dd33c357548f11c0ac21c367d0edc20b34671218
[linux-2.6-block.git] / arch / x86 / kernel / cpu / mcheck / mce_amd.c
1 /*
2  *  (c) 2005-2016 Advanced Micro Devices, Inc.
3  *  Your use of this code is subject to the terms and conditions of the
4  *  GNU general public license version 2. See "COPYING" or
5  *  http://www.gnu.org/licenses/gpl.html
6  *
7  *  Written by Jacob Shin - AMD, Inc.
8  *  Maintained by: Borislav Petkov <bp@alien8.de>
9  *
10  *  All MC4_MISCi registers are shared between cores on a node.
11  */
12 #include <linux/interrupt.h>
13 #include <linux/notifier.h>
14 #include <linux/kobject.h>
15 #include <linux/percpu.h>
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/sysfs.h>
19 #include <linux/slab.h>
20 #include <linux/init.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/string.h>
24
25 #include <asm/amd_nb.h>
26 #include <asm/apic.h>
27 #include <asm/mce.h>
28 #include <asm/msr.h>
29 #include <asm/trace/irq_vectors.h>
30
31 #include "mce-internal.h"
32
33 #define NR_BLOCKS         5
34 #define THRESHOLD_MAX     0xFFF
35 #define INT_TYPE_APIC     0x00020000
36 #define MASK_VALID_HI     0x80000000
37 #define MASK_CNTP_HI      0x40000000
38 #define MASK_LOCKED_HI    0x20000000
39 #define MASK_LVTOFF_HI    0x00F00000
40 #define MASK_COUNT_EN_HI  0x00080000
41 #define MASK_INT_TYPE_HI  0x00060000
42 #define MASK_OVERFLOW_HI  0x00010000
43 #define MASK_ERR_COUNT_HI 0x00000FFF
44 #define MASK_BLKPTR_LO    0xFF000000
45 #define MCG_XBLK_ADDR     0xC0000400
46
47 /* Deferred error settings */
48 #define MSR_CU_DEF_ERR          0xC0000410
49 #define MASK_DEF_LVTOFF         0x000000F0
50 #define MASK_DEF_INT_TYPE       0x00000006
51 #define DEF_LVT_OFF             0x2
52 #define DEF_INT_TYPE_APIC       0x2
53
54 /* Scalable MCA: */
55
56 /* Threshold LVT offset is at MSR0xC0000410[15:12] */
57 #define SMCA_THR_LVT_OFF        0xF000
58
59 static bool thresholding_en;
60
61 static const char * const th_names[] = {
62         "load_store",
63         "insn_fetch",
64         "combined_unit",
65         "decode_unit",
66         "northbridge",
67         "execution_unit",
68 };
69
70 static const char * const smca_umc_block_names[] = {
71         "dram_ecc",
72         "misc_umc"
73 };
74
75 struct smca_bank_name {
76         const char *name;       /* Short name for sysfs */
77         const char *long_name;  /* Long name for pretty-printing */
78 };
79
80 static struct smca_bank_name smca_names[] = {
81         [SMCA_LS]       = { "load_store",       "Load Store Unit" },
82         [SMCA_IF]       = { "insn_fetch",       "Instruction Fetch Unit" },
83         [SMCA_L2_CACHE] = { "l2_cache",         "L2 Cache" },
84         [SMCA_DE]       = { "decode_unit",      "Decode Unit" },
85         [SMCA_RESERVED] = { "reserved",         "Reserved" },
86         [SMCA_EX]       = { "execution_unit",   "Execution Unit" },
87         [SMCA_FP]       = { "floating_point",   "Floating Point Unit" },
88         [SMCA_L3_CACHE] = { "l3_cache",         "L3 Cache" },
89         [SMCA_CS]       = { "coherent_slave",   "Coherent Slave" },
90         [SMCA_PIE]      = { "pie",              "Power, Interrupts, etc." },
91         [SMCA_UMC]      = { "umc",              "Unified Memory Controller" },
92         [SMCA_PB]       = { "param_block",      "Parameter Block" },
93         [SMCA_PSP]      = { "psp",              "Platform Security Processor" },
94         [SMCA_SMU]      = { "smu",              "System Management Unit" },
95 };
96
97 static u32 smca_bank_addrs[MAX_NR_BANKS][NR_BLOCKS] __ro_after_init =
98 {
99         [0 ... MAX_NR_BANKS - 1] = { [0 ... NR_BLOCKS - 1] = -1 }
100 };
101
102 const char *smca_get_name(enum smca_bank_types t)
103 {
104         if (t >= N_SMCA_BANK_TYPES)
105                 return NULL;
106
107         return smca_names[t].name;
108 }
109
110 const char *smca_get_long_name(enum smca_bank_types t)
111 {
112         if (t >= N_SMCA_BANK_TYPES)
113                 return NULL;
114
115         return smca_names[t].long_name;
116 }
117 EXPORT_SYMBOL_GPL(smca_get_long_name);
118
119 static enum smca_bank_types smca_get_bank_type(unsigned int bank)
120 {
121         struct smca_bank *b;
122
123         if (bank >= MAX_NR_BANKS)
124                 return N_SMCA_BANK_TYPES;
125
126         b = &smca_banks[bank];
127         if (!b->hwid)
128                 return N_SMCA_BANK_TYPES;
129
130         return b->hwid->bank_type;
131 }
132
133 static struct smca_hwid smca_hwid_mcatypes[] = {
134         /* { bank_type, hwid_mcatype, xec_bitmap } */
135
136         /* Reserved type */
137         { SMCA_RESERVED, HWID_MCATYPE(0x00, 0x0), 0x0 },
138
139         /* ZN Core (HWID=0xB0) MCA types */
140         { SMCA_LS,       HWID_MCATYPE(0xB0, 0x0), 0x1FFFEF },
141         { SMCA_IF,       HWID_MCATYPE(0xB0, 0x1), 0x3FFF },
142         { SMCA_L2_CACHE, HWID_MCATYPE(0xB0, 0x2), 0xF },
143         { SMCA_DE,       HWID_MCATYPE(0xB0, 0x3), 0x1FF },
144         /* HWID 0xB0 MCATYPE 0x4 is Reserved */
145         { SMCA_EX,       HWID_MCATYPE(0xB0, 0x5), 0x7FF },
146         { SMCA_FP,       HWID_MCATYPE(0xB0, 0x6), 0x7F },
147         { SMCA_L3_CACHE, HWID_MCATYPE(0xB0, 0x7), 0xFF },
148
149         /* Data Fabric MCA types */
150         { SMCA_CS,       HWID_MCATYPE(0x2E, 0x0), 0x1FF },
151         { SMCA_PIE,      HWID_MCATYPE(0x2E, 0x1), 0xF },
152
153         /* Unified Memory Controller MCA type */
154         { SMCA_UMC,      HWID_MCATYPE(0x96, 0x0), 0x3F },
155
156         /* Parameter Block MCA type */
157         { SMCA_PB,       HWID_MCATYPE(0x05, 0x0), 0x1 },
158
159         /* Platform Security Processor MCA type */
160         { SMCA_PSP,      HWID_MCATYPE(0xFF, 0x0), 0x1 },
161
162         /* System Management Unit MCA type */
163         { SMCA_SMU,      HWID_MCATYPE(0x01, 0x0), 0x1 },
164 };
165
166 struct smca_bank smca_banks[MAX_NR_BANKS];
167 EXPORT_SYMBOL_GPL(smca_banks);
168
169 /*
170  * In SMCA enabled processors, we can have multiple banks for a given IP type.
171  * So to define a unique name for each bank, we use a temp c-string to append
172  * the MCA_IPID[InstanceId] to type's name in get_name().
173  *
174  * InstanceId is 32 bits which is 8 characters. Make sure MAX_MCATYPE_NAME_LEN
175  * is greater than 8 plus 1 (for underscore) plus length of longest type name.
176  */
177 #define MAX_MCATYPE_NAME_LEN    30
178 static char buf_mcatype[MAX_MCATYPE_NAME_LEN];
179
180 static DEFINE_PER_CPU(struct threshold_bank **, threshold_banks);
181 static DEFINE_PER_CPU(unsigned int, bank_map);  /* see which banks are on */
182
183 static void amd_threshold_interrupt(void);
184 static void amd_deferred_error_interrupt(void);
185
186 static void default_deferred_error_interrupt(void)
187 {
188         pr_err("Unexpected deferred interrupt at vector %x\n", DEFERRED_ERROR_VECTOR);
189 }
190 void (*deferred_error_int_vector)(void) = default_deferred_error_interrupt;
191
192 static void smca_configure(unsigned int bank, unsigned int cpu)
193 {
194         unsigned int i, hwid_mcatype;
195         struct smca_hwid *s_hwid;
196         u32 high, low;
197         u32 smca_config = MSR_AMD64_SMCA_MCx_CONFIG(bank);
198
199         /* Set appropriate bits in MCA_CONFIG */
200         if (!rdmsr_safe(smca_config, &low, &high)) {
201                 /*
202                  * OS is required to set the MCAX bit to acknowledge that it is
203                  * now using the new MSR ranges and new registers under each
204                  * bank. It also means that the OS will configure deferred
205                  * errors in the new MCx_CONFIG register. If the bit is not set,
206                  * uncorrectable errors will cause a system panic.
207                  *
208                  * MCA_CONFIG[MCAX] is bit 32 (0 in the high portion of the MSR.)
209                  */
210                 high |= BIT(0);
211
212                 /*
213                  * SMCA sets the Deferred Error Interrupt type per bank.
214                  *
215                  * MCA_CONFIG[DeferredIntTypeSupported] is bit 5, and tells us
216                  * if the DeferredIntType bit field is available.
217                  *
218                  * MCA_CONFIG[DeferredIntType] is bits [38:37] ([6:5] in the
219                  * high portion of the MSR). OS should set this to 0x1 to enable
220                  * APIC based interrupt. First, check that no interrupt has been
221                  * set.
222                  */
223                 if ((low & BIT(5)) && !((high >> 5) & 0x3))
224                         high |= BIT(5);
225
226                 wrmsr(smca_config, low, high);
227         }
228
229         /* Return early if this bank was already initialized. */
230         if (smca_banks[bank].hwid)
231                 return;
232
233         if (rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_IPID(bank), &low, &high)) {
234                 pr_warn("Failed to read MCA_IPID for bank %d\n", bank);
235                 return;
236         }
237
238         hwid_mcatype = HWID_MCATYPE(high & MCI_IPID_HWID,
239                                     (high & MCI_IPID_MCATYPE) >> 16);
240
241         for (i = 0; i < ARRAY_SIZE(smca_hwid_mcatypes); i++) {
242                 s_hwid = &smca_hwid_mcatypes[i];
243                 if (hwid_mcatype == s_hwid->hwid_mcatype) {
244                         smca_banks[bank].hwid = s_hwid;
245                         smca_banks[bank].id = low;
246                         smca_banks[bank].sysfs_id = s_hwid->count++;
247                         break;
248                 }
249         }
250 }
251
252 struct thresh_restart {
253         struct threshold_block  *b;
254         int                     reset;
255         int                     set_lvt_off;
256         int                     lvt_off;
257         u16                     old_limit;
258 };
259
260 static inline bool is_shared_bank(int bank)
261 {
262         /*
263          * Scalable MCA provides for only one core to have access to the MSRs of
264          * a shared bank.
265          */
266         if (mce_flags.smca)
267                 return false;
268
269         /* Bank 4 is for northbridge reporting and is thus shared */
270         return (bank == 4);
271 }
272
273 static const char *bank4_names(const struct threshold_block *b)
274 {
275         switch (b->address) {
276         /* MSR4_MISC0 */
277         case 0x00000413:
278                 return "dram";
279
280         case 0xc0000408:
281                 return "ht_links";
282
283         case 0xc0000409:
284                 return "l3_cache";
285
286         default:
287                 WARN(1, "Funny MSR: 0x%08x\n", b->address);
288                 return "";
289         }
290 };
291
292
293 static bool lvt_interrupt_supported(unsigned int bank, u32 msr_high_bits)
294 {
295         /*
296          * bank 4 supports APIC LVT interrupts implicitly since forever.
297          */
298         if (bank == 4)
299                 return true;
300
301         /*
302          * IntP: interrupt present; if this bit is set, the thresholding
303          * bank can generate APIC LVT interrupts
304          */
305         return msr_high_bits & BIT(28);
306 }
307
308 static int lvt_off_valid(struct threshold_block *b, int apic, u32 lo, u32 hi)
309 {
310         int msr = (hi & MASK_LVTOFF_HI) >> 20;
311
312         if (apic < 0) {
313                 pr_err(FW_BUG "cpu %d, failed to setup threshold interrupt "
314                        "for bank %d, block %d (MSR%08X=0x%x%08x)\n", b->cpu,
315                        b->bank, b->block, b->address, hi, lo);
316                 return 0;
317         }
318
319         if (apic != msr) {
320                 /*
321                  * On SMCA CPUs, LVT offset is programmed at a different MSR, and
322                  * the BIOS provides the value. The original field where LVT offset
323                  * was set is reserved. Return early here:
324                  */
325                 if (mce_flags.smca)
326                         return 0;
327
328                 pr_err(FW_BUG "cpu %d, invalid threshold interrupt offset %d "
329                        "for bank %d, block %d (MSR%08X=0x%x%08x)\n",
330                        b->cpu, apic, b->bank, b->block, b->address, hi, lo);
331                 return 0;
332         }
333
334         return 1;
335 };
336
337 /* Reprogram MCx_MISC MSR behind this threshold bank. */
338 static void threshold_restart_bank(void *_tr)
339 {
340         struct thresh_restart *tr = _tr;
341         u32 hi, lo;
342
343         rdmsr(tr->b->address, lo, hi);
344
345         if (tr->b->threshold_limit < (hi & THRESHOLD_MAX))
346                 tr->reset = 1;  /* limit cannot be lower than err count */
347
348         if (tr->reset) {                /* reset err count and overflow bit */
349                 hi =
350                     (hi & ~(MASK_ERR_COUNT_HI | MASK_OVERFLOW_HI)) |
351                     (THRESHOLD_MAX - tr->b->threshold_limit);
352         } else if (tr->old_limit) {     /* change limit w/o reset */
353                 int new_count = (hi & THRESHOLD_MAX) +
354                     (tr->old_limit - tr->b->threshold_limit);
355
356                 hi = (hi & ~MASK_ERR_COUNT_HI) |
357                     (new_count & THRESHOLD_MAX);
358         }
359
360         /* clear IntType */
361         hi &= ~MASK_INT_TYPE_HI;
362
363         if (!tr->b->interrupt_capable)
364                 goto done;
365
366         if (tr->set_lvt_off) {
367                 if (lvt_off_valid(tr->b, tr->lvt_off, lo, hi)) {
368                         /* set new lvt offset */
369                         hi &= ~MASK_LVTOFF_HI;
370                         hi |= tr->lvt_off << 20;
371                 }
372         }
373
374         if (tr->b->interrupt_enable)
375                 hi |= INT_TYPE_APIC;
376
377  done:
378
379         hi |= MASK_COUNT_EN_HI;
380         wrmsr(tr->b->address, lo, hi);
381 }
382
383 static void mce_threshold_block_init(struct threshold_block *b, int offset)
384 {
385         struct thresh_restart tr = {
386                 .b                      = b,
387                 .set_lvt_off            = 1,
388                 .lvt_off                = offset,
389         };
390
391         b->threshold_limit              = THRESHOLD_MAX;
392         threshold_restart_bank(&tr);
393 };
394
395 static int setup_APIC_mce_threshold(int reserved, int new)
396 {
397         if (reserved < 0 && !setup_APIC_eilvt(new, THRESHOLD_APIC_VECTOR,
398                                               APIC_EILVT_MSG_FIX, 0))
399                 return new;
400
401         return reserved;
402 }
403
404 static int setup_APIC_deferred_error(int reserved, int new)
405 {
406         if (reserved < 0 && !setup_APIC_eilvt(new, DEFERRED_ERROR_VECTOR,
407                                               APIC_EILVT_MSG_FIX, 0))
408                 return new;
409
410         return reserved;
411 }
412
413 static void deferred_error_interrupt_enable(struct cpuinfo_x86 *c)
414 {
415         u32 low = 0, high = 0;
416         int def_offset = -1, def_new;
417
418         if (rdmsr_safe(MSR_CU_DEF_ERR, &low, &high))
419                 return;
420
421         def_new = (low & MASK_DEF_LVTOFF) >> 4;
422         if (!(low & MASK_DEF_LVTOFF)) {
423                 pr_err(FW_BUG "Your BIOS is not setting up LVT offset 0x2 for deferred error IRQs correctly.\n");
424                 def_new = DEF_LVT_OFF;
425                 low = (low & ~MASK_DEF_LVTOFF) | (DEF_LVT_OFF << 4);
426         }
427
428         def_offset = setup_APIC_deferred_error(def_offset, def_new);
429         if ((def_offset == def_new) &&
430             (deferred_error_int_vector != amd_deferred_error_interrupt))
431                 deferred_error_int_vector = amd_deferred_error_interrupt;
432
433         if (!mce_flags.smca)
434                 low = (low & ~MASK_DEF_INT_TYPE) | DEF_INT_TYPE_APIC;
435
436         wrmsr(MSR_CU_DEF_ERR, low, high);
437 }
438
439 static u32 smca_get_block_address(unsigned int bank, unsigned int block)
440 {
441         u32 low, high;
442         u32 addr = 0;
443
444         if (smca_get_bank_type(bank) == SMCA_RESERVED)
445                 return addr;
446
447         if (!block)
448                 return MSR_AMD64_SMCA_MCx_MISC(bank);
449
450         /* Check our cache first: */
451         if (smca_bank_addrs[bank][block] != -1)
452                 return smca_bank_addrs[bank][block];
453
454         /*
455          * For SMCA enabled processors, BLKPTR field of the first MISC register
456          * (MCx_MISC0) indicates presence of additional MISC regs set (MISC1-4).
457          */
458         if (rdmsr_safe(MSR_AMD64_SMCA_MCx_CONFIG(bank), &low, &high))
459                 goto out;
460
461         if (!(low & MCI_CONFIG_MCAX))
462                 goto out;
463
464         if (!rdmsr_safe(MSR_AMD64_SMCA_MCx_MISC(bank), &low, &high) &&
465             (low & MASK_BLKPTR_LO))
466                 addr = MSR_AMD64_SMCA_MCx_MISCy(bank, block - 1);
467
468 out:
469         smca_bank_addrs[bank][block] = addr;
470         return addr;
471 }
472
473 static u32 get_block_address(u32 current_addr, u32 low, u32 high,
474                              unsigned int bank, unsigned int block)
475 {
476         u32 addr = 0, offset = 0;
477
478         if ((bank >= mca_cfg.banks) || (block >= NR_BLOCKS))
479                 return addr;
480
481         if (mce_flags.smca)
482                 return smca_get_block_address(bank, block);
483
484         /* Fall back to method we used for older processors: */
485         switch (block) {
486         case 0:
487                 addr = msr_ops.misc(bank);
488                 break;
489         case 1:
490                 offset = ((low & MASK_BLKPTR_LO) >> 21);
491                 if (offset)
492                         addr = MCG_XBLK_ADDR + offset;
493                 break;
494         default:
495                 addr = ++current_addr;
496         }
497         return addr;
498 }
499
500 static int
501 prepare_threshold_block(unsigned int bank, unsigned int block, u32 addr,
502                         int offset, u32 misc_high)
503 {
504         unsigned int cpu = smp_processor_id();
505         u32 smca_low, smca_high;
506         struct threshold_block b;
507         int new;
508
509         if (!block)
510                 per_cpu(bank_map, cpu) |= (1 << bank);
511
512         memset(&b, 0, sizeof(b));
513         b.cpu                   = cpu;
514         b.bank                  = bank;
515         b.block                 = block;
516         b.address               = addr;
517         b.interrupt_capable     = lvt_interrupt_supported(bank, misc_high);
518
519         if (!b.interrupt_capable)
520                 goto done;
521
522         b.interrupt_enable = 1;
523
524         if (!mce_flags.smca) {
525                 new = (misc_high & MASK_LVTOFF_HI) >> 20;
526                 goto set_offset;
527         }
528
529         /* Gather LVT offset for thresholding: */
530         if (rdmsr_safe(MSR_CU_DEF_ERR, &smca_low, &smca_high))
531                 goto out;
532
533         new = (smca_low & SMCA_THR_LVT_OFF) >> 12;
534
535 set_offset:
536         offset = setup_APIC_mce_threshold(offset, new);
537
538         if ((offset == new) && (mce_threshold_vector != amd_threshold_interrupt))
539                 mce_threshold_vector = amd_threshold_interrupt;
540
541 done:
542         mce_threshold_block_init(&b, offset);
543
544 out:
545         return offset;
546 }
547
548 /* cpu init entry point, called from mce.c with preempt off */
549 void mce_amd_feature_init(struct cpuinfo_x86 *c)
550 {
551         u32 low = 0, high = 0, address = 0;
552         unsigned int bank, block, cpu = smp_processor_id();
553         int offset = -1;
554
555         for (bank = 0; bank < mca_cfg.banks; ++bank) {
556                 if (mce_flags.smca)
557                         smca_configure(bank, cpu);
558
559                 for (block = 0; block < NR_BLOCKS; ++block) {
560                         address = get_block_address(address, low, high, bank, block);
561                         if (!address)
562                                 break;
563
564                         if (rdmsr_safe(address, &low, &high))
565                                 break;
566
567                         if (!(high & MASK_VALID_HI))
568                                 continue;
569
570                         if (!(high & MASK_CNTP_HI)  ||
571                              (high & MASK_LOCKED_HI))
572                                 continue;
573
574                         offset = prepare_threshold_block(bank, block, address, offset, high);
575                 }
576         }
577
578         if (mce_flags.succor)
579                 deferred_error_interrupt_enable(c);
580 }
581
582 int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr)
583 {
584         u64 dram_base_addr, dram_limit_addr, dram_hole_base;
585         /* We start from the normalized address */
586         u64 ret_addr = norm_addr;
587
588         u32 tmp;
589
590         u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask;
591         u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets;
592         u8 intlv_addr_sel, intlv_addr_bit;
593         u8 num_intlv_bits, hashed_bit;
594         u8 lgcy_mmio_hole_en, base = 0;
595         u8 cs_mask, cs_id = 0;
596         bool hash_enabled = false;
597
598         /* Read D18F0x1B4 (DramOffset), check if base 1 is used. */
599         if (amd_df_indirect_read(nid, 0, 0x1B4, umc, &tmp))
600                 goto out_err;
601
602         /* Remove HiAddrOffset from normalized address, if enabled: */
603         if (tmp & BIT(0)) {
604                 u64 hi_addr_offset = (tmp & GENMASK_ULL(31, 20)) << 8;
605
606                 if (norm_addr >= hi_addr_offset) {
607                         ret_addr -= hi_addr_offset;
608                         base = 1;
609                 }
610         }
611
612         /* Read D18F0x110 (DramBaseAddress). */
613         if (amd_df_indirect_read(nid, 0, 0x110 + (8 * base), umc, &tmp))
614                 goto out_err;
615
616         /* Check if address range is valid. */
617         if (!(tmp & BIT(0))) {
618                 pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n",
619                         __func__, tmp);
620                 goto out_err;
621         }
622
623         lgcy_mmio_hole_en = tmp & BIT(1);
624         intlv_num_chan    = (tmp >> 4) & 0xF;
625         intlv_addr_sel    = (tmp >> 8) & 0x7;
626         dram_base_addr    = (tmp & GENMASK_ULL(31, 12)) << 16;
627
628         /* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */
629         if (intlv_addr_sel > 3) {
630                 pr_err("%s: Invalid interleave address select %d.\n",
631                         __func__, intlv_addr_sel);
632                 goto out_err;
633         }
634
635         /* Read D18F0x114 (DramLimitAddress). */
636         if (amd_df_indirect_read(nid, 0, 0x114 + (8 * base), umc, &tmp))
637                 goto out_err;
638
639         intlv_num_sockets = (tmp >> 8) & 0x1;
640         intlv_num_dies    = (tmp >> 10) & 0x3;
641         dram_limit_addr   = ((tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0);
642
643         intlv_addr_bit = intlv_addr_sel + 8;
644
645         /* Re-use intlv_num_chan by setting it equal to log2(#channels) */
646         switch (intlv_num_chan) {
647         case 0: intlv_num_chan = 0; break;
648         case 1: intlv_num_chan = 1; break;
649         case 3: intlv_num_chan = 2; break;
650         case 5: intlv_num_chan = 3; break;
651         case 7: intlv_num_chan = 4; break;
652
653         case 8: intlv_num_chan = 1;
654                 hash_enabled = true;
655                 break;
656         default:
657                 pr_err("%s: Invalid number of interleaved channels %d.\n",
658                         __func__, intlv_num_chan);
659                 goto out_err;
660         }
661
662         num_intlv_bits = intlv_num_chan;
663
664         if (intlv_num_dies > 2) {
665                 pr_err("%s: Invalid number of interleaved nodes/dies %d.\n",
666                         __func__, intlv_num_dies);
667                 goto out_err;
668         }
669
670         num_intlv_bits += intlv_num_dies;
671
672         /* Add a bit if sockets are interleaved. */
673         num_intlv_bits += intlv_num_sockets;
674
675         /* Assert num_intlv_bits <= 4 */
676         if (num_intlv_bits > 4) {
677                 pr_err("%s: Invalid interleave bits %d.\n",
678                         __func__, num_intlv_bits);
679                 goto out_err;
680         }
681
682         if (num_intlv_bits > 0) {
683                 u64 temp_addr_x, temp_addr_i, temp_addr_y;
684                 u8 die_id_bit, sock_id_bit, cs_fabric_id;
685
686                 /*
687                  * Read FabricBlockInstanceInformation3_CS[BlockFabricID].
688                  * This is the fabric id for this coherent slave. Use
689                  * umc/channel# as instance id of the coherent slave
690                  * for FICAA.
691                  */
692                 if (amd_df_indirect_read(nid, 0, 0x50, umc, &tmp))
693                         goto out_err;
694
695                 cs_fabric_id = (tmp >> 8) & 0xFF;
696                 die_id_bit   = 0;
697
698                 /* If interleaved over more than 1 channel: */
699                 if (intlv_num_chan) {
700                         die_id_bit = intlv_num_chan;
701                         cs_mask    = (1 << die_id_bit) - 1;
702                         cs_id      = cs_fabric_id & cs_mask;
703                 }
704
705                 sock_id_bit = die_id_bit;
706
707                 /* Read D18F1x208 (SystemFabricIdMask). */
708                 if (intlv_num_dies || intlv_num_sockets)
709                         if (amd_df_indirect_read(nid, 1, 0x208, umc, &tmp))
710                                 goto out_err;
711
712                 /* If interleaved over more than 1 die. */
713                 if (intlv_num_dies) {
714                         sock_id_bit  = die_id_bit + intlv_num_dies;
715                         die_id_shift = (tmp >> 24) & 0xF;
716                         die_id_mask  = (tmp >> 8) & 0xFF;
717
718                         cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit;
719                 }
720
721                 /* If interleaved over more than 1 socket. */
722                 if (intlv_num_sockets) {
723                         socket_id_shift = (tmp >> 28) & 0xF;
724                         socket_id_mask  = (tmp >> 16) & 0xFF;
725
726                         cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit;
727                 }
728
729                 /*
730                  * The pre-interleaved address consists of XXXXXXIIIYYYYY
731                  * where III is the ID for this CS, and XXXXXXYYYYY are the
732                  * address bits from the post-interleaved address.
733                  * "num_intlv_bits" has been calculated to tell us how many "I"
734                  * bits there are. "intlv_addr_bit" tells us how many "Y" bits
735                  * there are (where "I" starts).
736                  */
737                 temp_addr_y = ret_addr & GENMASK_ULL(intlv_addr_bit-1, 0);
738                 temp_addr_i = (cs_id << intlv_addr_bit);
739                 temp_addr_x = (ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits;
740                 ret_addr    = temp_addr_x | temp_addr_i | temp_addr_y;
741         }
742
743         /* Add dram base address */
744         ret_addr += dram_base_addr;
745
746         /* If legacy MMIO hole enabled */
747         if (lgcy_mmio_hole_en) {
748                 if (amd_df_indirect_read(nid, 0, 0x104, umc, &tmp))
749                         goto out_err;
750
751                 dram_hole_base = tmp & GENMASK(31, 24);
752                 if (ret_addr >= dram_hole_base)
753                         ret_addr += (BIT_ULL(32) - dram_hole_base);
754         }
755
756         if (hash_enabled) {
757                 /* Save some parentheses and grab ls-bit at the end. */
758                 hashed_bit =    (ret_addr >> 12) ^
759                                 (ret_addr >> 18) ^
760                                 (ret_addr >> 21) ^
761                                 (ret_addr >> 30) ^
762                                 cs_id;
763
764                 hashed_bit &= BIT(0);
765
766                 if (hashed_bit != ((ret_addr >> intlv_addr_bit) & BIT(0)))
767                         ret_addr ^= BIT(intlv_addr_bit);
768         }
769
770         /* Is calculated system address is above DRAM limit address? */
771         if (ret_addr > dram_limit_addr)
772                 goto out_err;
773
774         *sys_addr = ret_addr;
775         return 0;
776
777 out_err:
778         return -EINVAL;
779 }
780 EXPORT_SYMBOL_GPL(umc_normaddr_to_sysaddr);
781
782 bool amd_mce_is_memory_error(struct mce *m)
783 {
784         /* ErrCodeExt[20:16] */
785         u8 xec = (m->status >> 16) & 0x1f;
786
787         if (mce_flags.smca)
788                 return smca_get_bank_type(m->bank) == SMCA_UMC && xec == 0x0;
789
790         return m->bank == 4 && xec == 0x8;
791 }
792
793 static void __log_error(unsigned int bank, u64 status, u64 addr, u64 misc)
794 {
795         struct mce m;
796
797         mce_setup(&m);
798
799         m.status = status;
800         m.misc   = misc;
801         m.bank   = bank;
802         m.tsc    = rdtsc();
803
804         if (m.status & MCI_STATUS_ADDRV) {
805                 m.addr = addr;
806
807                 /*
808                  * Extract [55:<lsb>] where lsb is the least significant
809                  * *valid* bit of the address bits.
810                  */
811                 if (mce_flags.smca) {
812                         u8 lsb = (m.addr >> 56) & 0x3f;
813
814                         m.addr &= GENMASK_ULL(55, lsb);
815                 }
816         }
817
818         if (mce_flags.smca) {
819                 rdmsrl(MSR_AMD64_SMCA_MCx_IPID(bank), m.ipid);
820
821                 if (m.status & MCI_STATUS_SYNDV)
822                         rdmsrl(MSR_AMD64_SMCA_MCx_SYND(bank), m.synd);
823         }
824
825         mce_log(&m);
826 }
827
828 asmlinkage __visible void __irq_entry smp_deferred_error_interrupt(void)
829 {
830         entering_irq();
831         trace_deferred_error_apic_entry(DEFERRED_ERROR_VECTOR);
832         inc_irq_stat(irq_deferred_error_count);
833         deferred_error_int_vector();
834         trace_deferred_error_apic_exit(DEFERRED_ERROR_VECTOR);
835         exiting_ack_irq();
836 }
837
838 /*
839  * Returns true if the logged error is deferred. False, otherwise.
840  */
841 static inline bool
842 _log_error_bank(unsigned int bank, u32 msr_stat, u32 msr_addr, u64 misc)
843 {
844         u64 status, addr = 0;
845
846         rdmsrl(msr_stat, status);
847         if (!(status & MCI_STATUS_VAL))
848                 return false;
849
850         if (status & MCI_STATUS_ADDRV)
851                 rdmsrl(msr_addr, addr);
852
853         __log_error(bank, status, addr, misc);
854
855         wrmsrl(msr_stat, 0);
856
857         return status & MCI_STATUS_DEFERRED;
858 }
859
860 /*
861  * We have three scenarios for checking for Deferred errors:
862  *
863  * 1) Non-SMCA systems check MCA_STATUS and log error if found.
864  * 2) SMCA systems check MCA_STATUS. If error is found then log it and also
865  *    clear MCA_DESTAT.
866  * 3) SMCA systems check MCA_DESTAT, if error was not found in MCA_STATUS, and
867  *    log it.
868  */
869 static void log_error_deferred(unsigned int bank)
870 {
871         bool defrd;
872
873         defrd = _log_error_bank(bank, msr_ops.status(bank),
874                                         msr_ops.addr(bank), 0);
875
876         if (!mce_flags.smca)
877                 return;
878
879         /* Clear MCA_DESTAT if we logged the deferred error from MCA_STATUS. */
880         if (defrd) {
881                 wrmsrl(MSR_AMD64_SMCA_MCx_DESTAT(bank), 0);
882                 return;
883         }
884
885         /*
886          * Only deferred errors are logged in MCA_DE{STAT,ADDR} so just check
887          * for a valid error.
888          */
889         _log_error_bank(bank, MSR_AMD64_SMCA_MCx_DESTAT(bank),
890                               MSR_AMD64_SMCA_MCx_DEADDR(bank), 0);
891 }
892
893 /* APIC interrupt handler for deferred errors */
894 static void amd_deferred_error_interrupt(void)
895 {
896         unsigned int bank;
897
898         for (bank = 0; bank < mca_cfg.banks; ++bank)
899                 log_error_deferred(bank);
900 }
901
902 static void log_error_thresholding(unsigned int bank, u64 misc)
903 {
904         _log_error_bank(bank, msr_ops.status(bank), msr_ops.addr(bank), misc);
905 }
906
907 static void log_and_reset_block(struct threshold_block *block)
908 {
909         struct thresh_restart tr;
910         u32 low = 0, high = 0;
911
912         if (!block)
913                 return;
914
915         if (rdmsr_safe(block->address, &low, &high))
916                 return;
917
918         if (!(high & MASK_OVERFLOW_HI))
919                 return;
920
921         /* Log the MCE which caused the threshold event. */
922         log_error_thresholding(block->bank, ((u64)high << 32) | low);
923
924         /* Reset threshold block after logging error. */
925         memset(&tr, 0, sizeof(tr));
926         tr.b = block;
927         threshold_restart_bank(&tr);
928 }
929
930 /*
931  * Threshold interrupt handler will service THRESHOLD_APIC_VECTOR. The interrupt
932  * goes off when error_count reaches threshold_limit.
933  */
934 static void amd_threshold_interrupt(void)
935 {
936         struct threshold_block *first_block = NULL, *block = NULL, *tmp = NULL;
937         unsigned int bank, cpu = smp_processor_id();
938
939         for (bank = 0; bank < mca_cfg.banks; ++bank) {
940                 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
941                         continue;
942
943                 first_block = per_cpu(threshold_banks, cpu)[bank]->blocks;
944                 if (!first_block)
945                         continue;
946
947                 /*
948                  * The first block is also the head of the list. Check it first
949                  * before iterating over the rest.
950                  */
951                 log_and_reset_block(first_block);
952                 list_for_each_entry_safe(block, tmp, &first_block->miscj, miscj)
953                         log_and_reset_block(block);
954         }
955 }
956
957 /*
958  * Sysfs Interface
959  */
960
961 struct threshold_attr {
962         struct attribute attr;
963         ssize_t (*show) (struct threshold_block *, char *);
964         ssize_t (*store) (struct threshold_block *, const char *, size_t count);
965 };
966
967 #define SHOW_FIELDS(name)                                               \
968 static ssize_t show_ ## name(struct threshold_block *b, char *buf)      \
969 {                                                                       \
970         return sprintf(buf, "%lu\n", (unsigned long) b->name);          \
971 }
972 SHOW_FIELDS(interrupt_enable)
973 SHOW_FIELDS(threshold_limit)
974
975 static ssize_t
976 store_interrupt_enable(struct threshold_block *b, const char *buf, size_t size)
977 {
978         struct thresh_restart tr;
979         unsigned long new;
980
981         if (!b->interrupt_capable)
982                 return -EINVAL;
983
984         if (kstrtoul(buf, 0, &new) < 0)
985                 return -EINVAL;
986
987         b->interrupt_enable = !!new;
988
989         memset(&tr, 0, sizeof(tr));
990         tr.b            = b;
991
992         smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
993
994         return size;
995 }
996
997 static ssize_t
998 store_threshold_limit(struct threshold_block *b, const char *buf, size_t size)
999 {
1000         struct thresh_restart tr;
1001         unsigned long new;
1002
1003         if (kstrtoul(buf, 0, &new) < 0)
1004                 return -EINVAL;
1005
1006         if (new > THRESHOLD_MAX)
1007                 new = THRESHOLD_MAX;
1008         if (new < 1)
1009                 new = 1;
1010
1011         memset(&tr, 0, sizeof(tr));
1012         tr.old_limit = b->threshold_limit;
1013         b->threshold_limit = new;
1014         tr.b = b;
1015
1016         smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
1017
1018         return size;
1019 }
1020
1021 static ssize_t show_error_count(struct threshold_block *b, char *buf)
1022 {
1023         u32 lo, hi;
1024
1025         rdmsr_on_cpu(b->cpu, b->address, &lo, &hi);
1026
1027         return sprintf(buf, "%u\n", ((hi & THRESHOLD_MAX) -
1028                                      (THRESHOLD_MAX - b->threshold_limit)));
1029 }
1030
1031 static struct threshold_attr error_count = {
1032         .attr = {.name = __stringify(error_count), .mode = 0444 },
1033         .show = show_error_count,
1034 };
1035
1036 #define RW_ATTR(val)                                                    \
1037 static struct threshold_attr val = {                                    \
1038         .attr   = {.name = __stringify(val), .mode = 0644 },            \
1039         .show   = show_## val,                                          \
1040         .store  = store_## val,                                         \
1041 };
1042
1043 RW_ATTR(interrupt_enable);
1044 RW_ATTR(threshold_limit);
1045
1046 static struct attribute *default_attrs[] = {
1047         &threshold_limit.attr,
1048         &error_count.attr,
1049         NULL,   /* possibly interrupt_enable if supported, see below */
1050         NULL,
1051 };
1052
1053 #define to_block(k)     container_of(k, struct threshold_block, kobj)
1054 #define to_attr(a)      container_of(a, struct threshold_attr, attr)
1055
1056 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1057 {
1058         struct threshold_block *b = to_block(kobj);
1059         struct threshold_attr *a = to_attr(attr);
1060         ssize_t ret;
1061
1062         ret = a->show ? a->show(b, buf) : -EIO;
1063
1064         return ret;
1065 }
1066
1067 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1068                      const char *buf, size_t count)
1069 {
1070         struct threshold_block *b = to_block(kobj);
1071         struct threshold_attr *a = to_attr(attr);
1072         ssize_t ret;
1073
1074         ret = a->store ? a->store(b, buf, count) : -EIO;
1075
1076         return ret;
1077 }
1078
1079 static const struct sysfs_ops threshold_ops = {
1080         .show                   = show,
1081         .store                  = store,
1082 };
1083
1084 static struct kobj_type threshold_ktype = {
1085         .sysfs_ops              = &threshold_ops,
1086         .default_attrs          = default_attrs,
1087 };
1088
1089 static const char *get_name(unsigned int bank, struct threshold_block *b)
1090 {
1091         enum smca_bank_types bank_type;
1092
1093         if (!mce_flags.smca) {
1094                 if (b && bank == 4)
1095                         return bank4_names(b);
1096
1097                 return th_names[bank];
1098         }
1099
1100         bank_type = smca_get_bank_type(bank);
1101         if (bank_type >= N_SMCA_BANK_TYPES)
1102                 return NULL;
1103
1104         if (b && bank_type == SMCA_UMC) {
1105                 if (b->block < ARRAY_SIZE(smca_umc_block_names))
1106                         return smca_umc_block_names[b->block];
1107                 return NULL;
1108         }
1109
1110         if (smca_banks[bank].hwid->count == 1)
1111                 return smca_get_name(bank_type);
1112
1113         snprintf(buf_mcatype, MAX_MCATYPE_NAME_LEN,
1114                  "%s_%x", smca_get_name(bank_type),
1115                           smca_banks[bank].sysfs_id);
1116         return buf_mcatype;
1117 }
1118
1119 static int allocate_threshold_blocks(unsigned int cpu, unsigned int bank,
1120                                      unsigned int block, u32 address)
1121 {
1122         struct threshold_block *b = NULL;
1123         u32 low, high;
1124         int err;
1125
1126         if ((bank >= mca_cfg.banks) || (block >= NR_BLOCKS))
1127                 return 0;
1128
1129         if (rdmsr_safe_on_cpu(cpu, address, &low, &high))
1130                 return 0;
1131
1132         if (!(high & MASK_VALID_HI)) {
1133                 if (block)
1134                         goto recurse;
1135                 else
1136                         return 0;
1137         }
1138
1139         if (!(high & MASK_CNTP_HI)  ||
1140              (high & MASK_LOCKED_HI))
1141                 goto recurse;
1142
1143         b = kzalloc(sizeof(struct threshold_block), GFP_KERNEL);
1144         if (!b)
1145                 return -ENOMEM;
1146
1147         b->block                = block;
1148         b->bank                 = bank;
1149         b->cpu                  = cpu;
1150         b->address              = address;
1151         b->interrupt_enable     = 0;
1152         b->interrupt_capable    = lvt_interrupt_supported(bank, high);
1153         b->threshold_limit      = THRESHOLD_MAX;
1154
1155         if (b->interrupt_capable) {
1156                 threshold_ktype.default_attrs[2] = &interrupt_enable.attr;
1157                 b->interrupt_enable = 1;
1158         } else {
1159                 threshold_ktype.default_attrs[2] = NULL;
1160         }
1161
1162         INIT_LIST_HEAD(&b->miscj);
1163
1164         if (per_cpu(threshold_banks, cpu)[bank]->blocks) {
1165                 list_add(&b->miscj,
1166                          &per_cpu(threshold_banks, cpu)[bank]->blocks->miscj);
1167         } else {
1168                 per_cpu(threshold_banks, cpu)[bank]->blocks = b;
1169         }
1170
1171         err = kobject_init_and_add(&b->kobj, &threshold_ktype,
1172                                    per_cpu(threshold_banks, cpu)[bank]->kobj,
1173                                    get_name(bank, b));
1174         if (err)
1175                 goto out_free;
1176 recurse:
1177         address = get_block_address(address, low, high, bank, ++block);
1178         if (!address)
1179                 return 0;
1180
1181         err = allocate_threshold_blocks(cpu, bank, block, address);
1182         if (err)
1183                 goto out_free;
1184
1185         if (b)
1186                 kobject_uevent(&b->kobj, KOBJ_ADD);
1187
1188         return err;
1189
1190 out_free:
1191         if (b) {
1192                 kobject_put(&b->kobj);
1193                 list_del(&b->miscj);
1194                 kfree(b);
1195         }
1196         return err;
1197 }
1198
1199 static int __threshold_add_blocks(struct threshold_bank *b)
1200 {
1201         struct list_head *head = &b->blocks->miscj;
1202         struct threshold_block *pos = NULL;
1203         struct threshold_block *tmp = NULL;
1204         int err = 0;
1205
1206         err = kobject_add(&b->blocks->kobj, b->kobj, b->blocks->kobj.name);
1207         if (err)
1208                 return err;
1209
1210         list_for_each_entry_safe(pos, tmp, head, miscj) {
1211
1212                 err = kobject_add(&pos->kobj, b->kobj, pos->kobj.name);
1213                 if (err) {
1214                         list_for_each_entry_safe_reverse(pos, tmp, head, miscj)
1215                                 kobject_del(&pos->kobj);
1216
1217                         return err;
1218                 }
1219         }
1220         return err;
1221 }
1222
1223 static int threshold_create_bank(unsigned int cpu, unsigned int bank)
1224 {
1225         struct device *dev = per_cpu(mce_device, cpu);
1226         struct amd_northbridge *nb = NULL;
1227         struct threshold_bank *b = NULL;
1228         const char *name = get_name(bank, NULL);
1229         int err = 0;
1230
1231         if (!dev)
1232                 return -ENODEV;
1233
1234         if (is_shared_bank(bank)) {
1235                 nb = node_to_amd_nb(amd_get_nb_id(cpu));
1236
1237                 /* threshold descriptor already initialized on this node? */
1238                 if (nb && nb->bank4) {
1239                         /* yes, use it */
1240                         b = nb->bank4;
1241                         err = kobject_add(b->kobj, &dev->kobj, name);
1242                         if (err)
1243                                 goto out;
1244
1245                         per_cpu(threshold_banks, cpu)[bank] = b;
1246                         refcount_inc(&b->cpus);
1247
1248                         err = __threshold_add_blocks(b);
1249
1250                         goto out;
1251                 }
1252         }
1253
1254         b = kzalloc(sizeof(struct threshold_bank), GFP_KERNEL);
1255         if (!b) {
1256                 err = -ENOMEM;
1257                 goto out;
1258         }
1259
1260         b->kobj = kobject_create_and_add(name, &dev->kobj);
1261         if (!b->kobj) {
1262                 err = -EINVAL;
1263                 goto out_free;
1264         }
1265
1266         per_cpu(threshold_banks, cpu)[bank] = b;
1267
1268         if (is_shared_bank(bank)) {
1269                 refcount_set(&b->cpus, 1);
1270
1271                 /* nb is already initialized, see above */
1272                 if (nb) {
1273                         WARN_ON(nb->bank4);
1274                         nb->bank4 = b;
1275                 }
1276         }
1277
1278         err = allocate_threshold_blocks(cpu, bank, 0, msr_ops.misc(bank));
1279         if (!err)
1280                 goto out;
1281
1282  out_free:
1283         kfree(b);
1284
1285  out:
1286         return err;
1287 }
1288
1289 static void deallocate_threshold_block(unsigned int cpu,
1290                                                  unsigned int bank)
1291 {
1292         struct threshold_block *pos = NULL;
1293         struct threshold_block *tmp = NULL;
1294         struct threshold_bank *head = per_cpu(threshold_banks, cpu)[bank];
1295
1296         if (!head)
1297                 return;
1298
1299         list_for_each_entry_safe(pos, tmp, &head->blocks->miscj, miscj) {
1300                 kobject_put(&pos->kobj);
1301                 list_del(&pos->miscj);
1302                 kfree(pos);
1303         }
1304
1305         kfree(per_cpu(threshold_banks, cpu)[bank]->blocks);
1306         per_cpu(threshold_banks, cpu)[bank]->blocks = NULL;
1307 }
1308
1309 static void __threshold_remove_blocks(struct threshold_bank *b)
1310 {
1311         struct threshold_block *pos = NULL;
1312         struct threshold_block *tmp = NULL;
1313
1314         kobject_del(b->kobj);
1315
1316         list_for_each_entry_safe(pos, tmp, &b->blocks->miscj, miscj)
1317                 kobject_del(&pos->kobj);
1318 }
1319
1320 static void threshold_remove_bank(unsigned int cpu, int bank)
1321 {
1322         struct amd_northbridge *nb;
1323         struct threshold_bank *b;
1324
1325         b = per_cpu(threshold_banks, cpu)[bank];
1326         if (!b)
1327                 return;
1328
1329         if (!b->blocks)
1330                 goto free_out;
1331
1332         if (is_shared_bank(bank)) {
1333                 if (!refcount_dec_and_test(&b->cpus)) {
1334                         __threshold_remove_blocks(b);
1335                         per_cpu(threshold_banks, cpu)[bank] = NULL;
1336                         return;
1337                 } else {
1338                         /*
1339                          * the last CPU on this node using the shared bank is
1340                          * going away, remove that bank now.
1341                          */
1342                         nb = node_to_amd_nb(amd_get_nb_id(cpu));
1343                         nb->bank4 = NULL;
1344                 }
1345         }
1346
1347         deallocate_threshold_block(cpu, bank);
1348
1349 free_out:
1350         kobject_del(b->kobj);
1351         kobject_put(b->kobj);
1352         kfree(b);
1353         per_cpu(threshold_banks, cpu)[bank] = NULL;
1354 }
1355
1356 int mce_threshold_remove_device(unsigned int cpu)
1357 {
1358         unsigned int bank;
1359
1360         if (!thresholding_en)
1361                 return 0;
1362
1363         for (bank = 0; bank < mca_cfg.banks; ++bank) {
1364                 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1365                         continue;
1366                 threshold_remove_bank(cpu, bank);
1367         }
1368         kfree(per_cpu(threshold_banks, cpu));
1369         per_cpu(threshold_banks, cpu) = NULL;
1370         return 0;
1371 }
1372
1373 /* create dir/files for all valid threshold banks */
1374 int mce_threshold_create_device(unsigned int cpu)
1375 {
1376         unsigned int bank;
1377         struct threshold_bank **bp;
1378         int err = 0;
1379
1380         if (!thresholding_en)
1381                 return 0;
1382
1383         bp = per_cpu(threshold_banks, cpu);
1384         if (bp)
1385                 return 0;
1386
1387         bp = kcalloc(mca_cfg.banks, sizeof(struct threshold_bank *),
1388                      GFP_KERNEL);
1389         if (!bp)
1390                 return -ENOMEM;
1391
1392         per_cpu(threshold_banks, cpu) = bp;
1393
1394         for (bank = 0; bank < mca_cfg.banks; ++bank) {
1395                 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1396                         continue;
1397                 err = threshold_create_bank(cpu, bank);
1398                 if (err)
1399                         goto err;
1400         }
1401         return err;
1402 err:
1403         mce_threshold_remove_device(cpu);
1404         return err;
1405 }
1406
1407 static __init int threshold_init_device(void)
1408 {
1409         unsigned lcpu = 0;
1410
1411         if (mce_threshold_vector == amd_threshold_interrupt)
1412                 thresholding_en = true;
1413
1414         /* to hit CPUs online before the notifier is up */
1415         for_each_online_cpu(lcpu) {
1416                 int err = mce_threshold_create_device(lcpu);
1417
1418                 if (err)
1419                         return err;
1420         }
1421
1422         return 0;
1423 }
1424 /*
1425  * there are 3 funcs which need to be _initcalled in a logic sequence:
1426  * 1. xen_late_init_mcelog
1427  * 2. mcheck_init_device
1428  * 3. threshold_init_device
1429  *
1430  * xen_late_init_mcelog must register xen_mce_chrdev_device before
1431  * native mce_chrdev_device registration if running under xen platform;
1432  *
1433  * mcheck_init_device should be inited before threshold_init_device to
1434  * initialize mce_device, otherwise a NULL ptr dereference will cause panic.
1435  *
1436  * so we use following _initcalls
1437  * 1. device_initcall(xen_late_init_mcelog);
1438  * 2. device_initcall_sync(mcheck_init_device);
1439  * 3. late_initcall(threshold_init_device);
1440  *
1441  * when running under xen, the initcall order is 1,2,3;
1442  * on baremetal, we skip 1 and we do only 2 and 3.
1443  */
1444 late_initcall(threshold_init_device);