Merge tag 'armsoc-dt64' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[linux-2.6-block.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/uaccess.h>
40
41 #include <asm/page.h>
42 #include <asm/cmpxchg.h>
43 #include <asm/io.h>
44 #include <asm/vmx.h>
45 #include <asm/kvm_page_track.h>
46
47 /*
48  * When setting this variable to true it enables Two-Dimensional-Paging
49  * where the hardware walks 2 page tables:
50  * 1. the guest-virtual to guest-physical
51  * 2. while doing 1. it walks guest-physical to host-physical
52  * If the hardware supports that we don't need to do shadow paging.
53  */
54 bool tdp_enabled = false;
55
56 enum {
57         AUDIT_PRE_PAGE_FAULT,
58         AUDIT_POST_PAGE_FAULT,
59         AUDIT_PRE_PTE_WRITE,
60         AUDIT_POST_PTE_WRITE,
61         AUDIT_PRE_SYNC,
62         AUDIT_POST_SYNC
63 };
64
65 #undef MMU_DEBUG
66
67 #ifdef MMU_DEBUG
68 static bool dbg = 0;
69 module_param(dbg, bool, 0644);
70
71 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
72 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
73 #define MMU_WARN_ON(x) WARN_ON(x)
74 #else
75 #define pgprintk(x...) do { } while (0)
76 #define rmap_printk(x...) do { } while (0)
77 #define MMU_WARN_ON(x) do { } while (0)
78 #endif
79
80 #define PTE_PREFETCH_NUM                8
81
82 #define PT_FIRST_AVAIL_BITS_SHIFT 10
83 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
84
85 #define PT64_LEVEL_BITS 9
86
87 #define PT64_LEVEL_SHIFT(level) \
88                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
89
90 #define PT64_INDEX(address, level)\
91         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
92
93
94 #define PT32_LEVEL_BITS 10
95
96 #define PT32_LEVEL_SHIFT(level) \
97                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
98
99 #define PT32_LVL_OFFSET_MASK(level) \
100         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
101                                                 * PT32_LEVEL_BITS))) - 1))
102
103 #define PT32_INDEX(address, level)\
104         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
105
106
107 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
108 #define PT64_DIR_BASE_ADDR_MASK \
109         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
110 #define PT64_LVL_ADDR_MASK(level) \
111         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
112                                                 * PT64_LEVEL_BITS))) - 1))
113 #define PT64_LVL_OFFSET_MASK(level) \
114         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
115                                                 * PT64_LEVEL_BITS))) - 1))
116
117 #define PT32_BASE_ADDR_MASK PAGE_MASK
118 #define PT32_DIR_BASE_ADDR_MASK \
119         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
120 #define PT32_LVL_ADDR_MASK(level) \
121         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
122                                             * PT32_LEVEL_BITS))) - 1))
123
124 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
125                         | shadow_x_mask | shadow_nx_mask)
126
127 #define ACC_EXEC_MASK    1
128 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
129 #define ACC_USER_MASK    PT_USER_MASK
130 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
131
132 #include <trace/events/kvm.h>
133
134 #define CREATE_TRACE_POINTS
135 #include "mmutrace.h"
136
137 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
138 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
139
140 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
141
142 /* make pte_list_desc fit well in cache line */
143 #define PTE_LIST_EXT 3
144
145 struct pte_list_desc {
146         u64 *sptes[PTE_LIST_EXT];
147         struct pte_list_desc *more;
148 };
149
150 struct kvm_shadow_walk_iterator {
151         u64 addr;
152         hpa_t shadow_addr;
153         u64 *sptep;
154         int level;
155         unsigned index;
156 };
157
158 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
159         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
160              shadow_walk_okay(&(_walker));                      \
161              shadow_walk_next(&(_walker)))
162
163 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
164         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
165              shadow_walk_okay(&(_walker)) &&                            \
166                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
167              __shadow_walk_next(&(_walker), spte))
168
169 static struct kmem_cache *pte_list_desc_cache;
170 static struct kmem_cache *mmu_page_header_cache;
171 static struct percpu_counter kvm_total_used_mmu_pages;
172
173 static u64 __read_mostly shadow_nx_mask;
174 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
175 static u64 __read_mostly shadow_user_mask;
176 static u64 __read_mostly shadow_accessed_mask;
177 static u64 __read_mostly shadow_dirty_mask;
178 static u64 __read_mostly shadow_mmio_mask;
179
180 static void mmu_spte_set(u64 *sptep, u64 spte);
181 static void mmu_free_roots(struct kvm_vcpu *vcpu);
182
183 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
184 {
185         shadow_mmio_mask = mmio_mask;
186 }
187 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
188
189 /*
190  * the low bit of the generation number is always presumed to be zero.
191  * This disables mmio caching during memslot updates.  The concept is
192  * similar to a seqcount but instead of retrying the access we just punt
193  * and ignore the cache.
194  *
195  * spte bits 3-11 are used as bits 1-9 of the generation number,
196  * the bits 52-61 are used as bits 10-19 of the generation number.
197  */
198 #define MMIO_SPTE_GEN_LOW_SHIFT         2
199 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
200
201 #define MMIO_GEN_SHIFT                  20
202 #define MMIO_GEN_LOW_SHIFT              10
203 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
204 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
205
206 static u64 generation_mmio_spte_mask(unsigned int gen)
207 {
208         u64 mask;
209
210         WARN_ON(gen & ~MMIO_GEN_MASK);
211
212         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
213         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
214         return mask;
215 }
216
217 static unsigned int get_mmio_spte_generation(u64 spte)
218 {
219         unsigned int gen;
220
221         spte &= ~shadow_mmio_mask;
222
223         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
224         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
225         return gen;
226 }
227
228 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
229 {
230         return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
231 }
232
233 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
234                            unsigned access)
235 {
236         unsigned int gen = kvm_current_mmio_generation(vcpu);
237         u64 mask = generation_mmio_spte_mask(gen);
238
239         access &= ACC_WRITE_MASK | ACC_USER_MASK;
240         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
241
242         trace_mark_mmio_spte(sptep, gfn, access, gen);
243         mmu_spte_set(sptep, mask);
244 }
245
246 static bool is_mmio_spte(u64 spte)
247 {
248         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
249 }
250
251 static gfn_t get_mmio_spte_gfn(u64 spte)
252 {
253         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
254         return (spte & ~mask) >> PAGE_SHIFT;
255 }
256
257 static unsigned get_mmio_spte_access(u64 spte)
258 {
259         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
260         return (spte & ~mask) & ~PAGE_MASK;
261 }
262
263 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
264                           kvm_pfn_t pfn, unsigned access)
265 {
266         if (unlikely(is_noslot_pfn(pfn))) {
267                 mark_mmio_spte(vcpu, sptep, gfn, access);
268                 return true;
269         }
270
271         return false;
272 }
273
274 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
275 {
276         unsigned int kvm_gen, spte_gen;
277
278         kvm_gen = kvm_current_mmio_generation(vcpu);
279         spte_gen = get_mmio_spte_generation(spte);
280
281         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
282         return likely(kvm_gen == spte_gen);
283 }
284
285 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
286                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
287 {
288         shadow_user_mask = user_mask;
289         shadow_accessed_mask = accessed_mask;
290         shadow_dirty_mask = dirty_mask;
291         shadow_nx_mask = nx_mask;
292         shadow_x_mask = x_mask;
293 }
294 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
295
296 static int is_cpuid_PSE36(void)
297 {
298         return 1;
299 }
300
301 static int is_nx(struct kvm_vcpu *vcpu)
302 {
303         return vcpu->arch.efer & EFER_NX;
304 }
305
306 static int is_shadow_present_pte(u64 pte)
307 {
308         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
309 }
310
311 static int is_large_pte(u64 pte)
312 {
313         return pte & PT_PAGE_SIZE_MASK;
314 }
315
316 static int is_last_spte(u64 pte, int level)
317 {
318         if (level == PT_PAGE_TABLE_LEVEL)
319                 return 1;
320         if (is_large_pte(pte))
321                 return 1;
322         return 0;
323 }
324
325 static kvm_pfn_t spte_to_pfn(u64 pte)
326 {
327         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
328 }
329
330 static gfn_t pse36_gfn_delta(u32 gpte)
331 {
332         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
333
334         return (gpte & PT32_DIR_PSE36_MASK) << shift;
335 }
336
337 #ifdef CONFIG_X86_64
338 static void __set_spte(u64 *sptep, u64 spte)
339 {
340         WRITE_ONCE(*sptep, spte);
341 }
342
343 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
344 {
345         WRITE_ONCE(*sptep, spte);
346 }
347
348 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
349 {
350         return xchg(sptep, spte);
351 }
352
353 static u64 __get_spte_lockless(u64 *sptep)
354 {
355         return ACCESS_ONCE(*sptep);
356 }
357 #else
358 union split_spte {
359         struct {
360                 u32 spte_low;
361                 u32 spte_high;
362         };
363         u64 spte;
364 };
365
366 static void count_spte_clear(u64 *sptep, u64 spte)
367 {
368         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
369
370         if (is_shadow_present_pte(spte))
371                 return;
372
373         /* Ensure the spte is completely set before we increase the count */
374         smp_wmb();
375         sp->clear_spte_count++;
376 }
377
378 static void __set_spte(u64 *sptep, u64 spte)
379 {
380         union split_spte *ssptep, sspte;
381
382         ssptep = (union split_spte *)sptep;
383         sspte = (union split_spte)spte;
384
385         ssptep->spte_high = sspte.spte_high;
386
387         /*
388          * If we map the spte from nonpresent to present, We should store
389          * the high bits firstly, then set present bit, so cpu can not
390          * fetch this spte while we are setting the spte.
391          */
392         smp_wmb();
393
394         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
395 }
396
397 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
398 {
399         union split_spte *ssptep, sspte;
400
401         ssptep = (union split_spte *)sptep;
402         sspte = (union split_spte)spte;
403
404         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
405
406         /*
407          * If we map the spte from present to nonpresent, we should clear
408          * present bit firstly to avoid vcpu fetch the old high bits.
409          */
410         smp_wmb();
411
412         ssptep->spte_high = sspte.spte_high;
413         count_spte_clear(sptep, spte);
414 }
415
416 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
417 {
418         union split_spte *ssptep, sspte, orig;
419
420         ssptep = (union split_spte *)sptep;
421         sspte = (union split_spte)spte;
422
423         /* xchg acts as a barrier before the setting of the high bits */
424         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
425         orig.spte_high = ssptep->spte_high;
426         ssptep->spte_high = sspte.spte_high;
427         count_spte_clear(sptep, spte);
428
429         return orig.spte;
430 }
431
432 /*
433  * The idea using the light way get the spte on x86_32 guest is from
434  * gup_get_pte(arch/x86/mm/gup.c).
435  *
436  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
437  * coalesces them and we are running out of the MMU lock.  Therefore
438  * we need to protect against in-progress updates of the spte.
439  *
440  * Reading the spte while an update is in progress may get the old value
441  * for the high part of the spte.  The race is fine for a present->non-present
442  * change (because the high part of the spte is ignored for non-present spte),
443  * but for a present->present change we must reread the spte.
444  *
445  * All such changes are done in two steps (present->non-present and
446  * non-present->present), hence it is enough to count the number of
447  * present->non-present updates: if it changed while reading the spte,
448  * we might have hit the race.  This is done using clear_spte_count.
449  */
450 static u64 __get_spte_lockless(u64 *sptep)
451 {
452         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
453         union split_spte spte, *orig = (union split_spte *)sptep;
454         int count;
455
456 retry:
457         count = sp->clear_spte_count;
458         smp_rmb();
459
460         spte.spte_low = orig->spte_low;
461         smp_rmb();
462
463         spte.spte_high = orig->spte_high;
464         smp_rmb();
465
466         if (unlikely(spte.spte_low != orig->spte_low ||
467               count != sp->clear_spte_count))
468                 goto retry;
469
470         return spte.spte;
471 }
472 #endif
473
474 static bool spte_is_locklessly_modifiable(u64 spte)
475 {
476         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
477                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
478 }
479
480 static bool spte_has_volatile_bits(u64 spte)
481 {
482         /*
483          * Always atomically update spte if it can be updated
484          * out of mmu-lock, it can ensure dirty bit is not lost,
485          * also, it can help us to get a stable is_writable_pte()
486          * to ensure tlb flush is not missed.
487          */
488         if (spte_is_locklessly_modifiable(spte))
489                 return true;
490
491         if (!shadow_accessed_mask)
492                 return false;
493
494         if (!is_shadow_present_pte(spte))
495                 return false;
496
497         if ((spte & shadow_accessed_mask) &&
498               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
499                 return false;
500
501         return true;
502 }
503
504 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
505 {
506         return (old_spte & bit_mask) && !(new_spte & bit_mask);
507 }
508
509 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
510 {
511         return (old_spte & bit_mask) != (new_spte & bit_mask);
512 }
513
514 /* Rules for using mmu_spte_set:
515  * Set the sptep from nonpresent to present.
516  * Note: the sptep being assigned *must* be either not present
517  * or in a state where the hardware will not attempt to update
518  * the spte.
519  */
520 static void mmu_spte_set(u64 *sptep, u64 new_spte)
521 {
522         WARN_ON(is_shadow_present_pte(*sptep));
523         __set_spte(sptep, new_spte);
524 }
525
526 /* Rules for using mmu_spte_update:
527  * Update the state bits, it means the mapped pfn is not changged.
528  *
529  * Whenever we overwrite a writable spte with a read-only one we
530  * should flush remote TLBs. Otherwise rmap_write_protect
531  * will find a read-only spte, even though the writable spte
532  * might be cached on a CPU's TLB, the return value indicates this
533  * case.
534  */
535 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
536 {
537         u64 old_spte = *sptep;
538         bool ret = false;
539
540         WARN_ON(!is_shadow_present_pte(new_spte));
541
542         if (!is_shadow_present_pte(old_spte)) {
543                 mmu_spte_set(sptep, new_spte);
544                 return ret;
545         }
546
547         if (!spte_has_volatile_bits(old_spte))
548                 __update_clear_spte_fast(sptep, new_spte);
549         else
550                 old_spte = __update_clear_spte_slow(sptep, new_spte);
551
552         /*
553          * For the spte updated out of mmu-lock is safe, since
554          * we always atomically update it, see the comments in
555          * spte_has_volatile_bits().
556          */
557         if (spte_is_locklessly_modifiable(old_spte) &&
558               !is_writable_pte(new_spte))
559                 ret = true;
560
561         if (!shadow_accessed_mask) {
562                 /*
563                  * We don't set page dirty when dropping non-writable spte.
564                  * So do it now if the new spte is becoming non-writable.
565                  */
566                 if (ret)
567                         kvm_set_pfn_dirty(spte_to_pfn(old_spte));
568                 return ret;
569         }
570
571         /*
572          * Flush TLB when accessed/dirty bits are changed in the page tables,
573          * to guarantee consistency between TLB and page tables.
574          */
575         if (spte_is_bit_changed(old_spte, new_spte,
576                                 shadow_accessed_mask | shadow_dirty_mask))
577                 ret = true;
578
579         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
580                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
581         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
582                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
583
584         return ret;
585 }
586
587 /*
588  * Rules for using mmu_spte_clear_track_bits:
589  * It sets the sptep from present to nonpresent, and track the
590  * state bits, it is used to clear the last level sptep.
591  */
592 static int mmu_spte_clear_track_bits(u64 *sptep)
593 {
594         kvm_pfn_t pfn;
595         u64 old_spte = *sptep;
596
597         if (!spte_has_volatile_bits(old_spte))
598                 __update_clear_spte_fast(sptep, 0ull);
599         else
600                 old_spte = __update_clear_spte_slow(sptep, 0ull);
601
602         if (!is_shadow_present_pte(old_spte))
603                 return 0;
604
605         pfn = spte_to_pfn(old_spte);
606
607         /*
608          * KVM does not hold the refcount of the page used by
609          * kvm mmu, before reclaiming the page, we should
610          * unmap it from mmu first.
611          */
612         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
613
614         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
615                 kvm_set_pfn_accessed(pfn);
616         if (old_spte & (shadow_dirty_mask ? shadow_dirty_mask :
617                                             PT_WRITABLE_MASK))
618                 kvm_set_pfn_dirty(pfn);
619         return 1;
620 }
621
622 /*
623  * Rules for using mmu_spte_clear_no_track:
624  * Directly clear spte without caring the state bits of sptep,
625  * it is used to set the upper level spte.
626  */
627 static void mmu_spte_clear_no_track(u64 *sptep)
628 {
629         __update_clear_spte_fast(sptep, 0ull);
630 }
631
632 static u64 mmu_spte_get_lockless(u64 *sptep)
633 {
634         return __get_spte_lockless(sptep);
635 }
636
637 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
638 {
639         /*
640          * Prevent page table teardown by making any free-er wait during
641          * kvm_flush_remote_tlbs() IPI to all active vcpus.
642          */
643         local_irq_disable();
644
645         /*
646          * Make sure a following spte read is not reordered ahead of the write
647          * to vcpu->mode.
648          */
649         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
650 }
651
652 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
653 {
654         /*
655          * Make sure the write to vcpu->mode is not reordered in front of
656          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
657          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
658          */
659         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
660         local_irq_enable();
661 }
662
663 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
664                                   struct kmem_cache *base_cache, int min)
665 {
666         void *obj;
667
668         if (cache->nobjs >= min)
669                 return 0;
670         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
671                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
672                 if (!obj)
673                         return -ENOMEM;
674                 cache->objects[cache->nobjs++] = obj;
675         }
676         return 0;
677 }
678
679 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
680 {
681         return cache->nobjs;
682 }
683
684 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
685                                   struct kmem_cache *cache)
686 {
687         while (mc->nobjs)
688                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
689 }
690
691 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
692                                        int min)
693 {
694         void *page;
695
696         if (cache->nobjs >= min)
697                 return 0;
698         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
699                 page = (void *)__get_free_page(GFP_KERNEL);
700                 if (!page)
701                         return -ENOMEM;
702                 cache->objects[cache->nobjs++] = page;
703         }
704         return 0;
705 }
706
707 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
708 {
709         while (mc->nobjs)
710                 free_page((unsigned long)mc->objects[--mc->nobjs]);
711 }
712
713 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714 {
715         int r;
716
717         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
718                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
719         if (r)
720                 goto out;
721         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
722         if (r)
723                 goto out;
724         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
725                                    mmu_page_header_cache, 4);
726 out:
727         return r;
728 }
729
730 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
731 {
732         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
733                                 pte_list_desc_cache);
734         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
735         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
736                                 mmu_page_header_cache);
737 }
738
739 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
740 {
741         void *p;
742
743         BUG_ON(!mc->nobjs);
744         p = mc->objects[--mc->nobjs];
745         return p;
746 }
747
748 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
749 {
750         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
751 }
752
753 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
754 {
755         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
756 }
757
758 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
759 {
760         if (!sp->role.direct)
761                 return sp->gfns[index];
762
763         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
764 }
765
766 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
767 {
768         if (sp->role.direct)
769                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
770         else
771                 sp->gfns[index] = gfn;
772 }
773
774 /*
775  * Return the pointer to the large page information for a given gfn,
776  * handling slots that are not large page aligned.
777  */
778 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
779                                               struct kvm_memory_slot *slot,
780                                               int level)
781 {
782         unsigned long idx;
783
784         idx = gfn_to_index(gfn, slot->base_gfn, level);
785         return &slot->arch.lpage_info[level - 2][idx];
786 }
787
788 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
789                                             gfn_t gfn, int count)
790 {
791         struct kvm_lpage_info *linfo;
792         int i;
793
794         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
795                 linfo = lpage_info_slot(gfn, slot, i);
796                 linfo->disallow_lpage += count;
797                 WARN_ON(linfo->disallow_lpage < 0);
798         }
799 }
800
801 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
802 {
803         update_gfn_disallow_lpage_count(slot, gfn, 1);
804 }
805
806 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
807 {
808         update_gfn_disallow_lpage_count(slot, gfn, -1);
809 }
810
811 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
812 {
813         struct kvm_memslots *slots;
814         struct kvm_memory_slot *slot;
815         gfn_t gfn;
816
817         kvm->arch.indirect_shadow_pages++;
818         gfn = sp->gfn;
819         slots = kvm_memslots_for_spte_role(kvm, sp->role);
820         slot = __gfn_to_memslot(slots, gfn);
821
822         /* the non-leaf shadow pages are keeping readonly. */
823         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
824                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
825                                                     KVM_PAGE_TRACK_WRITE);
826
827         kvm_mmu_gfn_disallow_lpage(slot, gfn);
828 }
829
830 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
831 {
832         struct kvm_memslots *slots;
833         struct kvm_memory_slot *slot;
834         gfn_t gfn;
835
836         kvm->arch.indirect_shadow_pages--;
837         gfn = sp->gfn;
838         slots = kvm_memslots_for_spte_role(kvm, sp->role);
839         slot = __gfn_to_memslot(slots, gfn);
840         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
841                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
842                                                        KVM_PAGE_TRACK_WRITE);
843
844         kvm_mmu_gfn_allow_lpage(slot, gfn);
845 }
846
847 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
848                                           struct kvm_memory_slot *slot)
849 {
850         struct kvm_lpage_info *linfo;
851
852         if (slot) {
853                 linfo = lpage_info_slot(gfn, slot, level);
854                 return !!linfo->disallow_lpage;
855         }
856
857         return true;
858 }
859
860 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
861                                         int level)
862 {
863         struct kvm_memory_slot *slot;
864
865         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
866         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
867 }
868
869 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
870 {
871         unsigned long page_size;
872         int i, ret = 0;
873
874         page_size = kvm_host_page_size(kvm, gfn);
875
876         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
877                 if (page_size >= KVM_HPAGE_SIZE(i))
878                         ret = i;
879                 else
880                         break;
881         }
882
883         return ret;
884 }
885
886 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
887                                           bool no_dirty_log)
888 {
889         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
890                 return false;
891         if (no_dirty_log && slot->dirty_bitmap)
892                 return false;
893
894         return true;
895 }
896
897 static struct kvm_memory_slot *
898 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
899                             bool no_dirty_log)
900 {
901         struct kvm_memory_slot *slot;
902
903         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
904         if (!memslot_valid_for_gpte(slot, no_dirty_log))
905                 slot = NULL;
906
907         return slot;
908 }
909
910 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
911                          bool *force_pt_level)
912 {
913         int host_level, level, max_level;
914         struct kvm_memory_slot *slot;
915
916         if (unlikely(*force_pt_level))
917                 return PT_PAGE_TABLE_LEVEL;
918
919         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
920         *force_pt_level = !memslot_valid_for_gpte(slot, true);
921         if (unlikely(*force_pt_level))
922                 return PT_PAGE_TABLE_LEVEL;
923
924         host_level = host_mapping_level(vcpu->kvm, large_gfn);
925
926         if (host_level == PT_PAGE_TABLE_LEVEL)
927                 return host_level;
928
929         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
930
931         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
932                 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
933                         break;
934
935         return level - 1;
936 }
937
938 /*
939  * About rmap_head encoding:
940  *
941  * If the bit zero of rmap_head->val is clear, then it points to the only spte
942  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
943  * pte_list_desc containing more mappings.
944  */
945
946 /*
947  * Returns the number of pointers in the rmap chain, not counting the new one.
948  */
949 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
950                         struct kvm_rmap_head *rmap_head)
951 {
952         struct pte_list_desc *desc;
953         int i, count = 0;
954
955         if (!rmap_head->val) {
956                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
957                 rmap_head->val = (unsigned long)spte;
958         } else if (!(rmap_head->val & 1)) {
959                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
960                 desc = mmu_alloc_pte_list_desc(vcpu);
961                 desc->sptes[0] = (u64 *)rmap_head->val;
962                 desc->sptes[1] = spte;
963                 rmap_head->val = (unsigned long)desc | 1;
964                 ++count;
965         } else {
966                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
967                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
968                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
969                         desc = desc->more;
970                         count += PTE_LIST_EXT;
971                 }
972                 if (desc->sptes[PTE_LIST_EXT-1]) {
973                         desc->more = mmu_alloc_pte_list_desc(vcpu);
974                         desc = desc->more;
975                 }
976                 for (i = 0; desc->sptes[i]; ++i)
977                         ++count;
978                 desc->sptes[i] = spte;
979         }
980         return count;
981 }
982
983 static void
984 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
985                            struct pte_list_desc *desc, int i,
986                            struct pte_list_desc *prev_desc)
987 {
988         int j;
989
990         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
991                 ;
992         desc->sptes[i] = desc->sptes[j];
993         desc->sptes[j] = NULL;
994         if (j != 0)
995                 return;
996         if (!prev_desc && !desc->more)
997                 rmap_head->val = (unsigned long)desc->sptes[0];
998         else
999                 if (prev_desc)
1000                         prev_desc->more = desc->more;
1001                 else
1002                         rmap_head->val = (unsigned long)desc->more | 1;
1003         mmu_free_pte_list_desc(desc);
1004 }
1005
1006 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1007 {
1008         struct pte_list_desc *desc;
1009         struct pte_list_desc *prev_desc;
1010         int i;
1011
1012         if (!rmap_head->val) {
1013                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1014                 BUG();
1015         } else if (!(rmap_head->val & 1)) {
1016                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1017                 if ((u64 *)rmap_head->val != spte) {
1018                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1019                         BUG();
1020                 }
1021                 rmap_head->val = 0;
1022         } else {
1023                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
1024                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1025                 prev_desc = NULL;
1026                 while (desc) {
1027                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1028                                 if (desc->sptes[i] == spte) {
1029                                         pte_list_desc_remove_entry(rmap_head,
1030                                                         desc, i, prev_desc);
1031                                         return;
1032                                 }
1033                         }
1034                         prev_desc = desc;
1035                         desc = desc->more;
1036                 }
1037                 pr_err("pte_list_remove: %p many->many\n", spte);
1038                 BUG();
1039         }
1040 }
1041
1042 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1043                                            struct kvm_memory_slot *slot)
1044 {
1045         unsigned long idx;
1046
1047         idx = gfn_to_index(gfn, slot->base_gfn, level);
1048         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1049 }
1050
1051 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1052                                          struct kvm_mmu_page *sp)
1053 {
1054         struct kvm_memslots *slots;
1055         struct kvm_memory_slot *slot;
1056
1057         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1058         slot = __gfn_to_memslot(slots, gfn);
1059         return __gfn_to_rmap(gfn, sp->role.level, slot);
1060 }
1061
1062 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1063 {
1064         struct kvm_mmu_memory_cache *cache;
1065
1066         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1067         return mmu_memory_cache_free_objects(cache);
1068 }
1069
1070 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1071 {
1072         struct kvm_mmu_page *sp;
1073         struct kvm_rmap_head *rmap_head;
1074
1075         sp = page_header(__pa(spte));
1076         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1077         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1078         return pte_list_add(vcpu, spte, rmap_head);
1079 }
1080
1081 static void rmap_remove(struct kvm *kvm, u64 *spte)
1082 {
1083         struct kvm_mmu_page *sp;
1084         gfn_t gfn;
1085         struct kvm_rmap_head *rmap_head;
1086
1087         sp = page_header(__pa(spte));
1088         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1089         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1090         pte_list_remove(spte, rmap_head);
1091 }
1092
1093 /*
1094  * Used by the following functions to iterate through the sptes linked by a
1095  * rmap.  All fields are private and not assumed to be used outside.
1096  */
1097 struct rmap_iterator {
1098         /* private fields */
1099         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1100         int pos;                        /* index of the sptep */
1101 };
1102
1103 /*
1104  * Iteration must be started by this function.  This should also be used after
1105  * removing/dropping sptes from the rmap link because in such cases the
1106  * information in the itererator may not be valid.
1107  *
1108  * Returns sptep if found, NULL otherwise.
1109  */
1110 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1111                            struct rmap_iterator *iter)
1112 {
1113         u64 *sptep;
1114
1115         if (!rmap_head->val)
1116                 return NULL;
1117
1118         if (!(rmap_head->val & 1)) {
1119                 iter->desc = NULL;
1120                 sptep = (u64 *)rmap_head->val;
1121                 goto out;
1122         }
1123
1124         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1125         iter->pos = 0;
1126         sptep = iter->desc->sptes[iter->pos];
1127 out:
1128         BUG_ON(!is_shadow_present_pte(*sptep));
1129         return sptep;
1130 }
1131
1132 /*
1133  * Must be used with a valid iterator: e.g. after rmap_get_first().
1134  *
1135  * Returns sptep if found, NULL otherwise.
1136  */
1137 static u64 *rmap_get_next(struct rmap_iterator *iter)
1138 {
1139         u64 *sptep;
1140
1141         if (iter->desc) {
1142                 if (iter->pos < PTE_LIST_EXT - 1) {
1143                         ++iter->pos;
1144                         sptep = iter->desc->sptes[iter->pos];
1145                         if (sptep)
1146                                 goto out;
1147                 }
1148
1149                 iter->desc = iter->desc->more;
1150
1151                 if (iter->desc) {
1152                         iter->pos = 0;
1153                         /* desc->sptes[0] cannot be NULL */
1154                         sptep = iter->desc->sptes[iter->pos];
1155                         goto out;
1156                 }
1157         }
1158
1159         return NULL;
1160 out:
1161         BUG_ON(!is_shadow_present_pte(*sptep));
1162         return sptep;
1163 }
1164
1165 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1166         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1167              _spte_; _spte_ = rmap_get_next(_iter_))
1168
1169 static void drop_spte(struct kvm *kvm, u64 *sptep)
1170 {
1171         if (mmu_spte_clear_track_bits(sptep))
1172                 rmap_remove(kvm, sptep);
1173 }
1174
1175
1176 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1177 {
1178         if (is_large_pte(*sptep)) {
1179                 WARN_ON(page_header(__pa(sptep))->role.level ==
1180                         PT_PAGE_TABLE_LEVEL);
1181                 drop_spte(kvm, sptep);
1182                 --kvm->stat.lpages;
1183                 return true;
1184         }
1185
1186         return false;
1187 }
1188
1189 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1190 {
1191         if (__drop_large_spte(vcpu->kvm, sptep))
1192                 kvm_flush_remote_tlbs(vcpu->kvm);
1193 }
1194
1195 /*
1196  * Write-protect on the specified @sptep, @pt_protect indicates whether
1197  * spte write-protection is caused by protecting shadow page table.
1198  *
1199  * Note: write protection is difference between dirty logging and spte
1200  * protection:
1201  * - for dirty logging, the spte can be set to writable at anytime if
1202  *   its dirty bitmap is properly set.
1203  * - for spte protection, the spte can be writable only after unsync-ing
1204  *   shadow page.
1205  *
1206  * Return true if tlb need be flushed.
1207  */
1208 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1209 {
1210         u64 spte = *sptep;
1211
1212         if (!is_writable_pte(spte) &&
1213               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1214                 return false;
1215
1216         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1217
1218         if (pt_protect)
1219                 spte &= ~SPTE_MMU_WRITEABLE;
1220         spte = spte & ~PT_WRITABLE_MASK;
1221
1222         return mmu_spte_update(sptep, spte);
1223 }
1224
1225 static bool __rmap_write_protect(struct kvm *kvm,
1226                                  struct kvm_rmap_head *rmap_head,
1227                                  bool pt_protect)
1228 {
1229         u64 *sptep;
1230         struct rmap_iterator iter;
1231         bool flush = false;
1232
1233         for_each_rmap_spte(rmap_head, &iter, sptep)
1234                 flush |= spte_write_protect(kvm, sptep, pt_protect);
1235
1236         return flush;
1237 }
1238
1239 static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1240 {
1241         u64 spte = *sptep;
1242
1243         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1244
1245         spte &= ~shadow_dirty_mask;
1246
1247         return mmu_spte_update(sptep, spte);
1248 }
1249
1250 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1251 {
1252         u64 *sptep;
1253         struct rmap_iterator iter;
1254         bool flush = false;
1255
1256         for_each_rmap_spte(rmap_head, &iter, sptep)
1257                 flush |= spte_clear_dirty(kvm, sptep);
1258
1259         return flush;
1260 }
1261
1262 static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1263 {
1264         u64 spte = *sptep;
1265
1266         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1267
1268         spte |= shadow_dirty_mask;
1269
1270         return mmu_spte_update(sptep, spte);
1271 }
1272
1273 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1274 {
1275         u64 *sptep;
1276         struct rmap_iterator iter;
1277         bool flush = false;
1278
1279         for_each_rmap_spte(rmap_head, &iter, sptep)
1280                 flush |= spte_set_dirty(kvm, sptep);
1281
1282         return flush;
1283 }
1284
1285 /**
1286  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1287  * @kvm: kvm instance
1288  * @slot: slot to protect
1289  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1290  * @mask: indicates which pages we should protect
1291  *
1292  * Used when we do not need to care about huge page mappings: e.g. during dirty
1293  * logging we do not have any such mappings.
1294  */
1295 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1296                                      struct kvm_memory_slot *slot,
1297                                      gfn_t gfn_offset, unsigned long mask)
1298 {
1299         struct kvm_rmap_head *rmap_head;
1300
1301         while (mask) {
1302                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1303                                           PT_PAGE_TABLE_LEVEL, slot);
1304                 __rmap_write_protect(kvm, rmap_head, false);
1305
1306                 /* clear the first set bit */
1307                 mask &= mask - 1;
1308         }
1309 }
1310
1311 /**
1312  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1313  * @kvm: kvm instance
1314  * @slot: slot to clear D-bit
1315  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1316  * @mask: indicates which pages we should clear D-bit
1317  *
1318  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1319  */
1320 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1321                                      struct kvm_memory_slot *slot,
1322                                      gfn_t gfn_offset, unsigned long mask)
1323 {
1324         struct kvm_rmap_head *rmap_head;
1325
1326         while (mask) {
1327                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1328                                           PT_PAGE_TABLE_LEVEL, slot);
1329                 __rmap_clear_dirty(kvm, rmap_head);
1330
1331                 /* clear the first set bit */
1332                 mask &= mask - 1;
1333         }
1334 }
1335 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1336
1337 /**
1338  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1339  * PT level pages.
1340  *
1341  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1342  * enable dirty logging for them.
1343  *
1344  * Used when we do not need to care about huge page mappings: e.g. during dirty
1345  * logging we do not have any such mappings.
1346  */
1347 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1348                                 struct kvm_memory_slot *slot,
1349                                 gfn_t gfn_offset, unsigned long mask)
1350 {
1351         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1352                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1353                                 mask);
1354         else
1355                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1356 }
1357
1358 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1359                                     struct kvm_memory_slot *slot, u64 gfn)
1360 {
1361         struct kvm_rmap_head *rmap_head;
1362         int i;
1363         bool write_protected = false;
1364
1365         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1366                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1367                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1368         }
1369
1370         return write_protected;
1371 }
1372
1373 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1374 {
1375         struct kvm_memory_slot *slot;
1376
1377         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1378         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1379 }
1380
1381 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1382 {
1383         u64 *sptep;
1384         struct rmap_iterator iter;
1385         bool flush = false;
1386
1387         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1388                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1389
1390                 drop_spte(kvm, sptep);
1391                 flush = true;
1392         }
1393
1394         return flush;
1395 }
1396
1397 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1398                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1399                            unsigned long data)
1400 {
1401         return kvm_zap_rmapp(kvm, rmap_head);
1402 }
1403
1404 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1405                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1406                              unsigned long data)
1407 {
1408         u64 *sptep;
1409         struct rmap_iterator iter;
1410         int need_flush = 0;
1411         u64 new_spte;
1412         pte_t *ptep = (pte_t *)data;
1413         kvm_pfn_t new_pfn;
1414
1415         WARN_ON(pte_huge(*ptep));
1416         new_pfn = pte_pfn(*ptep);
1417
1418 restart:
1419         for_each_rmap_spte(rmap_head, &iter, sptep) {
1420                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1421                              sptep, *sptep, gfn, level);
1422
1423                 need_flush = 1;
1424
1425                 if (pte_write(*ptep)) {
1426                         drop_spte(kvm, sptep);
1427                         goto restart;
1428                 } else {
1429                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1430                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1431
1432                         new_spte &= ~PT_WRITABLE_MASK;
1433                         new_spte &= ~SPTE_HOST_WRITEABLE;
1434                         new_spte &= ~shadow_accessed_mask;
1435
1436                         mmu_spte_clear_track_bits(sptep);
1437                         mmu_spte_set(sptep, new_spte);
1438                 }
1439         }
1440
1441         if (need_flush)
1442                 kvm_flush_remote_tlbs(kvm);
1443
1444         return 0;
1445 }
1446
1447 struct slot_rmap_walk_iterator {
1448         /* input fields. */
1449         struct kvm_memory_slot *slot;
1450         gfn_t start_gfn;
1451         gfn_t end_gfn;
1452         int start_level;
1453         int end_level;
1454
1455         /* output fields. */
1456         gfn_t gfn;
1457         struct kvm_rmap_head *rmap;
1458         int level;
1459
1460         /* private field. */
1461         struct kvm_rmap_head *end_rmap;
1462 };
1463
1464 static void
1465 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1466 {
1467         iterator->level = level;
1468         iterator->gfn = iterator->start_gfn;
1469         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1470         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1471                                            iterator->slot);
1472 }
1473
1474 static void
1475 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1476                     struct kvm_memory_slot *slot, int start_level,
1477                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1478 {
1479         iterator->slot = slot;
1480         iterator->start_level = start_level;
1481         iterator->end_level = end_level;
1482         iterator->start_gfn = start_gfn;
1483         iterator->end_gfn = end_gfn;
1484
1485         rmap_walk_init_level(iterator, iterator->start_level);
1486 }
1487
1488 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1489 {
1490         return !!iterator->rmap;
1491 }
1492
1493 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1494 {
1495         if (++iterator->rmap <= iterator->end_rmap) {
1496                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1497                 return;
1498         }
1499
1500         if (++iterator->level > iterator->end_level) {
1501                 iterator->rmap = NULL;
1502                 return;
1503         }
1504
1505         rmap_walk_init_level(iterator, iterator->level);
1506 }
1507
1508 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1509            _start_gfn, _end_gfn, _iter_)                                \
1510         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1511                                  _end_level_, _start_gfn, _end_gfn);    \
1512              slot_rmap_walk_okay(_iter_);                               \
1513              slot_rmap_walk_next(_iter_))
1514
1515 static int kvm_handle_hva_range(struct kvm *kvm,
1516                                 unsigned long start,
1517                                 unsigned long end,
1518                                 unsigned long data,
1519                                 int (*handler)(struct kvm *kvm,
1520                                                struct kvm_rmap_head *rmap_head,
1521                                                struct kvm_memory_slot *slot,
1522                                                gfn_t gfn,
1523                                                int level,
1524                                                unsigned long data))
1525 {
1526         struct kvm_memslots *slots;
1527         struct kvm_memory_slot *memslot;
1528         struct slot_rmap_walk_iterator iterator;
1529         int ret = 0;
1530         int i;
1531
1532         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1533                 slots = __kvm_memslots(kvm, i);
1534                 kvm_for_each_memslot(memslot, slots) {
1535                         unsigned long hva_start, hva_end;
1536                         gfn_t gfn_start, gfn_end;
1537
1538                         hva_start = max(start, memslot->userspace_addr);
1539                         hva_end = min(end, memslot->userspace_addr +
1540                                       (memslot->npages << PAGE_SHIFT));
1541                         if (hva_start >= hva_end)
1542                                 continue;
1543                         /*
1544                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1545                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1546                          */
1547                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1548                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1549
1550                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1551                                                  PT_MAX_HUGEPAGE_LEVEL,
1552                                                  gfn_start, gfn_end - 1,
1553                                                  &iterator)
1554                                 ret |= handler(kvm, iterator.rmap, memslot,
1555                                                iterator.gfn, iterator.level, data);
1556                 }
1557         }
1558
1559         return ret;
1560 }
1561
1562 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1563                           unsigned long data,
1564                           int (*handler)(struct kvm *kvm,
1565                                          struct kvm_rmap_head *rmap_head,
1566                                          struct kvm_memory_slot *slot,
1567                                          gfn_t gfn, int level,
1568                                          unsigned long data))
1569 {
1570         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1571 }
1572
1573 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1574 {
1575         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1576 }
1577
1578 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1579 {
1580         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1581 }
1582
1583 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1584 {
1585         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1586 }
1587
1588 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1589                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1590                          unsigned long data)
1591 {
1592         u64 *sptep;
1593         struct rmap_iterator uninitialized_var(iter);
1594         int young = 0;
1595
1596         BUG_ON(!shadow_accessed_mask);
1597
1598         for_each_rmap_spte(rmap_head, &iter, sptep) {
1599                 if (*sptep & shadow_accessed_mask) {
1600                         young = 1;
1601                         clear_bit((ffs(shadow_accessed_mask) - 1),
1602                                  (unsigned long *)sptep);
1603                 }
1604         }
1605
1606         trace_kvm_age_page(gfn, level, slot, young);
1607         return young;
1608 }
1609
1610 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1611                               struct kvm_memory_slot *slot, gfn_t gfn,
1612                               int level, unsigned long data)
1613 {
1614         u64 *sptep;
1615         struct rmap_iterator iter;
1616         int young = 0;
1617
1618         /*
1619          * If there's no access bit in the secondary pte set by the
1620          * hardware it's up to gup-fast/gup to set the access bit in
1621          * the primary pte or in the page structure.
1622          */
1623         if (!shadow_accessed_mask)
1624                 goto out;
1625
1626         for_each_rmap_spte(rmap_head, &iter, sptep) {
1627                 if (*sptep & shadow_accessed_mask) {
1628                         young = 1;
1629                         break;
1630                 }
1631         }
1632 out:
1633         return young;
1634 }
1635
1636 #define RMAP_RECYCLE_THRESHOLD 1000
1637
1638 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1639 {
1640         struct kvm_rmap_head *rmap_head;
1641         struct kvm_mmu_page *sp;
1642
1643         sp = page_header(__pa(spte));
1644
1645         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1646
1647         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1648         kvm_flush_remote_tlbs(vcpu->kvm);
1649 }
1650
1651 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1652 {
1653         /*
1654          * In case of absence of EPT Access and Dirty Bits supports,
1655          * emulate the accessed bit for EPT, by checking if this page has
1656          * an EPT mapping, and clearing it if it does. On the next access,
1657          * a new EPT mapping will be established.
1658          * This has some overhead, but not as much as the cost of swapping
1659          * out actively used pages or breaking up actively used hugepages.
1660          */
1661         if (!shadow_accessed_mask) {
1662                 /*
1663                  * We are holding the kvm->mmu_lock, and we are blowing up
1664                  * shadow PTEs. MMU notifier consumers need to be kept at bay.
1665                  * This is correct as long as we don't decouple the mmu_lock
1666                  * protected regions (like invalidate_range_start|end does).
1667                  */
1668                 kvm->mmu_notifier_seq++;
1669                 return kvm_handle_hva_range(kvm, start, end, 0,
1670                                             kvm_unmap_rmapp);
1671         }
1672
1673         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1674 }
1675
1676 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1677 {
1678         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1679 }
1680
1681 #ifdef MMU_DEBUG
1682 static int is_empty_shadow_page(u64 *spt)
1683 {
1684         u64 *pos;
1685         u64 *end;
1686
1687         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1688                 if (is_shadow_present_pte(*pos)) {
1689                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1690                                pos, *pos);
1691                         return 0;
1692                 }
1693         return 1;
1694 }
1695 #endif
1696
1697 /*
1698  * This value is the sum of all of the kvm instances's
1699  * kvm->arch.n_used_mmu_pages values.  We need a global,
1700  * aggregate version in order to make the slab shrinker
1701  * faster
1702  */
1703 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1704 {
1705         kvm->arch.n_used_mmu_pages += nr;
1706         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1707 }
1708
1709 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1710 {
1711         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1712         hlist_del(&sp->hash_link);
1713         list_del(&sp->link);
1714         free_page((unsigned long)sp->spt);
1715         if (!sp->role.direct)
1716                 free_page((unsigned long)sp->gfns);
1717         kmem_cache_free(mmu_page_header_cache, sp);
1718 }
1719
1720 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1721 {
1722         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1723 }
1724
1725 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1726                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1727 {
1728         if (!parent_pte)
1729                 return;
1730
1731         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1732 }
1733
1734 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1735                                        u64 *parent_pte)
1736 {
1737         pte_list_remove(parent_pte, &sp->parent_ptes);
1738 }
1739
1740 static void drop_parent_pte(struct kvm_mmu_page *sp,
1741                             u64 *parent_pte)
1742 {
1743         mmu_page_remove_parent_pte(sp, parent_pte);
1744         mmu_spte_clear_no_track(parent_pte);
1745 }
1746
1747 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1748 {
1749         struct kvm_mmu_page *sp;
1750
1751         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1752         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1753         if (!direct)
1754                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1755         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1756
1757         /*
1758          * The active_mmu_pages list is the FIFO list, do not move the
1759          * page until it is zapped. kvm_zap_obsolete_pages depends on
1760          * this feature. See the comments in kvm_zap_obsolete_pages().
1761          */
1762         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1763         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1764         return sp;
1765 }
1766
1767 static void mark_unsync(u64 *spte);
1768 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1769 {
1770         u64 *sptep;
1771         struct rmap_iterator iter;
1772
1773         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1774                 mark_unsync(sptep);
1775         }
1776 }
1777
1778 static void mark_unsync(u64 *spte)
1779 {
1780         struct kvm_mmu_page *sp;
1781         unsigned int index;
1782
1783         sp = page_header(__pa(spte));
1784         index = spte - sp->spt;
1785         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1786                 return;
1787         if (sp->unsync_children++)
1788                 return;
1789         kvm_mmu_mark_parents_unsync(sp);
1790 }
1791
1792 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1793                                struct kvm_mmu_page *sp)
1794 {
1795         return 0;
1796 }
1797
1798 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1799 {
1800 }
1801
1802 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1803                                  struct kvm_mmu_page *sp, u64 *spte,
1804                                  const void *pte)
1805 {
1806         WARN_ON(1);
1807 }
1808
1809 #define KVM_PAGE_ARRAY_NR 16
1810
1811 struct kvm_mmu_pages {
1812         struct mmu_page_and_offset {
1813                 struct kvm_mmu_page *sp;
1814                 unsigned int idx;
1815         } page[KVM_PAGE_ARRAY_NR];
1816         unsigned int nr;
1817 };
1818
1819 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1820                          int idx)
1821 {
1822         int i;
1823
1824         if (sp->unsync)
1825                 for (i=0; i < pvec->nr; i++)
1826                         if (pvec->page[i].sp == sp)
1827                                 return 0;
1828
1829         pvec->page[pvec->nr].sp = sp;
1830         pvec->page[pvec->nr].idx = idx;
1831         pvec->nr++;
1832         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1833 }
1834
1835 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1836 {
1837         --sp->unsync_children;
1838         WARN_ON((int)sp->unsync_children < 0);
1839         __clear_bit(idx, sp->unsync_child_bitmap);
1840 }
1841
1842 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1843                            struct kvm_mmu_pages *pvec)
1844 {
1845         int i, ret, nr_unsync_leaf = 0;
1846
1847         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1848                 struct kvm_mmu_page *child;
1849                 u64 ent = sp->spt[i];
1850
1851                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1852                         clear_unsync_child_bit(sp, i);
1853                         continue;
1854                 }
1855
1856                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1857
1858                 if (child->unsync_children) {
1859                         if (mmu_pages_add(pvec, child, i))
1860                                 return -ENOSPC;
1861
1862                         ret = __mmu_unsync_walk(child, pvec);
1863                         if (!ret) {
1864                                 clear_unsync_child_bit(sp, i);
1865                                 continue;
1866                         } else if (ret > 0) {
1867                                 nr_unsync_leaf += ret;
1868                         } else
1869                                 return ret;
1870                 } else if (child->unsync) {
1871                         nr_unsync_leaf++;
1872                         if (mmu_pages_add(pvec, child, i))
1873                                 return -ENOSPC;
1874                 } else
1875                         clear_unsync_child_bit(sp, i);
1876         }
1877
1878         return nr_unsync_leaf;
1879 }
1880
1881 #define INVALID_INDEX (-1)
1882
1883 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1884                            struct kvm_mmu_pages *pvec)
1885 {
1886         pvec->nr = 0;
1887         if (!sp->unsync_children)
1888                 return 0;
1889
1890         mmu_pages_add(pvec, sp, INVALID_INDEX);
1891         return __mmu_unsync_walk(sp, pvec);
1892 }
1893
1894 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1895 {
1896         WARN_ON(!sp->unsync);
1897         trace_kvm_mmu_sync_page(sp);
1898         sp->unsync = 0;
1899         --kvm->stat.mmu_unsync;
1900 }
1901
1902 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1903                                     struct list_head *invalid_list);
1904 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1905                                     struct list_head *invalid_list);
1906
1907 /*
1908  * NOTE: we should pay more attention on the zapped-obsolete page
1909  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1910  * since it has been deleted from active_mmu_pages but still can be found
1911  * at hast list.
1912  *
1913  * for_each_gfn_valid_sp() has skipped that kind of pages.
1914  */
1915 #define for_each_gfn_valid_sp(_kvm, _sp, _gfn)                          \
1916         hlist_for_each_entry(_sp,                                       \
1917           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1918                 if ((_sp)->gfn != (_gfn) || is_obsolete_sp((_kvm), (_sp)) \
1919                         || (_sp)->role.invalid) {} else
1920
1921 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1922         for_each_gfn_valid_sp(_kvm, _sp, _gfn)                          \
1923                 if ((_sp)->role.direct) {} else
1924
1925 /* @sp->gfn should be write-protected at the call site */
1926 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1927                             struct list_head *invalid_list)
1928 {
1929         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1930                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1931                 return false;
1932         }
1933
1934         if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
1935                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1936                 return false;
1937         }
1938
1939         return true;
1940 }
1941
1942 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1943                                  struct list_head *invalid_list,
1944                                  bool remote_flush, bool local_flush)
1945 {
1946         if (!list_empty(invalid_list)) {
1947                 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
1948                 return;
1949         }
1950
1951         if (remote_flush)
1952                 kvm_flush_remote_tlbs(vcpu->kvm);
1953         else if (local_flush)
1954                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1955 }
1956
1957 #ifdef CONFIG_KVM_MMU_AUDIT
1958 #include "mmu_audit.c"
1959 #else
1960 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1961 static void mmu_audit_disable(void) { }
1962 #endif
1963
1964 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1965 {
1966         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1967 }
1968
1969 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1970                          struct list_head *invalid_list)
1971 {
1972         kvm_unlink_unsync_page(vcpu->kvm, sp);
1973         return __kvm_sync_page(vcpu, sp, invalid_list);
1974 }
1975
1976 /* @gfn should be write-protected at the call site */
1977 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1978                            struct list_head *invalid_list)
1979 {
1980         struct kvm_mmu_page *s;
1981         bool ret = false;
1982
1983         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1984                 if (!s->unsync)
1985                         continue;
1986
1987                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1988                 ret |= kvm_sync_page(vcpu, s, invalid_list);
1989         }
1990
1991         return ret;
1992 }
1993
1994 struct mmu_page_path {
1995         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
1996         unsigned int idx[PT64_ROOT_LEVEL];
1997 };
1998
1999 #define for_each_sp(pvec, sp, parents, i)                       \
2000                 for (i = mmu_pages_first(&pvec, &parents);      \
2001                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2002                         i = mmu_pages_next(&pvec, &parents, i))
2003
2004 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2005                           struct mmu_page_path *parents,
2006                           int i)
2007 {
2008         int n;
2009
2010         for (n = i+1; n < pvec->nr; n++) {
2011                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2012                 unsigned idx = pvec->page[n].idx;
2013                 int level = sp->role.level;
2014
2015                 parents->idx[level-1] = idx;
2016                 if (level == PT_PAGE_TABLE_LEVEL)
2017                         break;
2018
2019                 parents->parent[level-2] = sp;
2020         }
2021
2022         return n;
2023 }
2024
2025 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2026                            struct mmu_page_path *parents)
2027 {
2028         struct kvm_mmu_page *sp;
2029         int level;
2030
2031         if (pvec->nr == 0)
2032                 return 0;
2033
2034         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2035
2036         sp = pvec->page[0].sp;
2037         level = sp->role.level;
2038         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2039
2040         parents->parent[level-2] = sp;
2041
2042         /* Also set up a sentinel.  Further entries in pvec are all
2043          * children of sp, so this element is never overwritten.
2044          */
2045         parents->parent[level-1] = NULL;
2046         return mmu_pages_next(pvec, parents, 0);
2047 }
2048
2049 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2050 {
2051         struct kvm_mmu_page *sp;
2052         unsigned int level = 0;
2053
2054         do {
2055                 unsigned int idx = parents->idx[level];
2056                 sp = parents->parent[level];
2057                 if (!sp)
2058                         return;
2059
2060                 WARN_ON(idx == INVALID_INDEX);
2061                 clear_unsync_child_bit(sp, idx);
2062                 level++;
2063         } while (!sp->unsync_children);
2064 }
2065
2066 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2067                               struct kvm_mmu_page *parent)
2068 {
2069         int i;
2070         struct kvm_mmu_page *sp;
2071         struct mmu_page_path parents;
2072         struct kvm_mmu_pages pages;
2073         LIST_HEAD(invalid_list);
2074         bool flush = false;
2075
2076         while (mmu_unsync_walk(parent, &pages)) {
2077                 bool protected = false;
2078
2079                 for_each_sp(pages, sp, parents, i)
2080                         protected |= rmap_write_protect(vcpu, sp->gfn);
2081
2082                 if (protected) {
2083                         kvm_flush_remote_tlbs(vcpu->kvm);
2084                         flush = false;
2085                 }
2086
2087                 for_each_sp(pages, sp, parents, i) {
2088                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2089                         mmu_pages_clear_parents(&parents);
2090                 }
2091                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2092                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2093                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2094                         flush = false;
2095                 }
2096         }
2097
2098         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2099 }
2100
2101 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2102 {
2103         atomic_set(&sp->write_flooding_count,  0);
2104 }
2105
2106 static void clear_sp_write_flooding_count(u64 *spte)
2107 {
2108         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2109
2110         __clear_sp_write_flooding_count(sp);
2111 }
2112
2113 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2114                                              gfn_t gfn,
2115                                              gva_t gaddr,
2116                                              unsigned level,
2117                                              int direct,
2118                                              unsigned access)
2119 {
2120         union kvm_mmu_page_role role;
2121         unsigned quadrant;
2122         struct kvm_mmu_page *sp;
2123         bool need_sync = false;
2124         bool flush = false;
2125         LIST_HEAD(invalid_list);
2126
2127         role = vcpu->arch.mmu.base_role;
2128         role.level = level;
2129         role.direct = direct;
2130         if (role.direct)
2131                 role.cr4_pae = 0;
2132         role.access = access;
2133         if (!vcpu->arch.mmu.direct_map
2134             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2135                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2136                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2137                 role.quadrant = quadrant;
2138         }
2139         for_each_gfn_valid_sp(vcpu->kvm, sp, gfn) {
2140                 if (!need_sync && sp->unsync)
2141                         need_sync = true;
2142
2143                 if (sp->role.word != role.word)
2144                         continue;
2145
2146                 if (sp->unsync) {
2147                         /* The page is good, but __kvm_sync_page might still end
2148                          * up zapping it.  If so, break in order to rebuild it.
2149                          */
2150                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2151                                 break;
2152
2153                         WARN_ON(!list_empty(&invalid_list));
2154                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2155                 }
2156
2157                 if (sp->unsync_children)
2158                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2159
2160                 __clear_sp_write_flooding_count(sp);
2161                 trace_kvm_mmu_get_page(sp, false);
2162                 return sp;
2163         }
2164
2165         ++vcpu->kvm->stat.mmu_cache_miss;
2166
2167         sp = kvm_mmu_alloc_page(vcpu, direct);
2168
2169         sp->gfn = gfn;
2170         sp->role = role;
2171         hlist_add_head(&sp->hash_link,
2172                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2173         if (!direct) {
2174                 /*
2175                  * we should do write protection before syncing pages
2176                  * otherwise the content of the synced shadow page may
2177                  * be inconsistent with guest page table.
2178                  */
2179                 account_shadowed(vcpu->kvm, sp);
2180                 if (level == PT_PAGE_TABLE_LEVEL &&
2181                       rmap_write_protect(vcpu, gfn))
2182                         kvm_flush_remote_tlbs(vcpu->kvm);
2183
2184                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2185                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2186         }
2187         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2188         clear_page(sp->spt);
2189         trace_kvm_mmu_get_page(sp, true);
2190
2191         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2192         return sp;
2193 }
2194
2195 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2196                              struct kvm_vcpu *vcpu, u64 addr)
2197 {
2198         iterator->addr = addr;
2199         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2200         iterator->level = vcpu->arch.mmu.shadow_root_level;
2201
2202         if (iterator->level == PT64_ROOT_LEVEL &&
2203             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2204             !vcpu->arch.mmu.direct_map)
2205                 --iterator->level;
2206
2207         if (iterator->level == PT32E_ROOT_LEVEL) {
2208                 iterator->shadow_addr
2209                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2210                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2211                 --iterator->level;
2212                 if (!iterator->shadow_addr)
2213                         iterator->level = 0;
2214         }
2215 }
2216
2217 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2218 {
2219         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2220                 return false;
2221
2222         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2223         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2224         return true;
2225 }
2226
2227 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2228                                u64 spte)
2229 {
2230         if (is_last_spte(spte, iterator->level)) {
2231                 iterator->level = 0;
2232                 return;
2233         }
2234
2235         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2236         --iterator->level;
2237 }
2238
2239 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2240 {
2241         return __shadow_walk_next(iterator, *iterator->sptep);
2242 }
2243
2244 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2245                              struct kvm_mmu_page *sp)
2246 {
2247         u64 spte;
2248
2249         BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2250                         VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2251
2252         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2253                shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2254
2255         mmu_spte_set(sptep, spte);
2256
2257         mmu_page_add_parent_pte(vcpu, sp, sptep);
2258
2259         if (sp->unsync_children || sp->unsync)
2260                 mark_unsync(sptep);
2261 }
2262
2263 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2264                                    unsigned direct_access)
2265 {
2266         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2267                 struct kvm_mmu_page *child;
2268
2269                 /*
2270                  * For the direct sp, if the guest pte's dirty bit
2271                  * changed form clean to dirty, it will corrupt the
2272                  * sp's access: allow writable in the read-only sp,
2273                  * so we should update the spte at this point to get
2274                  * a new sp with the correct access.
2275                  */
2276                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2277                 if (child->role.access == direct_access)
2278                         return;
2279
2280                 drop_parent_pte(child, sptep);
2281                 kvm_flush_remote_tlbs(vcpu->kvm);
2282         }
2283 }
2284
2285 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2286                              u64 *spte)
2287 {
2288         u64 pte;
2289         struct kvm_mmu_page *child;
2290
2291         pte = *spte;
2292         if (is_shadow_present_pte(pte)) {
2293                 if (is_last_spte(pte, sp->role.level)) {
2294                         drop_spte(kvm, spte);
2295                         if (is_large_pte(pte))
2296                                 --kvm->stat.lpages;
2297                 } else {
2298                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2299                         drop_parent_pte(child, spte);
2300                 }
2301                 return true;
2302         }
2303
2304         if (is_mmio_spte(pte))
2305                 mmu_spte_clear_no_track(spte);
2306
2307         return false;
2308 }
2309
2310 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2311                                          struct kvm_mmu_page *sp)
2312 {
2313         unsigned i;
2314
2315         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2316                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2317 }
2318
2319 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2320 {
2321         u64 *sptep;
2322         struct rmap_iterator iter;
2323
2324         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2325                 drop_parent_pte(sp, sptep);
2326 }
2327
2328 static int mmu_zap_unsync_children(struct kvm *kvm,
2329                                    struct kvm_mmu_page *parent,
2330                                    struct list_head *invalid_list)
2331 {
2332         int i, zapped = 0;
2333         struct mmu_page_path parents;
2334         struct kvm_mmu_pages pages;
2335
2336         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2337                 return 0;
2338
2339         while (mmu_unsync_walk(parent, &pages)) {
2340                 struct kvm_mmu_page *sp;
2341
2342                 for_each_sp(pages, sp, parents, i) {
2343                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2344                         mmu_pages_clear_parents(&parents);
2345                         zapped++;
2346                 }
2347         }
2348
2349         return zapped;
2350 }
2351
2352 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2353                                     struct list_head *invalid_list)
2354 {
2355         int ret;
2356
2357         trace_kvm_mmu_prepare_zap_page(sp);
2358         ++kvm->stat.mmu_shadow_zapped;
2359         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2360         kvm_mmu_page_unlink_children(kvm, sp);
2361         kvm_mmu_unlink_parents(kvm, sp);
2362
2363         if (!sp->role.invalid && !sp->role.direct)
2364                 unaccount_shadowed(kvm, sp);
2365
2366         if (sp->unsync)
2367                 kvm_unlink_unsync_page(kvm, sp);
2368         if (!sp->root_count) {
2369                 /* Count self */
2370                 ret++;
2371                 list_move(&sp->link, invalid_list);
2372                 kvm_mod_used_mmu_pages(kvm, -1);
2373         } else {
2374                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2375
2376                 /*
2377                  * The obsolete pages can not be used on any vcpus.
2378                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2379                  */
2380                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2381                         kvm_reload_remote_mmus(kvm);
2382         }
2383
2384         sp->role.invalid = 1;
2385         return ret;
2386 }
2387
2388 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2389                                     struct list_head *invalid_list)
2390 {
2391         struct kvm_mmu_page *sp, *nsp;
2392
2393         if (list_empty(invalid_list))
2394                 return;
2395
2396         /*
2397          * We need to make sure everyone sees our modifications to
2398          * the page tables and see changes to vcpu->mode here. The barrier
2399          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2400          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2401          *
2402          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2403          * guest mode and/or lockless shadow page table walks.
2404          */
2405         kvm_flush_remote_tlbs(kvm);
2406
2407         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2408                 WARN_ON(!sp->role.invalid || sp->root_count);
2409                 kvm_mmu_free_page(sp);
2410         }
2411 }
2412
2413 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2414                                         struct list_head *invalid_list)
2415 {
2416         struct kvm_mmu_page *sp;
2417
2418         if (list_empty(&kvm->arch.active_mmu_pages))
2419                 return false;
2420
2421         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2422                              struct kvm_mmu_page, link);
2423         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2424
2425         return true;
2426 }
2427
2428 /*
2429  * Changing the number of mmu pages allocated to the vm
2430  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2431  */
2432 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2433 {
2434         LIST_HEAD(invalid_list);
2435
2436         spin_lock(&kvm->mmu_lock);
2437
2438         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2439                 /* Need to free some mmu pages to achieve the goal. */
2440                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2441                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2442                                 break;
2443
2444                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2445                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2446         }
2447
2448         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2449
2450         spin_unlock(&kvm->mmu_lock);
2451 }
2452
2453 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2454 {
2455         struct kvm_mmu_page *sp;
2456         LIST_HEAD(invalid_list);
2457         int r;
2458
2459         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2460         r = 0;
2461         spin_lock(&kvm->mmu_lock);
2462         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2463                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2464                          sp->role.word);
2465                 r = 1;
2466                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2467         }
2468         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2469         spin_unlock(&kvm->mmu_lock);
2470
2471         return r;
2472 }
2473 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2474
2475 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2476 {
2477         trace_kvm_mmu_unsync_page(sp);
2478         ++vcpu->kvm->stat.mmu_unsync;
2479         sp->unsync = 1;
2480
2481         kvm_mmu_mark_parents_unsync(sp);
2482 }
2483
2484 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2485                                    bool can_unsync)
2486 {
2487         struct kvm_mmu_page *sp;
2488
2489         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2490                 return true;
2491
2492         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2493                 if (!can_unsync)
2494                         return true;
2495
2496                 if (sp->unsync)
2497                         continue;
2498
2499                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2500                 kvm_unsync_page(vcpu, sp);
2501         }
2502
2503         return false;
2504 }
2505
2506 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2507 {
2508         if (pfn_valid(pfn))
2509                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2510
2511         return true;
2512 }
2513
2514 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2515                     unsigned pte_access, int level,
2516                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2517                     bool can_unsync, bool host_writable)
2518 {
2519         u64 spte;
2520         int ret = 0;
2521
2522         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2523                 return 0;
2524
2525         spte = PT_PRESENT_MASK;
2526         if (!speculative)
2527                 spte |= shadow_accessed_mask;
2528
2529         if (pte_access & ACC_EXEC_MASK)
2530                 spte |= shadow_x_mask;
2531         else
2532                 spte |= shadow_nx_mask;
2533
2534         if (pte_access & ACC_USER_MASK)
2535                 spte |= shadow_user_mask;
2536
2537         if (level > PT_PAGE_TABLE_LEVEL)
2538                 spte |= PT_PAGE_SIZE_MASK;
2539         if (tdp_enabled)
2540                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2541                         kvm_is_mmio_pfn(pfn));
2542
2543         if (host_writable)
2544                 spte |= SPTE_HOST_WRITEABLE;
2545         else
2546                 pte_access &= ~ACC_WRITE_MASK;
2547
2548         spte |= (u64)pfn << PAGE_SHIFT;
2549
2550         if (pte_access & ACC_WRITE_MASK) {
2551
2552                 /*
2553                  * Other vcpu creates new sp in the window between
2554                  * mapping_level() and acquiring mmu-lock. We can
2555                  * allow guest to retry the access, the mapping can
2556                  * be fixed if guest refault.
2557                  */
2558                 if (level > PT_PAGE_TABLE_LEVEL &&
2559                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2560                         goto done;
2561
2562                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2563
2564                 /*
2565                  * Optimization: for pte sync, if spte was writable the hash
2566                  * lookup is unnecessary (and expensive). Write protection
2567                  * is responsibility of mmu_get_page / kvm_sync_page.
2568                  * Same reasoning can be applied to dirty page accounting.
2569                  */
2570                 if (!can_unsync && is_writable_pte(*sptep))
2571                         goto set_pte;
2572
2573                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2574                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2575                                  __func__, gfn);
2576                         ret = 1;
2577                         pte_access &= ~ACC_WRITE_MASK;
2578                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2579                 }
2580         }
2581
2582         if (pte_access & ACC_WRITE_MASK) {
2583                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2584                 spte |= shadow_dirty_mask;
2585         }
2586
2587 set_pte:
2588         if (mmu_spte_update(sptep, spte))
2589                 kvm_flush_remote_tlbs(vcpu->kvm);
2590 done:
2591         return ret;
2592 }
2593
2594 static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2595                          int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2596                          bool speculative, bool host_writable)
2597 {
2598         int was_rmapped = 0;
2599         int rmap_count;
2600         bool emulate = false;
2601
2602         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2603                  *sptep, write_fault, gfn);
2604
2605         if (is_shadow_present_pte(*sptep)) {
2606                 /*
2607                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2608                  * the parent of the now unreachable PTE.
2609                  */
2610                 if (level > PT_PAGE_TABLE_LEVEL &&
2611                     !is_large_pte(*sptep)) {
2612                         struct kvm_mmu_page *child;
2613                         u64 pte = *sptep;
2614
2615                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2616                         drop_parent_pte(child, sptep);
2617                         kvm_flush_remote_tlbs(vcpu->kvm);
2618                 } else if (pfn != spte_to_pfn(*sptep)) {
2619                         pgprintk("hfn old %llx new %llx\n",
2620                                  spte_to_pfn(*sptep), pfn);
2621                         drop_spte(vcpu->kvm, sptep);
2622                         kvm_flush_remote_tlbs(vcpu->kvm);
2623                 } else
2624                         was_rmapped = 1;
2625         }
2626
2627         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2628               true, host_writable)) {
2629                 if (write_fault)
2630                         emulate = true;
2631                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2632         }
2633
2634         if (unlikely(is_mmio_spte(*sptep)))
2635                 emulate = true;
2636
2637         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2638         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2639                  is_large_pte(*sptep)? "2MB" : "4kB",
2640                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2641                  *sptep, sptep);
2642         if (!was_rmapped && is_large_pte(*sptep))
2643                 ++vcpu->kvm->stat.lpages;
2644
2645         if (is_shadow_present_pte(*sptep)) {
2646                 if (!was_rmapped) {
2647                         rmap_count = rmap_add(vcpu, sptep, gfn);
2648                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2649                                 rmap_recycle(vcpu, sptep, gfn);
2650                 }
2651         }
2652
2653         kvm_release_pfn_clean(pfn);
2654
2655         return emulate;
2656 }
2657
2658 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2659                                      bool no_dirty_log)
2660 {
2661         struct kvm_memory_slot *slot;
2662
2663         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2664         if (!slot)
2665                 return KVM_PFN_ERR_FAULT;
2666
2667         return gfn_to_pfn_memslot_atomic(slot, gfn);
2668 }
2669
2670 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2671                                     struct kvm_mmu_page *sp,
2672                                     u64 *start, u64 *end)
2673 {
2674         struct page *pages[PTE_PREFETCH_NUM];
2675         struct kvm_memory_slot *slot;
2676         unsigned access = sp->role.access;
2677         int i, ret;
2678         gfn_t gfn;
2679
2680         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2681         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2682         if (!slot)
2683                 return -1;
2684
2685         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2686         if (ret <= 0)
2687                 return -1;
2688
2689         for (i = 0; i < ret; i++, gfn++, start++)
2690                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2691                              page_to_pfn(pages[i]), true, true);
2692
2693         return 0;
2694 }
2695
2696 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2697                                   struct kvm_mmu_page *sp, u64 *sptep)
2698 {
2699         u64 *spte, *start = NULL;
2700         int i;
2701
2702         WARN_ON(!sp->role.direct);
2703
2704         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2705         spte = sp->spt + i;
2706
2707         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2708                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2709                         if (!start)
2710                                 continue;
2711                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2712                                 break;
2713                         start = NULL;
2714                 } else if (!start)
2715                         start = spte;
2716         }
2717 }
2718
2719 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2720 {
2721         struct kvm_mmu_page *sp;
2722
2723         /*
2724          * Since it's no accessed bit on EPT, it's no way to
2725          * distinguish between actually accessed translations
2726          * and prefetched, so disable pte prefetch if EPT is
2727          * enabled.
2728          */
2729         if (!shadow_accessed_mask)
2730                 return;
2731
2732         sp = page_header(__pa(sptep));
2733         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2734                 return;
2735
2736         __direct_pte_prefetch(vcpu, sp, sptep);
2737 }
2738
2739 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2740                         int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2741 {
2742         struct kvm_shadow_walk_iterator iterator;
2743         struct kvm_mmu_page *sp;
2744         int emulate = 0;
2745         gfn_t pseudo_gfn;
2746
2747         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2748                 return 0;
2749
2750         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2751                 if (iterator.level == level) {
2752                         emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2753                                                write, level, gfn, pfn, prefault,
2754                                                map_writable);
2755                         direct_pte_prefetch(vcpu, iterator.sptep);
2756                         ++vcpu->stat.pf_fixed;
2757                         break;
2758                 }
2759
2760                 drop_large_spte(vcpu, iterator.sptep);
2761                 if (!is_shadow_present_pte(*iterator.sptep)) {
2762                         u64 base_addr = iterator.addr;
2763
2764                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2765                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2766                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2767                                               iterator.level - 1, 1, ACC_ALL);
2768
2769                         link_shadow_page(vcpu, iterator.sptep, sp);
2770                 }
2771         }
2772         return emulate;
2773 }
2774
2775 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2776 {
2777         siginfo_t info;
2778
2779         info.si_signo   = SIGBUS;
2780         info.si_errno   = 0;
2781         info.si_code    = BUS_MCEERR_AR;
2782         info.si_addr    = (void __user *)address;
2783         info.si_addr_lsb = PAGE_SHIFT;
2784
2785         send_sig_info(SIGBUS, &info, tsk);
2786 }
2787
2788 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2789 {
2790         /*
2791          * Do not cache the mmio info caused by writing the readonly gfn
2792          * into the spte otherwise read access on readonly gfn also can
2793          * caused mmio page fault and treat it as mmio access.
2794          * Return 1 to tell kvm to emulate it.
2795          */
2796         if (pfn == KVM_PFN_ERR_RO_FAULT)
2797                 return 1;
2798
2799         if (pfn == KVM_PFN_ERR_HWPOISON) {
2800                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2801                 return 0;
2802         }
2803
2804         return -EFAULT;
2805 }
2806
2807 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2808                                         gfn_t *gfnp, kvm_pfn_t *pfnp,
2809                                         int *levelp)
2810 {
2811         kvm_pfn_t pfn = *pfnp;
2812         gfn_t gfn = *gfnp;
2813         int level = *levelp;
2814
2815         /*
2816          * Check if it's a transparent hugepage. If this would be an
2817          * hugetlbfs page, level wouldn't be set to
2818          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2819          * here.
2820          */
2821         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2822             level == PT_PAGE_TABLE_LEVEL &&
2823             PageTransCompoundMap(pfn_to_page(pfn)) &&
2824             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2825                 unsigned long mask;
2826                 /*
2827                  * mmu_notifier_retry was successful and we hold the
2828                  * mmu_lock here, so the pmd can't become splitting
2829                  * from under us, and in turn
2830                  * __split_huge_page_refcount() can't run from under
2831                  * us and we can safely transfer the refcount from
2832                  * PG_tail to PG_head as we switch the pfn to tail to
2833                  * head.
2834                  */
2835                 *levelp = level = PT_DIRECTORY_LEVEL;
2836                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2837                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2838                 if (pfn & mask) {
2839                         gfn &= ~mask;
2840                         *gfnp = gfn;
2841                         kvm_release_pfn_clean(pfn);
2842                         pfn &= ~mask;
2843                         kvm_get_pfn(pfn);
2844                         *pfnp = pfn;
2845                 }
2846         }
2847 }
2848
2849 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2850                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
2851 {
2852         /* The pfn is invalid, report the error! */
2853         if (unlikely(is_error_pfn(pfn))) {
2854                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2855                 return true;
2856         }
2857
2858         if (unlikely(is_noslot_pfn(pfn)))
2859                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2860
2861         return false;
2862 }
2863
2864 static bool page_fault_can_be_fast(u32 error_code)
2865 {
2866         /*
2867          * Do not fix the mmio spte with invalid generation number which
2868          * need to be updated by slow page fault path.
2869          */
2870         if (unlikely(error_code & PFERR_RSVD_MASK))
2871                 return false;
2872
2873         /*
2874          * #PF can be fast only if the shadow page table is present and it
2875          * is caused by write-protect, that means we just need change the
2876          * W bit of the spte which can be done out of mmu-lock.
2877          */
2878         if (!(error_code & PFERR_PRESENT_MASK) ||
2879               !(error_code & PFERR_WRITE_MASK))
2880                 return false;
2881
2882         return true;
2883 }
2884
2885 static bool
2886 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2887                         u64 *sptep, u64 spte)
2888 {
2889         gfn_t gfn;
2890
2891         WARN_ON(!sp->role.direct);
2892
2893         /*
2894          * The gfn of direct spte is stable since it is calculated
2895          * by sp->gfn.
2896          */
2897         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2898
2899         /*
2900          * Theoretically we could also set dirty bit (and flush TLB) here in
2901          * order to eliminate unnecessary PML logging. See comments in
2902          * set_spte. But fast_page_fault is very unlikely to happen with PML
2903          * enabled, so we do not do this. This might result in the same GPA
2904          * to be logged in PML buffer again when the write really happens, and
2905          * eventually to be called by mark_page_dirty twice. But it's also no
2906          * harm. This also avoids the TLB flush needed after setting dirty bit
2907          * so non-PML cases won't be impacted.
2908          *
2909          * Compare with set_spte where instead shadow_dirty_mask is set.
2910          */
2911         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2912                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2913
2914         return true;
2915 }
2916
2917 /*
2918  * Return value:
2919  * - true: let the vcpu to access on the same address again.
2920  * - false: let the real page fault path to fix it.
2921  */
2922 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2923                             u32 error_code)
2924 {
2925         struct kvm_shadow_walk_iterator iterator;
2926         struct kvm_mmu_page *sp;
2927         bool ret = false;
2928         u64 spte = 0ull;
2929
2930         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2931                 return false;
2932
2933         if (!page_fault_can_be_fast(error_code))
2934                 return false;
2935
2936         walk_shadow_page_lockless_begin(vcpu);
2937         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2938                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2939                         break;
2940
2941         /*
2942          * If the mapping has been changed, let the vcpu fault on the
2943          * same address again.
2944          */
2945         if (!is_shadow_present_pte(spte)) {
2946                 ret = true;
2947                 goto exit;
2948         }
2949
2950         sp = page_header(__pa(iterator.sptep));
2951         if (!is_last_spte(spte, sp->role.level))
2952                 goto exit;
2953
2954         /*
2955          * Check if it is a spurious fault caused by TLB lazily flushed.
2956          *
2957          * Need not check the access of upper level table entries since
2958          * they are always ACC_ALL.
2959          */
2960          if (is_writable_pte(spte)) {
2961                 ret = true;
2962                 goto exit;
2963         }
2964
2965         /*
2966          * Currently, to simplify the code, only the spte write-protected
2967          * by dirty-log can be fast fixed.
2968          */
2969         if (!spte_is_locklessly_modifiable(spte))
2970                 goto exit;
2971
2972         /*
2973          * Do not fix write-permission on the large spte since we only dirty
2974          * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2975          * that means other pages are missed if its slot is dirty-logged.
2976          *
2977          * Instead, we let the slow page fault path create a normal spte to
2978          * fix the access.
2979          *
2980          * See the comments in kvm_arch_commit_memory_region().
2981          */
2982         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2983                 goto exit;
2984
2985         /*
2986          * Currently, fast page fault only works for direct mapping since
2987          * the gfn is not stable for indirect shadow page.
2988          * See Documentation/virtual/kvm/locking.txt to get more detail.
2989          */
2990         ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2991 exit:
2992         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2993                               spte, ret);
2994         walk_shadow_page_lockless_end(vcpu);
2995
2996         return ret;
2997 }
2998
2999 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3000                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3001 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
3002
3003 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3004                          gfn_t gfn, bool prefault)
3005 {
3006         int r;
3007         int level;
3008         bool force_pt_level = false;
3009         kvm_pfn_t pfn;
3010         unsigned long mmu_seq;
3011         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3012
3013         level = mapping_level(vcpu, gfn, &force_pt_level);
3014         if (likely(!force_pt_level)) {
3015                 /*
3016                  * This path builds a PAE pagetable - so we can map
3017                  * 2mb pages at maximum. Therefore check if the level
3018                  * is larger than that.
3019                  */
3020                 if (level > PT_DIRECTORY_LEVEL)
3021                         level = PT_DIRECTORY_LEVEL;
3022
3023                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3024         }
3025
3026         if (fast_page_fault(vcpu, v, level, error_code))
3027                 return 0;
3028
3029         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3030         smp_rmb();
3031
3032         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3033                 return 0;
3034
3035         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3036                 return r;
3037
3038         spin_lock(&vcpu->kvm->mmu_lock);
3039         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3040                 goto out_unlock;
3041         make_mmu_pages_available(vcpu);
3042         if (likely(!force_pt_level))
3043                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3044         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3045         spin_unlock(&vcpu->kvm->mmu_lock);
3046
3047         return r;
3048
3049 out_unlock:
3050         spin_unlock(&vcpu->kvm->mmu_lock);
3051         kvm_release_pfn_clean(pfn);
3052         return 0;
3053 }
3054
3055
3056 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3057 {
3058         int i;
3059         struct kvm_mmu_page *sp;
3060         LIST_HEAD(invalid_list);
3061
3062         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3063                 return;
3064
3065         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3066             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3067              vcpu->arch.mmu.direct_map)) {
3068                 hpa_t root = vcpu->arch.mmu.root_hpa;
3069
3070                 spin_lock(&vcpu->kvm->mmu_lock);
3071                 sp = page_header(root);
3072                 --sp->root_count;
3073                 if (!sp->root_count && sp->role.invalid) {
3074                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3075                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3076                 }
3077                 spin_unlock(&vcpu->kvm->mmu_lock);
3078                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3079                 return;
3080         }
3081
3082         spin_lock(&vcpu->kvm->mmu_lock);
3083         for (i = 0; i < 4; ++i) {
3084                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3085
3086                 if (root) {
3087                         root &= PT64_BASE_ADDR_MASK;
3088                         sp = page_header(root);
3089                         --sp->root_count;
3090                         if (!sp->root_count && sp->role.invalid)
3091                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3092                                                          &invalid_list);
3093                 }
3094                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3095         }
3096         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3097         spin_unlock(&vcpu->kvm->mmu_lock);
3098         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3099 }
3100
3101 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3102 {
3103         int ret = 0;
3104
3105         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3106                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3107                 ret = 1;
3108         }
3109
3110         return ret;
3111 }
3112
3113 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3114 {
3115         struct kvm_mmu_page *sp;
3116         unsigned i;
3117
3118         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3119                 spin_lock(&vcpu->kvm->mmu_lock);
3120                 make_mmu_pages_available(vcpu);
3121                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3122                 ++sp->root_count;
3123                 spin_unlock(&vcpu->kvm->mmu_lock);
3124                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3125         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3126                 for (i = 0; i < 4; ++i) {
3127                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3128
3129                         MMU_WARN_ON(VALID_PAGE(root));
3130                         spin_lock(&vcpu->kvm->mmu_lock);
3131                         make_mmu_pages_available(vcpu);
3132                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3133                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3134                         root = __pa(sp->spt);
3135                         ++sp->root_count;
3136                         spin_unlock(&vcpu->kvm->mmu_lock);
3137                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3138                 }
3139                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3140         } else
3141                 BUG();
3142
3143         return 0;
3144 }
3145
3146 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3147 {
3148         struct kvm_mmu_page *sp;
3149         u64 pdptr, pm_mask;
3150         gfn_t root_gfn;
3151         int i;
3152
3153         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3154
3155         if (mmu_check_root(vcpu, root_gfn))
3156                 return 1;
3157
3158         /*
3159          * Do we shadow a long mode page table? If so we need to
3160          * write-protect the guests page table root.
3161          */
3162         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3163                 hpa_t root = vcpu->arch.mmu.root_hpa;
3164
3165                 MMU_WARN_ON(VALID_PAGE(root));
3166
3167                 spin_lock(&vcpu->kvm->mmu_lock);
3168                 make_mmu_pages_available(vcpu);
3169                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3170                                       0, ACC_ALL);
3171                 root = __pa(sp->spt);
3172                 ++sp->root_count;
3173                 spin_unlock(&vcpu->kvm->mmu_lock);
3174                 vcpu->arch.mmu.root_hpa = root;
3175                 return 0;
3176         }
3177
3178         /*
3179          * We shadow a 32 bit page table. This may be a legacy 2-level
3180          * or a PAE 3-level page table. In either case we need to be aware that
3181          * the shadow page table may be a PAE or a long mode page table.
3182          */
3183         pm_mask = PT_PRESENT_MASK;
3184         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3185                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3186
3187         for (i = 0; i < 4; ++i) {
3188                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3189
3190                 MMU_WARN_ON(VALID_PAGE(root));
3191                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3192                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3193                         if (!is_present_gpte(pdptr)) {
3194                                 vcpu->arch.mmu.pae_root[i] = 0;
3195                                 continue;
3196                         }
3197                         root_gfn = pdptr >> PAGE_SHIFT;
3198                         if (mmu_check_root(vcpu, root_gfn))
3199                                 return 1;
3200                 }
3201                 spin_lock(&vcpu->kvm->mmu_lock);
3202                 make_mmu_pages_available(vcpu);
3203                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3204                                       0, ACC_ALL);
3205                 root = __pa(sp->spt);
3206                 ++sp->root_count;
3207                 spin_unlock(&vcpu->kvm->mmu_lock);
3208
3209                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3210         }
3211         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3212
3213         /*
3214          * If we shadow a 32 bit page table with a long mode page
3215          * table we enter this path.
3216          */
3217         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3218                 if (vcpu->arch.mmu.lm_root == NULL) {
3219                         /*
3220                          * The additional page necessary for this is only
3221                          * allocated on demand.
3222                          */
3223
3224                         u64 *lm_root;
3225
3226                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3227                         if (lm_root == NULL)
3228                                 return 1;
3229
3230                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3231
3232                         vcpu->arch.mmu.lm_root = lm_root;
3233                 }
3234
3235                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3236         }
3237
3238         return 0;
3239 }
3240
3241 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3242 {
3243         if (vcpu->arch.mmu.direct_map)
3244                 return mmu_alloc_direct_roots(vcpu);
3245         else
3246                 return mmu_alloc_shadow_roots(vcpu);
3247 }
3248
3249 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3250 {
3251         int i;
3252         struct kvm_mmu_page *sp;
3253
3254         if (vcpu->arch.mmu.direct_map)
3255                 return;
3256
3257         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3258                 return;
3259
3260         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3261         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3262         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3263                 hpa_t root = vcpu->arch.mmu.root_hpa;
3264                 sp = page_header(root);
3265                 mmu_sync_children(vcpu, sp);
3266                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3267                 return;
3268         }
3269         for (i = 0; i < 4; ++i) {
3270                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3271
3272                 if (root && VALID_PAGE(root)) {
3273                         root &= PT64_BASE_ADDR_MASK;
3274                         sp = page_header(root);
3275                         mmu_sync_children(vcpu, sp);
3276                 }
3277         }
3278         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3279 }
3280
3281 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3282 {
3283         spin_lock(&vcpu->kvm->mmu_lock);
3284         mmu_sync_roots(vcpu);
3285         spin_unlock(&vcpu->kvm->mmu_lock);
3286 }
3287 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3288
3289 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3290                                   u32 access, struct x86_exception *exception)
3291 {
3292         if (exception)
3293                 exception->error_code = 0;
3294         return vaddr;
3295 }
3296
3297 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3298                                          u32 access,
3299                                          struct x86_exception *exception)
3300 {
3301         if (exception)
3302                 exception->error_code = 0;
3303         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3304 }
3305
3306 static bool
3307 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3308 {
3309         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3310
3311         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3312                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3313 }
3314
3315 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3316 {
3317         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3318 }
3319
3320 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3321 {
3322         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3323 }
3324
3325 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3326 {
3327         if (direct)
3328                 return vcpu_match_mmio_gpa(vcpu, addr);
3329
3330         return vcpu_match_mmio_gva(vcpu, addr);
3331 }
3332
3333 /* return true if reserved bit is detected on spte. */
3334 static bool
3335 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3336 {
3337         struct kvm_shadow_walk_iterator iterator;
3338         u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3339         int root, leaf;
3340         bool reserved = false;
3341
3342         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3343                 goto exit;
3344
3345         walk_shadow_page_lockless_begin(vcpu);
3346
3347         for (shadow_walk_init(&iterator, vcpu, addr),
3348                  leaf = root = iterator.level;
3349              shadow_walk_okay(&iterator);
3350              __shadow_walk_next(&iterator, spte)) {
3351                 spte = mmu_spte_get_lockless(iterator.sptep);
3352
3353                 sptes[leaf - 1] = spte;
3354                 leaf--;
3355
3356                 if (!is_shadow_present_pte(spte))
3357                         break;
3358
3359                 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3360                                                     iterator.level);
3361         }
3362
3363         walk_shadow_page_lockless_end(vcpu);
3364
3365         if (reserved) {
3366                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3367                        __func__, addr);
3368                 while (root > leaf) {
3369                         pr_err("------ spte 0x%llx level %d.\n",
3370                                sptes[root - 1], root);
3371                         root--;
3372                 }
3373         }
3374 exit:
3375         *sptep = spte;
3376         return reserved;
3377 }
3378
3379 int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3380 {
3381         u64 spte;
3382         bool reserved;
3383
3384         if (mmio_info_in_cache(vcpu, addr, direct))
3385                 return RET_MMIO_PF_EMULATE;
3386
3387         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3388         if (WARN_ON(reserved))
3389                 return RET_MMIO_PF_BUG;
3390
3391         if (is_mmio_spte(spte)) {
3392                 gfn_t gfn = get_mmio_spte_gfn(spte);
3393                 unsigned access = get_mmio_spte_access(spte);
3394
3395                 if (!check_mmio_spte(vcpu, spte))
3396                         return RET_MMIO_PF_INVALID;
3397
3398                 if (direct)
3399                         addr = 0;
3400
3401                 trace_handle_mmio_page_fault(addr, gfn, access);
3402                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3403                 return RET_MMIO_PF_EMULATE;
3404         }
3405
3406         /*
3407          * If the page table is zapped by other cpus, let CPU fault again on
3408          * the address.
3409          */
3410         return RET_MMIO_PF_RETRY;
3411 }
3412 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3413
3414 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3415                                          u32 error_code, gfn_t gfn)
3416 {
3417         if (unlikely(error_code & PFERR_RSVD_MASK))
3418                 return false;
3419
3420         if (!(error_code & PFERR_PRESENT_MASK) ||
3421               !(error_code & PFERR_WRITE_MASK))
3422                 return false;
3423
3424         /*
3425          * guest is writing the page which is write tracked which can
3426          * not be fixed by page fault handler.
3427          */
3428         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3429                 return true;
3430
3431         return false;
3432 }
3433
3434 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3435 {
3436         struct kvm_shadow_walk_iterator iterator;
3437         u64 spte;
3438
3439         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3440                 return;
3441
3442         walk_shadow_page_lockless_begin(vcpu);
3443         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3444                 clear_sp_write_flooding_count(iterator.sptep);
3445                 if (!is_shadow_present_pte(spte))
3446                         break;
3447         }
3448         walk_shadow_page_lockless_end(vcpu);
3449 }
3450
3451 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3452                                 u32 error_code, bool prefault)
3453 {
3454         gfn_t gfn = gva >> PAGE_SHIFT;
3455         int r;
3456
3457         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3458
3459         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3460                 return 1;
3461
3462         r = mmu_topup_memory_caches(vcpu);
3463         if (r)
3464                 return r;
3465
3466         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3467
3468
3469         return nonpaging_map(vcpu, gva & PAGE_MASK,
3470                              error_code, gfn, prefault);
3471 }
3472
3473 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3474 {
3475         struct kvm_arch_async_pf arch;
3476
3477         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3478         arch.gfn = gfn;
3479         arch.direct_map = vcpu->arch.mmu.direct_map;
3480         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3481
3482         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3483 }
3484
3485 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3486 {
3487         if (unlikely(!lapic_in_kernel(vcpu) ||
3488                      kvm_event_needs_reinjection(vcpu)))
3489                 return false;
3490
3491         return kvm_x86_ops->interrupt_allowed(vcpu);
3492 }
3493
3494 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3495                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3496 {
3497         struct kvm_memory_slot *slot;
3498         bool async;
3499
3500         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3501         async = false;
3502         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3503         if (!async)
3504                 return false; /* *pfn has correct page already */
3505
3506         if (!prefault && can_do_async_pf(vcpu)) {
3507                 trace_kvm_try_async_get_page(gva, gfn);
3508                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3509                         trace_kvm_async_pf_doublefault(gva, gfn);
3510                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3511                         return true;
3512                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3513                         return true;
3514         }
3515
3516         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3517         return false;
3518 }
3519
3520 static bool
3521 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3522 {
3523         int page_num = KVM_PAGES_PER_HPAGE(level);
3524
3525         gfn &= ~(page_num - 1);
3526
3527         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3528 }
3529
3530 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3531                           bool prefault)
3532 {
3533         kvm_pfn_t pfn;
3534         int r;
3535         int level;
3536         bool force_pt_level;
3537         gfn_t gfn = gpa >> PAGE_SHIFT;
3538         unsigned long mmu_seq;
3539         int write = error_code & PFERR_WRITE_MASK;
3540         bool map_writable;
3541
3542         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3543
3544         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3545                 return 1;
3546
3547         r = mmu_topup_memory_caches(vcpu);
3548         if (r)
3549                 return r;
3550
3551         force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3552                                                            PT_DIRECTORY_LEVEL);
3553         level = mapping_level(vcpu, gfn, &force_pt_level);
3554         if (likely(!force_pt_level)) {
3555                 if (level > PT_DIRECTORY_LEVEL &&
3556                     !check_hugepage_cache_consistency(vcpu, gfn, level))
3557                         level = PT_DIRECTORY_LEVEL;
3558                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3559         }
3560
3561         if (fast_page_fault(vcpu, gpa, level, error_code))
3562                 return 0;
3563
3564         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3565         smp_rmb();
3566
3567         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3568                 return 0;
3569
3570         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3571                 return r;
3572
3573         spin_lock(&vcpu->kvm->mmu_lock);
3574         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3575                 goto out_unlock;
3576         make_mmu_pages_available(vcpu);
3577         if (likely(!force_pt_level))
3578                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3579         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3580         spin_unlock(&vcpu->kvm->mmu_lock);
3581
3582         return r;
3583
3584 out_unlock:
3585         spin_unlock(&vcpu->kvm->mmu_lock);
3586         kvm_release_pfn_clean(pfn);
3587         return 0;
3588 }
3589
3590 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3591                                    struct kvm_mmu *context)
3592 {
3593         context->page_fault = nonpaging_page_fault;
3594         context->gva_to_gpa = nonpaging_gva_to_gpa;
3595         context->sync_page = nonpaging_sync_page;
3596         context->invlpg = nonpaging_invlpg;
3597         context->update_pte = nonpaging_update_pte;
3598         context->root_level = 0;
3599         context->shadow_root_level = PT32E_ROOT_LEVEL;
3600         context->root_hpa = INVALID_PAGE;
3601         context->direct_map = true;
3602         context->nx = false;
3603 }
3604
3605 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3606 {
3607         mmu_free_roots(vcpu);
3608 }
3609
3610 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3611 {
3612         return kvm_read_cr3(vcpu);
3613 }
3614
3615 static void inject_page_fault(struct kvm_vcpu *vcpu,
3616                               struct x86_exception *fault)
3617 {
3618         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3619 }
3620
3621 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3622                            unsigned access, int *nr_present)
3623 {
3624         if (unlikely(is_mmio_spte(*sptep))) {
3625                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3626                         mmu_spte_clear_no_track(sptep);
3627                         return true;
3628                 }
3629
3630                 (*nr_present)++;
3631                 mark_mmio_spte(vcpu, sptep, gfn, access);
3632                 return true;
3633         }
3634
3635         return false;
3636 }
3637
3638 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3639                                 unsigned level, unsigned gpte)
3640 {
3641         /*
3642          * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
3643          * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3644          * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3645          */
3646         gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
3647
3648         /*
3649          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3650          * If it is clear, there are no large pages at this level, so clear
3651          * PT_PAGE_SIZE_MASK in gpte if that is the case.
3652          */
3653         gpte &= level - mmu->last_nonleaf_level;
3654
3655         return gpte & PT_PAGE_SIZE_MASK;
3656 }
3657
3658 #define PTTYPE_EPT 18 /* arbitrary */
3659 #define PTTYPE PTTYPE_EPT
3660 #include "paging_tmpl.h"
3661 #undef PTTYPE
3662
3663 #define PTTYPE 64
3664 #include "paging_tmpl.h"
3665 #undef PTTYPE
3666
3667 #define PTTYPE 32
3668 #include "paging_tmpl.h"
3669 #undef PTTYPE
3670
3671 static void
3672 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3673                         struct rsvd_bits_validate *rsvd_check,
3674                         int maxphyaddr, int level, bool nx, bool gbpages,
3675                         bool pse, bool amd)
3676 {
3677         u64 exb_bit_rsvd = 0;
3678         u64 gbpages_bit_rsvd = 0;
3679         u64 nonleaf_bit8_rsvd = 0;
3680
3681         rsvd_check->bad_mt_xwr = 0;
3682
3683         if (!nx)
3684                 exb_bit_rsvd = rsvd_bits(63, 63);
3685         if (!gbpages)
3686                 gbpages_bit_rsvd = rsvd_bits(7, 7);
3687
3688         /*
3689          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3690          * leaf entries) on AMD CPUs only.
3691          */
3692         if (amd)
3693                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3694
3695         switch (level) {
3696         case PT32_ROOT_LEVEL:
3697                 /* no rsvd bits for 2 level 4K page table entries */
3698                 rsvd_check->rsvd_bits_mask[0][1] = 0;
3699                 rsvd_check->rsvd_bits_mask[0][0] = 0;
3700                 rsvd_check->rsvd_bits_mask[1][0] =
3701                         rsvd_check->rsvd_bits_mask[0][0];
3702
3703                 if (!pse) {
3704                         rsvd_check->rsvd_bits_mask[1][1] = 0;
3705                         break;
3706                 }
3707
3708                 if (is_cpuid_PSE36())
3709                         /* 36bits PSE 4MB page */
3710                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3711                 else
3712                         /* 32 bits PSE 4MB page */
3713                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3714                 break;
3715         case PT32E_ROOT_LEVEL:
3716                 rsvd_check->rsvd_bits_mask[0][2] =
3717                         rsvd_bits(maxphyaddr, 63) |
3718                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
3719                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3720                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3721                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3722                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3723                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3724                         rsvd_bits(maxphyaddr, 62) |
3725                         rsvd_bits(13, 20);              /* large page */
3726                 rsvd_check->rsvd_bits_mask[1][0] =
3727                         rsvd_check->rsvd_bits_mask[0][0];
3728                 break;
3729         case PT64_ROOT_LEVEL:
3730                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3731                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3732                         rsvd_bits(maxphyaddr, 51);
3733                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3734                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3735                         rsvd_bits(maxphyaddr, 51);
3736                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3737                         rsvd_bits(maxphyaddr, 51);
3738                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3739                         rsvd_bits(maxphyaddr, 51);
3740                 rsvd_check->rsvd_bits_mask[1][3] =
3741                         rsvd_check->rsvd_bits_mask[0][3];
3742                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3743                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3744                         rsvd_bits(13, 29);
3745                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3746                         rsvd_bits(maxphyaddr, 51) |
3747                         rsvd_bits(13, 20);              /* large page */
3748                 rsvd_check->rsvd_bits_mask[1][0] =
3749                         rsvd_check->rsvd_bits_mask[0][0];
3750                 break;
3751         }
3752 }
3753
3754 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3755                                   struct kvm_mmu *context)
3756 {
3757         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3758                                 cpuid_maxphyaddr(vcpu), context->root_level,
3759                                 context->nx, guest_cpuid_has_gbpages(vcpu),
3760                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3761 }
3762
3763 static void
3764 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3765                             int maxphyaddr, bool execonly)
3766 {
3767         u64 bad_mt_xwr;
3768
3769         rsvd_check->rsvd_bits_mask[0][3] =
3770                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3771         rsvd_check->rsvd_bits_mask[0][2] =
3772                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3773         rsvd_check->rsvd_bits_mask[0][1] =
3774                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3775         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3776
3777         /* large page */
3778         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3779         rsvd_check->rsvd_bits_mask[1][2] =
3780                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3781         rsvd_check->rsvd_bits_mask[1][1] =
3782                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3783         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3784
3785         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
3786         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
3787         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
3788         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
3789         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
3790         if (!execonly) {
3791                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3792                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3793         }
3794         rsvd_check->bad_mt_xwr = bad_mt_xwr;
3795 }
3796
3797 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3798                 struct kvm_mmu *context, bool execonly)
3799 {
3800         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3801                                     cpuid_maxphyaddr(vcpu), execonly);
3802 }
3803
3804 /*
3805  * the page table on host is the shadow page table for the page
3806  * table in guest or amd nested guest, its mmu features completely
3807  * follow the features in guest.
3808  */
3809 void
3810 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3811 {
3812         bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
3813
3814         /*
3815          * Passing "true" to the last argument is okay; it adds a check
3816          * on bit 8 of the SPTEs which KVM doesn't use anyway.
3817          */
3818         __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3819                                 boot_cpu_data.x86_phys_bits,
3820                                 context->shadow_root_level, uses_nx,
3821                                 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3822                                 true);
3823 }
3824 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3825
3826 static inline bool boot_cpu_is_amd(void)
3827 {
3828         WARN_ON_ONCE(!tdp_enabled);
3829         return shadow_x_mask == 0;
3830 }
3831
3832 /*
3833  * the direct page table on host, use as much mmu features as
3834  * possible, however, kvm currently does not do execution-protection.
3835  */
3836 static void
3837 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3838                                 struct kvm_mmu *context)
3839 {
3840         if (boot_cpu_is_amd())
3841                 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3842                                         boot_cpu_data.x86_phys_bits,
3843                                         context->shadow_root_level, false,
3844                                         boot_cpu_has(X86_FEATURE_GBPAGES),
3845                                         true, true);
3846         else
3847                 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3848                                             boot_cpu_data.x86_phys_bits,
3849                                             false);
3850
3851 }
3852
3853 /*
3854  * as the comments in reset_shadow_zero_bits_mask() except it
3855  * is the shadow page table for intel nested guest.
3856  */
3857 static void
3858 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3859                                 struct kvm_mmu *context, bool execonly)
3860 {
3861         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3862                                     boot_cpu_data.x86_phys_bits, execonly);
3863 }
3864
3865 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3866                                       struct kvm_mmu *mmu, bool ept)
3867 {
3868         unsigned bit, byte, pfec;
3869         u8 map;
3870         bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3871
3872         cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3873         cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3874         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3875                 pfec = byte << 1;
3876                 map = 0;
3877                 wf = pfec & PFERR_WRITE_MASK;
3878                 uf = pfec & PFERR_USER_MASK;
3879                 ff = pfec & PFERR_FETCH_MASK;
3880                 /*
3881                  * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3882                  * subject to SMAP restrictions, and cleared otherwise. The
3883                  * bit is only meaningful if the SMAP bit is set in CR4.
3884                  */
3885                 smapf = !(pfec & PFERR_RSVD_MASK);
3886                 for (bit = 0; bit < 8; ++bit) {
3887                         x = bit & ACC_EXEC_MASK;
3888                         w = bit & ACC_WRITE_MASK;
3889                         u = bit & ACC_USER_MASK;
3890
3891                         if (!ept) {
3892                                 /* Not really needed: !nx will cause pte.nx to fault */
3893                                 x |= !mmu->nx;
3894                                 /* Allow supervisor writes if !cr0.wp */
3895                                 w |= !is_write_protection(vcpu) && !uf;
3896                                 /* Disallow supervisor fetches of user code if cr4.smep */
3897                                 x &= !(cr4_smep && u && !uf);
3898
3899                                 /*
3900                                  * SMAP:kernel-mode data accesses from user-mode
3901                                  * mappings should fault. A fault is considered
3902                                  * as a SMAP violation if all of the following
3903                                  * conditions are ture:
3904                                  *   - X86_CR4_SMAP is set in CR4
3905                                  *   - An user page is accessed
3906                                  *   - Page fault in kernel mode
3907                                  *   - if CPL = 3 or X86_EFLAGS_AC is clear
3908                                  *
3909                                  *   Here, we cover the first three conditions.
3910                                  *   The fourth is computed dynamically in
3911                                  *   permission_fault() and is in smapf.
3912                                  *
3913                                  *   Also, SMAP does not affect instruction
3914                                  *   fetches, add the !ff check here to make it
3915                                  *   clearer.
3916                                  */
3917                                 smap = cr4_smap && u && !uf && !ff;
3918                         } else
3919                                 /* Not really needed: no U/S accesses on ept  */
3920                                 u = 1;
3921
3922                         fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3923                                 (smapf && smap);
3924                         map |= fault << bit;
3925                 }
3926                 mmu->permissions[byte] = map;
3927         }
3928 }
3929
3930 /*
3931 * PKU is an additional mechanism by which the paging controls access to
3932 * user-mode addresses based on the value in the PKRU register.  Protection
3933 * key violations are reported through a bit in the page fault error code.
3934 * Unlike other bits of the error code, the PK bit is not known at the
3935 * call site of e.g. gva_to_gpa; it must be computed directly in
3936 * permission_fault based on two bits of PKRU, on some machine state (CR4,
3937 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
3938 *
3939 * In particular the following conditions come from the error code, the
3940 * page tables and the machine state:
3941 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
3942 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
3943 * - PK is always zero if U=0 in the page tables
3944 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
3945 *
3946 * The PKRU bitmask caches the result of these four conditions.  The error
3947 * code (minus the P bit) and the page table's U bit form an index into the
3948 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
3949 * with the two bits of the PKRU register corresponding to the protection key.
3950 * For the first three conditions above the bits will be 00, thus masking
3951 * away both AD and WD.  For all reads or if the last condition holds, WD
3952 * only will be masked away.
3953 */
3954 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3955                                 bool ept)
3956 {
3957         unsigned bit;
3958         bool wp;
3959
3960         if (ept) {
3961                 mmu->pkru_mask = 0;
3962                 return;
3963         }
3964
3965         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
3966         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
3967                 mmu->pkru_mask = 0;
3968                 return;
3969         }
3970
3971         wp = is_write_protection(vcpu);
3972
3973         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
3974                 unsigned pfec, pkey_bits;
3975                 bool check_pkey, check_write, ff, uf, wf, pte_user;
3976
3977                 pfec = bit << 1;
3978                 ff = pfec & PFERR_FETCH_MASK;
3979                 uf = pfec & PFERR_USER_MASK;
3980                 wf = pfec & PFERR_WRITE_MASK;
3981
3982                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
3983                 pte_user = pfec & PFERR_RSVD_MASK;
3984
3985                 /*
3986                  * Only need to check the access which is not an
3987                  * instruction fetch and is to a user page.
3988                  */
3989                 check_pkey = (!ff && pte_user);
3990                 /*
3991                  * write access is controlled by PKRU if it is a
3992                  * user access or CR0.WP = 1.
3993                  */
3994                 check_write = check_pkey && wf && (uf || wp);
3995
3996                 /* PKRU.AD stops both read and write access. */
3997                 pkey_bits = !!check_pkey;
3998                 /* PKRU.WD stops write access. */
3999                 pkey_bits |= (!!check_write) << 1;
4000
4001                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4002         }
4003 }
4004
4005 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4006 {
4007         unsigned root_level = mmu->root_level;
4008
4009         mmu->last_nonleaf_level = root_level;
4010         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4011                 mmu->last_nonleaf_level++;
4012 }
4013
4014 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4015                                          struct kvm_mmu *context,
4016                                          int level)
4017 {
4018         context->nx = is_nx(vcpu);
4019         context->root_level = level;
4020
4021         reset_rsvds_bits_mask(vcpu, context);
4022         update_permission_bitmask(vcpu, context, false);
4023         update_pkru_bitmask(vcpu, context, false);
4024         update_last_nonleaf_level(vcpu, context);
4025
4026         MMU_WARN_ON(!is_pae(vcpu));
4027         context->page_fault = paging64_page_fault;
4028         context->gva_to_gpa = paging64_gva_to_gpa;
4029         context->sync_page = paging64_sync_page;
4030         context->invlpg = paging64_invlpg;
4031         context->update_pte = paging64_update_pte;
4032         context->shadow_root_level = level;
4033         context->root_hpa = INVALID_PAGE;
4034         context->direct_map = false;
4035 }
4036
4037 static void paging64_init_context(struct kvm_vcpu *vcpu,
4038                                   struct kvm_mmu *context)
4039 {
4040         paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
4041 }
4042
4043 static void paging32_init_context(struct kvm_vcpu *vcpu,
4044                                   struct kvm_mmu *context)
4045 {
4046         context->nx = false;
4047         context->root_level = PT32_ROOT_LEVEL;
4048
4049         reset_rsvds_bits_mask(vcpu, context);
4050         update_permission_bitmask(vcpu, context, false);
4051         update_pkru_bitmask(vcpu, context, false);
4052         update_last_nonleaf_level(vcpu, context);
4053
4054         context->page_fault = paging32_page_fault;
4055         context->gva_to_gpa = paging32_gva_to_gpa;
4056         context->sync_page = paging32_sync_page;
4057         context->invlpg = paging32_invlpg;
4058         context->update_pte = paging32_update_pte;
4059         context->shadow_root_level = PT32E_ROOT_LEVEL;
4060         context->root_hpa = INVALID_PAGE;
4061         context->direct_map = false;
4062 }
4063
4064 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4065                                    struct kvm_mmu *context)
4066 {
4067         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4068 }
4069
4070 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4071 {
4072         struct kvm_mmu *context = &vcpu->arch.mmu;
4073
4074         context->base_role.word = 0;
4075         context->base_role.smm = is_smm(vcpu);
4076         context->page_fault = tdp_page_fault;
4077         context->sync_page = nonpaging_sync_page;
4078         context->invlpg = nonpaging_invlpg;
4079         context->update_pte = nonpaging_update_pte;
4080         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4081         context->root_hpa = INVALID_PAGE;
4082         context->direct_map = true;
4083         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4084         context->get_cr3 = get_cr3;
4085         context->get_pdptr = kvm_pdptr_read;
4086         context->inject_page_fault = kvm_inject_page_fault;
4087
4088         if (!is_paging(vcpu)) {
4089                 context->nx = false;
4090                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4091                 context->root_level = 0;
4092         } else if (is_long_mode(vcpu)) {
4093                 context->nx = is_nx(vcpu);
4094                 context->root_level = PT64_ROOT_LEVEL;
4095                 reset_rsvds_bits_mask(vcpu, context);
4096                 context->gva_to_gpa = paging64_gva_to_gpa;
4097         } else if (is_pae(vcpu)) {
4098                 context->nx = is_nx(vcpu);
4099                 context->root_level = PT32E_ROOT_LEVEL;
4100                 reset_rsvds_bits_mask(vcpu, context);
4101                 context->gva_to_gpa = paging64_gva_to_gpa;
4102         } else {
4103                 context->nx = false;
4104                 context->root_level = PT32_ROOT_LEVEL;
4105                 reset_rsvds_bits_mask(vcpu, context);
4106                 context->gva_to_gpa = paging32_gva_to_gpa;
4107         }
4108
4109         update_permission_bitmask(vcpu, context, false);
4110         update_pkru_bitmask(vcpu, context, false);
4111         update_last_nonleaf_level(vcpu, context);
4112         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4113 }
4114
4115 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4116 {
4117         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4118         bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4119         struct kvm_mmu *context = &vcpu->arch.mmu;
4120
4121         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4122
4123         if (!is_paging(vcpu))
4124                 nonpaging_init_context(vcpu, context);
4125         else if (is_long_mode(vcpu))
4126                 paging64_init_context(vcpu, context);
4127         else if (is_pae(vcpu))
4128                 paging32E_init_context(vcpu, context);
4129         else
4130                 paging32_init_context(vcpu, context);
4131
4132         context->base_role.nxe = is_nx(vcpu);
4133         context->base_role.cr4_pae = !!is_pae(vcpu);
4134         context->base_role.cr0_wp  = is_write_protection(vcpu);
4135         context->base_role.smep_andnot_wp
4136                 = smep && !is_write_protection(vcpu);
4137         context->base_role.smap_andnot_wp
4138                 = smap && !is_write_protection(vcpu);
4139         context->base_role.smm = is_smm(vcpu);
4140         reset_shadow_zero_bits_mask(vcpu, context);
4141 }
4142 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4143
4144 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
4145 {
4146         struct kvm_mmu *context = &vcpu->arch.mmu;
4147
4148         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4149
4150         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4151
4152         context->nx = true;
4153         context->page_fault = ept_page_fault;
4154         context->gva_to_gpa = ept_gva_to_gpa;
4155         context->sync_page = ept_sync_page;
4156         context->invlpg = ept_invlpg;
4157         context->update_pte = ept_update_pte;
4158         context->root_level = context->shadow_root_level;
4159         context->root_hpa = INVALID_PAGE;
4160         context->direct_map = false;
4161
4162         update_permission_bitmask(vcpu, context, true);
4163         update_pkru_bitmask(vcpu, context, true);
4164         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4165         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4166 }
4167 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4168
4169 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4170 {
4171         struct kvm_mmu *context = &vcpu->arch.mmu;
4172
4173         kvm_init_shadow_mmu(vcpu);
4174         context->set_cr3           = kvm_x86_ops->set_cr3;
4175         context->get_cr3           = get_cr3;
4176         context->get_pdptr         = kvm_pdptr_read;
4177         context->inject_page_fault = kvm_inject_page_fault;
4178 }
4179
4180 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4181 {
4182         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4183
4184         g_context->get_cr3           = get_cr3;
4185         g_context->get_pdptr         = kvm_pdptr_read;
4186         g_context->inject_page_fault = kvm_inject_page_fault;
4187
4188         /*
4189          * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4190          * L1's nested page tables (e.g. EPT12). The nested translation
4191          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4192          * L2's page tables as the first level of translation and L1's
4193          * nested page tables as the second level of translation. Basically
4194          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4195          */
4196         if (!is_paging(vcpu)) {
4197                 g_context->nx = false;
4198                 g_context->root_level = 0;
4199                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4200         } else if (is_long_mode(vcpu)) {
4201                 g_context->nx = is_nx(vcpu);
4202                 g_context->root_level = PT64_ROOT_LEVEL;
4203                 reset_rsvds_bits_mask(vcpu, g_context);
4204                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4205         } else if (is_pae(vcpu)) {
4206                 g_context->nx = is_nx(vcpu);
4207                 g_context->root_level = PT32E_ROOT_LEVEL;
4208                 reset_rsvds_bits_mask(vcpu, g_context);
4209                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4210         } else {
4211                 g_context->nx = false;
4212                 g_context->root_level = PT32_ROOT_LEVEL;
4213                 reset_rsvds_bits_mask(vcpu, g_context);
4214                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4215         }
4216
4217         update_permission_bitmask(vcpu, g_context, false);
4218         update_pkru_bitmask(vcpu, g_context, false);
4219         update_last_nonleaf_level(vcpu, g_context);
4220 }
4221
4222 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4223 {
4224         if (mmu_is_nested(vcpu))
4225                 init_kvm_nested_mmu(vcpu);
4226         else if (tdp_enabled)
4227                 init_kvm_tdp_mmu(vcpu);
4228         else
4229                 init_kvm_softmmu(vcpu);
4230 }
4231
4232 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4233 {
4234         kvm_mmu_unload(vcpu);
4235         init_kvm_mmu(vcpu);
4236 }
4237 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4238
4239 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4240 {
4241         int r;
4242
4243         r = mmu_topup_memory_caches(vcpu);
4244         if (r)
4245                 goto out;
4246         r = mmu_alloc_roots(vcpu);
4247         kvm_mmu_sync_roots(vcpu);
4248         if (r)
4249                 goto out;
4250         /* set_cr3() should ensure TLB has been flushed */
4251         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4252 out:
4253         return r;
4254 }
4255 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4256
4257 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4258 {
4259         mmu_free_roots(vcpu);
4260         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4261 }
4262 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4263
4264 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4265                                   struct kvm_mmu_page *sp, u64 *spte,
4266                                   const void *new)
4267 {
4268         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4269                 ++vcpu->kvm->stat.mmu_pde_zapped;
4270                 return;
4271         }
4272
4273         ++vcpu->kvm->stat.mmu_pte_updated;
4274         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4275 }
4276
4277 static bool need_remote_flush(u64 old, u64 new)
4278 {
4279         if (!is_shadow_present_pte(old))
4280                 return false;
4281         if (!is_shadow_present_pte(new))
4282                 return true;
4283         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4284                 return true;
4285         old ^= shadow_nx_mask;
4286         new ^= shadow_nx_mask;
4287         return (old & ~new & PT64_PERM_MASK) != 0;
4288 }
4289
4290 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4291                                     const u8 *new, int *bytes)
4292 {
4293         u64 gentry;
4294         int r;
4295
4296         /*
4297          * Assume that the pte write on a page table of the same type
4298          * as the current vcpu paging mode since we update the sptes only
4299          * when they have the same mode.
4300          */
4301         if (is_pae(vcpu) && *bytes == 4) {
4302                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4303                 *gpa &= ~(gpa_t)7;
4304                 *bytes = 8;
4305                 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4306                 if (r)
4307                         gentry = 0;
4308                 new = (const u8 *)&gentry;
4309         }
4310
4311         switch (*bytes) {
4312         case 4:
4313                 gentry = *(const u32 *)new;
4314                 break;
4315         case 8:
4316                 gentry = *(const u64 *)new;
4317                 break;
4318         default:
4319                 gentry = 0;
4320                 break;
4321         }
4322
4323         return gentry;
4324 }
4325
4326 /*
4327  * If we're seeing too many writes to a page, it may no longer be a page table,
4328  * or we may be forking, in which case it is better to unmap the page.
4329  */
4330 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4331 {
4332         /*
4333          * Skip write-flooding detected for the sp whose level is 1, because
4334          * it can become unsync, then the guest page is not write-protected.
4335          */
4336         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4337                 return false;
4338
4339         atomic_inc(&sp->write_flooding_count);
4340         return atomic_read(&sp->write_flooding_count) >= 3;
4341 }
4342
4343 /*
4344  * Misaligned accesses are too much trouble to fix up; also, they usually
4345  * indicate a page is not used as a page table.
4346  */
4347 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4348                                     int bytes)
4349 {
4350         unsigned offset, pte_size, misaligned;
4351
4352         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4353                  gpa, bytes, sp->role.word);
4354
4355         offset = offset_in_page(gpa);
4356         pte_size = sp->role.cr4_pae ? 8 : 4;
4357
4358         /*
4359          * Sometimes, the OS only writes the last one bytes to update status
4360          * bits, for example, in linux, andb instruction is used in clear_bit().
4361          */
4362         if (!(offset & (pte_size - 1)) && bytes == 1)
4363                 return false;
4364
4365         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4366         misaligned |= bytes < 4;
4367
4368         return misaligned;
4369 }
4370
4371 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4372 {
4373         unsigned page_offset, quadrant;
4374         u64 *spte;
4375         int level;
4376
4377         page_offset = offset_in_page(gpa);
4378         level = sp->role.level;
4379         *nspte = 1;
4380         if (!sp->role.cr4_pae) {
4381                 page_offset <<= 1;      /* 32->64 */
4382                 /*
4383                  * A 32-bit pde maps 4MB while the shadow pdes map
4384                  * only 2MB.  So we need to double the offset again
4385                  * and zap two pdes instead of one.
4386                  */
4387                 if (level == PT32_ROOT_LEVEL) {
4388                         page_offset &= ~7; /* kill rounding error */
4389                         page_offset <<= 1;
4390                         *nspte = 2;
4391                 }
4392                 quadrant = page_offset >> PAGE_SHIFT;
4393                 page_offset &= ~PAGE_MASK;
4394                 if (quadrant != sp->role.quadrant)
4395                         return NULL;
4396         }
4397
4398         spte = &sp->spt[page_offset / sizeof(*spte)];
4399         return spte;
4400 }
4401
4402 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4403                               const u8 *new, int bytes)
4404 {
4405         gfn_t gfn = gpa >> PAGE_SHIFT;
4406         struct kvm_mmu_page *sp;
4407         LIST_HEAD(invalid_list);
4408         u64 entry, gentry, *spte;
4409         int npte;
4410         bool remote_flush, local_flush;
4411         union kvm_mmu_page_role mask = { };
4412
4413         mask.cr0_wp = 1;
4414         mask.cr4_pae = 1;
4415         mask.nxe = 1;
4416         mask.smep_andnot_wp = 1;
4417         mask.smap_andnot_wp = 1;
4418         mask.smm = 1;
4419
4420         /*
4421          * If we don't have indirect shadow pages, it means no page is
4422          * write-protected, so we can exit simply.
4423          */
4424         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4425                 return;
4426
4427         remote_flush = local_flush = false;
4428
4429         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4430
4431         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4432
4433         /*
4434          * No need to care whether allocation memory is successful
4435          * or not since pte prefetch is skiped if it does not have
4436          * enough objects in the cache.
4437          */
4438         mmu_topup_memory_caches(vcpu);
4439
4440         spin_lock(&vcpu->kvm->mmu_lock);
4441         ++vcpu->kvm->stat.mmu_pte_write;
4442         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4443
4444         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4445                 if (detect_write_misaligned(sp, gpa, bytes) ||
4446                       detect_write_flooding(sp)) {
4447                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4448                         ++vcpu->kvm->stat.mmu_flooded;
4449                         continue;
4450                 }
4451
4452                 spte = get_written_sptes(sp, gpa, &npte);
4453                 if (!spte)
4454                         continue;
4455
4456                 local_flush = true;
4457                 while (npte--) {
4458                         entry = *spte;
4459                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4460                         if (gentry &&
4461                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4462                               & mask.word) && rmap_can_add(vcpu))
4463                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4464                         if (need_remote_flush(entry, *spte))
4465                                 remote_flush = true;
4466                         ++spte;
4467                 }
4468         }
4469         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4470         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4471         spin_unlock(&vcpu->kvm->mmu_lock);
4472 }
4473
4474 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4475 {
4476         gpa_t gpa;
4477         int r;
4478
4479         if (vcpu->arch.mmu.direct_map)
4480                 return 0;
4481
4482         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4483
4484         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4485
4486         return r;
4487 }
4488 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4489
4490 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4491 {
4492         LIST_HEAD(invalid_list);
4493
4494         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4495                 return;
4496
4497         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4498                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4499                         break;
4500
4501                 ++vcpu->kvm->stat.mmu_recycled;
4502         }
4503         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4504 }
4505
4506 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4507                        void *insn, int insn_len)
4508 {
4509         int r, emulation_type = EMULTYPE_RETRY;
4510         enum emulation_result er;
4511         bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4512
4513         if (unlikely(error_code & PFERR_RSVD_MASK)) {
4514                 r = handle_mmio_page_fault(vcpu, cr2, direct);
4515                 if (r == RET_MMIO_PF_EMULATE) {
4516                         emulation_type = 0;
4517                         goto emulate;
4518                 }
4519                 if (r == RET_MMIO_PF_RETRY)
4520                         return 1;
4521                 if (r < 0)
4522                         return r;
4523         }
4524
4525         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4526         if (r < 0)
4527                 return r;
4528         if (!r)
4529                 return 1;
4530
4531         if (mmio_info_in_cache(vcpu, cr2, direct))
4532                 emulation_type = 0;
4533 emulate:
4534         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4535
4536         switch (er) {
4537         case EMULATE_DONE:
4538                 return 1;
4539         case EMULATE_USER_EXIT:
4540                 ++vcpu->stat.mmio_exits;
4541                 /* fall through */
4542         case EMULATE_FAIL:
4543                 return 0;
4544         default:
4545                 BUG();
4546         }
4547 }
4548 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4549
4550 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4551 {
4552         vcpu->arch.mmu.invlpg(vcpu, gva);
4553         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4554         ++vcpu->stat.invlpg;
4555 }
4556 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4557
4558 void kvm_enable_tdp(void)
4559 {
4560         tdp_enabled = true;
4561 }
4562 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4563
4564 void kvm_disable_tdp(void)
4565 {
4566         tdp_enabled = false;
4567 }
4568 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4569
4570 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4571 {
4572         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4573         if (vcpu->arch.mmu.lm_root != NULL)
4574                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4575 }
4576
4577 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4578 {
4579         struct page *page;
4580         int i;
4581
4582         /*
4583          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4584          * Therefore we need to allocate shadow page tables in the first
4585          * 4GB of memory, which happens to fit the DMA32 zone.
4586          */
4587         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4588         if (!page)
4589                 return -ENOMEM;
4590
4591         vcpu->arch.mmu.pae_root = page_address(page);
4592         for (i = 0; i < 4; ++i)
4593                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4594
4595         return 0;
4596 }
4597
4598 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4599 {
4600         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4601         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4602         vcpu->arch.mmu.translate_gpa = translate_gpa;
4603         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4604
4605         return alloc_mmu_pages(vcpu);
4606 }
4607
4608 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4609 {
4610         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4611
4612         init_kvm_mmu(vcpu);
4613 }
4614
4615 void kvm_mmu_init_vm(struct kvm *kvm)
4616 {
4617         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4618
4619         node->track_write = kvm_mmu_pte_write;
4620         kvm_page_track_register_notifier(kvm, node);
4621 }
4622
4623 void kvm_mmu_uninit_vm(struct kvm *kvm)
4624 {
4625         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4626
4627         kvm_page_track_unregister_notifier(kvm, node);
4628 }
4629
4630 /* The return value indicates if tlb flush on all vcpus is needed. */
4631 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4632
4633 /* The caller should hold mmu-lock before calling this function. */
4634 static bool
4635 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4636                         slot_level_handler fn, int start_level, int end_level,
4637                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4638 {
4639         struct slot_rmap_walk_iterator iterator;
4640         bool flush = false;
4641
4642         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4643                         end_gfn, &iterator) {
4644                 if (iterator.rmap)
4645                         flush |= fn(kvm, iterator.rmap);
4646
4647                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4648                         if (flush && lock_flush_tlb) {
4649                                 kvm_flush_remote_tlbs(kvm);
4650                                 flush = false;
4651                         }
4652                         cond_resched_lock(&kvm->mmu_lock);
4653                 }
4654         }
4655
4656         if (flush && lock_flush_tlb) {
4657                 kvm_flush_remote_tlbs(kvm);
4658                 flush = false;
4659         }
4660
4661         return flush;
4662 }
4663
4664 static bool
4665 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4666                   slot_level_handler fn, int start_level, int end_level,
4667                   bool lock_flush_tlb)
4668 {
4669         return slot_handle_level_range(kvm, memslot, fn, start_level,
4670                         end_level, memslot->base_gfn,
4671                         memslot->base_gfn + memslot->npages - 1,
4672                         lock_flush_tlb);
4673 }
4674
4675 static bool
4676 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4677                       slot_level_handler fn, bool lock_flush_tlb)
4678 {
4679         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4680                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4681 }
4682
4683 static bool
4684 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4685                         slot_level_handler fn, bool lock_flush_tlb)
4686 {
4687         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4688                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4689 }
4690
4691 static bool
4692 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4693                  slot_level_handler fn, bool lock_flush_tlb)
4694 {
4695         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4696                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4697 }
4698
4699 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4700 {
4701         struct kvm_memslots *slots;
4702         struct kvm_memory_slot *memslot;
4703         int i;
4704
4705         spin_lock(&kvm->mmu_lock);
4706         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4707                 slots = __kvm_memslots(kvm, i);
4708                 kvm_for_each_memslot(memslot, slots) {
4709                         gfn_t start, end;
4710
4711                         start = max(gfn_start, memslot->base_gfn);
4712                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
4713                         if (start >= end)
4714                                 continue;
4715
4716                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4717                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4718                                                 start, end - 1, true);
4719                 }
4720         }
4721
4722         spin_unlock(&kvm->mmu_lock);
4723 }
4724
4725 static bool slot_rmap_write_protect(struct kvm *kvm,
4726                                     struct kvm_rmap_head *rmap_head)
4727 {
4728         return __rmap_write_protect(kvm, rmap_head, false);
4729 }
4730
4731 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4732                                       struct kvm_memory_slot *memslot)
4733 {
4734         bool flush;
4735
4736         spin_lock(&kvm->mmu_lock);
4737         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4738                                       false);
4739         spin_unlock(&kvm->mmu_lock);
4740
4741         /*
4742          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4743          * which do tlb flush out of mmu-lock should be serialized by
4744          * kvm->slots_lock otherwise tlb flush would be missed.
4745          */
4746         lockdep_assert_held(&kvm->slots_lock);
4747
4748         /*
4749          * We can flush all the TLBs out of the mmu lock without TLB
4750          * corruption since we just change the spte from writable to
4751          * readonly so that we only need to care the case of changing
4752          * spte from present to present (changing the spte from present
4753          * to nonpresent will flush all the TLBs immediately), in other
4754          * words, the only case we care is mmu_spte_update() where we
4755          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4756          * instead of PT_WRITABLE_MASK, that means it does not depend
4757          * on PT_WRITABLE_MASK anymore.
4758          */
4759         if (flush)
4760                 kvm_flush_remote_tlbs(kvm);
4761 }
4762
4763 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4764                                          struct kvm_rmap_head *rmap_head)
4765 {
4766         u64 *sptep;
4767         struct rmap_iterator iter;
4768         int need_tlb_flush = 0;
4769         kvm_pfn_t pfn;
4770         struct kvm_mmu_page *sp;
4771
4772 restart:
4773         for_each_rmap_spte(rmap_head, &iter, sptep) {
4774                 sp = page_header(__pa(sptep));
4775                 pfn = spte_to_pfn(*sptep);
4776
4777                 /*
4778                  * We cannot do huge page mapping for indirect shadow pages,
4779                  * which are found on the last rmap (level = 1) when not using
4780                  * tdp; such shadow pages are synced with the page table in
4781                  * the guest, and the guest page table is using 4K page size
4782                  * mapping if the indirect sp has level = 1.
4783                  */
4784                 if (sp->role.direct &&
4785                         !kvm_is_reserved_pfn(pfn) &&
4786                         PageTransCompoundMap(pfn_to_page(pfn))) {
4787                         drop_spte(kvm, sptep);
4788                         need_tlb_flush = 1;
4789                         goto restart;
4790                 }
4791         }
4792
4793         return need_tlb_flush;
4794 }
4795
4796 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4797                                    const struct kvm_memory_slot *memslot)
4798 {
4799         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
4800         spin_lock(&kvm->mmu_lock);
4801         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4802                          kvm_mmu_zap_collapsible_spte, true);
4803         spin_unlock(&kvm->mmu_lock);
4804 }
4805
4806 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4807                                    struct kvm_memory_slot *memslot)
4808 {
4809         bool flush;
4810
4811         spin_lock(&kvm->mmu_lock);
4812         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4813         spin_unlock(&kvm->mmu_lock);
4814
4815         lockdep_assert_held(&kvm->slots_lock);
4816
4817         /*
4818          * It's also safe to flush TLBs out of mmu lock here as currently this
4819          * function is only used for dirty logging, in which case flushing TLB
4820          * out of mmu lock also guarantees no dirty pages will be lost in
4821          * dirty_bitmap.
4822          */
4823         if (flush)
4824                 kvm_flush_remote_tlbs(kvm);
4825 }
4826 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4827
4828 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4829                                         struct kvm_memory_slot *memslot)
4830 {
4831         bool flush;
4832
4833         spin_lock(&kvm->mmu_lock);
4834         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4835                                         false);
4836         spin_unlock(&kvm->mmu_lock);
4837
4838         /* see kvm_mmu_slot_remove_write_access */
4839         lockdep_assert_held(&kvm->slots_lock);
4840
4841         if (flush)
4842                 kvm_flush_remote_tlbs(kvm);
4843 }
4844 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4845
4846 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4847                             struct kvm_memory_slot *memslot)
4848 {
4849         bool flush;
4850
4851         spin_lock(&kvm->mmu_lock);
4852         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4853         spin_unlock(&kvm->mmu_lock);
4854
4855         lockdep_assert_held(&kvm->slots_lock);
4856
4857         /* see kvm_mmu_slot_leaf_clear_dirty */
4858         if (flush)
4859                 kvm_flush_remote_tlbs(kvm);
4860 }
4861 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4862
4863 #define BATCH_ZAP_PAGES 10
4864 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4865 {
4866         struct kvm_mmu_page *sp, *node;
4867         int batch = 0;
4868
4869 restart:
4870         list_for_each_entry_safe_reverse(sp, node,
4871               &kvm->arch.active_mmu_pages, link) {
4872                 int ret;
4873
4874                 /*
4875                  * No obsolete page exists before new created page since
4876                  * active_mmu_pages is the FIFO list.
4877                  */
4878                 if (!is_obsolete_sp(kvm, sp))
4879                         break;
4880
4881                 /*
4882                  * Since we are reversely walking the list and the invalid
4883                  * list will be moved to the head, skip the invalid page
4884                  * can help us to avoid the infinity list walking.
4885                  */
4886                 if (sp->role.invalid)
4887                         continue;
4888
4889                 /*
4890                  * Need not flush tlb since we only zap the sp with invalid
4891                  * generation number.
4892                  */
4893                 if (batch >= BATCH_ZAP_PAGES &&
4894                       cond_resched_lock(&kvm->mmu_lock)) {
4895                         batch = 0;
4896                         goto restart;
4897                 }
4898
4899                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4900                                 &kvm->arch.zapped_obsolete_pages);
4901                 batch += ret;
4902
4903                 if (ret)
4904                         goto restart;
4905         }
4906
4907         /*
4908          * Should flush tlb before free page tables since lockless-walking
4909          * may use the pages.
4910          */
4911         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4912 }
4913
4914 /*
4915  * Fast invalidate all shadow pages and use lock-break technique
4916  * to zap obsolete pages.
4917  *
4918  * It's required when memslot is being deleted or VM is being
4919  * destroyed, in these cases, we should ensure that KVM MMU does
4920  * not use any resource of the being-deleted slot or all slots
4921  * after calling the function.
4922  */
4923 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4924 {
4925         spin_lock(&kvm->mmu_lock);
4926         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4927         kvm->arch.mmu_valid_gen++;
4928
4929         /*
4930          * Notify all vcpus to reload its shadow page table
4931          * and flush TLB. Then all vcpus will switch to new
4932          * shadow page table with the new mmu_valid_gen.
4933          *
4934          * Note: we should do this under the protection of
4935          * mmu-lock, otherwise, vcpu would purge shadow page
4936          * but miss tlb flush.
4937          */
4938         kvm_reload_remote_mmus(kvm);
4939
4940         kvm_zap_obsolete_pages(kvm);
4941         spin_unlock(&kvm->mmu_lock);
4942 }
4943
4944 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4945 {
4946         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4947 }
4948
4949 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4950 {
4951         /*
4952          * The very rare case: if the generation-number is round,
4953          * zap all shadow pages.
4954          */
4955         if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4956                 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4957                 kvm_mmu_invalidate_zap_all_pages(kvm);
4958         }
4959 }
4960
4961 static unsigned long
4962 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4963 {
4964         struct kvm *kvm;
4965         int nr_to_scan = sc->nr_to_scan;
4966         unsigned long freed = 0;
4967
4968         spin_lock(&kvm_lock);
4969
4970         list_for_each_entry(kvm, &vm_list, vm_list) {
4971                 int idx;
4972                 LIST_HEAD(invalid_list);
4973
4974                 /*
4975                  * Never scan more than sc->nr_to_scan VM instances.
4976                  * Will not hit this condition practically since we do not try
4977                  * to shrink more than one VM and it is very unlikely to see
4978                  * !n_used_mmu_pages so many times.
4979                  */
4980                 if (!nr_to_scan--)
4981                         break;
4982                 /*
4983                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4984                  * here. We may skip a VM instance errorneosly, but we do not
4985                  * want to shrink a VM that only started to populate its MMU
4986                  * anyway.
4987                  */
4988                 if (!kvm->arch.n_used_mmu_pages &&
4989                       !kvm_has_zapped_obsolete_pages(kvm))
4990                         continue;
4991
4992                 idx = srcu_read_lock(&kvm->srcu);
4993                 spin_lock(&kvm->mmu_lock);
4994
4995                 if (kvm_has_zapped_obsolete_pages(kvm)) {
4996                         kvm_mmu_commit_zap_page(kvm,
4997                               &kvm->arch.zapped_obsolete_pages);
4998                         goto unlock;
4999                 }
5000
5001                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5002                         freed++;
5003                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5004
5005 unlock:
5006                 spin_unlock(&kvm->mmu_lock);
5007                 srcu_read_unlock(&kvm->srcu, idx);
5008
5009                 /*
5010                  * unfair on small ones
5011                  * per-vm shrinkers cry out
5012                  * sadness comes quickly
5013                  */
5014                 list_move_tail(&kvm->vm_list, &vm_list);
5015                 break;
5016         }
5017
5018         spin_unlock(&kvm_lock);
5019         return freed;
5020 }
5021
5022 static unsigned long
5023 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5024 {
5025         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5026 }
5027
5028 static struct shrinker mmu_shrinker = {
5029         .count_objects = mmu_shrink_count,
5030         .scan_objects = mmu_shrink_scan,
5031         .seeks = DEFAULT_SEEKS * 10,
5032 };
5033
5034 static void mmu_destroy_caches(void)
5035 {
5036         if (pte_list_desc_cache)
5037                 kmem_cache_destroy(pte_list_desc_cache);
5038         if (mmu_page_header_cache)
5039                 kmem_cache_destroy(mmu_page_header_cache);
5040 }
5041
5042 int kvm_mmu_module_init(void)
5043 {
5044         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5045                                             sizeof(struct pte_list_desc),
5046                                             0, 0, NULL);
5047         if (!pte_list_desc_cache)
5048                 goto nomem;
5049
5050         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5051                                                   sizeof(struct kvm_mmu_page),
5052                                                   0, 0, NULL);
5053         if (!mmu_page_header_cache)
5054                 goto nomem;
5055
5056         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5057                 goto nomem;
5058
5059         register_shrinker(&mmu_shrinker);
5060
5061         return 0;
5062
5063 nomem:
5064         mmu_destroy_caches();
5065         return -ENOMEM;
5066 }
5067
5068 /*
5069  * Caculate mmu pages needed for kvm.
5070  */
5071 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5072 {
5073         unsigned int nr_mmu_pages;
5074         unsigned int  nr_pages = 0;
5075         struct kvm_memslots *slots;
5076         struct kvm_memory_slot *memslot;
5077         int i;
5078
5079         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5080                 slots = __kvm_memslots(kvm, i);
5081
5082                 kvm_for_each_memslot(memslot, slots)
5083                         nr_pages += memslot->npages;
5084         }
5085
5086         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5087         nr_mmu_pages = max(nr_mmu_pages,
5088                            (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5089
5090         return nr_mmu_pages;
5091 }
5092
5093 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5094 {
5095         kvm_mmu_unload(vcpu);
5096         free_mmu_pages(vcpu);
5097         mmu_free_memory_caches(vcpu);
5098 }
5099
5100 void kvm_mmu_module_exit(void)
5101 {
5102         mmu_destroy_caches();
5103         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5104         unregister_shrinker(&mmu_shrinker);
5105         mmu_audit_disable();
5106 }