Merge tag 'kvm-4.16-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[linux-2.6-block.git] / arch / x86 / include / asm / mshyperv.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_MSHYPER_H
3 #define _ASM_X86_MSHYPER_H
4
5 #include <linux/types.h>
6 #include <linux/atomic.h>
7 #include <linux/nmi.h>
8 #include <asm/io.h>
9 #include <asm/hyperv.h>
10 #include <asm/nospec-branch.h>
11
12 /*
13  * The below CPUID leaves are present if VersionAndFeatures.HypervisorPresent
14  * is set by CPUID(HVCPUID_VERSION_FEATURES).
15  */
16 enum hv_cpuid_function {
17         HVCPUID_VERSION_FEATURES                = 0x00000001,
18         HVCPUID_VENDOR_MAXFUNCTION              = 0x40000000,
19         HVCPUID_INTERFACE                       = 0x40000001,
20
21         /*
22          * The remaining functions depend on the value of
23          * HVCPUID_INTERFACE
24          */
25         HVCPUID_VERSION                         = 0x40000002,
26         HVCPUID_FEATURES                        = 0x40000003,
27         HVCPUID_ENLIGHTENMENT_INFO              = 0x40000004,
28         HVCPUID_IMPLEMENTATION_LIMITS           = 0x40000005,
29 };
30
31 struct ms_hyperv_info {
32         u32 features;
33         u32 misc_features;
34         u32 hints;
35         u32 max_vp_index;
36         u32 max_lp_index;
37 };
38
39 extern struct ms_hyperv_info ms_hyperv;
40
41 /*
42  * Declare the MSR used to setup pages used to communicate with the hypervisor.
43  */
44 union hv_x64_msr_hypercall_contents {
45         u64 as_uint64;
46         struct {
47                 u64 enable:1;
48                 u64 reserved:11;
49                 u64 guest_physical_address:52;
50         };
51 };
52
53 /*
54  * TSC page layout.
55  */
56
57 struct ms_hyperv_tsc_page {
58         volatile u32 tsc_sequence;
59         u32 reserved1;
60         volatile u64 tsc_scale;
61         volatile s64 tsc_offset;
62         u64 reserved2[509];
63 };
64
65 /*
66  * The guest OS needs to register the guest ID with the hypervisor.
67  * The guest ID is a 64 bit entity and the structure of this ID is
68  * specified in the Hyper-V specification:
69  *
70  * msdn.microsoft.com/en-us/library/windows/hardware/ff542653%28v=vs.85%29.aspx
71  *
72  * While the current guideline does not specify how Linux guest ID(s)
73  * need to be generated, our plan is to publish the guidelines for
74  * Linux and other guest operating systems that currently are hosted
75  * on Hyper-V. The implementation here conforms to this yet
76  * unpublished guidelines.
77  *
78  *
79  * Bit(s)
80  * 63 - Indicates if the OS is Open Source or not; 1 is Open Source
81  * 62:56 - Os Type; Linux is 0x100
82  * 55:48 - Distro specific identification
83  * 47:16 - Linux kernel version number
84  * 15:0  - Distro specific identification
85  *
86  *
87  */
88
89 #define HV_LINUX_VENDOR_ID              0x8100
90
91 /*
92  * Generate the guest ID based on the guideline described above.
93  */
94
95 static inline  __u64 generate_guest_id(__u64 d_info1, __u64 kernel_version,
96                                        __u64 d_info2)
97 {
98         __u64 guest_id = 0;
99
100         guest_id = (((__u64)HV_LINUX_VENDOR_ID) << 48);
101         guest_id |= (d_info1 << 48);
102         guest_id |= (kernel_version << 16);
103         guest_id |= d_info2;
104
105         return guest_id;
106 }
107
108
109 /* Free the message slot and signal end-of-message if required */
110 static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type)
111 {
112         /*
113          * On crash we're reading some other CPU's message page and we need
114          * to be careful: this other CPU may already had cleared the header
115          * and the host may already had delivered some other message there.
116          * In case we blindly write msg->header.message_type we're going
117          * to lose it. We can still lose a message of the same type but
118          * we count on the fact that there can only be one
119          * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages
120          * on crash.
121          */
122         if (cmpxchg(&msg->header.message_type, old_msg_type,
123                     HVMSG_NONE) != old_msg_type)
124                 return;
125
126         /*
127          * Make sure the write to MessageType (ie set to
128          * HVMSG_NONE) happens before we read the
129          * MessagePending and EOMing. Otherwise, the EOMing
130          * will not deliver any more messages since there is
131          * no empty slot
132          */
133         mb();
134
135         if (msg->header.message_flags.msg_pending) {
136                 /*
137                  * This will cause message queue rescan to
138                  * possibly deliver another msg from the
139                  * hypervisor
140                  */
141                 wrmsrl(HV_X64_MSR_EOM, 0);
142         }
143 }
144
145 #define hv_init_timer(timer, tick) wrmsrl(timer, tick)
146 #define hv_init_timer_config(config, val) wrmsrl(config, val)
147
148 #define hv_get_simp(val) rdmsrl(HV_X64_MSR_SIMP, val)
149 #define hv_set_simp(val) wrmsrl(HV_X64_MSR_SIMP, val)
150
151 #define hv_get_siefp(val) rdmsrl(HV_X64_MSR_SIEFP, val)
152 #define hv_set_siefp(val) wrmsrl(HV_X64_MSR_SIEFP, val)
153
154 #define hv_get_synic_state(val) rdmsrl(HV_X64_MSR_SCONTROL, val)
155 #define hv_set_synic_state(val) wrmsrl(HV_X64_MSR_SCONTROL, val)
156
157 #define hv_get_vp_index(index) rdmsrl(HV_X64_MSR_VP_INDEX, index)
158
159 #define hv_get_synint_state(int_num, val) rdmsrl(int_num, val)
160 #define hv_set_synint_state(int_num, val) wrmsrl(int_num, val)
161
162 void hyperv_callback_vector(void);
163 void hyperv_reenlightenment_vector(void);
164 #ifdef CONFIG_TRACING
165 #define trace_hyperv_callback_vector hyperv_callback_vector
166 #endif
167 void hyperv_vector_handler(struct pt_regs *regs);
168 void hv_setup_vmbus_irq(void (*handler)(void));
169 void hv_remove_vmbus_irq(void);
170
171 void hv_setup_kexec_handler(void (*handler)(void));
172 void hv_remove_kexec_handler(void);
173 void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs));
174 void hv_remove_crash_handler(void);
175
176 #if IS_ENABLED(CONFIG_HYPERV)
177 extern struct clocksource *hyperv_cs;
178 extern void *hv_hypercall_pg;
179
180 static inline u64 hv_do_hypercall(u64 control, void *input, void *output)
181 {
182         u64 input_address = input ? virt_to_phys(input) : 0;
183         u64 output_address = output ? virt_to_phys(output) : 0;
184         u64 hv_status;
185
186 #ifdef CONFIG_X86_64
187         if (!hv_hypercall_pg)
188                 return U64_MAX;
189
190         __asm__ __volatile__("mov %4, %%r8\n"
191                              CALL_NOSPEC
192                              : "=a" (hv_status), ASM_CALL_CONSTRAINT,
193                                "+c" (control), "+d" (input_address)
194                              :  "r" (output_address),
195                                 THUNK_TARGET(hv_hypercall_pg)
196                              : "cc", "memory", "r8", "r9", "r10", "r11");
197 #else
198         u32 input_address_hi = upper_32_bits(input_address);
199         u32 input_address_lo = lower_32_bits(input_address);
200         u32 output_address_hi = upper_32_bits(output_address);
201         u32 output_address_lo = lower_32_bits(output_address);
202
203         if (!hv_hypercall_pg)
204                 return U64_MAX;
205
206         __asm__ __volatile__(CALL_NOSPEC
207                              : "=A" (hv_status),
208                                "+c" (input_address_lo), ASM_CALL_CONSTRAINT
209                              : "A" (control),
210                                "b" (input_address_hi),
211                                "D"(output_address_hi), "S"(output_address_lo),
212                                THUNK_TARGET(hv_hypercall_pg)
213                              : "cc", "memory");
214 #endif /* !x86_64 */
215         return hv_status;
216 }
217
218 #define HV_HYPERCALL_RESULT_MASK        GENMASK_ULL(15, 0)
219 #define HV_HYPERCALL_FAST_BIT           BIT(16)
220 #define HV_HYPERCALL_VARHEAD_OFFSET     17
221 #define HV_HYPERCALL_REP_COMP_OFFSET    32
222 #define HV_HYPERCALL_REP_COMP_MASK      GENMASK_ULL(43, 32)
223 #define HV_HYPERCALL_REP_START_OFFSET   48
224 #define HV_HYPERCALL_REP_START_MASK     GENMASK_ULL(59, 48)
225
226 /* Fast hypercall with 8 bytes of input and no output */
227 static inline u64 hv_do_fast_hypercall8(u16 code, u64 input1)
228 {
229         u64 hv_status, control = (u64)code | HV_HYPERCALL_FAST_BIT;
230
231 #ifdef CONFIG_X86_64
232         {
233                 __asm__ __volatile__(CALL_NOSPEC
234                                      : "=a" (hv_status), ASM_CALL_CONSTRAINT,
235                                        "+c" (control), "+d" (input1)
236                                      : THUNK_TARGET(hv_hypercall_pg)
237                                      : "cc", "r8", "r9", "r10", "r11");
238         }
239 #else
240         {
241                 u32 input1_hi = upper_32_bits(input1);
242                 u32 input1_lo = lower_32_bits(input1);
243
244                 __asm__ __volatile__ (CALL_NOSPEC
245                                       : "=A"(hv_status),
246                                         "+c"(input1_lo),
247                                         ASM_CALL_CONSTRAINT
248                                       : "A" (control),
249                                         "b" (input1_hi),
250                                         THUNK_TARGET(hv_hypercall_pg)
251                                       : "cc", "edi", "esi");
252         }
253 #endif
254                 return hv_status;
255 }
256
257 /*
258  * Rep hypercalls. Callers of this functions are supposed to ensure that
259  * rep_count and varhead_size comply with Hyper-V hypercall definition.
260  */
261 static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size,
262                                       void *input, void *output)
263 {
264         u64 control = code;
265         u64 status;
266         u16 rep_comp;
267
268         control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET;
269         control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET;
270
271         do {
272                 status = hv_do_hypercall(control, input, output);
273                 if ((status & HV_HYPERCALL_RESULT_MASK) != HV_STATUS_SUCCESS)
274                         return status;
275
276                 /* Bits 32-43 of status have 'Reps completed' data. */
277                 rep_comp = (status & HV_HYPERCALL_REP_COMP_MASK) >>
278                         HV_HYPERCALL_REP_COMP_OFFSET;
279
280                 control &= ~HV_HYPERCALL_REP_START_MASK;
281                 control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET;
282
283                 touch_nmi_watchdog();
284         } while (rep_comp < rep_count);
285
286         return status;
287 }
288
289 /*
290  * Hypervisor's notion of virtual processor ID is different from
291  * Linux' notion of CPU ID. This information can only be retrieved
292  * in the context of the calling CPU. Setup a map for easy access
293  * to this information.
294  */
295 extern u32 *hv_vp_index;
296 extern u32 hv_max_vp_index;
297
298 /**
299  * hv_cpu_number_to_vp_number() - Map CPU to VP.
300  * @cpu_number: CPU number in Linux terms
301  *
302  * This function returns the mapping between the Linux processor
303  * number and the hypervisor's virtual processor number, useful
304  * in making hypercalls and such that talk about specific
305  * processors.
306  *
307  * Return: Virtual processor number in Hyper-V terms
308  */
309 static inline int hv_cpu_number_to_vp_number(int cpu_number)
310 {
311         return hv_vp_index[cpu_number];
312 }
313
314 void hyperv_init(void);
315 void hyperv_setup_mmu_ops(void);
316 void hyper_alloc_mmu(void);
317 void hyperv_report_panic(struct pt_regs *regs, long err);
318 bool hv_is_hyperv_initialized(void);
319 void hyperv_cleanup(void);
320
321 void hyperv_reenlightenment_intr(struct pt_regs *regs);
322 void set_hv_tscchange_cb(void (*cb)(void));
323 void clear_hv_tscchange_cb(void);
324 void hyperv_stop_tsc_emulation(void);
325 #else /* CONFIG_HYPERV */
326 static inline void hyperv_init(void) {}
327 static inline bool hv_is_hyperv_initialized(void) { return false; }
328 static inline void hyperv_cleanup(void) {}
329 static inline void hyperv_setup_mmu_ops(void) {}
330 static inline void set_hv_tscchange_cb(void (*cb)(void)) {}
331 static inline void clear_hv_tscchange_cb(void) {}
332 static inline void hyperv_stop_tsc_emulation(void) {};
333 #endif /* CONFIG_HYPERV */
334
335 #ifdef CONFIG_HYPERV_TSCPAGE
336 struct ms_hyperv_tsc_page *hv_get_tsc_page(void);
337 static inline u64 hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page *tsc_pg,
338                                        u64 *cur_tsc)
339 {
340         u64 scale, offset;
341         u32 sequence;
342
343         /*
344          * The protocol for reading Hyper-V TSC page is specified in Hypervisor
345          * Top-Level Functional Specification ver. 3.0 and above. To get the
346          * reference time we must do the following:
347          * - READ ReferenceTscSequence
348          *   A special '0' value indicates the time source is unreliable and we
349          *   need to use something else. The currently published specification
350          *   versions (up to 4.0b) contain a mistake and wrongly claim '-1'
351          *   instead of '0' as the special value, see commit c35b82ef0294.
352          * - ReferenceTime =
353          *        ((RDTSC() * ReferenceTscScale) >> 64) + ReferenceTscOffset
354          * - READ ReferenceTscSequence again. In case its value has changed
355          *   since our first reading we need to discard ReferenceTime and repeat
356          *   the whole sequence as the hypervisor was updating the page in
357          *   between.
358          */
359         do {
360                 sequence = READ_ONCE(tsc_pg->tsc_sequence);
361                 if (!sequence)
362                         return U64_MAX;
363                 /*
364                  * Make sure we read sequence before we read other values from
365                  * TSC page.
366                  */
367                 smp_rmb();
368
369                 scale = READ_ONCE(tsc_pg->tsc_scale);
370                 offset = READ_ONCE(tsc_pg->tsc_offset);
371                 *cur_tsc = rdtsc_ordered();
372
373                 /*
374                  * Make sure we read sequence after we read all other values
375                  * from TSC page.
376                  */
377                 smp_rmb();
378
379         } while (READ_ONCE(tsc_pg->tsc_sequence) != sequence);
380
381         return mul_u64_u64_shr(*cur_tsc, scale, 64) + offset;
382 }
383
384 static inline u64 hv_read_tsc_page(const struct ms_hyperv_tsc_page *tsc_pg)
385 {
386         u64 cur_tsc;
387
388         return hv_read_tsc_page_tsc(tsc_pg, &cur_tsc);
389 }
390
391 #else
392 static inline struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
393 {
394         return NULL;
395 }
396
397 static inline u64 hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page *tsc_pg,
398                                        u64 *cur_tsc)
399 {
400         BUG();
401         return U64_MAX;
402 }
403 #endif
404 #endif