License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[linux-2.6-block.git] / arch / x86 / kernel / vm86_32.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1994  Linus Torvalds
4  *
5  *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
6  *                stack - Manfred Spraul <manfred@colorfullife.com>
7  *
8  *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
9  *                them correctly. Now the emulation will be in a
10  *                consistent state after stackfaults - Kasper Dupont
11  *                <kasperd@daimi.au.dk>
12  *
13  *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
14  *                <kasperd@daimi.au.dk>
15  *
16  *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
17  *                caused by Kasper Dupont's changes - Stas Sergeev
18  *
19  *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
20  *                Kasper Dupont <kasperd@daimi.au.dk>
21  *
22  *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
23  *                Kasper Dupont <kasperd@daimi.au.dk>
24  *
25  *   9 apr 2002 - Changed stack access macros to jump to a label
26  *                instead of returning to userspace. This simplifies
27  *                do_int, and is needed by handle_vm6_fault. Kasper
28  *                Dupont <kasperd@daimi.au.dk>
29  *
30  */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/capability.h>
35 #include <linux/errno.h>
36 #include <linux/interrupt.h>
37 #include <linux/syscalls.h>
38 #include <linux/sched.h>
39 #include <linux/sched/task_stack.h>
40 #include <linux/kernel.h>
41 #include <linux/signal.h>
42 #include <linux/string.h>
43 #include <linux/mm.h>
44 #include <linux/smp.h>
45 #include <linux/highmem.h>
46 #include <linux/ptrace.h>
47 #include <linux/audit.h>
48 #include <linux/stddef.h>
49 #include <linux/slab.h>
50 #include <linux/security.h>
51
52 #include <linux/uaccess.h>
53 #include <asm/io.h>
54 #include <asm/tlbflush.h>
55 #include <asm/irq.h>
56 #include <asm/traps.h>
57 #include <asm/vm86.h>
58
59 /*
60  * Known problems:
61  *
62  * Interrupt handling is not guaranteed:
63  * - a real x86 will disable all interrupts for one instruction
64  *   after a "mov ss,xx" to make stack handling atomic even without
65  *   the 'lss' instruction. We can't guarantee this in v86 mode,
66  *   as the next instruction might result in a page fault or similar.
67  * - a real x86 will have interrupts disabled for one instruction
68  *   past the 'sti' that enables them. We don't bother with all the
69  *   details yet.
70  *
71  * Let's hope these problems do not actually matter for anything.
72  */
73
74
75 /*
76  * 8- and 16-bit register defines..
77  */
78 #define AL(regs)        (((unsigned char *)&((regs)->pt.ax))[0])
79 #define AH(regs)        (((unsigned char *)&((regs)->pt.ax))[1])
80 #define IP(regs)        (*(unsigned short *)&((regs)->pt.ip))
81 #define SP(regs)        (*(unsigned short *)&((regs)->pt.sp))
82
83 /*
84  * virtual flags (16 and 32-bit versions)
85  */
86 #define VFLAGS  (*(unsigned short *)&(current->thread.vm86->veflags))
87 #define VEFLAGS (current->thread.vm86->veflags)
88
89 #define set_flags(X, new, mask) \
90 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
91
92 #define SAFE_MASK       (0xDD5)
93 #define RETURN_MASK     (0xDFF)
94
95 void save_v86_state(struct kernel_vm86_regs *regs, int retval)
96 {
97         struct tss_struct *tss;
98         struct task_struct *tsk = current;
99         struct vm86plus_struct __user *user;
100         struct vm86 *vm86 = current->thread.vm86;
101         long err = 0;
102
103         /*
104          * This gets called from entry.S with interrupts disabled, but
105          * from process context. Enable interrupts here, before trying
106          * to access user space.
107          */
108         local_irq_enable();
109
110         if (!vm86 || !vm86->user_vm86) {
111                 pr_alert("no user_vm86: BAD\n");
112                 do_exit(SIGSEGV);
113         }
114         set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
115         user = vm86->user_vm86;
116
117         if (!access_ok(VERIFY_WRITE, user, vm86->vm86plus.is_vm86pus ?
118                        sizeof(struct vm86plus_struct) :
119                        sizeof(struct vm86_struct))) {
120                 pr_alert("could not access userspace vm86 info\n");
121                 do_exit(SIGSEGV);
122         }
123
124         put_user_try {
125                 put_user_ex(regs->pt.bx, &user->regs.ebx);
126                 put_user_ex(regs->pt.cx, &user->regs.ecx);
127                 put_user_ex(regs->pt.dx, &user->regs.edx);
128                 put_user_ex(regs->pt.si, &user->regs.esi);
129                 put_user_ex(regs->pt.di, &user->regs.edi);
130                 put_user_ex(regs->pt.bp, &user->regs.ebp);
131                 put_user_ex(regs->pt.ax, &user->regs.eax);
132                 put_user_ex(regs->pt.ip, &user->regs.eip);
133                 put_user_ex(regs->pt.cs, &user->regs.cs);
134                 put_user_ex(regs->pt.flags, &user->regs.eflags);
135                 put_user_ex(regs->pt.sp, &user->regs.esp);
136                 put_user_ex(regs->pt.ss, &user->regs.ss);
137                 put_user_ex(regs->es, &user->regs.es);
138                 put_user_ex(regs->ds, &user->regs.ds);
139                 put_user_ex(regs->fs, &user->regs.fs);
140                 put_user_ex(regs->gs, &user->regs.gs);
141
142                 put_user_ex(vm86->screen_bitmap, &user->screen_bitmap);
143         } put_user_catch(err);
144         if (err) {
145                 pr_alert("could not access userspace vm86 info\n");
146                 do_exit(SIGSEGV);
147         }
148
149         tss = &per_cpu(cpu_tss, get_cpu());
150         tsk->thread.sp0 = vm86->saved_sp0;
151         tsk->thread.sysenter_cs = __KERNEL_CS;
152         load_sp0(tss, &tsk->thread);
153         vm86->saved_sp0 = 0;
154         put_cpu();
155
156         memcpy(&regs->pt, &vm86->regs32, sizeof(struct pt_regs));
157
158         lazy_load_gs(vm86->regs32.gs);
159
160         regs->pt.ax = retval;
161 }
162
163 static void mark_screen_rdonly(struct mm_struct *mm)
164 {
165         struct vm_area_struct *vma;
166         spinlock_t *ptl;
167         pgd_t *pgd;
168         p4d_t *p4d;
169         pud_t *pud;
170         pmd_t *pmd;
171         pte_t *pte;
172         int i;
173
174         down_write(&mm->mmap_sem);
175         pgd = pgd_offset(mm, 0xA0000);
176         if (pgd_none_or_clear_bad(pgd))
177                 goto out;
178         p4d = p4d_offset(pgd, 0xA0000);
179         if (p4d_none_or_clear_bad(p4d))
180                 goto out;
181         pud = pud_offset(p4d, 0xA0000);
182         if (pud_none_or_clear_bad(pud))
183                 goto out;
184         pmd = pmd_offset(pud, 0xA0000);
185
186         if (pmd_trans_huge(*pmd)) {
187                 vma = find_vma(mm, 0xA0000);
188                 split_huge_pmd(vma, pmd, 0xA0000);
189         }
190         if (pmd_none_or_clear_bad(pmd))
191                 goto out;
192         pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
193         for (i = 0; i < 32; i++) {
194                 if (pte_present(*pte))
195                         set_pte(pte, pte_wrprotect(*pte));
196                 pte++;
197         }
198         pte_unmap_unlock(pte, ptl);
199 out:
200         up_write(&mm->mmap_sem);
201         flush_tlb_mm_range(mm, 0xA0000, 0xA0000 + 32*PAGE_SIZE, 0UL);
202 }
203
204
205
206 static int do_vm86_irq_handling(int subfunction, int irqnumber);
207 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
208
209 SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
210 {
211         return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
212 }
213
214
215 SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
216 {
217         switch (cmd) {
218         case VM86_REQUEST_IRQ:
219         case VM86_FREE_IRQ:
220         case VM86_GET_IRQ_BITS:
221         case VM86_GET_AND_RESET_IRQ:
222                 return do_vm86_irq_handling(cmd, (int)arg);
223         case VM86_PLUS_INSTALL_CHECK:
224                 /*
225                  * NOTE: on old vm86 stuff this will return the error
226                  *  from access_ok(), because the subfunction is
227                  *  interpreted as (invalid) address to vm86_struct.
228                  *  So the installation check works.
229                  */
230                 return 0;
231         }
232
233         /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
234         return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
235 }
236
237
238 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
239 {
240         struct tss_struct *tss;
241         struct task_struct *tsk = current;
242         struct vm86 *vm86 = tsk->thread.vm86;
243         struct kernel_vm86_regs vm86regs;
244         struct pt_regs *regs = current_pt_regs();
245         unsigned long err = 0;
246
247         err = security_mmap_addr(0);
248         if (err) {
249                 /*
250                  * vm86 cannot virtualize the address space, so vm86 users
251                  * need to manage the low 1MB themselves using mmap.  Given
252                  * that BIOS places important data in the first page, vm86
253                  * is essentially useless if mmap_min_addr != 0.  DOSEMU,
254                  * for example, won't even bother trying to use vm86 if it
255                  * can't map a page at virtual address 0.
256                  *
257                  * To reduce the available kernel attack surface, simply
258                  * disallow vm86(old) for users who cannot mmap at va 0.
259                  *
260                  * The implementation of security_mmap_addr will allow
261                  * suitably privileged users to map va 0 even if
262                  * vm.mmap_min_addr is set above 0, and we want this
263                  * behavior for vm86 as well, as it ensures that legacy
264                  * tools like vbetool will not fail just because of
265                  * vm.mmap_min_addr.
266                  */
267                 pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d).  Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
268                              current->comm, task_pid_nr(current),
269                              from_kuid_munged(&init_user_ns, current_uid()));
270                 return -EPERM;
271         }
272
273         if (!vm86) {
274                 if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
275                         return -ENOMEM;
276                 tsk->thread.vm86 = vm86;
277         }
278         if (vm86->saved_sp0)
279                 return -EPERM;
280
281         if (!access_ok(VERIFY_READ, user_vm86, plus ?
282                        sizeof(struct vm86_struct) :
283                        sizeof(struct vm86plus_struct)))
284                 return -EFAULT;
285
286         memset(&vm86regs, 0, sizeof(vm86regs));
287         get_user_try {
288                 unsigned short seg;
289                 get_user_ex(vm86regs.pt.bx, &user_vm86->regs.ebx);
290                 get_user_ex(vm86regs.pt.cx, &user_vm86->regs.ecx);
291                 get_user_ex(vm86regs.pt.dx, &user_vm86->regs.edx);
292                 get_user_ex(vm86regs.pt.si, &user_vm86->regs.esi);
293                 get_user_ex(vm86regs.pt.di, &user_vm86->regs.edi);
294                 get_user_ex(vm86regs.pt.bp, &user_vm86->regs.ebp);
295                 get_user_ex(vm86regs.pt.ax, &user_vm86->regs.eax);
296                 get_user_ex(vm86regs.pt.ip, &user_vm86->regs.eip);
297                 get_user_ex(seg, &user_vm86->regs.cs);
298                 vm86regs.pt.cs = seg;
299                 get_user_ex(vm86regs.pt.flags, &user_vm86->regs.eflags);
300                 get_user_ex(vm86regs.pt.sp, &user_vm86->regs.esp);
301                 get_user_ex(seg, &user_vm86->regs.ss);
302                 vm86regs.pt.ss = seg;
303                 get_user_ex(vm86regs.es, &user_vm86->regs.es);
304                 get_user_ex(vm86regs.ds, &user_vm86->regs.ds);
305                 get_user_ex(vm86regs.fs, &user_vm86->regs.fs);
306                 get_user_ex(vm86regs.gs, &user_vm86->regs.gs);
307
308                 get_user_ex(vm86->flags, &user_vm86->flags);
309                 get_user_ex(vm86->screen_bitmap, &user_vm86->screen_bitmap);
310                 get_user_ex(vm86->cpu_type, &user_vm86->cpu_type);
311         } get_user_catch(err);
312         if (err)
313                 return err;
314
315         if (copy_from_user(&vm86->int_revectored,
316                            &user_vm86->int_revectored,
317                            sizeof(struct revectored_struct)))
318                 return -EFAULT;
319         if (copy_from_user(&vm86->int21_revectored,
320                            &user_vm86->int21_revectored,
321                            sizeof(struct revectored_struct)))
322                 return -EFAULT;
323         if (plus) {
324                 if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
325                                    sizeof(struct vm86plus_info_struct)))
326                         return -EFAULT;
327                 vm86->vm86plus.is_vm86pus = 1;
328         } else
329                 memset(&vm86->vm86plus, 0,
330                        sizeof(struct vm86plus_info_struct));
331
332         memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
333         vm86->user_vm86 = user_vm86;
334
335 /*
336  * The flags register is also special: we cannot trust that the user
337  * has set it up safely, so this makes sure interrupt etc flags are
338  * inherited from protected mode.
339  */
340         VEFLAGS = vm86regs.pt.flags;
341         vm86regs.pt.flags &= SAFE_MASK;
342         vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
343         vm86regs.pt.flags |= X86_VM_MASK;
344
345         vm86regs.pt.orig_ax = regs->orig_ax;
346
347         switch (vm86->cpu_type) {
348         case CPU_286:
349                 vm86->veflags_mask = 0;
350                 break;
351         case CPU_386:
352                 vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
353                 break;
354         case CPU_486:
355                 vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
356                 break;
357         default:
358                 vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
359                 break;
360         }
361
362 /*
363  * Save old state
364  */
365         vm86->saved_sp0 = tsk->thread.sp0;
366         lazy_save_gs(vm86->regs32.gs);
367
368         tss = &per_cpu(cpu_tss, get_cpu());
369         /* make room for real-mode segments */
370         tsk->thread.sp0 += 16;
371
372         if (static_cpu_has(X86_FEATURE_SEP))
373                 tsk->thread.sysenter_cs = 0;
374
375         load_sp0(tss, &tsk->thread);
376         put_cpu();
377
378         if (vm86->flags & VM86_SCREEN_BITMAP)
379                 mark_screen_rdonly(tsk->mm);
380
381         memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
382         force_iret();
383         return regs->ax;
384 }
385
386 static inline void set_IF(struct kernel_vm86_regs *regs)
387 {
388         VEFLAGS |= X86_EFLAGS_VIF;
389 }
390
391 static inline void clear_IF(struct kernel_vm86_regs *regs)
392 {
393         VEFLAGS &= ~X86_EFLAGS_VIF;
394 }
395
396 static inline void clear_TF(struct kernel_vm86_regs *regs)
397 {
398         regs->pt.flags &= ~X86_EFLAGS_TF;
399 }
400
401 static inline void clear_AC(struct kernel_vm86_regs *regs)
402 {
403         regs->pt.flags &= ~X86_EFLAGS_AC;
404 }
405
406 /*
407  * It is correct to call set_IF(regs) from the set_vflags_*
408  * functions. However someone forgot to call clear_IF(regs)
409  * in the opposite case.
410  * After the command sequence CLI PUSHF STI POPF you should
411  * end up with interrupts disabled, but you ended up with
412  * interrupts enabled.
413  *  ( I was testing my own changes, but the only bug I
414  *    could find was in a function I had not changed. )
415  * [KD]
416  */
417
418 static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
419 {
420         set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask);
421         set_flags(regs->pt.flags, flags, SAFE_MASK);
422         if (flags & X86_EFLAGS_IF)
423                 set_IF(regs);
424         else
425                 clear_IF(regs);
426 }
427
428 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
429 {
430         set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask);
431         set_flags(regs->pt.flags, flags, SAFE_MASK);
432         if (flags & X86_EFLAGS_IF)
433                 set_IF(regs);
434         else
435                 clear_IF(regs);
436 }
437
438 static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
439 {
440         unsigned long flags = regs->pt.flags & RETURN_MASK;
441
442         if (VEFLAGS & X86_EFLAGS_VIF)
443                 flags |= X86_EFLAGS_IF;
444         flags |= X86_EFLAGS_IOPL;
445         return flags | (VEFLAGS & current->thread.vm86->veflags_mask);
446 }
447
448 static inline int is_revectored(int nr, struct revectored_struct *bitmap)
449 {
450         return test_bit(nr, bitmap->__map);
451 }
452
453 #define val_byte(val, n) (((__u8 *)&val)[n])
454
455 #define pushb(base, ptr, val, err_label) \
456         do { \
457                 __u8 __val = val; \
458                 ptr--; \
459                 if (put_user(__val, base + ptr) < 0) \
460                         goto err_label; \
461         } while (0)
462
463 #define pushw(base, ptr, val, err_label) \
464         do { \
465                 __u16 __val = val; \
466                 ptr--; \
467                 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
468                         goto err_label; \
469                 ptr--; \
470                 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
471                         goto err_label; \
472         } while (0)
473
474 #define pushl(base, ptr, val, err_label) \
475         do { \
476                 __u32 __val = val; \
477                 ptr--; \
478                 if (put_user(val_byte(__val, 3), base + ptr) < 0) \
479                         goto err_label; \
480                 ptr--; \
481                 if (put_user(val_byte(__val, 2), base + ptr) < 0) \
482                         goto err_label; \
483                 ptr--; \
484                 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
485                         goto err_label; \
486                 ptr--; \
487                 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
488                         goto err_label; \
489         } while (0)
490
491 #define popb(base, ptr, err_label) \
492         ({ \
493                 __u8 __res; \
494                 if (get_user(__res, base + ptr) < 0) \
495                         goto err_label; \
496                 ptr++; \
497                 __res; \
498         })
499
500 #define popw(base, ptr, err_label) \
501         ({ \
502                 __u16 __res; \
503                 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
504                         goto err_label; \
505                 ptr++; \
506                 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
507                         goto err_label; \
508                 ptr++; \
509                 __res; \
510         })
511
512 #define popl(base, ptr, err_label) \
513         ({ \
514                 __u32 __res; \
515                 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
516                         goto err_label; \
517                 ptr++; \
518                 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
519                         goto err_label; \
520                 ptr++; \
521                 if (get_user(val_byte(__res, 2), base + ptr) < 0) \
522                         goto err_label; \
523                 ptr++; \
524                 if (get_user(val_byte(__res, 3), base + ptr) < 0) \
525                         goto err_label; \
526                 ptr++; \
527                 __res; \
528         })
529
530 /* There are so many possible reasons for this function to return
531  * VM86_INTx, so adding another doesn't bother me. We can expect
532  * userspace programs to be able to handle it. (Getting a problem
533  * in userspace is always better than an Oops anyway.) [KD]
534  */
535 static void do_int(struct kernel_vm86_regs *regs, int i,
536     unsigned char __user *ssp, unsigned short sp)
537 {
538         unsigned long __user *intr_ptr;
539         unsigned long segoffs;
540         struct vm86 *vm86 = current->thread.vm86;
541
542         if (regs->pt.cs == BIOSSEG)
543                 goto cannot_handle;
544         if (is_revectored(i, &vm86->int_revectored))
545                 goto cannot_handle;
546         if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
547                 goto cannot_handle;
548         intr_ptr = (unsigned long __user *) (i << 2);
549         if (get_user(segoffs, intr_ptr))
550                 goto cannot_handle;
551         if ((segoffs >> 16) == BIOSSEG)
552                 goto cannot_handle;
553         pushw(ssp, sp, get_vflags(regs), cannot_handle);
554         pushw(ssp, sp, regs->pt.cs, cannot_handle);
555         pushw(ssp, sp, IP(regs), cannot_handle);
556         regs->pt.cs = segoffs >> 16;
557         SP(regs) -= 6;
558         IP(regs) = segoffs & 0xffff;
559         clear_TF(regs);
560         clear_IF(regs);
561         clear_AC(regs);
562         return;
563
564 cannot_handle:
565         save_v86_state(regs, VM86_INTx + (i << 8));
566 }
567
568 int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
569 {
570         struct vm86 *vm86 = current->thread.vm86;
571
572         if (vm86->vm86plus.is_vm86pus) {
573                 if ((trapno == 3) || (trapno == 1)) {
574                         save_v86_state(regs, VM86_TRAP + (trapno << 8));
575                         return 0;
576                 }
577                 do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
578                 return 0;
579         }
580         if (trapno != 1)
581                 return 1; /* we let this handle by the calling routine */
582         current->thread.trap_nr = trapno;
583         current->thread.error_code = error_code;
584         force_sig(SIGTRAP, current);
585         return 0;
586 }
587
588 void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
589 {
590         unsigned char opcode;
591         unsigned char __user *csp;
592         unsigned char __user *ssp;
593         unsigned short ip, sp, orig_flags;
594         int data32, pref_done;
595         struct vm86plus_info_struct *vmpi = &current->thread.vm86->vm86plus;
596
597 #define CHECK_IF_IN_TRAP \
598         if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
599                 newflags |= X86_EFLAGS_TF
600
601         orig_flags = *(unsigned short *)&regs->pt.flags;
602
603         csp = (unsigned char __user *) (regs->pt.cs << 4);
604         ssp = (unsigned char __user *) (regs->pt.ss << 4);
605         sp = SP(regs);
606         ip = IP(regs);
607
608         data32 = 0;
609         pref_done = 0;
610         do {
611                 switch (opcode = popb(csp, ip, simulate_sigsegv)) {
612                 case 0x66:      /* 32-bit data */     data32 = 1; break;
613                 case 0x67:      /* 32-bit address */  break;
614                 case 0x2e:      /* CS */              break;
615                 case 0x3e:      /* DS */              break;
616                 case 0x26:      /* ES */              break;
617                 case 0x36:      /* SS */              break;
618                 case 0x65:      /* GS */              break;
619                 case 0x64:      /* FS */              break;
620                 case 0xf2:      /* repnz */       break;
621                 case 0xf3:      /* rep */             break;
622                 default: pref_done = 1;
623                 }
624         } while (!pref_done);
625
626         switch (opcode) {
627
628         /* pushf */
629         case 0x9c:
630                 if (data32) {
631                         pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
632                         SP(regs) -= 4;
633                 } else {
634                         pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
635                         SP(regs) -= 2;
636                 }
637                 IP(regs) = ip;
638                 goto vm86_fault_return;
639
640         /* popf */
641         case 0x9d:
642                 {
643                 unsigned long newflags;
644                 if (data32) {
645                         newflags = popl(ssp, sp, simulate_sigsegv);
646                         SP(regs) += 4;
647                 } else {
648                         newflags = popw(ssp, sp, simulate_sigsegv);
649                         SP(regs) += 2;
650                 }
651                 IP(regs) = ip;
652                 CHECK_IF_IN_TRAP;
653                 if (data32)
654                         set_vflags_long(newflags, regs);
655                 else
656                         set_vflags_short(newflags, regs);
657
658                 goto check_vip;
659                 }
660
661         /* int xx */
662         case 0xcd: {
663                 int intno = popb(csp, ip, simulate_sigsegv);
664                 IP(regs) = ip;
665                 if (vmpi->vm86dbg_active) {
666                         if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
667                                 save_v86_state(regs, VM86_INTx + (intno << 8));
668                                 return;
669                         }
670                 }
671                 do_int(regs, intno, ssp, sp);
672                 return;
673         }
674
675         /* iret */
676         case 0xcf:
677                 {
678                 unsigned long newip;
679                 unsigned long newcs;
680                 unsigned long newflags;
681                 if (data32) {
682                         newip = popl(ssp, sp, simulate_sigsegv);
683                         newcs = popl(ssp, sp, simulate_sigsegv);
684                         newflags = popl(ssp, sp, simulate_sigsegv);
685                         SP(regs) += 12;
686                 } else {
687                         newip = popw(ssp, sp, simulate_sigsegv);
688                         newcs = popw(ssp, sp, simulate_sigsegv);
689                         newflags = popw(ssp, sp, simulate_sigsegv);
690                         SP(regs) += 6;
691                 }
692                 IP(regs) = newip;
693                 regs->pt.cs = newcs;
694                 CHECK_IF_IN_TRAP;
695                 if (data32) {
696                         set_vflags_long(newflags, regs);
697                 } else {
698                         set_vflags_short(newflags, regs);
699                 }
700                 goto check_vip;
701                 }
702
703         /* cli */
704         case 0xfa:
705                 IP(regs) = ip;
706                 clear_IF(regs);
707                 goto vm86_fault_return;
708
709         /* sti */
710         /*
711          * Damn. This is incorrect: the 'sti' instruction should actually
712          * enable interrupts after the /next/ instruction. Not good.
713          *
714          * Probably needs some horsing around with the TF flag. Aiee..
715          */
716         case 0xfb:
717                 IP(regs) = ip;
718                 set_IF(regs);
719                 goto check_vip;
720
721         default:
722                 save_v86_state(regs, VM86_UNKNOWN);
723         }
724
725         return;
726
727 check_vip:
728         if (VEFLAGS & X86_EFLAGS_VIP) {
729                 save_v86_state(regs, VM86_STI);
730                 return;
731         }
732
733 vm86_fault_return:
734         if (vmpi->force_return_for_pic  && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
735                 save_v86_state(regs, VM86_PICRETURN);
736                 return;
737         }
738         if (orig_flags & X86_EFLAGS_TF)
739                 handle_vm86_trap(regs, 0, X86_TRAP_DB);
740         return;
741
742 simulate_sigsegv:
743         /* FIXME: After a long discussion with Stas we finally
744          *        agreed, that this is wrong. Here we should
745          *        really send a SIGSEGV to the user program.
746          *        But how do we create the correct context? We
747          *        are inside a general protection fault handler
748          *        and has just returned from a page fault handler.
749          *        The correct context for the signal handler
750          *        should be a mixture of the two, but how do we
751          *        get the information? [KD]
752          */
753         save_v86_state(regs, VM86_UNKNOWN);
754 }
755
756 /* ---------------- vm86 special IRQ passing stuff ----------------- */
757
758 #define VM86_IRQNAME            "vm86irq"
759
760 static struct vm86_irqs {
761         struct task_struct *tsk;
762         int sig;
763 } vm86_irqs[16];
764
765 static DEFINE_SPINLOCK(irqbits_lock);
766 static int irqbits;
767
768 #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
769         | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
770         | (1 << SIGUNUSED))
771
772 static irqreturn_t irq_handler(int intno, void *dev_id)
773 {
774         int irq_bit;
775         unsigned long flags;
776
777         spin_lock_irqsave(&irqbits_lock, flags);
778         irq_bit = 1 << intno;
779         if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
780                 goto out;
781         irqbits |= irq_bit;
782         if (vm86_irqs[intno].sig)
783                 send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
784         /*
785          * IRQ will be re-enabled when user asks for the irq (whether
786          * polling or as a result of the signal)
787          */
788         disable_irq_nosync(intno);
789         spin_unlock_irqrestore(&irqbits_lock, flags);
790         return IRQ_HANDLED;
791
792 out:
793         spin_unlock_irqrestore(&irqbits_lock, flags);
794         return IRQ_NONE;
795 }
796
797 static inline void free_vm86_irq(int irqnumber)
798 {
799         unsigned long flags;
800
801         free_irq(irqnumber, NULL);
802         vm86_irqs[irqnumber].tsk = NULL;
803
804         spin_lock_irqsave(&irqbits_lock, flags);
805         irqbits &= ~(1 << irqnumber);
806         spin_unlock_irqrestore(&irqbits_lock, flags);
807 }
808
809 void release_vm86_irqs(struct task_struct *task)
810 {
811         int i;
812         for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
813             if (vm86_irqs[i].tsk == task)
814                 free_vm86_irq(i);
815 }
816
817 static inline int get_and_reset_irq(int irqnumber)
818 {
819         int bit;
820         unsigned long flags;
821         int ret = 0;
822
823         if (invalid_vm86_irq(irqnumber)) return 0;
824         if (vm86_irqs[irqnumber].tsk != current) return 0;
825         spin_lock_irqsave(&irqbits_lock, flags);
826         bit = irqbits & (1 << irqnumber);
827         irqbits &= ~bit;
828         if (bit) {
829                 enable_irq(irqnumber);
830                 ret = 1;
831         }
832
833         spin_unlock_irqrestore(&irqbits_lock, flags);
834         return ret;
835 }
836
837
838 static int do_vm86_irq_handling(int subfunction, int irqnumber)
839 {
840         int ret;
841         switch (subfunction) {
842                 case VM86_GET_AND_RESET_IRQ: {
843                         return get_and_reset_irq(irqnumber);
844                 }
845                 case VM86_GET_IRQ_BITS: {
846                         return irqbits;
847                 }
848                 case VM86_REQUEST_IRQ: {
849                         int sig = irqnumber >> 8;
850                         int irq = irqnumber & 255;
851                         if (!capable(CAP_SYS_ADMIN)) return -EPERM;
852                         if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
853                         if (invalid_vm86_irq(irq)) return -EPERM;
854                         if (vm86_irqs[irq].tsk) return -EPERM;
855                         ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
856                         if (ret) return ret;
857                         vm86_irqs[irq].sig = sig;
858                         vm86_irqs[irq].tsk = current;
859                         return irq;
860                 }
861                 case  VM86_FREE_IRQ: {
862                         if (invalid_vm86_irq(irqnumber)) return -EPERM;
863                         if (!vm86_irqs[irqnumber].tsk) return 0;
864                         if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
865                         free_vm86_irq(irqnumber);
866                         return 0;
867                 }
868         }
869         return -EINVAL;
870 }
871