slab: remove BAD_ALIEN_MAGIC
[linux-2.6-block.git] / mm / slab.c
... / ...
CommitLineData
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89#include <linux/slab.h>
90#include <linux/mm.h>
91#include <linux/poison.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
97#include <linux/cpuset.h>
98#include <linux/proc_fs.h>
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
106#include <linux/string.h>
107#include <linux/uaccess.h>
108#include <linux/nodemask.h>
109#include <linux/kmemleak.h>
110#include <linux/mempolicy.h>
111#include <linux/mutex.h>
112#include <linux/fault-inject.h>
113#include <linux/rtmutex.h>
114#include <linux/reciprocal_div.h>
115#include <linux/debugobjects.h>
116#include <linux/kmemcheck.h>
117#include <linux/memory.h>
118#include <linux/prefetch.h>
119
120#include <net/sock.h>
121
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
126#include <trace/events/kmem.h>
127
128#include "internal.h"
129
130#include "slab.h"
131
132/*
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163#if FREELIST_BYTE_INDEX
164typedef unsigned char freelist_idx_t;
165#else
166typedef unsigned short freelist_idx_t;
167#endif
168
169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170
171/*
172 * true if a page was allocated from pfmemalloc reserves for network-based
173 * swap
174 */
175static bool pfmemalloc_active __read_mostly;
176
177/*
178 * struct array_cache
179 *
180 * Purpose:
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
184 *
185 * The limit is stored in the per-cpu structure to reduce the data cache
186 * footprint.
187 *
188 */
189struct array_cache {
190 unsigned int avail;
191 unsigned int limit;
192 unsigned int batchcount;
193 unsigned int touched;
194 void *entry[]; /*
195 * Must have this definition in here for the proper
196 * alignment of array_cache. Also simplifies accessing
197 * the entries.
198 *
199 * Entries should not be directly dereferenced as
200 * entries belonging to slabs marked pfmemalloc will
201 * have the lower bits set SLAB_OBJ_PFMEMALLOC
202 */
203};
204
205struct alien_cache {
206 spinlock_t lock;
207 struct array_cache ac;
208};
209
210#define SLAB_OBJ_PFMEMALLOC 1
211static inline bool is_obj_pfmemalloc(void *objp)
212{
213 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214}
215
216static inline void set_obj_pfmemalloc(void **objp)
217{
218 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219 return;
220}
221
222static inline void clear_obj_pfmemalloc(void **objp)
223{
224 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225}
226
227/*
228 * bootstrap: The caches do not work without cpuarrays anymore, but the
229 * cpuarrays are allocated from the generic caches...
230 */
231#define BOOT_CPUCACHE_ENTRIES 1
232struct arraycache_init {
233 struct array_cache cache;
234 void *entries[BOOT_CPUCACHE_ENTRIES];
235};
236
237/*
238 * Need this for bootstrapping a per node allocator.
239 */
240#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
241static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242#define CACHE_CACHE 0
243#define SIZE_AC MAX_NUMNODES
244#define SIZE_NODE (2 * MAX_NUMNODES)
245
246static int drain_freelist(struct kmem_cache *cache,
247 struct kmem_cache_node *n, int tofree);
248static void free_block(struct kmem_cache *cachep, void **objpp, int len,
249 int node, struct list_head *list);
250static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
251static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
252static void cache_reap(struct work_struct *unused);
253
254static int slab_early_init = 1;
255
256#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
257#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
258
259static void kmem_cache_node_init(struct kmem_cache_node *parent)
260{
261 INIT_LIST_HEAD(&parent->slabs_full);
262 INIT_LIST_HEAD(&parent->slabs_partial);
263 INIT_LIST_HEAD(&parent->slabs_free);
264 parent->shared = NULL;
265 parent->alien = NULL;
266 parent->colour_next = 0;
267 spin_lock_init(&parent->list_lock);
268 parent->free_objects = 0;
269 parent->free_touched = 0;
270}
271
272#define MAKE_LIST(cachep, listp, slab, nodeid) \
273 do { \
274 INIT_LIST_HEAD(listp); \
275 list_splice(&get_node(cachep, nodeid)->slab, listp); \
276 } while (0)
277
278#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
279 do { \
280 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
281 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
282 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
283 } while (0)
284
285#define CFLGS_OFF_SLAB (0x80000000UL)
286#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
287
288#define BATCHREFILL_LIMIT 16
289/*
290 * Optimization question: fewer reaps means less probability for unnessary
291 * cpucache drain/refill cycles.
292 *
293 * OTOH the cpuarrays can contain lots of objects,
294 * which could lock up otherwise freeable slabs.
295 */
296#define REAPTIMEOUT_AC (2*HZ)
297#define REAPTIMEOUT_NODE (4*HZ)
298
299#if STATS
300#define STATS_INC_ACTIVE(x) ((x)->num_active++)
301#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
302#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
303#define STATS_INC_GROWN(x) ((x)->grown++)
304#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
305#define STATS_SET_HIGH(x) \
306 do { \
307 if ((x)->num_active > (x)->high_mark) \
308 (x)->high_mark = (x)->num_active; \
309 } while (0)
310#define STATS_INC_ERR(x) ((x)->errors++)
311#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
312#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
313#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
314#define STATS_SET_FREEABLE(x, i) \
315 do { \
316 if ((x)->max_freeable < i) \
317 (x)->max_freeable = i; \
318 } while (0)
319#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
320#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
321#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
322#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
323#else
324#define STATS_INC_ACTIVE(x) do { } while (0)
325#define STATS_DEC_ACTIVE(x) do { } while (0)
326#define STATS_INC_ALLOCED(x) do { } while (0)
327#define STATS_INC_GROWN(x) do { } while (0)
328#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
329#define STATS_SET_HIGH(x) do { } while (0)
330#define STATS_INC_ERR(x) do { } while (0)
331#define STATS_INC_NODEALLOCS(x) do { } while (0)
332#define STATS_INC_NODEFREES(x) do { } while (0)
333#define STATS_INC_ACOVERFLOW(x) do { } while (0)
334#define STATS_SET_FREEABLE(x, i) do { } while (0)
335#define STATS_INC_ALLOCHIT(x) do { } while (0)
336#define STATS_INC_ALLOCMISS(x) do { } while (0)
337#define STATS_INC_FREEHIT(x) do { } while (0)
338#define STATS_INC_FREEMISS(x) do { } while (0)
339#endif
340
341#if DEBUG
342
343/*
344 * memory layout of objects:
345 * 0 : objp
346 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
347 * the end of an object is aligned with the end of the real
348 * allocation. Catches writes behind the end of the allocation.
349 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
350 * redzone word.
351 * cachep->obj_offset: The real object.
352 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
353 * cachep->size - 1* BYTES_PER_WORD: last caller address
354 * [BYTES_PER_WORD long]
355 */
356static int obj_offset(struct kmem_cache *cachep)
357{
358 return cachep->obj_offset;
359}
360
361static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
362{
363 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
364 return (unsigned long long*) (objp + obj_offset(cachep) -
365 sizeof(unsigned long long));
366}
367
368static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
369{
370 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
371 if (cachep->flags & SLAB_STORE_USER)
372 return (unsigned long long *)(objp + cachep->size -
373 sizeof(unsigned long long) -
374 REDZONE_ALIGN);
375 return (unsigned long long *) (objp + cachep->size -
376 sizeof(unsigned long long));
377}
378
379static void **dbg_userword(struct kmem_cache *cachep, void *objp)
380{
381 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
382 return (void **)(objp + cachep->size - BYTES_PER_WORD);
383}
384
385#else
386
387#define obj_offset(x) 0
388#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
389#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
390#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
391
392#endif
393
394#define OBJECT_FREE (0)
395#define OBJECT_ACTIVE (1)
396
397#ifdef CONFIG_DEBUG_SLAB_LEAK
398
399static void set_obj_status(struct page *page, int idx, int val)
400{
401 int freelist_size;
402 char *status;
403 struct kmem_cache *cachep = page->slab_cache;
404
405 freelist_size = cachep->num * sizeof(freelist_idx_t);
406 status = (char *)page->freelist + freelist_size;
407 status[idx] = val;
408}
409
410static inline unsigned int get_obj_status(struct page *page, int idx)
411{
412 int freelist_size;
413 char *status;
414 struct kmem_cache *cachep = page->slab_cache;
415
416 freelist_size = cachep->num * sizeof(freelist_idx_t);
417 status = (char *)page->freelist + freelist_size;
418
419 return status[idx];
420}
421
422#else
423static inline void set_obj_status(struct page *page, int idx, int val) {}
424
425#endif
426
427/*
428 * Do not go above this order unless 0 objects fit into the slab or
429 * overridden on the command line.
430 */
431#define SLAB_MAX_ORDER_HI 1
432#define SLAB_MAX_ORDER_LO 0
433static int slab_max_order = SLAB_MAX_ORDER_LO;
434static bool slab_max_order_set __initdata;
435
436static inline struct kmem_cache *virt_to_cache(const void *obj)
437{
438 struct page *page = virt_to_head_page(obj);
439 return page->slab_cache;
440}
441
442static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
443 unsigned int idx)
444{
445 return page->s_mem + cache->size * idx;
446}
447
448/*
449 * We want to avoid an expensive divide : (offset / cache->size)
450 * Using the fact that size is a constant for a particular cache,
451 * we can replace (offset / cache->size) by
452 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
453 */
454static inline unsigned int obj_to_index(const struct kmem_cache *cache,
455 const struct page *page, void *obj)
456{
457 u32 offset = (obj - page->s_mem);
458 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
459}
460
461static struct arraycache_init initarray_generic =
462 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
463
464/* internal cache of cache description objs */
465static struct kmem_cache kmem_cache_boot = {
466 .batchcount = 1,
467 .limit = BOOT_CPUCACHE_ENTRIES,
468 .shared = 1,
469 .size = sizeof(struct kmem_cache),
470 .name = "kmem_cache",
471};
472
473static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
474
475static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
476{
477 return cachep->array[smp_processor_id()];
478}
479
480static size_t calculate_freelist_size(int nr_objs, size_t align)
481{
482 size_t freelist_size;
483
484 freelist_size = nr_objs * sizeof(freelist_idx_t);
485 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
486 freelist_size += nr_objs * sizeof(char);
487
488 if (align)
489 freelist_size = ALIGN(freelist_size, align);
490
491 return freelist_size;
492}
493
494static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
495 size_t idx_size, size_t align)
496{
497 int nr_objs;
498 size_t remained_size;
499 size_t freelist_size;
500 int extra_space = 0;
501
502 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
503 extra_space = sizeof(char);
504 /*
505 * Ignore padding for the initial guess. The padding
506 * is at most @align-1 bytes, and @buffer_size is at
507 * least @align. In the worst case, this result will
508 * be one greater than the number of objects that fit
509 * into the memory allocation when taking the padding
510 * into account.
511 */
512 nr_objs = slab_size / (buffer_size + idx_size + extra_space);
513
514 /*
515 * This calculated number will be either the right
516 * amount, or one greater than what we want.
517 */
518 remained_size = slab_size - nr_objs * buffer_size;
519 freelist_size = calculate_freelist_size(nr_objs, align);
520 if (remained_size < freelist_size)
521 nr_objs--;
522
523 return nr_objs;
524}
525
526/*
527 * Calculate the number of objects and left-over bytes for a given buffer size.
528 */
529static void cache_estimate(unsigned long gfporder, size_t buffer_size,
530 size_t align, int flags, size_t *left_over,
531 unsigned int *num)
532{
533 int nr_objs;
534 size_t mgmt_size;
535 size_t slab_size = PAGE_SIZE << gfporder;
536
537 /*
538 * The slab management structure can be either off the slab or
539 * on it. For the latter case, the memory allocated for a
540 * slab is used for:
541 *
542 * - One unsigned int for each object
543 * - Padding to respect alignment of @align
544 * - @buffer_size bytes for each object
545 *
546 * If the slab management structure is off the slab, then the
547 * alignment will already be calculated into the size. Because
548 * the slabs are all pages aligned, the objects will be at the
549 * correct alignment when allocated.
550 */
551 if (flags & CFLGS_OFF_SLAB) {
552 mgmt_size = 0;
553 nr_objs = slab_size / buffer_size;
554
555 } else {
556 nr_objs = calculate_nr_objs(slab_size, buffer_size,
557 sizeof(freelist_idx_t), align);
558 mgmt_size = calculate_freelist_size(nr_objs, align);
559 }
560 *num = nr_objs;
561 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
562}
563
564#if DEBUG
565#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
566
567static void __slab_error(const char *function, struct kmem_cache *cachep,
568 char *msg)
569{
570 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
571 function, cachep->name, msg);
572 dump_stack();
573 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
574}
575#endif
576
577/*
578 * By default on NUMA we use alien caches to stage the freeing of
579 * objects allocated from other nodes. This causes massive memory
580 * inefficiencies when using fake NUMA setup to split memory into a
581 * large number of small nodes, so it can be disabled on the command
582 * line
583 */
584
585static int use_alien_caches __read_mostly = 1;
586static int __init noaliencache_setup(char *s)
587{
588 use_alien_caches = 0;
589 return 1;
590}
591__setup("noaliencache", noaliencache_setup);
592
593static int __init slab_max_order_setup(char *str)
594{
595 get_option(&str, &slab_max_order);
596 slab_max_order = slab_max_order < 0 ? 0 :
597 min(slab_max_order, MAX_ORDER - 1);
598 slab_max_order_set = true;
599
600 return 1;
601}
602__setup("slab_max_order=", slab_max_order_setup);
603
604#ifdef CONFIG_NUMA
605/*
606 * Special reaping functions for NUMA systems called from cache_reap().
607 * These take care of doing round robin flushing of alien caches (containing
608 * objects freed on different nodes from which they were allocated) and the
609 * flushing of remote pcps by calling drain_node_pages.
610 */
611static DEFINE_PER_CPU(unsigned long, slab_reap_node);
612
613static void init_reap_node(int cpu)
614{
615 int node;
616
617 node = next_node(cpu_to_mem(cpu), node_online_map);
618 if (node == MAX_NUMNODES)
619 node = first_node(node_online_map);
620
621 per_cpu(slab_reap_node, cpu) = node;
622}
623
624static void next_reap_node(void)
625{
626 int node = __this_cpu_read(slab_reap_node);
627
628 node = next_node(node, node_online_map);
629 if (unlikely(node >= MAX_NUMNODES))
630 node = first_node(node_online_map);
631 __this_cpu_write(slab_reap_node, node);
632}
633
634#else
635#define init_reap_node(cpu) do { } while (0)
636#define next_reap_node(void) do { } while (0)
637#endif
638
639/*
640 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
641 * via the workqueue/eventd.
642 * Add the CPU number into the expiration time to minimize the possibility of
643 * the CPUs getting into lockstep and contending for the global cache chain
644 * lock.
645 */
646static void start_cpu_timer(int cpu)
647{
648 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
649
650 /*
651 * When this gets called from do_initcalls via cpucache_init(),
652 * init_workqueues() has already run, so keventd will be setup
653 * at that time.
654 */
655 if (keventd_up() && reap_work->work.func == NULL) {
656 init_reap_node(cpu);
657 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
658 schedule_delayed_work_on(cpu, reap_work,
659 __round_jiffies_relative(HZ, cpu));
660 }
661}
662
663static void init_arraycache(struct array_cache *ac, int limit, int batch)
664{
665 /*
666 * The array_cache structures contain pointers to free object.
667 * However, when such objects are allocated or transferred to another
668 * cache the pointers are not cleared and they could be counted as
669 * valid references during a kmemleak scan. Therefore, kmemleak must
670 * not scan such objects.
671 */
672 kmemleak_no_scan(ac);
673 if (ac) {
674 ac->avail = 0;
675 ac->limit = limit;
676 ac->batchcount = batch;
677 ac->touched = 0;
678 }
679}
680
681static struct array_cache *alloc_arraycache(int node, int entries,
682 int batchcount, gfp_t gfp)
683{
684 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
685 struct array_cache *ac = NULL;
686
687 ac = kmalloc_node(memsize, gfp, node);
688 init_arraycache(ac, entries, batchcount);
689 return ac;
690}
691
692static inline bool is_slab_pfmemalloc(struct page *page)
693{
694 return PageSlabPfmemalloc(page);
695}
696
697/* Clears pfmemalloc_active if no slabs have pfmalloc set */
698static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
699 struct array_cache *ac)
700{
701 struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
702 struct page *page;
703 unsigned long flags;
704
705 if (!pfmemalloc_active)
706 return;
707
708 spin_lock_irqsave(&n->list_lock, flags);
709 list_for_each_entry(page, &n->slabs_full, lru)
710 if (is_slab_pfmemalloc(page))
711 goto out;
712
713 list_for_each_entry(page, &n->slabs_partial, lru)
714 if (is_slab_pfmemalloc(page))
715 goto out;
716
717 list_for_each_entry(page, &n->slabs_free, lru)
718 if (is_slab_pfmemalloc(page))
719 goto out;
720
721 pfmemalloc_active = false;
722out:
723 spin_unlock_irqrestore(&n->list_lock, flags);
724}
725
726static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
727 gfp_t flags, bool force_refill)
728{
729 int i;
730 void *objp = ac->entry[--ac->avail];
731
732 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
733 if (unlikely(is_obj_pfmemalloc(objp))) {
734 struct kmem_cache_node *n;
735
736 if (gfp_pfmemalloc_allowed(flags)) {
737 clear_obj_pfmemalloc(&objp);
738 return objp;
739 }
740
741 /* The caller cannot use PFMEMALLOC objects, find another one */
742 for (i = 0; i < ac->avail; i++) {
743 /* If a !PFMEMALLOC object is found, swap them */
744 if (!is_obj_pfmemalloc(ac->entry[i])) {
745 objp = ac->entry[i];
746 ac->entry[i] = ac->entry[ac->avail];
747 ac->entry[ac->avail] = objp;
748 return objp;
749 }
750 }
751
752 /*
753 * If there are empty slabs on the slabs_free list and we are
754 * being forced to refill the cache, mark this one !pfmemalloc.
755 */
756 n = get_node(cachep, numa_mem_id());
757 if (!list_empty(&n->slabs_free) && force_refill) {
758 struct page *page = virt_to_head_page(objp);
759 ClearPageSlabPfmemalloc(page);
760 clear_obj_pfmemalloc(&objp);
761 recheck_pfmemalloc_active(cachep, ac);
762 return objp;
763 }
764
765 /* No !PFMEMALLOC objects available */
766 ac->avail++;
767 objp = NULL;
768 }
769
770 return objp;
771}
772
773static inline void *ac_get_obj(struct kmem_cache *cachep,
774 struct array_cache *ac, gfp_t flags, bool force_refill)
775{
776 void *objp;
777
778 if (unlikely(sk_memalloc_socks()))
779 objp = __ac_get_obj(cachep, ac, flags, force_refill);
780 else
781 objp = ac->entry[--ac->avail];
782
783 return objp;
784}
785
786static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
787 void *objp)
788{
789 if (unlikely(pfmemalloc_active)) {
790 /* Some pfmemalloc slabs exist, check if this is one */
791 struct page *page = virt_to_head_page(objp);
792 if (PageSlabPfmemalloc(page))
793 set_obj_pfmemalloc(&objp);
794 }
795
796 return objp;
797}
798
799static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
800 void *objp)
801{
802 if (unlikely(sk_memalloc_socks()))
803 objp = __ac_put_obj(cachep, ac, objp);
804
805 ac->entry[ac->avail++] = objp;
806}
807
808/*
809 * Transfer objects in one arraycache to another.
810 * Locking must be handled by the caller.
811 *
812 * Return the number of entries transferred.
813 */
814static int transfer_objects(struct array_cache *to,
815 struct array_cache *from, unsigned int max)
816{
817 /* Figure out how many entries to transfer */
818 int nr = min3(from->avail, max, to->limit - to->avail);
819
820 if (!nr)
821 return 0;
822
823 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
824 sizeof(void *) *nr);
825
826 from->avail -= nr;
827 to->avail += nr;
828 return nr;
829}
830
831#ifndef CONFIG_NUMA
832
833#define drain_alien_cache(cachep, alien) do { } while (0)
834#define reap_alien(cachep, n) do { } while (0)
835
836static inline struct alien_cache **alloc_alien_cache(int node,
837 int limit, gfp_t gfp)
838{
839 return NULL;
840}
841
842static inline void free_alien_cache(struct alien_cache **ac_ptr)
843{
844}
845
846static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
847{
848 return 0;
849}
850
851static inline void *alternate_node_alloc(struct kmem_cache *cachep,
852 gfp_t flags)
853{
854 return NULL;
855}
856
857static inline void *____cache_alloc_node(struct kmem_cache *cachep,
858 gfp_t flags, int nodeid)
859{
860 return NULL;
861}
862
863#else /* CONFIG_NUMA */
864
865static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
866static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
867
868static struct alien_cache *__alloc_alien_cache(int node, int entries,
869 int batch, gfp_t gfp)
870{
871 int memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
872 struct alien_cache *alc = NULL;
873
874 alc = kmalloc_node(memsize, gfp, node);
875 init_arraycache(&alc->ac, entries, batch);
876 spin_lock_init(&alc->lock);
877 return alc;
878}
879
880static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
881{
882 struct alien_cache **alc_ptr;
883 int memsize = sizeof(void *) * nr_node_ids;
884 int i;
885
886 if (limit > 1)
887 limit = 12;
888 alc_ptr = kzalloc_node(memsize, gfp, node);
889 if (!alc_ptr)
890 return NULL;
891
892 for_each_node(i) {
893 if (i == node || !node_online(i))
894 continue;
895 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
896 if (!alc_ptr[i]) {
897 for (i--; i >= 0; i--)
898 kfree(alc_ptr[i]);
899 kfree(alc_ptr);
900 return NULL;
901 }
902 }
903 return alc_ptr;
904}
905
906static void free_alien_cache(struct alien_cache **alc_ptr)
907{
908 int i;
909
910 if (!alc_ptr)
911 return;
912 for_each_node(i)
913 kfree(alc_ptr[i]);
914 kfree(alc_ptr);
915}
916
917static void __drain_alien_cache(struct kmem_cache *cachep,
918 struct array_cache *ac, int node,
919 struct list_head *list)
920{
921 struct kmem_cache_node *n = get_node(cachep, node);
922
923 if (ac->avail) {
924 spin_lock(&n->list_lock);
925 /*
926 * Stuff objects into the remote nodes shared array first.
927 * That way we could avoid the overhead of putting the objects
928 * into the free lists and getting them back later.
929 */
930 if (n->shared)
931 transfer_objects(n->shared, ac, ac->limit);
932
933 free_block(cachep, ac->entry, ac->avail, node, list);
934 ac->avail = 0;
935 spin_unlock(&n->list_lock);
936 }
937}
938
939/*
940 * Called from cache_reap() to regularly drain alien caches round robin.
941 */
942static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
943{
944 int node = __this_cpu_read(slab_reap_node);
945
946 if (n->alien) {
947 struct alien_cache *alc = n->alien[node];
948 struct array_cache *ac;
949
950 if (alc) {
951 ac = &alc->ac;
952 if (ac->avail && spin_trylock_irq(&alc->lock)) {
953 LIST_HEAD(list);
954
955 __drain_alien_cache(cachep, ac, node, &list);
956 spin_unlock_irq(&alc->lock);
957 slabs_destroy(cachep, &list);
958 }
959 }
960 }
961}
962
963static void drain_alien_cache(struct kmem_cache *cachep,
964 struct alien_cache **alien)
965{
966 int i = 0;
967 struct alien_cache *alc;
968 struct array_cache *ac;
969 unsigned long flags;
970
971 for_each_online_node(i) {
972 alc = alien[i];
973 if (alc) {
974 LIST_HEAD(list);
975
976 ac = &alc->ac;
977 spin_lock_irqsave(&alc->lock, flags);
978 __drain_alien_cache(cachep, ac, i, &list);
979 spin_unlock_irqrestore(&alc->lock, flags);
980 slabs_destroy(cachep, &list);
981 }
982 }
983}
984
985static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
986{
987 int nodeid = page_to_nid(virt_to_page(objp));
988 struct kmem_cache_node *n;
989 struct alien_cache *alien = NULL;
990 struct array_cache *ac;
991 int node;
992 LIST_HEAD(list);
993
994 node = numa_mem_id();
995
996 /*
997 * Make sure we are not freeing a object from another node to the array
998 * cache on this cpu.
999 */
1000 if (likely(nodeid == node))
1001 return 0;
1002
1003 n = get_node(cachep, node);
1004 STATS_INC_NODEFREES(cachep);
1005 if (n->alien && n->alien[nodeid]) {
1006 alien = n->alien[nodeid];
1007 ac = &alien->ac;
1008 spin_lock(&alien->lock);
1009 if (unlikely(ac->avail == ac->limit)) {
1010 STATS_INC_ACOVERFLOW(cachep);
1011 __drain_alien_cache(cachep, ac, nodeid, &list);
1012 }
1013 ac_put_obj(cachep, ac, objp);
1014 spin_unlock(&alien->lock);
1015 slabs_destroy(cachep, &list);
1016 } else {
1017 n = get_node(cachep, nodeid);
1018 spin_lock(&n->list_lock);
1019 free_block(cachep, &objp, 1, nodeid, &list);
1020 spin_unlock(&n->list_lock);
1021 slabs_destroy(cachep, &list);
1022 }
1023 return 1;
1024}
1025#endif
1026
1027/*
1028 * Allocates and initializes node for a node on each slab cache, used for
1029 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
1030 * will be allocated off-node since memory is not yet online for the new node.
1031 * When hotplugging memory or a cpu, existing node are not replaced if
1032 * already in use.
1033 *
1034 * Must hold slab_mutex.
1035 */
1036static int init_cache_node_node(int node)
1037{
1038 struct kmem_cache *cachep;
1039 struct kmem_cache_node *n;
1040 const int memsize = sizeof(struct kmem_cache_node);
1041
1042 list_for_each_entry(cachep, &slab_caches, list) {
1043 /*
1044 * Set up the kmem_cache_node for cpu before we can
1045 * begin anything. Make sure some other cpu on this
1046 * node has not already allocated this
1047 */
1048 n = get_node(cachep, node);
1049 if (!n) {
1050 n = kmalloc_node(memsize, GFP_KERNEL, node);
1051 if (!n)
1052 return -ENOMEM;
1053 kmem_cache_node_init(n);
1054 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1055 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1056
1057 /*
1058 * The kmem_cache_nodes don't come and go as CPUs
1059 * come and go. slab_mutex is sufficient
1060 * protection here.
1061 */
1062 cachep->node[node] = n;
1063 }
1064
1065 spin_lock_irq(&n->list_lock);
1066 n->free_limit =
1067 (1 + nr_cpus_node(node)) *
1068 cachep->batchcount + cachep->num;
1069 spin_unlock_irq(&n->list_lock);
1070 }
1071 return 0;
1072}
1073
1074static inline int slabs_tofree(struct kmem_cache *cachep,
1075 struct kmem_cache_node *n)
1076{
1077 return (n->free_objects + cachep->num - 1) / cachep->num;
1078}
1079
1080static void cpuup_canceled(long cpu)
1081{
1082 struct kmem_cache *cachep;
1083 struct kmem_cache_node *n = NULL;
1084 int node = cpu_to_mem(cpu);
1085 const struct cpumask *mask = cpumask_of_node(node);
1086
1087 list_for_each_entry(cachep, &slab_caches, list) {
1088 struct array_cache *nc;
1089 struct array_cache *shared;
1090 struct alien_cache **alien;
1091 LIST_HEAD(list);
1092
1093 /* cpu is dead; no one can alloc from it. */
1094 nc = cachep->array[cpu];
1095 cachep->array[cpu] = NULL;
1096 n = get_node(cachep, node);
1097
1098 if (!n)
1099 goto free_array_cache;
1100
1101 spin_lock_irq(&n->list_lock);
1102
1103 /* Free limit for this kmem_cache_node */
1104 n->free_limit -= cachep->batchcount;
1105 if (nc)
1106 free_block(cachep, nc->entry, nc->avail, node, &list);
1107
1108 if (!cpumask_empty(mask)) {
1109 spin_unlock_irq(&n->list_lock);
1110 goto free_array_cache;
1111 }
1112
1113 shared = n->shared;
1114 if (shared) {
1115 free_block(cachep, shared->entry,
1116 shared->avail, node, &list);
1117 n->shared = NULL;
1118 }
1119
1120 alien = n->alien;
1121 n->alien = NULL;
1122
1123 spin_unlock_irq(&n->list_lock);
1124
1125 kfree(shared);
1126 if (alien) {
1127 drain_alien_cache(cachep, alien);
1128 free_alien_cache(alien);
1129 }
1130free_array_cache:
1131 slabs_destroy(cachep, &list);
1132 kfree(nc);
1133 }
1134 /*
1135 * In the previous loop, all the objects were freed to
1136 * the respective cache's slabs, now we can go ahead and
1137 * shrink each nodelist to its limit.
1138 */
1139 list_for_each_entry(cachep, &slab_caches, list) {
1140 n = get_node(cachep, node);
1141 if (!n)
1142 continue;
1143 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1144 }
1145}
1146
1147static int cpuup_prepare(long cpu)
1148{
1149 struct kmem_cache *cachep;
1150 struct kmem_cache_node *n = NULL;
1151 int node = cpu_to_mem(cpu);
1152 int err;
1153
1154 /*
1155 * We need to do this right in the beginning since
1156 * alloc_arraycache's are going to use this list.
1157 * kmalloc_node allows us to add the slab to the right
1158 * kmem_cache_node and not this cpu's kmem_cache_node
1159 */
1160 err = init_cache_node_node(node);
1161 if (err < 0)
1162 goto bad;
1163
1164 /*
1165 * Now we can go ahead with allocating the shared arrays and
1166 * array caches
1167 */
1168 list_for_each_entry(cachep, &slab_caches, list) {
1169 struct array_cache *nc;
1170 struct array_cache *shared = NULL;
1171 struct alien_cache **alien = NULL;
1172
1173 nc = alloc_arraycache(node, cachep->limit,
1174 cachep->batchcount, GFP_KERNEL);
1175 if (!nc)
1176 goto bad;
1177 if (cachep->shared) {
1178 shared = alloc_arraycache(node,
1179 cachep->shared * cachep->batchcount,
1180 0xbaadf00d, GFP_KERNEL);
1181 if (!shared) {
1182 kfree(nc);
1183 goto bad;
1184 }
1185 }
1186 if (use_alien_caches) {
1187 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1188 if (!alien) {
1189 kfree(shared);
1190 kfree(nc);
1191 goto bad;
1192 }
1193 }
1194 cachep->array[cpu] = nc;
1195 n = get_node(cachep, node);
1196 BUG_ON(!n);
1197
1198 spin_lock_irq(&n->list_lock);
1199 if (!n->shared) {
1200 /*
1201 * We are serialised from CPU_DEAD or
1202 * CPU_UP_CANCELLED by the cpucontrol lock
1203 */
1204 n->shared = shared;
1205 shared = NULL;
1206 }
1207#ifdef CONFIG_NUMA
1208 if (!n->alien) {
1209 n->alien = alien;
1210 alien = NULL;
1211 }
1212#endif
1213 spin_unlock_irq(&n->list_lock);
1214 kfree(shared);
1215 free_alien_cache(alien);
1216 }
1217
1218 return 0;
1219bad:
1220 cpuup_canceled(cpu);
1221 return -ENOMEM;
1222}
1223
1224static int cpuup_callback(struct notifier_block *nfb,
1225 unsigned long action, void *hcpu)
1226{
1227 long cpu = (long)hcpu;
1228 int err = 0;
1229
1230 switch (action) {
1231 case CPU_UP_PREPARE:
1232 case CPU_UP_PREPARE_FROZEN:
1233 mutex_lock(&slab_mutex);
1234 err = cpuup_prepare(cpu);
1235 mutex_unlock(&slab_mutex);
1236 break;
1237 case CPU_ONLINE:
1238 case CPU_ONLINE_FROZEN:
1239 start_cpu_timer(cpu);
1240 break;
1241#ifdef CONFIG_HOTPLUG_CPU
1242 case CPU_DOWN_PREPARE:
1243 case CPU_DOWN_PREPARE_FROZEN:
1244 /*
1245 * Shutdown cache reaper. Note that the slab_mutex is
1246 * held so that if cache_reap() is invoked it cannot do
1247 * anything expensive but will only modify reap_work
1248 * and reschedule the timer.
1249 */
1250 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1251 /* Now the cache_reaper is guaranteed to be not running. */
1252 per_cpu(slab_reap_work, cpu).work.func = NULL;
1253 break;
1254 case CPU_DOWN_FAILED:
1255 case CPU_DOWN_FAILED_FROZEN:
1256 start_cpu_timer(cpu);
1257 break;
1258 case CPU_DEAD:
1259 case CPU_DEAD_FROZEN:
1260 /*
1261 * Even if all the cpus of a node are down, we don't free the
1262 * kmem_cache_node of any cache. This to avoid a race between
1263 * cpu_down, and a kmalloc allocation from another cpu for
1264 * memory from the node of the cpu going down. The node
1265 * structure is usually allocated from kmem_cache_create() and
1266 * gets destroyed at kmem_cache_destroy().
1267 */
1268 /* fall through */
1269#endif
1270 case CPU_UP_CANCELED:
1271 case CPU_UP_CANCELED_FROZEN:
1272 mutex_lock(&slab_mutex);
1273 cpuup_canceled(cpu);
1274 mutex_unlock(&slab_mutex);
1275 break;
1276 }
1277 return notifier_from_errno(err);
1278}
1279
1280static struct notifier_block cpucache_notifier = {
1281 &cpuup_callback, NULL, 0
1282};
1283
1284#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1285/*
1286 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1287 * Returns -EBUSY if all objects cannot be drained so that the node is not
1288 * removed.
1289 *
1290 * Must hold slab_mutex.
1291 */
1292static int __meminit drain_cache_node_node(int node)
1293{
1294 struct kmem_cache *cachep;
1295 int ret = 0;
1296
1297 list_for_each_entry(cachep, &slab_caches, list) {
1298 struct kmem_cache_node *n;
1299
1300 n = get_node(cachep, node);
1301 if (!n)
1302 continue;
1303
1304 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1305
1306 if (!list_empty(&n->slabs_full) ||
1307 !list_empty(&n->slabs_partial)) {
1308 ret = -EBUSY;
1309 break;
1310 }
1311 }
1312 return ret;
1313}
1314
1315static int __meminit slab_memory_callback(struct notifier_block *self,
1316 unsigned long action, void *arg)
1317{
1318 struct memory_notify *mnb = arg;
1319 int ret = 0;
1320 int nid;
1321
1322 nid = mnb->status_change_nid;
1323 if (nid < 0)
1324 goto out;
1325
1326 switch (action) {
1327 case MEM_GOING_ONLINE:
1328 mutex_lock(&slab_mutex);
1329 ret = init_cache_node_node(nid);
1330 mutex_unlock(&slab_mutex);
1331 break;
1332 case MEM_GOING_OFFLINE:
1333 mutex_lock(&slab_mutex);
1334 ret = drain_cache_node_node(nid);
1335 mutex_unlock(&slab_mutex);
1336 break;
1337 case MEM_ONLINE:
1338 case MEM_OFFLINE:
1339 case MEM_CANCEL_ONLINE:
1340 case MEM_CANCEL_OFFLINE:
1341 break;
1342 }
1343out:
1344 return notifier_from_errno(ret);
1345}
1346#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1347
1348/*
1349 * swap the static kmem_cache_node with kmalloced memory
1350 */
1351static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1352 int nodeid)
1353{
1354 struct kmem_cache_node *ptr;
1355
1356 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1357 BUG_ON(!ptr);
1358
1359 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1360 /*
1361 * Do not assume that spinlocks can be initialized via memcpy:
1362 */
1363 spin_lock_init(&ptr->list_lock);
1364
1365 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1366 cachep->node[nodeid] = ptr;
1367}
1368
1369/*
1370 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1371 * size of kmem_cache_node.
1372 */
1373static void __init set_up_node(struct kmem_cache *cachep, int index)
1374{
1375 int node;
1376
1377 for_each_online_node(node) {
1378 cachep->node[node] = &init_kmem_cache_node[index + node];
1379 cachep->node[node]->next_reap = jiffies +
1380 REAPTIMEOUT_NODE +
1381 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1382 }
1383}
1384
1385/*
1386 * The memory after the last cpu cache pointer is used for the
1387 * the node pointer.
1388 */
1389static void setup_node_pointer(struct kmem_cache *cachep)
1390{
1391 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
1392}
1393
1394/*
1395 * Initialisation. Called after the page allocator have been initialised and
1396 * before smp_init().
1397 */
1398void __init kmem_cache_init(void)
1399{
1400 int i;
1401
1402 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1403 sizeof(struct rcu_head));
1404 kmem_cache = &kmem_cache_boot;
1405 setup_node_pointer(kmem_cache);
1406
1407 if (num_possible_nodes() == 1)
1408 use_alien_caches = 0;
1409
1410 for (i = 0; i < NUM_INIT_LISTS; i++)
1411 kmem_cache_node_init(&init_kmem_cache_node[i]);
1412
1413 set_up_node(kmem_cache, CACHE_CACHE);
1414
1415 /*
1416 * Fragmentation resistance on low memory - only use bigger
1417 * page orders on machines with more than 32MB of memory if
1418 * not overridden on the command line.
1419 */
1420 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1421 slab_max_order = SLAB_MAX_ORDER_HI;
1422
1423 /* Bootstrap is tricky, because several objects are allocated
1424 * from caches that do not exist yet:
1425 * 1) initialize the kmem_cache cache: it contains the struct
1426 * kmem_cache structures of all caches, except kmem_cache itself:
1427 * kmem_cache is statically allocated.
1428 * Initially an __init data area is used for the head array and the
1429 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1430 * array at the end of the bootstrap.
1431 * 2) Create the first kmalloc cache.
1432 * The struct kmem_cache for the new cache is allocated normally.
1433 * An __init data area is used for the head array.
1434 * 3) Create the remaining kmalloc caches, with minimally sized
1435 * head arrays.
1436 * 4) Replace the __init data head arrays for kmem_cache and the first
1437 * kmalloc cache with kmalloc allocated arrays.
1438 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1439 * the other cache's with kmalloc allocated memory.
1440 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1441 */
1442
1443 /* 1) create the kmem_cache */
1444
1445 /*
1446 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1447 */
1448 create_boot_cache(kmem_cache, "kmem_cache",
1449 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1450 nr_node_ids * sizeof(struct kmem_cache_node *),
1451 SLAB_HWCACHE_ALIGN);
1452 list_add(&kmem_cache->list, &slab_caches);
1453
1454 /* 2+3) create the kmalloc caches */
1455
1456 /*
1457 * Initialize the caches that provide memory for the array cache and the
1458 * kmem_cache_node structures first. Without this, further allocations will
1459 * bug.
1460 */
1461
1462 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1463 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1464
1465 if (INDEX_AC != INDEX_NODE)
1466 kmalloc_caches[INDEX_NODE] =
1467 create_kmalloc_cache("kmalloc-node",
1468 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1469
1470 slab_early_init = 0;
1471
1472 /* 4) Replace the bootstrap head arrays */
1473 {
1474 struct array_cache *ptr;
1475
1476 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1477
1478 memcpy(ptr, cpu_cache_get(kmem_cache),
1479 sizeof(struct arraycache_init));
1480
1481 kmem_cache->array[smp_processor_id()] = ptr;
1482
1483 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1484
1485 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
1486 != &initarray_generic.cache);
1487 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
1488 sizeof(struct arraycache_init));
1489
1490 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1491 }
1492 /* 5) Replace the bootstrap kmem_cache_node */
1493 {
1494 int nid;
1495
1496 for_each_online_node(nid) {
1497 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1498
1499 init_list(kmalloc_caches[INDEX_AC],
1500 &init_kmem_cache_node[SIZE_AC + nid], nid);
1501
1502 if (INDEX_AC != INDEX_NODE) {
1503 init_list(kmalloc_caches[INDEX_NODE],
1504 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1505 }
1506 }
1507 }
1508
1509 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1510}
1511
1512void __init kmem_cache_init_late(void)
1513{
1514 struct kmem_cache *cachep;
1515
1516 slab_state = UP;
1517
1518 /* 6) resize the head arrays to their final sizes */
1519 mutex_lock(&slab_mutex);
1520 list_for_each_entry(cachep, &slab_caches, list)
1521 if (enable_cpucache(cachep, GFP_NOWAIT))
1522 BUG();
1523 mutex_unlock(&slab_mutex);
1524
1525 /* Done! */
1526 slab_state = FULL;
1527
1528 /*
1529 * Register a cpu startup notifier callback that initializes
1530 * cpu_cache_get for all new cpus
1531 */
1532 register_cpu_notifier(&cpucache_notifier);
1533
1534#ifdef CONFIG_NUMA
1535 /*
1536 * Register a memory hotplug callback that initializes and frees
1537 * node.
1538 */
1539 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1540#endif
1541
1542 /*
1543 * The reap timers are started later, with a module init call: That part
1544 * of the kernel is not yet operational.
1545 */
1546}
1547
1548static int __init cpucache_init(void)
1549{
1550 int cpu;
1551
1552 /*
1553 * Register the timers that return unneeded pages to the page allocator
1554 */
1555 for_each_online_cpu(cpu)
1556 start_cpu_timer(cpu);
1557
1558 /* Done! */
1559 slab_state = FULL;
1560 return 0;
1561}
1562__initcall(cpucache_init);
1563
1564static noinline void
1565slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1566{
1567#if DEBUG
1568 struct kmem_cache_node *n;
1569 struct page *page;
1570 unsigned long flags;
1571 int node;
1572 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1573 DEFAULT_RATELIMIT_BURST);
1574
1575 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1576 return;
1577
1578 printk(KERN_WARNING
1579 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1580 nodeid, gfpflags);
1581 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1582 cachep->name, cachep->size, cachep->gfporder);
1583
1584 for_each_kmem_cache_node(cachep, node, n) {
1585 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1586 unsigned long active_slabs = 0, num_slabs = 0;
1587
1588 spin_lock_irqsave(&n->list_lock, flags);
1589 list_for_each_entry(page, &n->slabs_full, lru) {
1590 active_objs += cachep->num;
1591 active_slabs++;
1592 }
1593 list_for_each_entry(page, &n->slabs_partial, lru) {
1594 active_objs += page->active;
1595 active_slabs++;
1596 }
1597 list_for_each_entry(page, &n->slabs_free, lru)
1598 num_slabs++;
1599
1600 free_objects += n->free_objects;
1601 spin_unlock_irqrestore(&n->list_lock, flags);
1602
1603 num_slabs += active_slabs;
1604 num_objs = num_slabs * cachep->num;
1605 printk(KERN_WARNING
1606 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1607 node, active_slabs, num_slabs, active_objs, num_objs,
1608 free_objects);
1609 }
1610#endif
1611}
1612
1613/*
1614 * Interface to system's page allocator. No need to hold the cache-lock.
1615 *
1616 * If we requested dmaable memory, we will get it. Even if we
1617 * did not request dmaable memory, we might get it, but that
1618 * would be relatively rare and ignorable.
1619 */
1620static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1621 int nodeid)
1622{
1623 struct page *page;
1624 int nr_pages;
1625
1626 flags |= cachep->allocflags;
1627 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1628 flags |= __GFP_RECLAIMABLE;
1629
1630 if (memcg_charge_slab(cachep, flags, cachep->gfporder))
1631 return NULL;
1632
1633 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1634 if (!page) {
1635 memcg_uncharge_slab(cachep, cachep->gfporder);
1636 slab_out_of_memory(cachep, flags, nodeid);
1637 return NULL;
1638 }
1639
1640 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1641 if (unlikely(page->pfmemalloc))
1642 pfmemalloc_active = true;
1643
1644 nr_pages = (1 << cachep->gfporder);
1645 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1646 add_zone_page_state(page_zone(page),
1647 NR_SLAB_RECLAIMABLE, nr_pages);
1648 else
1649 add_zone_page_state(page_zone(page),
1650 NR_SLAB_UNRECLAIMABLE, nr_pages);
1651 __SetPageSlab(page);
1652 if (page->pfmemalloc)
1653 SetPageSlabPfmemalloc(page);
1654
1655 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1656 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1657
1658 if (cachep->ctor)
1659 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1660 else
1661 kmemcheck_mark_unallocated_pages(page, nr_pages);
1662 }
1663
1664 return page;
1665}
1666
1667/*
1668 * Interface to system's page release.
1669 */
1670static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1671{
1672 const unsigned long nr_freed = (1 << cachep->gfporder);
1673
1674 kmemcheck_free_shadow(page, cachep->gfporder);
1675
1676 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1677 sub_zone_page_state(page_zone(page),
1678 NR_SLAB_RECLAIMABLE, nr_freed);
1679 else
1680 sub_zone_page_state(page_zone(page),
1681 NR_SLAB_UNRECLAIMABLE, nr_freed);
1682
1683 BUG_ON(!PageSlab(page));
1684 __ClearPageSlabPfmemalloc(page);
1685 __ClearPageSlab(page);
1686 page_mapcount_reset(page);
1687 page->mapping = NULL;
1688
1689 if (current->reclaim_state)
1690 current->reclaim_state->reclaimed_slab += nr_freed;
1691 __free_pages(page, cachep->gfporder);
1692 memcg_uncharge_slab(cachep, cachep->gfporder);
1693}
1694
1695static void kmem_rcu_free(struct rcu_head *head)
1696{
1697 struct kmem_cache *cachep;
1698 struct page *page;
1699
1700 page = container_of(head, struct page, rcu_head);
1701 cachep = page->slab_cache;
1702
1703 kmem_freepages(cachep, page);
1704}
1705
1706#if DEBUG
1707
1708#ifdef CONFIG_DEBUG_PAGEALLOC
1709static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1710 unsigned long caller)
1711{
1712 int size = cachep->object_size;
1713
1714 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1715
1716 if (size < 5 * sizeof(unsigned long))
1717 return;
1718
1719 *addr++ = 0x12345678;
1720 *addr++ = caller;
1721 *addr++ = smp_processor_id();
1722 size -= 3 * sizeof(unsigned long);
1723 {
1724 unsigned long *sptr = &caller;
1725 unsigned long svalue;
1726
1727 while (!kstack_end(sptr)) {
1728 svalue = *sptr++;
1729 if (kernel_text_address(svalue)) {
1730 *addr++ = svalue;
1731 size -= sizeof(unsigned long);
1732 if (size <= sizeof(unsigned long))
1733 break;
1734 }
1735 }
1736
1737 }
1738 *addr++ = 0x87654321;
1739}
1740#endif
1741
1742static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1743{
1744 int size = cachep->object_size;
1745 addr = &((char *)addr)[obj_offset(cachep)];
1746
1747 memset(addr, val, size);
1748 *(unsigned char *)(addr + size - 1) = POISON_END;
1749}
1750
1751static void dump_line(char *data, int offset, int limit)
1752{
1753 int i;
1754 unsigned char error = 0;
1755 int bad_count = 0;
1756
1757 printk(KERN_ERR "%03x: ", offset);
1758 for (i = 0; i < limit; i++) {
1759 if (data[offset + i] != POISON_FREE) {
1760 error = data[offset + i];
1761 bad_count++;
1762 }
1763 }
1764 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1765 &data[offset], limit, 1);
1766
1767 if (bad_count == 1) {
1768 error ^= POISON_FREE;
1769 if (!(error & (error - 1))) {
1770 printk(KERN_ERR "Single bit error detected. Probably "
1771 "bad RAM.\n");
1772#ifdef CONFIG_X86
1773 printk(KERN_ERR "Run memtest86+ or a similar memory "
1774 "test tool.\n");
1775#else
1776 printk(KERN_ERR "Run a memory test tool.\n");
1777#endif
1778 }
1779 }
1780}
1781#endif
1782
1783#if DEBUG
1784
1785static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1786{
1787 int i, size;
1788 char *realobj;
1789
1790 if (cachep->flags & SLAB_RED_ZONE) {
1791 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1792 *dbg_redzone1(cachep, objp),
1793 *dbg_redzone2(cachep, objp));
1794 }
1795
1796 if (cachep->flags & SLAB_STORE_USER) {
1797 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1798 *dbg_userword(cachep, objp),
1799 *dbg_userword(cachep, objp));
1800 }
1801 realobj = (char *)objp + obj_offset(cachep);
1802 size = cachep->object_size;
1803 for (i = 0; i < size && lines; i += 16, lines--) {
1804 int limit;
1805 limit = 16;
1806 if (i + limit > size)
1807 limit = size - i;
1808 dump_line(realobj, i, limit);
1809 }
1810}
1811
1812static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1813{
1814 char *realobj;
1815 int size, i;
1816 int lines = 0;
1817
1818 realobj = (char *)objp + obj_offset(cachep);
1819 size = cachep->object_size;
1820
1821 for (i = 0; i < size; i++) {
1822 char exp = POISON_FREE;
1823 if (i == size - 1)
1824 exp = POISON_END;
1825 if (realobj[i] != exp) {
1826 int limit;
1827 /* Mismatch ! */
1828 /* Print header */
1829 if (lines == 0) {
1830 printk(KERN_ERR
1831 "Slab corruption (%s): %s start=%p, len=%d\n",
1832 print_tainted(), cachep->name, realobj, size);
1833 print_objinfo(cachep, objp, 0);
1834 }
1835 /* Hexdump the affected line */
1836 i = (i / 16) * 16;
1837 limit = 16;
1838 if (i + limit > size)
1839 limit = size - i;
1840 dump_line(realobj, i, limit);
1841 i += 16;
1842 lines++;
1843 /* Limit to 5 lines */
1844 if (lines > 5)
1845 break;
1846 }
1847 }
1848 if (lines != 0) {
1849 /* Print some data about the neighboring objects, if they
1850 * exist:
1851 */
1852 struct page *page = virt_to_head_page(objp);
1853 unsigned int objnr;
1854
1855 objnr = obj_to_index(cachep, page, objp);
1856 if (objnr) {
1857 objp = index_to_obj(cachep, page, objnr - 1);
1858 realobj = (char *)objp + obj_offset(cachep);
1859 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1860 realobj, size);
1861 print_objinfo(cachep, objp, 2);
1862 }
1863 if (objnr + 1 < cachep->num) {
1864 objp = index_to_obj(cachep, page, objnr + 1);
1865 realobj = (char *)objp + obj_offset(cachep);
1866 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1867 realobj, size);
1868 print_objinfo(cachep, objp, 2);
1869 }
1870 }
1871}
1872#endif
1873
1874#if DEBUG
1875static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1876 struct page *page)
1877{
1878 int i;
1879 for (i = 0; i < cachep->num; i++) {
1880 void *objp = index_to_obj(cachep, page, i);
1881
1882 if (cachep->flags & SLAB_POISON) {
1883#ifdef CONFIG_DEBUG_PAGEALLOC
1884 if (cachep->size % PAGE_SIZE == 0 &&
1885 OFF_SLAB(cachep))
1886 kernel_map_pages(virt_to_page(objp),
1887 cachep->size / PAGE_SIZE, 1);
1888 else
1889 check_poison_obj(cachep, objp);
1890#else
1891 check_poison_obj(cachep, objp);
1892#endif
1893 }
1894 if (cachep->flags & SLAB_RED_ZONE) {
1895 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1896 slab_error(cachep, "start of a freed object "
1897 "was overwritten");
1898 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1899 slab_error(cachep, "end of a freed object "
1900 "was overwritten");
1901 }
1902 }
1903}
1904#else
1905static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1906 struct page *page)
1907{
1908}
1909#endif
1910
1911/**
1912 * slab_destroy - destroy and release all objects in a slab
1913 * @cachep: cache pointer being destroyed
1914 * @page: page pointer being destroyed
1915 *
1916 * Destroy all the objs in a slab, and release the mem back to the system.
1917 * Before calling the slab must have been unlinked from the cache. The
1918 * cache-lock is not held/needed.
1919 */
1920static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1921{
1922 void *freelist;
1923
1924 freelist = page->freelist;
1925 slab_destroy_debugcheck(cachep, page);
1926 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1927 struct rcu_head *head;
1928
1929 /*
1930 * RCU free overloads the RCU head over the LRU.
1931 * slab_page has been overloeaded over the LRU,
1932 * however it is not used from now on so that
1933 * we can use it safely.
1934 */
1935 head = (void *)&page->rcu_head;
1936 call_rcu(head, kmem_rcu_free);
1937
1938 } else {
1939 kmem_freepages(cachep, page);
1940 }
1941
1942 /*
1943 * From now on, we don't use freelist
1944 * although actual page can be freed in rcu context
1945 */
1946 if (OFF_SLAB(cachep))
1947 kmem_cache_free(cachep->freelist_cache, freelist);
1948}
1949
1950static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1951{
1952 struct page *page, *n;
1953
1954 list_for_each_entry_safe(page, n, list, lru) {
1955 list_del(&page->lru);
1956 slab_destroy(cachep, page);
1957 }
1958}
1959
1960/**
1961 * calculate_slab_order - calculate size (page order) of slabs
1962 * @cachep: pointer to the cache that is being created
1963 * @size: size of objects to be created in this cache.
1964 * @align: required alignment for the objects.
1965 * @flags: slab allocation flags
1966 *
1967 * Also calculates the number of objects per slab.
1968 *
1969 * This could be made much more intelligent. For now, try to avoid using
1970 * high order pages for slabs. When the gfp() functions are more friendly
1971 * towards high-order requests, this should be changed.
1972 */
1973static size_t calculate_slab_order(struct kmem_cache *cachep,
1974 size_t size, size_t align, unsigned long flags)
1975{
1976 unsigned long offslab_limit;
1977 size_t left_over = 0;
1978 int gfporder;
1979
1980 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1981 unsigned int num;
1982 size_t remainder;
1983
1984 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1985 if (!num)
1986 continue;
1987
1988 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1989 if (num > SLAB_OBJ_MAX_NUM)
1990 break;
1991
1992 if (flags & CFLGS_OFF_SLAB) {
1993 size_t freelist_size_per_obj = sizeof(freelist_idx_t);
1994 /*
1995 * Max number of objs-per-slab for caches which
1996 * use off-slab slabs. Needed to avoid a possible
1997 * looping condition in cache_grow().
1998 */
1999 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
2000 freelist_size_per_obj += sizeof(char);
2001 offslab_limit = size;
2002 offslab_limit /= freelist_size_per_obj;
2003
2004 if (num > offslab_limit)
2005 break;
2006 }
2007
2008 /* Found something acceptable - save it away */
2009 cachep->num = num;
2010 cachep->gfporder = gfporder;
2011 left_over = remainder;
2012
2013 /*
2014 * A VFS-reclaimable slab tends to have most allocations
2015 * as GFP_NOFS and we really don't want to have to be allocating
2016 * higher-order pages when we are unable to shrink dcache.
2017 */
2018 if (flags & SLAB_RECLAIM_ACCOUNT)
2019 break;
2020
2021 /*
2022 * Large number of objects is good, but very large slabs are
2023 * currently bad for the gfp()s.
2024 */
2025 if (gfporder >= slab_max_order)
2026 break;
2027
2028 /*
2029 * Acceptable internal fragmentation?
2030 */
2031 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2032 break;
2033 }
2034 return left_over;
2035}
2036
2037static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2038{
2039 if (slab_state >= FULL)
2040 return enable_cpucache(cachep, gfp);
2041
2042 if (slab_state == DOWN) {
2043 /*
2044 * Note: Creation of first cache (kmem_cache).
2045 * The setup_node is taken care
2046 * of by the caller of __kmem_cache_create
2047 */
2048 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2049 slab_state = PARTIAL;
2050 } else if (slab_state == PARTIAL) {
2051 /*
2052 * Note: the second kmem_cache_create must create the cache
2053 * that's used by kmalloc(24), otherwise the creation of
2054 * further caches will BUG().
2055 */
2056 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2057
2058 /*
2059 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2060 * the second cache, then we need to set up all its node/,
2061 * otherwise the creation of further caches will BUG().
2062 */
2063 set_up_node(cachep, SIZE_AC);
2064 if (INDEX_AC == INDEX_NODE)
2065 slab_state = PARTIAL_NODE;
2066 else
2067 slab_state = PARTIAL_ARRAYCACHE;
2068 } else {
2069 /* Remaining boot caches */
2070 cachep->array[smp_processor_id()] =
2071 kmalloc(sizeof(struct arraycache_init), gfp);
2072
2073 if (slab_state == PARTIAL_ARRAYCACHE) {
2074 set_up_node(cachep, SIZE_NODE);
2075 slab_state = PARTIAL_NODE;
2076 } else {
2077 int node;
2078 for_each_online_node(node) {
2079 cachep->node[node] =
2080 kmalloc_node(sizeof(struct kmem_cache_node),
2081 gfp, node);
2082 BUG_ON(!cachep->node[node]);
2083 kmem_cache_node_init(cachep->node[node]);
2084 }
2085 }
2086 }
2087 cachep->node[numa_mem_id()]->next_reap =
2088 jiffies + REAPTIMEOUT_NODE +
2089 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
2090
2091 cpu_cache_get(cachep)->avail = 0;
2092 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2093 cpu_cache_get(cachep)->batchcount = 1;
2094 cpu_cache_get(cachep)->touched = 0;
2095 cachep->batchcount = 1;
2096 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2097 return 0;
2098}
2099
2100/**
2101 * __kmem_cache_create - Create a cache.
2102 * @cachep: cache management descriptor
2103 * @flags: SLAB flags
2104 *
2105 * Returns a ptr to the cache on success, NULL on failure.
2106 * Cannot be called within a int, but can be interrupted.
2107 * The @ctor is run when new pages are allocated by the cache.
2108 *
2109 * The flags are
2110 *
2111 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2112 * to catch references to uninitialised memory.
2113 *
2114 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2115 * for buffer overruns.
2116 *
2117 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2118 * cacheline. This can be beneficial if you're counting cycles as closely
2119 * as davem.
2120 */
2121int
2122__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2123{
2124 size_t left_over, freelist_size, ralign;
2125 gfp_t gfp;
2126 int err;
2127 size_t size = cachep->size;
2128
2129#if DEBUG
2130#if FORCED_DEBUG
2131 /*
2132 * Enable redzoning and last user accounting, except for caches with
2133 * large objects, if the increased size would increase the object size
2134 * above the next power of two: caches with object sizes just above a
2135 * power of two have a significant amount of internal fragmentation.
2136 */
2137 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2138 2 * sizeof(unsigned long long)))
2139 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2140 if (!(flags & SLAB_DESTROY_BY_RCU))
2141 flags |= SLAB_POISON;
2142#endif
2143 if (flags & SLAB_DESTROY_BY_RCU)
2144 BUG_ON(flags & SLAB_POISON);
2145#endif
2146
2147 /*
2148 * Check that size is in terms of words. This is needed to avoid
2149 * unaligned accesses for some archs when redzoning is used, and makes
2150 * sure any on-slab bufctl's are also correctly aligned.
2151 */
2152 if (size & (BYTES_PER_WORD - 1)) {
2153 size += (BYTES_PER_WORD - 1);
2154 size &= ~(BYTES_PER_WORD - 1);
2155 }
2156
2157 /*
2158 * Redzoning and user store require word alignment or possibly larger.
2159 * Note this will be overridden by architecture or caller mandated
2160 * alignment if either is greater than BYTES_PER_WORD.
2161 */
2162 if (flags & SLAB_STORE_USER)
2163 ralign = BYTES_PER_WORD;
2164
2165 if (flags & SLAB_RED_ZONE) {
2166 ralign = REDZONE_ALIGN;
2167 /* If redzoning, ensure that the second redzone is suitably
2168 * aligned, by adjusting the object size accordingly. */
2169 size += REDZONE_ALIGN - 1;
2170 size &= ~(REDZONE_ALIGN - 1);
2171 }
2172
2173 /* 3) caller mandated alignment */
2174 if (ralign < cachep->align) {
2175 ralign = cachep->align;
2176 }
2177 /* disable debug if necessary */
2178 if (ralign > __alignof__(unsigned long long))
2179 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2180 /*
2181 * 4) Store it.
2182 */
2183 cachep->align = ralign;
2184
2185 if (slab_is_available())
2186 gfp = GFP_KERNEL;
2187 else
2188 gfp = GFP_NOWAIT;
2189
2190 setup_node_pointer(cachep);
2191#if DEBUG
2192
2193 /*
2194 * Both debugging options require word-alignment which is calculated
2195 * into align above.
2196 */
2197 if (flags & SLAB_RED_ZONE) {
2198 /* add space for red zone words */
2199 cachep->obj_offset += sizeof(unsigned long long);
2200 size += 2 * sizeof(unsigned long long);
2201 }
2202 if (flags & SLAB_STORE_USER) {
2203 /* user store requires one word storage behind the end of
2204 * the real object. But if the second red zone needs to be
2205 * aligned to 64 bits, we must allow that much space.
2206 */
2207 if (flags & SLAB_RED_ZONE)
2208 size += REDZONE_ALIGN;
2209 else
2210 size += BYTES_PER_WORD;
2211 }
2212#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2213 if (size >= kmalloc_size(INDEX_NODE + 1)
2214 && cachep->object_size > cache_line_size()
2215 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2216 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2217 size = PAGE_SIZE;
2218 }
2219#endif
2220#endif
2221
2222 /*
2223 * Determine if the slab management is 'on' or 'off' slab.
2224 * (bootstrapping cannot cope with offslab caches so don't do
2225 * it too early on. Always use on-slab management when
2226 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2227 */
2228 if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2229 !(flags & SLAB_NOLEAKTRACE))
2230 /*
2231 * Size is large, assume best to place the slab management obj
2232 * off-slab (should allow better packing of objs).
2233 */
2234 flags |= CFLGS_OFF_SLAB;
2235
2236 size = ALIGN(size, cachep->align);
2237 /*
2238 * We should restrict the number of objects in a slab to implement
2239 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2240 */
2241 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2242 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2243
2244 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2245
2246 if (!cachep->num)
2247 return -E2BIG;
2248
2249 freelist_size = calculate_freelist_size(cachep->num, cachep->align);
2250
2251 /*
2252 * If the slab has been placed off-slab, and we have enough space then
2253 * move it on-slab. This is at the expense of any extra colouring.
2254 */
2255 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2256 flags &= ~CFLGS_OFF_SLAB;
2257 left_over -= freelist_size;
2258 }
2259
2260 if (flags & CFLGS_OFF_SLAB) {
2261 /* really off slab. No need for manual alignment */
2262 freelist_size = calculate_freelist_size(cachep->num, 0);
2263
2264#ifdef CONFIG_PAGE_POISONING
2265 /* If we're going to use the generic kernel_map_pages()
2266 * poisoning, then it's going to smash the contents of
2267 * the redzone and userword anyhow, so switch them off.
2268 */
2269 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2270 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2271#endif
2272 }
2273
2274 cachep->colour_off = cache_line_size();
2275 /* Offset must be a multiple of the alignment. */
2276 if (cachep->colour_off < cachep->align)
2277 cachep->colour_off = cachep->align;
2278 cachep->colour = left_over / cachep->colour_off;
2279 cachep->freelist_size = freelist_size;
2280 cachep->flags = flags;
2281 cachep->allocflags = __GFP_COMP;
2282 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2283 cachep->allocflags |= GFP_DMA;
2284 cachep->size = size;
2285 cachep->reciprocal_buffer_size = reciprocal_value(size);
2286
2287 if (flags & CFLGS_OFF_SLAB) {
2288 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2289 /*
2290 * This is a possibility for one of the kmalloc_{dma,}_caches.
2291 * But since we go off slab only for object size greater than
2292 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2293 * in ascending order,this should not happen at all.
2294 * But leave a BUG_ON for some lucky dude.
2295 */
2296 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2297 }
2298
2299 err = setup_cpu_cache(cachep, gfp);
2300 if (err) {
2301 __kmem_cache_shutdown(cachep);
2302 return err;
2303 }
2304
2305 return 0;
2306}
2307
2308#if DEBUG
2309static void check_irq_off(void)
2310{
2311 BUG_ON(!irqs_disabled());
2312}
2313
2314static void check_irq_on(void)
2315{
2316 BUG_ON(irqs_disabled());
2317}
2318
2319static void check_spinlock_acquired(struct kmem_cache *cachep)
2320{
2321#ifdef CONFIG_SMP
2322 check_irq_off();
2323 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2324#endif
2325}
2326
2327static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2328{
2329#ifdef CONFIG_SMP
2330 check_irq_off();
2331 assert_spin_locked(&get_node(cachep, node)->list_lock);
2332#endif
2333}
2334
2335#else
2336#define check_irq_off() do { } while(0)
2337#define check_irq_on() do { } while(0)
2338#define check_spinlock_acquired(x) do { } while(0)
2339#define check_spinlock_acquired_node(x, y) do { } while(0)
2340#endif
2341
2342static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2343 struct array_cache *ac,
2344 int force, int node);
2345
2346static void do_drain(void *arg)
2347{
2348 struct kmem_cache *cachep = arg;
2349 struct array_cache *ac;
2350 int node = numa_mem_id();
2351 struct kmem_cache_node *n;
2352 LIST_HEAD(list);
2353
2354 check_irq_off();
2355 ac = cpu_cache_get(cachep);
2356 n = get_node(cachep, node);
2357 spin_lock(&n->list_lock);
2358 free_block(cachep, ac->entry, ac->avail, node, &list);
2359 spin_unlock(&n->list_lock);
2360 slabs_destroy(cachep, &list);
2361 ac->avail = 0;
2362}
2363
2364static void drain_cpu_caches(struct kmem_cache *cachep)
2365{
2366 struct kmem_cache_node *n;
2367 int node;
2368
2369 on_each_cpu(do_drain, cachep, 1);
2370 check_irq_on();
2371 for_each_kmem_cache_node(cachep, node, n)
2372 if (n->alien)
2373 drain_alien_cache(cachep, n->alien);
2374
2375 for_each_kmem_cache_node(cachep, node, n)
2376 drain_array(cachep, n, n->shared, 1, node);
2377}
2378
2379/*
2380 * Remove slabs from the list of free slabs.
2381 * Specify the number of slabs to drain in tofree.
2382 *
2383 * Returns the actual number of slabs released.
2384 */
2385static int drain_freelist(struct kmem_cache *cache,
2386 struct kmem_cache_node *n, int tofree)
2387{
2388 struct list_head *p;
2389 int nr_freed;
2390 struct page *page;
2391
2392 nr_freed = 0;
2393 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2394
2395 spin_lock_irq(&n->list_lock);
2396 p = n->slabs_free.prev;
2397 if (p == &n->slabs_free) {
2398 spin_unlock_irq(&n->list_lock);
2399 goto out;
2400 }
2401
2402 page = list_entry(p, struct page, lru);
2403#if DEBUG
2404 BUG_ON(page->active);
2405#endif
2406 list_del(&page->lru);
2407 /*
2408 * Safe to drop the lock. The slab is no longer linked
2409 * to the cache.
2410 */
2411 n->free_objects -= cache->num;
2412 spin_unlock_irq(&n->list_lock);
2413 slab_destroy(cache, page);
2414 nr_freed++;
2415 }
2416out:
2417 return nr_freed;
2418}
2419
2420int __kmem_cache_shrink(struct kmem_cache *cachep)
2421{
2422 int ret = 0;
2423 int node;
2424 struct kmem_cache_node *n;
2425
2426 drain_cpu_caches(cachep);
2427
2428 check_irq_on();
2429 for_each_kmem_cache_node(cachep, node, n) {
2430 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2431
2432 ret += !list_empty(&n->slabs_full) ||
2433 !list_empty(&n->slabs_partial);
2434 }
2435 return (ret ? 1 : 0);
2436}
2437
2438int __kmem_cache_shutdown(struct kmem_cache *cachep)
2439{
2440 int i;
2441 struct kmem_cache_node *n;
2442 int rc = __kmem_cache_shrink(cachep);
2443
2444 if (rc)
2445 return rc;
2446
2447 for_each_online_cpu(i)
2448 kfree(cachep->array[i]);
2449
2450 /* NUMA: free the node structures */
2451 for_each_kmem_cache_node(cachep, i, n) {
2452 kfree(n->shared);
2453 free_alien_cache(n->alien);
2454 kfree(n);
2455 cachep->node[i] = NULL;
2456 }
2457 return 0;
2458}
2459
2460/*
2461 * Get the memory for a slab management obj.
2462 *
2463 * For a slab cache when the slab descriptor is off-slab, the
2464 * slab descriptor can't come from the same cache which is being created,
2465 * Because if it is the case, that means we defer the creation of
2466 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2467 * And we eventually call down to __kmem_cache_create(), which
2468 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2469 * This is a "chicken-and-egg" problem.
2470 *
2471 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2472 * which are all initialized during kmem_cache_init().
2473 */
2474static void *alloc_slabmgmt(struct kmem_cache *cachep,
2475 struct page *page, int colour_off,
2476 gfp_t local_flags, int nodeid)
2477{
2478 void *freelist;
2479 void *addr = page_address(page);
2480
2481 if (OFF_SLAB(cachep)) {
2482 /* Slab management obj is off-slab. */
2483 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2484 local_flags, nodeid);
2485 if (!freelist)
2486 return NULL;
2487 } else {
2488 freelist = addr + colour_off;
2489 colour_off += cachep->freelist_size;
2490 }
2491 page->active = 0;
2492 page->s_mem = addr + colour_off;
2493 return freelist;
2494}
2495
2496static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2497{
2498 return ((freelist_idx_t *)page->freelist)[idx];
2499}
2500
2501static inline void set_free_obj(struct page *page,
2502 unsigned int idx, freelist_idx_t val)
2503{
2504 ((freelist_idx_t *)(page->freelist))[idx] = val;
2505}
2506
2507static void cache_init_objs(struct kmem_cache *cachep,
2508 struct page *page)
2509{
2510 int i;
2511
2512 for (i = 0; i < cachep->num; i++) {
2513 void *objp = index_to_obj(cachep, page, i);
2514#if DEBUG
2515 /* need to poison the objs? */
2516 if (cachep->flags & SLAB_POISON)
2517 poison_obj(cachep, objp, POISON_FREE);
2518 if (cachep->flags & SLAB_STORE_USER)
2519 *dbg_userword(cachep, objp) = NULL;
2520
2521 if (cachep->flags & SLAB_RED_ZONE) {
2522 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2523 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2524 }
2525 /*
2526 * Constructors are not allowed to allocate memory from the same
2527 * cache which they are a constructor for. Otherwise, deadlock.
2528 * They must also be threaded.
2529 */
2530 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2531 cachep->ctor(objp + obj_offset(cachep));
2532
2533 if (cachep->flags & SLAB_RED_ZONE) {
2534 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2535 slab_error(cachep, "constructor overwrote the"
2536 " end of an object");
2537 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2538 slab_error(cachep, "constructor overwrote the"
2539 " start of an object");
2540 }
2541 if ((cachep->size % PAGE_SIZE) == 0 &&
2542 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2543 kernel_map_pages(virt_to_page(objp),
2544 cachep->size / PAGE_SIZE, 0);
2545#else
2546 if (cachep->ctor)
2547 cachep->ctor(objp);
2548#endif
2549 set_obj_status(page, i, OBJECT_FREE);
2550 set_free_obj(page, i, i);
2551 }
2552}
2553
2554static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2555{
2556 if (CONFIG_ZONE_DMA_FLAG) {
2557 if (flags & GFP_DMA)
2558 BUG_ON(!(cachep->allocflags & GFP_DMA));
2559 else
2560 BUG_ON(cachep->allocflags & GFP_DMA);
2561 }
2562}
2563
2564static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2565 int nodeid)
2566{
2567 void *objp;
2568
2569 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2570 page->active++;
2571#if DEBUG
2572 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2573#endif
2574
2575 return objp;
2576}
2577
2578static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2579 void *objp, int nodeid)
2580{
2581 unsigned int objnr = obj_to_index(cachep, page, objp);
2582#if DEBUG
2583 unsigned int i;
2584
2585 /* Verify that the slab belongs to the intended node */
2586 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2587
2588 /* Verify double free bug */
2589 for (i = page->active; i < cachep->num; i++) {
2590 if (get_free_obj(page, i) == objnr) {
2591 printk(KERN_ERR "slab: double free detected in cache "
2592 "'%s', objp %p\n", cachep->name, objp);
2593 BUG();
2594 }
2595 }
2596#endif
2597 page->active--;
2598 set_free_obj(page, page->active, objnr);
2599}
2600
2601/*
2602 * Map pages beginning at addr to the given cache and slab. This is required
2603 * for the slab allocator to be able to lookup the cache and slab of a
2604 * virtual address for kfree, ksize, and slab debugging.
2605 */
2606static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2607 void *freelist)
2608{
2609 page->slab_cache = cache;
2610 page->freelist = freelist;
2611}
2612
2613/*
2614 * Grow (by 1) the number of slabs within a cache. This is called by
2615 * kmem_cache_alloc() when there are no active objs left in a cache.
2616 */
2617static int cache_grow(struct kmem_cache *cachep,
2618 gfp_t flags, int nodeid, struct page *page)
2619{
2620 void *freelist;
2621 size_t offset;
2622 gfp_t local_flags;
2623 struct kmem_cache_node *n;
2624
2625 /*
2626 * Be lazy and only check for valid flags here, keeping it out of the
2627 * critical path in kmem_cache_alloc().
2628 */
2629 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2630 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2631
2632 /* Take the node list lock to change the colour_next on this node */
2633 check_irq_off();
2634 n = get_node(cachep, nodeid);
2635 spin_lock(&n->list_lock);
2636
2637 /* Get colour for the slab, and cal the next value. */
2638 offset = n->colour_next;
2639 n->colour_next++;
2640 if (n->colour_next >= cachep->colour)
2641 n->colour_next = 0;
2642 spin_unlock(&n->list_lock);
2643
2644 offset *= cachep->colour_off;
2645
2646 if (local_flags & __GFP_WAIT)
2647 local_irq_enable();
2648
2649 /*
2650 * The test for missing atomic flag is performed here, rather than
2651 * the more obvious place, simply to reduce the critical path length
2652 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2653 * will eventually be caught here (where it matters).
2654 */
2655 kmem_flagcheck(cachep, flags);
2656
2657 /*
2658 * Get mem for the objs. Attempt to allocate a physical page from
2659 * 'nodeid'.
2660 */
2661 if (!page)
2662 page = kmem_getpages(cachep, local_flags, nodeid);
2663 if (!page)
2664 goto failed;
2665
2666 /* Get slab management. */
2667 freelist = alloc_slabmgmt(cachep, page, offset,
2668 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2669 if (!freelist)
2670 goto opps1;
2671
2672 slab_map_pages(cachep, page, freelist);
2673
2674 cache_init_objs(cachep, page);
2675
2676 if (local_flags & __GFP_WAIT)
2677 local_irq_disable();
2678 check_irq_off();
2679 spin_lock(&n->list_lock);
2680
2681 /* Make slab active. */
2682 list_add_tail(&page->lru, &(n->slabs_free));
2683 STATS_INC_GROWN(cachep);
2684 n->free_objects += cachep->num;
2685 spin_unlock(&n->list_lock);
2686 return 1;
2687opps1:
2688 kmem_freepages(cachep, page);
2689failed:
2690 if (local_flags & __GFP_WAIT)
2691 local_irq_disable();
2692 return 0;
2693}
2694
2695#if DEBUG
2696
2697/*
2698 * Perform extra freeing checks:
2699 * - detect bad pointers.
2700 * - POISON/RED_ZONE checking
2701 */
2702static void kfree_debugcheck(const void *objp)
2703{
2704 if (!virt_addr_valid(objp)) {
2705 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2706 (unsigned long)objp);
2707 BUG();
2708 }
2709}
2710
2711static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2712{
2713 unsigned long long redzone1, redzone2;
2714
2715 redzone1 = *dbg_redzone1(cache, obj);
2716 redzone2 = *dbg_redzone2(cache, obj);
2717
2718 /*
2719 * Redzone is ok.
2720 */
2721 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2722 return;
2723
2724 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2725 slab_error(cache, "double free detected");
2726 else
2727 slab_error(cache, "memory outside object was overwritten");
2728
2729 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2730 obj, redzone1, redzone2);
2731}
2732
2733static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2734 unsigned long caller)
2735{
2736 unsigned int objnr;
2737 struct page *page;
2738
2739 BUG_ON(virt_to_cache(objp) != cachep);
2740
2741 objp -= obj_offset(cachep);
2742 kfree_debugcheck(objp);
2743 page = virt_to_head_page(objp);
2744
2745 if (cachep->flags & SLAB_RED_ZONE) {
2746 verify_redzone_free(cachep, objp);
2747 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2748 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2749 }
2750 if (cachep->flags & SLAB_STORE_USER)
2751 *dbg_userword(cachep, objp) = (void *)caller;
2752
2753 objnr = obj_to_index(cachep, page, objp);
2754
2755 BUG_ON(objnr >= cachep->num);
2756 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2757
2758 set_obj_status(page, objnr, OBJECT_FREE);
2759 if (cachep->flags & SLAB_POISON) {
2760#ifdef CONFIG_DEBUG_PAGEALLOC
2761 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2762 store_stackinfo(cachep, objp, caller);
2763 kernel_map_pages(virt_to_page(objp),
2764 cachep->size / PAGE_SIZE, 0);
2765 } else {
2766 poison_obj(cachep, objp, POISON_FREE);
2767 }
2768#else
2769 poison_obj(cachep, objp, POISON_FREE);
2770#endif
2771 }
2772 return objp;
2773}
2774
2775#else
2776#define kfree_debugcheck(x) do { } while(0)
2777#define cache_free_debugcheck(x,objp,z) (objp)
2778#endif
2779
2780static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2781 bool force_refill)
2782{
2783 int batchcount;
2784 struct kmem_cache_node *n;
2785 struct array_cache *ac;
2786 int node;
2787
2788 check_irq_off();
2789 node = numa_mem_id();
2790 if (unlikely(force_refill))
2791 goto force_grow;
2792retry:
2793 ac = cpu_cache_get(cachep);
2794 batchcount = ac->batchcount;
2795 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2796 /*
2797 * If there was little recent activity on this cache, then
2798 * perform only a partial refill. Otherwise we could generate
2799 * refill bouncing.
2800 */
2801 batchcount = BATCHREFILL_LIMIT;
2802 }
2803 n = get_node(cachep, node);
2804
2805 BUG_ON(ac->avail > 0 || !n);
2806 spin_lock(&n->list_lock);
2807
2808 /* See if we can refill from the shared array */
2809 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2810 n->shared->touched = 1;
2811 goto alloc_done;
2812 }
2813
2814 while (batchcount > 0) {
2815 struct list_head *entry;
2816 struct page *page;
2817 /* Get slab alloc is to come from. */
2818 entry = n->slabs_partial.next;
2819 if (entry == &n->slabs_partial) {
2820 n->free_touched = 1;
2821 entry = n->slabs_free.next;
2822 if (entry == &n->slabs_free)
2823 goto must_grow;
2824 }
2825
2826 page = list_entry(entry, struct page, lru);
2827 check_spinlock_acquired(cachep);
2828
2829 /*
2830 * The slab was either on partial or free list so
2831 * there must be at least one object available for
2832 * allocation.
2833 */
2834 BUG_ON(page->active >= cachep->num);
2835
2836 while (page->active < cachep->num && batchcount--) {
2837 STATS_INC_ALLOCED(cachep);
2838 STATS_INC_ACTIVE(cachep);
2839 STATS_SET_HIGH(cachep);
2840
2841 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2842 node));
2843 }
2844
2845 /* move slabp to correct slabp list: */
2846 list_del(&page->lru);
2847 if (page->active == cachep->num)
2848 list_add(&page->lru, &n->slabs_full);
2849 else
2850 list_add(&page->lru, &n->slabs_partial);
2851 }
2852
2853must_grow:
2854 n->free_objects -= ac->avail;
2855alloc_done:
2856 spin_unlock(&n->list_lock);
2857
2858 if (unlikely(!ac->avail)) {
2859 int x;
2860force_grow:
2861 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2862
2863 /* cache_grow can reenable interrupts, then ac could change. */
2864 ac = cpu_cache_get(cachep);
2865 node = numa_mem_id();
2866
2867 /* no objects in sight? abort */
2868 if (!x && (ac->avail == 0 || force_refill))
2869 return NULL;
2870
2871 if (!ac->avail) /* objects refilled by interrupt? */
2872 goto retry;
2873 }
2874 ac->touched = 1;
2875
2876 return ac_get_obj(cachep, ac, flags, force_refill);
2877}
2878
2879static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2880 gfp_t flags)
2881{
2882 might_sleep_if(flags & __GFP_WAIT);
2883#if DEBUG
2884 kmem_flagcheck(cachep, flags);
2885#endif
2886}
2887
2888#if DEBUG
2889static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2890 gfp_t flags, void *objp, unsigned long caller)
2891{
2892 struct page *page;
2893
2894 if (!objp)
2895 return objp;
2896 if (cachep->flags & SLAB_POISON) {
2897#ifdef CONFIG_DEBUG_PAGEALLOC
2898 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2899 kernel_map_pages(virt_to_page(objp),
2900 cachep->size / PAGE_SIZE, 1);
2901 else
2902 check_poison_obj(cachep, objp);
2903#else
2904 check_poison_obj(cachep, objp);
2905#endif
2906 poison_obj(cachep, objp, POISON_INUSE);
2907 }
2908 if (cachep->flags & SLAB_STORE_USER)
2909 *dbg_userword(cachep, objp) = (void *)caller;
2910
2911 if (cachep->flags & SLAB_RED_ZONE) {
2912 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2913 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2914 slab_error(cachep, "double free, or memory outside"
2915 " object was overwritten");
2916 printk(KERN_ERR
2917 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2918 objp, *dbg_redzone1(cachep, objp),
2919 *dbg_redzone2(cachep, objp));
2920 }
2921 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2922 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2923 }
2924
2925 page = virt_to_head_page(objp);
2926 set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
2927 objp += obj_offset(cachep);
2928 if (cachep->ctor && cachep->flags & SLAB_POISON)
2929 cachep->ctor(objp);
2930 if (ARCH_SLAB_MINALIGN &&
2931 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2932 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2933 objp, (int)ARCH_SLAB_MINALIGN);
2934 }
2935 return objp;
2936}
2937#else
2938#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2939#endif
2940
2941static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2942{
2943 if (unlikely(cachep == kmem_cache))
2944 return false;
2945
2946 return should_failslab(cachep->object_size, flags, cachep->flags);
2947}
2948
2949static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2950{
2951 void *objp;
2952 struct array_cache *ac;
2953 bool force_refill = false;
2954
2955 check_irq_off();
2956
2957 ac = cpu_cache_get(cachep);
2958 if (likely(ac->avail)) {
2959 ac->touched = 1;
2960 objp = ac_get_obj(cachep, ac, flags, false);
2961
2962 /*
2963 * Allow for the possibility all avail objects are not allowed
2964 * by the current flags
2965 */
2966 if (objp) {
2967 STATS_INC_ALLOCHIT(cachep);
2968 goto out;
2969 }
2970 force_refill = true;
2971 }
2972
2973 STATS_INC_ALLOCMISS(cachep);
2974 objp = cache_alloc_refill(cachep, flags, force_refill);
2975 /*
2976 * the 'ac' may be updated by cache_alloc_refill(),
2977 * and kmemleak_erase() requires its correct value.
2978 */
2979 ac = cpu_cache_get(cachep);
2980
2981out:
2982 /*
2983 * To avoid a false negative, if an object that is in one of the
2984 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2985 * treat the array pointers as a reference to the object.
2986 */
2987 if (objp)
2988 kmemleak_erase(&ac->entry[ac->avail]);
2989 return objp;
2990}
2991
2992#ifdef CONFIG_NUMA
2993/*
2994 * Try allocating on another node if PF_SPREAD_SLAB is a mempolicy is set.
2995 *
2996 * If we are in_interrupt, then process context, including cpusets and
2997 * mempolicy, may not apply and should not be used for allocation policy.
2998 */
2999static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3000{
3001 int nid_alloc, nid_here;
3002
3003 if (in_interrupt() || (flags & __GFP_THISNODE))
3004 return NULL;
3005 nid_alloc = nid_here = numa_mem_id();
3006 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3007 nid_alloc = cpuset_slab_spread_node();
3008 else if (current->mempolicy)
3009 nid_alloc = mempolicy_slab_node();
3010 if (nid_alloc != nid_here)
3011 return ____cache_alloc_node(cachep, flags, nid_alloc);
3012 return NULL;
3013}
3014
3015/*
3016 * Fallback function if there was no memory available and no objects on a
3017 * certain node and fall back is permitted. First we scan all the
3018 * available node for available objects. If that fails then we
3019 * perform an allocation without specifying a node. This allows the page
3020 * allocator to do its reclaim / fallback magic. We then insert the
3021 * slab into the proper nodelist and then allocate from it.
3022 */
3023static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3024{
3025 struct zonelist *zonelist;
3026 gfp_t local_flags;
3027 struct zoneref *z;
3028 struct zone *zone;
3029 enum zone_type high_zoneidx = gfp_zone(flags);
3030 void *obj = NULL;
3031 int nid;
3032 unsigned int cpuset_mems_cookie;
3033
3034 if (flags & __GFP_THISNODE)
3035 return NULL;
3036
3037 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3038
3039retry_cpuset:
3040 cpuset_mems_cookie = read_mems_allowed_begin();
3041 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3042
3043retry:
3044 /*
3045 * Look through allowed nodes for objects available
3046 * from existing per node queues.
3047 */
3048 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3049 nid = zone_to_nid(zone);
3050
3051 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3052 get_node(cache, nid) &&
3053 get_node(cache, nid)->free_objects) {
3054 obj = ____cache_alloc_node(cache,
3055 flags | GFP_THISNODE, nid);
3056 if (obj)
3057 break;
3058 }
3059 }
3060
3061 if (!obj) {
3062 /*
3063 * This allocation will be performed within the constraints
3064 * of the current cpuset / memory policy requirements.
3065 * We may trigger various forms of reclaim on the allowed
3066 * set and go into memory reserves if necessary.
3067 */
3068 struct page *page;
3069
3070 if (local_flags & __GFP_WAIT)
3071 local_irq_enable();
3072 kmem_flagcheck(cache, flags);
3073 page = kmem_getpages(cache, local_flags, numa_mem_id());
3074 if (local_flags & __GFP_WAIT)
3075 local_irq_disable();
3076 if (page) {
3077 /*
3078 * Insert into the appropriate per node queues
3079 */
3080 nid = page_to_nid(page);
3081 if (cache_grow(cache, flags, nid, page)) {
3082 obj = ____cache_alloc_node(cache,
3083 flags | GFP_THISNODE, nid);
3084 if (!obj)
3085 /*
3086 * Another processor may allocate the
3087 * objects in the slab since we are
3088 * not holding any locks.
3089 */
3090 goto retry;
3091 } else {
3092 /* cache_grow already freed obj */
3093 obj = NULL;
3094 }
3095 }
3096 }
3097
3098 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3099 goto retry_cpuset;
3100 return obj;
3101}
3102
3103/*
3104 * A interface to enable slab creation on nodeid
3105 */
3106static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3107 int nodeid)
3108{
3109 struct list_head *entry;
3110 struct page *page;
3111 struct kmem_cache_node *n;
3112 void *obj;
3113 int x;
3114
3115 VM_BUG_ON(nodeid > num_online_nodes());
3116 n = get_node(cachep, nodeid);
3117 BUG_ON(!n);
3118
3119retry:
3120 check_irq_off();
3121 spin_lock(&n->list_lock);
3122 entry = n->slabs_partial.next;
3123 if (entry == &n->slabs_partial) {
3124 n->free_touched = 1;
3125 entry = n->slabs_free.next;
3126 if (entry == &n->slabs_free)
3127 goto must_grow;
3128 }
3129
3130 page = list_entry(entry, struct page, lru);
3131 check_spinlock_acquired_node(cachep, nodeid);
3132
3133 STATS_INC_NODEALLOCS(cachep);
3134 STATS_INC_ACTIVE(cachep);
3135 STATS_SET_HIGH(cachep);
3136
3137 BUG_ON(page->active == cachep->num);
3138
3139 obj = slab_get_obj(cachep, page, nodeid);
3140 n->free_objects--;
3141 /* move slabp to correct slabp list: */
3142 list_del(&page->lru);
3143
3144 if (page->active == cachep->num)
3145 list_add(&page->lru, &n->slabs_full);
3146 else
3147 list_add(&page->lru, &n->slabs_partial);
3148
3149 spin_unlock(&n->list_lock);
3150 goto done;
3151
3152must_grow:
3153 spin_unlock(&n->list_lock);
3154 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3155 if (x)
3156 goto retry;
3157
3158 return fallback_alloc(cachep, flags);
3159
3160done:
3161 return obj;
3162}
3163
3164static __always_inline void *
3165slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3166 unsigned long caller)
3167{
3168 unsigned long save_flags;
3169 void *ptr;
3170 int slab_node = numa_mem_id();
3171
3172 flags &= gfp_allowed_mask;
3173
3174 lockdep_trace_alloc(flags);
3175
3176 if (slab_should_failslab(cachep, flags))
3177 return NULL;
3178
3179 cachep = memcg_kmem_get_cache(cachep, flags);
3180
3181 cache_alloc_debugcheck_before(cachep, flags);
3182 local_irq_save(save_flags);
3183
3184 if (nodeid == NUMA_NO_NODE)
3185 nodeid = slab_node;
3186
3187 if (unlikely(!get_node(cachep, nodeid))) {
3188 /* Node not bootstrapped yet */
3189 ptr = fallback_alloc(cachep, flags);
3190 goto out;
3191 }
3192
3193 if (nodeid == slab_node) {
3194 /*
3195 * Use the locally cached objects if possible.
3196 * However ____cache_alloc does not allow fallback
3197 * to other nodes. It may fail while we still have
3198 * objects on other nodes available.
3199 */
3200 ptr = ____cache_alloc(cachep, flags);
3201 if (ptr)
3202 goto out;
3203 }
3204 /* ___cache_alloc_node can fall back to other nodes */
3205 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3206 out:
3207 local_irq_restore(save_flags);
3208 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3209 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3210 flags);
3211
3212 if (likely(ptr)) {
3213 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3214 if (unlikely(flags & __GFP_ZERO))
3215 memset(ptr, 0, cachep->object_size);
3216 }
3217
3218 return ptr;
3219}
3220
3221static __always_inline void *
3222__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3223{
3224 void *objp;
3225
3226 if (current->mempolicy || unlikely(current->flags & PF_SPREAD_SLAB)) {
3227 objp = alternate_node_alloc(cache, flags);
3228 if (objp)
3229 goto out;
3230 }
3231 objp = ____cache_alloc(cache, flags);
3232
3233 /*
3234 * We may just have run out of memory on the local node.
3235 * ____cache_alloc_node() knows how to locate memory on other nodes
3236 */
3237 if (!objp)
3238 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3239
3240 out:
3241 return objp;
3242}
3243#else
3244
3245static __always_inline void *
3246__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3247{
3248 return ____cache_alloc(cachep, flags);
3249}
3250
3251#endif /* CONFIG_NUMA */
3252
3253static __always_inline void *
3254slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3255{
3256 unsigned long save_flags;
3257 void *objp;
3258
3259 flags &= gfp_allowed_mask;
3260
3261 lockdep_trace_alloc(flags);
3262
3263 if (slab_should_failslab(cachep, flags))
3264 return NULL;
3265
3266 cachep = memcg_kmem_get_cache(cachep, flags);
3267
3268 cache_alloc_debugcheck_before(cachep, flags);
3269 local_irq_save(save_flags);
3270 objp = __do_cache_alloc(cachep, flags);
3271 local_irq_restore(save_flags);
3272 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3273 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3274 flags);
3275 prefetchw(objp);
3276
3277 if (likely(objp)) {
3278 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3279 if (unlikely(flags & __GFP_ZERO))
3280 memset(objp, 0, cachep->object_size);
3281 }
3282
3283 return objp;
3284}
3285
3286/*
3287 * Caller needs to acquire correct kmem_cache_node's list_lock
3288 * @list: List of detached free slabs should be freed by caller
3289 */
3290static void free_block(struct kmem_cache *cachep, void **objpp,
3291 int nr_objects, int node, struct list_head *list)
3292{
3293 int i;
3294 struct kmem_cache_node *n = get_node(cachep, node);
3295
3296 for (i = 0; i < nr_objects; i++) {
3297 void *objp;
3298 struct page *page;
3299
3300 clear_obj_pfmemalloc(&objpp[i]);
3301 objp = objpp[i];
3302
3303 page = virt_to_head_page(objp);
3304 list_del(&page->lru);
3305 check_spinlock_acquired_node(cachep, node);
3306 slab_put_obj(cachep, page, objp, node);
3307 STATS_DEC_ACTIVE(cachep);
3308 n->free_objects++;
3309
3310 /* fixup slab chains */
3311 if (page->active == 0) {
3312 if (n->free_objects > n->free_limit) {
3313 n->free_objects -= cachep->num;
3314 list_add_tail(&page->lru, list);
3315 } else {
3316 list_add(&page->lru, &n->slabs_free);
3317 }
3318 } else {
3319 /* Unconditionally move a slab to the end of the
3320 * partial list on free - maximum time for the
3321 * other objects to be freed, too.
3322 */
3323 list_add_tail(&page->lru, &n->slabs_partial);
3324 }
3325 }
3326}
3327
3328static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3329{
3330 int batchcount;
3331 struct kmem_cache_node *n;
3332 int node = numa_mem_id();
3333 LIST_HEAD(list);
3334
3335 batchcount = ac->batchcount;
3336#if DEBUG
3337 BUG_ON(!batchcount || batchcount > ac->avail);
3338#endif
3339 check_irq_off();
3340 n = get_node(cachep, node);
3341 spin_lock(&n->list_lock);
3342 if (n->shared) {
3343 struct array_cache *shared_array = n->shared;
3344 int max = shared_array->limit - shared_array->avail;
3345 if (max) {
3346 if (batchcount > max)
3347 batchcount = max;
3348 memcpy(&(shared_array->entry[shared_array->avail]),
3349 ac->entry, sizeof(void *) * batchcount);
3350 shared_array->avail += batchcount;
3351 goto free_done;
3352 }
3353 }
3354
3355 free_block(cachep, ac->entry, batchcount, node, &list);
3356free_done:
3357#if STATS
3358 {
3359 int i = 0;
3360 struct list_head *p;
3361
3362 p = n->slabs_free.next;
3363 while (p != &(n->slabs_free)) {
3364 struct page *page;
3365
3366 page = list_entry(p, struct page, lru);
3367 BUG_ON(page->active);
3368
3369 i++;
3370 p = p->next;
3371 }
3372 STATS_SET_FREEABLE(cachep, i);
3373 }
3374#endif
3375 spin_unlock(&n->list_lock);
3376 slabs_destroy(cachep, &list);
3377 ac->avail -= batchcount;
3378 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3379}
3380
3381/*
3382 * Release an obj back to its cache. If the obj has a constructed state, it must
3383 * be in this state _before_ it is released. Called with disabled ints.
3384 */
3385static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3386 unsigned long caller)
3387{
3388 struct array_cache *ac = cpu_cache_get(cachep);
3389
3390 check_irq_off();
3391 kmemleak_free_recursive(objp, cachep->flags);
3392 objp = cache_free_debugcheck(cachep, objp, caller);
3393
3394 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3395
3396 /*
3397 * Skip calling cache_free_alien() when the platform is not numa.
3398 * This will avoid cache misses that happen while accessing slabp (which
3399 * is per page memory reference) to get nodeid. Instead use a global
3400 * variable to skip the call, which is mostly likely to be present in
3401 * the cache.
3402 */
3403 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3404 return;
3405
3406 if (likely(ac->avail < ac->limit)) {
3407 STATS_INC_FREEHIT(cachep);
3408 } else {
3409 STATS_INC_FREEMISS(cachep);
3410 cache_flusharray(cachep, ac);
3411 }
3412
3413 ac_put_obj(cachep, ac, objp);
3414}
3415
3416/**
3417 * kmem_cache_alloc - Allocate an object
3418 * @cachep: The cache to allocate from.
3419 * @flags: See kmalloc().
3420 *
3421 * Allocate an object from this cache. The flags are only relevant
3422 * if the cache has no available objects.
3423 */
3424void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3425{
3426 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3427
3428 trace_kmem_cache_alloc(_RET_IP_, ret,
3429 cachep->object_size, cachep->size, flags);
3430
3431 return ret;
3432}
3433EXPORT_SYMBOL(kmem_cache_alloc);
3434
3435#ifdef CONFIG_TRACING
3436void *
3437kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3438{
3439 void *ret;
3440
3441 ret = slab_alloc(cachep, flags, _RET_IP_);
3442
3443 trace_kmalloc(_RET_IP_, ret,
3444 size, cachep->size, flags);
3445 return ret;
3446}
3447EXPORT_SYMBOL(kmem_cache_alloc_trace);
3448#endif
3449
3450#ifdef CONFIG_NUMA
3451/**
3452 * kmem_cache_alloc_node - Allocate an object on the specified node
3453 * @cachep: The cache to allocate from.
3454 * @flags: See kmalloc().
3455 * @nodeid: node number of the target node.
3456 *
3457 * Identical to kmem_cache_alloc but it will allocate memory on the given
3458 * node, which can improve the performance for cpu bound structures.
3459 *
3460 * Fallback to other node is possible if __GFP_THISNODE is not set.
3461 */
3462void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3463{
3464 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3465
3466 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3467 cachep->object_size, cachep->size,
3468 flags, nodeid);
3469
3470 return ret;
3471}
3472EXPORT_SYMBOL(kmem_cache_alloc_node);
3473
3474#ifdef CONFIG_TRACING
3475void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3476 gfp_t flags,
3477 int nodeid,
3478 size_t size)
3479{
3480 void *ret;
3481
3482 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3483
3484 trace_kmalloc_node(_RET_IP_, ret,
3485 size, cachep->size,
3486 flags, nodeid);
3487 return ret;
3488}
3489EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3490#endif
3491
3492static __always_inline void *
3493__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3494{
3495 struct kmem_cache *cachep;
3496
3497 cachep = kmalloc_slab(size, flags);
3498 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3499 return cachep;
3500 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3501}
3502
3503#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3504void *__kmalloc_node(size_t size, gfp_t flags, int node)
3505{
3506 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3507}
3508EXPORT_SYMBOL(__kmalloc_node);
3509
3510void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3511 int node, unsigned long caller)
3512{
3513 return __do_kmalloc_node(size, flags, node, caller);
3514}
3515EXPORT_SYMBOL(__kmalloc_node_track_caller);
3516#else
3517void *__kmalloc_node(size_t size, gfp_t flags, int node)
3518{
3519 return __do_kmalloc_node(size, flags, node, 0);
3520}
3521EXPORT_SYMBOL(__kmalloc_node);
3522#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3523#endif /* CONFIG_NUMA */
3524
3525/**
3526 * __do_kmalloc - allocate memory
3527 * @size: how many bytes of memory are required.
3528 * @flags: the type of memory to allocate (see kmalloc).
3529 * @caller: function caller for debug tracking of the caller
3530 */
3531static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3532 unsigned long caller)
3533{
3534 struct kmem_cache *cachep;
3535 void *ret;
3536
3537 cachep = kmalloc_slab(size, flags);
3538 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3539 return cachep;
3540 ret = slab_alloc(cachep, flags, caller);
3541
3542 trace_kmalloc(caller, ret,
3543 size, cachep->size, flags);
3544
3545 return ret;
3546}
3547
3548
3549#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3550void *__kmalloc(size_t size, gfp_t flags)
3551{
3552 return __do_kmalloc(size, flags, _RET_IP_);
3553}
3554EXPORT_SYMBOL(__kmalloc);
3555
3556void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3557{
3558 return __do_kmalloc(size, flags, caller);
3559}
3560EXPORT_SYMBOL(__kmalloc_track_caller);
3561
3562#else
3563void *__kmalloc(size_t size, gfp_t flags)
3564{
3565 return __do_kmalloc(size, flags, 0);
3566}
3567EXPORT_SYMBOL(__kmalloc);
3568#endif
3569
3570/**
3571 * kmem_cache_free - Deallocate an object
3572 * @cachep: The cache the allocation was from.
3573 * @objp: The previously allocated object.
3574 *
3575 * Free an object which was previously allocated from this
3576 * cache.
3577 */
3578void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3579{
3580 unsigned long flags;
3581 cachep = cache_from_obj(cachep, objp);
3582 if (!cachep)
3583 return;
3584
3585 local_irq_save(flags);
3586 debug_check_no_locks_freed(objp, cachep->object_size);
3587 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3588 debug_check_no_obj_freed(objp, cachep->object_size);
3589 __cache_free(cachep, objp, _RET_IP_);
3590 local_irq_restore(flags);
3591
3592 trace_kmem_cache_free(_RET_IP_, objp);
3593}
3594EXPORT_SYMBOL(kmem_cache_free);
3595
3596/**
3597 * kfree - free previously allocated memory
3598 * @objp: pointer returned by kmalloc.
3599 *
3600 * If @objp is NULL, no operation is performed.
3601 *
3602 * Don't free memory not originally allocated by kmalloc()
3603 * or you will run into trouble.
3604 */
3605void kfree(const void *objp)
3606{
3607 struct kmem_cache *c;
3608 unsigned long flags;
3609
3610 trace_kfree(_RET_IP_, objp);
3611
3612 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3613 return;
3614 local_irq_save(flags);
3615 kfree_debugcheck(objp);
3616 c = virt_to_cache(objp);
3617 debug_check_no_locks_freed(objp, c->object_size);
3618
3619 debug_check_no_obj_freed(objp, c->object_size);
3620 __cache_free(c, (void *)objp, _RET_IP_);
3621 local_irq_restore(flags);
3622}
3623EXPORT_SYMBOL(kfree);
3624
3625/*
3626 * This initializes kmem_cache_node or resizes various caches for all nodes.
3627 */
3628static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3629{
3630 int node;
3631 struct kmem_cache_node *n;
3632 struct array_cache *new_shared;
3633 struct alien_cache **new_alien = NULL;
3634
3635 for_each_online_node(node) {
3636
3637 if (use_alien_caches) {
3638 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3639 if (!new_alien)
3640 goto fail;
3641 }
3642
3643 new_shared = NULL;
3644 if (cachep->shared) {
3645 new_shared = alloc_arraycache(node,
3646 cachep->shared*cachep->batchcount,
3647 0xbaadf00d, gfp);
3648 if (!new_shared) {
3649 free_alien_cache(new_alien);
3650 goto fail;
3651 }
3652 }
3653
3654 n = get_node(cachep, node);
3655 if (n) {
3656 struct array_cache *shared = n->shared;
3657 LIST_HEAD(list);
3658
3659 spin_lock_irq(&n->list_lock);
3660
3661 if (shared)
3662 free_block(cachep, shared->entry,
3663 shared->avail, node, &list);
3664
3665 n->shared = new_shared;
3666 if (!n->alien) {
3667 n->alien = new_alien;
3668 new_alien = NULL;
3669 }
3670 n->free_limit = (1 + nr_cpus_node(node)) *
3671 cachep->batchcount + cachep->num;
3672 spin_unlock_irq(&n->list_lock);
3673 slabs_destroy(cachep, &list);
3674 kfree(shared);
3675 free_alien_cache(new_alien);
3676 continue;
3677 }
3678 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3679 if (!n) {
3680 free_alien_cache(new_alien);
3681 kfree(new_shared);
3682 goto fail;
3683 }
3684
3685 kmem_cache_node_init(n);
3686 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3687 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
3688 n->shared = new_shared;
3689 n->alien = new_alien;
3690 n->free_limit = (1 + nr_cpus_node(node)) *
3691 cachep->batchcount + cachep->num;
3692 cachep->node[node] = n;
3693 }
3694 return 0;
3695
3696fail:
3697 if (!cachep->list.next) {
3698 /* Cache is not active yet. Roll back what we did */
3699 node--;
3700 while (node >= 0) {
3701 n = get_node(cachep, node);
3702 if (n) {
3703 kfree(n->shared);
3704 free_alien_cache(n->alien);
3705 kfree(n);
3706 cachep->node[node] = NULL;
3707 }
3708 node--;
3709 }
3710 }
3711 return -ENOMEM;
3712}
3713
3714struct ccupdate_struct {
3715 struct kmem_cache *cachep;
3716 struct array_cache *new[0];
3717};
3718
3719static void do_ccupdate_local(void *info)
3720{
3721 struct ccupdate_struct *new = info;
3722 struct array_cache *old;
3723
3724 check_irq_off();
3725 old = cpu_cache_get(new->cachep);
3726
3727 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3728 new->new[smp_processor_id()] = old;
3729}
3730
3731/* Always called with the slab_mutex held */
3732static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3733 int batchcount, int shared, gfp_t gfp)
3734{
3735 struct ccupdate_struct *new;
3736 int i;
3737
3738 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3739 gfp);
3740 if (!new)
3741 return -ENOMEM;
3742
3743 for_each_online_cpu(i) {
3744 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3745 batchcount, gfp);
3746 if (!new->new[i]) {
3747 for (i--; i >= 0; i--)
3748 kfree(new->new[i]);
3749 kfree(new);
3750 return -ENOMEM;
3751 }
3752 }
3753 new->cachep = cachep;
3754
3755 on_each_cpu(do_ccupdate_local, (void *)new, 1);
3756
3757 check_irq_on();
3758 cachep->batchcount = batchcount;
3759 cachep->limit = limit;
3760 cachep->shared = shared;
3761
3762 for_each_online_cpu(i) {
3763 LIST_HEAD(list);
3764 struct array_cache *ccold = new->new[i];
3765 int node;
3766 struct kmem_cache_node *n;
3767
3768 if (!ccold)
3769 continue;
3770
3771 node = cpu_to_mem(i);
3772 n = get_node(cachep, node);
3773 spin_lock_irq(&n->list_lock);
3774 free_block(cachep, ccold->entry, ccold->avail, node, &list);
3775 spin_unlock_irq(&n->list_lock);
3776 slabs_destroy(cachep, &list);
3777 kfree(ccold);
3778 }
3779 kfree(new);
3780 return alloc_kmem_cache_node(cachep, gfp);
3781}
3782
3783static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3784 int batchcount, int shared, gfp_t gfp)
3785{
3786 int ret;
3787 struct kmem_cache *c = NULL;
3788 int i = 0;
3789
3790 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3791
3792 if (slab_state < FULL)
3793 return ret;
3794
3795 if ((ret < 0) || !is_root_cache(cachep))
3796 return ret;
3797
3798 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
3799 for_each_memcg_cache_index(i) {
3800 c = cache_from_memcg_idx(cachep, i);
3801 if (c)
3802 /* return value determined by the parent cache only */
3803 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3804 }
3805
3806 return ret;
3807}
3808
3809/* Called with slab_mutex held always */
3810static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3811{
3812 int err;
3813 int limit = 0;
3814 int shared = 0;
3815 int batchcount = 0;
3816
3817 if (!is_root_cache(cachep)) {
3818 struct kmem_cache *root = memcg_root_cache(cachep);
3819 limit = root->limit;
3820 shared = root->shared;
3821 batchcount = root->batchcount;
3822 }
3823
3824 if (limit && shared && batchcount)
3825 goto skip_setup;
3826 /*
3827 * The head array serves three purposes:
3828 * - create a LIFO ordering, i.e. return objects that are cache-warm
3829 * - reduce the number of spinlock operations.
3830 * - reduce the number of linked list operations on the slab and
3831 * bufctl chains: array operations are cheaper.
3832 * The numbers are guessed, we should auto-tune as described by
3833 * Bonwick.
3834 */
3835 if (cachep->size > 131072)
3836 limit = 1;
3837 else if (cachep->size > PAGE_SIZE)
3838 limit = 8;
3839 else if (cachep->size > 1024)
3840 limit = 24;
3841 else if (cachep->size > 256)
3842 limit = 54;
3843 else
3844 limit = 120;
3845
3846 /*
3847 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3848 * allocation behaviour: Most allocs on one cpu, most free operations
3849 * on another cpu. For these cases, an efficient object passing between
3850 * cpus is necessary. This is provided by a shared array. The array
3851 * replaces Bonwick's magazine layer.
3852 * On uniprocessor, it's functionally equivalent (but less efficient)
3853 * to a larger limit. Thus disabled by default.
3854 */
3855 shared = 0;
3856 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3857 shared = 8;
3858
3859#if DEBUG
3860 /*
3861 * With debugging enabled, large batchcount lead to excessively long
3862 * periods with disabled local interrupts. Limit the batchcount
3863 */
3864 if (limit > 32)
3865 limit = 32;
3866#endif
3867 batchcount = (limit + 1) / 2;
3868skip_setup:
3869 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3870 if (err)
3871 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3872 cachep->name, -err);
3873 return err;
3874}
3875
3876/*
3877 * Drain an array if it contains any elements taking the node lock only if
3878 * necessary. Note that the node listlock also protects the array_cache
3879 * if drain_array() is used on the shared array.
3880 */
3881static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3882 struct array_cache *ac, int force, int node)
3883{
3884 LIST_HEAD(list);
3885 int tofree;
3886
3887 if (!ac || !ac->avail)
3888 return;
3889 if (ac->touched && !force) {
3890 ac->touched = 0;
3891 } else {
3892 spin_lock_irq(&n->list_lock);
3893 if (ac->avail) {
3894 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3895 if (tofree > ac->avail)
3896 tofree = (ac->avail + 1) / 2;
3897 free_block(cachep, ac->entry, tofree, node, &list);
3898 ac->avail -= tofree;
3899 memmove(ac->entry, &(ac->entry[tofree]),
3900 sizeof(void *) * ac->avail);
3901 }
3902 spin_unlock_irq(&n->list_lock);
3903 slabs_destroy(cachep, &list);
3904 }
3905}
3906
3907/**
3908 * cache_reap - Reclaim memory from caches.
3909 * @w: work descriptor
3910 *
3911 * Called from workqueue/eventd every few seconds.
3912 * Purpose:
3913 * - clear the per-cpu caches for this CPU.
3914 * - return freeable pages to the main free memory pool.
3915 *
3916 * If we cannot acquire the cache chain mutex then just give up - we'll try
3917 * again on the next iteration.
3918 */
3919static void cache_reap(struct work_struct *w)
3920{
3921 struct kmem_cache *searchp;
3922 struct kmem_cache_node *n;
3923 int node = numa_mem_id();
3924 struct delayed_work *work = to_delayed_work(w);
3925
3926 if (!mutex_trylock(&slab_mutex))
3927 /* Give up. Setup the next iteration. */
3928 goto out;
3929
3930 list_for_each_entry(searchp, &slab_caches, list) {
3931 check_irq_on();
3932
3933 /*
3934 * We only take the node lock if absolutely necessary and we
3935 * have established with reasonable certainty that
3936 * we can do some work if the lock was obtained.
3937 */
3938 n = get_node(searchp, node);
3939
3940 reap_alien(searchp, n);
3941
3942 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3943
3944 /*
3945 * These are racy checks but it does not matter
3946 * if we skip one check or scan twice.
3947 */
3948 if (time_after(n->next_reap, jiffies))
3949 goto next;
3950
3951 n->next_reap = jiffies + REAPTIMEOUT_NODE;
3952
3953 drain_array(searchp, n, n->shared, 0, node);
3954
3955 if (n->free_touched)
3956 n->free_touched = 0;
3957 else {
3958 int freed;
3959
3960 freed = drain_freelist(searchp, n, (n->free_limit +
3961 5 * searchp->num - 1) / (5 * searchp->num));
3962 STATS_ADD_REAPED(searchp, freed);
3963 }
3964next:
3965 cond_resched();
3966 }
3967 check_irq_on();
3968 mutex_unlock(&slab_mutex);
3969 next_reap_node();
3970out:
3971 /* Set up the next iteration */
3972 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3973}
3974
3975#ifdef CONFIG_SLABINFO
3976void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3977{
3978 struct page *page;
3979 unsigned long active_objs;
3980 unsigned long num_objs;
3981 unsigned long active_slabs = 0;
3982 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3983 const char *name;
3984 char *error = NULL;
3985 int node;
3986 struct kmem_cache_node *n;
3987
3988 active_objs = 0;
3989 num_slabs = 0;
3990 for_each_kmem_cache_node(cachep, node, n) {
3991
3992 check_irq_on();
3993 spin_lock_irq(&n->list_lock);
3994
3995 list_for_each_entry(page, &n->slabs_full, lru) {
3996 if (page->active != cachep->num && !error)
3997 error = "slabs_full accounting error";
3998 active_objs += cachep->num;
3999 active_slabs++;
4000 }
4001 list_for_each_entry(page, &n->slabs_partial, lru) {
4002 if (page->active == cachep->num && !error)
4003 error = "slabs_partial accounting error";
4004 if (!page->active && !error)
4005 error = "slabs_partial accounting error";
4006 active_objs += page->active;
4007 active_slabs++;
4008 }
4009 list_for_each_entry(page, &n->slabs_free, lru) {
4010 if (page->active && !error)
4011 error = "slabs_free accounting error";
4012 num_slabs++;
4013 }
4014 free_objects += n->free_objects;
4015 if (n->shared)
4016 shared_avail += n->shared->avail;
4017
4018 spin_unlock_irq(&n->list_lock);
4019 }
4020 num_slabs += active_slabs;
4021 num_objs = num_slabs * cachep->num;
4022 if (num_objs - active_objs != free_objects && !error)
4023 error = "free_objects accounting error";
4024
4025 name = cachep->name;
4026 if (error)
4027 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4028
4029 sinfo->active_objs = active_objs;
4030 sinfo->num_objs = num_objs;
4031 sinfo->active_slabs = active_slabs;
4032 sinfo->num_slabs = num_slabs;
4033 sinfo->shared_avail = shared_avail;
4034 sinfo->limit = cachep->limit;
4035 sinfo->batchcount = cachep->batchcount;
4036 sinfo->shared = cachep->shared;
4037 sinfo->objects_per_slab = cachep->num;
4038 sinfo->cache_order = cachep->gfporder;
4039}
4040
4041void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4042{
4043#if STATS
4044 { /* node stats */
4045 unsigned long high = cachep->high_mark;
4046 unsigned long allocs = cachep->num_allocations;
4047 unsigned long grown = cachep->grown;
4048 unsigned long reaped = cachep->reaped;
4049 unsigned long errors = cachep->errors;
4050 unsigned long max_freeable = cachep->max_freeable;
4051 unsigned long node_allocs = cachep->node_allocs;
4052 unsigned long node_frees = cachep->node_frees;
4053 unsigned long overflows = cachep->node_overflow;
4054
4055 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4056 "%4lu %4lu %4lu %4lu %4lu",
4057 allocs, high, grown,
4058 reaped, errors, max_freeable, node_allocs,
4059 node_frees, overflows);
4060 }
4061 /* cpu stats */
4062 {
4063 unsigned long allochit = atomic_read(&cachep->allochit);
4064 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4065 unsigned long freehit = atomic_read(&cachep->freehit);
4066 unsigned long freemiss = atomic_read(&cachep->freemiss);
4067
4068 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4069 allochit, allocmiss, freehit, freemiss);
4070 }
4071#endif
4072}
4073
4074#define MAX_SLABINFO_WRITE 128
4075/**
4076 * slabinfo_write - Tuning for the slab allocator
4077 * @file: unused
4078 * @buffer: user buffer
4079 * @count: data length
4080 * @ppos: unused
4081 */
4082ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4083 size_t count, loff_t *ppos)
4084{
4085 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4086 int limit, batchcount, shared, res;
4087 struct kmem_cache *cachep;
4088
4089 if (count > MAX_SLABINFO_WRITE)
4090 return -EINVAL;
4091 if (copy_from_user(&kbuf, buffer, count))
4092 return -EFAULT;
4093 kbuf[MAX_SLABINFO_WRITE] = '\0';
4094
4095 tmp = strchr(kbuf, ' ');
4096 if (!tmp)
4097 return -EINVAL;
4098 *tmp = '\0';
4099 tmp++;
4100 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4101 return -EINVAL;
4102
4103 /* Find the cache in the chain of caches. */
4104 mutex_lock(&slab_mutex);
4105 res = -EINVAL;
4106 list_for_each_entry(cachep, &slab_caches, list) {
4107 if (!strcmp(cachep->name, kbuf)) {
4108 if (limit < 1 || batchcount < 1 ||
4109 batchcount > limit || shared < 0) {
4110 res = 0;
4111 } else {
4112 res = do_tune_cpucache(cachep, limit,
4113 batchcount, shared,
4114 GFP_KERNEL);
4115 }
4116 break;
4117 }
4118 }
4119 mutex_unlock(&slab_mutex);
4120 if (res >= 0)
4121 res = count;
4122 return res;
4123}
4124
4125#ifdef CONFIG_DEBUG_SLAB_LEAK
4126
4127static void *leaks_start(struct seq_file *m, loff_t *pos)
4128{
4129 mutex_lock(&slab_mutex);
4130 return seq_list_start(&slab_caches, *pos);
4131}
4132
4133static inline int add_caller(unsigned long *n, unsigned long v)
4134{
4135 unsigned long *p;
4136 int l;
4137 if (!v)
4138 return 1;
4139 l = n[1];
4140 p = n + 2;
4141 while (l) {
4142 int i = l/2;
4143 unsigned long *q = p + 2 * i;
4144 if (*q == v) {
4145 q[1]++;
4146 return 1;
4147 }
4148 if (*q > v) {
4149 l = i;
4150 } else {
4151 p = q + 2;
4152 l -= i + 1;
4153 }
4154 }
4155 if (++n[1] == n[0])
4156 return 0;
4157 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4158 p[0] = v;
4159 p[1] = 1;
4160 return 1;
4161}
4162
4163static void handle_slab(unsigned long *n, struct kmem_cache *c,
4164 struct page *page)
4165{
4166 void *p;
4167 int i;
4168
4169 if (n[0] == n[1])
4170 return;
4171 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4172 if (get_obj_status(page, i) != OBJECT_ACTIVE)
4173 continue;
4174
4175 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4176 return;
4177 }
4178}
4179
4180static void show_symbol(struct seq_file *m, unsigned long address)
4181{
4182#ifdef CONFIG_KALLSYMS
4183 unsigned long offset, size;
4184 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4185
4186 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4187 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4188 if (modname[0])
4189 seq_printf(m, " [%s]", modname);
4190 return;
4191 }
4192#endif
4193 seq_printf(m, "%p", (void *)address);
4194}
4195
4196static int leaks_show(struct seq_file *m, void *p)
4197{
4198 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4199 struct page *page;
4200 struct kmem_cache_node *n;
4201 const char *name;
4202 unsigned long *x = m->private;
4203 int node;
4204 int i;
4205
4206 if (!(cachep->flags & SLAB_STORE_USER))
4207 return 0;
4208 if (!(cachep->flags & SLAB_RED_ZONE))
4209 return 0;
4210
4211 /* OK, we can do it */
4212
4213 x[1] = 0;
4214
4215 for_each_kmem_cache_node(cachep, node, n) {
4216
4217 check_irq_on();
4218 spin_lock_irq(&n->list_lock);
4219
4220 list_for_each_entry(page, &n->slabs_full, lru)
4221 handle_slab(x, cachep, page);
4222 list_for_each_entry(page, &n->slabs_partial, lru)
4223 handle_slab(x, cachep, page);
4224 spin_unlock_irq(&n->list_lock);
4225 }
4226 name = cachep->name;
4227 if (x[0] == x[1]) {
4228 /* Increase the buffer size */
4229 mutex_unlock(&slab_mutex);
4230 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4231 if (!m->private) {
4232 /* Too bad, we are really out */
4233 m->private = x;
4234 mutex_lock(&slab_mutex);
4235 return -ENOMEM;
4236 }
4237 *(unsigned long *)m->private = x[0] * 2;
4238 kfree(x);
4239 mutex_lock(&slab_mutex);
4240 /* Now make sure this entry will be retried */
4241 m->count = m->size;
4242 return 0;
4243 }
4244 for (i = 0; i < x[1]; i++) {
4245 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4246 show_symbol(m, x[2*i+2]);
4247 seq_putc(m, '\n');
4248 }
4249
4250 return 0;
4251}
4252
4253static const struct seq_operations slabstats_op = {
4254 .start = leaks_start,
4255 .next = slab_next,
4256 .stop = slab_stop,
4257 .show = leaks_show,
4258};
4259
4260static int slabstats_open(struct inode *inode, struct file *file)
4261{
4262 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4263 int ret = -ENOMEM;
4264 if (n) {
4265 ret = seq_open(file, &slabstats_op);
4266 if (!ret) {
4267 struct seq_file *m = file->private_data;
4268 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4269 m->private = n;
4270 n = NULL;
4271 }
4272 kfree(n);
4273 }
4274 return ret;
4275}
4276
4277static const struct file_operations proc_slabstats_operations = {
4278 .open = slabstats_open,
4279 .read = seq_read,
4280 .llseek = seq_lseek,
4281 .release = seq_release_private,
4282};
4283#endif
4284
4285static int __init slab_proc_init(void)
4286{
4287#ifdef CONFIG_DEBUG_SLAB_LEAK
4288 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4289#endif
4290 return 0;
4291}
4292module_init(slab_proc_init);
4293#endif
4294
4295/**
4296 * ksize - get the actual amount of memory allocated for a given object
4297 * @objp: Pointer to the object
4298 *
4299 * kmalloc may internally round up allocations and return more memory
4300 * than requested. ksize() can be used to determine the actual amount of
4301 * memory allocated. The caller may use this additional memory, even though
4302 * a smaller amount of memory was initially specified with the kmalloc call.
4303 * The caller must guarantee that objp points to a valid object previously
4304 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4305 * must not be freed during the duration of the call.
4306 */
4307size_t ksize(const void *objp)
4308{
4309 BUG_ON(!objp);
4310 if (unlikely(objp == ZERO_SIZE_PTR))
4311 return 0;
4312
4313 return virt_to_cache(objp)->object_size;
4314}
4315EXPORT_SYMBOL(ksize);