Merge branch 'x86-mds-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / arch / x86 / kvm / cpuid.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  * cpuid support routines
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8  * Copyright IBM Corporation, 2008
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2.  See
11  * the COPYING file in the top-level directory.
12  *
13  */
14
15 #include <linux/kvm_host.h>
16 #include <linux/export.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <linux/sched/stat.h>
20
21 #include <asm/processor.h>
22 #include <asm/user.h>
23 #include <asm/fpu/xstate.h>
24 #include "cpuid.h"
25 #include "lapic.h"
26 #include "mmu.h"
27 #include "trace.h"
28 #include "pmu.h"
29
30 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
31 {
32         int feature_bit = 0;
33         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
34
35         xstate_bv &= XFEATURE_MASK_EXTEND;
36         while (xstate_bv) {
37                 if (xstate_bv & 0x1) {
38                         u32 eax, ebx, ecx, edx, offset;
39                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
40                         offset = compacted ? ret : ebx;
41                         ret = max(ret, offset + eax);
42                 }
43
44                 xstate_bv >>= 1;
45                 feature_bit++;
46         }
47
48         return ret;
49 }
50
51 bool kvm_mpx_supported(void)
52 {
53         return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
54                  && kvm_x86_ops->mpx_supported());
55 }
56 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
57
58 u64 kvm_supported_xcr0(void)
59 {
60         u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
61
62         if (!kvm_mpx_supported())
63                 xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
64
65         return xcr0;
66 }
67
68 #define F(x) bit(X86_FEATURE_##x)
69
70 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
71 {
72         struct kvm_cpuid_entry2 *best;
73         struct kvm_lapic *apic = vcpu->arch.apic;
74
75         best = kvm_find_cpuid_entry(vcpu, 1, 0);
76         if (!best)
77                 return 0;
78
79         /* Update OSXSAVE bit */
80         if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
81                 best->ecx &= ~F(OSXSAVE);
82                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
83                         best->ecx |= F(OSXSAVE);
84         }
85
86         best->edx &= ~F(APIC);
87         if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
88                 best->edx |= F(APIC);
89
90         if (apic) {
91                 if (best->ecx & F(TSC_DEADLINE_TIMER))
92                         apic->lapic_timer.timer_mode_mask = 3 << 17;
93                 else
94                         apic->lapic_timer.timer_mode_mask = 1 << 17;
95         }
96
97         best = kvm_find_cpuid_entry(vcpu, 7, 0);
98         if (best) {
99                 /* Update OSPKE bit */
100                 if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
101                         best->ecx &= ~F(OSPKE);
102                         if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
103                                 best->ecx |= F(OSPKE);
104                 }
105         }
106
107         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
108         if (!best) {
109                 vcpu->arch.guest_supported_xcr0 = 0;
110                 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
111         } else {
112                 vcpu->arch.guest_supported_xcr0 =
113                         (best->eax | ((u64)best->edx << 32)) &
114                         kvm_supported_xcr0();
115                 vcpu->arch.guest_xstate_size = best->ebx =
116                         xstate_required_size(vcpu->arch.xcr0, false);
117         }
118
119         best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
120         if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
121                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
122
123         /*
124          * The existing code assumes virtual address is 48-bit or 57-bit in the
125          * canonical address checks; exit if it is ever changed.
126          */
127         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
128         if (best) {
129                 int vaddr_bits = (best->eax & 0xff00) >> 8;
130
131                 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
132                         return -EINVAL;
133         }
134
135         best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
136         if (kvm_hlt_in_guest(vcpu->kvm) && best &&
137                 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
138                 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
139
140         /* Update physical-address width */
141         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
142         kvm_mmu_reset_context(vcpu);
143
144         kvm_pmu_refresh(vcpu);
145         return 0;
146 }
147
148 static int is_efer_nx(void)
149 {
150         unsigned long long efer = 0;
151
152         rdmsrl_safe(MSR_EFER, &efer);
153         return efer & EFER_NX;
154 }
155
156 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
157 {
158         int i;
159         struct kvm_cpuid_entry2 *e, *entry;
160
161         entry = NULL;
162         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
163                 e = &vcpu->arch.cpuid_entries[i];
164                 if (e->function == 0x80000001) {
165                         entry = e;
166                         break;
167                 }
168         }
169         if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
170                 entry->edx &= ~F(NX);
171                 printk(KERN_INFO "kvm: guest NX capability removed\n");
172         }
173 }
174
175 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
176 {
177         struct kvm_cpuid_entry2 *best;
178
179         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
180         if (!best || best->eax < 0x80000008)
181                 goto not_found;
182         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
183         if (best)
184                 return best->eax & 0xff;
185 not_found:
186         return 36;
187 }
188 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
189
190 /* when an old userspace process fills a new kernel module */
191 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
192                              struct kvm_cpuid *cpuid,
193                              struct kvm_cpuid_entry __user *entries)
194 {
195         int r, i;
196         struct kvm_cpuid_entry *cpuid_entries = NULL;
197
198         r = -E2BIG;
199         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
200                 goto out;
201         r = -ENOMEM;
202         if (cpuid->nent) {
203                 cpuid_entries =
204                         vmalloc(array_size(sizeof(struct kvm_cpuid_entry),
205                                            cpuid->nent));
206                 if (!cpuid_entries)
207                         goto out;
208                 r = -EFAULT;
209                 if (copy_from_user(cpuid_entries, entries,
210                                    cpuid->nent * sizeof(struct kvm_cpuid_entry)))
211                         goto out;
212         }
213         for (i = 0; i < cpuid->nent; i++) {
214                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
215                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
216                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
217                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
218                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
219                 vcpu->arch.cpuid_entries[i].index = 0;
220                 vcpu->arch.cpuid_entries[i].flags = 0;
221                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
222                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
223                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
224         }
225         vcpu->arch.cpuid_nent = cpuid->nent;
226         cpuid_fix_nx_cap(vcpu);
227         kvm_apic_set_version(vcpu);
228         kvm_x86_ops->cpuid_update(vcpu);
229         r = kvm_update_cpuid(vcpu);
230
231 out:
232         vfree(cpuid_entries);
233         return r;
234 }
235
236 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
237                               struct kvm_cpuid2 *cpuid,
238                               struct kvm_cpuid_entry2 __user *entries)
239 {
240         int r;
241
242         r = -E2BIG;
243         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
244                 goto out;
245         r = -EFAULT;
246         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
247                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
248                 goto out;
249         vcpu->arch.cpuid_nent = cpuid->nent;
250         kvm_apic_set_version(vcpu);
251         kvm_x86_ops->cpuid_update(vcpu);
252         r = kvm_update_cpuid(vcpu);
253 out:
254         return r;
255 }
256
257 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
258                               struct kvm_cpuid2 *cpuid,
259                               struct kvm_cpuid_entry2 __user *entries)
260 {
261         int r;
262
263         r = -E2BIG;
264         if (cpuid->nent < vcpu->arch.cpuid_nent)
265                 goto out;
266         r = -EFAULT;
267         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
268                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
269                 goto out;
270         return 0;
271
272 out:
273         cpuid->nent = vcpu->arch.cpuid_nent;
274         return r;
275 }
276
277 static void cpuid_mask(u32 *word, int wordnum)
278 {
279         *word &= boot_cpu_data.x86_capability[wordnum];
280 }
281
282 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
283                            u32 index)
284 {
285         entry->function = function;
286         entry->index = index;
287         cpuid_count(entry->function, entry->index,
288                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
289         entry->flags = 0;
290 }
291
292 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
293                                    u32 func, u32 index, int *nent, int maxnent)
294 {
295         switch (func) {
296         case 0:
297                 entry->eax = 7;
298                 ++*nent;
299                 break;
300         case 1:
301                 entry->ecx = F(MOVBE);
302                 ++*nent;
303                 break;
304         case 7:
305                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
306                 if (index == 0)
307                         entry->ecx = F(RDPID);
308                 ++*nent;
309         default:
310                 break;
311         }
312
313         entry->function = func;
314         entry->index = index;
315
316         return 0;
317 }
318
319 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
320                                  u32 index, int *nent, int maxnent)
321 {
322         int r;
323         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
324 #ifdef CONFIG_X86_64
325         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
326                                 ? F(GBPAGES) : 0;
327         unsigned f_lm = F(LM);
328 #else
329         unsigned f_gbpages = 0;
330         unsigned f_lm = 0;
331 #endif
332         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
333         unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
334         unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
335         unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
336         unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
337         unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
338         unsigned f_la57 = 0;
339
340         /* cpuid 1.edx */
341         const u32 kvm_cpuid_1_edx_x86_features =
342                 F(FPU) | F(VME) | F(DE) | F(PSE) |
343                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
344                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
345                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
346                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
347                 0 /* Reserved, DS, ACPI */ | F(MMX) |
348                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
349                 0 /* HTT, TM, Reserved, PBE */;
350         /* cpuid 0x80000001.edx */
351         const u32 kvm_cpuid_8000_0001_edx_x86_features =
352                 F(FPU) | F(VME) | F(DE) | F(PSE) |
353                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
354                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
355                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
356                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
357                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
358                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
359                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
360         /* cpuid 1.ecx */
361         const u32 kvm_cpuid_1_ecx_x86_features =
362                 /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
363                  * but *not* advertised to guests via CPUID ! */
364                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
365                 0 /* DS-CPL, VMX, SMX, EST */ |
366                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
367                 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
368                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
369                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
370                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
371                 F(F16C) | F(RDRAND);
372         /* cpuid 0x80000001.ecx */
373         const u32 kvm_cpuid_8000_0001_ecx_x86_features =
374                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
375                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
376                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
377                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
378                 F(TOPOEXT) | F(PERFCTR_CORE);
379
380         /* cpuid 0x80000008.ebx */
381         const u32 kvm_cpuid_8000_0008_ebx_x86_features =
382                 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
383                 F(AMD_SSB_NO) | F(AMD_STIBP);
384
385         /* cpuid 0xC0000001.edx */
386         const u32 kvm_cpuid_C000_0001_edx_x86_features =
387                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
388                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
389                 F(PMM) | F(PMM_EN);
390
391         /* cpuid 7.0.ebx */
392         const u32 kvm_cpuid_7_0_ebx_x86_features =
393                 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
394                 F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
395                 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
396                 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
397                 F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | f_intel_pt;
398
399         /* cpuid 0xD.1.eax */
400         const u32 kvm_cpuid_D_1_eax_x86_features =
401                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
402
403         /* cpuid 7.0.ecx*/
404         const u32 kvm_cpuid_7_0_ecx_x86_features =
405                 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ |
406                 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
407                 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
408                 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B);
409
410         /* cpuid 7.0.edx*/
411         const u32 kvm_cpuid_7_0_edx_x86_features =
412                 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
413                 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
414                 F(MD_CLEAR);
415
416         /* all calls to cpuid_count() should be made on the same cpu */
417         get_cpu();
418
419         r = -E2BIG;
420
421         if (*nent >= maxnent)
422                 goto out;
423
424         do_cpuid_1_ent(entry, function, index);
425         ++*nent;
426
427         switch (function) {
428         case 0:
429                 entry->eax = min(entry->eax, (u32)(f_intel_pt ? 0x14 : 0xd));
430                 break;
431         case 1:
432                 entry->edx &= kvm_cpuid_1_edx_x86_features;
433                 cpuid_mask(&entry->edx, CPUID_1_EDX);
434                 entry->ecx &= kvm_cpuid_1_ecx_x86_features;
435                 cpuid_mask(&entry->ecx, CPUID_1_ECX);
436                 /* we support x2apic emulation even if host does not support
437                  * it since we emulate x2apic in software */
438                 entry->ecx |= F(X2APIC);
439                 break;
440         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
441          * may return different values. This forces us to get_cpu() before
442          * issuing the first command, and also to emulate this annoying behavior
443          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
444         case 2: {
445                 int t, times = entry->eax & 0xff;
446
447                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
448                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
449                 for (t = 1; t < times; ++t) {
450                         if (*nent >= maxnent)
451                                 goto out;
452
453                         do_cpuid_1_ent(&entry[t], function, 0);
454                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
455                         ++*nent;
456                 }
457                 break;
458         }
459         /* function 4 has additional index. */
460         case 4: {
461                 int i, cache_type;
462
463                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
464                 /* read more entries until cache_type is zero */
465                 for (i = 1; ; ++i) {
466                         if (*nent >= maxnent)
467                                 goto out;
468
469                         cache_type = entry[i - 1].eax & 0x1f;
470                         if (!cache_type)
471                                 break;
472                         do_cpuid_1_ent(&entry[i], function, i);
473                         entry[i].flags |=
474                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
475                         ++*nent;
476                 }
477                 break;
478         }
479         case 6: /* Thermal management */
480                 entry->eax = 0x4; /* allow ARAT */
481                 entry->ebx = 0;
482                 entry->ecx = 0;
483                 entry->edx = 0;
484                 break;
485         case 7: {
486                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
487                 /* Mask ebx against host capability word 9 */
488                 if (index == 0) {
489                         entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
490                         cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
491                         // TSC_ADJUST is emulated
492                         entry->ebx |= F(TSC_ADJUST);
493                         entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
494                         f_la57 = entry->ecx & F(LA57);
495                         cpuid_mask(&entry->ecx, CPUID_7_ECX);
496                         /* Set LA57 based on hardware capability. */
497                         entry->ecx |= f_la57;
498                         entry->ecx |= f_umip;
499                         /* PKU is not yet implemented for shadow paging. */
500                         if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
501                                 entry->ecx &= ~F(PKU);
502                         entry->edx &= kvm_cpuid_7_0_edx_x86_features;
503                         cpuid_mask(&entry->edx, CPUID_7_EDX);
504                         /*
505                          * We emulate ARCH_CAPABILITIES in software even
506                          * if the host doesn't support it.
507                          */
508                         entry->edx |= F(ARCH_CAPABILITIES);
509                 } else {
510                         entry->ebx = 0;
511                         entry->ecx = 0;
512                         entry->edx = 0;
513                 }
514                 entry->eax = 0;
515                 break;
516         }
517         case 9:
518                 break;
519         case 0xa: { /* Architectural Performance Monitoring */
520                 struct x86_pmu_capability cap;
521                 union cpuid10_eax eax;
522                 union cpuid10_edx edx;
523
524                 perf_get_x86_pmu_capability(&cap);
525
526                 /*
527                  * Only support guest architectural pmu on a host
528                  * with architectural pmu.
529                  */
530                 if (!cap.version)
531                         memset(&cap, 0, sizeof(cap));
532
533                 eax.split.version_id = min(cap.version, 2);
534                 eax.split.num_counters = cap.num_counters_gp;
535                 eax.split.bit_width = cap.bit_width_gp;
536                 eax.split.mask_length = cap.events_mask_len;
537
538                 edx.split.num_counters_fixed = cap.num_counters_fixed;
539                 edx.split.bit_width_fixed = cap.bit_width_fixed;
540                 edx.split.reserved = 0;
541
542                 entry->eax = eax.full;
543                 entry->ebx = cap.events_mask;
544                 entry->ecx = 0;
545                 entry->edx = edx.full;
546                 break;
547         }
548         /* function 0xb has additional index. */
549         case 0xb: {
550                 int i, level_type;
551
552                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
553                 /* read more entries until level_type is zero */
554                 for (i = 1; ; ++i) {
555                         if (*nent >= maxnent)
556                                 goto out;
557
558                         level_type = entry[i - 1].ecx & 0xff00;
559                         if (!level_type)
560                                 break;
561                         do_cpuid_1_ent(&entry[i], function, i);
562                         entry[i].flags |=
563                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
564                         ++*nent;
565                 }
566                 break;
567         }
568         case 0xd: {
569                 int idx, i;
570                 u64 supported = kvm_supported_xcr0();
571
572                 entry->eax &= supported;
573                 entry->ebx = xstate_required_size(supported, false);
574                 entry->ecx = entry->ebx;
575                 entry->edx &= supported >> 32;
576                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
577                 if (!supported)
578                         break;
579
580                 for (idx = 1, i = 1; idx < 64; ++idx) {
581                         u64 mask = ((u64)1 << idx);
582                         if (*nent >= maxnent)
583                                 goto out;
584
585                         do_cpuid_1_ent(&entry[i], function, idx);
586                         if (idx == 1) {
587                                 entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
588                                 cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
589                                 entry[i].ebx = 0;
590                                 if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
591                                         entry[i].ebx =
592                                                 xstate_required_size(supported,
593                                                                      true);
594                         } else {
595                                 if (entry[i].eax == 0 || !(supported & mask))
596                                         continue;
597                                 if (WARN_ON_ONCE(entry[i].ecx & 1))
598                                         continue;
599                         }
600                         entry[i].ecx = 0;
601                         entry[i].edx = 0;
602                         entry[i].flags |=
603                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
604                         ++*nent;
605                         ++i;
606                 }
607                 break;
608         }
609         /* Intel PT */
610         case 0x14: {
611                 int t, times = entry->eax;
612
613                 if (!f_intel_pt)
614                         break;
615
616                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
617                 for (t = 1; t <= times; ++t) {
618                         if (*nent >= maxnent)
619                                 goto out;
620                         do_cpuid_1_ent(&entry[t], function, t);
621                         entry[t].flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
622                         ++*nent;
623                 }
624                 break;
625         }
626         case KVM_CPUID_SIGNATURE: {
627                 static const char signature[12] = "KVMKVMKVM\0\0";
628                 const u32 *sigptr = (const u32 *)signature;
629                 entry->eax = KVM_CPUID_FEATURES;
630                 entry->ebx = sigptr[0];
631                 entry->ecx = sigptr[1];
632                 entry->edx = sigptr[2];
633                 break;
634         }
635         case KVM_CPUID_FEATURES:
636                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
637                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
638                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
639                              (1 << KVM_FEATURE_ASYNC_PF) |
640                              (1 << KVM_FEATURE_PV_EOI) |
641                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
642                              (1 << KVM_FEATURE_PV_UNHALT) |
643                              (1 << KVM_FEATURE_PV_TLB_FLUSH) |
644                              (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
645                              (1 << KVM_FEATURE_PV_SEND_IPI);
646
647                 if (sched_info_on())
648                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
649
650                 entry->ebx = 0;
651                 entry->ecx = 0;
652                 entry->edx = 0;
653                 break;
654         case 0x80000000:
655                 entry->eax = min(entry->eax, 0x8000001f);
656                 break;
657         case 0x80000001:
658                 entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
659                 cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
660                 entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
661                 cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
662                 break;
663         case 0x80000007: /* Advanced power management */
664                 /* invariant TSC is CPUID.80000007H:EDX[8] */
665                 entry->edx &= (1 << 8);
666                 /* mask against host */
667                 entry->edx &= boot_cpu_data.x86_power;
668                 entry->eax = entry->ebx = entry->ecx = 0;
669                 break;
670         case 0x80000008: {
671                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
672                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
673                 unsigned phys_as = entry->eax & 0xff;
674
675                 if (!g_phys_as)
676                         g_phys_as = phys_as;
677                 entry->eax = g_phys_as | (virt_as << 8);
678                 entry->edx = 0;
679                 /*
680                  * IBRS, IBPB and VIRT_SSBD aren't necessarily present in
681                  * hardware cpuid
682                  */
683                 if (boot_cpu_has(X86_FEATURE_AMD_IBPB))
684                         entry->ebx |= F(AMD_IBPB);
685                 if (boot_cpu_has(X86_FEATURE_AMD_IBRS))
686                         entry->ebx |= F(AMD_IBRS);
687                 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
688                         entry->ebx |= F(VIRT_SSBD);
689                 entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
690                 cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
691                 /*
692                  * The preference is to use SPEC CTRL MSR instead of the
693                  * VIRT_SPEC MSR.
694                  */
695                 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
696                     !boot_cpu_has(X86_FEATURE_AMD_SSBD))
697                         entry->ebx |= F(VIRT_SSBD);
698                 break;
699         }
700         case 0x80000019:
701                 entry->ecx = entry->edx = 0;
702                 break;
703         case 0x8000001a:
704                 break;
705         case 0x8000001d:
706                 break;
707         /*Add support for Centaur's CPUID instruction*/
708         case 0xC0000000:
709                 /*Just support up to 0xC0000004 now*/
710                 entry->eax = min(entry->eax, 0xC0000004);
711                 break;
712         case 0xC0000001:
713                 entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
714                 cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
715                 break;
716         case 3: /* Processor serial number */
717         case 5: /* MONITOR/MWAIT */
718         case 0xC0000002:
719         case 0xC0000003:
720         case 0xC0000004:
721         default:
722                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
723                 break;
724         }
725
726         kvm_x86_ops->set_supported_cpuid(function, entry);
727
728         r = 0;
729
730 out:
731         put_cpu();
732
733         return r;
734 }
735
736 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
737                         u32 idx, int *nent, int maxnent, unsigned int type)
738 {
739         if (type == KVM_GET_EMULATED_CPUID)
740                 return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
741
742         return __do_cpuid_ent(entry, func, idx, nent, maxnent);
743 }
744
745 #undef F
746
747 struct kvm_cpuid_param {
748         u32 func;
749         u32 idx;
750         bool has_leaf_count;
751         bool (*qualifier)(const struct kvm_cpuid_param *param);
752 };
753
754 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
755 {
756         return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
757 }
758
759 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
760                                  __u32 num_entries, unsigned int ioctl_type)
761 {
762         int i;
763         __u32 pad[3];
764
765         if (ioctl_type != KVM_GET_EMULATED_CPUID)
766                 return false;
767
768         /*
769          * We want to make sure that ->padding is being passed clean from
770          * userspace in case we want to use it for something in the future.
771          *
772          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
773          * have to give ourselves satisfied only with the emulated side. /me
774          * sheds a tear.
775          */
776         for (i = 0; i < num_entries; i++) {
777                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
778                         return true;
779
780                 if (pad[0] || pad[1] || pad[2])
781                         return true;
782         }
783         return false;
784 }
785
786 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
787                             struct kvm_cpuid_entry2 __user *entries,
788                             unsigned int type)
789 {
790         struct kvm_cpuid_entry2 *cpuid_entries;
791         int limit, nent = 0, r = -E2BIG, i;
792         u32 func;
793         static const struct kvm_cpuid_param param[] = {
794                 { .func = 0, .has_leaf_count = true },
795                 { .func = 0x80000000, .has_leaf_count = true },
796                 { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
797                 { .func = KVM_CPUID_SIGNATURE },
798                 { .func = KVM_CPUID_FEATURES },
799         };
800
801         if (cpuid->nent < 1)
802                 goto out;
803         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
804                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
805
806         if (sanity_check_entries(entries, cpuid->nent, type))
807                 return -EINVAL;
808
809         r = -ENOMEM;
810         cpuid_entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
811                                            cpuid->nent));
812         if (!cpuid_entries)
813                 goto out;
814
815         r = 0;
816         for (i = 0; i < ARRAY_SIZE(param); i++) {
817                 const struct kvm_cpuid_param *ent = &param[i];
818
819                 if (ent->qualifier && !ent->qualifier(ent))
820                         continue;
821
822                 r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
823                                 &nent, cpuid->nent, type);
824
825                 if (r)
826                         goto out_free;
827
828                 if (!ent->has_leaf_count)
829                         continue;
830
831                 limit = cpuid_entries[nent - 1].eax;
832                 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
833                         r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
834                                      &nent, cpuid->nent, type);
835
836                 if (r)
837                         goto out_free;
838         }
839
840         r = -EFAULT;
841         if (copy_to_user(entries, cpuid_entries,
842                          nent * sizeof(struct kvm_cpuid_entry2)))
843                 goto out_free;
844         cpuid->nent = nent;
845         r = 0;
846
847 out_free:
848         vfree(cpuid_entries);
849 out:
850         return r;
851 }
852
853 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
854 {
855         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
856         struct kvm_cpuid_entry2 *ej;
857         int j = i;
858         int nent = vcpu->arch.cpuid_nent;
859
860         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
861         /* when no next entry is found, the current entry[i] is reselected */
862         do {
863                 j = (j + 1) % nent;
864                 ej = &vcpu->arch.cpuid_entries[j];
865         } while (ej->function != e->function);
866
867         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
868
869         return j;
870 }
871
872 /* find an entry with matching function, matching index (if needed), and that
873  * should be read next (if it's stateful) */
874 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
875         u32 function, u32 index)
876 {
877         if (e->function != function)
878                 return 0;
879         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
880                 return 0;
881         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
882             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
883                 return 0;
884         return 1;
885 }
886
887 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
888                                               u32 function, u32 index)
889 {
890         int i;
891         struct kvm_cpuid_entry2 *best = NULL;
892
893         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
894                 struct kvm_cpuid_entry2 *e;
895
896                 e = &vcpu->arch.cpuid_entries[i];
897                 if (is_matching_cpuid_entry(e, function, index)) {
898                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
899                                 move_to_next_stateful_cpuid_entry(vcpu, i);
900                         best = e;
901                         break;
902                 }
903         }
904         return best;
905 }
906 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
907
908 /*
909  * If no match is found, check whether we exceed the vCPU's limit
910  * and return the content of the highest valid _standard_ leaf instead.
911  * This is to satisfy the CPUID specification.
912  */
913 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
914                                                   u32 function, u32 index)
915 {
916         struct kvm_cpuid_entry2 *maxlevel;
917
918         maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
919         if (!maxlevel || maxlevel->eax >= function)
920                 return NULL;
921         if (function & 0x80000000) {
922                 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
923                 if (!maxlevel)
924                         return NULL;
925         }
926         return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
927 }
928
929 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
930                u32 *ecx, u32 *edx, bool check_limit)
931 {
932         u32 function = *eax, index = *ecx;
933         struct kvm_cpuid_entry2 *best;
934         bool entry_found = true;
935
936         best = kvm_find_cpuid_entry(vcpu, function, index);
937
938         if (!best) {
939                 entry_found = false;
940                 if (!check_limit)
941                         goto out;
942
943                 best = check_cpuid_limit(vcpu, function, index);
944         }
945
946 out:
947         if (best) {
948                 *eax = best->eax;
949                 *ebx = best->ebx;
950                 *ecx = best->ecx;
951                 *edx = best->edx;
952         } else
953                 *eax = *ebx = *ecx = *edx = 0;
954         trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, entry_found);
955         return entry_found;
956 }
957 EXPORT_SYMBOL_GPL(kvm_cpuid);
958
959 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
960 {
961         u32 eax, ebx, ecx, edx;
962
963         if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
964                 return 1;
965
966         eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
967         ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
968         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
969         kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
970         kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
971         kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
972         kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
973         return kvm_skip_emulated_instruction(vcpu);
974 }
975 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);