sh: convert initrd reservation to LMB.
[linux-2.6-block.git] / arch / sh / kernel / setup.c
1 /*
2  * arch/sh/kernel/setup.c
3  *
4  * This file handles the architecture-dependent parts of initialization
5  *
6  *  Copyright (C) 1999  Niibe Yutaka
7  *  Copyright (C) 2002 - 2007 Paul Mundt
8  */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <linux/err.h>
27 #include <linux/debugfs.h>
28 #include <linux/crash_dump.h>
29 #include <linux/mmzone.h>
30 #include <linux/clk.h>
31 #include <linux/delay.h>
32 #include <linux/platform_device.h>
33 #include <linux/lmb.h>
34 #include <asm/uaccess.h>
35 #include <asm/io.h>
36 #include <asm/page.h>
37 #include <asm/elf.h>
38 #include <asm/sections.h>
39 #include <asm/irq.h>
40 #include <asm/setup.h>
41 #include <asm/clock.h>
42 #include <asm/smp.h>
43 #include <asm/mmu_context.h>
44
45 /*
46  * Initialize loops_per_jiffy as 10000000 (1000MIPS).
47  * This value will be used at the very early stage of serial setup.
48  * The bigger value means no problem.
49  */
50 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
51         [0] = {
52                 .type                   = CPU_SH_NONE,
53                 .family                 = CPU_FAMILY_UNKNOWN,
54                 .loops_per_jiffy        = 10000000,
55         },
56 };
57 EXPORT_SYMBOL(cpu_data);
58
59 /*
60  * The machine vector. First entry in .machvec.init, or clobbered by
61  * sh_mv= on the command line, prior to .machvec.init teardown.
62  */
63 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
64 EXPORT_SYMBOL(sh_mv);
65
66 #ifdef CONFIG_VT
67 struct screen_info screen_info;
68 #endif
69
70 extern int root_mountflags;
71
72 #define RAMDISK_IMAGE_START_MASK        0x07FF
73 #define RAMDISK_PROMPT_FLAG             0x8000
74 #define RAMDISK_LOAD_FLAG               0x4000
75
76 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
77
78 static struct resource code_resource = {
79         .name = "Kernel code",
80         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
81 };
82
83 static struct resource data_resource = {
84         .name = "Kernel data",
85         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
86 };
87
88 static struct resource bss_resource = {
89         .name   = "Kernel bss",
90         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
91 };
92
93 unsigned long memory_start;
94 EXPORT_SYMBOL(memory_start);
95 unsigned long memory_end = 0;
96 EXPORT_SYMBOL(memory_end);
97
98 static struct resource mem_resources[MAX_NUMNODES];
99
100 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
101
102 static int __init early_parse_mem(char *p)
103 {
104         unsigned long size;
105
106         memory_start = (unsigned long)__va(__MEMORY_START);
107         size = memparse(p, &p);
108
109         if (size > __MEMORY_SIZE) {
110                 printk(KERN_ERR
111                         "Using mem= to increase the size of kernel memory "
112                         "is not allowed.\n"
113                         "  Recompile the kernel with the correct value for "
114                         "CONFIG_MEMORY_SIZE.\n");
115                 return 0;
116         }
117
118         memory_end = memory_start + size;
119
120         return 0;
121 }
122 early_param("mem", early_parse_mem);
123
124 /*
125  * Register fully available low RAM pages with the bootmem allocator.
126  */
127 static void __init register_bootmem_low_pages(void)
128 {
129         unsigned long curr_pfn, last_pfn, pages;
130
131         /*
132          * We are rounding up the start address of usable memory:
133          */
134         curr_pfn = PFN_UP(__MEMORY_START);
135
136         /*
137          * ... and at the end of the usable range downwards:
138          */
139         last_pfn = PFN_DOWN(__pa(memory_end));
140
141         if (last_pfn > max_low_pfn)
142                 last_pfn = max_low_pfn;
143
144         pages = last_pfn - curr_pfn;
145         free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
146 }
147
148 static void __init check_for_initrd(void)
149 {
150 #ifdef CONFIG_BLK_DEV_INITRD
151         unsigned long start, end;
152
153         /*
154          * Check for the rare cases where boot loaders adhere to the boot
155          * ABI.
156          */
157         if (!LOADER_TYPE || !INITRD_START || !INITRD_SIZE)
158                 goto disable;
159
160         start = INITRD_START + __MEMORY_START;
161         end = start + INITRD_SIZE;
162
163         if (unlikely(end <= start))
164                 goto disable;
165         if (unlikely(start & ~PAGE_MASK)) {
166                 pr_err("initrd must be page aligned\n");
167                 goto disable;
168         }
169
170         if (unlikely(start < PAGE_OFFSET)) {
171                 pr_err("initrd start < PAGE_OFFSET\n");
172                 goto disable;
173         }
174
175         if (unlikely(end > lmb_end_of_DRAM())) {
176                 pr_err("initrd extends beyond end of memory "
177                        "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
178                        end, (unsigned long)lmb_end_of_DRAM());
179                 goto disable;
180         }
181
182         /*
183          * If we got this far inspite of the boot loader's best efforts
184          * to the contrary, assume we actually have a valid initrd and
185          * fix up the root dev.
186          */
187         ROOT_DEV = Root_RAM0;
188
189         /*
190          * Address sanitization
191          */
192         initrd_start = (unsigned long)__va(__pa(start));
193         initrd_end = initrd_start + INITRD_SIZE;
194
195         lmb_reserve(__pa(initrd_start), INITRD_SIZE);
196
197         return;
198
199 disable:
200         pr_info("initrd disabled\n");
201         initrd_start = initrd_end = 0;
202 #endif
203 }
204
205 void __cpuinit calibrate_delay(void)
206 {
207         struct clk *clk = clk_get(NULL, "cpu_clk");
208
209         if (IS_ERR(clk))
210                 panic("Need a sane CPU clock definition!");
211
212         loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ;
213
214         printk(KERN_INFO "Calibrating delay loop (skipped)... "
215                          "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n",
216                          loops_per_jiffy/(500000/HZ),
217                          (loops_per_jiffy/(5000/HZ)) % 100,
218                          loops_per_jiffy);
219 }
220
221 void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
222                                                 unsigned long end_pfn)
223 {
224         struct resource *res = &mem_resources[nid];
225
226         WARN_ON(res->name); /* max one active range per node for now */
227
228         res->name = "System RAM";
229         res->start = start_pfn << PAGE_SHIFT;
230         res->end = (end_pfn << PAGE_SHIFT) - 1;
231         res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
232         if (request_resource(&iomem_resource, res)) {
233                 pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
234                        start_pfn, end_pfn);
235                 return;
236         }
237
238         /*
239          *  We don't know which RAM region contains kernel data,
240          *  so we try it repeatedly and let the resource manager
241          *  test it.
242          */
243         request_resource(res, &code_resource);
244         request_resource(res, &data_resource);
245         request_resource(res, &bss_resource);
246
247         add_active_range(nid, start_pfn, end_pfn);
248 }
249
250 void __init setup_bootmem_allocator(unsigned long free_pfn)
251 {
252         unsigned long bootmap_size;
253         unsigned long bootmap_pages, bootmem_paddr;
254         u64 total_pages = (lmb_end_of_DRAM() - __MEMORY_START) >> PAGE_SHIFT;
255         int i;
256
257         bootmap_pages = bootmem_bootmap_pages(total_pages);
258
259         bootmem_paddr = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
260
261         /*
262          * Find a proper area for the bootmem bitmap. After this
263          * bootstrap step all allocations (until the page allocator
264          * is intact) must be done via bootmem_alloc().
265          */
266         bootmap_size = init_bootmem_node(NODE_DATA(0),
267                                          bootmem_paddr >> PAGE_SHIFT,
268                                          min_low_pfn, max_low_pfn);
269
270         /* Add active regions with valid PFNs. */
271         for (i = 0; i < lmb.memory.cnt; i++) {
272                 unsigned long start_pfn, end_pfn;
273                 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
274                 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
275                 __add_active_range(0, start_pfn, end_pfn);
276         }
277
278         /*
279          * Add all physical memory to the bootmem map and mark each
280          * area as present.
281          */
282         register_bootmem_low_pages();
283
284         /* Reserve the sections we're already using. */
285         for (i = 0; i < lmb.reserved.cnt; i++)
286                 reserve_bootmem(lmb.reserved.region[i].base,
287                                 lmb_size_bytes(&lmb.reserved, i),
288                                 BOOTMEM_DEFAULT);
289
290         node_set_online(0);
291
292         sparse_memory_present_with_active_regions(0);
293
294         check_for_initrd();
295
296         reserve_crashkernel();
297 }
298
299 #ifndef CONFIG_NEED_MULTIPLE_NODES
300 static void __init setup_memory(void)
301 {
302         unsigned long start_pfn;
303         u64 base = min_low_pfn << PAGE_SHIFT;
304         u64 size = (max_low_pfn << PAGE_SHIFT) - base;
305
306         /*
307          * Partially used pages are not usable - thus
308          * we are rounding upwards:
309          */
310         start_pfn = PFN_UP(__pa(_end));
311
312         lmb_add(base, size);
313
314         /*
315          * Reserve the kernel text and
316          * Reserve the bootmem bitmap. We do this in two steps (first step
317          * was init_bootmem()), because this catches the (definitely buggy)
318          * case of us accidentally initializing the bootmem allocator with
319          * an invalid RAM area.
320          */
321         lmb_reserve(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET,
322                     (PFN_PHYS(start_pfn) + PAGE_SIZE - 1) -
323                     (__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET));
324
325         /*
326          * Reserve physical pages below CONFIG_ZERO_PAGE_OFFSET.
327          */
328         if (CONFIG_ZERO_PAGE_OFFSET != 0)
329                 lmb_reserve(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET);
330
331         lmb_analyze();
332         lmb_dump_all();
333
334         setup_bootmem_allocator(start_pfn);
335 }
336 #else
337 extern void __init setup_memory(void);
338 #endif
339
340 /*
341  * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
342  * is_kdump_kernel() to determine if we are booting after a panic. Hence
343  * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
344  */
345 #ifdef CONFIG_CRASH_DUMP
346 /* elfcorehdr= specifies the location of elf core header
347  * stored by the crashed kernel.
348  */
349 static int __init parse_elfcorehdr(char *arg)
350 {
351         if (!arg)
352                 return -EINVAL;
353         elfcorehdr_addr = memparse(arg, &arg);
354         return 0;
355 }
356 early_param("elfcorehdr", parse_elfcorehdr);
357 #endif
358
359 void __init __attribute__ ((weak)) plat_early_device_setup(void)
360 {
361 }
362
363 void __init setup_arch(char **cmdline_p)
364 {
365         enable_mmu();
366
367         ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
368
369         printk(KERN_NOTICE "Boot params:\n"
370                            "... MOUNT_ROOT_RDONLY - %08lx\n"
371                            "... RAMDISK_FLAGS     - %08lx\n"
372                            "... ORIG_ROOT_DEV     - %08lx\n"
373                            "... LOADER_TYPE       - %08lx\n"
374                            "... INITRD_START      - %08lx\n"
375                            "... INITRD_SIZE       - %08lx\n",
376                            MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
377                            ORIG_ROOT_DEV, LOADER_TYPE,
378                            INITRD_START, INITRD_SIZE);
379
380 #ifdef CONFIG_BLK_DEV_RAM
381         rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
382         rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
383         rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
384 #endif
385
386         if (!MOUNT_ROOT_RDONLY)
387                 root_mountflags &= ~MS_RDONLY;
388         init_mm.start_code = (unsigned long) _text;
389         init_mm.end_code = (unsigned long) _etext;
390         init_mm.end_data = (unsigned long) _edata;
391         init_mm.brk = (unsigned long) _end;
392
393         code_resource.start = virt_to_phys(_text);
394         code_resource.end = virt_to_phys(_etext)-1;
395         data_resource.start = virt_to_phys(_etext);
396         data_resource.end = virt_to_phys(_edata)-1;
397         bss_resource.start = virt_to_phys(__bss_start);
398         bss_resource.end = virt_to_phys(_ebss)-1;
399
400         memory_start = (unsigned long)__va(__MEMORY_START);
401         if (!memory_end)
402                 memory_end = memory_start + __MEMORY_SIZE;
403
404 #ifdef CONFIG_CMDLINE_OVERWRITE
405         strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
406 #else
407         strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
408 #ifdef CONFIG_CMDLINE_EXTEND
409         strlcat(command_line, " ", sizeof(command_line));
410         strlcat(command_line, CONFIG_CMDLINE, sizeof(command_line));
411 #endif
412 #endif
413
414         /* Save unparsed command line copy for /proc/cmdline */
415         memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
416         *cmdline_p = command_line;
417
418         parse_early_param();
419
420         uncached_init();
421
422         plat_early_device_setup();
423
424         /* Let earlyprintk output early console messages */
425         early_platform_driver_probe("earlyprintk", 1, 1);
426
427         sh_mv_setup();
428
429         /*
430          * Find the highest page frame number we have available
431          */
432         max_pfn = PFN_DOWN(__pa(memory_end));
433
434         /*
435          * Determine low and high memory ranges:
436          */
437         max_low_pfn = max_pfn;
438         min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
439
440         nodes_clear(node_online_map);
441
442         pmb_init();
443         lmb_init();
444         setup_memory();
445         sparse_init();
446
447 #ifdef CONFIG_DUMMY_CONSOLE
448         conswitchp = &dummy_con;
449 #endif
450         paging_init();
451
452         ioremap_fixed_init();
453
454         /* Perform the machine specific initialisation */
455         if (likely(sh_mv.mv_setup))
456                 sh_mv.mv_setup(cmdline_p);
457
458         plat_smp_setup();
459 }
460
461 /* processor boot mode configuration */
462 int generic_mode_pins(void)
463 {
464         pr_warning("generic_mode_pins(): missing mode pin configuration\n");
465         return 0;
466 }
467
468 int test_mode_pin(int pin)
469 {
470         return sh_mv.mv_mode_pins() & pin;
471 }
472
473 static const char *cpu_name[] = {
474         [CPU_SH7201]    = "SH7201",
475         [CPU_SH7203]    = "SH7203",     [CPU_SH7263]    = "SH7263",
476         [CPU_SH7206]    = "SH7206",     [CPU_SH7619]    = "SH7619",
477         [CPU_SH7705]    = "SH7705",     [CPU_SH7706]    = "SH7706",
478         [CPU_SH7707]    = "SH7707",     [CPU_SH7708]    = "SH7708",
479         [CPU_SH7709]    = "SH7709",     [CPU_SH7710]    = "SH7710",
480         [CPU_SH7712]    = "SH7712",     [CPU_SH7720]    = "SH7720",
481         [CPU_SH7721]    = "SH7721",     [CPU_SH7729]    = "SH7729",
482         [CPU_SH7750]    = "SH7750",     [CPU_SH7750S]   = "SH7750S",
483         [CPU_SH7750R]   = "SH7750R",    [CPU_SH7751]    = "SH7751",
484         [CPU_SH7751R]   = "SH7751R",    [CPU_SH7760]    = "SH7760",
485         [CPU_SH4_202]   = "SH4-202",    [CPU_SH4_501]   = "SH4-501",
486         [CPU_SH7763]    = "SH7763",     [CPU_SH7770]    = "SH7770",
487         [CPU_SH7780]    = "SH7780",     [CPU_SH7781]    = "SH7781",
488         [CPU_SH7343]    = "SH7343",     [CPU_SH7785]    = "SH7785",
489         [CPU_SH7786]    = "SH7786",     [CPU_SH7757]    = "SH7757",
490         [CPU_SH7722]    = "SH7722",     [CPU_SHX3]      = "SH-X3",
491         [CPU_SH5_101]   = "SH5-101",    [CPU_SH5_103]   = "SH5-103",
492         [CPU_MXG]       = "MX-G",       [CPU_SH7723]    = "SH7723",
493         [CPU_SH7366]    = "SH7366",     [CPU_SH7724]    = "SH7724",
494         [CPU_SH_NONE]   = "Unknown"
495 };
496
497 const char *get_cpu_subtype(struct sh_cpuinfo *c)
498 {
499         return cpu_name[c->type];
500 }
501 EXPORT_SYMBOL(get_cpu_subtype);
502
503 #ifdef CONFIG_PROC_FS
504 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
505 static const char *cpu_flags[] = {
506         "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
507         "ptea", "llsc", "l2", "op32", "pteaex", NULL
508 };
509
510 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
511 {
512         unsigned long i;
513
514         seq_printf(m, "cpu flags\t:");
515
516         if (!c->flags) {
517                 seq_printf(m, " %s\n", cpu_flags[0]);
518                 return;
519         }
520
521         for (i = 0; cpu_flags[i]; i++)
522                 if ((c->flags & (1 << i)))
523                         seq_printf(m, " %s", cpu_flags[i+1]);
524
525         seq_printf(m, "\n");
526 }
527
528 static void show_cacheinfo(struct seq_file *m, const char *type,
529                            struct cache_info info)
530 {
531         unsigned int cache_size;
532
533         cache_size = info.ways * info.sets * info.linesz;
534
535         seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
536                    type, cache_size >> 10, info.ways);
537 }
538
539 /*
540  *      Get CPU information for use by the procfs.
541  */
542 static int show_cpuinfo(struct seq_file *m, void *v)
543 {
544         struct sh_cpuinfo *c = v;
545         unsigned int cpu = c - cpu_data;
546
547         if (!cpu_online(cpu))
548                 return 0;
549
550         if (cpu == 0)
551                 seq_printf(m, "machine\t\t: %s\n", get_system_type());
552         else
553                 seq_printf(m, "\n");
554
555         seq_printf(m, "processor\t: %d\n", cpu);
556         seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
557         seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
558         if (c->cut_major == -1)
559                 seq_printf(m, "cut\t\t: unknown\n");
560         else if (c->cut_minor == -1)
561                 seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
562         else
563                 seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
564
565         show_cpuflags(m, c);
566
567         seq_printf(m, "cache type\t: ");
568
569         /*
570          * Check for what type of cache we have, we support both the
571          * unified cache on the SH-2 and SH-3, as well as the harvard
572          * style cache on the SH-4.
573          */
574         if (c->icache.flags & SH_CACHE_COMBINED) {
575                 seq_printf(m, "unified\n");
576                 show_cacheinfo(m, "cache", c->icache);
577         } else {
578                 seq_printf(m, "split (harvard)\n");
579                 show_cacheinfo(m, "icache", c->icache);
580                 show_cacheinfo(m, "dcache", c->dcache);
581         }
582
583         /* Optional secondary cache */
584         if (c->flags & CPU_HAS_L2_CACHE)
585                 show_cacheinfo(m, "scache", c->scache);
586
587         seq_printf(m, "bogomips\t: %lu.%02lu\n",
588                      c->loops_per_jiffy/(500000/HZ),
589                      (c->loops_per_jiffy/(5000/HZ)) % 100);
590
591         return 0;
592 }
593
594 static void *c_start(struct seq_file *m, loff_t *pos)
595 {
596         return *pos < NR_CPUS ? cpu_data + *pos : NULL;
597 }
598 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
599 {
600         ++*pos;
601         return c_start(m, pos);
602 }
603 static void c_stop(struct seq_file *m, void *v)
604 {
605 }
606 const struct seq_operations cpuinfo_op = {
607         .start  = c_start,
608         .next   = c_next,
609         .stop   = c_stop,
610         .show   = show_cpuinfo,
611 };
612 #endif /* CONFIG_PROC_FS */
613
614 struct dentry *sh_debugfs_root;
615
616 static int __init sh_debugfs_init(void)
617 {
618         sh_debugfs_root = debugfs_create_dir("sh", NULL);
619         if (!sh_debugfs_root)
620                 return -ENOMEM;
621         if (IS_ERR(sh_debugfs_root))
622                 return PTR_ERR(sh_debugfs_root);
623
624         return 0;
625 }
626 arch_initcall(sh_debugfs_init);