readahead: move max_sane_readahead() calls into force_page_cache_readahead()
[linux-block.git] / mm / readahead.c
... / ...
CommitLineData
1/*
2 * mm/readahead.c - address_space-level file readahead.
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 09Apr2002 Andrew Morton
7 * Initial version.
8 */
9
10#include <linux/kernel.h>
11#include <linux/fs.h>
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/blkdev.h>
15#include <linux/backing-dev.h>
16#include <linux/task_io_accounting_ops.h>
17#include <linux/pagevec.h>
18#include <linux/pagemap.h>
19
20/*
21 * Initialise a struct file's readahead state. Assumes that the caller has
22 * memset *ra to zero.
23 */
24void
25file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
26{
27 ra->ra_pages = mapping->backing_dev_info->ra_pages;
28 ra->prev_pos = -1;
29}
30EXPORT_SYMBOL_GPL(file_ra_state_init);
31
32#define list_to_page(head) (list_entry((head)->prev, struct page, lru))
33
34/*
35 * see if a page needs releasing upon read_cache_pages() failure
36 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
37 * before calling, such as the NFS fs marking pages that are cached locally
38 * on disk, thus we need to give the fs a chance to clean up in the event of
39 * an error
40 */
41static void read_cache_pages_invalidate_page(struct address_space *mapping,
42 struct page *page)
43{
44 if (page_has_private(page)) {
45 if (!trylock_page(page))
46 BUG();
47 page->mapping = mapping;
48 do_invalidatepage(page, 0);
49 page->mapping = NULL;
50 unlock_page(page);
51 }
52 page_cache_release(page);
53}
54
55/*
56 * release a list of pages, invalidating them first if need be
57 */
58static void read_cache_pages_invalidate_pages(struct address_space *mapping,
59 struct list_head *pages)
60{
61 struct page *victim;
62
63 while (!list_empty(pages)) {
64 victim = list_to_page(pages);
65 list_del(&victim->lru);
66 read_cache_pages_invalidate_page(mapping, victim);
67 }
68}
69
70/**
71 * read_cache_pages - populate an address space with some pages & start reads against them
72 * @mapping: the address_space
73 * @pages: The address of a list_head which contains the target pages. These
74 * pages have their ->index populated and are otherwise uninitialised.
75 * @filler: callback routine for filling a single page.
76 * @data: private data for the callback routine.
77 *
78 * Hides the details of the LRU cache etc from the filesystems.
79 */
80int read_cache_pages(struct address_space *mapping, struct list_head *pages,
81 int (*filler)(void *, struct page *), void *data)
82{
83 struct page *page;
84 int ret = 0;
85
86 while (!list_empty(pages)) {
87 page = list_to_page(pages);
88 list_del(&page->lru);
89 if (add_to_page_cache_lru(page, mapping,
90 page->index, GFP_KERNEL)) {
91 read_cache_pages_invalidate_page(mapping, page);
92 continue;
93 }
94 page_cache_release(page);
95
96 ret = filler(data, page);
97 if (unlikely(ret)) {
98 read_cache_pages_invalidate_pages(mapping, pages);
99 break;
100 }
101 task_io_account_read(PAGE_CACHE_SIZE);
102 }
103 return ret;
104}
105
106EXPORT_SYMBOL(read_cache_pages);
107
108static int read_pages(struct address_space *mapping, struct file *filp,
109 struct list_head *pages, unsigned nr_pages)
110{
111 unsigned page_idx;
112 int ret;
113
114 if (mapping->a_ops->readpages) {
115 ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
116 /* Clean up the remaining pages */
117 put_pages_list(pages);
118 goto out;
119 }
120
121 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
122 struct page *page = list_to_page(pages);
123 list_del(&page->lru);
124 if (!add_to_page_cache_lru(page, mapping,
125 page->index, GFP_KERNEL)) {
126 mapping->a_ops->readpage(filp, page);
127 }
128 page_cache_release(page);
129 }
130 ret = 0;
131out:
132 return ret;
133}
134
135/*
136 * do_page_cache_readahead actually reads a chunk of disk. It allocates all
137 * the pages first, then submits them all for I/O. This avoids the very bad
138 * behaviour which would occur if page allocations are causing VM writeback.
139 * We really don't want to intermingle reads and writes like that.
140 *
141 * Returns the number of pages requested, or the maximum amount of I/O allowed.
142 *
143 * do_page_cache_readahead() returns -1 if it encountered request queue
144 * congestion.
145 */
146static int
147__do_page_cache_readahead(struct address_space *mapping, struct file *filp,
148 pgoff_t offset, unsigned long nr_to_read,
149 unsigned long lookahead_size)
150{
151 struct inode *inode = mapping->host;
152 struct page *page;
153 unsigned long end_index; /* The last page we want to read */
154 LIST_HEAD(page_pool);
155 int page_idx;
156 int ret = 0;
157 loff_t isize = i_size_read(inode);
158
159 if (isize == 0)
160 goto out;
161
162 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
163
164 /*
165 * Preallocate as many pages as we will need.
166 */
167 for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
168 pgoff_t page_offset = offset + page_idx;
169
170 if (page_offset > end_index)
171 break;
172
173 rcu_read_lock();
174 page = radix_tree_lookup(&mapping->page_tree, page_offset);
175 rcu_read_unlock();
176 if (page)
177 continue;
178
179 page = page_cache_alloc_cold(mapping);
180 if (!page)
181 break;
182 page->index = page_offset;
183 list_add(&page->lru, &page_pool);
184 if (page_idx == nr_to_read - lookahead_size)
185 SetPageReadahead(page);
186 ret++;
187 }
188
189 /*
190 * Now start the IO. We ignore I/O errors - if the page is not
191 * uptodate then the caller will launch readpage again, and
192 * will then handle the error.
193 */
194 if (ret)
195 read_pages(mapping, filp, &page_pool, ret);
196 BUG_ON(!list_empty(&page_pool));
197out:
198 return ret;
199}
200
201/*
202 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
203 * memory at once.
204 */
205int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
206 pgoff_t offset, unsigned long nr_to_read)
207{
208 int ret = 0;
209
210 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
211 return -EINVAL;
212
213 nr_to_read = max_sane_readahead(nr_to_read);
214 while (nr_to_read) {
215 int err;
216
217 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
218
219 if (this_chunk > nr_to_read)
220 this_chunk = nr_to_read;
221 err = __do_page_cache_readahead(mapping, filp,
222 offset, this_chunk, 0);
223 if (err < 0) {
224 ret = err;
225 break;
226 }
227 ret += err;
228 offset += this_chunk;
229 nr_to_read -= this_chunk;
230 }
231 return ret;
232}
233
234/*
235 * This version skips the IO if the queue is read-congested, and will tell the
236 * block layer to abandon the readahead if request allocation would block.
237 *
238 * force_page_cache_readahead() will ignore queue congestion and will block on
239 * request queues.
240 */
241int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
242 pgoff_t offset, unsigned long nr_to_read)
243{
244 if (bdi_read_congested(mapping->backing_dev_info))
245 return -1;
246
247 return __do_page_cache_readahead(mapping, filp, offset, nr_to_read, 0);
248}
249
250/*
251 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
252 * sensible upper limit.
253 */
254unsigned long max_sane_readahead(unsigned long nr)
255{
256 return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE_FILE)
257 + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
258}
259
260/*
261 * Submit IO for the read-ahead request in file_ra_state.
262 */
263static unsigned long ra_submit(struct file_ra_state *ra,
264 struct address_space *mapping, struct file *filp)
265{
266 int actual;
267
268 actual = __do_page_cache_readahead(mapping, filp,
269 ra->start, ra->size, ra->async_size);
270
271 return actual;
272}
273
274/*
275 * Set the initial window size, round to next power of 2 and square
276 * for small size, x 4 for medium, and x 2 for large
277 * for 128k (32 page) max ra
278 * 1-8 page = 32k initial, > 8 page = 128k initial
279 */
280static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
281{
282 unsigned long newsize = roundup_pow_of_two(size);
283
284 if (newsize <= max / 32)
285 newsize = newsize * 4;
286 else if (newsize <= max / 4)
287 newsize = newsize * 2;
288 else
289 newsize = max;
290
291 return newsize;
292}
293
294/*
295 * Get the previous window size, ramp it up, and
296 * return it as the new window size.
297 */
298static unsigned long get_next_ra_size(struct file_ra_state *ra,
299 unsigned long max)
300{
301 unsigned long cur = ra->size;
302 unsigned long newsize;
303
304 if (cur < max / 16)
305 newsize = 4 * cur;
306 else
307 newsize = 2 * cur;
308
309 return min(newsize, max);
310}
311
312/*
313 * On-demand readahead design.
314 *
315 * The fields in struct file_ra_state represent the most-recently-executed
316 * readahead attempt:
317 *
318 * |<----- async_size ---------|
319 * |------------------- size -------------------->|
320 * |==================#===========================|
321 * ^start ^page marked with PG_readahead
322 *
323 * To overlap application thinking time and disk I/O time, we do
324 * `readahead pipelining': Do not wait until the application consumed all
325 * readahead pages and stalled on the missing page at readahead_index;
326 * Instead, submit an asynchronous readahead I/O as soon as there are
327 * only async_size pages left in the readahead window. Normally async_size
328 * will be equal to size, for maximum pipelining.
329 *
330 * In interleaved sequential reads, concurrent streams on the same fd can
331 * be invalidating each other's readahead state. So we flag the new readahead
332 * page at (start+size-async_size) with PG_readahead, and use it as readahead
333 * indicator. The flag won't be set on already cached pages, to avoid the
334 * readahead-for-nothing fuss, saving pointless page cache lookups.
335 *
336 * prev_pos tracks the last visited byte in the _previous_ read request.
337 * It should be maintained by the caller, and will be used for detecting
338 * small random reads. Note that the readahead algorithm checks loosely
339 * for sequential patterns. Hence interleaved reads might be served as
340 * sequential ones.
341 *
342 * There is a special-case: if the first page which the application tries to
343 * read happens to be the first page of the file, it is assumed that a linear
344 * read is about to happen and the window is immediately set to the initial size
345 * based on I/O request size and the max_readahead.
346 *
347 * The code ramps up the readahead size aggressively at first, but slow down as
348 * it approaches max_readhead.
349 */
350
351/*
352 * A minimal readahead algorithm for trivial sequential/random reads.
353 */
354static unsigned long
355ondemand_readahead(struct address_space *mapping,
356 struct file_ra_state *ra, struct file *filp,
357 bool hit_readahead_marker, pgoff_t offset,
358 unsigned long req_size)
359{
360 int max = ra->ra_pages; /* max readahead pages */
361 pgoff_t prev_offset;
362 int sequential;
363
364 /*
365 * It's the expected callback offset, assume sequential access.
366 * Ramp up sizes, and push forward the readahead window.
367 */
368 if (offset && (offset == (ra->start + ra->size - ra->async_size) ||
369 offset == (ra->start + ra->size))) {
370 ra->start += ra->size;
371 ra->size = get_next_ra_size(ra, max);
372 ra->async_size = ra->size;
373 goto readit;
374 }
375
376 prev_offset = ra->prev_pos >> PAGE_CACHE_SHIFT;
377 sequential = offset - prev_offset <= 1UL || req_size > max;
378
379 /*
380 * Standalone, small read.
381 * Read as is, and do not pollute the readahead state.
382 */
383 if (!hit_readahead_marker && !sequential) {
384 return __do_page_cache_readahead(mapping, filp,
385 offset, req_size, 0);
386 }
387
388 /*
389 * Hit a marked page without valid readahead state.
390 * E.g. interleaved reads.
391 * Query the pagecache for async_size, which normally equals to
392 * readahead size. Ramp it up and use it as the new readahead size.
393 */
394 if (hit_readahead_marker) {
395 pgoff_t start;
396
397 rcu_read_lock();
398 start = radix_tree_next_hole(&mapping->page_tree, offset,max+1);
399 rcu_read_unlock();
400
401 if (!start || start - offset > max)
402 return 0;
403
404 ra->start = start;
405 ra->size = start - offset; /* old async_size */
406 ra->size = get_next_ra_size(ra, max);
407 ra->async_size = ra->size;
408 goto readit;
409 }
410
411 /*
412 * It may be one of
413 * - first read on start of file
414 * - sequential cache miss
415 * - oversize random read
416 * Start readahead for it.
417 */
418 ra->start = offset;
419 ra->size = get_init_ra_size(req_size, max);
420 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
421
422readit:
423 return ra_submit(ra, mapping, filp);
424}
425
426/**
427 * page_cache_sync_readahead - generic file readahead
428 * @mapping: address_space which holds the pagecache and I/O vectors
429 * @ra: file_ra_state which holds the readahead state
430 * @filp: passed on to ->readpage() and ->readpages()
431 * @offset: start offset into @mapping, in pagecache page-sized units
432 * @req_size: hint: total size of the read which the caller is performing in
433 * pagecache pages
434 *
435 * page_cache_sync_readahead() should be called when a cache miss happened:
436 * it will submit the read. The readahead logic may decide to piggyback more
437 * pages onto the read request if access patterns suggest it will improve
438 * performance.
439 */
440void page_cache_sync_readahead(struct address_space *mapping,
441 struct file_ra_state *ra, struct file *filp,
442 pgoff_t offset, unsigned long req_size)
443{
444 /* no read-ahead */
445 if (!ra->ra_pages)
446 return;
447
448 /* do read-ahead */
449 ondemand_readahead(mapping, ra, filp, false, offset, req_size);
450}
451EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
452
453/**
454 * page_cache_async_readahead - file readahead for marked pages
455 * @mapping: address_space which holds the pagecache and I/O vectors
456 * @ra: file_ra_state which holds the readahead state
457 * @filp: passed on to ->readpage() and ->readpages()
458 * @page: the page at @offset which has the PG_readahead flag set
459 * @offset: start offset into @mapping, in pagecache page-sized units
460 * @req_size: hint: total size of the read which the caller is performing in
461 * pagecache pages
462 *
463 * page_cache_async_ondemand() should be called when a page is used which
464 * has the PG_readahead flag; this is a marker to suggest that the application
465 * has used up enough of the readahead window that we should start pulling in
466 * more pages.
467 */
468void
469page_cache_async_readahead(struct address_space *mapping,
470 struct file_ra_state *ra, struct file *filp,
471 struct page *page, pgoff_t offset,
472 unsigned long req_size)
473{
474 /* no read-ahead */
475 if (!ra->ra_pages)
476 return;
477
478 /*
479 * Same bit is used for PG_readahead and PG_reclaim.
480 */
481 if (PageWriteback(page))
482 return;
483
484 ClearPageReadahead(page);
485
486 /*
487 * Defer asynchronous read-ahead on IO congestion.
488 */
489 if (bdi_read_congested(mapping->backing_dev_info))
490 return;
491
492 /* do read-ahead */
493 ondemand_readahead(mapping, ra, filp, true, offset, req_size);
494}
495EXPORT_SYMBOL_GPL(page_cache_async_readahead);