status |= MCI_STATUS_OVER;
3456                 banks[2] = mce->addr;
3457                 banks[3] = mce->misc;
3458                 vcpu->arch.mcg_status = mce->mcg_status;
3459                 banks[1] = mce->status;
3460                 kvm_queue_exception(vcpu, MC_VECTOR);
3461         } else if (!(banks[1] & MCI_STATUS_VAL)
3462                    || !(banks[1] & MCI_STATUS_UC)) {
3463                 if (banks[1] & MCI_STATUS_VAL)
3464                         mce->status |= MCI_STATUS_OVER;
3465                 banks[2] = mce->addr;
3466                 banks[3] = mce->misc;
3467                 banks[1] = mce->status;
3468         } else
3469                 banks[1] |= MCI_STATUS_OVER;
3470         return 0;
3471 }
3472
3473 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3474                                                struct kvm_vcpu_events *events)
3475 {
3476         process_nmi(vcpu);
3477
3478         /*
3479          * The API doesn't provide the instruction length for software
3480          * exceptions, so don't report them. As long as the guest RIP
3481          * isn't advanced, we should expect to encounter the exception
3482          * again.
3483          */
3484         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3485                 events->exception.injected = 0;
3486                 events->exception.pending = 0;
3487         } else {
3488                 events->exception.injected = vcpu->arch.exception.injected;
3489                 events->exception.pending = vcpu->arch.exception.pending;
3490                 /*
3491                  * For ABI compatibility, deliberately conflate
3492                  * pending and injected exceptions when
3493                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3494                  */
3495                 if (!vcpu->kvm->arch.exception_payload_enabled)
3496                         events->exception.injected |=
3497                                 vcpu->arch.exception.pending;
3498         }
3499         events->exception.nr = vcpu->arch.exception.nr;
3500         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3501         events->exception.error_code = vcpu->arch.exception.error_code;
3502         events->exception_has_payload = vcpu->arch.exception.has_payload;
3503         events->exception_payload = vcpu->arch.exception.payload;
3504
3505         events->interrupt.injected =
3506                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3507         events->interrupt.nr = vcpu->arch.interrupt.nr;
3508         events->interrupt.soft = 0;
3509         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3510
3511         events->nmi.injected = vcpu->arch.nmi_injected;
3512         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3513         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3514         events->nmi.pad = 0;
3515
3516         events->sipi_vector = 0; /* never valid when reporting to user space */
3517
3518         events->smi.smm = is_smm(vcpu);
3519         events->smi.pending = vcpu->arch.smi_pending;
3520         events->smi.smm_inside_nmi =
3521                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3522         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3523
3524         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3525                          | KVM_VCPUEVENT_VALID_SHADOW
3526                          | KVM_VCPUEVENT_VALID_SMM);
3527         if (vcpu->kvm->arch.exception_payload_enabled)
3528                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3529
3530         memset(&events->reserved, 0, sizeof(events->reserved));
3531 }
3532
3533 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3534
3535 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3536                                               struct kvm_vcpu_events *events)
3537 {
3538         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3539                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3540                               | KVM_VCPUEVENT_VALID_SHADOW
3541                               | KVM_VCPUEVENT_VALID_SMM
3542                               | KVM_VCPUEVENT_VALID_PAYLOAD))
3543                 return -EINVAL;
3544
3545         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3546                 if (!vcpu->kvm->arch.exception_payload_enabled)
3547                         return -EINVAL;
3548                 if (events->exception.pending)
3549                         events->exception.injected = 0;
3550                 else
3551                         events->exception_has_payload = 0;
3552         } else {
3553                 events->exception.pending = 0;
3554                 events->exception_has_payload = 0;
3555         }
3556
3557         if ((events->exception.injected || events->exception.pending) &&
3558             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3559                 return -EINVAL;
3560
3561         /* INITs are latched while in SMM */
3562         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3563             (events->smi.smm || events->smi.pending) &&
3564             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3565                 return -EINVAL;
3566
3567         process_nmi(vcpu);
3568         vcpu->arch.exception.injected = events->exception.injected;
3569         vcpu->arch.exception.pending = events->exception.pending;
3570         vcpu->arch.exception.nr = events->exception.nr;
3571         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3572         vcpu->arch.exception.error_code = events->exception.error_code;
3573         vcpu->arch.exception.has_payload = events->exception_has_payload;
3574         vcpu->arch.exception.payload = events->exception_payload;
3575
3576         vcpu->arch.interrupt.injected = events->interrupt.injected;
3577         vcpu->arch.interrupt.nr = events->interrupt.nr;
3578         vcpu->arch.interrupt.soft = events->interrupt.soft;
3579         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3580                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3581                                                   events->interrupt.shadow);
3582
3583         vcpu->arch.nmi_injected = events->nmi.injected;
3584         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3585                 vcpu->arch.nmi_pending = events->nmi.pending;
3586         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3587
3588         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3589             lapic_in_kernel(vcpu))
3590                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3591
3592         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3593                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3594                         if (events->smi.smm)
3595                                 vcpu->arch.hflags |= HF_SMM_MASK;
3596                         else
3597                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
3598                         kvm_smm_changed(vcpu);
3599                 }
3600
3601                 vcpu->arch.smi_pending = events->smi.pending;
3602
3603                 if (events->smi.smm) {
3604                         if (events->smi.smm_inside_nmi)
3605                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3606                         else
3607                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3608                         if (lapic_in_kernel(vcpu)) {
3609                                 if (events->smi.latched_init)
3610                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3611                                 else
3612                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3613                         }
3614                 }
3615         }
3616
3617         kvm_make_request(KVM_REQ_EVENT, vcpu);
3618
3619         return 0;
3620 }
3621
3622 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3623                                              struct kvm_debugregs *dbgregs)
3624 {
3625         unsigned long val;
3626
3627         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3628         kvm_get_dr(vcpu, 6, &val);
3629         dbgregs->dr6 = val;
3630         dbgregs->dr7 = vcpu->arch.dr7;
3631         dbgregs->flags = 0;
3632         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3633 }
3634
3635 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3636                                             struct kvm_debugregs *dbgregs)
3637 {
3638         if (dbgregs->flags)
3639                 return -EINVAL;
3640
3641         if (dbgregs->dr6 & ~0xffffffffull)
3642                 return -EINVAL;
3643         if (dbgregs->dr7 & ~0xffffffffull)
3644                 return -EINVAL;
3645
3646         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3647         kvm_update_dr0123(vcpu);
3648         vcpu->arch.dr6 = dbgregs->dr6;
3649         kvm_update_dr6(vcpu);
3650         vcpu->arch.dr7 = dbgregs->dr7;
3651         kvm_update_dr7(vcpu);
3652
3653         return 0;
3654 }
3655
3656 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3657
3658 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3659 {
3660         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3661         u64 xstate_bv = xsave->header.xfeatures;
3662         u64 valid;
3663
3664         /*
3665          * Copy legacy XSAVE area, to avoid complications with CPUID
3666          * leaves 0 and 1 in the loop below.
3667          */
3668         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3669
3670         /* Set XSTATE_BV */
3671         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3672         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3673
3674         /*
3675          * Copy each region from the possibly compacted offset to the
3676          * non-compacted offset.
3677          */
3678         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3679         while (valid) {
3680                 u64 feature = valid & -valid;
3681                 int index = fls64(feature) - 1;
3682                 void *src = get_xsave_addr(xsave, feature);
3683
3684                 if (src) {
3685                         u32 size, offset, ecx, edx;
3686                         cpuid_count(XSTATE_CPUID, index,
3687                                     &size, &offset, &ecx, &edx);
3688                         if (feature == XFEATURE_MASK_PKRU)
3689                                 memcpy(dest + offset, &vcpu->arch.pkru,
3690                                        sizeof(vcpu->arch.pkru));
3691                         else
3692                                 memcpy(dest + offset, src, size);
3693
3694                 }
3695
3696                 valid -= feature;
3697         }
3698 }
3699
3700 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3701 {
3702         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3703         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3704         u64 valid;
3705
3706         /*
3707          * Copy legacy XSAVE area, to avoid complications with CPUID
3708          * leaves 0 and 1 in the loop below.
3709          */
3710         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3711
3712         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3713         xsave->header.xfeatures = xstate_bv;
3714         if (boot_cpu_has(X86_FEATURE_XSAVES))
3715                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3716
3717         /*
3718          * Copy each region from the non-compacted offset to the
3719          * possibly compacted offset.
3720          */
3721         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3722         while (valid) {
3723                 u64 feature = valid & -valid;
3724                 int index = fls64(feature) - 1;
3725                 void *dest = get_xsave_addr(xsave, feature);
3726
3727                 if (dest) {
3728                         u32 size, offset, ecx, edx;
3729                         cpuid_count(XSTATE_CPUID, index,
3730                                     &size, &offset, &ecx, &edx);
3731                         if (feature == XFEATURE_MASK_PKRU)
3732                                 memcpy(&vcpu->arch.pkru, src + offset,
3733                                        sizeof(vcpu->arch.pkru));
3734                         else
3735                                 memcpy(dest, src + offset, size);
3736                 }
3737
3738                 valid -= feature;
3739         }
3740 }
3741
3742 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3743                                          struct kvm_xsave *guest_xsave)
3744 {
3745         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3746                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3747                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3748         } else {
3749                 memcpy(guest_xsave->region,
3750                         &vcpu->arch.guest_fpu->state.fxsave,
3751                         sizeof(struct fxregs_state));
3752                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3753                         XFEATURE_MASK_FPSSE;
3754         }
3755 }
3756
3757 #define XSAVE_MXCSR_OFFSET 24
3758
3759 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3760                                         struct kvm_xsave *guest_xsave)
3761 {
3762         u64 xstate_bv =
3763                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3764         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3765
3766         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3767                 /*
3768                  * Here we allow setting states that are not present in
3769                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3770                  * with old userspace.
3771                  */
3772                 if (xstate_bv & ~kvm_supported_xcr0() ||
3773                         mxcsr & ~mxcsr_feature_mask)
3774                         return -EINVAL;
3775                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3776         } else {
3777                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3778                         mxcsr & ~mxcsr_feature_mask)
3779                         return -EINVAL;
3780                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
3781                         guest_xsave->region, sizeof(struct fxregs_state));
3782         }
3783         return 0;
3784 }
3785
3786 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3787                                         struct kvm_xcrs *guest_xcrs)
3788 {
3789         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3790                 guest_xcrs->nr_xcrs = 0;
3791                 return;
3792         }
3793
3794         guest_xcrs->nr_xcrs = 1;
3795         guest_xcrs->flags = 0;
3796         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3797         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3798 }
3799
3800 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3801                                        struct kvm_xcrs *guest_xcrs)
3802 {
3803         int i, r = 0;
3804
3805         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3806                 return -EINVAL;
3807
3808         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3809                 return -EINVAL;
3810
3811         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3812                 /* Only support XCR0 currently */
3813                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3814                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3815                                 guest_xcrs->xcrs[i].value);
3816                         break;
3817                 }
3818         if (r)
3819                 r = -EINVAL;
3820         return r;
3821 }
3822
3823 /*
3824  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3825  * stopped by the hypervisor.  This function will be called from the host only.
3826  * EINVAL is returned when the host attempts to set the flag for a guest that
3827  * does not support pv clocks.
3828  */
3829 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3830 {
3831         if (!vcpu->arch.pv_time_enabled)
3832                 return -EINVAL;
3833         vcpu->arch.pvclock_set_guest_stopped_request = true;
3834         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3835         return 0;
3836 }
3837
3838 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3839                                      struct kvm_enable_cap *cap)
3840 {
3841         int r;
3842         uint16_t vmcs_version;
3843         void __user *user_ptr;
3844
3845         if (cap->flags)
3846                 return -EINVAL;
3847
3848         switch (cap->cap) {
3849         case KVM_CAP_HYPERV_SYNIC2:
3850                 if (cap->args[0])
3851                         return -EINVAL;
3852                 /* fall through */
3853
3854         case KVM_CAP_HYPERV_SYNIC:
3855                 if (!irqchip_in_kernel(vcpu->kvm))
3856                         return -EINVAL;
3857                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3858                                              KVM_CAP_HYPERV_SYNIC2);
3859         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3860                 if (!kvm_x86_ops->nested_enable_evmcs)
3861                         return -ENOTTY;
3862                 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
3863                 if (!r) {
3864                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
3865                         if (copy_to_user(user_ptr, &vmcs_version,
3866                                          sizeof(vmcs_version)))
3867                                 r = -EFAULT;
3868                 }
3869                 return r;
3870
3871         default:
3872                 return -EINVAL;
3873         }
3874 }
3875
3876 long kvm_arch_vcpu_ioctl(struct file *filp,
3877                          unsigned int ioctl, unsigned long arg)
3878 {
3879         struct kvm_vcpu *vcpu = filp->private_data;
3880         void __user *argp = (void __user *)arg;
3881         int r;
3882         union {
3883                 struct kvm_lapic_state *lapic;
3884                 struct kvm_xsave *xsave;
3885                 struct kvm_xcrs *xcrs;
3886                 void *buffer;
3887         } u;
3888
3889         vcpu_load(vcpu);
3890
3891         u.buffer = NULL;
3892         switch (ioctl) {
3893         case KVM_GET_LAPIC: {
3894                 r = -EINVAL;
3895                 if (!lapic_in_kernel(vcpu))
3896                         goto out;
3897                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
3898                                 GFP_KERNEL_ACCOUNT);
3899
3900                 r = -ENOMEM;
3901                 if (!u.lapic)
3902                         goto out;
3903                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3904                 if (r)
3905                         goto out;
3906                 r = -EFAULT;
3907                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3908                         goto out;
3909                 r = 0;
3910                 break;
3911         }
3912         case KVM_SET_LAPIC: {
3913                 r = -EINVAL;
3914                 if (!lapic_in_kernel(vcpu))
3915                         goto out;
3916                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3917                 if (IS_ERR(u.lapic)) {
3918                         r = PTR_ERR(u.lapic);
3919                         goto out_nofree;
3920                 }
3921
3922                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3923                 break;
3924         }
3925         case KVM_INTERRUPT: {
3926                 struct kvm_interrupt irq;
3927
3928                 r = -EFAULT;
3929                 if (copy_from_user(&irq, argp, sizeof(irq)))
3930                         goto out;
3931                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3932                 break;
3933         }
3934         case KVM_NMI: {
3935                 r = kvm_vcpu_ioctl_nmi(vcpu);
3936                 break;
3937         }
3938         case KVM_SMI: {
3939                 r = kvm_vcpu_ioctl_smi(vcpu);
3940                 break;
3941         }
3942         case KVM_SET_CPUID: {
3943                 struct kvm_cpuid __user *cpuid_arg = argp;
3944                 struct kvm_cpuid cpuid;
3945
3946                 r = -EFAULT;
3947                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3948                         goto out;
3949                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3950                 break;
3951         }
3952         case KVM_SET_CPUID2: {
3953                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3954                 struct kvm_cpuid2 cpuid;
3955
3956                 r = -EFAULT;
3957                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3958                         goto out;
3959                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3960                                               cpuid_arg->entries);
3961                 break;
3962         }
3963         case KVM_GET_CPUID2: {
3964                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3965                 struct kvm_cpuid2 cpuid;
3966
3967                 r = -EFAULT;
3968                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3969                         goto out;
3970                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3971                                               cpuid_arg->entries);
3972                 if (r)
3973                         goto out;
3974                 r = -EFAULT;
3975                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3976                         goto out;
3977                 r = 0;
3978                 break;
3979         }
3980         case KVM_GET_MSRS: {
3981                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3982                 r = msr_io(vcpu, argp, do_get_msr, 1);
3983                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3984                 break;
3985         }
3986         case KVM_SET_MSRS: {
3987                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3988                 r = msr_io(vcpu, argp, do_set_msr, 0);
3989                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3990                 break;
3991         }
3992         case KVM_TPR_ACCESS_REPORTING: {
3993                 struct kvm_tpr_access_ctl tac;
3994
3995                 r = -EFAULT;
3996                 if (copy_from_user(&tac, argp, sizeof(tac)))
3997                         goto out;
3998                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3999                 if (r)
4000                         goto out;
4001                 r = -EFAULT;
4002                 if (copy_to_user(argp, &tac, sizeof(tac)))
4003                         goto out;
4004                 r = 0;
4005                 break;
4006         };
4007         case KVM_SET_VAPIC_ADDR: {
4008                 struct kvm_vapic_addr va;
4009                 int idx;
4010
4011                 r = -EINVAL;
4012                 if (!lapic_in_kernel(vcpu))
4013                         goto out;
4014                 r = -EFAULT;
4015                 if (copy_from_user(&va, argp, sizeof(va)))
4016                         goto out;
4017                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4018                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4019                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4020                 break;
4021         }
4022         case KVM_X86_SETUP_MCE: {
4023                 u64 mcg_cap;
4024
4025                 r = -EFAULT;
4026                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4027                         goto out;
4028                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4029                 break;
4030         }
4031         case KVM_X86_SET_MCE: {
4032                 struct kvm_x86_mce mce;
4033
4034                 r = -EFAULT;
4035                 if (copy_from_user(&mce, argp, sizeof(mce)))
4036                         goto out;
4037                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4038                 break;
4039         }
4040         case KVM_GET_VCPU_EVENTS: {
4041                 struct kvm_vcpu_events events;
4042
4043                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4044
4045                 r = -EFAULT;
4046                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4047                         break;
4048                 r = 0;
4049                 break;
4050         }
4051         case KVM_SET_VCPU_EVENTS: {
4052                 struct kvm_vcpu_events events;
4053
4054                 r = -EFAULT;
4055                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4056                         break;
4057
4058                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4059                 break;
4060         }
4061         case KVM_GET_DEBUGREGS: {
4062                 struct kvm_debugregs dbgregs;
4063
4064                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4065
4066                 r = -EFAULT;
4067                 if (copy_to_user(argp, &dbgregs,
4068                                  sizeof(struct kvm_debugregs)))
4069                         break;
4070                 r = 0;
4071                 break;
4072         }
4073         case KVM_SET_DEBUGREGS: {
4074                 struct kvm_debugregs dbgregs;
4075
4076                 r = -EFAULT;
4077                 if (copy_from_user(&dbgregs, argp,
4078                                    sizeof(struct kvm_debugregs)))
4079                         break;
4080
4081                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4082                 break;
4083         }
4084         case KVM_GET_XSAVE: {
4085                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4086                 r = -ENOMEM;
4087                 if (!u.xsave)
4088                         break;
4089
4090                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4091
4092                 r = -EFAULT;
4093                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4094                         break;
4095                 r = 0;
4096                 break;
4097         }
4098         case KVM_SET_XSAVE: {
4099                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4100                 if (IS_ERR(u.xsave)) {
4101                         r = PTR_ERR(u.xsave);
4102                         goto out_nofree;
4103                 }
4104
4105                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4106                 break;
4107         }
4108         case KVM_GET_XCRS: {
4109                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4110                 r = -ENOMEM;
4111                 if (!u.xcrs)
4112                         break;
4113
4114                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4115
4116                 r = -EFAULT;
4117                 if (copy_to_user(argp, u.xcrs,
4118                                  sizeof(struct kvm_xcrs)))
4119                         break;
4120                 r = 0;
4121                 break;
4122         }
4123         case KVM_SET_XCRS: {
4124                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4125                 if (IS_ERR(u.xcrs)) {
4126                         r = PTR_ERR(u.xcrs);
4127                         goto out_nofree;
4128                 }
4129
4130                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4131                 break;
4132         }
4133         case KVM_SET_TSC_KHZ: {
4134                 u32 user_tsc_khz;
4135
4136                 r = -EINVAL;
4137                 user_tsc_khz = (u32)arg;
4138
4139                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4140                         goto out;
4141
4142                 if (user_tsc_khz == 0)
4143                         user_tsc_khz = tsc_khz;
4144
4145                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4146                         r = 0;
4147
4148                 goto out;
4149         }
4150         case KVM_GET_TSC_KHZ: {
4151                 r = vcpu->arch.virtual_tsc_khz;
4152                 goto out;
4153         }
4154         case KVM_KVMCLOCK_CTRL: {
4155                 r = kvm_set_guest_paused(vcpu);
4156                 goto out;
4157         }
4158         case KVM_ENABLE_CAP: {
4159                 struct kvm_enable_cap cap;
4160
4161                 r = -EFAULT;
4162                 if (copy_from_user(&cap, argp, sizeof(cap)))
4163                         goto out;
4164                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4165                 break;
4166         }
4167         case KVM_GET_NESTED_STATE: {
4168                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4169                 u32 user_data_size;
4170
4171                 r = -EINVAL;
4172                 if (!kvm_x86_ops->get_nested_state)
4173                         break;
4174
4175                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4176                 r = -EFAULT;
4177                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4178                         break;
4179
4180                 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4181                                                   user_data_size);
4182                 if (r < 0)
4183                         break;
4184
4185                 if (r > user_data_size) {
4186                         if (put_user(r, &user_kvm_nested_state->size))
4187                                 r = -EFAULT;
4188                         else
4189                                 r = -E2BIG;
4190                         break;
4191                 }
4192
4193                 r = 0;
4194                 break;
4195         }
4196         case KVM_SET_NESTED_STATE: {
4197                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4198                 struct kvm_nested_state kvm_state;
4199
4200                 r = -EINVAL;
4201                 if (!kvm_x86_ops->set_nested_state)
4202                         break;
4203
4204                 r = -EFAULT;
4205                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4206                         break;
4207
4208                 r = -EINVAL;
4209                 if (kvm_state.size < sizeof(kvm_state))
4210                         break;
4211
4212                 if (kvm_state.flags &
4213                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4214                       | KVM_STATE_NESTED_EVMCS))
4215                         break;
4216
4217                 /* nested_run_pending implies guest_mode.  */
4218                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4219                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4220                         break;
4221
4222                 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4223                 break;
4224         }
4225         case KVM_GET_SUPPORTED_HV_CPUID: {
4226                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4227                 struct kvm_cpuid2 cpuid;
4228
4229                 r = -EFAULT;
4230                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4231                         goto out;
4232
4233                 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4234                                                 cpuid_arg->entries);
4235                 if (r)
4236                         goto out;
4237
4238                 r = -EFAULT;
4239                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4240                         goto out;
4241                 r = 0;
4242                 break;
4243         }
4244         default:
4245                 r = -EINVAL;
4246         }
4247 out:
4248         kfree(u.buffer);
4249 out_nofree:
4250         vcpu_put(vcpu);
4251         return r;
4252 }
4253
4254 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4255 {
4256         return VM_FAULT_SIGBUS;
4257 }
4258
4259 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4260 {
4261         int ret;
4262
4263         if (addr > (unsigned int)(-3 * PAGE_SIZE))
4264                 return -EINVAL;
4265         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4266         return ret;
4267 }
4268
4269 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4270                                               u64 ident_addr)
4271 {
4272         return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4273 }
4274
4275 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4276                                          unsigned long kvm_nr_mmu_pages)
4277 {
4278         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4279                 return -EINVAL;
4280
4281         mutex_lock(&kvm->slots_lock);
4282
4283         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4284         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4285
4286         mutex_unlock(&kvm->slots_lock);
4287         return 0;
4288 }
4289
4290 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4291 {
4292         return kvm->arch.n_max_mmu_pages;
4293 }
4294
4295 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4296 {
4297         struct kvm_pic *pic = kvm->arch.vpic;
4298         int r;
4299
4300         r = 0;
4301         switch (chip->chip_id) {
4302         case KVM_IRQCHIP_PIC_MASTER:
4303                 memcpy(&chip->chip.pic, &pic->pics[0],
4304                         sizeof(struct kvm_pic_state));
4305                 break;
4306         case KVM_IRQCHIP_PIC_SLAVE:
4307                 memcpy(&chip->chip.pic, &pic->pics[1],
4308                         sizeof(struct kvm_pic_state));
4309                 break;
4310         case KVM_IRQCHIP_IOAPIC:
4311                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4312                 break;
4313         default:
4314                 r = -EINVAL;
4315                 break;
4316         }
4317         return r;
4318 }
4319
4320 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4321 {
4322         struct kvm_pic *pic = kvm->arch.vpic;
4323         int r;
4324
4325         r = 0;
4326         switch (chip->chip_id) {
4327         case KVM_IRQCHIP_PIC_MASTER:
4328                 spin_lock(&pic->lock);
4329                 memcpy(&pic->pics[0], &chip->chip.pic,
4330                         sizeof(struct kvm_pic_state));
4331                 spin_unlock(&pic->lock);
4332                 break;
4333         case KVM_IRQCHIP_PIC_SLAVE:
4334                 spin_lock(&pic->lock);
4335                 memcpy(&pic->pics[1], &chip->chip.pic,
4336                         sizeof(struct kvm_pic_state));
4337                 spin_unlock(&pic->lock);
4338                 break;
4339         case KVM_IRQCHIP_IOAPIC:
4340                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4341                 break;
4342         default:
4343                 r = -EINVAL;
4344                 break;
4345         }
4346         kvm_pic_update_irq(pic);
4347         return r;
4348 }
4349
4350 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4351 {
4352         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4353
4354         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4355
4356         mutex_lock(&kps->lock);
4357         memcpy(ps, &kps->channels, sizeof(*ps));
4358         mutex_unlock(&kps->lock);
4359         return 0;
4360 }
4361
4362 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4363 {
4364         int i;
4365         struct kvm_pit *pit = kvm->arch.vpit;
4366
4367         mutex_lock(&pit->pit_state.lock);
4368         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4369         for (i = 0; i < 3; i++)
4370                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4371         mutex_unlock(&pit->pit_state.lock);
4372         return 0;
4373 }
4374
4375 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4376 {
4377         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4378         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4379                 sizeof(ps->channels));
4380         ps->flags = kvm->arch.vpit->pit_state.flags;
4381         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4382         memset(&ps->reserved, 0, sizeof(ps->reserved));
4383         return 0;
4384 }
4385
4386 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4387 {
4388         int start = 0;
4389         int i;
4390         u32 prev_legacy, cur_legacy;
4391         struct kvm_pit *pit = kvm->arch.vpit;
4392
4393         mutex_lock(&pit->pit_state.lock);
4394         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4395         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4396         if (!prev_legacy && cur_legacy)
4397                 start = 1;
4398         memcpy(&pit->pit_state.channels, &ps->channels,
4399                sizeof(pit->pit_state.channels));
4400         pit->pit_state.flags = ps->flags;
4401         for (i = 0; i < 3; i++)
4402                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4403                                    start && i == 0);
4404         mutex_unlock(&pit->pit_state.lock);
4405         return 0;
4406 }
4407
4408 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4409                                  struct kvm_reinject_control *control)
4410 {
4411         struct kvm_pit *pit = kvm->arch.vpit;
4412
4413         if (!pit)
4414                 return -ENXIO;
4415
4416         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4417          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4418          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4419          */
4420         mutex_lock(&pit->pit_state.lock);
4421         kvm_pit_set_reinject(pit, control->pit_reinject);
4422         mutex_unlock(&pit->pit_state.lock);
4423
4424         return 0;
4425 }
4426
4427 /**
4428  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4429  * @kvm: kvm instance
4430  * @log: slot id and address to which we copy the log
4431  *
4432  * Steps 1-4 below provide general overview of dirty page logging. See
4433  * kvm_get_dirty_log_protect() function description for additional details.
4434  *
4435  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4436  * always flush the TLB (step 4) even if previous step failed  and the dirty
4437  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4438  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4439  * writes will be marked dirty for next log read.
4440  *
4441  *   1. Take a snapshot of the bit and clear it if needed.
4442  *   2. Write protect the corresponding page.
4443  *   3. Copy the snapshot to the userspace.
4444  *   4. Flush TLB's if needed.
4445  */
4446 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4447 {
4448         bool flush = false;
4449         int r;
4450
4451         mutex_lock(&kvm->slots_lock);
4452
4453         /*
4454          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4455          */
4456         if (kvm_x86_ops->flush_log_dirty)
4457                 kvm_x86_ops->flush_log_dirty(kvm);
4458
4459         r = kvm_get_dirty_log_protect(kvm, log, &flush);
4460
4461         /*
4462          * All the TLBs can be flushed out of mmu lock, see the comments in
4463          * kvm_mmu_slot_remove_write_access().
4464          */
4465         lockdep_assert_held(&kvm->slots_lock);
4466         if (flush)
4467                 kvm_flush_remote_tlbs(kvm);
4468
4469         mutex_unlock(&kvm->slots_lock);
4470         return r;
4471 }
4472
4473 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4474 {
4475         bool flush = false;
4476         int r;
4477
4478         mutex_lock(&kvm->slots_lock);
4479
4480         /*
4481          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4482          */
4483         if (kvm_x86_ops->flush_log_dirty)
4484                 kvm_x86_ops->flush_log_dirty(kvm);
4485
4486         r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4487
4488         /*
4489          * All the TLBs can be flushed out of mmu lock, see the comments in
4490          * kvm_mmu_slot_remove_write_access().
4491          */
4492         lockdep_assert_held(&kvm->slots_lock);
4493         if (flush)
4494                 kvm_flush_remote_tlbs(kvm);
4495
4496         mutex_unlock(&kvm->slots_lock);
4497         return r;
4498 }
4499
4500 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4501                         bool line_status)
4502 {
4503         if (!irqchip_in_kernel(kvm))
4504                 return -ENXIO;
4505
4506         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4507                                         irq_event->irq, irq_event->level,
4508                                         line_status);
4509         return 0;
4510 }
4511
4512 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4513                             struct kvm_enable_cap *cap)
4514 {
4515         int r;
4516
4517         if (cap->flags)
4518                 return -EINVAL;
4519
4520         switch (cap->cap) {
4521         case KVM_CAP_DISABLE_QUIRKS:
4522                 kvm->arch.disabled_quirks = cap->args[0];
4523                 r = 0;
4524                 break;
4525         case KVM_CAP_SPLIT_IRQCHIP: {
4526                 mutex_lock(&kvm->lock);
4527                 r = -EINVAL;
4528                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4529                         goto split_irqchip_unlock;
4530                 r = -EEXIST;
4531                 if (irqchip_in_kernel(kvm))
4532                         goto split_irqchip_unlock;
4533                 if (kvm->created_vcpus)
4534                         goto split_irqchip_unlock;
4535                 r = kvm_setup_empty_irq_routing(kvm);
4536                 if (r)
4537                         goto split_irqchip_unlock;
4538                 /* Pairs with irqchip_in_kernel. */
4539                 smp_wmb();
4540                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4541                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4542                 r = 0;
4543 split_irqchip_unlock:
4544                 mutex_unlock(&kvm->lock);
4545                 break;
4546         }
4547         case KVM_CAP_X2APIC_API:
4548                 r = -EINVAL;
4549                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4550                         break;
4551
4552                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4553                         kvm->arch.x2apic_format = true;
4554                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4555                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4556
4557                 r = 0;
4558                 break;
4559         case KVM_CAP_X86_DISABLE_EXITS:
4560                 r = -EINVAL;
4561                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4562                         break;
4563
4564                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4565                         kvm_can_mwait_in_guest())
4566                         kvm->arch.mwait_in_guest = true;
4567                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4568                         kvm->arch.hlt_in_guest = true;
4569                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4570                         kvm->arch.pause_in_guest = true;
4571                 r = 0;
4572                 break;
4573         case KVM_CAP_MSR_PLATFORM_INFO:
4574                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4575                 r = 0;
4576                 break;
4577         case KVM_CAP_EXCEPTION_PAYLOAD:
4578                 kvm->arch.exception_payload_enabled = cap->args[0];
4579                 r = 0;
4580                 break;
4581         default:
4582                 r = -EINVAL;
4583                 break;
4584         }
4585         return r;
4586 }
4587
4588 long kvm_arch_vm_ioctl(struct file *filp,
4589                        unsigned int ioctl, unsigned long arg)
4590 {
4591         struct kvm *kvm = filp->private_data;
4592         void __user *argp = (void __user *)arg;
4593         int r = -ENOTTY;
4594         /*
4595          * This union makes it completely explicit to gcc-3.x
4596          * that these two variables' stack usage should be
4597          * combined, not added together.
4598          */
4599         union {
4600                 struct kvm_pit_state ps;
4601                 struct kvm_pit_state2 ps2;
4602                 struct kvm_pit_config pit_config;
4603         } u;
4604
4605         switch (ioctl) {
4606         case KVM_SET_TSS_ADDR:
4607                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4608                 break;
4609         case KVM_SET_IDENTITY_MAP_ADDR: {
4610                 u64 ident_addr;
4611
4612                 mutex_lock(&kvm->lock);
4613                 r = -EINVAL;
4614                 if (kvm->created_vcpus)
4615                         goto set_identity_unlock;
4616                 r = -EFAULT;
4617                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4618                         goto set_identity_unlock;
4619                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4620 set_identity_unlock:
4621                 mutex_unlock(&kvm->lock);
4622                 break;
4623         }
4624         case KVM_SET_NR_MMU_PAGES:
4625                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4626                 break;
4627         case KVM_GET_NR_MMU_PAGES:
4628                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4629                 break;
4630         case KVM_CREATE_IRQCHIP: {
4631                 mutex_lock(&kvm->lock);
4632
4633                 r = -EEXIST;
4634                 if (irqchip_in_kernel(kvm))
4635                         goto create_irqchip_unlock;
4636
4637                 r = -EINVAL;
4638                 if (kvm->created_vcpus)
4639                         goto create_irqchip_unlock;
4640
4641                 r = kvm_pic_init(kvm);
4642                 if (r)
4643                         goto create_irqchip_unlock;
4644
4645                 r = kvm_ioapic_init(kvm);
4646                 if (r) {
4647                         kvm_pic_destroy(kvm);
4648                         goto create_irqchip_unlock;
4649                 }
4650
4651                 r = kvm_setup_default_irq_routing(kvm);
4652                 if (r) {
4653                         kvm_ioapic_destroy(kvm);
4654                         kvm_pic_destroy(kvm);
4655                         goto create_irqchip_unlock;
4656                 }
4657                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4658                 smp_wmb();
4659                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4660         create_irqchip_unlock:
4661                 mutex_unlock(&kvm->lock);
4662                 break;
4663         }
4664         case KVM_CREATE_PIT:
4665                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4666                 goto create_pit;
4667         case KVM_CREATE_PIT2:
4668                 r = -EFAULT;
4669                 if (copy_from_user(&u.pit_config, argp,
4670                                    sizeof(struct kvm_pit_config)))
4671                         goto out;
4672         create_pit:
4673                 mutex_lock(&kvm->lock);
4674                 r = -EEXIST;
4675                 if (kvm->arch.vpit)
4676                         goto create_pit_unlock;
4677                 r = -ENOMEM;
4678                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4679                 if (kvm->arch.vpit)
4680                         r = 0;
4681         create_pit_unlock:
4682                 mutex_unlock(&kvm->lock);
4683                 break;
4684         case KVM_GET_IRQCHIP: {
4685                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4686                 struct kvm_irqchip *chip;
4687
4688                 chip = memdup_user(argp, sizeof(*chip));
4689                 if (IS_ERR(chip)) {
4690                         r = PTR_ERR(chip);
4691                         goto out;
4692                 }
4693
4694                 r = -ENXIO;
4695                 if (!irqchip_kernel(kvm))
4696                         goto get_irqchip_out;
4697                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4698                 if (r)
4699                         goto get_irqchip_out;
4700                 r = -EFAULT;
4701                 if (copy_to_user(argp, chip, sizeof(*chip)))
4702                         goto get_irqchip_out;
4703                 r = 0;
4704         get_irqchip_out:
4705                 kfree(chip);
4706                 break;
4707         }
4708         case KVM_SET_IRQCHIP: {
4709                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4710                 struct kvm_irqchip *chip;
4711
4712                 chip = memdup_user(argp, sizeof(*chip));
4713                 if (IS_ERR(chip)) {
4714                         r = PTR_ERR(chip);
4715                         goto out;
4716                 }
4717
4718                 r = -ENXIO;
4719                 if (!irqchip_kernel(kvm))
4720                         goto set_irqchip_out;
4721                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4722                 if (r)
4723                         goto set_irqchip_out;
4724                 r = 0;
4725         set_irqchip_out:
4726                 kfree(chip);
4727                 break;
4728         }
4729         case KVM_GET_PIT: {
4730                 r = -EFAULT;
4731                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4732                         goto out;
4733                 r = -ENXIO;
4734                 if (!kvm->arch.vpit)
4735                         goto out;
4736                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4737                 if (r)
4738                         goto out;
4739                 r = -EFAULT;
4740                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4741                         goto out;
4742                 r = 0;
4743                 break;
4744         }
4745         case KVM_SET_PIT: {
4746                 r = -EFAULT;
4747                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4748                         goto out;
4749                 r = -ENXIO;
4750                 if (!kvm->arch.vpit)
4751                         goto out;
4752                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4753                 break;
4754         }
4755         case KVM_GET_PIT2: {
4756                 r = -ENXIO;
4757                 if (!kvm->arch.vpit)
4758                         goto out;
4759                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4760                 if (r)
4761                         goto out;
4762                 r = -EFAULT;
4763                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4764                         goto out;
4765                 r = 0;
4766                 break;
4767         }
4768         case KVM_SET_PIT2: {
4769                 r = -EFAULT;
4770                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4771                         goto out;
4772                 r = -ENXIO;
4773                 if (!kvm->arch.vpit)
4774                         goto out;
4775                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4776                 break;
4777         }
4778         case KVM_REINJECT_CONTROL: {
4779                 struct kvm_reinject_control control;
4780                 r =  -EFAULT;
4781                 if (copy_from_user(&control, argp, sizeof(control)))
4782                         goto out;
4783                 r = kvm_vm_ioctl_reinject(kvm, &control);
4784                 break;
4785         }
4786         case KVM_SET_BOOT_CPU_ID:
4787                 r = 0;
4788                 mutex_lock(&kvm->lock);
4789                 if (kvm->created_vcpus)
4790                         r = -EBUSY;
4791                 else
4792                         kvm->arch.bsp_vcpu_id = arg;
4793                 mutex_unlock(&kvm->lock);
4794                 break;
4795         case KVM_XEN_HVM_CONFIG: {
4796                 struct kvm_xen_hvm_config xhc;
4797                 r = -EFAULT;
4798                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4799                         goto out;
4800                 r = -EINVAL;
4801                 if (xhc.flags)
4802                         goto out;
4803                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4804                 r = 0;
4805                 break;
4806         }
4807         case KVM_SET_CLOCK: {
4808                 struct kvm_clock_data user_ns;
4809                 u64 now_ns;
4810
4811                 r = -EFAULT;
4812                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4813                         goto out;
4814
4815                 r = -EINVAL;
4816                 if (user_ns.flags)
4817                         goto out;
4818
4819                 r = 0;
4820                 /*
4821                  * TODO: userspace has to take care of races with VCPU_RUN, so
4822                  * kvm_gen_update_masterclock() can be cut down to locked
4823                  * pvclock_update_vm_gtod_copy().
4824                  */
4825                 kvm_gen_update_masterclock(kvm);
4826                 now_ns = get_kvmclock_ns(kvm);
4827                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4828                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4829                 break;
4830         }
4831         case KVM_GET_CLOCK: {
4832                 struct kvm_clock_data user_ns;
4833                 u64 now_ns;
4834
4835                 now_ns = get_kvmclock_ns(kvm);
4836                 user_ns.clock = now_ns;
4837                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4838                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4839
4840                 r = -EFAULT;
4841                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4842                         goto out;
4843                 r = 0;
4844                 break;
4845         }
4846         case KVM_MEMORY_ENCRYPT_OP: {
4847                 r = -ENOTTY;
4848                 if (kvm_x86_ops->mem_enc_op)
4849                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
4850                 break;
4851         }
4852         case KVM_MEMORY_ENCRYPT_REG_REGION: {
4853                 struct kvm_enc_region region;
4854
4855                 r = -EFAULT;
4856                 if (copy_from_user(&region, argp, sizeof(region)))
4857                         goto out;
4858
4859                 r = -ENOTTY;
4860                 if (kvm_x86_ops->mem_enc_reg_region)
4861                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4862                 break;
4863         }
4864         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4865                 struct kvm_enc_region region;
4866
4867                 r = -EFAULT;
4868                 if (copy_from_user(&region, argp, sizeof(region)))
4869                         goto out;
4870
4871                 r = -ENOTTY;
4872                 if (kvm_x86_ops->mem_enc_unreg_region)
4873                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4874                 break;
4875         }
4876         case KVM_HYPERV_EVENTFD: {
4877                 struct kvm_hyperv_eventfd hvevfd;
4878
4879                 r = -EFAULT;
4880                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4881                         goto out;
4882                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4883                 break;
4884         }
4885         default:
4886                 r = -ENOTTY;
4887         }
4888 out:
4889         return r;
4890 }
4891
4892 static void kvm_init_msr_list(void)
4893 {
4894         u32 dummy[2];
4895         unsigned i, j;
4896
4897         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4898                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4899                         continue;
4900
4901                 /*
4902                  * Even MSRs that are valid in the host may not be exposed
4903                  * to the guests in some cases.
4904                  */
4905                 switch (msrs_to_save[i]) {
4906                 case MSR_IA32_BNDCFGS:
4907                         if (!kvm_mpx_supported())
4908                                 continue;
4909                         break;
4910                 case MSR_TSC_AUX:
4911                         if (!kvm_x86_ops->rdtscp_supported())
4912                                 continue;
4913                         break;
4914                 case MSR_IA32_RTIT_CTL:
4915                 case MSR_IA32_RTIT_STATUS:
4916                         if (!kvm_x86_ops->pt_supported())
4917                                 continue;
4918                         break;
4919                 case MSR_IA32_RTIT_CR3_MATCH:
4920                         if (!kvm_x86_ops->pt_supported() ||
4921                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
4922                                 continue;
4923                         break;
4924                 case MSR_IA32_RTIT_OUTPUT_BASE:
4925                 case MSR_IA32_RTIT_OUTPUT_MASK:
4926                         if (!kvm_x86_ops->pt_supported() ||
4927                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
4928                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
4929                                 continue;
4930                         break;
4931                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
4932                         if (!kvm_x86_ops->pt_supported() ||
4933                                 msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >=
4934                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
4935                                 continue;
4936                         break;
4937                 }
4938                 default:
4939                         break;
4940                 }
4941
4942                 if (j < i)
4943                         msrs_to_save[j] = msrs_to_save[i];
4944                 j++;
4945         }
4946         num_msrs_to_save = j;
4947
4948         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4949                 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4950                         continue;
4951
4952                 if (j < i)
4953                         emulated_msrs[j] = emulated_msrs[i];
4954                 j++;
4955         }
4956         num_emulated_msrs = j;
4957
4958         for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4959                 struct kvm_msr_entry msr;
4960
4961                 msr.index = msr_based_features[i];
4962                 if (kvm_get_msr_feature(&msr))
4963                         continue;
4964
4965                 if (j < i)
4966                         msr_based_features[j] = msr_based_features[i];
4967                 j++;
4968         }
4969         num_msr_based_features = j;
4970 }
4971
4972 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4973                            const void *v)
4974 {
4975         int handled = 0;
4976         int n;
4977
4978         do {
4979                 n = min(len, 8);
4980                 if (!(lapic_in_kernel(vcpu) &&
4981                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4982                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4983                         break;
4984                 handled += n;
4985                 addr += n;
4986                 len -= n;
4987                 v += n;
4988         } while (len);
4989
4990         return handled;
4991 }
4992
4993 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4994 {
4995         int handled = 0;
4996         int n;
4997
4998         do {
4999                 n = min(len, 8);
5000                 if (!(lapic_in_kernel(vcpu) &&
5001                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5002                                          addr, n, v))
5003                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5004                         break;
5005                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5006                 handled += n;
5007                 addr += n;
5008                 len -= n;
5009                 v += n;
5010         } while (len);
5011
5012         return handled;
5013 }
5014
5015 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5016                         struct kvm_segment *var, int seg)
5017 {
5018         kvm_x86_ops->set_segment(vcpu, var, seg);
5019 }
5020
5021 void kvm_get_segment(struct kvm_vcpu *vcpu,
5022                      struct kvm_segment *var, int seg)
5023 {
5024         kvm_x86_ops->get_segment(vcpu, var, seg);
5025 }
5026
5027 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5028                            struct x86_exception *exception)
5029 {
5030         gpa_t t_gpa;
5031
5032         BUG_ON(!mmu_is_nested(vcpu));
5033
5034         /* NPT walks are always user-walks */
5035         access |= PFERR_USER_MASK;
5036         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5037
5038         return t_gpa;
5039 }
5040
5041 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5042                               struct x86_exception *exception)
5043 {
5044         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5045         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5046 }
5047
5048  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5049                                 struct x86_exception *exception)
5050 {
5051         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5052         access |= PFERR_FETCH_MASK;
5053         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5054 }
5055
5056 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5057                                struct x86_exception *exception)
5058 {
5059         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5060         access |= PFERR_WRITE_MASK;
5061         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5062 }
5063
5064 /* uses this to access any guest's mapped memory without checking CPL */
5065 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5066                                 struct x86_exception *exception)
5067 {
5068         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5069 }
5070
5071 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5072                                       struct kvm_vcpu *vcpu, u32 access,
5073                                       struct x86_exception *exception)
5074 {
5075         void *data = val;
5076         int r = X86EMUL_CONTINUE;
5077
5078         while (bytes) {
5079                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5080                                                             exception);
5081                 unsigned offset = addr & (PAGE_SIZE-1);
5082                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5083                 int ret;
5084
5085                 if (gpa == UNMAPPED_GVA)
5086                         return X86EMUL_PROPAGATE_FAULT;
5087                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5088                                                offset, toread);
5089                 if (ret < 0) {
5090                         r = X86EMUL_IO_NEEDED;
5091                         goto out;
5092                 }
5093
5094                 bytes -= toread;
5095                 data += toread;
5096                 addr += toread;
5097         }
5098 out:
5099         return r;
5100 }
5101
5102 /* used for instruction fetching */
5103 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5104                                 gva_t addr, void *val, unsigned int bytes,
5105                                 struct x86_exception *exception)
5106 {
5107         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5108         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5109         unsigned offset;
5110         int ret;
5111
5112         /* Inline kvm_read_guest_virt_helper for speed.  */
5113         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5114                                                     exception);
5115         if (unlikely(gpa == UNMAPPED_GVA))
5116                 return X86EMUL_PROPAGATE_FAULT;
5117
5118         offset = addr & (PAGE_SIZE-1);
5119         if (WARN_ON(offset + bytes > PAGE_SIZE))
5120                 bytes = (unsigned)PAGE_SIZE - offset;
5121         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5122                                        offset, bytes);
5123         if (unlikely(ret < 0))
5124                 return X86EMUL_IO_NEEDED;
5125
5126         return X86EMUL_CONTINUE;
5127 }
5128
5129 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5130                                gva_t addr, void *val, unsigned int bytes,
5131                                struct x86_exception *exception)
5132 {
5133         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5134
5135         /*
5136          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5137          * is returned, but our callers are not ready for that and they blindly
5138          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5139          * uninitialized kernel stack memory into cr2 and error code.
5140          */
5141         memset(exception, 0, sizeof(*exception));
5142         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5143                                           exception);
5144 }
5145 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5146
5147 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5148                              gva_t addr, void *val, unsigned int bytes,
5149                              struct x86_exception *exception, bool system)
5150 {
5151         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5152         u32 access = 0;
5153
5154         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5155                 access |= PFERR_USER_MASK;
5156
5157         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5158 }
5159
5160 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5161                 unsigned long addr, void *val, unsigned int bytes)
5162 {
5163         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5164         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5165
5166         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5167 }
5168
5169 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5170                                       struct kvm_vcpu *vcpu, u32 access,
5171                                       struct x86_exception *exception)
5172 {
5173         void *data = val;
5174         int r = X86EMUL_CONTINUE;
5175
5176         while (bytes) {
5177                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5178                                                              access,
5179                                                              exception);
5180                 unsigned offset = addr & (PAGE_SIZE-1);
5181                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5182                 int ret;
5183
5184                 if (gpa == UNMAPPED_GVA)
5185                         return X86EMUL_PROPAGATE_FAULT;
5186                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5187                 if (ret < 0) {
5188                         r = X86EMUL_IO_NEEDED;
5189                         goto out;
5190                 }
5191
5192                 bytes -= towrite;
5193                 data += towrite;
5194                 addr += towrite;
5195         }
5196 out:
5197         return r;
5198 }
5199
5200 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5201                               unsigned int bytes, struct x86_exception *exception,
5202                               bool system)
5203 {
5204         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5205         u32 access = PFERR_WRITE_MASK;
5206
5207         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5208                 access |= PFERR_USER_MASK;
5209
5210         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5211                                            access, exception);
5212 }
5213
5214 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5215                                 unsigned int bytes, struct x86_exception *exception)
5216 {
5217         /* kvm_write_guest_virt_system can pull in tons of pages. */
5218         vcpu->arch.l1tf_flush_l1d = true;
5219
5220         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5221                                            PFERR_WRITE_MASK, exception);
5222 }
5223 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5224
5225 int handle_ud(struct kvm_vcpu *vcpu)
5226 {
5227         int emul_type = EMULTYPE_TRAP_UD;
5228         enum emulation_result er;
5229         char sig[5]; /* ud2; .ascii "kvm" */
5230         struct x86_exception e;
5231
5232         if (force_emulation_prefix &&
5233             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5234                                 sig, sizeof(sig), &e) == 0 &&
5235             memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5236                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5237                 emul_type = 0;
5238         }
5239
5240         er = kvm_emulate_instruction(vcpu, emul_type);
5241         if (er == EMULATE_USER_EXIT)
5242                 return 0;
5243         if (er != EMULATE_DONE)
5244                 kvm_queue_exception(vcpu, UD_VECTOR);
5245         return 1;
5246 }
5247 EXPORT_SYMBOL_GPL(handle_ud);
5248
5249 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5250                             gpa_t gpa, bool write)
5251 {
5252         /* For APIC access vmexit */
5253         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5254                 return 1;
5255
5256         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5257                 trace_vcpu_match_mmio(gva, gpa, write, true);
5258                 return 1;
5259         }
5260
5261         return 0;
5262 }
5263
5264 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5265                                 gpa_t *gpa, struct x86_exception *exception,
5266                                 bool write)
5267 {
5268         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5269                 | (write ? PFERR_WRITE_MASK : 0);
5270
5271         /*
5272          * currently PKRU is only applied to ept enabled guest so
5273          * there is no pkey in EPT page table for L1 guest or EPT
5274          * shadow page table for L2 guest.
5275          */
5276         if (vcpu_match_mmio_gva(vcpu, gva)
5277             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5278                                  vcpu->arch.access, 0, access)) {
5279                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5280                                         (gva & (PAGE_SIZE - 1));
5281                 trace_vcpu_match_mmio(gva, *gpa, write, false);
5282                 return 1;
5283         }
5284
5285         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5286
5287         if (*gpa == UNMAPPED_GVA)
5288                 return -1;
5289
5290         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5291 }
5292
5293 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5294                         const void *val, int bytes)
5295 {
5296         int ret;
5297
5298         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5299         if (ret < 0)
5300                 return 0;
5301         kvm_page_track_write(vcpu, gpa, val, bytes);
5302         return 1;
5303 }
5304
5305 struct read_write_emulator_ops {
5306         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5307                                   int bytes);
5308         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5309                                   void *val, int bytes);
5310         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5311                                int bytes, void *val);
5312         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5313                                     void *val, int bytes);
5314         bool write;
5315 };
5316
5317 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5318 {
5319         if (vcpu->mmio_read_completed) {
5320                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5321                                vcpu->mmio_fragments[0].gpa, val);
5322                 vcpu->mmio_read_completed = 0;
5323                 return 1;
5324         }
5325
5326         return 0;
5327 }
5328
5329 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5330                         void *val, int bytes)
5331 {
5332         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5333 }
5334
5335 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5336                          void *val, int bytes)
5337 {
5338         return emulator_write_phys(vcpu, gpa, val, bytes);
5339 }
5340
5341 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5342 {
5343         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5344         return vcpu_mmio_write(vcpu, gpa, bytes, val);
5345 }
5346
5347 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5348                           void *val, int bytes)
5349 {
5350         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5351         return X86EMUL_IO_NEEDED;
5352 }
5353
5354 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5355                            void *val, int bytes)
5356 {
5357         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5358
5359         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5360         return X86EMUL_CONTINUE;
5361 }
5362
5363 static const struct read_write_emulator_ops read_emultor = {
5364         .read_write_prepare = read_prepare,
5365         .read_write_emulate = read_emulate,
5366         .read_write_mmio = vcpu_mmio_read,
5367         .read_write_exit_mmio = read_exit_mmio,
5368 };
5369
5370 static const struct read_write_emulator_ops write_emultor = {
5371         .read_write_emulate = write_emulate,
5372         .read_write_mmio = write_mmio,
5373         .read_write_exit_mmio = write_exit_mmio,
5374         .write = true,
5375 };
5376
5377 static int emulator_read_write_onepage(unsigned long addr, void *val,
5378                                        unsigned int bytes,
5379                                        struct x86_exception *exception,
5380                                        struct kvm_vcpu *vcpu,
5381                                        const struct read_write_emulator_ops *ops)
5382 {
5383         gpa_t gpa;
5384         int handled, ret;
5385         bool write = ops->write;
5386         struct kvm_mmio_fragment *frag;
5387         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5388
5389         /*
5390          * If the exit was due to a NPF we may already have a GPA.
5391          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5392          * Note, this cannot be used on string operations since string
5393          * operation using rep will only have the initial GPA from the NPF
5394          * occurred.
5395          */
5396         if (vcpu->arch.gpa_available &&
5397             emulator_can_use_gpa(ctxt) &&
5398             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5399                 gpa = vcpu->arch.gpa_val;
5400                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5401         } else {
5402                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5403                 if (ret < 0)
5404                         return X86EMUL_PROPAGATE_FAULT;
5405         }
5406
5407         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5408                 return X86EMUL_CONTINUE;
5409
5410         /*
5411          * Is this MMIO handled locally?
5412          */
5413         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5414         if (handled == bytes)
5415                 return X86EMUL_CONTINUE;
5416
5417         gpa += handled;
5418         bytes -= handled;
5419         val += handled;
5420
5421         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5422         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5423         frag->gpa = gpa;
5424         frag->data = val;
5425         frag->len = bytes;
5426         return X86EMUL_CONTINUE;
5427 }
5428
5429 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5430                         unsigned long addr,
5431                         void *val, unsigned int bytes,
5432                         struct x86_exception *exception,
5433                         const struct read_write_emulator_ops *ops)
5434 {
5435         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5436         gpa_t gpa;
5437         int rc;
5438
5439         if (ops->read_write_prepare &&
5440                   ops->read_write_prepare(vcpu, val, bytes))
5441                 return X86EMUL_CONTINUE;
5442
5443         vcpu->mmio_nr_fragments = 0;
5444
5445         /* Crossing a page boundary? */
5446         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5447                 int now;
5448
5449                 now = -addr & ~PAGE_MASK;
5450                 rc = emulator_read_write_onepage(addr, val, now, exception,
5451                                                  vcpu, ops);
5452
5453                 if (rc != X86EMUL_CONTINUE)
5454                         return rc;
5455                 addr += now;
5456                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5457                         addr = (u32)addr;
5458                 val += now;
5459                 bytes -= now;
5460         }
5461
5462         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5463                                          vcpu, ops);
5464         if (rc != X86EMUL_CONTINUE)
5465                 return rc;
5466
5467         if (!vcpu->mmio_nr_fragments)
5468                 return rc;
5469
5470         gpa = vcpu->mmio_fragments[0].gpa;
5471
5472         vcpu->mmio_needed = 1;
5473         vcpu->mmio_cur_fragment = 0;
5474
5475         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5476         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5477         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5478         vcpu->run->mmio.phys_addr = gpa;
5479
5480         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5481 }
5482
5483 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5484                                   unsigned long addr,
5485                                   void *val,
5486                                   unsigned int bytes,
5487                                   struct x86_exception *exception)
5488 {
5489         return emulator_read_write(ctxt, addr, val, bytes,
5490                                    exception, &read_emultor);
5491 }
5492
5493 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5494                             unsigned long addr,
5495                             const void *val,
5496                             unsigned int bytes,
5497                             struct x86_exception *exception)
5498 {
5499         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5500                                    exception, &write_emultor);
5501 }
5502
5503 #define CMPXCHG_TYPE(t, ptr, old, new) \
5504         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5505
5506 #ifdef CONFIG_X86_64
5507 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5508 #else
5509 #  define CMPXCHG64(ptr, old, new) \
5510         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5511 #endif
5512
5513 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5514                                      unsigned long addr,
5515                                      const void *old,
5516                                      const void *new,
5517                                      unsigned int bytes,
5518                                      struct x86_exception *exception)
5519 {
5520         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5521         gpa_t gpa;
5522         struct page *page;
5523         char *kaddr;
5524         bool exchanged;
5525
5526         /* guests cmpxchg8b have to be emulated atomically */
5527         if (bytes > 8 || (bytes & (bytes - 1)))
5528                 goto emul_write;
5529
5530         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5531
5532         if (gpa == UNMAPPED_GVA ||
5533             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5534                 goto emul_write;
5535
5536         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5537                 goto emul_write;
5538
5539         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5540         if (is_error_page(page))
5541                 goto emul_write;
5542
5543         kaddr = kmap_atomic(page);
5544         kaddr += offset_in_page(gpa);
5545         switch (bytes) {
5546         case 1:
5547                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5548                 break;
5549         case 2:
5550                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5551                 break;
5552         case 4:
5553                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5554                 break;
5555         case 8:
5556                 exchanged = CMPXCHG64(kaddr, old, new);
5557                 break;
5558         default:
5559                 BUG();
5560         }
5561         kunmap_atomic(kaddr);
5562         kvm_release_page_dirty(page);
5563
5564         if (!exchanged)
5565                 return X86EMUL_CMPXCHG_FAILED;
5566
5567         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5568         kvm_page_track_write(vcpu, gpa, new, bytes);
5569
5570         return X86EMUL_CONTINUE;
5571
5572 emul_write:
5573         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5574
5575         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5576 }
5577
5578 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5579 {
5580         int r = 0, i;
5581
5582         for (i = 0; i < vcpu->arch.pio.count; i++) {
5583                 if (vcpu->arch.pio.in)
5584                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5585                                             vcpu->arch.pio.size, pd);
5586                 else
5587                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5588                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5589                                              pd);
5590                 if (r)
5591                         break;
5592                 pd += vcpu->arch.pio.size;
5593         }
5594         return r;
5595 }
5596
5597 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5598                                unsigned short port, void *val,
5599                                unsigned int count, bool in)
5600 {
5601         vcpu->arch.pio.port = port;
5602         vcpu->arch.pio.in = in;
5603         vcpu->arch.pio.count  = count;
5604         vcpu->arch.pio.size = size;
5605
5606         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5607                 vcpu->arch.pio.count = 0;
5608                 return 1;
5609         }
5610
5611         vcpu->run->exit_reason = KVM_EXIT_IO;
5612         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5613         vcpu->run->io.size = size;
5614         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5615         vcpu->run->io.count = count;
5616         vcpu->run->io.port = port;
5617
5618         return 0;
5619 }
5620
5621 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5622                                     int size, unsigned short port, void *val,
5623                                     unsigned int count)
5624 {
5625         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5626         int ret;
5627
5628         if (vcpu->arch.pio.count)
5629                 goto data_avail;
5630
5631         memset(vcpu->arch.pio_data, 0, size * count);
5632
5633         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5634         if (ret) {
5635 data_avail:
5636                 memcpy(val, vcpu->arch.pio_data, size * count);
5637                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5638                 vcpu->arch.pio.count = 0;
5639                 return 1;
5640         }
5641
5642         return 0;
5643 }
5644
5645 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5646                                      int size, unsigned short port,
5647                                      const void *val, unsigned int count)
5648 {
5649         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5650
5651         memcpy(vcpu->arch.pio_data, val, size * count);
5652         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5653         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5654 }
5655
5656 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5657 {
5658         return kvm_x86_ops->get_segment_base(vcpu, seg);
5659 }
5660
5661 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5662 {
5663         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5664 }
5665
5666 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5667 {
5668         if (!need_emulate_wbinvd(vcpu))
5669                 return X86EMUL_CONTINUE;
5670
5671         if (kvm_x86_ops->has_wbinvd_exit()) {
5672                 int cpu = get_cpu();
5673
5674                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5675                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5676                                 wbinvd_ipi, NULL, 1);
5677                 put_cpu();
5678                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5679         } else
5680                 wbinvd();
5681         return X86EMUL_CONTINUE;
5682 }
5683
5684 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5685 {
5686         kvm_emulate_wbinvd_noskip(vcpu);
5687         return kvm_skip_emulated_instruction(vcpu);
5688 }
5689 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5690
5691
5692
5693 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5694 {
5695         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5696 }
5697
5698 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5699                            unsigned long *dest)
5700 {
5701         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5702 }
5703
5704 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5705                            unsigned long value)
5706 {
5707
5708         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5709 }
5710
5711 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5712 {
5713         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5714 }
5715
5716 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5717 {
5718         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5719         unsigned long value;
5720
5721         switch (cr) {
5722         case 0:
5723                 value = kvm_read_cr0(vcpu);
5724                 break;
5725         case 2:
5726                 value = vcpu->arch.cr2;
5727                 break;
5728         case 3:
5729                 value = kvm_read_cr3(vcpu);
5730                 break;
5731         case 4:
5732                 value = kvm_read_cr4(vcpu);
5733                 break;
5734         case 8:
5735                 value = kvm_get_cr8(vcpu);
5736                 break;
5737         default:
5738                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5739                 return 0;
5740         }
5741
5742         return value;
5743 }
5744
5745 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5746 {
5747         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5748         int res = 0;
5749
5750         switch (cr) {
5751         case 0:
5752                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5753                 break;
5754         case 2:
5755                 vcpu->arch.cr2 = val;
5756                 break;
5757         case 3:
5758                 res = kvm_set_cr3(vcpu, val);
5759                 break;
5760         case 4:
5761                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5762                 break;
5763         case 8:
5764                 res = kvm_set_cr8(vcpu, val);
5765                 break;
5766         default:
5767                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5768                 res = -1;
5769         }
5770
5771         return res;
5772 }
5773
5774 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5775 {
5776         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5777 }
5778
5779 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5780 {
5781         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5782 }
5783
5784 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5785 {
5786         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5787 }
5788
5789 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5790 {
5791         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5792 }
5793
5794 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5795 {
5796         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5797 }
5798
5799 static unsigned long emulator_get_cached_segment_base(
5800         struct x86_emulate_ctxt *ctxt, int seg)
5801 {
5802         return get_segment_base(emul_to_vcpu(ctxt), seg);
5803 }
5804
5805 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5806                                  struct desc_struct *desc, u32 *base3,
5807                                  int seg)
5808 {
5809         struct kvm_segment var;
5810
5811         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5812         *selector = var.selector;
5813
5814         if (var.unusable) {
5815                 memset(desc, 0, sizeof(*desc));
5816                 if (base3)
5817                         *base3 = 0;
5818                 return false;
5819         }
5820
5821         if (var.g)
5822                 var.limit >>= 12;
5823         set_desc_limit(desc, var.limit);
5824         set_desc_base(desc, (unsigned long)var.base);
5825 #ifdef CONFIG_X86_64
5826         if (base3)
5827                 *base3 = var.base >> 32;
5828 #endif
5829         desc->type = var.type;
5830         desc->s = var.s;
5831         desc->dpl = var.dpl;
5832         desc->p = var.present;
5833         desc->avl = var.avl;
5834         desc->l = var.l;
5835         desc->d = var.db;
5836         desc->g = var.g;
5837
5838         return true;
5839 }
5840
5841 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5842                                  struct desc_struct *desc, u32 base3,
5843                                  int seg)
5844 {
5845         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5846         struct kvm_segment var;
5847
5848         var.selector = selector;
5849         var.base = get_desc_base(desc);
5850 #ifdef CONFIG_X86_64
5851         var.base |= ((u64)base3) << 32;
5852 #endif
5853         var.limit = get_desc_limit(desc);
5854         if (desc->g)
5855                 var.limit = (var.limit << 12) | 0xfff;
5856         var.type = desc->type;
5857         var.dpl = desc->dpl;
5858         var.db = desc->d;
5859         var.s = desc->s;
5860         var.l = desc->l;
5861         var.g = desc->g;
5862         var.avl = desc->avl;
5863         var.present = desc->p;
5864         var.unusable = !var.present;
5865         var.padding = 0;
5866
5867         kvm_set_segment(vcpu, &var, seg);
5868         return;
5869 }
5870
5871 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5872                             u32 msr_index, u64 *pdata)
5873 {
5874         struct msr_data msr;
5875         int r;
5876
5877         msr.index = msr_index;
5878         msr.host_initiated = false;
5879         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5880         if (r)
5881                 return r;
5882
5883         *pdata = msr.data;
5884         return 0;
5885 }
5886
5887 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5888                             u32 msr_index, u64 data)
5889 {
5890         struct msr_data msr;
5891
5892         msr.data = data;
5893         msr.index = msr_index;
5894         msr.host_initiated = false;
5895         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5896 }
5897
5898 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5899 {
5900         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5901
5902         return vcpu->arch.smbase;
5903 }
5904
5905 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5906 {
5907         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5908
5909         vcpu->arch.smbase = smbase;
5910 }
5911
5912 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5913                               u32 pmc)
5914 {
5915         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5916 }
5917
5918 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5919                              u32 pmc, u64 *pdata)
5920 {
5921         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5922 }
5923
5924 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5925 {
5926         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5927 }
5928
5929 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5930                               struct x86_instruction_info *info,
5931                               enum x86_intercept_stage stage)
5932 {
5933         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5934 }
5935
5936 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5937                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5938 {
5939         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5940 }
5941
5942 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5943 {
5944         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5945 }
5946
5947 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5948 {
5949         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5950 }
5951
5952 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5953 {
5954         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5955 }
5956
5957 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5958 {
5959         return emul_to_vcpu(ctxt)->arch.hflags;
5960 }
5961
5962 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5963 {
5964         emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
5965 }
5966
5967 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
5968                                   const char *smstate)
5969 {
5970         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
5971 }
5972
5973 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
5974 {
5975         kvm_smm_changed(emul_to_vcpu(ctxt));
5976 }
5977
5978 static const struct x86_emulate_ops emulate_ops = {
5979         .read_gpr            = emulator_read_gpr,
5980         .write_gpr           = emulator_write_gpr,
5981         .read_std            = emulator_read_std,
5982         .write_std           = emulator_write_std,
5983         .read_phys           = kvm_read_guest_phys_system,
5984         .fetch               = kvm_fetch_guest_virt,
5985         .read_emulated       = emulator_read_emulated,
5986         .write_emulated      = emulator_write_emulated,
5987         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5988         .invlpg              = emulator_invlpg,
5989         .pio_in_emulated     = emulator_pio_in_emulated,
5990         .pio_out_emulated    = emulator_pio_out_emulated,
5991         .get_segment         = emulator_get_segment,
5992         .set_segment         = emulator_set_segment,
5993         .get_cached_segment_base = emulator_get_cached_segment_base,
5994         .get_gdt             = emulator_get_gdt,
5995         .get_idt             = emulator_get_idt,
5996         .set_gdt             = emulator_set_gdt,
5997         .set_idt             = emulator_set_idt,
5998         .get_cr              = emulator_get_cr,
5999         .set_cr              = emulator_set_cr,
6000         .cpl                 = emulator_get_cpl,
6001         .get_dr              = emulator_get_dr,
6002         .set_dr              = emulator_set_dr,
6003         .get_smbase          = emulator_get_smbase,
6004         .set_smbase          = emulator_set_smbase,
6005         .set_msr             = emulator_set_msr,
6006         .get_msr             = emulator_get_msr,
6007         .check_pmc           = emulator_check_pmc,
6008         .read_pmc            = emulator_read_pmc,
6009         .halt                = emulator_halt,
6010         .wbinvd              = emulator_wbinvd,
6011         .fix_hypercall       = emulator_fix_hypercall,
6012         .intercept           = emulator_intercept,
6013         .get_cpuid           = emulator_get_cpuid,
6014         .set_nmi_mask        = emulator_set_nmi_mask,
6015         .get_hflags          = emulator_get_hflags,
6016         .set_hflags          = emulator_set_hflags,
6017         .pre_leave_smm       = emulator_pre_leave_smm,
6018         .post_leave_smm      = emulator_post_leave_smm,
6019 };
6020
6021 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6022 {
6023         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6024         /*
6025          * an sti; sti; sequence only disable interrupts for the first
6026          * instruction. So, if the last instruction, be it emulated or
6027          * not, left the system with the INT_STI flag enabled, it
6028          * means that the last instruction is an sti. We should not
6029          * leave the flag on in this case. The same goes for mov ss
6030          */
6031         if (int_shadow & mask)
6032                 mask = 0;
6033         if (unlikely(int_shadow || mask)) {
6034                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6035                 if (!mask)
6036                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6037         }
6038 }
6039
6040 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6041 {
6042         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6043         if (ctxt->exception.vector == PF_VECTOR)
6044                 return kvm_propagate_fault(vcpu, &ctxt->exception);
6045
6046         if (ctxt->exception.error_code_valid)
6047                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6048                                       ctxt->exception.error_code);
6049         else
6050                 kvm_queue_exception(vcpu, ctxt->exception.vector);
6051         return false;
6052 }
6053
6054 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6055 {
6056         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6057         int cs_db, cs_l;
6058
6059         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6060
6061         ctxt->eflags = kvm_get_rflags(vcpu);
6062         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6063
6064         ctxt->eip = kvm_rip_read(vcpu);
6065         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
6066                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
6067                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6068                      cs_db                              ? X86EMUL_MODE_PROT32 :
6069                                                           X86EMUL_MODE_PROT16;
6070         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6071         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6072         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6073
6074         init_decode_cache(ctxt);
6075         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6076 }
6077
6078 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6079 {
6080         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6081         int ret;
6082
6083         init_emulate_ctxt(vcpu);
6084
6085         ctxt->op_bytes = 2;
6086         ctxt->ad_bytes = 2;
6087         ctxt->_eip = ctxt->eip + inc_eip;
6088         ret = emulate_int_real(ctxt, irq);
6089
6090         if (ret != X86EMUL_CONTINUE)
6091                 return EMULATE_FAIL;
6092
6093         ctxt->eip = ctxt->_eip;
6094         kvm_rip_write(vcpu, ctxt->eip);
6095         kvm_set_rflags(vcpu, ctxt->eflags);
6096
6097         return EMULATE_DONE;
6098 }
6099 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6100
6101 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6102 {
6103         int r = EMULATE_DONE;
6104
6105         ++vcpu->stat.insn_emulation_fail;
6106         trace_kvm_emulate_insn_failed(vcpu);
6107
6108         if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
6109                 return EMULATE_FAIL;
6110
6111         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6112                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6113                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6114                 vcpu->run->internal.ndata = 0;
6115                 r = EMULATE_USER_EXIT;
6116         }
6117
6118         kvm_queue_exception(vcpu, UD_VECTOR);
6119
6120         return r;
6121 }
6122
6123 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6124                                   bool write_fault_to_shadow_pgtable,
6125                                   int emulation_type)
6126 {
6127         gpa_t gpa = cr2;
6128         kvm_pfn_t pfn;
6129
6130         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6131                 return false;
6132
6133         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6134                 return false;
6135
6136         if (!vcpu->arch.mmu->direct_map) {
6137                 /*
6138                  * Write permission should be allowed since only
6139                  * write access need to be emulated.
6140                  */
6141                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6142
6143                 /*
6144                  * If the mapping is invalid in guest, let cpu retry
6145                  * it to generate fault.
6146                  */
6147                 if (gpa == UNMAPPED_GVA)
6148                         return true;
6149         }
6150
6151         /*
6152          * Do not retry the unhandleable instruction if it faults on the
6153          * readonly host memory, otherwise it will goto a infinite loop:
6154          * retry instruction -> write #PF -> emulation fail -> retry
6155          * instruction -> ...
6156          */
6157         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6158
6159         /*
6160          * If the instruction failed on the error pfn, it can not be fixed,
6161          * report the error to userspace.
6162          */
6163         if (is_error_noslot_pfn(pfn))
6164                 return false;
6165
6166         kvm_release_pfn_clean(pfn);
6167
6168         /* The instructions are well-emulated on direct mmu. */
6169         if (vcpu->arch.mmu->direct_map) {
6170                 unsigned int indirect_shadow_pages;
6171
6172                 spin_lock(&vcpu->kvm->mmu_lock);
6173                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6174                 spin_unlock(&vcpu->kvm->mmu_lock);
6175
6176                 if (indirect_shadow_pages)
6177                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6178
6179                 return true;
6180         }
6181
6182         /*
6183          * if emulation was due to access to shadowed page table
6184          * and it failed try to unshadow page and re-enter the
6185          * guest to let CPU execute the instruction.
6186          */
6187         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6188
6189         /*
6190          * If the access faults on its page table, it can not
6191          * be fixed by unprotecting shadow page and it should
6192          * be reported to userspace.
6193          */
6194         return !write_fault_to_shadow_pgtable;
6195 }
6196
6197 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6198                               unsigned long cr2,  int emulation_type)
6199 {
6200         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6201         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6202
6203         last_retry_eip = vcpu->arch.last_retry_eip;
6204         last_retry_addr = vcpu->arch.last_retry_addr;
6205
6206         /*
6207          * If the emulation is caused by #PF and it is non-page_table
6208          * writing instruction, it means the VM-EXIT is caused by shadow
6209          * page protected, we can zap the shadow page and retry this
6210          * instruction directly.
6211          *
6212          * Note: if the guest uses a non-page-table modifying instruction
6213          * on the PDE that points to the instruction, then we will unmap
6214          * the instruction and go to an infinite loop. So, we cache the
6215          * last retried eip and the last fault address, if we meet the eip
6216          * and the address again, we can break out of the potential infinite
6217          * loop.
6218          */
6219         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6220
6221         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6222                 return false;
6223
6224         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6225                 return false;
6226
6227         if (x86_page_table_writing_insn(ctxt))
6228                 return false;
6229
6230         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6231                 return false;
6232
6233         vcpu->arch.last_retry_eip = ctxt->eip;
6234         vcpu->arch.last_retry_addr = cr2;
6235
6236         if (!vcpu->arch.mmu->direct_map)
6237                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6238
6239         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6240
6241         return true;
6242 }
6243
6244 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6245 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6246
6247 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6248 {
6249         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6250                 /* This is a good place to trace that we are exiting SMM.  */
6251                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6252
6253                 /* Process a latched INIT or SMI, if any.  */
6254                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6255         }
6256
6257         kvm_mmu_reset_context(vcpu);
6258 }
6259
6260 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6261                                 unsigned long *db)
6262 {
6263         u32 dr6 = 0;
6264         int i;
6265         u32 enable, rwlen;
6266
6267         enable = dr7;
6268         rwlen = dr7 >> 16;
6269         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6270                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6271                         dr6 |= (1 << i);
6272         return dr6;
6273 }
6274
6275 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6276 {
6277         struct kvm_run *kvm_run = vcpu->run;
6278
6279         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6280                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6281                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6282                 kvm_run->debug.arch.exception = DB_VECTOR;
6283                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6284                 *r = EMULATE_USER_EXIT;
6285         } else {
6286                 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6287         }
6288 }
6289
6290 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6291 {
6292         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6293         int r = EMULATE_DONE;
6294
6295         kvm_x86_ops->skip_emulated_instruction(vcpu);
6296
6297         /*
6298          * rflags is the old, "raw" value of the flags.  The new value has
6299          * not been saved yet.
6300          *
6301          * This is correct even for TF set by the guest, because "the
6302          * processor will not generate this exception after the instruction
6303          * that sets the TF flag".
6304          */
6305         if (unlikely(rflags & X86_EFLAGS_TF))
6306                 kvm_vcpu_do_singlestep(vcpu, &r);
6307         return r == EMULATE_DONE;
6308 }
6309 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6310
6311 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6312 {
6313         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6314             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6315                 struct kvm_run *kvm_run = vcpu->run;
6316                 unsigned long eip = kvm_get_linear_rip(vcpu);
6317                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6318                                            vcpu->arch.guest_debug_dr7,
6319                                            vcpu->arch.eff_db);
6320
6321                 if (dr6 != 0) {
6322                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6323                         kvm_run->debug.arch.pc = eip;
6324                         kvm_run->debug.arch.exception = DB_VECTOR;
6325                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
6326                         *r = EMULATE_USER_EXIT;
6327                         return true;
6328                 }
6329         }
6330
6331         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6332             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6333                 unsigned long eip = kvm_get_linear_rip(vcpu);
6334                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6335                                            vcpu->arch.dr7,
6336                                            vcpu->arch.db);
6337
6338                 if (dr6 != 0) {
6339                         vcpu->arch.dr6 &= ~15;
6340                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
6341                         kvm_queue_exception(vcpu, DB_VECTOR);
6342                         *r = EMULATE_DONE;
6343                         return true;
6344                 }
6345         }
6346
6347         return false;
6348 }
6349
6350 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6351 {
6352         switch (ctxt->opcode_len) {
6353         case 1:
6354                 switch (ctxt->b) {
6355                 case 0xe4:      /* IN */
6356                 case 0xe5:
6357                 case 0xec:
6358                 case 0xed:
6359                 case 0xe6:      /* OUT */
6360                 case 0xe7:
6361                 case 0xee:
6362                 case 0xef:
6363                 case 0x6c:      /* INS */
6364                 case 0x6d:
6365                 case 0x6e:      /* OUTS */
6366                 case 0x6f:
6367                         return true;
6368                 }
6369                 break;
6370         case 2:
6371                 switch (ctxt->b) {
6372                 case 0x33:      /* RDPMC */
6373                         return true;
6374                 }
6375                 break;
6376         }
6377
6378         return false;
6379 }
6380
6381 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6382                             unsigned long cr2,
6383                             int emulation_type,
6384                             void *insn,
6385                             int insn_len)
6386 {
6387         int r;
6388         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6389         bool writeback = true;
6390         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6391
6392         vcpu->arch.l1tf_flush_l1d = true;
6393
6394         /*
6395          * Clear write_fault_to_shadow_pgtable here to ensure it is
6396          * never reused.
6397          */
6398         vcpu->arch.write_fault_to_shadow_pgtable = false;
6399         kvm_clear_exception_queue(vcpu);
6400
6401         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6402                 init_emulate_ctxt(vcpu);
6403
6404                 /*
6405                  * We will reenter on the same instruction since
6406                  * we do not set complete_userspace_io.  This does not
6407                  * handle watchpoints yet, those would be handled in
6408                  * the emulate_ops.
6409                  */
6410                 if (!(emulation_type & EMULTYPE_SKIP) &&
6411                     kvm_vcpu_check_breakpoint(vcpu, &r))
6412                         return r;
6413
6414                 ctxt->interruptibility = 0;
6415                 ctxt->have_exception = false;
6416                 ctxt->exception.vector = -1;
6417                 ctxt->perm_ok = false;
6418
6419                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6420
6421                 r = x86_decode_insn(ctxt, insn, insn_len);
6422
6423                 trace_kvm_emulate_insn_start(vcpu);
6424                 ++vcpu->stat.insn_emulation;
6425                 if (r != EMULATION_OK)  {
6426                         if (emulation_type & EMULTYPE_TRAP_UD)
6427                                 return EMULATE_FAIL;
6428                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6429                                                 emulation_type))
6430                                 return EMULATE_DONE;
6431                         if (ctxt->have_exception && inject_emulated_exception(vcpu))
6432                                 return EMULATE_DONE;
6433                         if (emulation_type & EMULTYPE_SKIP)
6434                                 return EMULATE_FAIL;
6435                         return handle_emulation_failure(vcpu, emulation_type);
6436                 }
6437         }
6438
6439         if ((emulation_type & EMULTYPE_VMWARE) &&
6440             !is_vmware_backdoor_opcode(ctxt))
6441                 return EMULATE_FAIL;
6442
6443         if (emulation_type & EMULTYPE_SKIP) {
6444                 kvm_rip_write(vcpu, ctxt->_eip);
6445                 if (ctxt->eflags & X86_EFLAGS_RF)
6446                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6447                 return EMULATE_DONE;
6448         }
6449
6450         if (retry_instruction(ctxt, cr2, emulation_type))
6451                 return EMULATE_DONE;
6452
6453         /* this is needed for vmware backdoor interface to work since it
6454            changes registers values  during IO operation */
6455         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6456                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6457                 emulator_invalidate_register_cache(ctxt);
6458         }
6459
6460 restart:
6461         /* Save the faulting GPA (cr2) in the address field */
6462         ctxt->exception.address = cr2;
6463
6464         r = x86_emulate_insn(ctxt);
6465
6466         if (r == EMULATION_INTERCEPTED)
6467                 return EMULATE_DONE;
6468
6469         if (r == EMULATION_FAILED) {
6470                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6471                                         emulation_type))
6472                         return EMULATE_DONE;
6473
6474                 return handle_emulation_failure(vcpu, emulation_type);
6475         }
6476
6477         if (ctxt->have_exception) {
6478                 r = EMULATE_DONE;
6479                 if (inject_emulated_exception(vcpu))
6480                         return r;
6481         } else if (vcpu->arch.pio.count) {
6482                 if (!vcpu->arch.pio.in) {
6483                         /* FIXME: return into emulator if single-stepping.  */
6484                         vcpu->arch.pio.count = 0;
6485                 } else {
6486                         writeback = false;
6487                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6488                 }
6489                 r = EMULATE_USER_EXIT;
6490         } else if (vcpu->mmio_needed) {
6491                 if (!vcpu->mmio_is_write)
6492                         writeback = false;
6493                 r = EMULATE_USER_EXIT;
6494                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6495         } else if (r == EMULATION_RESTART)
6496                 goto restart;
6497         else
6498                 r = EMULATE_DONE;
6499
6500         if (writeback) {
6501                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6502                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6503                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6504                 kvm_rip_write(vcpu, ctxt->eip);
6505                 if (r == EMULATE_DONE && ctxt->tf)
6506                         kvm_vcpu_do_singlestep(vcpu, &r);
6507                 if (!ctxt->have_exception ||
6508                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6509                         __kvm_set_rflags(vcpu, ctxt->eflags);
6510
6511                 /*
6512                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6513                  * do nothing, and it will be requested again as soon as
6514                  * the shadow expires.  But we still need to check here,
6515                  * because POPF has no interrupt shadow.
6516                  */
6517                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6518                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6519         } else
6520                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6521
6522         return r;
6523 }
6524
6525 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6526 {
6527         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6528 }
6529 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6530
6531 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6532                                         void *insn, int insn_len)
6533 {
6534         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6535 }
6536 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6537
6538 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6539 {
6540         vcpu->arch.pio.count = 0;
6541
6542         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6543                 return 1;
6544
6545         return kvm_skip_emulated_instruction(vcpu);
6546 }
6547
6548 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6549                             unsigned short port)
6550 {
6551         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6552         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6553                                             size, port, &val, 1);
6554
6555         if (!ret) {
6556                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6557                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6558         }
6559         return ret;
6560 }
6561
6562 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6563 {
6564         unsigned long val;
6565
6566         /* We should only ever be called with arch.pio.count equal to 1 */
6567         BUG_ON(vcpu->arch.pio.count != 1);
6568
6569         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6570                 vcpu->arch.pio.count = 0;
6571                 return 1;
6572         }
6573
6574         /* For size less than 4 we merge, else we zero extend */
6575         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6576                                         : 0;
6577
6578         /*
6579          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6580          * the copy and tracing
6581          */
6582         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6583                                  vcpu->arch.pio.port, &val, 1);
6584         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6585
6586         return kvm_skip_emulated_instruction(vcpu);
6587 }
6588
6589 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6590                            unsigned short port)
6591 {
6592         unsigned long val;
6593         int ret;
6594
6595         /* For size less than 4 we merge, else we zero extend */
6596         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6597
6598         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6599                                        &val, 1);
6600         if (ret) {
6601                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6602                 return ret;
6603         }
6604
6605         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6606         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6607
6608         return 0;
6609 }
6610
6611 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6612 {
6613         int ret;
6614
6615         if (in)
6616                 ret = kvm_fast_pio_in(vcpu, size, port);
6617         else
6618                 ret = kvm_fast_pio_out(vcpu, size, port);
6619         return ret && kvm_skip_emulated_instruction(vcpu);
6620 }
6621 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6622
6623 static int kvmclock_cpu_down_prep(unsigned int cpu)
6624 {
6625         __this_cpu_write(cpu_tsc_khz, 0);
6626         return 0;
6627 }
6628
6629 static void tsc_khz_changed(void *data)
6630 {
6631         struct cpufreq_freqs *freq = data;
6632         unsigned long khz = 0;
6633
6634         if (data)
6635                 khz = freq->new;
6636         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6637                 khz = cpufreq_quick_get(raw_smp_processor_id());
6638         if (!khz)
6639                 khz = tsc_khz;
6640         __this_cpu_write(cpu_tsc_khz, khz);
6641 }
6642
6643 #ifdef CONFIG_X86_64
6644 static void kvm_hyperv_tsc_notifier(void)
6645 {
6646         struct kvm *kvm;
6647         struct kvm_vcpu *vcpu;
6648         int cpu;
6649
6650         spin_lock(&kvm_lock);
6651         list_for_each_entry(kvm, &vm_list, vm_list)
6652                 kvm_make_mclock_inprogress_request(kvm);
6653
6654         hyperv_stop_tsc_emulation();
6655
6656         /* TSC frequency always matches when on Hyper-V */
6657         for_each_present_cpu(cpu)
6658                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6659         kvm_max_guest_tsc_khz = tsc_khz;
6660
6661         list_for_each_entry(kvm, &vm_list, vm_list) {
6662                 struct kvm_arch *ka = &kvm->arch;
6663
6664                 spin_lock(&ka->pvclock_gtod_sync_lock);
6665
6666                 pvclock_update_vm_gtod_copy(kvm);
6667
6668                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6669                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6670
6671                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6672                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6673
6674                 spin_unlock(&ka->pvclock_gtod_sync_lock);
6675         }
6676         spin_unlock(&kvm_lock);
6677 }
6678 #endif
6679
6680 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6681                                      void *data)
6682 {
6683         struct cpufreq_freqs *freq = data;
6684         struct kvm *kvm;
6685         struct kvm_vcpu *vcpu;
6686         int i, send_ipi = 0;
6687
6688         /*
6689          * We allow guests to temporarily run on slowing clocks,
6690          * provided we notify them after, or to run on accelerating
6691          * clocks, provided we notify them before.  Thus time never
6692          * goes backwards.
6693          *
6694          * However, we have a problem.  We can't atomically update
6695          * the frequency of a given CPU from this function; it is
6696          * merely a notifier, which can be called from any CPU.
6697          * Changing the TSC frequency at arbitrary points in time
6698          * requires a recomputation of local variables related to
6699          * the TSC for each VCPU.  We must flag these local variables
6700          * to be updated and be sure the update takes place with the
6701          * new frequency before any guests proceed.
6702          *
6703          * Unfortunately, the combination of hotplug CPU and frequency
6704          * change creates an intractable locking scenario; the order
6705          * of when these callouts happen is undefined with respect to
6706          * CPU hotplug, and they can race with each other.  As such,
6707          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6708          * undefined; you can actually have a CPU frequency change take
6709          * place in between the computation of X and the setting of the
6710          * variable.  To protect against this problem, all updates of
6711          * the per_cpu tsc_khz variable are done in an interrupt
6712          * protected IPI, and all callers wishing to update the value
6713          * must wait for a synchronous IPI to complete (which is trivial
6714          * if the caller is on the CPU already).  This establishes the
6715          * necessary total order on variable updates.
6716          *
6717          * Note that because a guest time update may take place
6718          * anytime after the setting of the VCPU's request bit, the
6719          * correct TSC value must be set before the request.  However,
6720          * to ensure the update actually makes it to any guest which
6721          * starts running in hardware virtualization between the set
6722          * and the acquisition of the spinlock, we must also ping the
6723          * CPU after setting the request bit.
6724          *
6725          */
6726
6727         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6728                 return 0;
6729         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6730                 return 0;
6731
6732         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6733
6734         spin_lock(&kvm_lock);
6735         list_for_each_entry(kvm, &vm_list, vm_list) {
6736                 kvm_for_each_vcpu(i, vcpu, kvm) {
6737                         if (vcpu->cpu != freq->cpu)
6738                                 continue;
6739                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6740                         if (vcpu->cpu != smp_processor_id())
6741                                 send_ipi = 1;
6742                 }
6743         }
6744         spin_unlock(&kvm_lock);
6745
6746         if (freq->old < freq->new && send_ipi) {
6747                 /*
6748                  * We upscale the frequency.  Must make the guest
6749                  * doesn't see old kvmclock values while running with
6750                  * the new frequency, otherwise we risk the guest sees
6751                  * time go backwards.
6752                  *
6753                  * In case we update the frequency for another cpu
6754                  * (which might be in guest context) send an interrupt
6755                  * to kick the cpu out of guest context.  Next time
6756                  * guest context is entered kvmclock will be updated,
6757                  * so the guest will not see stale values.
6758                  */
6759                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6760         }
6761         return 0;
6762 }
6763
6764 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6765         .notifier_call  = kvmclock_cpufreq_notifier
6766 };
6767
6768 static int kvmclock_cpu_online(unsigned int cpu)
6769 {
6770         tsc_khz_changed(NULL);
6771         return 0;
6772 }
6773
6774 static void kvm_timer_init(void)
6775 {
6776         max_tsc_khz = tsc_khz;
6777
6778         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6779 #ifdef CONFIG_CPU_FREQ
6780                 struct cpufreq_policy policy;
6781                 int cpu;
6782
6783                 memset(&policy, 0, sizeof(policy));
6784                 cpu = get_cpu();
6785                 cpufreq_get_policy(&policy, cpu);
6786                 if (policy.cpuinfo.max_freq)
6787                         max_tsc_khz = policy.cpuinfo.max_freq;
6788                 put_cpu();
6789 #endif
6790                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6791                                           CPUFREQ_TRANSITION_NOTIFIER);
6792         }
6793         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6794
6795         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6796                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
6797 }
6798
6799 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6800 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6801
6802 int kvm_is_in_guest(void)
6803 {
6804         return __this_cpu_read(current_vcpu) != NULL;
6805 }
6806
6807 static int kvm_is_user_mode(void)
6808 {
6809         int user_mode = 3;
6810
6811         if (__this_cpu_read(current_vcpu))
6812                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6813
6814         return user_mode != 0;
6815 }
6816
6817 static unsigned long kvm_get_guest_ip(void)
6818 {
6819         unsigned long ip = 0;
6820
6821         if (__this_cpu_read(current_vcpu))
6822                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6823
6824         return ip;
6825 }
6826
6827 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6828         .is_in_guest            = kvm_is_in_guest,
6829         .is_user_mode           = kvm_is_user_mode,
6830         .get_guest_ip           = kvm_get_guest_ip,
6831 };
6832
6833 static void kvm_set_mmio_spte_mask(void)
6834 {
6835         u64 mask;
6836         int maxphyaddr = boot_cpu_data.x86_phys_bits;
6837
6838         /*
6839          * Set the reserved bits and the present bit of an paging-structure
6840          * entry to generate page fault with PFER.RSV = 1.
6841          */
6842
6843         /*
6844          * Mask the uppermost physical address bit, which would be reserved as
6845          * long as the supported physical address width is less than 52.
6846          */
6847         mask = 1ull << 51;
6848
6849         /* Set the present bit. */
6850         mask |= 1ull;
6851
6852         /*
6853          * If reserved bit is not supported, clear the present bit to disable
6854          * mmio page fault.
6855          */
6856         if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52)
6857                 mask &= ~1ull;
6858
6859         kvm_mmu_set_mmio_spte_mask(mask, mask);
6860 }
6861
6862 #ifdef CONFIG_X86_64
6863 static void pvclock_gtod_update_fn(struct work_struct *work)
6864 {
6865         struct kvm *kvm;
6866
6867         struct kvm_vcpu *vcpu;
6868         int i;
6869
6870         spin_lock(&kvm_lock);
6871         list_for_each_entry(kvm, &vm_list, vm_list)
6872                 kvm_for_each_vcpu(i, vcpu, kvm)
6873                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6874         atomic_set(&kvm_guest_has_master_clock, 0);
6875         spin_unlock(&kvm_lock);
6876 }
6877
6878 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6879
6880 /*
6881  * Notification about pvclock gtod data update.
6882  */
6883 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6884                                void *priv)
6885 {
6886         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6887         struct timekeeper *tk = priv;
6888
6889         update_pvclock_gtod(tk);
6890
6891         /* disable master clock if host does not trust, or does not
6892          * use, TSC based clocksource.
6893          */
6894         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6895             atomic_read(&kvm_guest_has_master_clock) != 0)
6896                 queue_work(system_long_wq, &pvclock_gtod_work);
6897
6898         return 0;
6899 }
6900
6901 static struct notifier_block pvclock_gtod_notifier = {
6902         .notifier_call = pvclock_gtod_notify,
6903 };
6904 #endif
6905
6906 int kvm_arch_init(void *opaque)
6907 {
6908         int r;
6909         struct kvm_x86_ops *ops = opaque;
6910
6911         if (kvm_x86_ops) {
6912                 printk(KERN_ERR "kvm: already loaded the other module\n");
6913                 r = -EEXIST;
6914                 goto out;
6915         }
6916
6917         if (!ops->cpu_has_kvm_support()) {
6918                 printk(KERN_ERR "kvm: no hardware support\n");
6919                 r = -EOPNOTSUPP;
6920                 goto out;
6921         }
6922         if (ops->disabled_by_bios()) {
6923                 printk(KERN_ERR "kvm: disabled by bios\n");
6924                 r = -EOPNOTSUPP;
6925                 goto out;
6926         }
6927
6928         /*
6929          * KVM explicitly assumes that the guest has an FPU and
6930          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
6931          * vCPU's FPU state as a fxregs_state struct.
6932          */
6933         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
6934                 printk(KERN_ERR "kvm: inadequate fpu\n");
6935                 r = -EOPNOTSUPP;
6936                 goto out;
6937         }
6938
6939         r = -ENOMEM;
6940         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
6941                                           __alignof__(struct fpu), SLAB_ACCOUNT,
6942                                           NULL);
6943         if (!x86_fpu_cache) {
6944                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
6945                 goto out;
6946         }
6947
6948         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6949         if (!shared_msrs) {
6950                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6951                 goto out_free_x86_fpu_cache;
6952         }
6953
6954         r = kvm_mmu_module_init();
6955         if (r)
6956                 goto out_free_percpu;
6957
6958         kvm_set_mmio_spte_mask();
6959
6960         kvm_x86_ops = ops;
6961
6962         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6963                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6964                         PT_PRESENT_MASK, 0, sme_me_mask);
6965         kvm_timer_init();
6966
6967         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6968
6969         if (boot_cpu_has(X86_FEATURE_XSAVE))
6970                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6971
6972         kvm_lapic_init();
6973 #ifdef CONFIG_X86_64
6974         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6975
6976         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6977                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6978 #endif
6979
6980         return 0;
6981
6982 out_free_percpu:
6983         free_percpu(shared_msrs);
6984 out_free_x86_fpu_cache:
6985         kmem_cache_destroy(x86_fpu_cache);
6986 out:
6987         return r;
6988 }
6989
6990 void kvm_arch_exit(void)
6991 {
6992 #ifdef CONFIG_X86_64
6993         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6994                 clear_hv_tscchange_cb();
6995 #endif
6996         kvm_lapic_exit();
6997         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6998
6999         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7000                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7001                                             CPUFREQ_TRANSITION_NOTIFIER);
7002         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7003 #ifdef CONFIG_X86_64
7004         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7005 #endif
7006         kvm_x86_ops = NULL;
7007         kvm_mmu_module_exit();
7008         free_percpu(shared_msrs);
7009         kmem_cache_destroy(x86_fpu_cache);
7010 }
7011
7012 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7013 {
7014         ++vcpu->stat.halt_exits;
7015         if (lapic_in_kernel(vcpu)) {
7016                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7017                 return 1;
7018         } else {
7019                 vcpu->run->exit_reason = KVM_EXIT_HLT;
7020                 return 0;
7021         }
7022 }
7023 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7024
7025 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7026 {
7027         int ret = kvm_skip_emulated_instruction(vcpu);
7028         /*
7029          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7030          * KVM_EXIT_DEBUG here.
7031          */
7032         return kvm_vcpu_halt(vcpu) && ret;
7033 }
7034 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7035
7036 #ifdef CONFIG_X86_64
7037 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7038                                 unsigned long clock_type)
7039 {
7040         struct kvm_clock_pairing clock_pairing;
7041         struct timespec64 ts;
7042         u64 cycle;
7043         int ret;
7044
7045         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7046                 return -KVM_EOPNOTSUPP;
7047
7048         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7049                 return -KVM_EOPNOTSUPP;
7050
7051         clock_pairing.sec = ts.tv_sec;
7052         clock_pairing.nsec = ts.tv_nsec;
7053         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7054         clock_pairing.flags = 0;
7055         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7056
7057         ret = 0;
7058         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7059                             sizeof(struct kvm_clock_pairing)))
7060                 ret = -KVM_EFAULT;
7061
7062         return ret;
7063 }
7064 #endif
7065
7066 /*
7067  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7068  *
7069  * @apicid - apicid of vcpu to be kicked.
7070  */
7071 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7072 {
7073         struct kvm_lapic_irq lapic_irq;
7074
7075         lapic_irq.shorthand = 0;
7076         lapic_irq.dest_mode = 0;
7077         lapic_irq.level = 0;
7078         lapic_irq.dest_id = apicid;
7079         lapic_irq.msi_redir_hint = false;
7080
7081         lapic_irq.delivery_mode = APIC_DM_REMRD;
7082         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7083 }
7084
7085 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7086 {
7087         if (!lapic_in_kernel(vcpu)) {
7088                 WARN_ON_ONCE(vcpu->arch.apicv_active);
7089                 return;
7090         }
7091         if (!vcpu->arch.apicv_active)
7092                 return;
7093
7094         vcpu->arch.apicv_active = false;
7095         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7096 }
7097
7098 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7099 {
7100         unsigned long nr, a0, a1, a2, a3, ret;
7101         int op_64_bit;
7102
7103         if (kvm_hv_hypercall_enabled(vcpu->kvm))
7104                 return kvm_hv_hypercall(vcpu);
7105
7106         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
7107         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
7108         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
7109         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
7110         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
7111
7112         trace_kvm_hypercall(nr, a0, a1, a2, a3);
7113
7114         op_64_bit = is_64_bit_mode(vcpu);
7115         if (!op_64_bit) {
7116                 nr &= 0xFFFFFFFF;
7117                 a0 &= 0xFFFFFFFF;
7118                 a1 &= 0xFFFFFFFF;
7119                 a2 &= 0xFFFFFFFF;
7120                 a3 &= 0xFFFFFFFF;
7121         }
7122
7123         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7124                 ret = -KVM_EPERM;
7125                 goto out;
7126         }
7127
7128         switch (nr) {
7129         case KVM_HC_VAPIC_POLL_IRQ:
7130                 ret = 0;
7131                 break;
7132         case KVM_HC_KICK_CPU:
7133                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7134                 ret = 0;
7135                 break;
7136 #ifdef CONFIG_X86_64
7137         case KVM_HC_CLOCK_PAIRING:
7138                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7139                 break;
7140 #endif
7141         case KVM_HC_SEND_IPI:
7142                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7143                 break;
7144         default:
7145                 ret = -KVM_ENOSYS;
7146                 break;
7147         }
7148 out:
7149         if (!op_64_bit)
7150                 ret = (u32)ret;
7151         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
7152
7153         ++vcpu->stat.hypercalls;
7154         return kvm_skip_emulated_instruction(vcpu);
7155 }
7156 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7157
7158 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7159 {
7160         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7161         char instruction[3];
7162         unsigned long rip = kvm_rip_read(vcpu);
7163
7164         kvm_x86_ops->patch_hypercall(vcpu, instruction);
7165
7166         return emulator_write_emulated(ctxt, rip, instruction, 3,
7167                 &ctxt->exception);
7168 }
7169
7170 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7171 {
7172         return vcpu->run->request_interrupt_window &&
7173                 likely(!pic_in_kernel(vcpu->kvm));
7174 }
7175
7176 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7177 {
7178         struct kvm_run *kvm_run = vcpu->run;
7179
7180         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7181         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7182         kvm_run->cr8 = kvm_get_cr8(vcpu);
7183         kvm_run->apic_base = kvm_get_apic_base(vcpu);
7184         kvm_run->ready_for_interrupt_injection =
7185                 pic_in_kernel(vcpu->kvm) ||
7186                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7187 }
7188
7189 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7190 {
7191         int max_irr, tpr;
7192
7193         if (!kvm_x86_ops->update_cr8_intercept)
7194                 return;
7195
7196         if (!lapic_in_kernel(vcpu))
7197                 return;
7198
7199         if (vcpu->arch.apicv_active)
7200                 return;
7201
7202         if (!vcpu->arch.apic->vapic_addr)
7203                 max_irr = kvm_lapic_find_highest_irr(vcpu);
7204         else
7205                 max_irr = -1;
7206
7207         if (max_irr != -1)
7208                 max_irr >>= 4;
7209
7210         tpr = kvm_lapic_get_cr8(vcpu);
7211
7212         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7213 }
7214
7215 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7216 {
7217         int r;
7218
7219         /* try to reinject previous events if any */
7220
7221         if (vcpu->arch.exception.injected)
7222                 kvm_x86_ops->queue_exception(vcpu);
7223         /*
7224          * Do not inject an NMI or interrupt if there is a pending
7225          * exception.  Exceptions and interrupts are recognized at
7226          * instruction boundaries, i.e. the start of an instruction.
7227          * Trap-like exceptions, e.g. #DB, have higher priority than
7228          * NMIs and interrupts, i.e. traps are recognized before an
7229          * NMI/interrupt that's pending on the same instruction.
7230          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7231          * priority, but are only generated (pended) during instruction
7232          * execution, i.e. a pending fault-like exception means the
7233          * fault occurred on the *previous* instruction and must be
7234          * serviced prior to recognizing any new events in order to
7235          * fully complete the previous instruction.
7236          */
7237         else if (!vcpu->arch.exception.pending) {
7238                 if (vcpu->arch.nmi_injected)
7239                         kvm_x86_ops->set_nmi(vcpu);
7240                 else if (vcpu->arch.interrupt.injected)
7241                         kvm_x86_ops->set_irq(vcpu);
7242         }
7243
7244         /*
7245          * Call check_nested_events() even if we reinjected a previous event
7246          * in order for caller to determine if it should require immediate-exit
7247          * from L2 to L1 due to pending L1 events which require exit
7248          * from L2 to L1.
7249          */
7250         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7251                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7252                 if (r != 0)
7253                         return r;
7254         }
7255
7256         /* try to inject new event if pending */
7257         if (vcpu->arch.exception.pending) {
7258                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7259                                         vcpu->arch.exception.has_error_code,
7260                                         vcpu->arch.exception.error_code);
7261
7262                 WARN_ON_ONCE(vcpu->arch.exception.injected);
7263                 vcpu->arch.exception.pending = false;
7264                 vcpu->arch.exception.injected = true;
7265
7266                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7267                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7268                                              X86_EFLAGS_RF);
7269
7270                 if (vcpu->arch.exception.nr == DB_VECTOR) {
7271                         /*
7272                          * This code assumes that nSVM doesn't use
7273                          * check_nested_events(). If it does, the
7274                          * DR6/DR7 changes should happen before L1
7275                          * gets a #VMEXIT for an intercepted #DB in
7276                          * L2.  (Under VMX, on the other hand, the
7277                          * DR6/DR7 changes should not happen in the
7278                          * event of a VM-exit to L1 for an intercepted
7279                          * #DB in L2.)
7280                          */
7281                         kvm_deliver_exception_payload(vcpu);
7282                         if (vcpu->arch.dr7 & DR7_GD) {
7283                                 vcpu->arch.dr7 &= ~DR7_GD;
7284                                 kvm_update_dr7(vcpu);
7285                         }
7286                 }
7287
7288                 kvm_x86_ops->queue_exception(vcpu);
7289         }
7290
7291         /* Don't consider new event if we re-injected an event */
7292         if (kvm_event_needs_reinjection(vcpu))
7293                 return 0;
7294
7295         if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7296             kvm_x86_ops->smi_allowed(vcpu)) {
7297                 vcpu->arch.smi_pending = false;
7298                 ++vcpu->arch.smi_count;
7299                 enter_smm(vcpu);
7300         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7301                 --vcpu->arch.nmi_pending;
7302                 vcpu->arch.nmi_injected = true;
7303                 kvm_x86_ops->set_nmi(vcpu);
7304         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7305                 /*
7306                  * Because interrupts can be injected asynchronously, we are
7307                  * calling check_nested_events again here to avoid a race condition.
7308                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7309                  * proposal and current concerns.  Perhaps we should be setting
7310                  * KVM_REQ_EVENT only on certain events and not unconditionally?
7311                  */
7312                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7313                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7314                         if (r != 0)
7315                                 return r;
7316                 }
7317                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7318                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7319                                             false);
7320                         kvm_x86_ops->set_irq(vcpu);
7321                 }
7322         }
7323
7324         return 0;
7325 }
7326
7327 static void process_nmi(struct kvm_vcpu *vcpu)
7328 {
7329         unsigned limit = 2;
7330
7331         /*
7332          * x86 is limited to one NMI running, and one NMI pending after it.
7333          * If an NMI is already in progress, limit further NMIs to just one.
7334          * Otherwise, allow two (and we'll inject the first one immediately).
7335          */
7336         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7337                 limit = 1;
7338
7339         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7340         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7341         kvm_make_request(KVM_REQ_EVENT, vcpu);
7342 }
7343
7344 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7345 {
7346         u32 flags = 0;
7347         flags |= seg->g       << 23;
7348         flags |= seg->db      << 22;
7349         flags |= seg->l       << 21;
7350         flags |= seg->avl     << 20;
7351         flags |= seg->present << 15;
7352         flags |= seg->dpl     << 13;
7353         flags |= seg->s       << 12;
7354         flags |= seg->type    << 8;
7355         return flags;
7356 }
7357
7358 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7359 {
7360         struct kvm_segment seg;
7361         int offset;
7362
7363         kvm_get_segment(vcpu, &seg, n);
7364         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7365
7366         if (n < 3)
7367                 offset = 0x7f84 + n * 12;
7368         else
7369                 offset = 0x7f2c + (n - 3) * 12;
7370
7371         put_smstate(u32, buf, offset + 8, seg.base);
7372         put_smstate(u32, buf, offset + 4, seg.limit);
7373         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7374 }
7375
7376 #ifdef CONFIG_X86_64
7377 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7378 {
7379         struct kvm_segment seg;
7380         int offset;
7381         u16 flags;
7382
7383         kvm_get_segment(vcpu, &seg, n);
7384         offset = 0x7e00 + n * 16;
7385
7386         flags = enter_smm_get_segment_flags(&seg) >> 8;
7387         put_smstate(u16, buf, offset, seg.selector);
7388         put_smstate(u16, buf, offset + 2, flags);
7389         put_smstate(u32, buf, offset + 4, seg.limit);
7390         put_smstate(u64, buf, offset + 8, seg.base);
7391 }
7392 #endif
7393
7394 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7395 {
7396         struct desc_ptr dt;
7397         struct kvm_segment seg;
7398         unsigned long val;
7399         int i;
7400
7401         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7402         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7403         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7404         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7405
7406         for (i = 0; i < 8; i++)
7407                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7408
7409         kvm_get_dr(vcpu, 6, &val);
7410         put_smstate(u32, buf, 0x7fcc, (u32)val);
7411         kvm_get_dr(vcpu, 7, &val);
7412         put_smstate(u32, buf, 0x7fc8, (u32)val);
7413
7414         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7415         put_smstate(u32, buf, 0x7fc4, seg.selector);
7416         put_smstate(u32, buf, 0x7f64, seg.base);
7417         put_smstate(u32, buf, 0x7f60, seg.limit);
7418         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7419
7420         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7421         put_smstate(u32, buf, 0x7fc0, seg.selector);
7422         put_smstate(u32, buf, 0x7f80, seg.base);
7423         put_smstate(u32, buf, 0x7f7c, seg.limit);
7424         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7425
7426         kvm_x86_ops->get_gdt(vcpu, &dt);
7427         put_smstate(u32, buf, 0x7f74, dt.address);
7428         put_smstate(u32, buf, 0x7f70, dt.size);
7429
7430         kvm_x86_ops->get_idt(vcpu, &dt);
7431         put_smstate(u32, buf, 0x7f58, dt.address);
7432         put_smstate(u32, buf, 0x7f54, dt.size);
7433
7434         for (i = 0; i < 6; i++)
7435                 enter_smm_save_seg_32(vcpu, buf, i);
7436
7437         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7438
7439         /* revision id */
7440         put_smstate(u32, buf, 0x7efc, 0x00020000);
7441         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7442 }
7443
7444 #ifdef CONFIG_X86_64
7445 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7446 {
7447         struct desc_ptr dt;
7448         struct kvm_segment seg;
7449         unsigned long val;
7450         int i;
7451
7452         for (i = 0; i < 16; i++)
7453                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7454
7455         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7456         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7457
7458         kvm_get_dr(vcpu, 6, &val);
7459         put_smstate(u64, buf, 0x7f68, val);
7460         kvm_get_dr(vcpu, 7, &val);
7461         put_smstate(u64, buf, 0x7f60, val);
7462
7463         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7464         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7465         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7466
7467         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7468
7469         /* revision id */
7470         put_smstate(u32, buf, 0x7efc, 0x00020064);
7471
7472         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7473
7474         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7475         put_smstate(u16, buf, 0x7e90, seg.selector);
7476         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7477         put_smstate(u32, buf, 0x7e94, seg.limit);
7478         put_smstate(u64, buf, 0x7e98, seg.base);
7479
7480         kvm_x86_ops->get_idt(vcpu, &dt);
7481         put_smstate(u32, buf, 0x7e84, dt.size);
7482         put_smstate(u64, buf, 0x7e88, dt.address);
7483
7484         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7485         put_smstate(u16, buf, 0x7e70, seg.selector);
7486         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7487         put_smstate(u32, buf, 0x7e74, seg.limit);
7488         put_smstate(u64, buf, 0x7e78, seg.base);
7489
7490         kvm_x86_ops->get_gdt(vcpu, &dt);
7491         put_smstate(u32, buf, 0x7e64, dt.size);
7492         put_smstate(u64, buf, 0x7e68, dt.address);
7493
7494         for (i = 0; i < 6; i++)
7495                 enter_smm_save_seg_64(vcpu, buf, i);
7496 }
7497 #endif
7498
7499 static void enter_smm(struct kvm_vcpu *vcpu)
7500 {
7501         struct kvm_segment cs, ds;
7502         struct desc_ptr dt;
7503         char buf[512];
7504         u32 cr0;
7505
7506         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7507         memset(buf, 0, 512);
7508 #ifdef CONFIG_X86_64
7509         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7510                 enter_smm_save_state_64(vcpu, buf);
7511         else
7512 #endif
7513                 enter_smm_save_state_32(vcpu, buf);
7514
7515         /*
7516          * Give pre_enter_smm() a chance to make ISA-specific changes to the
7517          * vCPU state (e.g. leave guest mode) after we've saved the state into
7518          * the SMM state-save area.
7519          */
7520         kvm_x86_ops->pre_enter_smm(vcpu, buf);
7521
7522         vcpu->arch.hflags |= HF_SMM_MASK;
7523         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7524
7525         if (kvm_x86_ops->get_nmi_mask(vcpu))
7526                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7527         else
7528                 kvm_x86_ops->set_nmi_mask(vcpu, true);
7529
7530         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7531         kvm_rip_write(vcpu, 0x8000);
7532
7533         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7534         kvm_x86_ops->set_cr0(vcpu, cr0);
7535         vcpu->arch.cr0 = cr0;
7536
7537         kvm_x86_ops->set_cr4(vcpu, 0);
7538
7539         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7540         dt.address = dt.size = 0;
7541         kvm_x86_ops->set_idt(vcpu, &dt);
7542
7543         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7544
7545         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7546         cs.base = vcpu->arch.smbase;
7547
7548         ds.selector = 0;
7549         ds.base = 0;
7550
7551         cs.limit    = ds.limit = 0xffffffff;
7552         cs.type     = ds.type = 0x3;
7553         cs.dpl      = ds.dpl = 0;
7554         cs.db       = ds.db = 0;
7555         cs.s        = ds.s = 1;
7556         cs.l        = ds.l = 0;
7557         cs.g        = ds.g = 1;
7558         cs.avl      = ds.avl = 0;
7559         cs.present  = ds.present = 1;
7560         cs.unusable = ds.unusable = 0;
7561         cs.padding  = ds.padding = 0;
7562
7563         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7564         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7565         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7566         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7567         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7568         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7569
7570 #ifdef CONFIG_X86_64
7571         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7572                 kvm_x86_ops->set_efer(vcpu, 0);
7573 #endif
7574
7575         kvm_update_cpuid(vcpu);
7576         kvm_mmu_reset_context(vcpu);
7577 }
7578
7579 static void process_smi(struct kvm_vcpu *vcpu)
7580 {
7581         vcpu->arch.smi_pending = true;
7582         kvm_make_request(KVM_REQ_EVENT, vcpu);
7583 }
7584
7585 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7586 {
7587         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7588 }
7589
7590 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7591 {
7592         if (!kvm_apic_present(vcpu))
7593                 return;
7594
7595         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7596
7597         if (irqchip_split(vcpu->kvm))
7598                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7599         else {
7600                 if (vcpu->arch.apicv_active)
7601                         kvm_x86_ops->sync_pir_to_irr(vcpu);
7602                 if (ioapic_in_kernel(vcpu->kvm))
7603                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7604         }
7605
7606         if (is_guest_mode(vcpu))
7607                 vcpu->arch.load_eoi_exitmap_pending = true;
7608         else
7609                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7610 }
7611
7612 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7613 {
7614         u64 eoi_exit_bitmap[4];
7615
7616         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7617                 return;
7618
7619         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7620                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
7621         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7622 }
7623
7624 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7625                 unsigned long start, unsigned long end,
7626                 bool blockable)
7627 {
7628         unsigned long apic_address;
7629
7630         /*
7631          * The physical address of apic access page is stored in the VMCS.
7632          * Update it when it becomes invalid.
7633          */
7634         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7635         if (start <= apic_address && apic_address < end)
7636                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7637
7638         return 0;
7639 }
7640
7641 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7642 {
7643         struct page *page = NULL;
7644
7645         if (!lapic_in_kernel(vcpu))
7646                 return;
7647
7648         if (!kvm_x86_ops->set_apic_access_page_addr)
7649                 return;
7650
7651         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7652         if (is_error_page(page))
7653                 return;
7654         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7655
7656         /*
7657          * Do not pin apic access page in memory, the MMU notifier
7658          * will call us again if it is migrated or swapped out.
7659          */
7660         put_page(page);
7661 }
7662 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7663
7664 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7665 {
7666         smp_send_reschedule(vcpu->cpu);
7667 }
7668 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7669
7670 /*
7671  * Returns 1 to let vcpu_run() continue the guest execution loop without
7672  * exiting to the userspace.  Otherwise, the value will be returned to the
7673  * userspace.
7674  */
7675 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7676 {
7677         int r;
7678         bool req_int_win =
7679                 dm_request_for_irq_injection(vcpu) &&
7680                 kvm_cpu_accept_dm_intr(vcpu);
7681
7682         bool req_immediate_exit = false;
7683
7684         if (kvm_request_pending(vcpu)) {
7685                 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7686                         kvm_x86_ops->get_vmcs12_pages(vcpu);
7687                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7688                         kvm_mmu_unload(vcpu);
7689                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7690                         __kvm_migrate_timers(vcpu);
7691                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7692                         kvm_gen_update_masterclock(vcpu->kvm);
7693                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7694                         kvm_gen_kvmclock_update(vcpu);
7695                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7696                         r = kvm_guest_time_update(vcpu);
7697                         if (unlikely(r))
7698                                 goto out;
7699                 }
7700                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7701                         kvm_mmu_sync_roots(vcpu);
7702                 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7703                         kvm_mmu_load_cr3(vcpu);
7704                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7705                         kvm_vcpu_flush_tlb(vcpu, true);
7706                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7707                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7708                         r = 0;
7709                         goto out;
7710                 }
7711                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7712                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7713                         vcpu->mmio_needed = 0;
7714                         r = 0;
7715                         goto out;
7716                 }
7717                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7718                         /* Page is swapped out. Do synthetic halt */
7719                         vcpu->arch.apf.halted = true;
7720                         r = 1;
7721                         goto out;
7722                 }
7723                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7724                         record_steal_time(vcpu);
7725                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7726                         process_smi(vcpu);
7727                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7728                         process_nmi(vcpu);
7729                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7730                         kvm_pmu_handle_event(vcpu);
7731                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7732                         kvm_pmu_deliver_pmi(vcpu);
7733                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7734                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7735                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
7736                                      vcpu->arch.ioapic_handled_vectors)) {
7737                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7738                                 vcpu->run->eoi.vector =
7739                                                 vcpu->arch.pending_ioapic_eoi;
7740                                 r = 0;
7741                                 goto out;
7742                         }
7743                 }
7744                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7745                         vcpu_scan_ioapic(vcpu);
7746                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7747                         vcpu_load_eoi_exitmap(vcpu);
7748                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7749                         kvm_vcpu_reload_apic_access_page(vcpu);
7750                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7751                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7752                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7753                         r = 0;
7754                         goto out;
7755                 }
7756                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7757                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7758                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7759                         r = 0;
7760                         goto out;
7761                 }
7762                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7763                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7764                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7765                         r = 0;
7766                         goto out;
7767                 }
7768
7769                 /*
7770                  * KVM_REQ_HV_STIMER has to be processed after
7771                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7772                  * depend on the guest clock being up-to-date
7773                  */
7774                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7775                         kvm_hv_process_stimers(vcpu);
7776         }
7777
7778         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7779                 ++vcpu->stat.req_event;
7780                 kvm_apic_accept_events(vcpu);
7781                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7782                         r = 1;
7783                         goto out;
7784                 }
7785
7786                 if (inject_pending_event(vcpu, req_int_win) != 0)
7787                         req_immediate_exit = true;
7788                 else {
7789                         /* Enable SMI/NMI/IRQ window open exits if needed.
7790                          *
7791                          * SMIs have three cases:
7792                          * 1) They can be nested, and then there is nothing to
7793                          *    do here because RSM will cause a vmexit anyway.
7794                          * 2) There is an ISA-specific reason why SMI cannot be
7795                          *    injected, and the moment when this changes can be
7796                          *    intercepted.
7797                          * 3) Or the SMI can be pending because
7798                          *    inject_pending_event has completed the injection
7799                          *    of an IRQ or NMI from the previous vmexit, and
7800                          *    then we request an immediate exit to inject the
7801                          *    SMI.
7802                          */
7803                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
7804                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
7805                                         req_immediate_exit = true;
7806                         if (vcpu->arch.nmi_pending)
7807                                 kvm_x86_ops->enable_nmi_window(vcpu);
7808                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7809                                 kvm_x86_ops->enable_irq_window(vcpu);
7810                         WARN_ON(vcpu->arch.exception.pending);
7811                 }
7812
7813                 if (kvm_lapic_enabled(vcpu)) {
7814                         update_cr8_intercept(vcpu);
7815                         kvm_lapic_sync_to_vapic(vcpu);
7816                 }
7817         }
7818
7819         r = kvm_mmu_reload(vcpu);
7820         if (unlikely(r)) {
7821                 goto cancel_injection;
7822         }
7823
7824         preempt_disable();
7825
7826         kvm_x86_ops->prepare_guest_switch(vcpu);
7827
7828         /*
7829          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7830          * IPI are then delayed after guest entry, which ensures that they
7831          * result in virtual interrupt delivery.
7832          */
7833         local_irq_disable();
7834         vcpu->mode = IN_GUEST_MODE;
7835
7836         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7837
7838         /*
7839          * 1) We should set ->mode before checking ->requests.  Please see
7840          * the comment in kvm_vcpu_exiting_guest_mode().
7841          *
7842          * 2) For APICv, we should set ->mode before checking PID.ON. This
7843          * pairs with the memory barrier implicit in pi_test_and_set_on
7844          * (see vmx_deliver_posted_interrupt).
7845          *
7846          * 3) This also orders the write to mode from any reads to the page
7847          * tables done while the VCPU is running.  Please see the comment
7848          * in kvm_flush_remote_tlbs.
7849          */
7850         smp_mb__after_srcu_read_unlock();
7851
7852         /*
7853          * This handles the case where a posted interrupt was
7854          * notified with kvm_vcpu_kick.
7855          */
7856         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7857                 kvm_x86_ops->sync_pir_to_irr(vcpu);
7858
7859         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7860             || need_resched() || signal_pending(current)) {
7861                 vcpu->mode = OUTSIDE_GUEST_MODE;
7862                 smp_wmb();
7863                 local_irq_enable();
7864                 preempt_enable();
7865                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7866                 r = 1;
7867                 goto cancel_injection;
7868         }
7869
7870         if (req_immediate_exit) {
7871                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7872                 kvm_x86_ops->request_immediate_exit(vcpu);
7873         }
7874
7875         trace_kvm_entry(vcpu->vcpu_id);
7876         if (lapic_timer_advance_ns)
7877                 wait_lapic_expire(vcpu);
7878         guest_enter_irqoff();
7879
7880         if (unlikely(vcpu->arch.switch_db_regs)) {
7881                 set_debugreg(0, 7);
7882                 set_debugreg(vcpu->arch.eff_db[0], 0);
7883                 set_debugreg(vcpu->arch.eff_db[1], 1);
7884                 set_debugreg(vcpu->arch.eff_db[2], 2);
7885                 set_debugreg(vcpu->arch.eff_db[3], 3);
7886                 set_debugreg(vcpu->arch.dr6, 6);
7887                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7888         }
7889
7890         kvm_x86_ops->run(vcpu);
7891
7892         /*
7893          * Do this here before restoring debug registers on the host.  And
7894          * since we do this before handling the vmexit, a DR access vmexit
7895          * can (a) read the correct value of the debug registers, (b) set
7896          * KVM_DEBUGREG_WONT_EXIT again.
7897          */
7898         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7899                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7900                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7901                 kvm_update_dr0123(vcpu);
7902                 kvm_update_dr6(vcpu);
7903                 kvm_update_dr7(vcpu);
7904                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7905         }
7906
7907         /*
7908          * If the guest has used debug registers, at least dr7
7909          * will be disabled while returning to the host.
7910          * If we don't have active breakpoints in the host, we don't
7911          * care about the messed up debug address registers. But if
7912          * we have some of them active, restore the old state.
7913          */
7914         if (hw_breakpoint_active())
7915                 hw_breakpoint_restore();
7916
7917         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7918
7919         vcpu->mode = OUTSIDE_GUEST_MODE;
7920         smp_wmb();
7921
7922         kvm_before_interrupt(vcpu);
7923         kvm_x86_ops->handle_external_intr(vcpu);
7924         kvm_after_interrupt(vcpu);
7925
7926         ++vcpu->stat.exits;
7927
7928         guest_exit_irqoff();
7929
7930         local_irq_enable();
7931         preempt_enable();
7932
7933         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7934
7935         /*
7936          * Profile KVM exit RIPs:
7937          */
7938         if (unlikely(prof_on == KVM_PROFILING)) {
7939                 unsigned long rip = kvm_rip_read(vcpu);
7940                 profile_hit(KVM_PROFILING, (void *)rip);
7941         }
7942
7943         if (unlikely(vcpu->arch.tsc_always_catchup))
7944                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7945
7946         if (vcpu->arch.apic_attention)
7947                 kvm_lapic_sync_from_vapic(vcpu);
7948
7949         vcpu->arch.gpa_available = false;
7950         r = kvm_x86_ops->handle_exit(vcpu);
7951         return r;
7952
7953 cancel_injection:
7954         kvm_x86_ops->cancel_injection(vcpu);
7955         if (unlikely(vcpu->arch.apic_attention))
7956                 kvm_lapic_sync_from_vapic(vcpu);
7957 out:
7958         return r;
7959 }
7960
7961 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7962 {
7963         if (!kvm_arch_vcpu_runnable(vcpu) &&
7964             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7965                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7966                 kvm_vcpu_block(vcpu);
7967                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7968
7969                 if (kvm_x86_ops->post_block)
7970                         kvm_x86_ops->post_block(vcpu);
7971
7972                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7973                         return 1;
7974         }
7975
7976         kvm_apic_accept_events(vcpu);
7977         switch(vcpu->arch.mp_state) {
7978         case KVM_MP_STATE_HALTED:
7979                 vcpu->arch.pv.pv_unhalted = false;
7980                 vcpu->arch.mp_state =
7981                         KVM_MP_STATE_RUNNABLE;
7982                 /* fall through */
7983         case KVM_MP_STATE_RUNNABLE:
7984                 vcpu->arch.apf.halted = false;
7985                 break;
7986         case KVM_MP_STATE_INIT_RECEIVED:
7987                 break;
7988         default:
7989                 return -EINTR;
7990                 break;
7991         }
7992         return 1;
7993 }
7994
7995 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7996 {
7997         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7998                 kvm_x86_ops->check_nested_events(vcpu, false);
7999
8000         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8001                 !vcpu->arch.apf.halted);
8002 }
8003
8004 static int vcpu_run(struct kvm_vcpu *vcpu)
8005 {
8006         int r;
8007         struct kvm *kvm = vcpu->kvm;
8008
8009         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8010         vcpu->arch.l1tf_flush_l1d = true;
8011
8012         for (;;) {
8013                 if (kvm_vcpu_running(vcpu)) {
8014                         r = vcpu_enter_guest(vcpu);
8015                 } else {
8016                         r = vcpu_block(kvm, vcpu);
8017                 }
8018
8019                 if (r <= 0)
8020                         break;
8021
8022                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8023                 if (kvm_cpu_has_pending_timer(vcpu))
8024                         kvm_inject_pending_timer_irqs(vcpu);
8025
8026                 if (dm_request_for_irq_injection(vcpu) &&
8027                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8028                         r = 0;
8029                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8030                         ++vcpu->stat.request_irq_exits;
8031                         break;
8032                 }
8033
8034                 kvm_check_async_pf_completion(vcpu);
8035
8036                 if (signal_pending(current)) {
8037                         r = -EINTR;
8038                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8039                         ++vcpu->stat.signal_exits;
8040                         break;
8041                 }
8042                 if (need_resched()) {
8043                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8044                         cond_resched();
8045                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8046                 }
8047         }
8048
8049         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8050
8051         return r;
8052 }
8053
8054 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8055 {
8056         int r;
8057         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8058         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8059         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8060         if (r != EMULATE_DONE)
8061                 return 0;
8062         return 1;
8063 }
8064
8065 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8066 {
8067         BUG_ON(!vcpu->arch.pio.count);
8068
8069         return complete_emulated_io(vcpu);
8070 }
8071
8072 /*
8073  * Implements the following, as a state machine:
8074  *
8075  * read:
8076  *   for each fragment
8077  *     for each mmio piece in the fragment
8078  *       write gpa, len
8079  *       exit
8080  *       copy data
8081  *   execute insn
8082  *
8083  * write:
8084  *   for each fragment
8085  *     for each mmio piece in the fragment
8086  *       write gpa, len
8087  *       copy data
8088  *       exit
8089  */
8090 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8091 {
8092         struct kvm_run *run = vcpu->run;
8093         struct kvm_mmio_fragment *frag;
8094         unsigned len;
8095
8096         BUG_ON(!vcpu->mmio_needed);
8097
8098         /* Complete previous fragment */
8099         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8100         len = min(8u, frag->len);
8101         if (!vcpu->mmio_is_write)
8102                 memcpy(frag->data, run->mmio.data, len);
8103
8104         if (frag->len <= 8) {
8105                 /* Switch to the next fragment. */
8106                 frag++;
8107                 vcpu->mmio_cur_fragment++;
8108         } else {
8109                 /* Go forward to the next mmio piece. */
8110                 frag->data += len;
8111                 frag->gpa += len;
8112                 frag->len -= len;
8113         }
8114
8115         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8116                 vcpu->mmio_needed = 0;
8117
8118                 /* FIXME: return into emulator if single-stepping.  */
8119                 if (vcpu->mmio_is_write)
8120                         return 1;
8121                 vcpu->mmio_read_completed = 1;
8122                 return complete_emulated_io(vcpu);
8123         }
8124
8125         run->exit_reason = KVM_EXIT_MMIO;
8126         run->mmio.phys_addr = frag->gpa;
8127         if (vcpu->mmio_is_write)
8128                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8129         run->mmio.len = min(8u, frag->len);
8130         run->mmio.is_write = vcpu->mmio_is_write;
8131         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8132         return 0;
8133 }
8134
8135 /* Swap (qemu) user FPU context for the guest FPU context. */
8136 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8137 {
8138         preempt_disable();
8139         copy_fpregs_to_fpstate(&current->thread.fpu);
8140         /* PKRU is separately restored in kvm_x86_ops->run.  */
8141         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8142                                 ~XFEATURE_MASK_PKRU);
8143         preempt_enable();
8144         trace_kvm_fpu(1);
8145 }
8146
8147 /* When vcpu_run ends, restore user space FPU context. */
8148 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8149 {
8150         preempt_disable();
8151         copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8152         copy_kernel_to_fpregs(&current->thread.fpu.state);
8153         preempt_enable();
8154         ++vcpu->stat.fpu_reload;
8155         trace_kvm_fpu(0);
8156 }
8157
8158 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8159 {
8160         int r;
8161
8162         vcpu_load(vcpu);
8163         kvm_sigset_activate(vcpu);
8164         kvm_load_guest_fpu(vcpu);
8165
8166         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8167                 if (kvm_run->immediate_exit) {
8168                         r = -EINTR;
8169                         goto out;
8170                 }
8171                 kvm_vcpu_block(vcpu);
8172                 kvm_apic_accept_events(vcpu);
8173                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8174                 r = -EAGAIN;
8175                 if (signal_pending(current)) {
8176                         r = -EINTR;
8177                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8178                         ++vcpu->stat.signal_exits;
8179                 }
8180                 goto out;
8181         }
8182
8183         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8184                 r = -EINVAL;
8185                 goto out;
8186         }
8187
8188         if (vcpu->run->kvm_dirty_regs) {
8189                 r = sync_regs(vcpu);
8190                 if (r != 0)
8191                         goto out;
8192         }
8193
8194         /* re-sync apic's tpr */
8195         if (!lapic_in_kernel(vcpu)) {
8196                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8197                         r = -EINVAL;
8198                         goto out;
8199                 }
8200         }
8201
8202         if (unlikely(vcpu->arch.complete_userspace_io)) {
8203                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8204                 vcpu->arch.complete_userspace_io = NULL;
8205                 r = cui(vcpu);
8206                 if (r <= 0)
8207                         goto out;
8208         } else
8209                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8210
8211         if (kvm_run->immediate_exit)
8212                 r = -EINTR;
8213         else
8214                 r = vcpu_run(vcpu);
8215
8216 out:
8217         kvm_put_guest_fpu(vcpu);
8218         if (vcpu->run->kvm_valid_regs)
8219                 store_regs(vcpu);
8220         post_kvm_run_save(vcpu);
8221         kvm_sigset_deactivate(vcpu);
8222
8223         vcpu_put(vcpu);
8224         return r;
8225 }
8226
8227 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8228 {
8229         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8230                 /*
8231                  * We are here if userspace calls get_regs() in the middle of
8232                  * instruction emulation. Registers state needs to be copied
8233                  * back from emulation context to vcpu. Userspace shouldn't do
8234                  * that usually, but some bad designed PV devices (vmware
8235                  * backdoor interface) need this to work
8236                  */
8237                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8238                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8239         }
8240         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
8241         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
8242         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
8243         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
8244         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
8245         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
8246         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8247         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
8248 #ifdef CONFIG_X86_64
8249         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
8250         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
8251         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
8252         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
8253         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
8254         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
8255         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
8256         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
8257 #endif
8258
8259         regs->rip = kvm_rip_read(vcpu);
8260         regs->rflags = kvm_get_rflags(vcpu);
8261 }
8262
8263 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8264 {
8265         vcpu_load(vcpu);
8266         __get_regs(vcpu, regs);
8267         vcpu_put(vcpu);
8268         return 0;
8269 }
8270
8271 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8272 {
8273         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8274         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8275
8276         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
8277         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
8278         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
8279         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
8280         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
8281         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
8282         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
8283         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
8284 #ifdef CONFIG_X86_64
8285         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
8286         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
8287         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
8288         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
8289         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
8290         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
8291         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
8292         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
8293 #endif
8294
8295         kvm_rip_write(vcpu, regs->rip);
8296         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8297
8298         vcpu->arch.exception.pending = false;
8299
8300         kvm_make_request(KVM_REQ_EVENT, vcpu);
8301 }
8302
8303 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8304 {
8305         vcpu_load(vcpu);
8306         __set_regs(vcpu, regs);
8307         vcpu_put(vcpu);
8308         return 0;
8309 }
8310
8311 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8312 {
8313         struct kvm_segment cs;
8314
8315         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8316         *db = cs.db;
8317         *l = cs.l;
8318 }
8319 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8320
8321 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8322 {
8323         struct desc_ptr dt;
8324
8325         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8326         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8327         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8328         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8329         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8330         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8331
8332         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8333         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8334
8335         kvm_x86_ops->get_idt(vcpu, &dt);
8336         sregs->idt.limit = dt.size;
8337         sregs->idt.base = dt.address;
8338         kvm_x86_ops->get_gdt(vcpu, &dt);
8339         sregs->gdt.limit = dt.size;
8340         sregs->gdt.base = dt.address;
8341
8342         sregs->cr0 = kvm_read_cr0(vcpu);
8343         sregs->cr2 = vcpu->arch.cr2;
8344         sregs->cr3 = kvm_read_cr3(vcpu);
8345         sregs->cr4 = kvm_read_cr4(vcpu);
8346         sregs->cr8 = kvm_get_cr8(vcpu);
8347         sregs->efer = vcpu->arch.efer;
8348         sregs->apic_base = kvm_get_apic_base(vcpu);
8349
8350         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8351
8352         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8353                 set_bit(vcpu->arch.interrupt.nr,
8354                         (unsigned long *)sregs->interrupt_bitmap);
8355 }
8356
8357 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8358                                   struct kvm_sregs *sregs)
8359 {
8360         vcpu_load(vcpu);
8361         __get_sregs(vcpu, sregs);
8362         vcpu_put(vcpu);
8363         return 0;
8364 }
8365
8366 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8367                                     struct kvm_mp_state *mp_state)
8368 {
8369         vcpu_load(vcpu);
8370
8371         kvm_apic_accept_events(vcpu);
8372         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8373                                         vcpu->arch.pv.pv_unhalted)
8374                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8375         else
8376                 mp_state->mp_state = vcpu->arch.mp_state;
8377
8378         vcpu_put(vcpu);
8379         return 0;
8380 }
8381
8382 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8383                                     struct kvm_mp_state *mp_state)
8384 {
8385         int ret = -EINVAL;
8386
8387         vcpu_load(vcpu);
8388
8389         if (!lapic_in_kernel(vcpu) &&
8390             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8391                 goto out;
8392
8393         /* INITs are latched while in SMM */
8394         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8395             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8396              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8397                 goto out;
8398
8399         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8400                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8401                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8402         } else
8403                 vcpu->arch.mp_state = mp_state->mp_state;
8404         kvm_make_request(KVM_REQ_EVENT, vcpu);
8405
8406         ret = 0;
8407 out:
8408         vcpu_put(vcpu);
8409         return ret;
8410 }
8411
8412 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8413                     int reason, bool has_error_code, u32 error_code)
8414 {
8415         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8416         int ret;
8417
8418         init_emulate_ctxt(vcpu);
8419
8420         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8421                                    has_error_code, error_code);
8422
8423         if (ret)
8424                 return EMULATE_FAIL;
8425
8426         kvm_rip_write(vcpu, ctxt->eip);
8427         kvm_set_rflags(vcpu, ctxt->eflags);
8428         kvm_make_request(KVM_REQ_EVENT, vcpu);
8429         return EMULATE_DONE;
8430 }
8431 EXPORT_SYMBOL_GPL(kvm_task_switch);
8432
8433 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8434 {
8435         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8436                         (sregs->cr4 & X86_CR4_OSXSAVE))
8437                 return  -EINVAL;
8438
8439         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8440                 /*
8441                  * When EFER.LME and CR0.PG are set, the processor is in
8442                  * 64-bit mode (though maybe in a 32-bit code segment).
8443                  * CR4.PAE and EFER.LMA must be set.
8444                  */
8445                 if (!(sregs->cr4 & X86_CR4_PAE)
8446                     || !(sregs->efer & EFER_LMA))
8447                         return -EINVAL;
8448         } else {
8449                 /*
8450                  * Not in 64-bit mode: EFER.LMA is clear and the code
8451                  * segment cannot be 64-bit.
8452                  */
8453                 if (sregs->efer & EFER_LMA || sregs->cs.l)
8454                         return -EINVAL;
8455         }
8456
8457         return 0;
8458 }
8459
8460 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8461 {
8462         struct msr_data apic_base_msr;
8463         int mmu_reset_needed = 0;
8464         int cpuid_update_needed = 0;
8465         int pending_vec, max_bits, idx;
8466         struct desc_ptr dt;
8467         int ret = -EINVAL;
8468
8469         if (kvm_valid_sregs(vcpu, sregs))
8470                 goto out;
8471
8472         apic_base_msr.data = sregs->apic_base;
8473         apic_base_msr.host_initiated = true;
8474         if (kvm_set_apic_base(vcpu, &apic_base_msr))
8475                 goto out;
8476
8477         dt.size = sregs->idt.limit;
8478         dt.address = sregs->idt.base;
8479         kvm_x86_ops->set_idt(vcpu, &dt);
8480         dt.size = sregs->gdt.limit;
8481         dt.address = sregs->gdt.base;
8482         kvm_x86_ops->set_gdt(vcpu, &dt);
8483
8484         vcpu->arch.cr2 = sregs->cr2;
8485         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8486         vcpu->arch.cr3 = sregs->cr3;
8487         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8488
8489         kvm_set_cr8(vcpu, sregs->cr8);
8490
8491         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8492         kvm_x86_ops->set_efer(vcpu, sregs->efer);
8493
8494         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8495         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8496         vcpu->arch.cr0 = sregs->cr0;
8497
8498         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8499         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8500                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8501         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8502         if (cpuid_update_needed)
8503                 kvm_update_cpuid(vcpu);
8504
8505         idx = srcu_read_lock(&vcpu->kvm->srcu);
8506         if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu)) {
8507                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8508                 mmu_reset_needed = 1;
8509         }
8510         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8511
8512         if (mmu_reset_needed)
8513                 kvm_mmu_reset_context(vcpu);
8514
8515         max_bits = KVM_NR_INTERRUPTS;
8516         pending_vec = find_first_bit(
8517                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8518         if (pending_vec < max_bits) {
8519                 kvm_queue_interrupt(vcpu, pending_vec, false);
8520                 pr_debug("Set back pending irq %d\n", pending_vec);
8521         }
8522
8523         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8524         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8525         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8526         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8527         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8528         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8529
8530         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8531         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8532
8533         update_cr8_intercept(vcpu);
8534
8535         /* Older userspace won't unhalt the vcpu on reset. */
8536         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8537             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8538             !is_protmode(vcpu))
8539                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8540
8541         kvm_make_request(KVM_REQ_EVENT, vcpu);
8542
8543         ret = 0;
8544 out:
8545         return ret;
8546 }
8547
8548 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8549                                   struct kvm_sregs *sregs)
8550 {
8551         int ret;
8552
8553         vcpu_load(vcpu);
8554         ret = __set_sregs(vcpu, sregs);
8555         vcpu_put(vcpu);
8556         return ret;
8557 }
8558
8559 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8560                                         struct kvm_guest_debug *dbg)
8561 {
8562         unsigned long rflags;
8563         int i, r;
8564
8565         vcpu_load(vcpu);
8566
8567         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8568                 r = -EBUSY;
8569                 if (vcpu->arch.exception.pending)
8570                         goto out;
8571                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8572                         kvm_queue_exception(vcpu, DB_VECTOR);
8573                 else
8574                         kvm_queue_exception(vcpu, BP_VECTOR);
8575         }
8576
8577         /*
8578          * Read rflags as long as potentially injected trace flags are still
8579          * filtered out.
8580          */
8581         rflags = kvm_get_rflags(vcpu);
8582
8583         vcpu->guest_debug = dbg->control;
8584         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8585                 vcpu->guest_debug = 0;
8586
8587         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8588                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8589                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8590                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8591         } else {
8592                 for (i = 0; i < KVM_NR_DB_REGS; i++)
8593                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8594         }
8595         kvm_update_dr7(vcpu);
8596
8597         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8598                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8599                         get_segment_base(vcpu, VCPU_SREG_CS);
8600
8601         /*
8602          * Trigger an rflags update that will inject or remove the trace
8603          * flags.
8604          */
8605         kvm_set_rflags(vcpu, rflags);
8606
8607         kvm_x86_ops->update_bp_intercept(vcpu);
8608
8609         r = 0;
8610
8611 out:
8612         vcpu_put(vcpu);
8613         return r;
8614 }
8615
8616 /*
8617  * Translate a guest virtual address to a guest physical address.
8618  */
8619 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8620                                     struct kvm_translation *tr)
8621 {
8622         unsigned long vaddr = tr->linear_address;
8623         gpa_t gpa;
8624         int idx;
8625
8626         vcpu_load(vcpu);
8627
8628         idx = srcu_read_lock(&vcpu->kvm->srcu);
8629         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8630         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8631         tr->physical_address = gpa;
8632         tr->valid = gpa != UNMAPPED_GVA;
8633         tr->writeable = 1;
8634         tr->usermode = 0;
8635
8636         vcpu_put(vcpu);
8637         return 0;
8638 }
8639
8640 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8641 {
8642         struct fxregs_state *fxsave;
8643
8644         vcpu_load(vcpu);
8645
8646         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8647         memcpy(fpu->fpr, fxsave->st_space, 128);
8648         fpu->fcw = fxsave->cwd;
8649         fpu->fsw = fxsave->swd;
8650         fpu->ftwx = fxsave->twd;
8651         fpu->last_opcode = fxsave->fop;
8652         fpu->last_ip = fxsave->rip;
8653         fpu->last_dp = fxsave->rdp;
8654         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
8655
8656         vcpu_put(vcpu);
8657         return 0;
8658 }
8659
8660 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8661 {
8662         struct fxregs_state *fxsave;
8663
8664         vcpu_load(vcpu);
8665
8666         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8667
8668         memcpy(fxsave->st_space, fpu->fpr, 128);
8669         fxsave->cwd = fpu->fcw;
8670         fxsave->swd = fpu->fsw;
8671         fxsave->twd = fpu->ftwx;
8672         fxsave->fop = fpu->last_opcode;
8673         fxsave->rip = fpu->last_ip;
8674         fxsave->rdp = fpu->last_dp;
8675         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
8676
8677         vcpu_put(vcpu);
8678         return 0;
8679 }
8680
8681 static void store_regs(struct kvm_vcpu *vcpu)
8682 {
8683         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8684
8685         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8686                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8687
8688         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8689                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8690
8691         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8692                 kvm_vcpu_ioctl_x86_get_vcpu_events(
8693                                 vcpu, &vcpu->run->s.regs.events);
8694 }
8695
8696 static int sync_regs(struct kvm_vcpu *vcpu)
8697 {
8698         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8699                 return -EINVAL;
8700
8701         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8702                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8703                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8704         }
8705         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8706                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8707                         return -EINVAL;
8708                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8709         }
8710         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8711                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8712                                 vcpu, &vcpu->run->s.regs.events))
8713                         return -EINVAL;
8714                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8715         }
8716
8717         return 0;
8718 }
8719
8720 static void fx_init(struct kvm_vcpu *vcpu)
8721 {
8722         fpstate_init(&vcpu->arch.guest_fpu->state);
8723         if (boot_cpu_has(X86_FEATURE_XSAVES))
8724                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
8725                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
8726
8727         /*
8728          * Ensure guest xcr0 is valid for loading
8729          */
8730         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8731
8732         vcpu->arch.cr0 |= X86_CR0_ET;
8733 }
8734
8735 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8736 {
8737         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8738
8739         kvmclock_reset(vcpu);
8740
8741         kvm_x86_ops->vcpu_free(vcpu);
8742         free_cpumask_var(wbinvd_dirty_mask);
8743 }
8744
8745 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8746                                                 unsigned int id)
8747 {
8748         struct kvm_vcpu *vcpu;
8749
8750         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8751                 printk_once(KERN_WARNING
8752                 "kvm: SMP vm created on host with unstable TSC; "
8753                 "guest TSC will not be reliable\n");
8754
8755         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8756
8757         return vcpu;
8758 }
8759
8760 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8761 {
8762         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
8763         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8764         kvm_vcpu_mtrr_init(vcpu);
8765         vcpu_load(vcpu);
8766         kvm_vcpu_reset(vcpu, false);
8767         kvm_init_mmu(vcpu, false);
8768         vcpu_put(vcpu);
8769         return 0;
8770 }
8771
8772 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8773 {
8774         struct msr_data msr;
8775         struct kvm *kvm = vcpu->kvm;
8776
8777         kvm_hv_vcpu_postcreate(vcpu);
8778
8779         if (mutex_lock_killable(&vcpu->mutex))
8780                 return;
8781         vcpu_load(vcpu);
8782         msr.data = 0x0;
8783         msr.index = MSR_IA32_TSC;
8784         msr.host_initiated = true;
8785         kvm_write_tsc(vcpu, &msr);
8786         vcpu_put(vcpu);
8787         mutex_unlock(&vcpu->mutex);
8788
8789         if (!kvmclock_periodic_sync)
8790                 return;
8791
8792         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8793                                         KVMCLOCK_SYNC_PERIOD);
8794 }
8795
8796 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8797 {
8798         vcpu->arch.apf.msr_val = 0;
8799
8800         vcpu_load(vcpu);
8801         kvm_mmu_unload(vcpu);
8802         vcpu_put(vcpu);
8803
8804         kvm_x86_ops->vcpu_free(vcpu);
8805 }
8806
8807 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8808 {
8809         kvm_lapic_reset(vcpu, init_event);
8810
8811         vcpu->arch.hflags = 0;
8812
8813         vcpu->arch.smi_pending = 0;
8814         vcpu->arch.smi_count = 0;
8815         atomic_set(&vcpu->arch.nmi_queued, 0);
8816         vcpu->arch.nmi_pending = 0;
8817         vcpu->arch.nmi_injected = false;
8818         kvm_clear_interrupt_queue(vcpu);
8819         kvm_clear_exception_queue(vcpu);
8820         vcpu->arch.exception.pending = false;
8821
8822         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8823         kvm_update_dr0123(vcpu);
8824         vcpu->arch.dr6 = DR6_INIT;
8825         kvm_update_dr6(vcpu);
8826         vcpu->arch.dr7 = DR7_FIXED_1;
8827         kvm_update_dr7(vcpu);
8828
8829         vcpu->arch.cr2 = 0;
8830
8831         kvm_make_request(KVM_REQ_EVENT, vcpu);
8832         vcpu->arch.apf.msr_val = 0;
8833         vcpu->arch.st.msr_val = 0;
8834
8835         kvmclock_reset(vcpu);
8836
8837         kvm_clear_async_pf_completion_queue(vcpu);
8838         kvm_async_pf_hash_reset(vcpu);
8839         vcpu->arch.apf.halted = false;
8840
8841         if (kvm_mpx_supported()) {
8842                 void *mpx_state_buffer;
8843
8844                 /*
8845                  * To avoid have the INIT path from kvm_apic_has_events() that be
8846                  * called with loaded FPU and does not let userspace fix the state.
8847                  */
8848                 if (init_event)
8849                         kvm_put_guest_fpu(vcpu);
8850                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
8851                                         XFEATURE_MASK_BNDREGS);
8852                 if (mpx_state_buffer)
8853                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8854                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
8855                                         XFEATURE_MASK_BNDCSR);
8856                 if (mpx_state_buffer)
8857                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8858                 if (init_event)
8859                         kvm_load_guest_fpu(vcpu);
8860         }
8861
8862         if (!init_event) {
8863                 kvm_pmu_reset(vcpu);
8864                 vcpu->arch.smbase = 0x30000;
8865
8866                 vcpu->arch.msr_misc_features_enables = 0;
8867
8868                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8869         }
8870
8871         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8872         vcpu->arch.regs_avail = ~0;
8873         vcpu->arch.regs_dirty = ~0;
8874
8875         vcpu->arch.ia32_xss = 0;
8876
8877         kvm_x86_ops->vcpu_reset(vcpu, init_event);
8878 }
8879
8880 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8881 {
8882         struct kvm_segment cs;
8883
8884         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8885         cs.selector = vector << 8;
8886         cs.base = vector << 12;
8887         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8888         kvm_rip_write(vcpu, 0);
8889 }
8890
8891 int kvm_arch_hardware_enable(void)
8892 {
8893         struct kvm *kvm;
8894         struct kvm_vcpu *vcpu;
8895         int i;
8896         int ret;
8897         u64 local_tsc;
8898         u64 max_tsc = 0;
8899         bool stable, backwards_tsc = false;
8900
8901         kvm_shared_msr_cpu_online();
8902         ret = kvm_x86_ops->hardware_enable();
8903         if (ret != 0)
8904                 return ret;
8905
8906         local_tsc = rdtsc();
8907         stable = !kvm_check_tsc_unstable();
8908         list_for_each_entry(kvm, &vm_list, vm_list) {
8909                 kvm_for_each_vcpu(i, vcpu, kvm) {
8910                         if (!stable && vcpu->cpu == smp_processor_id())
8911                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8912                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8913                                 backwards_tsc = true;
8914                                 if (vcpu->arch.last_host_tsc > max_tsc)
8915                                         max_tsc = vcpu->arch.last_host_tsc;
8916                         }
8917                 }
8918         }
8919
8920         /*
8921          * Sometimes, even reliable TSCs go backwards.  This happens on
8922          * platforms that reset TSC during suspend or hibernate actions, but
8923          * maintain synchronization.  We must compensate.  Fortunately, we can
8924          * detect that condition here, which happens early in CPU bringup,
8925          * before any KVM threads can be running.  Unfortunately, we can't
8926          * bring the TSCs fully up to date with real time, as we aren't yet far
8927          * enough into CPU bringup that we know how much real time has actually
8928          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8929          * variables that haven't been updated yet.
8930          *
8931          * So we simply find the maximum observed TSC above, then record the
8932          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
8933          * the adjustment will be applied.  Note that we accumulate
8934          * adjustments, in case multiple suspend cycles happen before some VCPU
8935          * gets a chance to run again.  In the event that no KVM threads get a
8936          * chance to run, we will miss the entire elapsed period, as we'll have
8937          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8938          * loose cycle time.  This isn't too big a deal, since the loss will be
8939          * uniform across all VCPUs (not to mention the scenario is extremely
8940          * unlikely). It is possible that a second hibernate recovery happens
8941          * much faster than a first, causing the observed TSC here to be
8942          * smaller; this would require additional padding adjustment, which is
8943          * why we set last_host_tsc to the local tsc observed here.
8944          *
8945          * N.B. - this code below runs only on platforms with reliable TSC,
8946          * as that is the only way backwards_tsc is set above.  Also note
8947          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8948          * have the same delta_cyc adjustment applied if backwards_tsc
8949          * is detected.  Note further, this adjustment is only done once,
8950          * as we reset last_host_tsc on all VCPUs to stop this from being
8951          * called multiple times (one for each physical CPU bringup).
8952          *
8953          * Platforms with unreliable TSCs don't have to deal with this, they
8954          * will be compensated by the logic in vcpu_load, which sets the TSC to
8955          * catchup mode.  This will catchup all VCPUs to real time, but cannot
8956          * guarantee that they stay in perfect synchronization.
8957          */
8958         if (backwards_tsc) {
8959                 u64 delta_cyc = max_tsc - local_tsc;
8960                 list_for_each_entry(kvm, &vm_list, vm_list) {
8961                         kvm->arch.backwards_tsc_observed = true;
8962                         kvm_for_each_vcpu(i, vcpu, kvm) {
8963                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8964                                 vcpu->arch.last_host_tsc = local_tsc;
8965                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8966                         }
8967
8968                         /*
8969                          * We have to disable TSC offset matching.. if you were
8970                          * booting a VM while issuing an S4 host suspend....
8971                          * you may have some problem.  Solving this issue is
8972                          * left as an exercise to the reader.
8973                          */
8974                         kvm->arch.last_tsc_nsec = 0;
8975                         kvm->arch.last_tsc_write = 0;
8976                 }
8977
8978         }
8979         return 0;
8980 }
8981
8982 void kvm_arch_hardware_disable(void)
8983 {
8984         kvm_x86_ops->hardware_disable();
8985         drop_user_return_notifiers();
8986 }
8987
8988 int kvm_arch_hardware_setup(void)
8989 {
8990         int r;
8991
8992         r = kvm_x86_ops->hardware_setup();
8993         if (r != 0)
8994                 return r;
8995
8996         if (kvm_has_tsc_control) {
8997                 /*
8998                  * Make sure the user can only configure tsc_khz values that
8999                  * fit into a signed integer.
9000                  * A min value is not calculated because it will always
9001                  * be 1 on all machines.
9002                  */
9003                 u64 max = min(0x7fffffffULL,
9004                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9005                 kvm_max_guest_tsc_khz = max;
9006
9007                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9008         }
9009
9010         kvm_init_msr_list();
9011         return 0;
9012 }
9013
9014 void kvm_arch_hardware_unsetup(void)
9015 {
9016         kvm_x86_ops->hardware_unsetup();
9017 }
9018
9019 void kvm_arch_check_processor_compat(void *rtn)
9020 {
9021         kvm_x86_ops->check_processor_compatibility(rtn);
9022 }
9023
9024 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9025 {
9026         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9027 }
9028 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9029
9030 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9031 {
9032         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9033 }
9034
9035 struct static_key kvm_no_apic_vcpu __read_mostly;
9036 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9037
9038 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
9039 {
9040         struct page *page;
9041         int r;
9042
9043         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9044         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9045                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9046         else
9047                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9048
9049         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9050         if (!page) {
9051                 r = -ENOMEM;
9052                 goto fail;
9053         }
9054         vcpu->arch.pio_data = page_address(page);
9055
9056         kvm_set_tsc_khz(vcpu, max_tsc_khz);
9057
9058         r = kvm_mmu_create(vcpu);
9059         if (r < 0)
9060                 goto fail_free_pio_data;
9061
9062         if (irqchip_in_kernel(vcpu->kvm)) {
9063                 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
9064                 r = kvm_create_lapic(vcpu);
9065                 if (r < 0)
9066                         goto fail_mmu_destroy;
9067         } else
9068                 static_key_slow_inc(&kvm_no_apic_vcpu);
9069
9070         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9071                                        GFP_KERNEL_ACCOUNT);
9072         if (!vcpu->arch.mce_banks) {
9073                 r = -ENOMEM;
9074                 goto fail_free_lapic;
9075         }
9076         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9077
9078         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9079                                 GFP_KERNEL_ACCOUNT)) {
9080                 r = -ENOMEM;
9081                 goto fail_free_mce_banks;
9082         }
9083
9084         fx_init(vcpu);
9085
9086         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9087
9088         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9089
9090         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9091
9092         kvm_async_pf_hash_reset(vcpu);
9093         kvm_pmu_init(vcpu);
9094
9095         vcpu->arch.pending_external_vector = -1;
9096         vcpu->arch.preempted_in_kernel = false;
9097
9098         kvm_hv_vcpu_init(vcpu);
9099
9100         return 0;
9101
9102 fail_free_mce_banks:
9103         kfree(vcpu->arch.mce_banks);
9104 fail_free_lapic:
9105         kvm_free_lapic(vcpu);
9106 fail_mmu_destroy:
9107         kvm_mmu_destroy(vcpu);
9108 fail_free_pio_data:
9109         free_page((unsigned long)vcpu->arch.pio_data);
9110 fail:
9111         return r;
9112 }
9113
9114 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9115 {
9116         int idx;
9117
9118         kvm_hv_vcpu_uninit(vcpu);
9119         kvm_pmu_destroy(vcpu);
9120         kfree(vcpu->arch.mce_banks);
9121         kvm_free_lapic(vcpu);
9122         idx = srcu_read_lock(&vcpu->kvm->srcu);
9123         kvm_mmu_destroy(vcpu);
9124         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9125         free_page((unsigned long)vcpu->arch.pio_data);
9126         if (!lapic_in_kernel(vcpu))
9127                 static_key_slow_dec(&kvm_no_apic_vcpu);
9128 }
9129
9130 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9131 {
9132         vcpu->arch.l1tf_flush_l1d = true;
9133         kvm_x86_ops->sched_in(vcpu, cpu);
9134 }
9135
9136 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9137 {
9138         if (type)
9139                 return -EINVAL;
9140
9141         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9142         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9143         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9144         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9145
9146         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9147         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9148         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9149         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9150                 &kvm->arch.irq_sources_bitmap);
9151
9152         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9153         mutex_init(&kvm->arch.apic_map_lock);
9154         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9155
9156         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
9157         pvclock_update_vm_gtod_copy(kvm);
9158
9159         kvm->arch.guest_can_read_msr_platform_info = true;
9160
9161         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9162         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9163
9164         kvm_hv_init_vm(kvm);
9165         kvm_page_track_init(kvm);
9166         kvm_mmu_init_vm(kvm);
9167
9168         if (kvm_x86_ops->vm_init)
9169                 return kvm_x86_ops->vm_init(kvm);
9170
9171         return 0;
9172 }
9173
9174 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9175 {
9176         vcpu_load(vcpu);
9177         kvm_mmu_unload(vcpu);
9178         vcpu_put(vcpu);
9179 }
9180
9181 static void kvm_free_vcpus(struct kvm *kvm)
9182 {
9183         unsigned int i;
9184         struct kvm_vcpu *vcpu;
9185
9186         /*
9187          * Unpin any mmu pages first.
9188          */
9189         kvm_for_each_vcpu(i, vcpu, kvm) {
9190                 kvm_clear_async_pf_completion_queue(vcpu);
9191                 kvm_unload_vcpu_mmu(vcpu);
9192         }
9193         kvm_for_each_vcpu(i, vcpu, kvm)
9194                 kvm_arch_vcpu_free(vcpu);
9195
9196         mutex_lock(&kvm->lock);
9197         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9198                 kvm->vcpus[i] = NULL;
9199
9200         atomic_set(&kvm->online_vcpus, 0);
9201         mutex_unlock(&kvm->lock);
9202 }
9203
9204 void kvm_arch_sync_events(struct kvm *kvm)
9205 {
9206         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9207         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9208         kvm_free_pit(kvm);
9209 }
9210
9211 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9212 {
9213         int i, r;
9214         unsigned long hva;
9215         struct kvm_memslots *slots = kvm_memslots(kvm);
9216         struct kvm_memory_slot *slot, old;
9217
9218         /* Called with kvm->slots_lock held.  */
9219         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9220                 return -EINVAL;
9221
9222         slot = id_to_memslot(slots, id);
9223         if (size) {
9224                 if (slot->npages)
9225                         return -EEXIST;
9226
9227                 /*
9228                  * MAP_SHARED to prevent internal slot pages from being moved
9229                  * by fork()/COW.
9230                  */
9231                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9232                               MAP_SHARED | MAP_ANONYMOUS, 0);
9233                 if (IS_ERR((void *)hva))
9234                         return PTR_ERR((void *)hva);
9235         } else {
9236                 if (!slot->npages)
9237                         return 0;
9238
9239                 hva = 0;
9240         }
9241
9242         old = *slot;
9243         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9244                 struct kvm_userspace_memory_region m;
9245
9246                 m.slot = id | (i << 16);
9247                 m.flags = 0;
9248                 m.guest_phys_addr = gpa;
9249                 m.userspace_addr = hva;
9250                 m.memory_size = size;
9251                 r = __kvm_set_memory_region(kvm, &m);
9252                 if (r < 0)
9253                         return r;
9254         }
9255
9256         if (!size)
9257                 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9258
9259         return 0;
9260 }
9261 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9262
9263 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9264 {
9265         int r;
9266
9267         mutex_lock(&kvm->slots_lock);
9268         r = __x86_set_memory_region(kvm, id, gpa, size);
9269         mutex_unlock(&kvm->slots_lock);
9270
9271         return r;
9272 }
9273 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9274
9275 void kvm_arch_destroy_vm(struct kvm *kvm)
9276 {
9277         if (current->mm == kvm->mm) {
9278                 /*
9279                  * Free memory regions allocated on behalf of userspace,
9280                  * unless the the memory map has changed due to process exit
9281                  * or fd copying.
9282                  */
9283                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9284                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9285                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9286         }
9287         if (kvm_x86_ops->vm_destroy)
9288                 kvm_x86_ops->vm_destroy(kvm);
9289         kvm_pic_destroy(kvm);
9290         kvm_ioapic_destroy(kvm);
9291         kvm_free_vcpus(kvm);
9292         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9293         kvm_mmu_uninit_vm(kvm);
9294         kvm_page_track_cleanup(kvm);
9295         kvm_hv_destroy_vm(kvm);
9296 }
9297
9298 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9299                            struct kvm_memory_slot *dont)
9300 {
9301         int i;
9302
9303         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9304                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9305                         kvfree(free->arch.rmap[i]);
9306                         free->arch.rmap[i] = NULL;
9307                 }
9308                 if (i == 0)
9309                         continue;
9310
9311                 if (!dont || free->arch.lpage_info[i - 1] !=
9312                              dont->arch.lpage_info[i - 1]) {
9313                         kvfree(free->arch.lpage_info[i - 1]);
9314                         free->arch.lpage_info[i - 1] = NULL;
9315                 }
9316         }
9317
9318         kvm_page_track_free_memslot(free, dont);
9319 }
9320
9321 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9322                             unsigned long npages)
9323 {
9324         int i;
9325
9326         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9327                 struct kvm_lpage_info *linfo;
9328                 unsigned long ugfn;
9329                 int lpages;
9330                 int level = i + 1;
9331
9332                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9333                                       slot->base_gfn, level) + 1;
9334
9335                 slot->arch.rmap[i] =
9336                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9337                                  GFP_KERNEL_ACCOUNT);
9338                 if (!slot->arch.rmap[i])
9339                         goto out_free;
9340                 if (i == 0)
9341                         continue;
9342
9343                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9344                 if (!linfo)
9345                         goto out_free;
9346
9347                 slot->arch.lpage_info[i - 1] = linfo;
9348
9349                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9350                         linfo[0].disallow_lpage = 1;
9351                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9352                         linfo[lpages - 1].disallow_lpage = 1;
9353                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9354                 /*
9355                  * If the gfn and userspace address are not aligned wrt each
9356                  * other, or if explicitly asked to, disable large page
9357                  * support for this slot
9358                  */
9359                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9360                     !kvm_largepages_enabled()) {
9361                         unsigned long j;
9362
9363                         for (j = 0; j < lpages; ++j)
9364                                 linfo[j].disallow_lpage = 1;
9365                 }
9366         }
9367
9368         if (kvm_page_track_create_memslot(slot, npages))
9369                 goto out_free;
9370
9371         return 0;
9372
9373 out_free:
9374         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9375                 kvfree(slot->arch.rmap[i]);
9376                 slot->arch.rmap[i] = NULL;
9377                 if (i == 0)
9378                         continue;
9379
9380                 kvfree(slot->arch.lpage_info[i - 1]);
9381                 slot->arch.lpage_info[i - 1] = NULL;
9382         }
9383         return -ENOMEM;
9384 }
9385
9386 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9387 {
9388         /*
9389          * memslots->generation has been incremented.
9390          * mmio generation may have reached its maximum value.
9391          */
9392         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9393 }
9394
9395 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9396                                 struct kvm_memory_slot *memslot,
9397                                 const struct kvm_userspace_memory_region *mem,
9398                                 enum kvm_mr_change change)
9399 {
9400         return 0;
9401 }
9402
9403 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9404                                      struct kvm_memory_slot *new)
9405 {
9406         /* Still write protect RO slot */
9407         if (new->flags & KVM_MEM_READONLY) {
9408                 kvm_mmu_slot_remove_write_access(kvm, new);
9409                 return;
9410         }
9411
9412         /*
9413          * Call kvm_x86_ops dirty logging hooks when they are valid.
9414          *
9415          * kvm_x86_ops->slot_disable_log_dirty is called when:
9416          *
9417          *  - KVM_MR_CREATE with dirty logging is disabled
9418          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9419          *
9420          * The reason is, in case of PML, we need to set D-bit for any slots
9421          * with dirty logging disabled in order to eliminate unnecessary GPA
9422          * logging in PML buffer (and potential PML buffer full VMEXT). This
9423          * guarantees leaving PML enabled during guest's lifetime won't have
9424          * any additional overhead from PML when guest is running with dirty
9425          * logging disabled for memory slots.
9426          *
9427          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9428          * to dirty logging mode.
9429          *
9430          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9431          *
9432          * In case of write protect:
9433          *
9434          * Write protect all pages for dirty logging.
9435          *
9436          * All the sptes including the large sptes which point to this
9437          * slot are set to readonly. We can not create any new large
9438          * spte on this slot until the end of the logging.
9439          *
9440          * See the comments in fast_page_fault().
9441          */
9442         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9443                 if (kvm_x86_ops->slot_enable_log_dirty)
9444                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9445                 else
9446                         kvm_mmu_slot_remove_write_access(kvm, new);
9447         } else {
9448                 if (kvm_x86_ops->slot_disable_log_dirty)
9449                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9450         }
9451 }
9452
9453 void kvm_arch_commit_memory_region(struct kvm *kvm,
9454                                 const struct kvm_userspace_memory_region *mem,
9455                                 const struct kvm_memory_slot *old,
9456                                 const struct kvm_memory_slot *new,
9457                                 enum kvm_mr_change change)
9458 {
9459         if (!kvm->arch.n_requested_mmu_pages)
9460                 kvm_mmu_change_mmu_pages(kvm,
9461                                 kvm_mmu_calculate_default_mmu_pages(kvm));
9462
9463         /*
9464          * Dirty logging tracks sptes in 4k granularity, meaning that large
9465          * sptes have to be split.  If live migration is successful, the guest
9466          * in the source machine will be destroyed and large sptes will be
9467          * created in the destination. However, if the guest continues to run
9468          * in the source machine (for example if live migration fails), small
9469          * sptes will remain around and cause bad performance.
9470          *
9471          * Scan sptes if dirty logging has been stopped, dropping those
9472          * which can be collapsed into a single large-page spte.  Later
9473          * page faults will create the large-page sptes.
9474          */
9475         if ((change != KVM_MR_DELETE) &&
9476                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9477                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9478                 kvm_mmu_zap_collapsible_sptes(kvm, new);
9479
9480         /*
9481          * Set up write protection and/or dirty logging for the new slot.
9482          *
9483          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9484          * been zapped so no dirty logging staff is needed for old slot. For
9485          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9486          * new and it's also covered when dealing with the new slot.
9487          *
9488          * FIXME: const-ify all uses of struct kvm_memory_slot.
9489          */
9490         if (change != KVM_MR_DELETE)
9491                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9492 }
9493
9494 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9495 {
9496         kvm_mmu_zap_all(kvm);
9497 }
9498
9499 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9500                                    struct kvm_memory_slot *slot)
9501 {
9502         kvm_page_track_flush_slot(kvm, slot);
9503 }
9504
9505 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9506 {
9507         return (is_guest_mode(vcpu) &&
9508                         kvm_x86_ops->guest_apic_has_interrupt &&
9509                         kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9510 }
9511
9512 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9513 {
9514         if (!list_empty_careful(&vcpu->async_pf.done))
9515                 return true;
9516
9517         if (kvm_apic_has_events(vcpu))
9518                 return true;
9519
9520         if (vcpu->arch.pv.pv_unhalted)
9521                 return true;
9522
9523         if (vcpu->arch.exception.pending)
9524                 return true;
9525
9526         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9527             (vcpu->arch.nmi_pending &&
9528              kvm_x86_ops->nmi_allowed(vcpu)))
9529                 return true;
9530
9531         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9532             (vcpu->arch.smi_pending && !is_smm(vcpu)))
9533                 return true;
9534
9535         if (kvm_arch_interrupt_allowed(vcpu) &&
9536             (kvm_cpu_has_interrupt(vcpu) ||
9537             kvm_guest_apic_has_interrupt(vcpu)))
9538                 return true;
9539
9540         if (kvm_hv_has_stimer_pending(vcpu))
9541                 return true;
9542
9543         return false;
9544 }
9545
9546 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9547 {
9548         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9549 }
9550
9551 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9552 {
9553         return vcpu->arch.preempted_in_kernel;
9554 }
9555
9556 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9557 {
9558         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9559 }
9560
9561 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9562 {
9563         return kvm_x86_ops->interrupt_allowed(vcpu);
9564 }
9565
9566 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9567 {
9568         if (is_64_bit_mode(vcpu))
9569                 return kvm_rip_read(vcpu);
9570         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9571                      kvm_rip_read(vcpu));
9572 }
9573 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9574
9575 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9576 {
9577         return kvm_get_linear_rip(vcpu) == linear_rip;
9578 }
9579 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9580
9581 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9582 {
9583         unsigned long rflags;
9584
9585         rflags = kvm_x86_ops->get_rflags(vcpu);
9586         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9587                 rflags &= ~X86_EFLAGS_TF;
9588         return rflags;
9589 }
9590 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9591
9592 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9593 {
9594         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9595             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9596                 rflags |= X86_EFLAGS_TF;
9597         kvm_x86_ops->set_rflags(vcpu, rflags);
9598 }
9599
9600 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9601 {
9602         __kvm_set_rflags(vcpu, rflags);
9603         kvm_make_request(KVM_REQ_EVENT, vcpu);
9604 }
9605 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9606
9607 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9608 {
9609         int r;
9610
9611         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9612               work->wakeup_all)
9613                 return;
9614
9615         r = kvm_mmu_reload(vcpu);
9616         if (unlikely(r))
9617                 return;
9618
9619         if (!vcpu->arch.mmu->direct_map &&
9620               work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9621                 return;
9622
9623         vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9624 }
9625
9626 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9627 {
9628         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9629 }
9630
9631 static inline u32 kvm_async_pf_next_probe(u32 key)
9632 {
9633         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9634 }
9635
9636 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9637 {
9638         u32 key = kvm_async_pf_hash_fn(gfn);
9639
9640         while (vcpu->arch.apf.gfns[key] != ~0)
9641                 key = kvm_async_pf_next_probe(key);
9642
9643         vcpu->arch.apf.gfns[key] = gfn;
9644 }
9645
9646 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9647 {
9648         int i;
9649         u32 key = kvm_async_pf_hash_fn(gfn);
9650
9651         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9652                      (vcpu->arch.apf.gfns[key] != gfn &&
9653                       vcpu->arch.apf.gfns[key] != ~0); i++)
9654                 key = kvm_async_pf_next_probe(key);
9655
9656         return key;
9657 }
9658
9659 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9660 {
9661         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9662 }
9663
9664 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9665 {
9666         u32 i, j, k;
9667
9668         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9669         while (true) {
9670                 vcpu->arch.apf.gfns[i] = ~0;
9671                 do {
9672                         j = kvm_async_pf_next_probe(j);
9673                         if (vcpu->arch.apf.gfns[j] == ~0)
9674                                 return;
9675                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9676                         /*
9677                          * k lies cyclically in ]i,j]
9678                          * |    i.k.j |
9679                          * |....j i.k.| or  |.k..j i...|
9680                          */
9681                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9682                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9683                 i = j;
9684         }
9685 }
9686
9687 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9688 {
9689
9690         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9691                                       sizeof(val));
9692 }
9693
9694 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9695 {
9696
9697         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9698                                       sizeof(u32));
9699 }
9700
9701 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9702                                      struct kvm_async_pf *work)
9703 {
9704         struct x86_exception fault;
9705
9706         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9707         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9708
9709         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9710             (vcpu->arch.apf.send_user_only &&
9711              kvm_x86_ops->get_cpl(vcpu) == 0))
9712                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9713         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9714                 fault.vector = PF_VECTOR;
9715                 fault.error_code_valid = true;
9716                 fault.error_code = 0;
9717                 fault.nested_page_fault = false;
9718                 fault.address = work->arch.token;
9719                 fault.async_page_fault = true;
9720                 kvm_inject_page_fault(vcpu, &fault);
9721         }
9722 }
9723
9724 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9725                                  struct kvm_async_pf *work)
9726 {
9727         struct x86_exception fault;
9728         u32 val;
9729
9730         if (work->wakeup_all)
9731                 work->arch.token = ~0; /* broadcast wakeup */
9732         else
9733                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9734         trace_kvm_async_pf_ready(work->arch.token, work->gva);
9735
9736         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9737             !apf_get_user(vcpu, &val)) {
9738                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9739                     vcpu->arch.exception.pending &&
9740                     vcpu->arch.exception.nr == PF_VECTOR &&
9741                     !apf_put_user(vcpu, 0)) {
9742                         vcpu->arch.exception.injected = false;
9743                         vcpu->arch.exception.pending = false;
9744                         vcpu->arch.exception.nr = 0;
9745                         vcpu->arch.exception.has_error_code = false;
9746                         vcpu->arch.exception.error_code = 0;
9747                         vcpu->arch.exception.has_payload = false;
9748                         vcpu->arch.exception.payload = 0;
9749                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9750                         fault.vector = PF_VECTOR;
9751                         fault.error_code_valid = true;
9752                         fault.error_code = 0;
9753                         fault.nested_page_fault = false;
9754                         fault.address = work->arch.token;
9755                         fault.async_page_fault = true;
9756                         kvm_inject_page_fault(vcpu, &fault);
9757                 }
9758         }
9759         vcpu->arch.apf.halted = false;
9760         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9761 }
9762
9763 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9764 {
9765         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9766                 return true;
9767         else
9768                 return kvm_can_do_async_pf(vcpu);
9769 }
9770
9771 void kvm_arch_start_assignment(struct kvm *kvm)
9772 {
9773         atomic_inc(&kvm->arch.assigned_device_count);
9774 }
9775 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9776
9777 void kvm_arch_end_assignment(struct kvm *kvm)
9778 {
9779         atomic_dec(&kvm->arch.assigned_device_count);
9780 }
9781 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9782
9783 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9784 {
9785         return atomic_read(&kvm->arch.assigned_device_count);
9786 }
9787 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9788
9789 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9790 {
9791         atomic_inc(&kvm->arch.noncoherent_dma_count);
9792 }
9793 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9794
9795 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9796 {
9797         atomic_dec(&kvm->arch.noncoherent_dma_count);
9798 }
9799 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9800
9801 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9802 {
9803         return atomic_read(&kvm->arch.noncoherent_dma_count);
9804 }
9805 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9806
9807 bool kvm_arch_has_irq_bypass(void)
9808 {
9809         return kvm_x86_ops->update_pi_irte != NULL;
9810 }
9811
9812 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9813                                       struct irq_bypass_producer *prod)
9814 {
9815         struct kvm_kernel_irqfd *irqfd =
9816                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9817
9818         irqfd->producer = prod;
9819
9820         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9821                                            prod->irq, irqfd->gsi, 1);
9822 }
9823
9824 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9825                                       struct irq_bypass_producer *prod)
9826 {
9827         int ret;
9828         struct kvm_kernel_irqfd *irqfd =
9829                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9830
9831         WARN_ON(irqfd->producer != prod);
9832         irqfd->producer = NULL;
9833
9834         /*
9835          * When producer of consumer is unregistered, we change back to
9836          * remapped mode, so we can re-use the current implementation
9837          * when the irq is masked/disabled or the consumer side (KVM
9838          * int this case doesn't want to receive the interrupts.
9839         */
9840         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9841         if (ret)
9842                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9843                        " fails: %d\n", irqfd->consumer.token, ret);
9844 }
9845
9846 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9847                                    uint32_t guest_irq, bool set)
9848 {
9849         if (!kvm_x86_ops->update_pi_irte)
9850                 return -EINVAL;
9851
9852         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9853 }
9854
9855 bool kvm_vector_hashing_enabled(void)
9856 {
9857         return vector_hashing;
9858 }
9859 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9860
9861 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9862 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9863 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9864 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9865 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9866 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9867 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9868 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9869 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9870 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9871 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9872 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9873 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9874 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9875 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9876 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9877 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9878 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9879 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);