ARM: iop3xx: use fixed PCI i/o mapping
[linux-2.6-block.git] / arch / arm / mm / mmu.c
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19
20 #include <asm/cp15.h>
21 #include <asm/cputype.h>
22 #include <asm/sections.h>
23 #include <asm/cachetype.h>
24 #include <asm/setup.h>
25 #include <asm/sizes.h>
26 #include <asm/smp_plat.h>
27 #include <asm/tlb.h>
28 #include <asm/highmem.h>
29 #include <asm/system_info.h>
30 #include <asm/traps.h>
31
32 #include <asm/mach/arch.h>
33 #include <asm/mach/map.h>
34 #include <asm/mach/pci.h>
35
36 #include "mm.h"
37
38 /*
39  * empty_zero_page is a special page that is used for
40  * zero-initialized data and COW.
41  */
42 struct page *empty_zero_page;
43 EXPORT_SYMBOL(empty_zero_page);
44
45 /*
46  * The pmd table for the upper-most set of pages.
47  */
48 pmd_t *top_pmd;
49
50 #define CPOLICY_UNCACHED        0
51 #define CPOLICY_BUFFERED        1
52 #define CPOLICY_WRITETHROUGH    2
53 #define CPOLICY_WRITEBACK       3
54 #define CPOLICY_WRITEALLOC      4
55
56 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
57 static unsigned int ecc_mask __initdata = 0;
58 pgprot_t pgprot_user;
59 pgprot_t pgprot_kernel;
60
61 EXPORT_SYMBOL(pgprot_user);
62 EXPORT_SYMBOL(pgprot_kernel);
63
64 struct cachepolicy {
65         const char      policy[16];
66         unsigned int    cr_mask;
67         pmdval_t        pmd;
68         pteval_t        pte;
69 };
70
71 static struct cachepolicy cache_policies[] __initdata = {
72         {
73                 .policy         = "uncached",
74                 .cr_mask        = CR_W|CR_C,
75                 .pmd            = PMD_SECT_UNCACHED,
76                 .pte            = L_PTE_MT_UNCACHED,
77         }, {
78                 .policy         = "buffered",
79                 .cr_mask        = CR_C,
80                 .pmd            = PMD_SECT_BUFFERED,
81                 .pte            = L_PTE_MT_BUFFERABLE,
82         }, {
83                 .policy         = "writethrough",
84                 .cr_mask        = 0,
85                 .pmd            = PMD_SECT_WT,
86                 .pte            = L_PTE_MT_WRITETHROUGH,
87         }, {
88                 .policy         = "writeback",
89                 .cr_mask        = 0,
90                 .pmd            = PMD_SECT_WB,
91                 .pte            = L_PTE_MT_WRITEBACK,
92         }, {
93                 .policy         = "writealloc",
94                 .cr_mask        = 0,
95                 .pmd            = PMD_SECT_WBWA,
96                 .pte            = L_PTE_MT_WRITEALLOC,
97         }
98 };
99
100 /*
101  * These are useful for identifying cache coherency
102  * problems by allowing the cache or the cache and
103  * writebuffer to be turned off.  (Note: the write
104  * buffer should not be on and the cache off).
105  */
106 static int __init early_cachepolicy(char *p)
107 {
108         int i;
109
110         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
111                 int len = strlen(cache_policies[i].policy);
112
113                 if (memcmp(p, cache_policies[i].policy, len) == 0) {
114                         cachepolicy = i;
115                         cr_alignment &= ~cache_policies[i].cr_mask;
116                         cr_no_alignment &= ~cache_policies[i].cr_mask;
117                         break;
118                 }
119         }
120         if (i == ARRAY_SIZE(cache_policies))
121                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
122         /*
123          * This restriction is partly to do with the way we boot; it is
124          * unpredictable to have memory mapped using two different sets of
125          * memory attributes (shared, type, and cache attribs).  We can not
126          * change these attributes once the initial assembly has setup the
127          * page tables.
128          */
129         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
130                 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
131                 cachepolicy = CPOLICY_WRITEBACK;
132         }
133         flush_cache_all();
134         set_cr(cr_alignment);
135         return 0;
136 }
137 early_param("cachepolicy", early_cachepolicy);
138
139 static int __init early_nocache(char *__unused)
140 {
141         char *p = "buffered";
142         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
143         early_cachepolicy(p);
144         return 0;
145 }
146 early_param("nocache", early_nocache);
147
148 static int __init early_nowrite(char *__unused)
149 {
150         char *p = "uncached";
151         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
152         early_cachepolicy(p);
153         return 0;
154 }
155 early_param("nowb", early_nowrite);
156
157 #ifndef CONFIG_ARM_LPAE
158 static int __init early_ecc(char *p)
159 {
160         if (memcmp(p, "on", 2) == 0)
161                 ecc_mask = PMD_PROTECTION;
162         else if (memcmp(p, "off", 3) == 0)
163                 ecc_mask = 0;
164         return 0;
165 }
166 early_param("ecc", early_ecc);
167 #endif
168
169 static int __init noalign_setup(char *__unused)
170 {
171         cr_alignment &= ~CR_A;
172         cr_no_alignment &= ~CR_A;
173         set_cr(cr_alignment);
174         return 1;
175 }
176 __setup("noalign", noalign_setup);
177
178 #ifndef CONFIG_SMP
179 void adjust_cr(unsigned long mask, unsigned long set)
180 {
181         unsigned long flags;
182
183         mask &= ~CR_A;
184
185         set &= mask;
186
187         local_irq_save(flags);
188
189         cr_no_alignment = (cr_no_alignment & ~mask) | set;
190         cr_alignment = (cr_alignment & ~mask) | set;
191
192         set_cr((get_cr() & ~mask) | set);
193
194         local_irq_restore(flags);
195 }
196 #endif
197
198 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
199 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
200
201 static struct mem_type mem_types[] = {
202         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
203                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
204                                   L_PTE_SHARED,
205                 .prot_l1        = PMD_TYPE_TABLE,
206                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
207                 .domain         = DOMAIN_IO,
208         },
209         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
210                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
211                 .prot_l1        = PMD_TYPE_TABLE,
212                 .prot_sect      = PROT_SECT_DEVICE,
213                 .domain         = DOMAIN_IO,
214         },
215         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
216                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
217                 .prot_l1        = PMD_TYPE_TABLE,
218                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
219                 .domain         = DOMAIN_IO,
220         },
221         [MT_DEVICE_WC] = {      /* ioremap_wc */
222                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
223                 .prot_l1        = PMD_TYPE_TABLE,
224                 .prot_sect      = PROT_SECT_DEVICE,
225                 .domain         = DOMAIN_IO,
226         },
227         [MT_UNCACHED] = {
228                 .prot_pte       = PROT_PTE_DEVICE,
229                 .prot_l1        = PMD_TYPE_TABLE,
230                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
231                 .domain         = DOMAIN_IO,
232         },
233         [MT_CACHECLEAN] = {
234                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
235                 .domain    = DOMAIN_KERNEL,
236         },
237 #ifndef CONFIG_ARM_LPAE
238         [MT_MINICLEAN] = {
239                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
240                 .domain    = DOMAIN_KERNEL,
241         },
242 #endif
243         [MT_LOW_VECTORS] = {
244                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
245                                 L_PTE_RDONLY,
246                 .prot_l1   = PMD_TYPE_TABLE,
247                 .domain    = DOMAIN_USER,
248         },
249         [MT_HIGH_VECTORS] = {
250                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
251                                 L_PTE_USER | L_PTE_RDONLY,
252                 .prot_l1   = PMD_TYPE_TABLE,
253                 .domain    = DOMAIN_USER,
254         },
255         [MT_MEMORY] = {
256                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
257                 .prot_l1   = PMD_TYPE_TABLE,
258                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
259                 .domain    = DOMAIN_KERNEL,
260         },
261         [MT_ROM] = {
262                 .prot_sect = PMD_TYPE_SECT,
263                 .domain    = DOMAIN_KERNEL,
264         },
265         [MT_MEMORY_NONCACHED] = {
266                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
267                                 L_PTE_MT_BUFFERABLE,
268                 .prot_l1   = PMD_TYPE_TABLE,
269                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
270                 .domain    = DOMAIN_KERNEL,
271         },
272         [MT_MEMORY_DTCM] = {
273                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
274                                 L_PTE_XN,
275                 .prot_l1   = PMD_TYPE_TABLE,
276                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
277                 .domain    = DOMAIN_KERNEL,
278         },
279         [MT_MEMORY_ITCM] = {
280                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
281                 .prot_l1   = PMD_TYPE_TABLE,
282                 .domain    = DOMAIN_KERNEL,
283         },
284         [MT_MEMORY_SO] = {
285                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
286                                 L_PTE_MT_UNCACHED,
287                 .prot_l1   = PMD_TYPE_TABLE,
288                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
289                                 PMD_SECT_UNCACHED | PMD_SECT_XN,
290                 .domain    = DOMAIN_KERNEL,
291         },
292         [MT_MEMORY_DMA_READY] = {
293                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
294                 .prot_l1   = PMD_TYPE_TABLE,
295                 .domain    = DOMAIN_KERNEL,
296         },
297 };
298
299 const struct mem_type *get_mem_type(unsigned int type)
300 {
301         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
302 }
303 EXPORT_SYMBOL(get_mem_type);
304
305 /*
306  * Adjust the PMD section entries according to the CPU in use.
307  */
308 static void __init build_mem_type_table(void)
309 {
310         struct cachepolicy *cp;
311         unsigned int cr = get_cr();
312         pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
313         int cpu_arch = cpu_architecture();
314         int i;
315
316         if (cpu_arch < CPU_ARCH_ARMv6) {
317 #if defined(CONFIG_CPU_DCACHE_DISABLE)
318                 if (cachepolicy > CPOLICY_BUFFERED)
319                         cachepolicy = CPOLICY_BUFFERED;
320 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
321                 if (cachepolicy > CPOLICY_WRITETHROUGH)
322                         cachepolicy = CPOLICY_WRITETHROUGH;
323 #endif
324         }
325         if (cpu_arch < CPU_ARCH_ARMv5) {
326                 if (cachepolicy >= CPOLICY_WRITEALLOC)
327                         cachepolicy = CPOLICY_WRITEBACK;
328                 ecc_mask = 0;
329         }
330         if (is_smp())
331                 cachepolicy = CPOLICY_WRITEALLOC;
332
333         /*
334          * Strip out features not present on earlier architectures.
335          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
336          * without extended page tables don't have the 'Shared' bit.
337          */
338         if (cpu_arch < CPU_ARCH_ARMv5)
339                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
340                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
341         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
342                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
343                         mem_types[i].prot_sect &= ~PMD_SECT_S;
344
345         /*
346          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
347          * "update-able on write" bit on ARM610).  However, Xscale and
348          * Xscale3 require this bit to be cleared.
349          */
350         if (cpu_is_xscale() || cpu_is_xsc3()) {
351                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
352                         mem_types[i].prot_sect &= ~PMD_BIT4;
353                         mem_types[i].prot_l1 &= ~PMD_BIT4;
354                 }
355         } else if (cpu_arch < CPU_ARCH_ARMv6) {
356                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
357                         if (mem_types[i].prot_l1)
358                                 mem_types[i].prot_l1 |= PMD_BIT4;
359                         if (mem_types[i].prot_sect)
360                                 mem_types[i].prot_sect |= PMD_BIT4;
361                 }
362         }
363
364         /*
365          * Mark the device areas according to the CPU/architecture.
366          */
367         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
368                 if (!cpu_is_xsc3()) {
369                         /*
370                          * Mark device regions on ARMv6+ as execute-never
371                          * to prevent speculative instruction fetches.
372                          */
373                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
374                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
375                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
376                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
377                 }
378                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
379                         /*
380                          * For ARMv7 with TEX remapping,
381                          * - shared device is SXCB=1100
382                          * - nonshared device is SXCB=0100
383                          * - write combine device mem is SXCB=0001
384                          * (Uncached Normal memory)
385                          */
386                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
387                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
388                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
389                 } else if (cpu_is_xsc3()) {
390                         /*
391                          * For Xscale3,
392                          * - shared device is TEXCB=00101
393                          * - nonshared device is TEXCB=01000
394                          * - write combine device mem is TEXCB=00100
395                          * (Inner/Outer Uncacheable in xsc3 parlance)
396                          */
397                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
398                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
399                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
400                 } else {
401                         /*
402                          * For ARMv6 and ARMv7 without TEX remapping,
403                          * - shared device is TEXCB=00001
404                          * - nonshared device is TEXCB=01000
405                          * - write combine device mem is TEXCB=00100
406                          * (Uncached Normal in ARMv6 parlance).
407                          */
408                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
409                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
410                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
411                 }
412         } else {
413                 /*
414                  * On others, write combining is "Uncached/Buffered"
415                  */
416                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
417         }
418
419         /*
420          * Now deal with the memory-type mappings
421          */
422         cp = &cache_policies[cachepolicy];
423         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
424
425         /*
426          * Only use write-through for non-SMP systems
427          */
428         if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
429                 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
430
431         /*
432          * Enable CPU-specific coherency if supported.
433          * (Only available on XSC3 at the moment.)
434          */
435         if (arch_is_coherent() && cpu_is_xsc3()) {
436                 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
437                 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
438                 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
439                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
440                 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
441         }
442         /*
443          * ARMv6 and above have extended page tables.
444          */
445         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
446 #ifndef CONFIG_ARM_LPAE
447                 /*
448                  * Mark cache clean areas and XIP ROM read only
449                  * from SVC mode and no access from userspace.
450                  */
451                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
452                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
453                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
454 #endif
455
456                 if (is_smp()) {
457                         /*
458                          * Mark memory with the "shared" attribute
459                          * for SMP systems
460                          */
461                         user_pgprot |= L_PTE_SHARED;
462                         kern_pgprot |= L_PTE_SHARED;
463                         vecs_pgprot |= L_PTE_SHARED;
464                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
465                         mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
466                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
467                         mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
468                         mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
469                         mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
470                         mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
471                         mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
472                         mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
473                 }
474         }
475
476         /*
477          * Non-cacheable Normal - intended for memory areas that must
478          * not cause dirty cache line writebacks when used
479          */
480         if (cpu_arch >= CPU_ARCH_ARMv6) {
481                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
482                         /* Non-cacheable Normal is XCB = 001 */
483                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
484                                 PMD_SECT_BUFFERED;
485                 } else {
486                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
487                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
488                                 PMD_SECT_TEX(1);
489                 }
490         } else {
491                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
492         }
493
494 #ifdef CONFIG_ARM_LPAE
495         /*
496          * Do not generate access flag faults for the kernel mappings.
497          */
498         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
499                 mem_types[i].prot_pte |= PTE_EXT_AF;
500                 if (mem_types[i].prot_sect)
501                         mem_types[i].prot_sect |= PMD_SECT_AF;
502         }
503         kern_pgprot |= PTE_EXT_AF;
504         vecs_pgprot |= PTE_EXT_AF;
505 #endif
506
507         for (i = 0; i < 16; i++) {
508                 unsigned long v = pgprot_val(protection_map[i]);
509                 protection_map[i] = __pgprot(v | user_pgprot);
510         }
511
512         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
513         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
514
515         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
516         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
517                                  L_PTE_DIRTY | kern_pgprot);
518
519         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
520         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
521         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
522         mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
523         mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
524         mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
525         mem_types[MT_ROM].prot_sect |= cp->pmd;
526
527         switch (cp->pmd) {
528         case PMD_SECT_WT:
529                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
530                 break;
531         case PMD_SECT_WB:
532         case PMD_SECT_WBWA:
533                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
534                 break;
535         }
536         printk("Memory policy: ECC %sabled, Data cache %s\n",
537                 ecc_mask ? "en" : "dis", cp->policy);
538
539         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
540                 struct mem_type *t = &mem_types[i];
541                 if (t->prot_l1)
542                         t->prot_l1 |= PMD_DOMAIN(t->domain);
543                 if (t->prot_sect)
544                         t->prot_sect |= PMD_DOMAIN(t->domain);
545         }
546 }
547
548 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
549 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
550                               unsigned long size, pgprot_t vma_prot)
551 {
552         if (!pfn_valid(pfn))
553                 return pgprot_noncached(vma_prot);
554         else if (file->f_flags & O_SYNC)
555                 return pgprot_writecombine(vma_prot);
556         return vma_prot;
557 }
558 EXPORT_SYMBOL(phys_mem_access_prot);
559 #endif
560
561 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
562
563 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
564 {
565         void *ptr = __va(memblock_alloc(sz, align));
566         memset(ptr, 0, sz);
567         return ptr;
568 }
569
570 static void __init *early_alloc(unsigned long sz)
571 {
572         return early_alloc_aligned(sz, sz);
573 }
574
575 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
576 {
577         if (pmd_none(*pmd)) {
578                 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
579                 __pmd_populate(pmd, __pa(pte), prot);
580         }
581         BUG_ON(pmd_bad(*pmd));
582         return pte_offset_kernel(pmd, addr);
583 }
584
585 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
586                                   unsigned long end, unsigned long pfn,
587                                   const struct mem_type *type)
588 {
589         pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
590         do {
591                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
592                 pfn++;
593         } while (pte++, addr += PAGE_SIZE, addr != end);
594 }
595
596 static void __init alloc_init_section(pud_t *pud, unsigned long addr,
597                                       unsigned long end, phys_addr_t phys,
598                                       const struct mem_type *type)
599 {
600         pmd_t *pmd = pmd_offset(pud, addr);
601
602         /*
603          * Try a section mapping - end, addr and phys must all be aligned
604          * to a section boundary.  Note that PMDs refer to the individual
605          * L1 entries, whereas PGDs refer to a group of L1 entries making
606          * up one logical pointer to an L2 table.
607          */
608         if (type->prot_sect && ((addr | end | phys) & ~SECTION_MASK) == 0) {
609                 pmd_t *p = pmd;
610
611 #ifndef CONFIG_ARM_LPAE
612                 if (addr & SECTION_SIZE)
613                         pmd++;
614 #endif
615
616                 do {
617                         *pmd = __pmd(phys | type->prot_sect);
618                         phys += SECTION_SIZE;
619                 } while (pmd++, addr += SECTION_SIZE, addr != end);
620
621                 flush_pmd_entry(p);
622         } else {
623                 /*
624                  * No need to loop; pte's aren't interested in the
625                  * individual L1 entries.
626                  */
627                 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
628         }
629 }
630
631 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
632         unsigned long end, unsigned long phys, const struct mem_type *type)
633 {
634         pud_t *pud = pud_offset(pgd, addr);
635         unsigned long next;
636
637         do {
638                 next = pud_addr_end(addr, end);
639                 alloc_init_section(pud, addr, next, phys, type);
640                 phys += next - addr;
641         } while (pud++, addr = next, addr != end);
642 }
643
644 #ifndef CONFIG_ARM_LPAE
645 static void __init create_36bit_mapping(struct map_desc *md,
646                                         const struct mem_type *type)
647 {
648         unsigned long addr, length, end;
649         phys_addr_t phys;
650         pgd_t *pgd;
651
652         addr = md->virtual;
653         phys = __pfn_to_phys(md->pfn);
654         length = PAGE_ALIGN(md->length);
655
656         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
657                 printk(KERN_ERR "MM: CPU does not support supersection "
658                        "mapping for 0x%08llx at 0x%08lx\n",
659                        (long long)__pfn_to_phys((u64)md->pfn), addr);
660                 return;
661         }
662
663         /* N.B. ARMv6 supersections are only defined to work with domain 0.
664          *      Since domain assignments can in fact be arbitrary, the
665          *      'domain == 0' check below is required to insure that ARMv6
666          *      supersections are only allocated for domain 0 regardless
667          *      of the actual domain assignments in use.
668          */
669         if (type->domain) {
670                 printk(KERN_ERR "MM: invalid domain in supersection "
671                        "mapping for 0x%08llx at 0x%08lx\n",
672                        (long long)__pfn_to_phys((u64)md->pfn), addr);
673                 return;
674         }
675
676         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
677                 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
678                        " at 0x%08lx invalid alignment\n",
679                        (long long)__pfn_to_phys((u64)md->pfn), addr);
680                 return;
681         }
682
683         /*
684          * Shift bits [35:32] of address into bits [23:20] of PMD
685          * (See ARMv6 spec).
686          */
687         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
688
689         pgd = pgd_offset_k(addr);
690         end = addr + length;
691         do {
692                 pud_t *pud = pud_offset(pgd, addr);
693                 pmd_t *pmd = pmd_offset(pud, addr);
694                 int i;
695
696                 for (i = 0; i < 16; i++)
697                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
698
699                 addr += SUPERSECTION_SIZE;
700                 phys += SUPERSECTION_SIZE;
701                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
702         } while (addr != end);
703 }
704 #endif  /* !CONFIG_ARM_LPAE */
705
706 /*
707  * Create the page directory entries and any necessary
708  * page tables for the mapping specified by `md'.  We
709  * are able to cope here with varying sizes and address
710  * offsets, and we take full advantage of sections and
711  * supersections.
712  */
713 static void __init create_mapping(struct map_desc *md)
714 {
715         unsigned long addr, length, end;
716         phys_addr_t phys;
717         const struct mem_type *type;
718         pgd_t *pgd;
719
720         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
721                 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
722                        " at 0x%08lx in user region\n",
723                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
724                 return;
725         }
726
727         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
728             md->virtual >= PAGE_OFFSET &&
729             (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
730                 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
731                        " at 0x%08lx out of vmalloc space\n",
732                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
733         }
734
735         type = &mem_types[md->type];
736
737 #ifndef CONFIG_ARM_LPAE
738         /*
739          * Catch 36-bit addresses
740          */
741         if (md->pfn >= 0x100000) {
742                 create_36bit_mapping(md, type);
743                 return;
744         }
745 #endif
746
747         addr = md->virtual & PAGE_MASK;
748         phys = __pfn_to_phys(md->pfn);
749         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
750
751         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
752                 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
753                        "be mapped using pages, ignoring.\n",
754                        (long long)__pfn_to_phys(md->pfn), addr);
755                 return;
756         }
757
758         pgd = pgd_offset_k(addr);
759         end = addr + length;
760         do {
761                 unsigned long next = pgd_addr_end(addr, end);
762
763                 alloc_init_pud(pgd, addr, next, phys, type);
764
765                 phys += next - addr;
766                 addr = next;
767         } while (pgd++, addr != end);
768 }
769
770 /*
771  * Create the architecture specific mappings
772  */
773 void __init iotable_init(struct map_desc *io_desc, int nr)
774 {
775         struct map_desc *md;
776         struct vm_struct *vm;
777
778         if (!nr)
779                 return;
780
781         vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));
782
783         for (md = io_desc; nr; md++, nr--) {
784                 create_mapping(md);
785                 vm->addr = (void *)(md->virtual & PAGE_MASK);
786                 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
787                 vm->phys_addr = __pfn_to_phys(md->pfn);
788                 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
789                 vm->flags |= VM_ARM_MTYPE(md->type);
790                 vm->caller = iotable_init;
791                 vm_area_add_early(vm++);
792         }
793 }
794
795 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
796                                   void *caller)
797 {
798         struct vm_struct *vm;
799
800         vm = early_alloc_aligned(sizeof(*vm), __alignof__(*vm));
801         vm->addr = (void *)addr;
802         vm->size = size;
803         vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
804         vm->caller = caller;
805         vm_area_add_early(vm);
806 }
807
808 #ifndef CONFIG_ARM_LPAE
809
810 /*
811  * The Linux PMD is made of two consecutive section entries covering 2MB
812  * (see definition in include/asm/pgtable-2level.h).  However a call to
813  * create_mapping() may optimize static mappings by using individual
814  * 1MB section mappings.  This leaves the actual PMD potentially half
815  * initialized if the top or bottom section entry isn't used, leaving it
816  * open to problems if a subsequent ioremap() or vmalloc() tries to use
817  * the virtual space left free by that unused section entry.
818  *
819  * Let's avoid the issue by inserting dummy vm entries covering the unused
820  * PMD halves once the static mappings are in place.
821  */
822
823 static void __init pmd_empty_section_gap(unsigned long addr)
824 {
825         vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
826 }
827
828 static void __init fill_pmd_gaps(void)
829 {
830         struct vm_struct *vm;
831         unsigned long addr, next = 0;
832         pmd_t *pmd;
833
834         /* we're still single threaded hence no lock needed here */
835         for (vm = vmlist; vm; vm = vm->next) {
836                 if (!(vm->flags & VM_ARM_STATIC_MAPPING))
837                         continue;
838                 addr = (unsigned long)vm->addr;
839                 if (addr < next)
840                         continue;
841
842                 /*
843                  * Check if this vm starts on an odd section boundary.
844                  * If so and the first section entry for this PMD is free
845                  * then we block the corresponding virtual address.
846                  */
847                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
848                         pmd = pmd_off_k(addr);
849                         if (pmd_none(*pmd))
850                                 pmd_empty_section_gap(addr & PMD_MASK);
851                 }
852
853                 /*
854                  * Then check if this vm ends on an odd section boundary.
855                  * If so and the second section entry for this PMD is empty
856                  * then we block the corresponding virtual address.
857                  */
858                 addr += vm->size;
859                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
860                         pmd = pmd_off_k(addr) + 1;
861                         if (pmd_none(*pmd))
862                                 pmd_empty_section_gap(addr);
863                 }
864
865                 /* no need to look at any vm entry until we hit the next PMD */
866                 next = (addr + PMD_SIZE - 1) & PMD_MASK;
867         }
868 }
869
870 #else
871 #define fill_pmd_gaps() do { } while (0)
872 #endif
873
874 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
875 static void __init pci_reserve_io(void)
876 {
877         struct vm_struct *vm;
878         unsigned long addr;
879
880         /* we're still single threaded hence no lock needed here */
881         for (vm = vmlist; vm; vm = vm->next) {
882                 if (!(vm->flags & VM_ARM_STATIC_MAPPING))
883                         continue;
884                 addr = (unsigned long)vm->addr;
885                 addr &= ~(SZ_2M - 1);
886                 if (addr == PCI_IO_VIRT_BASE)
887                         return;
888
889         }
890         vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
891 }
892 #else
893 #define pci_reserve_io() do { } while (0)
894 #endif
895
896 static void * __initdata vmalloc_min =
897         (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
898
899 /*
900  * vmalloc=size forces the vmalloc area to be exactly 'size'
901  * bytes. This can be used to increase (or decrease) the vmalloc
902  * area - the default is 240m.
903  */
904 static int __init early_vmalloc(char *arg)
905 {
906         unsigned long vmalloc_reserve = memparse(arg, NULL);
907
908         if (vmalloc_reserve < SZ_16M) {
909                 vmalloc_reserve = SZ_16M;
910                 printk(KERN_WARNING
911                         "vmalloc area too small, limiting to %luMB\n",
912                         vmalloc_reserve >> 20);
913         }
914
915         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
916                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
917                 printk(KERN_WARNING
918                         "vmalloc area is too big, limiting to %luMB\n",
919                         vmalloc_reserve >> 20);
920         }
921
922         vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
923         return 0;
924 }
925 early_param("vmalloc", early_vmalloc);
926
927 phys_addr_t arm_lowmem_limit __initdata = 0;
928
929 void __init sanity_check_meminfo(void)
930 {
931         int i, j, highmem = 0;
932
933         for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
934                 struct membank *bank = &meminfo.bank[j];
935                 *bank = meminfo.bank[i];
936
937                 if (bank->start > ULONG_MAX)
938                         highmem = 1;
939
940 #ifdef CONFIG_HIGHMEM
941                 if (__va(bank->start) >= vmalloc_min ||
942                     __va(bank->start) < (void *)PAGE_OFFSET)
943                         highmem = 1;
944
945                 bank->highmem = highmem;
946
947                 /*
948                  * Split those memory banks which are partially overlapping
949                  * the vmalloc area greatly simplifying things later.
950                  */
951                 if (!highmem && __va(bank->start) < vmalloc_min &&
952                     bank->size > vmalloc_min - __va(bank->start)) {
953                         if (meminfo.nr_banks >= NR_BANKS) {
954                                 printk(KERN_CRIT "NR_BANKS too low, "
955                                                  "ignoring high memory\n");
956                         } else {
957                                 memmove(bank + 1, bank,
958                                         (meminfo.nr_banks - i) * sizeof(*bank));
959                                 meminfo.nr_banks++;
960                                 i++;
961                                 bank[1].size -= vmalloc_min - __va(bank->start);
962                                 bank[1].start = __pa(vmalloc_min - 1) + 1;
963                                 bank[1].highmem = highmem = 1;
964                                 j++;
965                         }
966                         bank->size = vmalloc_min - __va(bank->start);
967                 }
968 #else
969                 bank->highmem = highmem;
970
971                 /*
972                  * Highmem banks not allowed with !CONFIG_HIGHMEM.
973                  */
974                 if (highmem) {
975                         printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
976                                "(!CONFIG_HIGHMEM).\n",
977                                (unsigned long long)bank->start,
978                                (unsigned long long)bank->start + bank->size - 1);
979                         continue;
980                 }
981
982                 /*
983                  * Check whether this memory bank would entirely overlap
984                  * the vmalloc area.
985                  */
986                 if (__va(bank->start) >= vmalloc_min ||
987                     __va(bank->start) < (void *)PAGE_OFFSET) {
988                         printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
989                                "(vmalloc region overlap).\n",
990                                (unsigned long long)bank->start,
991                                (unsigned long long)bank->start + bank->size - 1);
992                         continue;
993                 }
994
995                 /*
996                  * Check whether this memory bank would partially overlap
997                  * the vmalloc area.
998                  */
999                 if (__va(bank->start + bank->size) > vmalloc_min ||
1000                     __va(bank->start + bank->size) < __va(bank->start)) {
1001                         unsigned long newsize = vmalloc_min - __va(bank->start);
1002                         printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1003                                "to -%.8llx (vmalloc region overlap).\n",
1004                                (unsigned long long)bank->start,
1005                                (unsigned long long)bank->start + bank->size - 1,
1006                                (unsigned long long)bank->start + newsize - 1);
1007                         bank->size = newsize;
1008                 }
1009 #endif
1010                 if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
1011                         arm_lowmem_limit = bank->start + bank->size;
1012
1013                 j++;
1014         }
1015 #ifdef CONFIG_HIGHMEM
1016         if (highmem) {
1017                 const char *reason = NULL;
1018
1019                 if (cache_is_vipt_aliasing()) {
1020                         /*
1021                          * Interactions between kmap and other mappings
1022                          * make highmem support with aliasing VIPT caches
1023                          * rather difficult.
1024                          */
1025                         reason = "with VIPT aliasing cache";
1026                 }
1027                 if (reason) {
1028                         printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1029                                 reason);
1030                         while (j > 0 && meminfo.bank[j - 1].highmem)
1031                                 j--;
1032                 }
1033         }
1034 #endif
1035         meminfo.nr_banks = j;
1036         high_memory = __va(arm_lowmem_limit - 1) + 1;
1037         memblock_set_current_limit(arm_lowmem_limit);
1038 }
1039
1040 static inline void prepare_page_table(void)
1041 {
1042         unsigned long addr;
1043         phys_addr_t end;
1044
1045         /*
1046          * Clear out all the mappings below the kernel image.
1047          */
1048         for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1049                 pmd_clear(pmd_off_k(addr));
1050
1051 #ifdef CONFIG_XIP_KERNEL
1052         /* The XIP kernel is mapped in the module area -- skip over it */
1053         addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1054 #endif
1055         for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1056                 pmd_clear(pmd_off_k(addr));
1057
1058         /*
1059          * Find the end of the first block of lowmem.
1060          */
1061         end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1062         if (end >= arm_lowmem_limit)
1063                 end = arm_lowmem_limit;
1064
1065         /*
1066          * Clear out all the kernel space mappings, except for the first
1067          * memory bank, up to the vmalloc region.
1068          */
1069         for (addr = __phys_to_virt(end);
1070              addr < VMALLOC_START; addr += PMD_SIZE)
1071                 pmd_clear(pmd_off_k(addr));
1072 }
1073
1074 #ifdef CONFIG_ARM_LPAE
1075 /* the first page is reserved for pgd */
1076 #define SWAPPER_PG_DIR_SIZE     (PAGE_SIZE + \
1077                                  PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1078 #else
1079 #define SWAPPER_PG_DIR_SIZE     (PTRS_PER_PGD * sizeof(pgd_t))
1080 #endif
1081
1082 /*
1083  * Reserve the special regions of memory
1084  */
1085 void __init arm_mm_memblock_reserve(void)
1086 {
1087         /*
1088          * Reserve the page tables.  These are already in use,
1089          * and can only be in node 0.
1090          */
1091         memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1092
1093 #ifdef CONFIG_SA1111
1094         /*
1095          * Because of the SA1111 DMA bug, we want to preserve our
1096          * precious DMA-able memory...
1097          */
1098         memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1099 #endif
1100 }
1101
1102 /*
1103  * Set up the device mappings.  Since we clear out the page tables for all
1104  * mappings above VMALLOC_START, we will remove any debug device mappings.
1105  * This means you have to be careful how you debug this function, or any
1106  * called function.  This means you can't use any function or debugging
1107  * method which may touch any device, otherwise the kernel _will_ crash.
1108  */
1109 static void __init devicemaps_init(struct machine_desc *mdesc)
1110 {
1111         struct map_desc map;
1112         unsigned long addr;
1113         void *vectors;
1114
1115         /*
1116          * Allocate the vector page early.
1117          */
1118         vectors = early_alloc(PAGE_SIZE);
1119
1120         early_trap_init(vectors);
1121
1122         for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1123                 pmd_clear(pmd_off_k(addr));
1124
1125         /*
1126          * Map the kernel if it is XIP.
1127          * It is always first in the modulearea.
1128          */
1129 #ifdef CONFIG_XIP_KERNEL
1130         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1131         map.virtual = MODULES_VADDR;
1132         map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1133         map.type = MT_ROM;
1134         create_mapping(&map);
1135 #endif
1136
1137         /*
1138          * Map the cache flushing regions.
1139          */
1140 #ifdef FLUSH_BASE
1141         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1142         map.virtual = FLUSH_BASE;
1143         map.length = SZ_1M;
1144         map.type = MT_CACHECLEAN;
1145         create_mapping(&map);
1146 #endif
1147 #ifdef FLUSH_BASE_MINICACHE
1148         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1149         map.virtual = FLUSH_BASE_MINICACHE;
1150         map.length = SZ_1M;
1151         map.type = MT_MINICLEAN;
1152         create_mapping(&map);
1153 #endif
1154
1155         /*
1156          * Create a mapping for the machine vectors at the high-vectors
1157          * location (0xffff0000).  If we aren't using high-vectors, also
1158          * create a mapping at the low-vectors virtual address.
1159          */
1160         map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1161         map.virtual = 0xffff0000;
1162         map.length = PAGE_SIZE;
1163         map.type = MT_HIGH_VECTORS;
1164         create_mapping(&map);
1165
1166         if (!vectors_high()) {
1167                 map.virtual = 0;
1168                 map.type = MT_LOW_VECTORS;
1169                 create_mapping(&map);
1170         }
1171
1172         /*
1173          * Ask the machine support to map in the statically mapped devices.
1174          */
1175         if (mdesc->map_io)
1176                 mdesc->map_io();
1177         fill_pmd_gaps();
1178
1179         /* Reserve fixed i/o space in VMALLOC region */
1180         pci_reserve_io();
1181
1182         /*
1183          * Finally flush the caches and tlb to ensure that we're in a
1184          * consistent state wrt the writebuffer.  This also ensures that
1185          * any write-allocated cache lines in the vector page are written
1186          * back.  After this point, we can start to touch devices again.
1187          */
1188         local_flush_tlb_all();
1189         flush_cache_all();
1190 }
1191
1192 static void __init kmap_init(void)
1193 {
1194 #ifdef CONFIG_HIGHMEM
1195         pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1196                 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1197 #endif
1198 }
1199
1200 static void __init map_lowmem(void)
1201 {
1202         struct memblock_region *reg;
1203
1204         /* Map all the lowmem memory banks. */
1205         for_each_memblock(memory, reg) {
1206                 phys_addr_t start = reg->base;
1207                 phys_addr_t end = start + reg->size;
1208                 struct map_desc map;
1209
1210                 if (end > arm_lowmem_limit)
1211                         end = arm_lowmem_limit;
1212                 if (start >= end)
1213                         break;
1214
1215                 map.pfn = __phys_to_pfn(start);
1216                 map.virtual = __phys_to_virt(start);
1217                 map.length = end - start;
1218                 map.type = MT_MEMORY;
1219
1220                 create_mapping(&map);
1221         }
1222 }
1223
1224 /*
1225  * paging_init() sets up the page tables, initialises the zone memory
1226  * maps, and sets up the zero page, bad page and bad page tables.
1227  */
1228 void __init paging_init(struct machine_desc *mdesc)
1229 {
1230         void *zero_page;
1231
1232         memblock_set_current_limit(arm_lowmem_limit);
1233
1234         build_mem_type_table();
1235         prepare_page_table();
1236         map_lowmem();
1237         dma_contiguous_remap();
1238         devicemaps_init(mdesc);
1239         kmap_init();
1240
1241         top_pmd = pmd_off_k(0xffff0000);
1242
1243         /* allocate the zero page. */
1244         zero_page = early_alloc(PAGE_SIZE);
1245
1246         bootmem_init();
1247
1248         empty_zero_page = virt_to_page(zero_page);
1249         __flush_dcache_page(NULL, empty_zero_page);
1250 }