Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / arch / arm64 / kernel / cpufeature.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  */
7
8 #define pr_fmt(fmt) "CPU features: " fmt
9
10 #include <linux/bsearch.h>
11 #include <linux/cpumask.h>
12 #include <linux/crash_dump.h>
13 #include <linux/sort.h>
14 #include <linux/stop_machine.h>
15 #include <linux/types.h>
16 #include <linux/mm.h>
17 #include <linux/cpu.h>
18 #include <asm/cpu.h>
19 #include <asm/cpufeature.h>
20 #include <asm/cpu_ops.h>
21 #include <asm/fpsimd.h>
22 #include <asm/mmu_context.h>
23 #include <asm/processor.h>
24 #include <asm/sysreg.h>
25 #include <asm/traps.h>
26 #include <asm/virt.h>
27
28 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
29 static unsigned long elf_hwcap __read_mostly;
30
31 #ifdef CONFIG_COMPAT
32 #define COMPAT_ELF_HWCAP_DEFAULT        \
33                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
34                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
35                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
36                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
37                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
38                                  COMPAT_HWCAP_LPAE)
39 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
40 unsigned int compat_elf_hwcap2 __read_mostly;
41 #endif
42
43 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
44 EXPORT_SYMBOL(cpu_hwcaps);
45 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
46
47 /* Need also bit for ARM64_CB_PATCH */
48 DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
49
50 /*
51  * Flag to indicate if we have computed the system wide
52  * capabilities based on the boot time active CPUs. This
53  * will be used to determine if a new booting CPU should
54  * go through the verification process to make sure that it
55  * supports the system capabilities, without using a hotplug
56  * notifier.
57  */
58 static bool sys_caps_initialised;
59
60 static inline void set_sys_caps_initialised(void)
61 {
62         sys_caps_initialised = true;
63 }
64
65 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
66 {
67         /* file-wide pr_fmt adds "CPU features: " prefix */
68         pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
69         return 0;
70 }
71
72 static struct notifier_block cpu_hwcaps_notifier = {
73         .notifier_call = dump_cpu_hwcaps
74 };
75
76 static int __init register_cpu_hwcaps_dumper(void)
77 {
78         atomic_notifier_chain_register(&panic_notifier_list,
79                                        &cpu_hwcaps_notifier);
80         return 0;
81 }
82 __initcall(register_cpu_hwcaps_dumper);
83
84 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
85 EXPORT_SYMBOL(cpu_hwcap_keys);
86
87 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
88         {                                               \
89                 .sign = SIGNED,                         \
90                 .visible = VISIBLE,                     \
91                 .strict = STRICT,                       \
92                 .type = TYPE,                           \
93                 .shift = SHIFT,                         \
94                 .width = WIDTH,                         \
95                 .safe_val = SAFE_VAL,                   \
96         }
97
98 /* Define a feature with unsigned values */
99 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
100         __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
101
102 /* Define a feature with a signed value */
103 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
104         __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
105
106 #define ARM64_FTR_END                                   \
107         {                                               \
108                 .width = 0,                             \
109         }
110
111 /* meta feature for alternatives */
112 static bool __maybe_unused
113 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
114
115 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
116
117 /*
118  * NOTE: Any changes to the visibility of features should be kept in
119  * sync with the documentation of the CPU feature register ABI.
120  */
121 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
122         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
123         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
124         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
125         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
126         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
127         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
128         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
129         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
130         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
131         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
132         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
133         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
134         ARM64_FTR_END,
135 };
136
137 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
138         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
139         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0),
140         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
141                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
142         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
143                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
144         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
145         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
146         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
147         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
148                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_API_SHIFT, 4, 0),
149         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
150                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_APA_SHIFT, 4, 0),
151         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
152         ARM64_FTR_END,
153 };
154
155 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
156         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
157         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
158         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
159         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
160                                    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
161         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
162         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
163         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
164         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
165         /* Linux doesn't care about the EL3 */
166         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
167         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
168         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
169         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
170         ARM64_FTR_END,
171 };
172
173 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
174         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
175         ARM64_FTR_END,
176 };
177
178 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
179         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
180                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0),
181         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
182                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0),
183         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
184                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0),
185         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
186                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0),
187         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
188                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0),
189         ARM64_FTR_END,
190 };
191
192 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
193         /*
194          * We already refuse to boot CPUs that don't support our configured
195          * page size, so we can only detect mismatches for a page size other
196          * than the one we're currently using. Unfortunately, SoCs like this
197          * exist in the wild so, even though we don't like it, we'll have to go
198          * along with it and treat them as non-strict.
199          */
200         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
201         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
202         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
203
204         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
205         /* Linux shouldn't care about secure memory */
206         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
207         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
208         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
209         /*
210          * Differing PARange is fine as long as all peripherals and memory are mapped
211          * within the minimum PARange of all CPUs
212          */
213         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
214         ARM64_FTR_END,
215 };
216
217 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
218         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
219         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
220         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
221         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
222         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
223         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
224         ARM64_FTR_END,
225 };
226
227 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
228         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
229         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
230         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
231         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
232         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
233         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
234         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
235         ARM64_FTR_END,
236 };
237
238 static const struct arm64_ftr_bits ftr_ctr[] = {
239         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
240         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
241         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
242         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
243         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
244         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
245         /*
246          * Linux can handle differing I-cache policies. Userspace JITs will
247          * make use of *minLine.
248          * If we have differing I-cache policies, report it as the weakest - VIPT.
249          */
250         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),       /* L1Ip */
251         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
252         ARM64_FTR_END,
253 };
254
255 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
256         .name           = "SYS_CTR_EL0",
257         .ftr_bits       = ftr_ctr
258 };
259
260 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
261         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),   /* InnerShr */
262         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),       /* FCSE */
263         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),    /* AuxReg */
264         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),       /* TCM */
265         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),       /* ShareLvl */
266         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),    /* OuterShr */
267         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),        /* PMSA */
268         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),        /* VMSA */
269         ARM64_FTR_END,
270 };
271
272 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
273         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
274         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
275         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
276         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
277         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
278         /*
279          * We can instantiate multiple PMU instances with different levels
280          * of support.
281          */
282         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
283         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
284         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
285         ARM64_FTR_END,
286 };
287
288 static const struct arm64_ftr_bits ftr_mvfr2[] = {
289         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),                /* FPMisc */
290         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),                /* SIMDMisc */
291         ARM64_FTR_END,
292 };
293
294 static const struct arm64_ftr_bits ftr_dczid[] = {
295         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),            /* DZP */
296         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),       /* BS */
297         ARM64_FTR_END,
298 };
299
300
301 static const struct arm64_ftr_bits ftr_id_isar5[] = {
302         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
303         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
304         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
305         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
306         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
307         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
308         ARM64_FTR_END,
309 };
310
311 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
312         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),        /* ac2 */
313         ARM64_FTR_END,
314 };
315
316 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
317         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),               /* State3 */
318         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),                /* State2 */
319         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),                /* State1 */
320         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),                /* State0 */
321         ARM64_FTR_END,
322 };
323
324 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
325         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
326         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),   /* PerfMon */
327         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
328         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
329         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
330         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
331         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
332         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
333         ARM64_FTR_END,
334 };
335
336 static const struct arm64_ftr_bits ftr_zcr[] = {
337         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
338                 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),        /* LEN */
339         ARM64_FTR_END,
340 };
341
342 /*
343  * Common ftr bits for a 32bit register with all hidden, strict
344  * attributes, with 4bit feature fields and a default safe value of
345  * 0. Covers the following 32bit registers:
346  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
347  */
348 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
349         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
350         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
351         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
352         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
353         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
354         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
355         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
356         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
357         ARM64_FTR_END,
358 };
359
360 /* Table for a single 32bit feature value */
361 static const struct arm64_ftr_bits ftr_single32[] = {
362         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
363         ARM64_FTR_END,
364 };
365
366 static const struct arm64_ftr_bits ftr_raz[] = {
367         ARM64_FTR_END,
368 };
369
370 #define ARM64_FTR_REG(id, table) {              \
371         .sys_id = id,                           \
372         .reg =  &(struct arm64_ftr_reg){        \
373                 .name = #id,                    \
374                 .ftr_bits = &((table)[0]),      \
375         }}
376
377 static const struct __ftr_reg_entry {
378         u32                     sys_id;
379         struct arm64_ftr_reg    *reg;
380 } arm64_ftr_regs[] = {
381
382         /* Op1 = 0, CRn = 0, CRm = 1 */
383         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
384         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
385         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
386         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
387         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
388         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
389         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
390
391         /* Op1 = 0, CRn = 0, CRm = 2 */
392         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
393         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
394         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
395         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
396         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
397         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
398         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
399
400         /* Op1 = 0, CRn = 0, CRm = 3 */
401         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
402         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
403         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
404
405         /* Op1 = 0, CRn = 0, CRm = 4 */
406         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
407         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
408         ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
409
410         /* Op1 = 0, CRn = 0, CRm = 5 */
411         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
412         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
413
414         /* Op1 = 0, CRn = 0, CRm = 6 */
415         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
416         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
417
418         /* Op1 = 0, CRn = 0, CRm = 7 */
419         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
420         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
421         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
422
423         /* Op1 = 0, CRn = 1, CRm = 2 */
424         ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
425
426         /* Op1 = 3, CRn = 0, CRm = 0 */
427         { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
428         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
429
430         /* Op1 = 3, CRn = 14, CRm = 0 */
431         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
432 };
433
434 static int search_cmp_ftr_reg(const void *id, const void *regp)
435 {
436         return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
437 }
438
439 /*
440  * get_arm64_ftr_reg - Lookup a feature register entry using its
441  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
442  * ascending order of sys_id , we use binary search to find a matching
443  * entry.
444  *
445  * returns - Upon success,  matching ftr_reg entry for id.
446  *         - NULL on failure. It is upto the caller to decide
447  *           the impact of a failure.
448  */
449 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
450 {
451         const struct __ftr_reg_entry *ret;
452
453         ret = bsearch((const void *)(unsigned long)sys_id,
454                         arm64_ftr_regs,
455                         ARRAY_SIZE(arm64_ftr_regs),
456                         sizeof(arm64_ftr_regs[0]),
457                         search_cmp_ftr_reg);
458         if (ret)
459                 return ret->reg;
460         return NULL;
461 }
462
463 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
464                                s64 ftr_val)
465 {
466         u64 mask = arm64_ftr_mask(ftrp);
467
468         reg &= ~mask;
469         reg |= (ftr_val << ftrp->shift) & mask;
470         return reg;
471 }
472
473 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
474                                 s64 cur)
475 {
476         s64 ret = 0;
477
478         switch (ftrp->type) {
479         case FTR_EXACT:
480                 ret = ftrp->safe_val;
481                 break;
482         case FTR_LOWER_SAFE:
483                 ret = new < cur ? new : cur;
484                 break;
485         case FTR_HIGHER_OR_ZERO_SAFE:
486                 if (!cur || !new)
487                         break;
488                 /* Fallthrough */
489         case FTR_HIGHER_SAFE:
490                 ret = new > cur ? new : cur;
491                 break;
492         default:
493                 BUG();
494         }
495
496         return ret;
497 }
498
499 static void __init sort_ftr_regs(void)
500 {
501         int i;
502
503         /* Check that the array is sorted so that we can do the binary search */
504         for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
505                 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
506 }
507
508 /*
509  * Initialise the CPU feature register from Boot CPU values.
510  * Also initiliases the strict_mask for the register.
511  * Any bits that are not covered by an arm64_ftr_bits entry are considered
512  * RES0 for the system-wide value, and must strictly match.
513  */
514 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
515 {
516         u64 val = 0;
517         u64 strict_mask = ~0x0ULL;
518         u64 user_mask = 0;
519         u64 valid_mask = 0;
520
521         const struct arm64_ftr_bits *ftrp;
522         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
523
524         BUG_ON(!reg);
525
526         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
527                 u64 ftr_mask = arm64_ftr_mask(ftrp);
528                 s64 ftr_new = arm64_ftr_value(ftrp, new);
529
530                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
531
532                 valid_mask |= ftr_mask;
533                 if (!ftrp->strict)
534                         strict_mask &= ~ftr_mask;
535                 if (ftrp->visible)
536                         user_mask |= ftr_mask;
537                 else
538                         reg->user_val = arm64_ftr_set_value(ftrp,
539                                                             reg->user_val,
540                                                             ftrp->safe_val);
541         }
542
543         val &= valid_mask;
544
545         reg->sys_val = val;
546         reg->strict_mask = strict_mask;
547         reg->user_mask = user_mask;
548 }
549
550 extern const struct arm64_cpu_capabilities arm64_errata[];
551 static const struct arm64_cpu_capabilities arm64_features[];
552
553 static void __init
554 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
555 {
556         for (; caps->matches; caps++) {
557                 if (WARN(caps->capability >= ARM64_NCAPS,
558                         "Invalid capability %d\n", caps->capability))
559                         continue;
560                 if (WARN(cpu_hwcaps_ptrs[caps->capability],
561                         "Duplicate entry for capability %d\n",
562                         caps->capability))
563                         continue;
564                 cpu_hwcaps_ptrs[caps->capability] = caps;
565         }
566 }
567
568 static void __init init_cpu_hwcaps_indirect_list(void)
569 {
570         init_cpu_hwcaps_indirect_list_from_array(arm64_features);
571         init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
572 }
573
574 static void __init setup_boot_cpu_capabilities(void);
575
576 void __init init_cpu_features(struct cpuinfo_arm64 *info)
577 {
578         /* Before we start using the tables, make sure it is sorted */
579         sort_ftr_regs();
580
581         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
582         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
583         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
584         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
585         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
586         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
587         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
588         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
589         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
590         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
591         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
592         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
593         init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
594
595         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
596                 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
597                 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
598                 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
599                 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
600                 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
601                 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
602                 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
603                 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
604                 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
605                 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
606                 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
607                 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
608                 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
609                 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
610                 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
611                 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
612         }
613
614         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
615                 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
616                 sve_init_vq_map();
617         }
618
619         /*
620          * Initialize the indirect array of CPU hwcaps capabilities pointers
621          * before we handle the boot CPU below.
622          */
623         init_cpu_hwcaps_indirect_list();
624
625         /*
626          * Detect and enable early CPU capabilities based on the boot CPU,
627          * after we have initialised the CPU feature infrastructure.
628          */
629         setup_boot_cpu_capabilities();
630 }
631
632 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
633 {
634         const struct arm64_ftr_bits *ftrp;
635
636         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
637                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
638                 s64 ftr_new = arm64_ftr_value(ftrp, new);
639
640                 if (ftr_cur == ftr_new)
641                         continue;
642                 /* Find a safe value */
643                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
644                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
645         }
646
647 }
648
649 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
650 {
651         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
652
653         BUG_ON(!regp);
654         update_cpu_ftr_reg(regp, val);
655         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
656                 return 0;
657         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
658                         regp->name, boot, cpu, val);
659         return 1;
660 }
661
662 /*
663  * Update system wide CPU feature registers with the values from a
664  * non-boot CPU. Also performs SANITY checks to make sure that there
665  * aren't any insane variations from that of the boot CPU.
666  */
667 void update_cpu_features(int cpu,
668                          struct cpuinfo_arm64 *info,
669                          struct cpuinfo_arm64 *boot)
670 {
671         int taint = 0;
672
673         /*
674          * The kernel can handle differing I-cache policies, but otherwise
675          * caches should look identical. Userspace JITs will make use of
676          * *minLine.
677          */
678         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
679                                       info->reg_ctr, boot->reg_ctr);
680
681         /*
682          * Userspace may perform DC ZVA instructions. Mismatched block sizes
683          * could result in too much or too little memory being zeroed if a
684          * process is preempted and migrated between CPUs.
685          */
686         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
687                                       info->reg_dczid, boot->reg_dczid);
688
689         /* If different, timekeeping will be broken (especially with KVM) */
690         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
691                                       info->reg_cntfrq, boot->reg_cntfrq);
692
693         /*
694          * The kernel uses self-hosted debug features and expects CPUs to
695          * support identical debug features. We presently need CTX_CMPs, WRPs,
696          * and BRPs to be identical.
697          * ID_AA64DFR1 is currently RES0.
698          */
699         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
700                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
701         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
702                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
703         /*
704          * Even in big.LITTLE, processors should be identical instruction-set
705          * wise.
706          */
707         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
708                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
709         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
710                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
711
712         /*
713          * Differing PARange support is fine as long as all peripherals and
714          * memory are mapped within the minimum PARange of all CPUs.
715          * Linux should not care about secure memory.
716          */
717         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
718                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
719         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
720                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
721         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
722                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
723
724         /*
725          * EL3 is not our concern.
726          */
727         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
728                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
729         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
730                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
731
732         taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
733                                       info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
734
735         /*
736          * If we have AArch32, we care about 32-bit features for compat.
737          * If the system doesn't support AArch32, don't update them.
738          */
739         if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
740                 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
741
742                 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
743                                         info->reg_id_dfr0, boot->reg_id_dfr0);
744                 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
745                                         info->reg_id_isar0, boot->reg_id_isar0);
746                 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
747                                         info->reg_id_isar1, boot->reg_id_isar1);
748                 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
749                                         info->reg_id_isar2, boot->reg_id_isar2);
750                 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
751                                         info->reg_id_isar3, boot->reg_id_isar3);
752                 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
753                                         info->reg_id_isar4, boot->reg_id_isar4);
754                 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
755                                         info->reg_id_isar5, boot->reg_id_isar5);
756
757                 /*
758                  * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
759                  * ACTLR formats could differ across CPUs and therefore would have to
760                  * be trapped for virtualization anyway.
761                  */
762                 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
763                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
764                 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
765                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
766                 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
767                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
768                 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
769                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
770                 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
771                                         info->reg_id_pfr0, boot->reg_id_pfr0);
772                 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
773                                         info->reg_id_pfr1, boot->reg_id_pfr1);
774                 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
775                                         info->reg_mvfr0, boot->reg_mvfr0);
776                 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
777                                         info->reg_mvfr1, boot->reg_mvfr1);
778                 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
779                                         info->reg_mvfr2, boot->reg_mvfr2);
780         }
781
782         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
783                 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
784                                         info->reg_zcr, boot->reg_zcr);
785
786                 /* Probe vector lengths, unless we already gave up on SVE */
787                 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
788                     !sys_caps_initialised)
789                         sve_update_vq_map();
790         }
791
792         /*
793          * Mismatched CPU features are a recipe for disaster. Don't even
794          * pretend to support them.
795          */
796         if (taint) {
797                 pr_warn_once("Unsupported CPU feature variation detected.\n");
798                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
799         }
800 }
801
802 u64 read_sanitised_ftr_reg(u32 id)
803 {
804         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
805
806         /* We shouldn't get a request for an unsupported register */
807         BUG_ON(!regp);
808         return regp->sys_val;
809 }
810
811 #define read_sysreg_case(r)     \
812         case r:         return read_sysreg_s(r)
813
814 /*
815  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
816  * Read the system register on the current CPU
817  */
818 static u64 __read_sysreg_by_encoding(u32 sys_id)
819 {
820         switch (sys_id) {
821         read_sysreg_case(SYS_ID_PFR0_EL1);
822         read_sysreg_case(SYS_ID_PFR1_EL1);
823         read_sysreg_case(SYS_ID_DFR0_EL1);
824         read_sysreg_case(SYS_ID_MMFR0_EL1);
825         read_sysreg_case(SYS_ID_MMFR1_EL1);
826         read_sysreg_case(SYS_ID_MMFR2_EL1);
827         read_sysreg_case(SYS_ID_MMFR3_EL1);
828         read_sysreg_case(SYS_ID_ISAR0_EL1);
829         read_sysreg_case(SYS_ID_ISAR1_EL1);
830         read_sysreg_case(SYS_ID_ISAR2_EL1);
831         read_sysreg_case(SYS_ID_ISAR3_EL1);
832         read_sysreg_case(SYS_ID_ISAR4_EL1);
833         read_sysreg_case(SYS_ID_ISAR5_EL1);
834         read_sysreg_case(SYS_MVFR0_EL1);
835         read_sysreg_case(SYS_MVFR1_EL1);
836         read_sysreg_case(SYS_MVFR2_EL1);
837
838         read_sysreg_case(SYS_ID_AA64PFR0_EL1);
839         read_sysreg_case(SYS_ID_AA64PFR1_EL1);
840         read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
841         read_sysreg_case(SYS_ID_AA64DFR0_EL1);
842         read_sysreg_case(SYS_ID_AA64DFR1_EL1);
843         read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
844         read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
845         read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
846         read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
847         read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
848
849         read_sysreg_case(SYS_CNTFRQ_EL0);
850         read_sysreg_case(SYS_CTR_EL0);
851         read_sysreg_case(SYS_DCZID_EL0);
852
853         default:
854                 BUG();
855                 return 0;
856         }
857 }
858
859 #include <linux/irqchip/arm-gic-v3.h>
860
861 static bool
862 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
863 {
864         int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
865
866         return val >= entry->min_field_value;
867 }
868
869 static bool
870 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
871 {
872         u64 val;
873
874         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
875         if (scope == SCOPE_SYSTEM)
876                 val = read_sanitised_ftr_reg(entry->sys_reg);
877         else
878                 val = __read_sysreg_by_encoding(entry->sys_reg);
879
880         return feature_matches(val, entry);
881 }
882
883 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
884 {
885         bool has_sre;
886
887         if (!has_cpuid_feature(entry, scope))
888                 return false;
889
890         has_sre = gic_enable_sre();
891         if (!has_sre)
892                 pr_warn_once("%s present but disabled by higher exception level\n",
893                              entry->desc);
894
895         return has_sre;
896 }
897
898 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
899 {
900         u32 midr = read_cpuid_id();
901
902         /* Cavium ThunderX pass 1.x and 2.x */
903         return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
904                 MIDR_CPU_VAR_REV(0, 0),
905                 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
906 }
907
908 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
909 {
910         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
911
912         return cpuid_feature_extract_signed_field(pfr0,
913                                         ID_AA64PFR0_FP_SHIFT) < 0;
914 }
915
916 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
917                           int scope)
918 {
919         u64 ctr;
920
921         if (scope == SCOPE_SYSTEM)
922                 ctr = arm64_ftr_reg_ctrel0.sys_val;
923         else
924                 ctr = read_cpuid_effective_cachetype();
925
926         return ctr & BIT(CTR_IDC_SHIFT);
927 }
928
929 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
930 {
931         /*
932          * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
933          * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
934          * to the CTR_EL0 on this CPU and emulate it with the real/safe
935          * value.
936          */
937         if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
938                 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
939 }
940
941 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
942                           int scope)
943 {
944         u64 ctr;
945
946         if (scope == SCOPE_SYSTEM)
947                 ctr = arm64_ftr_reg_ctrel0.sys_val;
948         else
949                 ctr = read_cpuid_cachetype();
950
951         return ctr & BIT(CTR_DIC_SHIFT);
952 }
953
954 static bool __maybe_unused
955 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
956 {
957         /*
958          * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
959          * may share TLB entries with a CPU stuck in the crashed
960          * kernel.
961          */
962          if (is_kdump_kernel())
963                 return false;
964
965         return has_cpuid_feature(entry, scope);
966 }
967
968 static bool __meltdown_safe = true;
969 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
970
971 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
972                                 int scope)
973 {
974         /* List of CPUs that are not vulnerable and don't need KPTI */
975         static const struct midr_range kpti_safe_list[] = {
976                 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
977                 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
978                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
979                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
980                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
981                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
982                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
983                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
984                 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
985                 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
986                 { /* sentinel */ }
987         };
988         char const *str = "kpti command line option";
989         bool meltdown_safe;
990
991         meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
992
993         /* Defer to CPU feature registers */
994         if (has_cpuid_feature(entry, scope))
995                 meltdown_safe = true;
996
997         if (!meltdown_safe)
998                 __meltdown_safe = false;
999
1000         /*
1001          * For reasons that aren't entirely clear, enabling KPTI on Cavium
1002          * ThunderX leads to apparent I-cache corruption of kernel text, which
1003          * ends as well as you might imagine. Don't even try.
1004          */
1005         if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1006                 str = "ARM64_WORKAROUND_CAVIUM_27456";
1007                 __kpti_forced = -1;
1008         }
1009
1010         /* Useful for KASLR robustness */
1011         if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && kaslr_offset() > 0) {
1012                 if (!__kpti_forced) {
1013                         str = "KASLR";
1014                         __kpti_forced = 1;
1015                 }
1016         }
1017
1018         if (cpu_mitigations_off() && !__kpti_forced) {
1019                 str = "mitigations=off";
1020                 __kpti_forced = -1;
1021         }
1022
1023         if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1024                 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1025                 return false;
1026         }
1027
1028         /* Forced? */
1029         if (__kpti_forced) {
1030                 pr_info_once("kernel page table isolation forced %s by %s\n",
1031                              __kpti_forced > 0 ? "ON" : "OFF", str);
1032                 return __kpti_forced > 0;
1033         }
1034
1035         return !meltdown_safe;
1036 }
1037
1038 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1039 static void
1040 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1041 {
1042         typedef void (kpti_remap_fn)(int, int, phys_addr_t);
1043         extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1044         kpti_remap_fn *remap_fn;
1045
1046         static bool kpti_applied = false;
1047         int cpu = smp_processor_id();
1048
1049         /*
1050          * We don't need to rewrite the page-tables if either we've done
1051          * it already or we have KASLR enabled and therefore have not
1052          * created any global mappings at all.
1053          */
1054         if (kpti_applied || kaslr_offset() > 0)
1055                 return;
1056
1057         remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1058
1059         cpu_install_idmap();
1060         remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
1061         cpu_uninstall_idmap();
1062
1063         if (!cpu)
1064                 kpti_applied = true;
1065
1066         return;
1067 }
1068 #else
1069 static void
1070 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1071 {
1072 }
1073 #endif  /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1074
1075 static int __init parse_kpti(char *str)
1076 {
1077         bool enabled;
1078         int ret = strtobool(str, &enabled);
1079
1080         if (ret)
1081                 return ret;
1082
1083         __kpti_forced = enabled ? 1 : -1;
1084         return 0;
1085 }
1086 early_param("kpti", parse_kpti);
1087
1088 #ifdef CONFIG_ARM64_HW_AFDBM
1089 static inline void __cpu_enable_hw_dbm(void)
1090 {
1091         u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1092
1093         write_sysreg(tcr, tcr_el1);
1094         isb();
1095 }
1096
1097 static bool cpu_has_broken_dbm(void)
1098 {
1099         /* List of CPUs which have broken DBM support. */
1100         static const struct midr_range cpus[] = {
1101 #ifdef CONFIG_ARM64_ERRATUM_1024718
1102                 MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0),  // A55 r0p0 -r1p0
1103 #endif
1104                 {},
1105         };
1106
1107         return is_midr_in_range_list(read_cpuid_id(), cpus);
1108 }
1109
1110 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1111 {
1112         return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1113                !cpu_has_broken_dbm();
1114 }
1115
1116 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1117 {
1118         if (cpu_can_use_dbm(cap))
1119                 __cpu_enable_hw_dbm();
1120 }
1121
1122 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1123                        int __unused)
1124 {
1125         static bool detected = false;
1126         /*
1127          * DBM is a non-conflicting feature. i.e, the kernel can safely
1128          * run a mix of CPUs with and without the feature. So, we
1129          * unconditionally enable the capability to allow any late CPU
1130          * to use the feature. We only enable the control bits on the
1131          * CPU, if it actually supports.
1132          *
1133          * We have to make sure we print the "feature" detection only
1134          * when at least one CPU actually uses it. So check if this CPU
1135          * can actually use it and print the message exactly once.
1136          *
1137          * This is safe as all CPUs (including secondary CPUs - due to the
1138          * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1139          * goes through the "matches" check exactly once. Also if a CPU
1140          * matches the criteria, it is guaranteed that the CPU will turn
1141          * the DBM on, as the capability is unconditionally enabled.
1142          */
1143         if (!detected && cpu_can_use_dbm(cap)) {
1144                 detected = true;
1145                 pr_info("detected: Hardware dirty bit management\n");
1146         }
1147
1148         return true;
1149 }
1150
1151 #endif
1152
1153 #ifdef CONFIG_ARM64_VHE
1154 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1155 {
1156         return is_kernel_in_hyp_mode();
1157 }
1158
1159 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1160 {
1161         /*
1162          * Copy register values that aren't redirected by hardware.
1163          *
1164          * Before code patching, we only set tpidr_el1, all CPUs need to copy
1165          * this value to tpidr_el2 before we patch the code. Once we've done
1166          * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1167          * do anything here.
1168          */
1169         if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1170                 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1171 }
1172 #endif
1173
1174 static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1175 {
1176         u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1177
1178         /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1179         WARN_ON(val & (7 << 27 | 7 << 21));
1180 }
1181
1182 #ifdef CONFIG_ARM64_SSBD
1183 static int ssbs_emulation_handler(struct pt_regs *regs, u32 instr)
1184 {
1185         if (user_mode(regs))
1186                 return 1;
1187
1188         if (instr & BIT(PSTATE_Imm_shift))
1189                 regs->pstate |= PSR_SSBS_BIT;
1190         else
1191                 regs->pstate &= ~PSR_SSBS_BIT;
1192
1193         arm64_skip_faulting_instruction(regs, 4);
1194         return 0;
1195 }
1196
1197 static struct undef_hook ssbs_emulation_hook = {
1198         .instr_mask     = ~(1U << PSTATE_Imm_shift),
1199         .instr_val      = 0xd500401f | PSTATE_SSBS,
1200         .fn             = ssbs_emulation_handler,
1201 };
1202
1203 static void cpu_enable_ssbs(const struct arm64_cpu_capabilities *__unused)
1204 {
1205         static bool undef_hook_registered = false;
1206         static DEFINE_RAW_SPINLOCK(hook_lock);
1207
1208         raw_spin_lock(&hook_lock);
1209         if (!undef_hook_registered) {
1210                 register_undef_hook(&ssbs_emulation_hook);
1211                 undef_hook_registered = true;
1212         }
1213         raw_spin_unlock(&hook_lock);
1214
1215         if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
1216                 sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_DSSBS);
1217                 arm64_set_ssbd_mitigation(false);
1218         } else {
1219                 arm64_set_ssbd_mitigation(true);
1220         }
1221 }
1222 #endif /* CONFIG_ARM64_SSBD */
1223
1224 #ifdef CONFIG_ARM64_PAN
1225 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1226 {
1227         /*
1228          * We modify PSTATE. This won't work from irq context as the PSTATE
1229          * is discarded once we return from the exception.
1230          */
1231         WARN_ON_ONCE(in_interrupt());
1232
1233         sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1234         asm(SET_PSTATE_PAN(1));
1235 }
1236 #endif /* CONFIG_ARM64_PAN */
1237
1238 #ifdef CONFIG_ARM64_RAS_EXTN
1239 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1240 {
1241         /* Firmware may have left a deferred SError in this register. */
1242         write_sysreg_s(0, SYS_DISR_EL1);
1243 }
1244 #endif /* CONFIG_ARM64_RAS_EXTN */
1245
1246 #ifdef CONFIG_ARM64_PTR_AUTH
1247 static void cpu_enable_address_auth(struct arm64_cpu_capabilities const *cap)
1248 {
1249         sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ENIA | SCTLR_ELx_ENIB |
1250                                        SCTLR_ELx_ENDA | SCTLR_ELx_ENDB);
1251 }
1252 #endif /* CONFIG_ARM64_PTR_AUTH */
1253
1254 #ifdef CONFIG_ARM64_PSEUDO_NMI
1255 static bool enable_pseudo_nmi;
1256
1257 static int __init early_enable_pseudo_nmi(char *p)
1258 {
1259         return strtobool(p, &enable_pseudo_nmi);
1260 }
1261 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1262
1263 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
1264                                    int scope)
1265 {
1266         return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
1267 }
1268 #endif
1269
1270 static const struct arm64_cpu_capabilities arm64_features[] = {
1271         {
1272                 .desc = "GIC system register CPU interface",
1273                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1274                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1275                 .matches = has_useable_gicv3_cpuif,
1276                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1277                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
1278                 .sign = FTR_UNSIGNED,
1279                 .min_field_value = 1,
1280         },
1281 #ifdef CONFIG_ARM64_PAN
1282         {
1283                 .desc = "Privileged Access Never",
1284                 .capability = ARM64_HAS_PAN,
1285                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1286                 .matches = has_cpuid_feature,
1287                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1288                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
1289                 .sign = FTR_UNSIGNED,
1290                 .min_field_value = 1,
1291                 .cpu_enable = cpu_enable_pan,
1292         },
1293 #endif /* CONFIG_ARM64_PAN */
1294 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
1295         {
1296                 .desc = "LSE atomic instructions",
1297                 .capability = ARM64_HAS_LSE_ATOMICS,
1298                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1299                 .matches = has_cpuid_feature,
1300                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1301                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1302                 .sign = FTR_UNSIGNED,
1303                 .min_field_value = 2,
1304         },
1305 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
1306         {
1307                 .desc = "Software prefetching using PRFM",
1308                 .capability = ARM64_HAS_NO_HW_PREFETCH,
1309                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1310                 .matches = has_no_hw_prefetch,
1311         },
1312 #ifdef CONFIG_ARM64_UAO
1313         {
1314                 .desc = "User Access Override",
1315                 .capability = ARM64_HAS_UAO,
1316                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1317                 .matches = has_cpuid_feature,
1318                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1319                 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
1320                 .min_field_value = 1,
1321                 /*
1322                  * We rely on stop_machine() calling uao_thread_switch() to set
1323                  * UAO immediately after patching.
1324                  */
1325         },
1326 #endif /* CONFIG_ARM64_UAO */
1327 #ifdef CONFIG_ARM64_PAN
1328         {
1329                 .capability = ARM64_ALT_PAN_NOT_UAO,
1330                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1331                 .matches = cpufeature_pan_not_uao,
1332         },
1333 #endif /* CONFIG_ARM64_PAN */
1334 #ifdef CONFIG_ARM64_VHE
1335         {
1336                 .desc = "Virtualization Host Extensions",
1337                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
1338                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1339                 .matches = runs_at_el2,
1340                 .cpu_enable = cpu_copy_el2regs,
1341         },
1342 #endif  /* CONFIG_ARM64_VHE */
1343         {
1344                 .desc = "32-bit EL0 Support",
1345                 .capability = ARM64_HAS_32BIT_EL0,
1346                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1347                 .matches = has_cpuid_feature,
1348                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1349                 .sign = FTR_UNSIGNED,
1350                 .field_pos = ID_AA64PFR0_EL0_SHIFT,
1351                 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1352         },
1353         {
1354                 .desc = "Kernel page table isolation (KPTI)",
1355                 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
1356                 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1357                 /*
1358                  * The ID feature fields below are used to indicate that
1359                  * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1360                  * more details.
1361                  */
1362                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1363                 .field_pos = ID_AA64PFR0_CSV3_SHIFT,
1364                 .min_field_value = 1,
1365                 .matches = unmap_kernel_at_el0,
1366                 .cpu_enable = kpti_install_ng_mappings,
1367         },
1368         {
1369                 /* FP/SIMD is not implemented */
1370                 .capability = ARM64_HAS_NO_FPSIMD,
1371                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1372                 .min_field_value = 0,
1373                 .matches = has_no_fpsimd,
1374         },
1375 #ifdef CONFIG_ARM64_PMEM
1376         {
1377                 .desc = "Data cache clean to Point of Persistence",
1378                 .capability = ARM64_HAS_DCPOP,
1379                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1380                 .matches = has_cpuid_feature,
1381                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1382                 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1383                 .min_field_value = 1,
1384         },
1385         {
1386                 .desc = "Data cache clean to Point of Deep Persistence",
1387                 .capability = ARM64_HAS_DCPODP,
1388                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1389                 .matches = has_cpuid_feature,
1390                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1391                 .sign = FTR_UNSIGNED,
1392                 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1393                 .min_field_value = 2,
1394         },
1395 #endif
1396 #ifdef CONFIG_ARM64_SVE
1397         {
1398                 .desc = "Scalable Vector Extension",
1399                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1400                 .capability = ARM64_SVE,
1401                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1402                 .sign = FTR_UNSIGNED,
1403                 .field_pos = ID_AA64PFR0_SVE_SHIFT,
1404                 .min_field_value = ID_AA64PFR0_SVE,
1405                 .matches = has_cpuid_feature,
1406                 .cpu_enable = sve_kernel_enable,
1407         },
1408 #endif /* CONFIG_ARM64_SVE */
1409 #ifdef CONFIG_ARM64_RAS_EXTN
1410         {
1411                 .desc = "RAS Extension Support",
1412                 .capability = ARM64_HAS_RAS_EXTN,
1413                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1414                 .matches = has_cpuid_feature,
1415                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1416                 .sign = FTR_UNSIGNED,
1417                 .field_pos = ID_AA64PFR0_RAS_SHIFT,
1418                 .min_field_value = ID_AA64PFR0_RAS_V1,
1419                 .cpu_enable = cpu_clear_disr,
1420         },
1421 #endif /* CONFIG_ARM64_RAS_EXTN */
1422         {
1423                 .desc = "Data cache clean to the PoU not required for I/D coherence",
1424                 .capability = ARM64_HAS_CACHE_IDC,
1425                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1426                 .matches = has_cache_idc,
1427                 .cpu_enable = cpu_emulate_effective_ctr,
1428         },
1429         {
1430                 .desc = "Instruction cache invalidation not required for I/D coherence",
1431                 .capability = ARM64_HAS_CACHE_DIC,
1432                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1433                 .matches = has_cache_dic,
1434         },
1435         {
1436                 .desc = "Stage-2 Force Write-Back",
1437                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1438                 .capability = ARM64_HAS_STAGE2_FWB,
1439                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1440                 .sign = FTR_UNSIGNED,
1441                 .field_pos = ID_AA64MMFR2_FWB_SHIFT,
1442                 .min_field_value = 1,
1443                 .matches = has_cpuid_feature,
1444                 .cpu_enable = cpu_has_fwb,
1445         },
1446 #ifdef CONFIG_ARM64_HW_AFDBM
1447         {
1448                 /*
1449                  * Since we turn this on always, we don't want the user to
1450                  * think that the feature is available when it may not be.
1451                  * So hide the description.
1452                  *
1453                  * .desc = "Hardware pagetable Dirty Bit Management",
1454                  *
1455                  */
1456                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1457                 .capability = ARM64_HW_DBM,
1458                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1459                 .sign = FTR_UNSIGNED,
1460                 .field_pos = ID_AA64MMFR1_HADBS_SHIFT,
1461                 .min_field_value = 2,
1462                 .matches = has_hw_dbm,
1463                 .cpu_enable = cpu_enable_hw_dbm,
1464         },
1465 #endif
1466         {
1467                 .desc = "CRC32 instructions",
1468                 .capability = ARM64_HAS_CRC32,
1469                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1470                 .matches = has_cpuid_feature,
1471                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1472                 .field_pos = ID_AA64ISAR0_CRC32_SHIFT,
1473                 .min_field_value = 1,
1474         },
1475 #ifdef CONFIG_ARM64_SSBD
1476         {
1477                 .desc = "Speculative Store Bypassing Safe (SSBS)",
1478                 .capability = ARM64_SSBS,
1479                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1480                 .matches = has_cpuid_feature,
1481                 .sys_reg = SYS_ID_AA64PFR1_EL1,
1482                 .field_pos = ID_AA64PFR1_SSBS_SHIFT,
1483                 .sign = FTR_UNSIGNED,
1484                 .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
1485                 .cpu_enable = cpu_enable_ssbs,
1486         },
1487 #endif
1488 #ifdef CONFIG_ARM64_CNP
1489         {
1490                 .desc = "Common not Private translations",
1491                 .capability = ARM64_HAS_CNP,
1492                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1493                 .matches = has_useable_cnp,
1494                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1495                 .sign = FTR_UNSIGNED,
1496                 .field_pos = ID_AA64MMFR2_CNP_SHIFT,
1497                 .min_field_value = 1,
1498                 .cpu_enable = cpu_enable_cnp,
1499         },
1500 #endif
1501         {
1502                 .desc = "Speculation barrier (SB)",
1503                 .capability = ARM64_HAS_SB,
1504                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1505                 .matches = has_cpuid_feature,
1506                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1507                 .field_pos = ID_AA64ISAR1_SB_SHIFT,
1508                 .sign = FTR_UNSIGNED,
1509                 .min_field_value = 1,
1510         },
1511 #ifdef CONFIG_ARM64_PTR_AUTH
1512         {
1513                 .desc = "Address authentication (architected algorithm)",
1514                 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH,
1515                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1516                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1517                 .sign = FTR_UNSIGNED,
1518                 .field_pos = ID_AA64ISAR1_APA_SHIFT,
1519                 .min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
1520                 .matches = has_cpuid_feature,
1521                 .cpu_enable = cpu_enable_address_auth,
1522         },
1523         {
1524                 .desc = "Address authentication (IMP DEF algorithm)",
1525                 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
1526                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1527                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1528                 .sign = FTR_UNSIGNED,
1529                 .field_pos = ID_AA64ISAR1_API_SHIFT,
1530                 .min_field_value = ID_AA64ISAR1_API_IMP_DEF,
1531                 .matches = has_cpuid_feature,
1532                 .cpu_enable = cpu_enable_address_auth,
1533         },
1534         {
1535                 .desc = "Generic authentication (architected algorithm)",
1536                 .capability = ARM64_HAS_GENERIC_AUTH_ARCH,
1537                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1538                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1539                 .sign = FTR_UNSIGNED,
1540                 .field_pos = ID_AA64ISAR1_GPA_SHIFT,
1541                 .min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
1542                 .matches = has_cpuid_feature,
1543         },
1544         {
1545                 .desc = "Generic authentication (IMP DEF algorithm)",
1546                 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
1547                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1548                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1549                 .sign = FTR_UNSIGNED,
1550                 .field_pos = ID_AA64ISAR1_GPI_SHIFT,
1551                 .min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
1552                 .matches = has_cpuid_feature,
1553         },
1554 #endif /* CONFIG_ARM64_PTR_AUTH */
1555 #ifdef CONFIG_ARM64_PSEUDO_NMI
1556         {
1557                 /*
1558                  * Depends on having GICv3
1559                  */
1560                 .desc = "IRQ priority masking",
1561                 .capability = ARM64_HAS_IRQ_PRIO_MASKING,
1562                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1563                 .matches = can_use_gic_priorities,
1564                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1565                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
1566                 .sign = FTR_UNSIGNED,
1567                 .min_field_value = 1,
1568         },
1569 #endif
1570         {},
1571 };
1572
1573 #define HWCAP_CPUID_MATCH(reg, field, s, min_value)                             \
1574                 .matches = has_cpuid_feature,                                   \
1575                 .sys_reg = reg,                                                 \
1576                 .field_pos = field,                                             \
1577                 .sign = s,                                                      \
1578                 .min_field_value = min_value,
1579
1580 #define __HWCAP_CAP(name, cap_type, cap)                                        \
1581                 .desc = name,                                                   \
1582                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,                            \
1583                 .hwcap_type = cap_type,                                         \
1584                 .hwcap = cap,                                                   \
1585
1586 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)                      \
1587         {                                                                       \
1588                 __HWCAP_CAP(#cap, cap_type, cap)                                \
1589                 HWCAP_CPUID_MATCH(reg, field, s, min_value)                     \
1590         }
1591
1592 #define HWCAP_MULTI_CAP(list, cap_type, cap)                                    \
1593         {                                                                       \
1594                 __HWCAP_CAP(#cap, cap_type, cap)                                \
1595                 .matches = cpucap_multi_entry_cap_matches,                      \
1596                 .match_list = list,                                             \
1597         }
1598
1599 #ifdef CONFIG_ARM64_PTR_AUTH
1600 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
1601         {
1602                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
1603                                   FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED)
1604         },
1605         {
1606                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
1607                                   FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
1608         },
1609         {},
1610 };
1611
1612 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
1613         {
1614                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
1615                                   FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
1616         },
1617         {
1618                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
1619                                   FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
1620         },
1621         {},
1622 };
1623 #endif
1624
1625 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
1626         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
1627         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
1628         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
1629         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
1630         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
1631         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
1632         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
1633         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
1634         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
1635         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
1636         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
1637         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
1638         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
1639         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
1640         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
1641         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
1642         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
1643         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
1644         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
1645         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
1646         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
1647         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
1648         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
1649         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
1650         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
1651         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
1652         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
1653         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
1654         HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
1655 #ifdef CONFIG_ARM64_SVE
1656         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
1657         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
1658         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
1659         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
1660         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
1661         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
1662         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
1663 #endif
1664         HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
1665 #ifdef CONFIG_ARM64_PTR_AUTH
1666         HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
1667         HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
1668 #endif
1669         {},
1670 };
1671
1672 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1673 #ifdef CONFIG_COMPAT
1674         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1675         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1676         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1677         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1678         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1679 #endif
1680         {},
1681 };
1682
1683 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1684 {
1685         switch (cap->hwcap_type) {
1686         case CAP_HWCAP:
1687                 cpu_set_feature(cap->hwcap);
1688                 break;
1689 #ifdef CONFIG_COMPAT
1690         case CAP_COMPAT_HWCAP:
1691                 compat_elf_hwcap |= (u32)cap->hwcap;
1692                 break;
1693         case CAP_COMPAT_HWCAP2:
1694                 compat_elf_hwcap2 |= (u32)cap->hwcap;
1695                 break;
1696 #endif
1697         default:
1698                 WARN_ON(1);
1699                 break;
1700         }
1701 }
1702
1703 /* Check if we have a particular HWCAP enabled */
1704 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1705 {
1706         bool rc;
1707
1708         switch (cap->hwcap_type) {
1709         case CAP_HWCAP:
1710                 rc = cpu_have_feature(cap->hwcap);
1711                 break;
1712 #ifdef CONFIG_COMPAT
1713         case CAP_COMPAT_HWCAP:
1714                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1715                 break;
1716         case CAP_COMPAT_HWCAP2:
1717                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1718                 break;
1719 #endif
1720         default:
1721                 WARN_ON(1);
1722                 rc = false;
1723         }
1724
1725         return rc;
1726 }
1727
1728 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1729 {
1730         /* We support emulation of accesses to CPU ID feature registers */
1731         cpu_set_named_feature(CPUID);
1732         for (; hwcaps->matches; hwcaps++)
1733                 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
1734                         cap_set_elf_hwcap(hwcaps);
1735 }
1736
1737 static void update_cpu_capabilities(u16 scope_mask)
1738 {
1739         int i;
1740         const struct arm64_cpu_capabilities *caps;
1741
1742         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1743         for (i = 0; i < ARM64_NCAPS; i++) {
1744                 caps = cpu_hwcaps_ptrs[i];
1745                 if (!caps || !(caps->type & scope_mask) ||
1746                     cpus_have_cap(caps->capability) ||
1747                     !caps->matches(caps, cpucap_default_scope(caps)))
1748                         continue;
1749
1750                 if (caps->desc)
1751                         pr_info("detected: %s\n", caps->desc);
1752                 cpus_set_cap(caps->capability);
1753
1754                 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
1755                         set_bit(caps->capability, boot_capabilities);
1756         }
1757 }
1758
1759 /*
1760  * Enable all the available capabilities on this CPU. The capabilities
1761  * with BOOT_CPU scope are handled separately and hence skipped here.
1762  */
1763 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
1764 {
1765         int i;
1766         u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
1767
1768         for_each_available_cap(i) {
1769                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
1770
1771                 if (WARN_ON(!cap))
1772                         continue;
1773
1774                 if (!(cap->type & non_boot_scope))
1775                         continue;
1776
1777                 if (cap->cpu_enable)
1778                         cap->cpu_enable(cap);
1779         }
1780         return 0;
1781 }
1782
1783 /*
1784  * Run through the enabled capabilities and enable() it on all active
1785  * CPUs
1786  */
1787 static void __init enable_cpu_capabilities(u16 scope_mask)
1788 {
1789         int i;
1790         const struct arm64_cpu_capabilities *caps;
1791         bool boot_scope;
1792
1793         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1794         boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
1795
1796         for (i = 0; i < ARM64_NCAPS; i++) {
1797                 unsigned int num;
1798
1799                 caps = cpu_hwcaps_ptrs[i];
1800                 if (!caps || !(caps->type & scope_mask))
1801                         continue;
1802                 num = caps->capability;
1803                 if (!cpus_have_cap(num))
1804                         continue;
1805
1806                 /* Ensure cpus_have_const_cap(num) works */
1807                 static_branch_enable(&cpu_hwcap_keys[num]);
1808
1809                 if (boot_scope && caps->cpu_enable)
1810                         /*
1811                          * Capabilities with SCOPE_BOOT_CPU scope are finalised
1812                          * before any secondary CPU boots. Thus, each secondary
1813                          * will enable the capability as appropriate via
1814                          * check_local_cpu_capabilities(). The only exception is
1815                          * the boot CPU, for which the capability must be
1816                          * enabled here. This approach avoids costly
1817                          * stop_machine() calls for this case.
1818                          */
1819                         caps->cpu_enable(caps);
1820         }
1821
1822         /*
1823          * For all non-boot scope capabilities, use stop_machine()
1824          * as it schedules the work allowing us to modify PSTATE,
1825          * instead of on_each_cpu() which uses an IPI, giving us a
1826          * PSTATE that disappears when we return.
1827          */
1828         if (!boot_scope)
1829                 stop_machine(cpu_enable_non_boot_scope_capabilities,
1830                              NULL, cpu_online_mask);
1831 }
1832
1833 /*
1834  * Run through the list of capabilities to check for conflicts.
1835  * If the system has already detected a capability, take necessary
1836  * action on this CPU.
1837  *
1838  * Returns "false" on conflicts.
1839  */
1840 static bool verify_local_cpu_caps(u16 scope_mask)
1841 {
1842         int i;
1843         bool cpu_has_cap, system_has_cap;
1844         const struct arm64_cpu_capabilities *caps;
1845
1846         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1847
1848         for (i = 0; i < ARM64_NCAPS; i++) {
1849                 caps = cpu_hwcaps_ptrs[i];
1850                 if (!caps || !(caps->type & scope_mask))
1851                         continue;
1852
1853                 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
1854                 system_has_cap = cpus_have_cap(caps->capability);
1855
1856                 if (system_has_cap) {
1857                         /*
1858                          * Check if the new CPU misses an advertised feature,
1859                          * which is not safe to miss.
1860                          */
1861                         if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
1862                                 break;
1863                         /*
1864                          * We have to issue cpu_enable() irrespective of
1865                          * whether the CPU has it or not, as it is enabeld
1866                          * system wide. It is upto the call back to take
1867                          * appropriate action on this CPU.
1868                          */
1869                         if (caps->cpu_enable)
1870                                 caps->cpu_enable(caps);
1871                 } else {
1872                         /*
1873                          * Check if the CPU has this capability if it isn't
1874                          * safe to have when the system doesn't.
1875                          */
1876                         if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
1877                                 break;
1878                 }
1879         }
1880
1881         if (i < ARM64_NCAPS) {
1882                 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
1883                         smp_processor_id(), caps->capability,
1884                         caps->desc, system_has_cap, cpu_has_cap);
1885                 return false;
1886         }
1887
1888         return true;
1889 }
1890
1891 /*
1892  * Check for CPU features that are used in early boot
1893  * based on the Boot CPU value.
1894  */
1895 static void check_early_cpu_features(void)
1896 {
1897         verify_cpu_asid_bits();
1898         /*
1899          * Early features are used by the kernel already. If there
1900          * is a conflict, we cannot proceed further.
1901          */
1902         if (!verify_local_cpu_caps(SCOPE_BOOT_CPU))
1903                 cpu_panic_kernel();
1904 }
1905
1906 static void
1907 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1908 {
1909
1910         for (; caps->matches; caps++)
1911                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1912                         pr_crit("CPU%d: missing HWCAP: %s\n",
1913                                         smp_processor_id(), caps->desc);
1914                         cpu_die_early();
1915                 }
1916 }
1917
1918 static void verify_sve_features(void)
1919 {
1920         u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1921         u64 zcr = read_zcr_features();
1922
1923         unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
1924         unsigned int len = zcr & ZCR_ELx_LEN_MASK;
1925
1926         if (len < safe_len || sve_verify_vq_map()) {
1927                 pr_crit("CPU%d: SVE: vector length support mismatch\n",
1928                         smp_processor_id());
1929                 cpu_die_early();
1930         }
1931
1932         /* Add checks on other ZCR bits here if necessary */
1933 }
1934
1935
1936 /*
1937  * Run through the enabled system capabilities and enable() it on this CPU.
1938  * The capabilities were decided based on the available CPUs at the boot time.
1939  * Any new CPU should match the system wide status of the capability. If the
1940  * new CPU doesn't have a capability which the system now has enabled, we
1941  * cannot do anything to fix it up and could cause unexpected failures. So
1942  * we park the CPU.
1943  */
1944 static void verify_local_cpu_capabilities(void)
1945 {
1946         /*
1947          * The capabilities with SCOPE_BOOT_CPU are checked from
1948          * check_early_cpu_features(), as they need to be verified
1949          * on all secondary CPUs.
1950          */
1951         if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU))
1952                 cpu_die_early();
1953
1954         verify_local_elf_hwcaps(arm64_elf_hwcaps);
1955
1956         if (system_supports_32bit_el0())
1957                 verify_local_elf_hwcaps(compat_elf_hwcaps);
1958
1959         if (system_supports_sve())
1960                 verify_sve_features();
1961 }
1962
1963 void check_local_cpu_capabilities(void)
1964 {
1965         /*
1966          * All secondary CPUs should conform to the early CPU features
1967          * in use by the kernel based on boot CPU.
1968          */
1969         check_early_cpu_features();
1970
1971         /*
1972          * If we haven't finalised the system capabilities, this CPU gets
1973          * a chance to update the errata work arounds and local features.
1974          * Otherwise, this CPU should verify that it has all the system
1975          * advertised capabilities.
1976          */
1977         if (!sys_caps_initialised)
1978                 update_cpu_capabilities(SCOPE_LOCAL_CPU);
1979         else
1980                 verify_local_cpu_capabilities();
1981 }
1982
1983 static void __init setup_boot_cpu_capabilities(void)
1984 {
1985         /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
1986         update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
1987         /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
1988         enable_cpu_capabilities(SCOPE_BOOT_CPU);
1989 }
1990
1991 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1992 EXPORT_SYMBOL(arm64_const_caps_ready);
1993
1994 static void __init mark_const_caps_ready(void)
1995 {
1996         static_branch_enable(&arm64_const_caps_ready);
1997 }
1998
1999 bool this_cpu_has_cap(unsigned int n)
2000 {
2001         if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
2002                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2003
2004                 if (cap)
2005                         return cap->matches(cap, SCOPE_LOCAL_CPU);
2006         }
2007
2008         return false;
2009 }
2010
2011 void cpu_set_feature(unsigned int num)
2012 {
2013         WARN_ON(num >= MAX_CPU_FEATURES);
2014         elf_hwcap |= BIT(num);
2015 }
2016 EXPORT_SYMBOL_GPL(cpu_set_feature);
2017
2018 bool cpu_have_feature(unsigned int num)
2019 {
2020         WARN_ON(num >= MAX_CPU_FEATURES);
2021         return elf_hwcap & BIT(num);
2022 }
2023 EXPORT_SYMBOL_GPL(cpu_have_feature);
2024
2025 unsigned long cpu_get_elf_hwcap(void)
2026 {
2027         /*
2028          * We currently only populate the first 32 bits of AT_HWCAP. Please
2029          * note that for userspace compatibility we guarantee that bits 62
2030          * and 63 will always be returned as 0.
2031          */
2032         return lower_32_bits(elf_hwcap);
2033 }
2034
2035 unsigned long cpu_get_elf_hwcap2(void)
2036 {
2037         return upper_32_bits(elf_hwcap);
2038 }
2039
2040 static void __init setup_system_capabilities(void)
2041 {
2042         /*
2043          * We have finalised the system-wide safe feature
2044          * registers, finalise the capabilities that depend
2045          * on it. Also enable all the available capabilities,
2046          * that are not enabled already.
2047          */
2048         update_cpu_capabilities(SCOPE_SYSTEM);
2049         enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2050 }
2051
2052 void __init setup_cpu_features(void)
2053 {
2054         u32 cwg;
2055
2056         setup_system_capabilities();
2057         mark_const_caps_ready();
2058         setup_elf_hwcaps(arm64_elf_hwcaps);
2059
2060         if (system_supports_32bit_el0())
2061                 setup_elf_hwcaps(compat_elf_hwcaps);
2062
2063         if (system_uses_ttbr0_pan())
2064                 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
2065
2066         sve_setup();
2067         minsigstksz_setup();
2068
2069         /* Advertise that we have computed the system capabilities */
2070         set_sys_caps_initialised();
2071
2072         /*
2073          * Check for sane CTR_EL0.CWG value.
2074          */
2075         cwg = cache_type_cwg();
2076         if (!cwg)
2077                 pr_warn("No Cache Writeback Granule information, assuming %d\n",
2078                         ARCH_DMA_MINALIGN);
2079 }
2080
2081 static bool __maybe_unused
2082 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
2083 {
2084         return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
2085 }
2086
2087 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
2088 {
2089         cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
2090 }
2091
2092 /*
2093  * We emulate only the following system register space.
2094  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
2095  * See Table C5-6 System instruction encodings for System register accesses,
2096  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
2097  */
2098 static inline bool __attribute_const__ is_emulated(u32 id)
2099 {
2100         return (sys_reg_Op0(id) == 0x3 &&
2101                 sys_reg_CRn(id) == 0x0 &&
2102                 sys_reg_Op1(id) == 0x0 &&
2103                 (sys_reg_CRm(id) == 0 ||
2104                  ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
2105 }
2106
2107 /*
2108  * With CRm == 0, reg should be one of :
2109  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
2110  */
2111 static inline int emulate_id_reg(u32 id, u64 *valp)
2112 {
2113         switch (id) {
2114         case SYS_MIDR_EL1:
2115                 *valp = read_cpuid_id();
2116                 break;
2117         case SYS_MPIDR_EL1:
2118                 *valp = SYS_MPIDR_SAFE_VAL;
2119                 break;
2120         case SYS_REVIDR_EL1:
2121                 /* IMPLEMENTATION DEFINED values are emulated with 0 */
2122                 *valp = 0;
2123                 break;
2124         default:
2125                 return -EINVAL;
2126         }
2127
2128         return 0;
2129 }
2130
2131 static int emulate_sys_reg(u32 id, u64 *valp)
2132 {
2133         struct arm64_ftr_reg *regp;
2134
2135         if (!is_emulated(id))
2136                 return -EINVAL;
2137
2138         if (sys_reg_CRm(id) == 0)
2139                 return emulate_id_reg(id, valp);
2140
2141         regp = get_arm64_ftr_reg(id);
2142         if (regp)
2143                 *valp = arm64_ftr_reg_user_value(regp);
2144         else
2145                 /*
2146                  * The untracked registers are either IMPLEMENTATION DEFINED
2147                  * (e.g, ID_AFR0_EL1) or reserved RAZ.
2148                  */
2149                 *valp = 0;
2150         return 0;
2151 }
2152
2153 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
2154 {
2155         int rc;
2156         u64 val;
2157
2158         rc = emulate_sys_reg(sys_reg, &val);
2159         if (!rc) {
2160                 pt_regs_write_reg(regs, rt, val);
2161                 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
2162         }
2163         return rc;
2164 }
2165
2166 static int emulate_mrs(struct pt_regs *regs, u32 insn)
2167 {
2168         u32 sys_reg, rt;
2169
2170         /*
2171          * sys_reg values are defined as used in mrs/msr instruction.
2172          * shift the imm value to get the encoding.
2173          */
2174         sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
2175         rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
2176         return do_emulate_mrs(regs, sys_reg, rt);
2177 }
2178
2179 static struct undef_hook mrs_hook = {
2180         .instr_mask = 0xfff00000,
2181         .instr_val  = 0xd5300000,
2182         .pstate_mask = PSR_AA32_MODE_MASK,
2183         .pstate_val = PSR_MODE_EL0t,
2184         .fn = emulate_mrs,
2185 };
2186
2187 static int __init enable_mrs_emulation(void)
2188 {
2189         register_undef_hook(&mrs_hook);
2190         return 0;
2191 }
2192
2193 core_initcall(enable_mrs_emulation);
2194
2195 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
2196                           char *buf)
2197 {
2198         if (__meltdown_safe)
2199                 return sprintf(buf, "Not affected\n");
2200
2201         if (arm64_kernel_unmapped_at_el0())
2202                 return sprintf(buf, "Mitigation: PTI\n");
2203
2204         return sprintf(buf, "Vulnerable\n");
2205 }