xen-blkfront: don't add indirect pages to list when !feature_persistent
[linux-2.6-block.git] / mm / nommu.c
... / ...
CommitLineData
1/*
2 * linux/mm/nommu.c
3 *
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
6 *
7 * See Documentation/nommu-mmap.txt
8 *
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14 */
15
16#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18#include <linux/export.h>
19#include <linux/mm.h>
20#include <linux/vmacache.h>
21#include <linux/mman.h>
22#include <linux/swap.h>
23#include <linux/file.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <linux/slab.h>
27#include <linux/vmalloc.h>
28#include <linux/blkdev.h>
29#include <linux/backing-dev.h>
30#include <linux/compiler.h>
31#include <linux/mount.h>
32#include <linux/personality.h>
33#include <linux/security.h>
34#include <linux/syscalls.h>
35#include <linux/audit.h>
36#include <linux/sched/sysctl.h>
37#include <linux/printk.h>
38
39#include <asm/uaccess.h>
40#include <asm/tlb.h>
41#include <asm/tlbflush.h>
42#include <asm/mmu_context.h>
43#include "internal.h"
44
45#if 0
46#define kenter(FMT, ...) \
47 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
48#define kleave(FMT, ...) \
49 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
50#define kdebug(FMT, ...) \
51 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
52#else
53#define kenter(FMT, ...) \
54 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
55#define kleave(FMT, ...) \
56 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
57#define kdebug(FMT, ...) \
58 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
59#endif
60
61void *high_memory;
62EXPORT_SYMBOL(high_memory);
63struct page *mem_map;
64unsigned long max_mapnr;
65EXPORT_SYMBOL(max_mapnr);
66unsigned long highest_memmap_pfn;
67struct percpu_counter vm_committed_as;
68int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
69int sysctl_overcommit_ratio = 50; /* default is 50% */
70unsigned long sysctl_overcommit_kbytes __read_mostly;
71int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
72int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
73unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
74unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
75int heap_stack_gap = 0;
76
77atomic_long_t mmap_pages_allocated;
78
79/*
80 * The global memory commitment made in the system can be a metric
81 * that can be used to drive ballooning decisions when Linux is hosted
82 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
83 * balancing memory across competing virtual machines that are hosted.
84 * Several metrics drive this policy engine including the guest reported
85 * memory commitment.
86 */
87unsigned long vm_memory_committed(void)
88{
89 return percpu_counter_read_positive(&vm_committed_as);
90}
91
92EXPORT_SYMBOL_GPL(vm_memory_committed);
93
94EXPORT_SYMBOL(mem_map);
95
96/* list of mapped, potentially shareable regions */
97static struct kmem_cache *vm_region_jar;
98struct rb_root nommu_region_tree = RB_ROOT;
99DECLARE_RWSEM(nommu_region_sem);
100
101const struct vm_operations_struct generic_file_vm_ops = {
102};
103
104/*
105 * Return the total memory allocated for this pointer, not
106 * just what the caller asked for.
107 *
108 * Doesn't have to be accurate, i.e. may have races.
109 */
110unsigned int kobjsize(const void *objp)
111{
112 struct page *page;
113
114 /*
115 * If the object we have should not have ksize performed on it,
116 * return size of 0
117 */
118 if (!objp || !virt_addr_valid(objp))
119 return 0;
120
121 page = virt_to_head_page(objp);
122
123 /*
124 * If the allocator sets PageSlab, we know the pointer came from
125 * kmalloc().
126 */
127 if (PageSlab(page))
128 return ksize(objp);
129
130 /*
131 * If it's not a compound page, see if we have a matching VMA
132 * region. This test is intentionally done in reverse order,
133 * so if there's no VMA, we still fall through and hand back
134 * PAGE_SIZE for 0-order pages.
135 */
136 if (!PageCompound(page)) {
137 struct vm_area_struct *vma;
138
139 vma = find_vma(current->mm, (unsigned long)objp);
140 if (vma)
141 return vma->vm_end - vma->vm_start;
142 }
143
144 /*
145 * The ksize() function is only guaranteed to work for pointers
146 * returned by kmalloc(). So handle arbitrary pointers here.
147 */
148 return PAGE_SIZE << compound_order(page);
149}
150
151long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
152 unsigned long start, unsigned long nr_pages,
153 unsigned int foll_flags, struct page **pages,
154 struct vm_area_struct **vmas, int *nonblocking)
155{
156 struct vm_area_struct *vma;
157 unsigned long vm_flags;
158 int i;
159
160 /* calculate required read or write permissions.
161 * If FOLL_FORCE is set, we only require the "MAY" flags.
162 */
163 vm_flags = (foll_flags & FOLL_WRITE) ?
164 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
165 vm_flags &= (foll_flags & FOLL_FORCE) ?
166 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
167
168 for (i = 0; i < nr_pages; i++) {
169 vma = find_vma(mm, start);
170 if (!vma)
171 goto finish_or_fault;
172
173 /* protect what we can, including chardevs */
174 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
175 !(vm_flags & vma->vm_flags))
176 goto finish_or_fault;
177
178 if (pages) {
179 pages[i] = virt_to_page(start);
180 if (pages[i])
181 page_cache_get(pages[i]);
182 }
183 if (vmas)
184 vmas[i] = vma;
185 start = (start + PAGE_SIZE) & PAGE_MASK;
186 }
187
188 return i;
189
190finish_or_fault:
191 return i ? : -EFAULT;
192}
193
194/*
195 * get a list of pages in an address range belonging to the specified process
196 * and indicate the VMA that covers each page
197 * - this is potentially dodgy as we may end incrementing the page count of a
198 * slab page or a secondary page from a compound page
199 * - don't permit access to VMAs that don't support it, such as I/O mappings
200 */
201long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
202 unsigned long start, unsigned long nr_pages,
203 int write, int force, struct page **pages,
204 struct vm_area_struct **vmas)
205{
206 int flags = 0;
207
208 if (write)
209 flags |= FOLL_WRITE;
210 if (force)
211 flags |= FOLL_FORCE;
212
213 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
214 NULL);
215}
216EXPORT_SYMBOL(get_user_pages);
217
218long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
219 unsigned long start, unsigned long nr_pages,
220 int write, int force, struct page **pages,
221 int *locked)
222{
223 return get_user_pages(tsk, mm, start, nr_pages, write, force,
224 pages, NULL);
225}
226EXPORT_SYMBOL(get_user_pages_locked);
227
228long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
229 unsigned long start, unsigned long nr_pages,
230 int write, int force, struct page **pages,
231 unsigned int gup_flags)
232{
233 long ret;
234 down_read(&mm->mmap_sem);
235 ret = get_user_pages(tsk, mm, start, nr_pages, write, force,
236 pages, NULL);
237 up_read(&mm->mmap_sem);
238 return ret;
239}
240EXPORT_SYMBOL(__get_user_pages_unlocked);
241
242long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
243 unsigned long start, unsigned long nr_pages,
244 int write, int force, struct page **pages)
245{
246 return __get_user_pages_unlocked(tsk, mm, start, nr_pages, write,
247 force, pages, 0);
248}
249EXPORT_SYMBOL(get_user_pages_unlocked);
250
251/**
252 * follow_pfn - look up PFN at a user virtual address
253 * @vma: memory mapping
254 * @address: user virtual address
255 * @pfn: location to store found PFN
256 *
257 * Only IO mappings and raw PFN mappings are allowed.
258 *
259 * Returns zero and the pfn at @pfn on success, -ve otherwise.
260 */
261int follow_pfn(struct vm_area_struct *vma, unsigned long address,
262 unsigned long *pfn)
263{
264 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
265 return -EINVAL;
266
267 *pfn = address >> PAGE_SHIFT;
268 return 0;
269}
270EXPORT_SYMBOL(follow_pfn);
271
272LIST_HEAD(vmap_area_list);
273
274void vfree(const void *addr)
275{
276 kfree(addr);
277}
278EXPORT_SYMBOL(vfree);
279
280void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
281{
282 /*
283 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
284 * returns only a logical address.
285 */
286 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
287}
288EXPORT_SYMBOL(__vmalloc);
289
290void *vmalloc_user(unsigned long size)
291{
292 void *ret;
293
294 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
295 PAGE_KERNEL);
296 if (ret) {
297 struct vm_area_struct *vma;
298
299 down_write(&current->mm->mmap_sem);
300 vma = find_vma(current->mm, (unsigned long)ret);
301 if (vma)
302 vma->vm_flags |= VM_USERMAP;
303 up_write(&current->mm->mmap_sem);
304 }
305
306 return ret;
307}
308EXPORT_SYMBOL(vmalloc_user);
309
310struct page *vmalloc_to_page(const void *addr)
311{
312 return virt_to_page(addr);
313}
314EXPORT_SYMBOL(vmalloc_to_page);
315
316unsigned long vmalloc_to_pfn(const void *addr)
317{
318 return page_to_pfn(virt_to_page(addr));
319}
320EXPORT_SYMBOL(vmalloc_to_pfn);
321
322long vread(char *buf, char *addr, unsigned long count)
323{
324 /* Don't allow overflow */
325 if ((unsigned long) buf + count < count)
326 count = -(unsigned long) buf;
327
328 memcpy(buf, addr, count);
329 return count;
330}
331
332long vwrite(char *buf, char *addr, unsigned long count)
333{
334 /* Don't allow overflow */
335 if ((unsigned long) addr + count < count)
336 count = -(unsigned long) addr;
337
338 memcpy(addr, buf, count);
339 return count;
340}
341
342/*
343 * vmalloc - allocate virtually continguos memory
344 *
345 * @size: allocation size
346 *
347 * Allocate enough pages to cover @size from the page level
348 * allocator and map them into continguos kernel virtual space.
349 *
350 * For tight control over page level allocator and protection flags
351 * use __vmalloc() instead.
352 */
353void *vmalloc(unsigned long size)
354{
355 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
356}
357EXPORT_SYMBOL(vmalloc);
358
359/*
360 * vzalloc - allocate virtually continguos memory with zero fill
361 *
362 * @size: allocation size
363 *
364 * Allocate enough pages to cover @size from the page level
365 * allocator and map them into continguos kernel virtual space.
366 * The memory allocated is set to zero.
367 *
368 * For tight control over page level allocator and protection flags
369 * use __vmalloc() instead.
370 */
371void *vzalloc(unsigned long size)
372{
373 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
374 PAGE_KERNEL);
375}
376EXPORT_SYMBOL(vzalloc);
377
378/**
379 * vmalloc_node - allocate memory on a specific node
380 * @size: allocation size
381 * @node: numa node
382 *
383 * Allocate enough pages to cover @size from the page level
384 * allocator and map them into contiguous kernel virtual space.
385 *
386 * For tight control over page level allocator and protection flags
387 * use __vmalloc() instead.
388 */
389void *vmalloc_node(unsigned long size, int node)
390{
391 return vmalloc(size);
392}
393EXPORT_SYMBOL(vmalloc_node);
394
395/**
396 * vzalloc_node - allocate memory on a specific node with zero fill
397 * @size: allocation size
398 * @node: numa node
399 *
400 * Allocate enough pages to cover @size from the page level
401 * allocator and map them into contiguous kernel virtual space.
402 * The memory allocated is set to zero.
403 *
404 * For tight control over page level allocator and protection flags
405 * use __vmalloc() instead.
406 */
407void *vzalloc_node(unsigned long size, int node)
408{
409 return vzalloc(size);
410}
411EXPORT_SYMBOL(vzalloc_node);
412
413#ifndef PAGE_KERNEL_EXEC
414# define PAGE_KERNEL_EXEC PAGE_KERNEL
415#endif
416
417/**
418 * vmalloc_exec - allocate virtually contiguous, executable memory
419 * @size: allocation size
420 *
421 * Kernel-internal function to allocate enough pages to cover @size
422 * the page level allocator and map them into contiguous and
423 * executable kernel virtual space.
424 *
425 * For tight control over page level allocator and protection flags
426 * use __vmalloc() instead.
427 */
428
429void *vmalloc_exec(unsigned long size)
430{
431 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
432}
433
434/**
435 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
436 * @size: allocation size
437 *
438 * Allocate enough 32bit PA addressable pages to cover @size from the
439 * page level allocator and map them into continguos kernel virtual space.
440 */
441void *vmalloc_32(unsigned long size)
442{
443 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
444}
445EXPORT_SYMBOL(vmalloc_32);
446
447/**
448 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
449 * @size: allocation size
450 *
451 * The resulting memory area is 32bit addressable and zeroed so it can be
452 * mapped to userspace without leaking data.
453 *
454 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
455 * remap_vmalloc_range() are permissible.
456 */
457void *vmalloc_32_user(unsigned long size)
458{
459 /*
460 * We'll have to sort out the ZONE_DMA bits for 64-bit,
461 * but for now this can simply use vmalloc_user() directly.
462 */
463 return vmalloc_user(size);
464}
465EXPORT_SYMBOL(vmalloc_32_user);
466
467void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
468{
469 BUG();
470 return NULL;
471}
472EXPORT_SYMBOL(vmap);
473
474void vunmap(const void *addr)
475{
476 BUG();
477}
478EXPORT_SYMBOL(vunmap);
479
480void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
481{
482 BUG();
483 return NULL;
484}
485EXPORT_SYMBOL(vm_map_ram);
486
487void vm_unmap_ram(const void *mem, unsigned int count)
488{
489 BUG();
490}
491EXPORT_SYMBOL(vm_unmap_ram);
492
493void vm_unmap_aliases(void)
494{
495}
496EXPORT_SYMBOL_GPL(vm_unmap_aliases);
497
498/*
499 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
500 * have one.
501 */
502void __weak vmalloc_sync_all(void)
503{
504}
505
506/**
507 * alloc_vm_area - allocate a range of kernel address space
508 * @size: size of the area
509 *
510 * Returns: NULL on failure, vm_struct on success
511 *
512 * This function reserves a range of kernel address space, and
513 * allocates pagetables to map that range. No actual mappings
514 * are created. If the kernel address space is not shared
515 * between processes, it syncs the pagetable across all
516 * processes.
517 */
518struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
519{
520 BUG();
521 return NULL;
522}
523EXPORT_SYMBOL_GPL(alloc_vm_area);
524
525void free_vm_area(struct vm_struct *area)
526{
527 BUG();
528}
529EXPORT_SYMBOL_GPL(free_vm_area);
530
531int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
532 struct page *page)
533{
534 return -EINVAL;
535}
536EXPORT_SYMBOL(vm_insert_page);
537
538/*
539 * sys_brk() for the most part doesn't need the global kernel
540 * lock, except when an application is doing something nasty
541 * like trying to un-brk an area that has already been mapped
542 * to a regular file. in this case, the unmapping will need
543 * to invoke file system routines that need the global lock.
544 */
545SYSCALL_DEFINE1(brk, unsigned long, brk)
546{
547 struct mm_struct *mm = current->mm;
548
549 if (brk < mm->start_brk || brk > mm->context.end_brk)
550 return mm->brk;
551
552 if (mm->brk == brk)
553 return mm->brk;
554
555 /*
556 * Always allow shrinking brk
557 */
558 if (brk <= mm->brk) {
559 mm->brk = brk;
560 return brk;
561 }
562
563 /*
564 * Ok, looks good - let it rip.
565 */
566 flush_icache_range(mm->brk, brk);
567 return mm->brk = brk;
568}
569
570/*
571 * initialise the VMA and region record slabs
572 */
573void __init mmap_init(void)
574{
575 int ret;
576
577 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
578 VM_BUG_ON(ret);
579 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
580}
581
582/*
583 * validate the region tree
584 * - the caller must hold the region lock
585 */
586#ifdef CONFIG_DEBUG_NOMMU_REGIONS
587static noinline void validate_nommu_regions(void)
588{
589 struct vm_region *region, *last;
590 struct rb_node *p, *lastp;
591
592 lastp = rb_first(&nommu_region_tree);
593 if (!lastp)
594 return;
595
596 last = rb_entry(lastp, struct vm_region, vm_rb);
597 BUG_ON(unlikely(last->vm_end <= last->vm_start));
598 BUG_ON(unlikely(last->vm_top < last->vm_end));
599
600 while ((p = rb_next(lastp))) {
601 region = rb_entry(p, struct vm_region, vm_rb);
602 last = rb_entry(lastp, struct vm_region, vm_rb);
603
604 BUG_ON(unlikely(region->vm_end <= region->vm_start));
605 BUG_ON(unlikely(region->vm_top < region->vm_end));
606 BUG_ON(unlikely(region->vm_start < last->vm_top));
607
608 lastp = p;
609 }
610}
611#else
612static void validate_nommu_regions(void)
613{
614}
615#endif
616
617/*
618 * add a region into the global tree
619 */
620static void add_nommu_region(struct vm_region *region)
621{
622 struct vm_region *pregion;
623 struct rb_node **p, *parent;
624
625 validate_nommu_regions();
626
627 parent = NULL;
628 p = &nommu_region_tree.rb_node;
629 while (*p) {
630 parent = *p;
631 pregion = rb_entry(parent, struct vm_region, vm_rb);
632 if (region->vm_start < pregion->vm_start)
633 p = &(*p)->rb_left;
634 else if (region->vm_start > pregion->vm_start)
635 p = &(*p)->rb_right;
636 else if (pregion == region)
637 return;
638 else
639 BUG();
640 }
641
642 rb_link_node(&region->vm_rb, parent, p);
643 rb_insert_color(&region->vm_rb, &nommu_region_tree);
644
645 validate_nommu_regions();
646}
647
648/*
649 * delete a region from the global tree
650 */
651static void delete_nommu_region(struct vm_region *region)
652{
653 BUG_ON(!nommu_region_tree.rb_node);
654
655 validate_nommu_regions();
656 rb_erase(&region->vm_rb, &nommu_region_tree);
657 validate_nommu_regions();
658}
659
660/*
661 * free a contiguous series of pages
662 */
663static void free_page_series(unsigned long from, unsigned long to)
664{
665 for (; from < to; from += PAGE_SIZE) {
666 struct page *page = virt_to_page(from);
667
668 kdebug("- free %lx", from);
669 atomic_long_dec(&mmap_pages_allocated);
670 if (page_count(page) != 1)
671 kdebug("free page %p: refcount not one: %d",
672 page, page_count(page));
673 put_page(page);
674 }
675}
676
677/*
678 * release a reference to a region
679 * - the caller must hold the region semaphore for writing, which this releases
680 * - the region may not have been added to the tree yet, in which case vm_top
681 * will equal vm_start
682 */
683static void __put_nommu_region(struct vm_region *region)
684 __releases(nommu_region_sem)
685{
686 kenter("%p{%d}", region, region->vm_usage);
687
688 BUG_ON(!nommu_region_tree.rb_node);
689
690 if (--region->vm_usage == 0) {
691 if (region->vm_top > region->vm_start)
692 delete_nommu_region(region);
693 up_write(&nommu_region_sem);
694
695 if (region->vm_file)
696 fput(region->vm_file);
697
698 /* IO memory and memory shared directly out of the pagecache
699 * from ramfs/tmpfs mustn't be released here */
700 if (region->vm_flags & VM_MAPPED_COPY) {
701 kdebug("free series");
702 free_page_series(region->vm_start, region->vm_top);
703 }
704 kmem_cache_free(vm_region_jar, region);
705 } else {
706 up_write(&nommu_region_sem);
707 }
708}
709
710/*
711 * release a reference to a region
712 */
713static void put_nommu_region(struct vm_region *region)
714{
715 down_write(&nommu_region_sem);
716 __put_nommu_region(region);
717}
718
719/*
720 * update protection on a vma
721 */
722static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
723{
724#ifdef CONFIG_MPU
725 struct mm_struct *mm = vma->vm_mm;
726 long start = vma->vm_start & PAGE_MASK;
727 while (start < vma->vm_end) {
728 protect_page(mm, start, flags);
729 start += PAGE_SIZE;
730 }
731 update_protections(mm);
732#endif
733}
734
735/*
736 * add a VMA into a process's mm_struct in the appropriate place in the list
737 * and tree and add to the address space's page tree also if not an anonymous
738 * page
739 * - should be called with mm->mmap_sem held writelocked
740 */
741static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
742{
743 struct vm_area_struct *pvma, *prev;
744 struct address_space *mapping;
745 struct rb_node **p, *parent, *rb_prev;
746
747 kenter(",%p", vma);
748
749 BUG_ON(!vma->vm_region);
750
751 mm->map_count++;
752 vma->vm_mm = mm;
753
754 protect_vma(vma, vma->vm_flags);
755
756 /* add the VMA to the mapping */
757 if (vma->vm_file) {
758 mapping = vma->vm_file->f_mapping;
759
760 i_mmap_lock_write(mapping);
761 flush_dcache_mmap_lock(mapping);
762 vma_interval_tree_insert(vma, &mapping->i_mmap);
763 flush_dcache_mmap_unlock(mapping);
764 i_mmap_unlock_write(mapping);
765 }
766
767 /* add the VMA to the tree */
768 parent = rb_prev = NULL;
769 p = &mm->mm_rb.rb_node;
770 while (*p) {
771 parent = *p;
772 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
773
774 /* sort by: start addr, end addr, VMA struct addr in that order
775 * (the latter is necessary as we may get identical VMAs) */
776 if (vma->vm_start < pvma->vm_start)
777 p = &(*p)->rb_left;
778 else if (vma->vm_start > pvma->vm_start) {
779 rb_prev = parent;
780 p = &(*p)->rb_right;
781 } else if (vma->vm_end < pvma->vm_end)
782 p = &(*p)->rb_left;
783 else if (vma->vm_end > pvma->vm_end) {
784 rb_prev = parent;
785 p = &(*p)->rb_right;
786 } else if (vma < pvma)
787 p = &(*p)->rb_left;
788 else if (vma > pvma) {
789 rb_prev = parent;
790 p = &(*p)->rb_right;
791 } else
792 BUG();
793 }
794
795 rb_link_node(&vma->vm_rb, parent, p);
796 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
797
798 /* add VMA to the VMA list also */
799 prev = NULL;
800 if (rb_prev)
801 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
802
803 __vma_link_list(mm, vma, prev, parent);
804}
805
806/*
807 * delete a VMA from its owning mm_struct and address space
808 */
809static void delete_vma_from_mm(struct vm_area_struct *vma)
810{
811 int i;
812 struct address_space *mapping;
813 struct mm_struct *mm = vma->vm_mm;
814 struct task_struct *curr = current;
815
816 kenter("%p", vma);
817
818 protect_vma(vma, 0);
819
820 mm->map_count--;
821 for (i = 0; i < VMACACHE_SIZE; i++) {
822 /* if the vma is cached, invalidate the entire cache */
823 if (curr->vmacache[i] == vma) {
824 vmacache_invalidate(mm);
825 break;
826 }
827 }
828
829 /* remove the VMA from the mapping */
830 if (vma->vm_file) {
831 mapping = vma->vm_file->f_mapping;
832
833 i_mmap_lock_write(mapping);
834 flush_dcache_mmap_lock(mapping);
835 vma_interval_tree_remove(vma, &mapping->i_mmap);
836 flush_dcache_mmap_unlock(mapping);
837 i_mmap_unlock_write(mapping);
838 }
839
840 /* remove from the MM's tree and list */
841 rb_erase(&vma->vm_rb, &mm->mm_rb);
842
843 if (vma->vm_prev)
844 vma->vm_prev->vm_next = vma->vm_next;
845 else
846 mm->mmap = vma->vm_next;
847
848 if (vma->vm_next)
849 vma->vm_next->vm_prev = vma->vm_prev;
850}
851
852/*
853 * destroy a VMA record
854 */
855static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
856{
857 kenter("%p", vma);
858 if (vma->vm_ops && vma->vm_ops->close)
859 vma->vm_ops->close(vma);
860 if (vma->vm_file)
861 fput(vma->vm_file);
862 put_nommu_region(vma->vm_region);
863 kmem_cache_free(vm_area_cachep, vma);
864}
865
866/*
867 * look up the first VMA in which addr resides, NULL if none
868 * - should be called with mm->mmap_sem at least held readlocked
869 */
870struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
871{
872 struct vm_area_struct *vma;
873
874 /* check the cache first */
875 vma = vmacache_find(mm, addr);
876 if (likely(vma))
877 return vma;
878
879 /* trawl the list (there may be multiple mappings in which addr
880 * resides) */
881 for (vma = mm->mmap; vma; vma = vma->vm_next) {
882 if (vma->vm_start > addr)
883 return NULL;
884 if (vma->vm_end > addr) {
885 vmacache_update(addr, vma);
886 return vma;
887 }
888 }
889
890 return NULL;
891}
892EXPORT_SYMBOL(find_vma);
893
894/*
895 * find a VMA
896 * - we don't extend stack VMAs under NOMMU conditions
897 */
898struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
899{
900 return find_vma(mm, addr);
901}
902
903/*
904 * expand a stack to a given address
905 * - not supported under NOMMU conditions
906 */
907int expand_stack(struct vm_area_struct *vma, unsigned long address)
908{
909 return -ENOMEM;
910}
911
912/*
913 * look up the first VMA exactly that exactly matches addr
914 * - should be called with mm->mmap_sem at least held readlocked
915 */
916static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
917 unsigned long addr,
918 unsigned long len)
919{
920 struct vm_area_struct *vma;
921 unsigned long end = addr + len;
922
923 /* check the cache first */
924 vma = vmacache_find_exact(mm, addr, end);
925 if (vma)
926 return vma;
927
928 /* trawl the list (there may be multiple mappings in which addr
929 * resides) */
930 for (vma = mm->mmap; vma; vma = vma->vm_next) {
931 if (vma->vm_start < addr)
932 continue;
933 if (vma->vm_start > addr)
934 return NULL;
935 if (vma->vm_end == end) {
936 vmacache_update(addr, vma);
937 return vma;
938 }
939 }
940
941 return NULL;
942}
943
944/*
945 * determine whether a mapping should be permitted and, if so, what sort of
946 * mapping we're capable of supporting
947 */
948static int validate_mmap_request(struct file *file,
949 unsigned long addr,
950 unsigned long len,
951 unsigned long prot,
952 unsigned long flags,
953 unsigned long pgoff,
954 unsigned long *_capabilities)
955{
956 unsigned long capabilities, rlen;
957 int ret;
958
959 /* do the simple checks first */
960 if (flags & MAP_FIXED) {
961 printk(KERN_DEBUG
962 "%d: Can't do fixed-address/overlay mmap of RAM\n",
963 current->pid);
964 return -EINVAL;
965 }
966
967 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
968 (flags & MAP_TYPE) != MAP_SHARED)
969 return -EINVAL;
970
971 if (!len)
972 return -EINVAL;
973
974 /* Careful about overflows.. */
975 rlen = PAGE_ALIGN(len);
976 if (!rlen || rlen > TASK_SIZE)
977 return -ENOMEM;
978
979 /* offset overflow? */
980 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
981 return -EOVERFLOW;
982
983 if (file) {
984 /* files must support mmap */
985 if (!file->f_op->mmap)
986 return -ENODEV;
987
988 /* work out if what we've got could possibly be shared
989 * - we support chardevs that provide their own "memory"
990 * - we support files/blockdevs that are memory backed
991 */
992 if (file->f_op->mmap_capabilities) {
993 capabilities = file->f_op->mmap_capabilities(file);
994 } else {
995 /* no explicit capabilities set, so assume some
996 * defaults */
997 switch (file_inode(file)->i_mode & S_IFMT) {
998 case S_IFREG:
999 case S_IFBLK:
1000 capabilities = NOMMU_MAP_COPY;
1001 break;
1002
1003 case S_IFCHR:
1004 capabilities =
1005 NOMMU_MAP_DIRECT |
1006 NOMMU_MAP_READ |
1007 NOMMU_MAP_WRITE;
1008 break;
1009
1010 default:
1011 return -EINVAL;
1012 }
1013 }
1014
1015 /* eliminate any capabilities that we can't support on this
1016 * device */
1017 if (!file->f_op->get_unmapped_area)
1018 capabilities &= ~NOMMU_MAP_DIRECT;
1019 if (!(file->f_mode & FMODE_CAN_READ))
1020 capabilities &= ~NOMMU_MAP_COPY;
1021
1022 /* The file shall have been opened with read permission. */
1023 if (!(file->f_mode & FMODE_READ))
1024 return -EACCES;
1025
1026 if (flags & MAP_SHARED) {
1027 /* do checks for writing, appending and locking */
1028 if ((prot & PROT_WRITE) &&
1029 !(file->f_mode & FMODE_WRITE))
1030 return -EACCES;
1031
1032 if (IS_APPEND(file_inode(file)) &&
1033 (file->f_mode & FMODE_WRITE))
1034 return -EACCES;
1035
1036 if (locks_verify_locked(file))
1037 return -EAGAIN;
1038
1039 if (!(capabilities & NOMMU_MAP_DIRECT))
1040 return -ENODEV;
1041
1042 /* we mustn't privatise shared mappings */
1043 capabilities &= ~NOMMU_MAP_COPY;
1044 } else {
1045 /* we're going to read the file into private memory we
1046 * allocate */
1047 if (!(capabilities & NOMMU_MAP_COPY))
1048 return -ENODEV;
1049
1050 /* we don't permit a private writable mapping to be
1051 * shared with the backing device */
1052 if (prot & PROT_WRITE)
1053 capabilities &= ~NOMMU_MAP_DIRECT;
1054 }
1055
1056 if (capabilities & NOMMU_MAP_DIRECT) {
1057 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
1058 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
1059 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
1060 ) {
1061 capabilities &= ~NOMMU_MAP_DIRECT;
1062 if (flags & MAP_SHARED) {
1063 printk(KERN_WARNING
1064 "MAP_SHARED not completely supported on !MMU\n");
1065 return -EINVAL;
1066 }
1067 }
1068 }
1069
1070 /* handle executable mappings and implied executable
1071 * mappings */
1072 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1073 if (prot & PROT_EXEC)
1074 return -EPERM;
1075 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1076 /* handle implication of PROT_EXEC by PROT_READ */
1077 if (current->personality & READ_IMPLIES_EXEC) {
1078 if (capabilities & NOMMU_MAP_EXEC)
1079 prot |= PROT_EXEC;
1080 }
1081 } else if ((prot & PROT_READ) &&
1082 (prot & PROT_EXEC) &&
1083 !(capabilities & NOMMU_MAP_EXEC)
1084 ) {
1085 /* backing file is not executable, try to copy */
1086 capabilities &= ~NOMMU_MAP_DIRECT;
1087 }
1088 } else {
1089 /* anonymous mappings are always memory backed and can be
1090 * privately mapped
1091 */
1092 capabilities = NOMMU_MAP_COPY;
1093
1094 /* handle PROT_EXEC implication by PROT_READ */
1095 if ((prot & PROT_READ) &&
1096 (current->personality & READ_IMPLIES_EXEC))
1097 prot |= PROT_EXEC;
1098 }
1099
1100 /* allow the security API to have its say */
1101 ret = security_mmap_addr(addr);
1102 if (ret < 0)
1103 return ret;
1104
1105 /* looks okay */
1106 *_capabilities = capabilities;
1107 return 0;
1108}
1109
1110/*
1111 * we've determined that we can make the mapping, now translate what we
1112 * now know into VMA flags
1113 */
1114static unsigned long determine_vm_flags(struct file *file,
1115 unsigned long prot,
1116 unsigned long flags,
1117 unsigned long capabilities)
1118{
1119 unsigned long vm_flags;
1120
1121 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1122 /* vm_flags |= mm->def_flags; */
1123
1124 if (!(capabilities & NOMMU_MAP_DIRECT)) {
1125 /* attempt to share read-only copies of mapped file chunks */
1126 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1127 if (file && !(prot & PROT_WRITE))
1128 vm_flags |= VM_MAYSHARE;
1129 } else {
1130 /* overlay a shareable mapping on the backing device or inode
1131 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1132 * romfs/cramfs */
1133 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1134 if (flags & MAP_SHARED)
1135 vm_flags |= VM_SHARED;
1136 }
1137
1138 /* refuse to let anyone share private mappings with this process if
1139 * it's being traced - otherwise breakpoints set in it may interfere
1140 * with another untraced process
1141 */
1142 if ((flags & MAP_PRIVATE) && current->ptrace)
1143 vm_flags &= ~VM_MAYSHARE;
1144
1145 return vm_flags;
1146}
1147
1148/*
1149 * set up a shared mapping on a file (the driver or filesystem provides and
1150 * pins the storage)
1151 */
1152static int do_mmap_shared_file(struct vm_area_struct *vma)
1153{
1154 int ret;
1155
1156 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1157 if (ret == 0) {
1158 vma->vm_region->vm_top = vma->vm_region->vm_end;
1159 return 0;
1160 }
1161 if (ret != -ENOSYS)
1162 return ret;
1163
1164 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1165 * opposed to tried but failed) so we can only give a suitable error as
1166 * it's not possible to make a private copy if MAP_SHARED was given */
1167 return -ENODEV;
1168}
1169
1170/*
1171 * set up a private mapping or an anonymous shared mapping
1172 */
1173static int do_mmap_private(struct vm_area_struct *vma,
1174 struct vm_region *region,
1175 unsigned long len,
1176 unsigned long capabilities)
1177{
1178 unsigned long total, point;
1179 void *base;
1180 int ret, order;
1181
1182 /* invoke the file's mapping function so that it can keep track of
1183 * shared mappings on devices or memory
1184 * - VM_MAYSHARE will be set if it may attempt to share
1185 */
1186 if (capabilities & NOMMU_MAP_DIRECT) {
1187 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1188 if (ret == 0) {
1189 /* shouldn't return success if we're not sharing */
1190 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1191 vma->vm_region->vm_top = vma->vm_region->vm_end;
1192 return 0;
1193 }
1194 if (ret != -ENOSYS)
1195 return ret;
1196
1197 /* getting an ENOSYS error indicates that direct mmap isn't
1198 * possible (as opposed to tried but failed) so we'll try to
1199 * make a private copy of the data and map that instead */
1200 }
1201
1202
1203 /* allocate some memory to hold the mapping
1204 * - note that this may not return a page-aligned address if the object
1205 * we're allocating is smaller than a page
1206 */
1207 order = get_order(len);
1208 kdebug("alloc order %d for %lx", order, len);
1209
1210 total = 1 << order;
1211 point = len >> PAGE_SHIFT;
1212
1213 /* we don't want to allocate a power-of-2 sized page set */
1214 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1215 total = point;
1216 kdebug("try to alloc exact %lu pages", total);
1217 }
1218
1219 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1220 if (!base)
1221 goto enomem;
1222
1223 atomic_long_add(total, &mmap_pages_allocated);
1224
1225 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1226 region->vm_start = (unsigned long) base;
1227 region->vm_end = region->vm_start + len;
1228 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1229
1230 vma->vm_start = region->vm_start;
1231 vma->vm_end = region->vm_start + len;
1232
1233 if (vma->vm_file) {
1234 /* read the contents of a file into the copy */
1235 mm_segment_t old_fs;
1236 loff_t fpos;
1237
1238 fpos = vma->vm_pgoff;
1239 fpos <<= PAGE_SHIFT;
1240
1241 old_fs = get_fs();
1242 set_fs(KERNEL_DS);
1243 ret = __vfs_read(vma->vm_file, base, len, &fpos);
1244 set_fs(old_fs);
1245
1246 if (ret < 0)
1247 goto error_free;
1248
1249 /* clear the last little bit */
1250 if (ret < len)
1251 memset(base + ret, 0, len - ret);
1252
1253 }
1254
1255 return 0;
1256
1257error_free:
1258 free_page_series(region->vm_start, region->vm_top);
1259 region->vm_start = vma->vm_start = 0;
1260 region->vm_end = vma->vm_end = 0;
1261 region->vm_top = 0;
1262 return ret;
1263
1264enomem:
1265 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1266 len, current->pid, current->comm);
1267 show_free_areas(0);
1268 return -ENOMEM;
1269}
1270
1271/*
1272 * handle mapping creation for uClinux
1273 */
1274unsigned long do_mmap_pgoff(struct file *file,
1275 unsigned long addr,
1276 unsigned long len,
1277 unsigned long prot,
1278 unsigned long flags,
1279 unsigned long pgoff,
1280 unsigned long *populate)
1281{
1282 struct vm_area_struct *vma;
1283 struct vm_region *region;
1284 struct rb_node *rb;
1285 unsigned long capabilities, vm_flags, result;
1286 int ret;
1287
1288 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1289
1290 *populate = 0;
1291
1292 /* decide whether we should attempt the mapping, and if so what sort of
1293 * mapping */
1294 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1295 &capabilities);
1296 if (ret < 0) {
1297 kleave(" = %d [val]", ret);
1298 return ret;
1299 }
1300
1301 /* we ignore the address hint */
1302 addr = 0;
1303 len = PAGE_ALIGN(len);
1304
1305 /* we've determined that we can make the mapping, now translate what we
1306 * now know into VMA flags */
1307 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1308
1309 /* we're going to need to record the mapping */
1310 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1311 if (!region)
1312 goto error_getting_region;
1313
1314 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1315 if (!vma)
1316 goto error_getting_vma;
1317
1318 region->vm_usage = 1;
1319 region->vm_flags = vm_flags;
1320 region->vm_pgoff = pgoff;
1321
1322 INIT_LIST_HEAD(&vma->anon_vma_chain);
1323 vma->vm_flags = vm_flags;
1324 vma->vm_pgoff = pgoff;
1325
1326 if (file) {
1327 region->vm_file = get_file(file);
1328 vma->vm_file = get_file(file);
1329 }
1330
1331 down_write(&nommu_region_sem);
1332
1333 /* if we want to share, we need to check for regions created by other
1334 * mmap() calls that overlap with our proposed mapping
1335 * - we can only share with a superset match on most regular files
1336 * - shared mappings on character devices and memory backed files are
1337 * permitted to overlap inexactly as far as we are concerned for in
1338 * these cases, sharing is handled in the driver or filesystem rather
1339 * than here
1340 */
1341 if (vm_flags & VM_MAYSHARE) {
1342 struct vm_region *pregion;
1343 unsigned long pglen, rpglen, pgend, rpgend, start;
1344
1345 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1346 pgend = pgoff + pglen;
1347
1348 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1349 pregion = rb_entry(rb, struct vm_region, vm_rb);
1350
1351 if (!(pregion->vm_flags & VM_MAYSHARE))
1352 continue;
1353
1354 /* search for overlapping mappings on the same file */
1355 if (file_inode(pregion->vm_file) !=
1356 file_inode(file))
1357 continue;
1358
1359 if (pregion->vm_pgoff >= pgend)
1360 continue;
1361
1362 rpglen = pregion->vm_end - pregion->vm_start;
1363 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1364 rpgend = pregion->vm_pgoff + rpglen;
1365 if (pgoff >= rpgend)
1366 continue;
1367
1368 /* handle inexactly overlapping matches between
1369 * mappings */
1370 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1371 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1372 /* new mapping is not a subset of the region */
1373 if (!(capabilities & NOMMU_MAP_DIRECT))
1374 goto sharing_violation;
1375 continue;
1376 }
1377
1378 /* we've found a region we can share */
1379 pregion->vm_usage++;
1380 vma->vm_region = pregion;
1381 start = pregion->vm_start;
1382 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1383 vma->vm_start = start;
1384 vma->vm_end = start + len;
1385
1386 if (pregion->vm_flags & VM_MAPPED_COPY) {
1387 kdebug("share copy");
1388 vma->vm_flags |= VM_MAPPED_COPY;
1389 } else {
1390 kdebug("share mmap");
1391 ret = do_mmap_shared_file(vma);
1392 if (ret < 0) {
1393 vma->vm_region = NULL;
1394 vma->vm_start = 0;
1395 vma->vm_end = 0;
1396 pregion->vm_usage--;
1397 pregion = NULL;
1398 goto error_just_free;
1399 }
1400 }
1401 fput(region->vm_file);
1402 kmem_cache_free(vm_region_jar, region);
1403 region = pregion;
1404 result = start;
1405 goto share;
1406 }
1407
1408 /* obtain the address at which to make a shared mapping
1409 * - this is the hook for quasi-memory character devices to
1410 * tell us the location of a shared mapping
1411 */
1412 if (capabilities & NOMMU_MAP_DIRECT) {
1413 addr = file->f_op->get_unmapped_area(file, addr, len,
1414 pgoff, flags);
1415 if (IS_ERR_VALUE(addr)) {
1416 ret = addr;
1417 if (ret != -ENOSYS)
1418 goto error_just_free;
1419
1420 /* the driver refused to tell us where to site
1421 * the mapping so we'll have to attempt to copy
1422 * it */
1423 ret = -ENODEV;
1424 if (!(capabilities & NOMMU_MAP_COPY))
1425 goto error_just_free;
1426
1427 capabilities &= ~NOMMU_MAP_DIRECT;
1428 } else {
1429 vma->vm_start = region->vm_start = addr;
1430 vma->vm_end = region->vm_end = addr + len;
1431 }
1432 }
1433 }
1434
1435 vma->vm_region = region;
1436
1437 /* set up the mapping
1438 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1439 */
1440 if (file && vma->vm_flags & VM_SHARED)
1441 ret = do_mmap_shared_file(vma);
1442 else
1443 ret = do_mmap_private(vma, region, len, capabilities);
1444 if (ret < 0)
1445 goto error_just_free;
1446 add_nommu_region(region);
1447
1448 /* clear anonymous mappings that don't ask for uninitialized data */
1449 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1450 memset((void *)region->vm_start, 0,
1451 region->vm_end - region->vm_start);
1452
1453 /* okay... we have a mapping; now we have to register it */
1454 result = vma->vm_start;
1455
1456 current->mm->total_vm += len >> PAGE_SHIFT;
1457
1458share:
1459 add_vma_to_mm(current->mm, vma);
1460
1461 /* we flush the region from the icache only when the first executable
1462 * mapping of it is made */
1463 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1464 flush_icache_range(region->vm_start, region->vm_end);
1465 region->vm_icache_flushed = true;
1466 }
1467
1468 up_write(&nommu_region_sem);
1469
1470 kleave(" = %lx", result);
1471 return result;
1472
1473error_just_free:
1474 up_write(&nommu_region_sem);
1475error:
1476 if (region->vm_file)
1477 fput(region->vm_file);
1478 kmem_cache_free(vm_region_jar, region);
1479 if (vma->vm_file)
1480 fput(vma->vm_file);
1481 kmem_cache_free(vm_area_cachep, vma);
1482 kleave(" = %d", ret);
1483 return ret;
1484
1485sharing_violation:
1486 up_write(&nommu_region_sem);
1487 printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1488 ret = -EINVAL;
1489 goto error;
1490
1491error_getting_vma:
1492 kmem_cache_free(vm_region_jar, region);
1493 printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1494 " from process %d failed\n",
1495 len, current->pid);
1496 show_free_areas(0);
1497 return -ENOMEM;
1498
1499error_getting_region:
1500 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1501 " from process %d failed\n",
1502 len, current->pid);
1503 show_free_areas(0);
1504 return -ENOMEM;
1505}
1506
1507SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1508 unsigned long, prot, unsigned long, flags,
1509 unsigned long, fd, unsigned long, pgoff)
1510{
1511 struct file *file = NULL;
1512 unsigned long retval = -EBADF;
1513
1514 audit_mmap_fd(fd, flags);
1515 if (!(flags & MAP_ANONYMOUS)) {
1516 file = fget(fd);
1517 if (!file)
1518 goto out;
1519 }
1520
1521 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1522
1523 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1524
1525 if (file)
1526 fput(file);
1527out:
1528 return retval;
1529}
1530
1531#ifdef __ARCH_WANT_SYS_OLD_MMAP
1532struct mmap_arg_struct {
1533 unsigned long addr;
1534 unsigned long len;
1535 unsigned long prot;
1536 unsigned long flags;
1537 unsigned long fd;
1538 unsigned long offset;
1539};
1540
1541SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1542{
1543 struct mmap_arg_struct a;
1544
1545 if (copy_from_user(&a, arg, sizeof(a)))
1546 return -EFAULT;
1547 if (a.offset & ~PAGE_MASK)
1548 return -EINVAL;
1549
1550 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1551 a.offset >> PAGE_SHIFT);
1552}
1553#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1554
1555/*
1556 * split a vma into two pieces at address 'addr', a new vma is allocated either
1557 * for the first part or the tail.
1558 */
1559int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1560 unsigned long addr, int new_below)
1561{
1562 struct vm_area_struct *new;
1563 struct vm_region *region;
1564 unsigned long npages;
1565
1566 kenter("");
1567
1568 /* we're only permitted to split anonymous regions (these should have
1569 * only a single usage on the region) */
1570 if (vma->vm_file)
1571 return -ENOMEM;
1572
1573 if (mm->map_count >= sysctl_max_map_count)
1574 return -ENOMEM;
1575
1576 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1577 if (!region)
1578 return -ENOMEM;
1579
1580 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1581 if (!new) {
1582 kmem_cache_free(vm_region_jar, region);
1583 return -ENOMEM;
1584 }
1585
1586 /* most fields are the same, copy all, and then fixup */
1587 *new = *vma;
1588 *region = *vma->vm_region;
1589 new->vm_region = region;
1590
1591 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1592
1593 if (new_below) {
1594 region->vm_top = region->vm_end = new->vm_end = addr;
1595 } else {
1596 region->vm_start = new->vm_start = addr;
1597 region->vm_pgoff = new->vm_pgoff += npages;
1598 }
1599
1600 if (new->vm_ops && new->vm_ops->open)
1601 new->vm_ops->open(new);
1602
1603 delete_vma_from_mm(vma);
1604 down_write(&nommu_region_sem);
1605 delete_nommu_region(vma->vm_region);
1606 if (new_below) {
1607 vma->vm_region->vm_start = vma->vm_start = addr;
1608 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1609 } else {
1610 vma->vm_region->vm_end = vma->vm_end = addr;
1611 vma->vm_region->vm_top = addr;
1612 }
1613 add_nommu_region(vma->vm_region);
1614 add_nommu_region(new->vm_region);
1615 up_write(&nommu_region_sem);
1616 add_vma_to_mm(mm, vma);
1617 add_vma_to_mm(mm, new);
1618 return 0;
1619}
1620
1621/*
1622 * shrink a VMA by removing the specified chunk from either the beginning or
1623 * the end
1624 */
1625static int shrink_vma(struct mm_struct *mm,
1626 struct vm_area_struct *vma,
1627 unsigned long from, unsigned long to)
1628{
1629 struct vm_region *region;
1630
1631 kenter("");
1632
1633 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1634 * and list */
1635 delete_vma_from_mm(vma);
1636 if (from > vma->vm_start)
1637 vma->vm_end = from;
1638 else
1639 vma->vm_start = to;
1640 add_vma_to_mm(mm, vma);
1641
1642 /* cut the backing region down to size */
1643 region = vma->vm_region;
1644 BUG_ON(region->vm_usage != 1);
1645
1646 down_write(&nommu_region_sem);
1647 delete_nommu_region(region);
1648 if (from > region->vm_start) {
1649 to = region->vm_top;
1650 region->vm_top = region->vm_end = from;
1651 } else {
1652 region->vm_start = to;
1653 }
1654 add_nommu_region(region);
1655 up_write(&nommu_region_sem);
1656
1657 free_page_series(from, to);
1658 return 0;
1659}
1660
1661/*
1662 * release a mapping
1663 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1664 * VMA, though it need not cover the whole VMA
1665 */
1666int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1667{
1668 struct vm_area_struct *vma;
1669 unsigned long end;
1670 int ret;
1671
1672 kenter(",%lx,%zx", start, len);
1673
1674 len = PAGE_ALIGN(len);
1675 if (len == 0)
1676 return -EINVAL;
1677
1678 end = start + len;
1679
1680 /* find the first potentially overlapping VMA */
1681 vma = find_vma(mm, start);
1682 if (!vma) {
1683 static int limit;
1684 if (limit < 5) {
1685 printk(KERN_WARNING
1686 "munmap of memory not mmapped by process %d"
1687 " (%s): 0x%lx-0x%lx\n",
1688 current->pid, current->comm,
1689 start, start + len - 1);
1690 limit++;
1691 }
1692 return -EINVAL;
1693 }
1694
1695 /* we're allowed to split an anonymous VMA but not a file-backed one */
1696 if (vma->vm_file) {
1697 do {
1698 if (start > vma->vm_start) {
1699 kleave(" = -EINVAL [miss]");
1700 return -EINVAL;
1701 }
1702 if (end == vma->vm_end)
1703 goto erase_whole_vma;
1704 vma = vma->vm_next;
1705 } while (vma);
1706 kleave(" = -EINVAL [split file]");
1707 return -EINVAL;
1708 } else {
1709 /* the chunk must be a subset of the VMA found */
1710 if (start == vma->vm_start && end == vma->vm_end)
1711 goto erase_whole_vma;
1712 if (start < vma->vm_start || end > vma->vm_end) {
1713 kleave(" = -EINVAL [superset]");
1714 return -EINVAL;
1715 }
1716 if (start & ~PAGE_MASK) {
1717 kleave(" = -EINVAL [unaligned start]");
1718 return -EINVAL;
1719 }
1720 if (end != vma->vm_end && end & ~PAGE_MASK) {
1721 kleave(" = -EINVAL [unaligned split]");
1722 return -EINVAL;
1723 }
1724 if (start != vma->vm_start && end != vma->vm_end) {
1725 ret = split_vma(mm, vma, start, 1);
1726 if (ret < 0) {
1727 kleave(" = %d [split]", ret);
1728 return ret;
1729 }
1730 }
1731 return shrink_vma(mm, vma, start, end);
1732 }
1733
1734erase_whole_vma:
1735 delete_vma_from_mm(vma);
1736 delete_vma(mm, vma);
1737 kleave(" = 0");
1738 return 0;
1739}
1740EXPORT_SYMBOL(do_munmap);
1741
1742int vm_munmap(unsigned long addr, size_t len)
1743{
1744 struct mm_struct *mm = current->mm;
1745 int ret;
1746
1747 down_write(&mm->mmap_sem);
1748 ret = do_munmap(mm, addr, len);
1749 up_write(&mm->mmap_sem);
1750 return ret;
1751}
1752EXPORT_SYMBOL(vm_munmap);
1753
1754SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1755{
1756 return vm_munmap(addr, len);
1757}
1758
1759/*
1760 * release all the mappings made in a process's VM space
1761 */
1762void exit_mmap(struct mm_struct *mm)
1763{
1764 struct vm_area_struct *vma;
1765
1766 if (!mm)
1767 return;
1768
1769 kenter("");
1770
1771 mm->total_vm = 0;
1772
1773 while ((vma = mm->mmap)) {
1774 mm->mmap = vma->vm_next;
1775 delete_vma_from_mm(vma);
1776 delete_vma(mm, vma);
1777 cond_resched();
1778 }
1779
1780 kleave("");
1781}
1782
1783unsigned long vm_brk(unsigned long addr, unsigned long len)
1784{
1785 return -ENOMEM;
1786}
1787
1788/*
1789 * expand (or shrink) an existing mapping, potentially moving it at the same
1790 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1791 *
1792 * under NOMMU conditions, we only permit changing a mapping's size, and only
1793 * as long as it stays within the region allocated by do_mmap_private() and the
1794 * block is not shareable
1795 *
1796 * MREMAP_FIXED is not supported under NOMMU conditions
1797 */
1798static unsigned long do_mremap(unsigned long addr,
1799 unsigned long old_len, unsigned long new_len,
1800 unsigned long flags, unsigned long new_addr)
1801{
1802 struct vm_area_struct *vma;
1803
1804 /* insanity checks first */
1805 old_len = PAGE_ALIGN(old_len);
1806 new_len = PAGE_ALIGN(new_len);
1807 if (old_len == 0 || new_len == 0)
1808 return (unsigned long) -EINVAL;
1809
1810 if (addr & ~PAGE_MASK)
1811 return -EINVAL;
1812
1813 if (flags & MREMAP_FIXED && new_addr != addr)
1814 return (unsigned long) -EINVAL;
1815
1816 vma = find_vma_exact(current->mm, addr, old_len);
1817 if (!vma)
1818 return (unsigned long) -EINVAL;
1819
1820 if (vma->vm_end != vma->vm_start + old_len)
1821 return (unsigned long) -EFAULT;
1822
1823 if (vma->vm_flags & VM_MAYSHARE)
1824 return (unsigned long) -EPERM;
1825
1826 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1827 return (unsigned long) -ENOMEM;
1828
1829 /* all checks complete - do it */
1830 vma->vm_end = vma->vm_start + new_len;
1831 return vma->vm_start;
1832}
1833
1834SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1835 unsigned long, new_len, unsigned long, flags,
1836 unsigned long, new_addr)
1837{
1838 unsigned long ret;
1839
1840 down_write(&current->mm->mmap_sem);
1841 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1842 up_write(&current->mm->mmap_sem);
1843 return ret;
1844}
1845
1846struct page *follow_page_mask(struct vm_area_struct *vma,
1847 unsigned long address, unsigned int flags,
1848 unsigned int *page_mask)
1849{
1850 *page_mask = 0;
1851 return NULL;
1852}
1853
1854int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1855 unsigned long pfn, unsigned long size, pgprot_t prot)
1856{
1857 if (addr != (pfn << PAGE_SHIFT))
1858 return -EINVAL;
1859
1860 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1861 return 0;
1862}
1863EXPORT_SYMBOL(remap_pfn_range);
1864
1865int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1866{
1867 unsigned long pfn = start >> PAGE_SHIFT;
1868 unsigned long vm_len = vma->vm_end - vma->vm_start;
1869
1870 pfn += vma->vm_pgoff;
1871 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1872}
1873EXPORT_SYMBOL(vm_iomap_memory);
1874
1875int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1876 unsigned long pgoff)
1877{
1878 unsigned int size = vma->vm_end - vma->vm_start;
1879
1880 if (!(vma->vm_flags & VM_USERMAP))
1881 return -EINVAL;
1882
1883 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1884 vma->vm_end = vma->vm_start + size;
1885
1886 return 0;
1887}
1888EXPORT_SYMBOL(remap_vmalloc_range);
1889
1890unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1891 unsigned long len, unsigned long pgoff, unsigned long flags)
1892{
1893 return -ENOMEM;
1894}
1895
1896void unmap_mapping_range(struct address_space *mapping,
1897 loff_t const holebegin, loff_t const holelen,
1898 int even_cows)
1899{
1900}
1901EXPORT_SYMBOL(unmap_mapping_range);
1902
1903/*
1904 * Check that a process has enough memory to allocate a new virtual
1905 * mapping. 0 means there is enough memory for the allocation to
1906 * succeed and -ENOMEM implies there is not.
1907 *
1908 * We currently support three overcommit policies, which are set via the
1909 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1910 *
1911 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1912 * Additional code 2002 Jul 20 by Robert Love.
1913 *
1914 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1915 *
1916 * Note this is a helper function intended to be used by LSMs which
1917 * wish to use this logic.
1918 */
1919int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1920{
1921 long free, allowed, reserve;
1922
1923 vm_acct_memory(pages);
1924
1925 /*
1926 * Sometimes we want to use more memory than we have
1927 */
1928 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1929 return 0;
1930
1931 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1932 free = global_page_state(NR_FREE_PAGES);
1933 free += global_page_state(NR_FILE_PAGES);
1934
1935 /*
1936 * shmem pages shouldn't be counted as free in this
1937 * case, they can't be purged, only swapped out, and
1938 * that won't affect the overall amount of available
1939 * memory in the system.
1940 */
1941 free -= global_page_state(NR_SHMEM);
1942
1943 free += get_nr_swap_pages();
1944
1945 /*
1946 * Any slabs which are created with the
1947 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1948 * which are reclaimable, under pressure. The dentry
1949 * cache and most inode caches should fall into this
1950 */
1951 free += global_page_state(NR_SLAB_RECLAIMABLE);
1952
1953 /*
1954 * Leave reserved pages. The pages are not for anonymous pages.
1955 */
1956 if (free <= totalreserve_pages)
1957 goto error;
1958 else
1959 free -= totalreserve_pages;
1960
1961 /*
1962 * Reserve some for root
1963 */
1964 if (!cap_sys_admin)
1965 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1966
1967 if (free > pages)
1968 return 0;
1969
1970 goto error;
1971 }
1972
1973 allowed = vm_commit_limit();
1974 /*
1975 * Reserve some 3% for root
1976 */
1977 if (!cap_sys_admin)
1978 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1979
1980 /*
1981 * Don't let a single process grow so big a user can't recover
1982 */
1983 if (mm) {
1984 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1985 allowed -= min_t(long, mm->total_vm / 32, reserve);
1986 }
1987
1988 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1989 return 0;
1990
1991error:
1992 vm_unacct_memory(pages);
1993
1994 return -ENOMEM;
1995}
1996
1997int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1998{
1999 BUG();
2000 return 0;
2001}
2002EXPORT_SYMBOL(filemap_fault);
2003
2004void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2005{
2006 BUG();
2007}
2008EXPORT_SYMBOL(filemap_map_pages);
2009
2010static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
2011 unsigned long addr, void *buf, int len, int write)
2012{
2013 struct vm_area_struct *vma;
2014
2015 down_read(&mm->mmap_sem);
2016
2017 /* the access must start within one of the target process's mappings */
2018 vma = find_vma(mm, addr);
2019 if (vma) {
2020 /* don't overrun this mapping */
2021 if (addr + len >= vma->vm_end)
2022 len = vma->vm_end - addr;
2023
2024 /* only read or write mappings where it is permitted */
2025 if (write && vma->vm_flags & VM_MAYWRITE)
2026 copy_to_user_page(vma, NULL, addr,
2027 (void *) addr, buf, len);
2028 else if (!write && vma->vm_flags & VM_MAYREAD)
2029 copy_from_user_page(vma, NULL, addr,
2030 buf, (void *) addr, len);
2031 else
2032 len = 0;
2033 } else {
2034 len = 0;
2035 }
2036
2037 up_read(&mm->mmap_sem);
2038
2039 return len;
2040}
2041
2042/**
2043 * @access_remote_vm - access another process' address space
2044 * @mm: the mm_struct of the target address space
2045 * @addr: start address to access
2046 * @buf: source or destination buffer
2047 * @len: number of bytes to transfer
2048 * @write: whether the access is a write
2049 *
2050 * The caller must hold a reference on @mm.
2051 */
2052int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2053 void *buf, int len, int write)
2054{
2055 return __access_remote_vm(NULL, mm, addr, buf, len, write);
2056}
2057
2058/*
2059 * Access another process' address space.
2060 * - source/target buffer must be kernel space
2061 */
2062int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2063{
2064 struct mm_struct *mm;
2065
2066 if (addr + len < addr)
2067 return 0;
2068
2069 mm = get_task_mm(tsk);
2070 if (!mm)
2071 return 0;
2072
2073 len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2074
2075 mmput(mm);
2076 return len;
2077}
2078
2079/**
2080 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2081 * @inode: The inode to check
2082 * @size: The current filesize of the inode
2083 * @newsize: The proposed filesize of the inode
2084 *
2085 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2086 * make sure that that any outstanding VMAs aren't broken and then shrink the
2087 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2088 * automatically grant mappings that are too large.
2089 */
2090int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2091 size_t newsize)
2092{
2093 struct vm_area_struct *vma;
2094 struct vm_region *region;
2095 pgoff_t low, high;
2096 size_t r_size, r_top;
2097
2098 low = newsize >> PAGE_SHIFT;
2099 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2100
2101 down_write(&nommu_region_sem);
2102 i_mmap_lock_read(inode->i_mapping);
2103
2104 /* search for VMAs that fall within the dead zone */
2105 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2106 /* found one - only interested if it's shared out of the page
2107 * cache */
2108 if (vma->vm_flags & VM_SHARED) {
2109 i_mmap_unlock_read(inode->i_mapping);
2110 up_write(&nommu_region_sem);
2111 return -ETXTBSY; /* not quite true, but near enough */
2112 }
2113 }
2114
2115 /* reduce any regions that overlap the dead zone - if in existence,
2116 * these will be pointed to by VMAs that don't overlap the dead zone
2117 *
2118 * we don't check for any regions that start beyond the EOF as there
2119 * shouldn't be any
2120 */
2121 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
2122 if (!(vma->vm_flags & VM_SHARED))
2123 continue;
2124
2125 region = vma->vm_region;
2126 r_size = region->vm_top - region->vm_start;
2127 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2128
2129 if (r_top > newsize) {
2130 region->vm_top -= r_top - newsize;
2131 if (region->vm_end > region->vm_top)
2132 region->vm_end = region->vm_top;
2133 }
2134 }
2135
2136 i_mmap_unlock_read(inode->i_mapping);
2137 up_write(&nommu_region_sem);
2138 return 0;
2139}
2140
2141/*
2142 * Initialise sysctl_user_reserve_kbytes.
2143 *
2144 * This is intended to prevent a user from starting a single memory hogging
2145 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2146 * mode.
2147 *
2148 * The default value is min(3% of free memory, 128MB)
2149 * 128MB is enough to recover with sshd/login, bash, and top/kill.
2150 */
2151static int __meminit init_user_reserve(void)
2152{
2153 unsigned long free_kbytes;
2154
2155 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2156
2157 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2158 return 0;
2159}
2160module_init(init_user_reserve)
2161
2162/*
2163 * Initialise sysctl_admin_reserve_kbytes.
2164 *
2165 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2166 * to log in and kill a memory hogging process.
2167 *
2168 * Systems with more than 256MB will reserve 8MB, enough to recover
2169 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2170 * only reserve 3% of free pages by default.
2171 */
2172static int __meminit init_admin_reserve(void)
2173{
2174 unsigned long free_kbytes;
2175
2176 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2177
2178 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2179 return 0;
2180}
2181module_init(init_admin_reserve)