Merge branches 'acpi-resources', 'acpi-battery', 'acpi-doc' and 'acpi-pnp'
[linux-2.6-block.git] / include / linux / netdevice.h
... / ...
CommitLineData
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25#ifndef _LINUX_NETDEVICE_H
26#define _LINUX_NETDEVICE_H
27
28#include <linux/pm_qos.h>
29#include <linux/timer.h>
30#include <linux/bug.h>
31#include <linux/delay.h>
32#include <linux/atomic.h>
33#include <linux/prefetch.h>
34#include <asm/cache.h>
35#include <asm/byteorder.h>
36
37#include <linux/percpu.h>
38#include <linux/rculist.h>
39#include <linux/dmaengine.h>
40#include <linux/workqueue.h>
41#include <linux/dynamic_queue_limits.h>
42
43#include <linux/ethtool.h>
44#include <net/net_namespace.h>
45#include <net/dsa.h>
46#ifdef CONFIG_DCB
47#include <net/dcbnl.h>
48#endif
49#include <net/netprio_cgroup.h>
50
51#include <linux/netdev_features.h>
52#include <linux/neighbour.h>
53#include <uapi/linux/netdevice.h>
54#include <uapi/linux/if_bonding.h>
55
56struct netpoll_info;
57struct device;
58struct phy_device;
59/* 802.11 specific */
60struct wireless_dev;
61/* 802.15.4 specific */
62struct wpan_dev;
63struct mpls_dev;
64
65void netdev_set_default_ethtool_ops(struct net_device *dev,
66 const struct ethtool_ops *ops);
67
68/* Backlog congestion levels */
69#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
70#define NET_RX_DROP 1 /* packet dropped */
71
72/*
73 * Transmit return codes: transmit return codes originate from three different
74 * namespaces:
75 *
76 * - qdisc return codes
77 * - driver transmit return codes
78 * - errno values
79 *
80 * Drivers are allowed to return any one of those in their hard_start_xmit()
81 * function. Real network devices commonly used with qdiscs should only return
82 * the driver transmit return codes though - when qdiscs are used, the actual
83 * transmission happens asynchronously, so the value is not propagated to
84 * higher layers. Virtual network devices transmit synchronously, in this case
85 * the driver transmit return codes are consumed by dev_queue_xmit(), all
86 * others are propagated to higher layers.
87 */
88
89/* qdisc ->enqueue() return codes. */
90#define NET_XMIT_SUCCESS 0x00
91#define NET_XMIT_DROP 0x01 /* skb dropped */
92#define NET_XMIT_CN 0x02 /* congestion notification */
93#define NET_XMIT_POLICED 0x03 /* skb is shot by police */
94#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
95
96/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
97 * indicates that the device will soon be dropping packets, or already drops
98 * some packets of the same priority; prompting us to send less aggressively. */
99#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
100#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
101
102/* Driver transmit return codes */
103#define NETDEV_TX_MASK 0xf0
104
105enum netdev_tx {
106 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
107 NETDEV_TX_OK = 0x00, /* driver took care of packet */
108 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
109 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
110};
111typedef enum netdev_tx netdev_tx_t;
112
113/*
114 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
115 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
116 */
117static inline bool dev_xmit_complete(int rc)
118{
119 /*
120 * Positive cases with an skb consumed by a driver:
121 * - successful transmission (rc == NETDEV_TX_OK)
122 * - error while transmitting (rc < 0)
123 * - error while queueing to a different device (rc & NET_XMIT_MASK)
124 */
125 if (likely(rc < NET_XMIT_MASK))
126 return true;
127
128 return false;
129}
130
131/*
132 * Compute the worst case header length according to the protocols
133 * used.
134 */
135
136#if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
137# if defined(CONFIG_MAC80211_MESH)
138# define LL_MAX_HEADER 128
139# else
140# define LL_MAX_HEADER 96
141# endif
142#else
143# define LL_MAX_HEADER 32
144#endif
145
146#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
147 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
148#define MAX_HEADER LL_MAX_HEADER
149#else
150#define MAX_HEADER (LL_MAX_HEADER + 48)
151#endif
152
153/*
154 * Old network device statistics. Fields are native words
155 * (unsigned long) so they can be read and written atomically.
156 */
157
158struct net_device_stats {
159 unsigned long rx_packets;
160 unsigned long tx_packets;
161 unsigned long rx_bytes;
162 unsigned long tx_bytes;
163 unsigned long rx_errors;
164 unsigned long tx_errors;
165 unsigned long rx_dropped;
166 unsigned long tx_dropped;
167 unsigned long multicast;
168 unsigned long collisions;
169 unsigned long rx_length_errors;
170 unsigned long rx_over_errors;
171 unsigned long rx_crc_errors;
172 unsigned long rx_frame_errors;
173 unsigned long rx_fifo_errors;
174 unsigned long rx_missed_errors;
175 unsigned long tx_aborted_errors;
176 unsigned long tx_carrier_errors;
177 unsigned long tx_fifo_errors;
178 unsigned long tx_heartbeat_errors;
179 unsigned long tx_window_errors;
180 unsigned long rx_compressed;
181 unsigned long tx_compressed;
182};
183
184
185#include <linux/cache.h>
186#include <linux/skbuff.h>
187
188#ifdef CONFIG_RPS
189#include <linux/static_key.h>
190extern struct static_key rps_needed;
191#endif
192
193struct neighbour;
194struct neigh_parms;
195struct sk_buff;
196
197struct netdev_hw_addr {
198 struct list_head list;
199 unsigned char addr[MAX_ADDR_LEN];
200 unsigned char type;
201#define NETDEV_HW_ADDR_T_LAN 1
202#define NETDEV_HW_ADDR_T_SAN 2
203#define NETDEV_HW_ADDR_T_SLAVE 3
204#define NETDEV_HW_ADDR_T_UNICAST 4
205#define NETDEV_HW_ADDR_T_MULTICAST 5
206 bool global_use;
207 int sync_cnt;
208 int refcount;
209 int synced;
210 struct rcu_head rcu_head;
211};
212
213struct netdev_hw_addr_list {
214 struct list_head list;
215 int count;
216};
217
218#define netdev_hw_addr_list_count(l) ((l)->count)
219#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
220#define netdev_hw_addr_list_for_each(ha, l) \
221 list_for_each_entry(ha, &(l)->list, list)
222
223#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
224#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
225#define netdev_for_each_uc_addr(ha, dev) \
226 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
227
228#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
229#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
230#define netdev_for_each_mc_addr(ha, dev) \
231 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
232
233struct hh_cache {
234 u16 hh_len;
235 u16 __pad;
236 seqlock_t hh_lock;
237
238 /* cached hardware header; allow for machine alignment needs. */
239#define HH_DATA_MOD 16
240#define HH_DATA_OFF(__len) \
241 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
242#define HH_DATA_ALIGN(__len) \
243 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
244 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
245};
246
247/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
248 * Alternative is:
249 * dev->hard_header_len ? (dev->hard_header_len +
250 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
251 *
252 * We could use other alignment values, but we must maintain the
253 * relationship HH alignment <= LL alignment.
254 */
255#define LL_RESERVED_SPACE(dev) \
256 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
257#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
258 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
259
260struct header_ops {
261 int (*create) (struct sk_buff *skb, struct net_device *dev,
262 unsigned short type, const void *daddr,
263 const void *saddr, unsigned int len);
264 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
265 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
266 void (*cache_update)(struct hh_cache *hh,
267 const struct net_device *dev,
268 const unsigned char *haddr);
269};
270
271/* These flag bits are private to the generic network queueing
272 * layer, they may not be explicitly referenced by any other
273 * code.
274 */
275
276enum netdev_state_t {
277 __LINK_STATE_START,
278 __LINK_STATE_PRESENT,
279 __LINK_STATE_NOCARRIER,
280 __LINK_STATE_LINKWATCH_PENDING,
281 __LINK_STATE_DORMANT,
282};
283
284
285/*
286 * This structure holds at boot time configured netdevice settings. They
287 * are then used in the device probing.
288 */
289struct netdev_boot_setup {
290 char name[IFNAMSIZ];
291 struct ifmap map;
292};
293#define NETDEV_BOOT_SETUP_MAX 8
294
295int __init netdev_boot_setup(char *str);
296
297/*
298 * Structure for NAPI scheduling similar to tasklet but with weighting
299 */
300struct napi_struct {
301 /* The poll_list must only be managed by the entity which
302 * changes the state of the NAPI_STATE_SCHED bit. This means
303 * whoever atomically sets that bit can add this napi_struct
304 * to the per-cpu poll_list, and whoever clears that bit
305 * can remove from the list right before clearing the bit.
306 */
307 struct list_head poll_list;
308
309 unsigned long state;
310 int weight;
311 unsigned int gro_count;
312 int (*poll)(struct napi_struct *, int);
313#ifdef CONFIG_NETPOLL
314 spinlock_t poll_lock;
315 int poll_owner;
316#endif
317 struct net_device *dev;
318 struct sk_buff *gro_list;
319 struct sk_buff *skb;
320 struct hrtimer timer;
321 struct list_head dev_list;
322 struct hlist_node napi_hash_node;
323 unsigned int napi_id;
324};
325
326enum {
327 NAPI_STATE_SCHED, /* Poll is scheduled */
328 NAPI_STATE_DISABLE, /* Disable pending */
329 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
330 NAPI_STATE_HASHED, /* In NAPI hash */
331};
332
333enum gro_result {
334 GRO_MERGED,
335 GRO_MERGED_FREE,
336 GRO_HELD,
337 GRO_NORMAL,
338 GRO_DROP,
339};
340typedef enum gro_result gro_result_t;
341
342/*
343 * enum rx_handler_result - Possible return values for rx_handlers.
344 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
345 * further.
346 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
347 * case skb->dev was changed by rx_handler.
348 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
349 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
350 *
351 * rx_handlers are functions called from inside __netif_receive_skb(), to do
352 * special processing of the skb, prior to delivery to protocol handlers.
353 *
354 * Currently, a net_device can only have a single rx_handler registered. Trying
355 * to register a second rx_handler will return -EBUSY.
356 *
357 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
358 * To unregister a rx_handler on a net_device, use
359 * netdev_rx_handler_unregister().
360 *
361 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
362 * do with the skb.
363 *
364 * If the rx_handler consumed to skb in some way, it should return
365 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
366 * the skb to be delivered in some other ways.
367 *
368 * If the rx_handler changed skb->dev, to divert the skb to another
369 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
370 * new device will be called if it exists.
371 *
372 * If the rx_handler consider the skb should be ignored, it should return
373 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
374 * are registered on exact device (ptype->dev == skb->dev).
375 *
376 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
377 * delivered, it should return RX_HANDLER_PASS.
378 *
379 * A device without a registered rx_handler will behave as if rx_handler
380 * returned RX_HANDLER_PASS.
381 */
382
383enum rx_handler_result {
384 RX_HANDLER_CONSUMED,
385 RX_HANDLER_ANOTHER,
386 RX_HANDLER_EXACT,
387 RX_HANDLER_PASS,
388};
389typedef enum rx_handler_result rx_handler_result_t;
390typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
391
392void __napi_schedule(struct napi_struct *n);
393void __napi_schedule_irqoff(struct napi_struct *n);
394
395static inline bool napi_disable_pending(struct napi_struct *n)
396{
397 return test_bit(NAPI_STATE_DISABLE, &n->state);
398}
399
400/**
401 * napi_schedule_prep - check if napi can be scheduled
402 * @n: napi context
403 *
404 * Test if NAPI routine is already running, and if not mark
405 * it as running. This is used as a condition variable
406 * insure only one NAPI poll instance runs. We also make
407 * sure there is no pending NAPI disable.
408 */
409static inline bool napi_schedule_prep(struct napi_struct *n)
410{
411 return !napi_disable_pending(n) &&
412 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
413}
414
415/**
416 * napi_schedule - schedule NAPI poll
417 * @n: napi context
418 *
419 * Schedule NAPI poll routine to be called if it is not already
420 * running.
421 */
422static inline void napi_schedule(struct napi_struct *n)
423{
424 if (napi_schedule_prep(n))
425 __napi_schedule(n);
426}
427
428/**
429 * napi_schedule_irqoff - schedule NAPI poll
430 * @n: napi context
431 *
432 * Variant of napi_schedule(), assuming hard irqs are masked.
433 */
434static inline void napi_schedule_irqoff(struct napi_struct *n)
435{
436 if (napi_schedule_prep(n))
437 __napi_schedule_irqoff(n);
438}
439
440/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
441static inline bool napi_reschedule(struct napi_struct *napi)
442{
443 if (napi_schedule_prep(napi)) {
444 __napi_schedule(napi);
445 return true;
446 }
447 return false;
448}
449
450void __napi_complete(struct napi_struct *n);
451void napi_complete_done(struct napi_struct *n, int work_done);
452/**
453 * napi_complete - NAPI processing complete
454 * @n: napi context
455 *
456 * Mark NAPI processing as complete.
457 * Consider using napi_complete_done() instead.
458 */
459static inline void napi_complete(struct napi_struct *n)
460{
461 return napi_complete_done(n, 0);
462}
463
464/**
465 * napi_by_id - lookup a NAPI by napi_id
466 * @napi_id: hashed napi_id
467 *
468 * lookup @napi_id in napi_hash table
469 * must be called under rcu_read_lock()
470 */
471struct napi_struct *napi_by_id(unsigned int napi_id);
472
473/**
474 * napi_hash_add - add a NAPI to global hashtable
475 * @napi: napi context
476 *
477 * generate a new napi_id and store a @napi under it in napi_hash
478 */
479void napi_hash_add(struct napi_struct *napi);
480
481/**
482 * napi_hash_del - remove a NAPI from global table
483 * @napi: napi context
484 *
485 * Warning: caller must observe rcu grace period
486 * before freeing memory containing @napi
487 */
488void napi_hash_del(struct napi_struct *napi);
489
490/**
491 * napi_disable - prevent NAPI from scheduling
492 * @n: napi context
493 *
494 * Stop NAPI from being scheduled on this context.
495 * Waits till any outstanding processing completes.
496 */
497void napi_disable(struct napi_struct *n);
498
499/**
500 * napi_enable - enable NAPI scheduling
501 * @n: napi context
502 *
503 * Resume NAPI from being scheduled on this context.
504 * Must be paired with napi_disable.
505 */
506static inline void napi_enable(struct napi_struct *n)
507{
508 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
509 smp_mb__before_atomic();
510 clear_bit(NAPI_STATE_SCHED, &n->state);
511}
512
513#ifdef CONFIG_SMP
514/**
515 * napi_synchronize - wait until NAPI is not running
516 * @n: napi context
517 *
518 * Wait until NAPI is done being scheduled on this context.
519 * Waits till any outstanding processing completes but
520 * does not disable future activations.
521 */
522static inline void napi_synchronize(const struct napi_struct *n)
523{
524 while (test_bit(NAPI_STATE_SCHED, &n->state))
525 msleep(1);
526}
527#else
528# define napi_synchronize(n) barrier()
529#endif
530
531enum netdev_queue_state_t {
532 __QUEUE_STATE_DRV_XOFF,
533 __QUEUE_STATE_STACK_XOFF,
534 __QUEUE_STATE_FROZEN,
535};
536
537#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
538#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
539#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
540
541#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
542#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
543 QUEUE_STATE_FROZEN)
544#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
545 QUEUE_STATE_FROZEN)
546
547/*
548 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
549 * netif_tx_* functions below are used to manipulate this flag. The
550 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
551 * queue independently. The netif_xmit_*stopped functions below are called
552 * to check if the queue has been stopped by the driver or stack (either
553 * of the XOFF bits are set in the state). Drivers should not need to call
554 * netif_xmit*stopped functions, they should only be using netif_tx_*.
555 */
556
557struct netdev_queue {
558/*
559 * read mostly part
560 */
561 struct net_device *dev;
562 struct Qdisc __rcu *qdisc;
563 struct Qdisc *qdisc_sleeping;
564#ifdef CONFIG_SYSFS
565 struct kobject kobj;
566#endif
567#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
568 int numa_node;
569#endif
570/*
571 * write mostly part
572 */
573 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
574 int xmit_lock_owner;
575 /*
576 * please use this field instead of dev->trans_start
577 */
578 unsigned long trans_start;
579
580 /*
581 * Number of TX timeouts for this queue
582 * (/sys/class/net/DEV/Q/trans_timeout)
583 */
584 unsigned long trans_timeout;
585
586 unsigned long state;
587
588#ifdef CONFIG_BQL
589 struct dql dql;
590#endif
591 unsigned long tx_maxrate;
592} ____cacheline_aligned_in_smp;
593
594static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
595{
596#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
597 return q->numa_node;
598#else
599 return NUMA_NO_NODE;
600#endif
601}
602
603static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
604{
605#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
606 q->numa_node = node;
607#endif
608}
609
610#ifdef CONFIG_RPS
611/*
612 * This structure holds an RPS map which can be of variable length. The
613 * map is an array of CPUs.
614 */
615struct rps_map {
616 unsigned int len;
617 struct rcu_head rcu;
618 u16 cpus[0];
619};
620#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
621
622/*
623 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
624 * tail pointer for that CPU's input queue at the time of last enqueue, and
625 * a hardware filter index.
626 */
627struct rps_dev_flow {
628 u16 cpu;
629 u16 filter;
630 unsigned int last_qtail;
631};
632#define RPS_NO_FILTER 0xffff
633
634/*
635 * The rps_dev_flow_table structure contains a table of flow mappings.
636 */
637struct rps_dev_flow_table {
638 unsigned int mask;
639 struct rcu_head rcu;
640 struct rps_dev_flow flows[0];
641};
642#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
643 ((_num) * sizeof(struct rps_dev_flow)))
644
645/*
646 * The rps_sock_flow_table contains mappings of flows to the last CPU
647 * on which they were processed by the application (set in recvmsg).
648 * Each entry is a 32bit value. Upper part is the high order bits
649 * of flow hash, lower part is cpu number.
650 * rps_cpu_mask is used to partition the space, depending on number of
651 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
652 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
653 * meaning we use 32-6=26 bits for the hash.
654 */
655struct rps_sock_flow_table {
656 u32 mask;
657
658 u32 ents[0] ____cacheline_aligned_in_smp;
659};
660#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
661
662#define RPS_NO_CPU 0xffff
663
664extern u32 rps_cpu_mask;
665extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
666
667static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
668 u32 hash)
669{
670 if (table && hash) {
671 unsigned int index = hash & table->mask;
672 u32 val = hash & ~rps_cpu_mask;
673
674 /* We only give a hint, preemption can change cpu under us */
675 val |= raw_smp_processor_id();
676
677 if (table->ents[index] != val)
678 table->ents[index] = val;
679 }
680}
681
682#ifdef CONFIG_RFS_ACCEL
683bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
684 u16 filter_id);
685#endif
686#endif /* CONFIG_RPS */
687
688/* This structure contains an instance of an RX queue. */
689struct netdev_rx_queue {
690#ifdef CONFIG_RPS
691 struct rps_map __rcu *rps_map;
692 struct rps_dev_flow_table __rcu *rps_flow_table;
693#endif
694 struct kobject kobj;
695 struct net_device *dev;
696} ____cacheline_aligned_in_smp;
697
698/*
699 * RX queue sysfs structures and functions.
700 */
701struct rx_queue_attribute {
702 struct attribute attr;
703 ssize_t (*show)(struct netdev_rx_queue *queue,
704 struct rx_queue_attribute *attr, char *buf);
705 ssize_t (*store)(struct netdev_rx_queue *queue,
706 struct rx_queue_attribute *attr, const char *buf, size_t len);
707};
708
709#ifdef CONFIG_XPS
710/*
711 * This structure holds an XPS map which can be of variable length. The
712 * map is an array of queues.
713 */
714struct xps_map {
715 unsigned int len;
716 unsigned int alloc_len;
717 struct rcu_head rcu;
718 u16 queues[0];
719};
720#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
721#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
722 / sizeof(u16))
723
724/*
725 * This structure holds all XPS maps for device. Maps are indexed by CPU.
726 */
727struct xps_dev_maps {
728 struct rcu_head rcu;
729 struct xps_map __rcu *cpu_map[0];
730};
731#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
732 (nr_cpu_ids * sizeof(struct xps_map *)))
733#endif /* CONFIG_XPS */
734
735#define TC_MAX_QUEUE 16
736#define TC_BITMASK 15
737/* HW offloaded queuing disciplines txq count and offset maps */
738struct netdev_tc_txq {
739 u16 count;
740 u16 offset;
741};
742
743#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
744/*
745 * This structure is to hold information about the device
746 * configured to run FCoE protocol stack.
747 */
748struct netdev_fcoe_hbainfo {
749 char manufacturer[64];
750 char serial_number[64];
751 char hardware_version[64];
752 char driver_version[64];
753 char optionrom_version[64];
754 char firmware_version[64];
755 char model[256];
756 char model_description[256];
757};
758#endif
759
760#define MAX_PHYS_ITEM_ID_LEN 32
761
762/* This structure holds a unique identifier to identify some
763 * physical item (port for example) used by a netdevice.
764 */
765struct netdev_phys_item_id {
766 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
767 unsigned char id_len;
768};
769
770typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
771 struct sk_buff *skb);
772
773/*
774 * This structure defines the management hooks for network devices.
775 * The following hooks can be defined; unless noted otherwise, they are
776 * optional and can be filled with a null pointer.
777 *
778 * int (*ndo_init)(struct net_device *dev);
779 * This function is called once when network device is registered.
780 * The network device can use this to any late stage initializaton
781 * or semantic validattion. It can fail with an error code which will
782 * be propogated back to register_netdev
783 *
784 * void (*ndo_uninit)(struct net_device *dev);
785 * This function is called when device is unregistered or when registration
786 * fails. It is not called if init fails.
787 *
788 * int (*ndo_open)(struct net_device *dev);
789 * This function is called when network device transistions to the up
790 * state.
791 *
792 * int (*ndo_stop)(struct net_device *dev);
793 * This function is called when network device transistions to the down
794 * state.
795 *
796 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
797 * struct net_device *dev);
798 * Called when a packet needs to be transmitted.
799 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
800 * the queue before that can happen; it's for obsolete devices and weird
801 * corner cases, but the stack really does a non-trivial amount
802 * of useless work if you return NETDEV_TX_BUSY.
803 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
804 * Required can not be NULL.
805 *
806 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
807 * void *accel_priv, select_queue_fallback_t fallback);
808 * Called to decide which queue to when device supports multiple
809 * transmit queues.
810 *
811 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
812 * This function is called to allow device receiver to make
813 * changes to configuration when multicast or promiscious is enabled.
814 *
815 * void (*ndo_set_rx_mode)(struct net_device *dev);
816 * This function is called device changes address list filtering.
817 * If driver handles unicast address filtering, it should set
818 * IFF_UNICAST_FLT to its priv_flags.
819 *
820 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
821 * This function is called when the Media Access Control address
822 * needs to be changed. If this interface is not defined, the
823 * mac address can not be changed.
824 *
825 * int (*ndo_validate_addr)(struct net_device *dev);
826 * Test if Media Access Control address is valid for the device.
827 *
828 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
829 * Called when a user request an ioctl which can't be handled by
830 * the generic interface code. If not defined ioctl's return
831 * not supported error code.
832 *
833 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
834 * Used to set network devices bus interface parameters. This interface
835 * is retained for legacy reason, new devices should use the bus
836 * interface (PCI) for low level management.
837 *
838 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
839 * Called when a user wants to change the Maximum Transfer Unit
840 * of a device. If not defined, any request to change MTU will
841 * will return an error.
842 *
843 * void (*ndo_tx_timeout)(struct net_device *dev);
844 * Callback uses when the transmitter has not made any progress
845 * for dev->watchdog ticks.
846 *
847 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
848 * struct rtnl_link_stats64 *storage);
849 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
850 * Called when a user wants to get the network device usage
851 * statistics. Drivers must do one of the following:
852 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
853 * rtnl_link_stats64 structure passed by the caller.
854 * 2. Define @ndo_get_stats to update a net_device_stats structure
855 * (which should normally be dev->stats) and return a pointer to
856 * it. The structure may be changed asynchronously only if each
857 * field is written atomically.
858 * 3. Update dev->stats asynchronously and atomically, and define
859 * neither operation.
860 *
861 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
862 * If device support VLAN filtering this function is called when a
863 * VLAN id is registered.
864 *
865 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
866 * If device support VLAN filtering this function is called when a
867 * VLAN id is unregistered.
868 *
869 * void (*ndo_poll_controller)(struct net_device *dev);
870 *
871 * SR-IOV management functions.
872 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
873 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
874 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
875 * int max_tx_rate);
876 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
877 * int (*ndo_get_vf_config)(struct net_device *dev,
878 * int vf, struct ifla_vf_info *ivf);
879 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
880 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
881 * struct nlattr *port[]);
882 *
883 * Enable or disable the VF ability to query its RSS Redirection Table and
884 * Hash Key. This is needed since on some devices VF share this information
885 * with PF and querying it may adduce a theoretical security risk.
886 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
887 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
888 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
889 * Called to setup 'tc' number of traffic classes in the net device. This
890 * is always called from the stack with the rtnl lock held and netif tx
891 * queues stopped. This allows the netdevice to perform queue management
892 * safely.
893 *
894 * Fiber Channel over Ethernet (FCoE) offload functions.
895 * int (*ndo_fcoe_enable)(struct net_device *dev);
896 * Called when the FCoE protocol stack wants to start using LLD for FCoE
897 * so the underlying device can perform whatever needed configuration or
898 * initialization to support acceleration of FCoE traffic.
899 *
900 * int (*ndo_fcoe_disable)(struct net_device *dev);
901 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
902 * so the underlying device can perform whatever needed clean-ups to
903 * stop supporting acceleration of FCoE traffic.
904 *
905 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
906 * struct scatterlist *sgl, unsigned int sgc);
907 * Called when the FCoE Initiator wants to initialize an I/O that
908 * is a possible candidate for Direct Data Placement (DDP). The LLD can
909 * perform necessary setup and returns 1 to indicate the device is set up
910 * successfully to perform DDP on this I/O, otherwise this returns 0.
911 *
912 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
913 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
914 * indicated by the FC exchange id 'xid', so the underlying device can
915 * clean up and reuse resources for later DDP requests.
916 *
917 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
918 * struct scatterlist *sgl, unsigned int sgc);
919 * Called when the FCoE Target wants to initialize an I/O that
920 * is a possible candidate for Direct Data Placement (DDP). The LLD can
921 * perform necessary setup and returns 1 to indicate the device is set up
922 * successfully to perform DDP on this I/O, otherwise this returns 0.
923 *
924 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
925 * struct netdev_fcoe_hbainfo *hbainfo);
926 * Called when the FCoE Protocol stack wants information on the underlying
927 * device. This information is utilized by the FCoE protocol stack to
928 * register attributes with Fiber Channel management service as per the
929 * FC-GS Fabric Device Management Information(FDMI) specification.
930 *
931 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
932 * Called when the underlying device wants to override default World Wide
933 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
934 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
935 * protocol stack to use.
936 *
937 * RFS acceleration.
938 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
939 * u16 rxq_index, u32 flow_id);
940 * Set hardware filter for RFS. rxq_index is the target queue index;
941 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
942 * Return the filter ID on success, or a negative error code.
943 *
944 * Slave management functions (for bridge, bonding, etc).
945 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
946 * Called to make another netdev an underling.
947 *
948 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
949 * Called to release previously enslaved netdev.
950 *
951 * Feature/offload setting functions.
952 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
953 * netdev_features_t features);
954 * Adjusts the requested feature flags according to device-specific
955 * constraints, and returns the resulting flags. Must not modify
956 * the device state.
957 *
958 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
959 * Called to update device configuration to new features. Passed
960 * feature set might be less than what was returned by ndo_fix_features()).
961 * Must return >0 or -errno if it changed dev->features itself.
962 *
963 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
964 * struct net_device *dev,
965 * const unsigned char *addr, u16 vid, u16 flags)
966 * Adds an FDB entry to dev for addr.
967 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
968 * struct net_device *dev,
969 * const unsigned char *addr, u16 vid)
970 * Deletes the FDB entry from dev coresponding to addr.
971 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
972 * struct net_device *dev, struct net_device *filter_dev,
973 * int idx)
974 * Used to add FDB entries to dump requests. Implementers should add
975 * entries to skb and update idx with the number of entries.
976 *
977 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
978 * u16 flags)
979 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
980 * struct net_device *dev, u32 filter_mask,
981 * int nlflags)
982 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
983 * u16 flags);
984 *
985 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
986 * Called to change device carrier. Soft-devices (like dummy, team, etc)
987 * which do not represent real hardware may define this to allow their
988 * userspace components to manage their virtual carrier state. Devices
989 * that determine carrier state from physical hardware properties (eg
990 * network cables) or protocol-dependent mechanisms (eg
991 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
992 *
993 * int (*ndo_get_phys_port_id)(struct net_device *dev,
994 * struct netdev_phys_item_id *ppid);
995 * Called to get ID of physical port of this device. If driver does
996 * not implement this, it is assumed that the hw is not able to have
997 * multiple net devices on single physical port.
998 *
999 * void (*ndo_add_vxlan_port)(struct net_device *dev,
1000 * sa_family_t sa_family, __be16 port);
1001 * Called by vxlan to notiy a driver about the UDP port and socket
1002 * address family that vxlan is listnening to. It is called only when
1003 * a new port starts listening. The operation is protected by the
1004 * vxlan_net->sock_lock.
1005 *
1006 * void (*ndo_del_vxlan_port)(struct net_device *dev,
1007 * sa_family_t sa_family, __be16 port);
1008 * Called by vxlan to notify the driver about a UDP port and socket
1009 * address family that vxlan is not listening to anymore. The operation
1010 * is protected by the vxlan_net->sock_lock.
1011 *
1012 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1013 * struct net_device *dev)
1014 * Called by upper layer devices to accelerate switching or other
1015 * station functionality into hardware. 'pdev is the lowerdev
1016 * to use for the offload and 'dev' is the net device that will
1017 * back the offload. Returns a pointer to the private structure
1018 * the upper layer will maintain.
1019 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1020 * Called by upper layer device to delete the station created
1021 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1022 * the station and priv is the structure returned by the add
1023 * operation.
1024 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1025 * struct net_device *dev,
1026 * void *priv);
1027 * Callback to use for xmit over the accelerated station. This
1028 * is used in place of ndo_start_xmit on accelerated net
1029 * devices.
1030 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1031 * struct net_device *dev
1032 * netdev_features_t features);
1033 * Called by core transmit path to determine if device is capable of
1034 * performing offload operations on a given packet. This is to give
1035 * the device an opportunity to implement any restrictions that cannot
1036 * be otherwise expressed by feature flags. The check is called with
1037 * the set of features that the stack has calculated and it returns
1038 * those the driver believes to be appropriate.
1039 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1040 * int queue_index, u32 maxrate);
1041 * Called when a user wants to set a max-rate limitation of specific
1042 * TX queue.
1043 * int (*ndo_get_iflink)(const struct net_device *dev);
1044 * Called to get the iflink value of this device.
1045 */
1046struct net_device_ops {
1047 int (*ndo_init)(struct net_device *dev);
1048 void (*ndo_uninit)(struct net_device *dev);
1049 int (*ndo_open)(struct net_device *dev);
1050 int (*ndo_stop)(struct net_device *dev);
1051 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
1052 struct net_device *dev);
1053 u16 (*ndo_select_queue)(struct net_device *dev,
1054 struct sk_buff *skb,
1055 void *accel_priv,
1056 select_queue_fallback_t fallback);
1057 void (*ndo_change_rx_flags)(struct net_device *dev,
1058 int flags);
1059 void (*ndo_set_rx_mode)(struct net_device *dev);
1060 int (*ndo_set_mac_address)(struct net_device *dev,
1061 void *addr);
1062 int (*ndo_validate_addr)(struct net_device *dev);
1063 int (*ndo_do_ioctl)(struct net_device *dev,
1064 struct ifreq *ifr, int cmd);
1065 int (*ndo_set_config)(struct net_device *dev,
1066 struct ifmap *map);
1067 int (*ndo_change_mtu)(struct net_device *dev,
1068 int new_mtu);
1069 int (*ndo_neigh_setup)(struct net_device *dev,
1070 struct neigh_parms *);
1071 void (*ndo_tx_timeout) (struct net_device *dev);
1072
1073 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1074 struct rtnl_link_stats64 *storage);
1075 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1076
1077 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1078 __be16 proto, u16 vid);
1079 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1080 __be16 proto, u16 vid);
1081#ifdef CONFIG_NET_POLL_CONTROLLER
1082 void (*ndo_poll_controller)(struct net_device *dev);
1083 int (*ndo_netpoll_setup)(struct net_device *dev,
1084 struct netpoll_info *info);
1085 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1086#endif
1087#ifdef CONFIG_NET_RX_BUSY_POLL
1088 int (*ndo_busy_poll)(struct napi_struct *dev);
1089#endif
1090 int (*ndo_set_vf_mac)(struct net_device *dev,
1091 int queue, u8 *mac);
1092 int (*ndo_set_vf_vlan)(struct net_device *dev,
1093 int queue, u16 vlan, u8 qos);
1094 int (*ndo_set_vf_rate)(struct net_device *dev,
1095 int vf, int min_tx_rate,
1096 int max_tx_rate);
1097 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1098 int vf, bool setting);
1099 int (*ndo_get_vf_config)(struct net_device *dev,
1100 int vf,
1101 struct ifla_vf_info *ivf);
1102 int (*ndo_set_vf_link_state)(struct net_device *dev,
1103 int vf, int link_state);
1104 int (*ndo_set_vf_port)(struct net_device *dev,
1105 int vf,
1106 struct nlattr *port[]);
1107 int (*ndo_get_vf_port)(struct net_device *dev,
1108 int vf, struct sk_buff *skb);
1109 int (*ndo_set_vf_rss_query_en)(
1110 struct net_device *dev,
1111 int vf, bool setting);
1112 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1113#if IS_ENABLED(CONFIG_FCOE)
1114 int (*ndo_fcoe_enable)(struct net_device *dev);
1115 int (*ndo_fcoe_disable)(struct net_device *dev);
1116 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1117 u16 xid,
1118 struct scatterlist *sgl,
1119 unsigned int sgc);
1120 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1121 u16 xid);
1122 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1123 u16 xid,
1124 struct scatterlist *sgl,
1125 unsigned int sgc);
1126 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1127 struct netdev_fcoe_hbainfo *hbainfo);
1128#endif
1129
1130#if IS_ENABLED(CONFIG_LIBFCOE)
1131#define NETDEV_FCOE_WWNN 0
1132#define NETDEV_FCOE_WWPN 1
1133 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1134 u64 *wwn, int type);
1135#endif
1136
1137#ifdef CONFIG_RFS_ACCEL
1138 int (*ndo_rx_flow_steer)(struct net_device *dev,
1139 const struct sk_buff *skb,
1140 u16 rxq_index,
1141 u32 flow_id);
1142#endif
1143 int (*ndo_add_slave)(struct net_device *dev,
1144 struct net_device *slave_dev);
1145 int (*ndo_del_slave)(struct net_device *dev,
1146 struct net_device *slave_dev);
1147 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1148 netdev_features_t features);
1149 int (*ndo_set_features)(struct net_device *dev,
1150 netdev_features_t features);
1151 int (*ndo_neigh_construct)(struct neighbour *n);
1152 void (*ndo_neigh_destroy)(struct neighbour *n);
1153
1154 int (*ndo_fdb_add)(struct ndmsg *ndm,
1155 struct nlattr *tb[],
1156 struct net_device *dev,
1157 const unsigned char *addr,
1158 u16 vid,
1159 u16 flags);
1160 int (*ndo_fdb_del)(struct ndmsg *ndm,
1161 struct nlattr *tb[],
1162 struct net_device *dev,
1163 const unsigned char *addr,
1164 u16 vid);
1165 int (*ndo_fdb_dump)(struct sk_buff *skb,
1166 struct netlink_callback *cb,
1167 struct net_device *dev,
1168 struct net_device *filter_dev,
1169 int idx);
1170
1171 int (*ndo_bridge_setlink)(struct net_device *dev,
1172 struct nlmsghdr *nlh,
1173 u16 flags);
1174 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1175 u32 pid, u32 seq,
1176 struct net_device *dev,
1177 u32 filter_mask,
1178 int nlflags);
1179 int (*ndo_bridge_dellink)(struct net_device *dev,
1180 struct nlmsghdr *nlh,
1181 u16 flags);
1182 int (*ndo_change_carrier)(struct net_device *dev,
1183 bool new_carrier);
1184 int (*ndo_get_phys_port_id)(struct net_device *dev,
1185 struct netdev_phys_item_id *ppid);
1186 int (*ndo_get_phys_port_name)(struct net_device *dev,
1187 char *name, size_t len);
1188 void (*ndo_add_vxlan_port)(struct net_device *dev,
1189 sa_family_t sa_family,
1190 __be16 port);
1191 void (*ndo_del_vxlan_port)(struct net_device *dev,
1192 sa_family_t sa_family,
1193 __be16 port);
1194
1195 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1196 struct net_device *dev);
1197 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1198 void *priv);
1199
1200 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1201 struct net_device *dev,
1202 void *priv);
1203 int (*ndo_get_lock_subclass)(struct net_device *dev);
1204 netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1205 struct net_device *dev,
1206 netdev_features_t features);
1207 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1208 int queue_index,
1209 u32 maxrate);
1210 int (*ndo_get_iflink)(const struct net_device *dev);
1211};
1212
1213/**
1214 * enum net_device_priv_flags - &struct net_device priv_flags
1215 *
1216 * These are the &struct net_device, they are only set internally
1217 * by drivers and used in the kernel. These flags are invisible to
1218 * userspace, this means that the order of these flags can change
1219 * during any kernel release.
1220 *
1221 * You should have a pretty good reason to be extending these flags.
1222 *
1223 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1224 * @IFF_EBRIDGE: Ethernet bridging device
1225 * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1226 * @IFF_MASTER_8023AD: bonding master, 802.3ad
1227 * @IFF_MASTER_ALB: bonding master, balance-alb
1228 * @IFF_BONDING: bonding master or slave
1229 * @IFF_SLAVE_NEEDARP: need ARPs for validation
1230 * @IFF_ISATAP: ISATAP interface (RFC4214)
1231 * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1232 * @IFF_WAN_HDLC: WAN HDLC device
1233 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1234 * release skb->dst
1235 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1236 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1237 * @IFF_MACVLAN_PORT: device used as macvlan port
1238 * @IFF_BRIDGE_PORT: device used as bridge port
1239 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1240 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1241 * @IFF_UNICAST_FLT: Supports unicast filtering
1242 * @IFF_TEAM_PORT: device used as team port
1243 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1244 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1245 * change when it's running
1246 * @IFF_MACVLAN: Macvlan device
1247 */
1248enum netdev_priv_flags {
1249 IFF_802_1Q_VLAN = 1<<0,
1250 IFF_EBRIDGE = 1<<1,
1251 IFF_SLAVE_INACTIVE = 1<<2,
1252 IFF_MASTER_8023AD = 1<<3,
1253 IFF_MASTER_ALB = 1<<4,
1254 IFF_BONDING = 1<<5,
1255 IFF_SLAVE_NEEDARP = 1<<6,
1256 IFF_ISATAP = 1<<7,
1257 IFF_MASTER_ARPMON = 1<<8,
1258 IFF_WAN_HDLC = 1<<9,
1259 IFF_XMIT_DST_RELEASE = 1<<10,
1260 IFF_DONT_BRIDGE = 1<<11,
1261 IFF_DISABLE_NETPOLL = 1<<12,
1262 IFF_MACVLAN_PORT = 1<<13,
1263 IFF_BRIDGE_PORT = 1<<14,
1264 IFF_OVS_DATAPATH = 1<<15,
1265 IFF_TX_SKB_SHARING = 1<<16,
1266 IFF_UNICAST_FLT = 1<<17,
1267 IFF_TEAM_PORT = 1<<18,
1268 IFF_SUPP_NOFCS = 1<<19,
1269 IFF_LIVE_ADDR_CHANGE = 1<<20,
1270 IFF_MACVLAN = 1<<21,
1271 IFF_XMIT_DST_RELEASE_PERM = 1<<22,
1272 IFF_IPVLAN_MASTER = 1<<23,
1273 IFF_IPVLAN_SLAVE = 1<<24,
1274};
1275
1276#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1277#define IFF_EBRIDGE IFF_EBRIDGE
1278#define IFF_SLAVE_INACTIVE IFF_SLAVE_INACTIVE
1279#define IFF_MASTER_8023AD IFF_MASTER_8023AD
1280#define IFF_MASTER_ALB IFF_MASTER_ALB
1281#define IFF_BONDING IFF_BONDING
1282#define IFF_SLAVE_NEEDARP IFF_SLAVE_NEEDARP
1283#define IFF_ISATAP IFF_ISATAP
1284#define IFF_MASTER_ARPMON IFF_MASTER_ARPMON
1285#define IFF_WAN_HDLC IFF_WAN_HDLC
1286#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1287#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1288#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1289#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1290#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1291#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1292#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1293#define IFF_UNICAST_FLT IFF_UNICAST_FLT
1294#define IFF_TEAM_PORT IFF_TEAM_PORT
1295#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1296#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1297#define IFF_MACVLAN IFF_MACVLAN
1298#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1299#define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1300#define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1301
1302/**
1303 * struct net_device - The DEVICE structure.
1304 * Actually, this whole structure is a big mistake. It mixes I/O
1305 * data with strictly "high-level" data, and it has to know about
1306 * almost every data structure used in the INET module.
1307 *
1308 * @name: This is the first field of the "visible" part of this structure
1309 * (i.e. as seen by users in the "Space.c" file). It is the name
1310 * of the interface.
1311 *
1312 * @name_hlist: Device name hash chain, please keep it close to name[]
1313 * @ifalias: SNMP alias
1314 * @mem_end: Shared memory end
1315 * @mem_start: Shared memory start
1316 * @base_addr: Device I/O address
1317 * @irq: Device IRQ number
1318 *
1319 * @carrier_changes: Stats to monitor carrier on<->off transitions
1320 *
1321 * @state: Generic network queuing layer state, see netdev_state_t
1322 * @dev_list: The global list of network devices
1323 * @napi_list: List entry, that is used for polling napi devices
1324 * @unreg_list: List entry, that is used, when we are unregistering the
1325 * device, see the function unregister_netdev
1326 * @close_list: List entry, that is used, when we are closing the device
1327 *
1328 * @adj_list: Directly linked devices, like slaves for bonding
1329 * @all_adj_list: All linked devices, *including* neighbours
1330 * @features: Currently active device features
1331 * @hw_features: User-changeable features
1332 *
1333 * @wanted_features: User-requested features
1334 * @vlan_features: Mask of features inheritable by VLAN devices
1335 *
1336 * @hw_enc_features: Mask of features inherited by encapsulating devices
1337 * This field indicates what encapsulation
1338 * offloads the hardware is capable of doing,
1339 * and drivers will need to set them appropriately.
1340 *
1341 * @mpls_features: Mask of features inheritable by MPLS
1342 *
1343 * @ifindex: interface index
1344 * @group: The group, that the device belongs to
1345 *
1346 * @stats: Statistics struct, which was left as a legacy, use
1347 * rtnl_link_stats64 instead
1348 *
1349 * @rx_dropped: Dropped packets by core network,
1350 * do not use this in drivers
1351 * @tx_dropped: Dropped packets by core network,
1352 * do not use this in drivers
1353 *
1354 * @wireless_handlers: List of functions to handle Wireless Extensions,
1355 * instead of ioctl,
1356 * see <net/iw_handler.h> for details.
1357 * @wireless_data: Instance data managed by the core of wireless extensions
1358 *
1359 * @netdev_ops: Includes several pointers to callbacks,
1360 * if one wants to override the ndo_*() functions
1361 * @ethtool_ops: Management operations
1362 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1363 * of Layer 2 headers.
1364 *
1365 * @flags: Interface flags (a la BSD)
1366 * @priv_flags: Like 'flags' but invisible to userspace,
1367 * see if.h for the definitions
1368 * @gflags: Global flags ( kept as legacy )
1369 * @padded: How much padding added by alloc_netdev()
1370 * @operstate: RFC2863 operstate
1371 * @link_mode: Mapping policy to operstate
1372 * @if_port: Selectable AUI, TP, ...
1373 * @dma: DMA channel
1374 * @mtu: Interface MTU value
1375 * @type: Interface hardware type
1376 * @hard_header_len: Hardware header length
1377 *
1378 * @needed_headroom: Extra headroom the hardware may need, but not in all
1379 * cases can this be guaranteed
1380 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1381 * cases can this be guaranteed. Some cases also use
1382 * LL_MAX_HEADER instead to allocate the skb
1383 *
1384 * interface address info:
1385 *
1386 * @perm_addr: Permanent hw address
1387 * @addr_assign_type: Hw address assignment type
1388 * @addr_len: Hardware address length
1389 * @neigh_priv_len; Used in neigh_alloc(),
1390 * initialized only in atm/clip.c
1391 * @dev_id: Used to differentiate devices that share
1392 * the same link layer address
1393 * @dev_port: Used to differentiate devices that share
1394 * the same function
1395 * @addr_list_lock: XXX: need comments on this one
1396 * @uc_promisc: Counter, that indicates, that promiscuous mode
1397 * has been enabled due to the need to listen to
1398 * additional unicast addresses in a device that
1399 * does not implement ndo_set_rx_mode()
1400 * @uc: unicast mac addresses
1401 * @mc: multicast mac addresses
1402 * @dev_addrs: list of device hw addresses
1403 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1404 * @promiscuity: Number of times, the NIC is told to work in
1405 * Promiscuous mode, if it becomes 0 the NIC will
1406 * exit from working in Promiscuous mode
1407 * @allmulti: Counter, enables or disables allmulticast mode
1408 *
1409 * @vlan_info: VLAN info
1410 * @dsa_ptr: dsa specific data
1411 * @tipc_ptr: TIPC specific data
1412 * @atalk_ptr: AppleTalk link
1413 * @ip_ptr: IPv4 specific data
1414 * @dn_ptr: DECnet specific data
1415 * @ip6_ptr: IPv6 specific data
1416 * @ax25_ptr: AX.25 specific data
1417 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1418 *
1419 * @last_rx: Time of last Rx
1420 * @dev_addr: Hw address (before bcast,
1421 * because most packets are unicast)
1422 *
1423 * @_rx: Array of RX queues
1424 * @num_rx_queues: Number of RX queues
1425 * allocated at register_netdev() time
1426 * @real_num_rx_queues: Number of RX queues currently active in device
1427 *
1428 * @rx_handler: handler for received packets
1429 * @rx_handler_data: XXX: need comments on this one
1430 * @ingress_queue: XXX: need comments on this one
1431 * @broadcast: hw bcast address
1432 *
1433 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1434 * indexed by RX queue number. Assigned by driver.
1435 * This must only be set if the ndo_rx_flow_steer
1436 * operation is defined
1437 * @index_hlist: Device index hash chain
1438 *
1439 * @_tx: Array of TX queues
1440 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1441 * @real_num_tx_queues: Number of TX queues currently active in device
1442 * @qdisc: Root qdisc from userspace point of view
1443 * @tx_queue_len: Max frames per queue allowed
1444 * @tx_global_lock: XXX: need comments on this one
1445 *
1446 * @xps_maps: XXX: need comments on this one
1447 *
1448 * @trans_start: Time (in jiffies) of last Tx
1449 * @watchdog_timeo: Represents the timeout that is used by
1450 * the watchdog ( see dev_watchdog() )
1451 * @watchdog_timer: List of timers
1452 *
1453 * @pcpu_refcnt: Number of references to this device
1454 * @todo_list: Delayed register/unregister
1455 * @link_watch_list: XXX: need comments on this one
1456 *
1457 * @reg_state: Register/unregister state machine
1458 * @dismantle: Device is going to be freed
1459 * @rtnl_link_state: This enum represents the phases of creating
1460 * a new link
1461 *
1462 * @destructor: Called from unregister,
1463 * can be used to call free_netdev
1464 * @npinfo: XXX: need comments on this one
1465 * @nd_net: Network namespace this network device is inside
1466 *
1467 * @ml_priv: Mid-layer private
1468 * @lstats: Loopback statistics
1469 * @tstats: Tunnel statistics
1470 * @dstats: Dummy statistics
1471 * @vstats: Virtual ethernet statistics
1472 *
1473 * @garp_port: GARP
1474 * @mrp_port: MRP
1475 *
1476 * @dev: Class/net/name entry
1477 * @sysfs_groups: Space for optional device, statistics and wireless
1478 * sysfs groups
1479 *
1480 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1481 * @rtnl_link_ops: Rtnl_link_ops
1482 *
1483 * @gso_max_size: Maximum size of generic segmentation offload
1484 * @gso_max_segs: Maximum number of segments that can be passed to the
1485 * NIC for GSO
1486 * @gso_min_segs: Minimum number of segments that can be passed to the
1487 * NIC for GSO
1488 *
1489 * @dcbnl_ops: Data Center Bridging netlink ops
1490 * @num_tc: Number of traffic classes in the net device
1491 * @tc_to_txq: XXX: need comments on this one
1492 * @prio_tc_map XXX: need comments on this one
1493 *
1494 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1495 *
1496 * @priomap: XXX: need comments on this one
1497 * @phydev: Physical device may attach itself
1498 * for hardware timestamping
1499 *
1500 * @qdisc_tx_busylock: XXX: need comments on this one
1501 *
1502 * @pm_qos_req: Power Management QoS object
1503 *
1504 * FIXME: cleanup struct net_device such that network protocol info
1505 * moves out.
1506 */
1507
1508struct net_device {
1509 char name[IFNAMSIZ];
1510 struct hlist_node name_hlist;
1511 char *ifalias;
1512 /*
1513 * I/O specific fields
1514 * FIXME: Merge these and struct ifmap into one
1515 */
1516 unsigned long mem_end;
1517 unsigned long mem_start;
1518 unsigned long base_addr;
1519 int irq;
1520
1521 atomic_t carrier_changes;
1522
1523 /*
1524 * Some hardware also needs these fields (state,dev_list,
1525 * napi_list,unreg_list,close_list) but they are not
1526 * part of the usual set specified in Space.c.
1527 */
1528
1529 unsigned long state;
1530
1531 struct list_head dev_list;
1532 struct list_head napi_list;
1533 struct list_head unreg_list;
1534 struct list_head close_list;
1535 struct list_head ptype_all;
1536 struct list_head ptype_specific;
1537
1538 struct {
1539 struct list_head upper;
1540 struct list_head lower;
1541 } adj_list;
1542
1543 struct {
1544 struct list_head upper;
1545 struct list_head lower;
1546 } all_adj_list;
1547
1548 netdev_features_t features;
1549 netdev_features_t hw_features;
1550 netdev_features_t wanted_features;
1551 netdev_features_t vlan_features;
1552 netdev_features_t hw_enc_features;
1553 netdev_features_t mpls_features;
1554
1555 int ifindex;
1556 int group;
1557
1558 struct net_device_stats stats;
1559
1560 atomic_long_t rx_dropped;
1561 atomic_long_t tx_dropped;
1562
1563#ifdef CONFIG_WIRELESS_EXT
1564 const struct iw_handler_def * wireless_handlers;
1565 struct iw_public_data * wireless_data;
1566#endif
1567 const struct net_device_ops *netdev_ops;
1568 const struct ethtool_ops *ethtool_ops;
1569#ifdef CONFIG_NET_SWITCHDEV
1570 const struct swdev_ops *swdev_ops;
1571#endif
1572
1573 const struct header_ops *header_ops;
1574
1575 unsigned int flags;
1576 unsigned int priv_flags;
1577
1578 unsigned short gflags;
1579 unsigned short padded;
1580
1581 unsigned char operstate;
1582 unsigned char link_mode;
1583
1584 unsigned char if_port;
1585 unsigned char dma;
1586
1587 unsigned int mtu;
1588 unsigned short type;
1589 unsigned short hard_header_len;
1590
1591 unsigned short needed_headroom;
1592 unsigned short needed_tailroom;
1593
1594 /* Interface address info. */
1595 unsigned char perm_addr[MAX_ADDR_LEN];
1596 unsigned char addr_assign_type;
1597 unsigned char addr_len;
1598 unsigned short neigh_priv_len;
1599 unsigned short dev_id;
1600 unsigned short dev_port;
1601 spinlock_t addr_list_lock;
1602 unsigned char name_assign_type;
1603 bool uc_promisc;
1604 struct netdev_hw_addr_list uc;
1605 struct netdev_hw_addr_list mc;
1606 struct netdev_hw_addr_list dev_addrs;
1607
1608#ifdef CONFIG_SYSFS
1609 struct kset *queues_kset;
1610#endif
1611 unsigned int promiscuity;
1612 unsigned int allmulti;
1613
1614
1615 /* Protocol specific pointers */
1616
1617#if IS_ENABLED(CONFIG_VLAN_8021Q)
1618 struct vlan_info __rcu *vlan_info;
1619#endif
1620#if IS_ENABLED(CONFIG_NET_DSA)
1621 struct dsa_switch_tree *dsa_ptr;
1622#endif
1623#if IS_ENABLED(CONFIG_TIPC)
1624 struct tipc_bearer __rcu *tipc_ptr;
1625#endif
1626 void *atalk_ptr;
1627 struct in_device __rcu *ip_ptr;
1628 struct dn_dev __rcu *dn_ptr;
1629 struct inet6_dev __rcu *ip6_ptr;
1630 void *ax25_ptr;
1631 struct wireless_dev *ieee80211_ptr;
1632 struct wpan_dev *ieee802154_ptr;
1633#if IS_ENABLED(CONFIG_MPLS_ROUTING)
1634 struct mpls_dev __rcu *mpls_ptr;
1635#endif
1636
1637/*
1638 * Cache lines mostly used on receive path (including eth_type_trans())
1639 */
1640 unsigned long last_rx;
1641
1642 /* Interface address info used in eth_type_trans() */
1643 unsigned char *dev_addr;
1644
1645
1646#ifdef CONFIG_SYSFS
1647 struct netdev_rx_queue *_rx;
1648
1649 unsigned int num_rx_queues;
1650 unsigned int real_num_rx_queues;
1651
1652#endif
1653
1654 unsigned long gro_flush_timeout;
1655 rx_handler_func_t __rcu *rx_handler;
1656 void __rcu *rx_handler_data;
1657
1658 struct netdev_queue __rcu *ingress_queue;
1659 unsigned char broadcast[MAX_ADDR_LEN];
1660#ifdef CONFIG_RFS_ACCEL
1661 struct cpu_rmap *rx_cpu_rmap;
1662#endif
1663 struct hlist_node index_hlist;
1664
1665/*
1666 * Cache lines mostly used on transmit path
1667 */
1668 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1669 unsigned int num_tx_queues;
1670 unsigned int real_num_tx_queues;
1671 struct Qdisc *qdisc;
1672 unsigned long tx_queue_len;
1673 spinlock_t tx_global_lock;
1674 int watchdog_timeo;
1675
1676#ifdef CONFIG_XPS
1677 struct xps_dev_maps __rcu *xps_maps;
1678#endif
1679
1680 /* These may be needed for future network-power-down code. */
1681
1682 /*
1683 * trans_start here is expensive for high speed devices on SMP,
1684 * please use netdev_queue->trans_start instead.
1685 */
1686 unsigned long trans_start;
1687
1688 struct timer_list watchdog_timer;
1689
1690 int __percpu *pcpu_refcnt;
1691 struct list_head todo_list;
1692
1693 struct list_head link_watch_list;
1694
1695 enum { NETREG_UNINITIALIZED=0,
1696 NETREG_REGISTERED, /* completed register_netdevice */
1697 NETREG_UNREGISTERING, /* called unregister_netdevice */
1698 NETREG_UNREGISTERED, /* completed unregister todo */
1699 NETREG_RELEASED, /* called free_netdev */
1700 NETREG_DUMMY, /* dummy device for NAPI poll */
1701 } reg_state:8;
1702
1703 bool dismantle;
1704
1705 enum {
1706 RTNL_LINK_INITIALIZED,
1707 RTNL_LINK_INITIALIZING,
1708 } rtnl_link_state:16;
1709
1710 void (*destructor)(struct net_device *dev);
1711
1712#ifdef CONFIG_NETPOLL
1713 struct netpoll_info __rcu *npinfo;
1714#endif
1715
1716 possible_net_t nd_net;
1717
1718 /* mid-layer private */
1719 union {
1720 void *ml_priv;
1721 struct pcpu_lstats __percpu *lstats;
1722 struct pcpu_sw_netstats __percpu *tstats;
1723 struct pcpu_dstats __percpu *dstats;
1724 struct pcpu_vstats __percpu *vstats;
1725 };
1726
1727 struct garp_port __rcu *garp_port;
1728 struct mrp_port __rcu *mrp_port;
1729
1730 struct device dev;
1731 const struct attribute_group *sysfs_groups[4];
1732 const struct attribute_group *sysfs_rx_queue_group;
1733
1734 const struct rtnl_link_ops *rtnl_link_ops;
1735
1736 /* for setting kernel sock attribute on TCP connection setup */
1737#define GSO_MAX_SIZE 65536
1738 unsigned int gso_max_size;
1739#define GSO_MAX_SEGS 65535
1740 u16 gso_max_segs;
1741 u16 gso_min_segs;
1742#ifdef CONFIG_DCB
1743 const struct dcbnl_rtnl_ops *dcbnl_ops;
1744#endif
1745 u8 num_tc;
1746 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1747 u8 prio_tc_map[TC_BITMASK + 1];
1748
1749#if IS_ENABLED(CONFIG_FCOE)
1750 unsigned int fcoe_ddp_xid;
1751#endif
1752#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1753 struct netprio_map __rcu *priomap;
1754#endif
1755 struct phy_device *phydev;
1756 struct lock_class_key *qdisc_tx_busylock;
1757};
1758#define to_net_dev(d) container_of(d, struct net_device, dev)
1759
1760#define NETDEV_ALIGN 32
1761
1762static inline
1763int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1764{
1765 return dev->prio_tc_map[prio & TC_BITMASK];
1766}
1767
1768static inline
1769int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1770{
1771 if (tc >= dev->num_tc)
1772 return -EINVAL;
1773
1774 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1775 return 0;
1776}
1777
1778static inline
1779void netdev_reset_tc(struct net_device *dev)
1780{
1781 dev->num_tc = 0;
1782 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1783 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1784}
1785
1786static inline
1787int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1788{
1789 if (tc >= dev->num_tc)
1790 return -EINVAL;
1791
1792 dev->tc_to_txq[tc].count = count;
1793 dev->tc_to_txq[tc].offset = offset;
1794 return 0;
1795}
1796
1797static inline
1798int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1799{
1800 if (num_tc > TC_MAX_QUEUE)
1801 return -EINVAL;
1802
1803 dev->num_tc = num_tc;
1804 return 0;
1805}
1806
1807static inline
1808int netdev_get_num_tc(struct net_device *dev)
1809{
1810 return dev->num_tc;
1811}
1812
1813static inline
1814struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1815 unsigned int index)
1816{
1817 return &dev->_tx[index];
1818}
1819
1820static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1821 const struct sk_buff *skb)
1822{
1823 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1824}
1825
1826static inline void netdev_for_each_tx_queue(struct net_device *dev,
1827 void (*f)(struct net_device *,
1828 struct netdev_queue *,
1829 void *),
1830 void *arg)
1831{
1832 unsigned int i;
1833
1834 for (i = 0; i < dev->num_tx_queues; i++)
1835 f(dev, &dev->_tx[i], arg);
1836}
1837
1838struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1839 struct sk_buff *skb,
1840 void *accel_priv);
1841
1842/*
1843 * Net namespace inlines
1844 */
1845static inline
1846struct net *dev_net(const struct net_device *dev)
1847{
1848 return read_pnet(&dev->nd_net);
1849}
1850
1851static inline
1852void dev_net_set(struct net_device *dev, struct net *net)
1853{
1854 write_pnet(&dev->nd_net, net);
1855}
1856
1857static inline bool netdev_uses_dsa(struct net_device *dev)
1858{
1859#if IS_ENABLED(CONFIG_NET_DSA)
1860 if (dev->dsa_ptr != NULL)
1861 return dsa_uses_tagged_protocol(dev->dsa_ptr);
1862#endif
1863 return false;
1864}
1865
1866/**
1867 * netdev_priv - access network device private data
1868 * @dev: network device
1869 *
1870 * Get network device private data
1871 */
1872static inline void *netdev_priv(const struct net_device *dev)
1873{
1874 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1875}
1876
1877/* Set the sysfs physical device reference for the network logical device
1878 * if set prior to registration will cause a symlink during initialization.
1879 */
1880#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1881
1882/* Set the sysfs device type for the network logical device to allow
1883 * fine-grained identification of different network device types. For
1884 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1885 */
1886#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1887
1888/* Default NAPI poll() weight
1889 * Device drivers are strongly advised to not use bigger value
1890 */
1891#define NAPI_POLL_WEIGHT 64
1892
1893/**
1894 * netif_napi_add - initialize a napi context
1895 * @dev: network device
1896 * @napi: napi context
1897 * @poll: polling function
1898 * @weight: default weight
1899 *
1900 * netif_napi_add() must be used to initialize a napi context prior to calling
1901 * *any* of the other napi related functions.
1902 */
1903void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1904 int (*poll)(struct napi_struct *, int), int weight);
1905
1906/**
1907 * netif_napi_del - remove a napi context
1908 * @napi: napi context
1909 *
1910 * netif_napi_del() removes a napi context from the network device napi list
1911 */
1912void netif_napi_del(struct napi_struct *napi);
1913
1914struct napi_gro_cb {
1915 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1916 void *frag0;
1917
1918 /* Length of frag0. */
1919 unsigned int frag0_len;
1920
1921 /* This indicates where we are processing relative to skb->data. */
1922 int data_offset;
1923
1924 /* This is non-zero if the packet cannot be merged with the new skb. */
1925 u16 flush;
1926
1927 /* Save the IP ID here and check when we get to the transport layer */
1928 u16 flush_id;
1929
1930 /* Number of segments aggregated. */
1931 u16 count;
1932
1933 /* Start offset for remote checksum offload */
1934 u16 gro_remcsum_start;
1935
1936 /* jiffies when first packet was created/queued */
1937 unsigned long age;
1938
1939 /* Used in ipv6_gro_receive() and foo-over-udp */
1940 u16 proto;
1941
1942 /* This is non-zero if the packet may be of the same flow. */
1943 u8 same_flow:1;
1944
1945 /* Used in udp_gro_receive */
1946 u8 udp_mark:1;
1947
1948 /* GRO checksum is valid */
1949 u8 csum_valid:1;
1950
1951 /* Number of checksums via CHECKSUM_UNNECESSARY */
1952 u8 csum_cnt:3;
1953
1954 /* Free the skb? */
1955 u8 free:2;
1956#define NAPI_GRO_FREE 1
1957#define NAPI_GRO_FREE_STOLEN_HEAD 2
1958
1959 /* Used in foo-over-udp, set in udp[46]_gro_receive */
1960 u8 is_ipv6:1;
1961
1962 /* 7 bit hole */
1963
1964 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
1965 __wsum csum;
1966
1967 /* used in skb_gro_receive() slow path */
1968 struct sk_buff *last;
1969};
1970
1971#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1972
1973struct packet_type {
1974 __be16 type; /* This is really htons(ether_type). */
1975 struct net_device *dev; /* NULL is wildcarded here */
1976 int (*func) (struct sk_buff *,
1977 struct net_device *,
1978 struct packet_type *,
1979 struct net_device *);
1980 bool (*id_match)(struct packet_type *ptype,
1981 struct sock *sk);
1982 void *af_packet_priv;
1983 struct list_head list;
1984};
1985
1986struct offload_callbacks {
1987 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1988 netdev_features_t features);
1989 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1990 struct sk_buff *skb);
1991 int (*gro_complete)(struct sk_buff *skb, int nhoff);
1992};
1993
1994struct packet_offload {
1995 __be16 type; /* This is really htons(ether_type). */
1996 struct offload_callbacks callbacks;
1997 struct list_head list;
1998};
1999
2000struct udp_offload;
2001
2002struct udp_offload_callbacks {
2003 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2004 struct sk_buff *skb,
2005 struct udp_offload *uoff);
2006 int (*gro_complete)(struct sk_buff *skb,
2007 int nhoff,
2008 struct udp_offload *uoff);
2009};
2010
2011struct udp_offload {
2012 __be16 port;
2013 u8 ipproto;
2014 struct udp_offload_callbacks callbacks;
2015};
2016
2017/* often modified stats are per cpu, other are shared (netdev->stats) */
2018struct pcpu_sw_netstats {
2019 u64 rx_packets;
2020 u64 rx_bytes;
2021 u64 tx_packets;
2022 u64 tx_bytes;
2023 struct u64_stats_sync syncp;
2024};
2025
2026#define netdev_alloc_pcpu_stats(type) \
2027({ \
2028 typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
2029 if (pcpu_stats) { \
2030 int __cpu; \
2031 for_each_possible_cpu(__cpu) { \
2032 typeof(type) *stat; \
2033 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2034 u64_stats_init(&stat->syncp); \
2035 } \
2036 } \
2037 pcpu_stats; \
2038})
2039
2040#include <linux/notifier.h>
2041
2042/* netdevice notifier chain. Please remember to update the rtnetlink
2043 * notification exclusion list in rtnetlink_event() when adding new
2044 * types.
2045 */
2046#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2047#define NETDEV_DOWN 0x0002
2048#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2049 detected a hardware crash and restarted
2050 - we can use this eg to kick tcp sessions
2051 once done */
2052#define NETDEV_CHANGE 0x0004 /* Notify device state change */
2053#define NETDEV_REGISTER 0x0005
2054#define NETDEV_UNREGISTER 0x0006
2055#define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2056#define NETDEV_CHANGEADDR 0x0008
2057#define NETDEV_GOING_DOWN 0x0009
2058#define NETDEV_CHANGENAME 0x000A
2059#define NETDEV_FEAT_CHANGE 0x000B
2060#define NETDEV_BONDING_FAILOVER 0x000C
2061#define NETDEV_PRE_UP 0x000D
2062#define NETDEV_PRE_TYPE_CHANGE 0x000E
2063#define NETDEV_POST_TYPE_CHANGE 0x000F
2064#define NETDEV_POST_INIT 0x0010
2065#define NETDEV_UNREGISTER_FINAL 0x0011
2066#define NETDEV_RELEASE 0x0012
2067#define NETDEV_NOTIFY_PEERS 0x0013
2068#define NETDEV_JOIN 0x0014
2069#define NETDEV_CHANGEUPPER 0x0015
2070#define NETDEV_RESEND_IGMP 0x0016
2071#define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2072#define NETDEV_CHANGEINFODATA 0x0018
2073#define NETDEV_BONDING_INFO 0x0019
2074
2075int register_netdevice_notifier(struct notifier_block *nb);
2076int unregister_netdevice_notifier(struct notifier_block *nb);
2077
2078struct netdev_notifier_info {
2079 struct net_device *dev;
2080};
2081
2082struct netdev_notifier_change_info {
2083 struct netdev_notifier_info info; /* must be first */
2084 unsigned int flags_changed;
2085};
2086
2087static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2088 struct net_device *dev)
2089{
2090 info->dev = dev;
2091}
2092
2093static inline struct net_device *
2094netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2095{
2096 return info->dev;
2097}
2098
2099int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2100
2101
2102extern rwlock_t dev_base_lock; /* Device list lock */
2103
2104#define for_each_netdev(net, d) \
2105 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2106#define for_each_netdev_reverse(net, d) \
2107 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2108#define for_each_netdev_rcu(net, d) \
2109 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2110#define for_each_netdev_safe(net, d, n) \
2111 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2112#define for_each_netdev_continue(net, d) \
2113 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2114#define for_each_netdev_continue_rcu(net, d) \
2115 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2116#define for_each_netdev_in_bond_rcu(bond, slave) \
2117 for_each_netdev_rcu(&init_net, slave) \
2118 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2119#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2120
2121static inline struct net_device *next_net_device(struct net_device *dev)
2122{
2123 struct list_head *lh;
2124 struct net *net;
2125
2126 net = dev_net(dev);
2127 lh = dev->dev_list.next;
2128 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2129}
2130
2131static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2132{
2133 struct list_head *lh;
2134 struct net *net;
2135
2136 net = dev_net(dev);
2137 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2138 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2139}
2140
2141static inline struct net_device *first_net_device(struct net *net)
2142{
2143 return list_empty(&net->dev_base_head) ? NULL :
2144 net_device_entry(net->dev_base_head.next);
2145}
2146
2147static inline struct net_device *first_net_device_rcu(struct net *net)
2148{
2149 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2150
2151 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2152}
2153
2154int netdev_boot_setup_check(struct net_device *dev);
2155unsigned long netdev_boot_base(const char *prefix, int unit);
2156struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2157 const char *hwaddr);
2158struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2159struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2160void dev_add_pack(struct packet_type *pt);
2161void dev_remove_pack(struct packet_type *pt);
2162void __dev_remove_pack(struct packet_type *pt);
2163void dev_add_offload(struct packet_offload *po);
2164void dev_remove_offload(struct packet_offload *po);
2165
2166int dev_get_iflink(const struct net_device *dev);
2167struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2168 unsigned short mask);
2169struct net_device *dev_get_by_name(struct net *net, const char *name);
2170struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2171struct net_device *__dev_get_by_name(struct net *net, const char *name);
2172int dev_alloc_name(struct net_device *dev, const char *name);
2173int dev_open(struct net_device *dev);
2174int dev_close(struct net_device *dev);
2175int dev_close_many(struct list_head *head, bool unlink);
2176void dev_disable_lro(struct net_device *dev);
2177int dev_loopback_xmit(struct sock *sk, struct sk_buff *newskb);
2178int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb);
2179static inline int dev_queue_xmit(struct sk_buff *skb)
2180{
2181 return dev_queue_xmit_sk(skb->sk, skb);
2182}
2183int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2184int register_netdevice(struct net_device *dev);
2185void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2186void unregister_netdevice_many(struct list_head *head);
2187static inline void unregister_netdevice(struct net_device *dev)
2188{
2189 unregister_netdevice_queue(dev, NULL);
2190}
2191
2192int netdev_refcnt_read(const struct net_device *dev);
2193void free_netdev(struct net_device *dev);
2194void netdev_freemem(struct net_device *dev);
2195void synchronize_net(void);
2196int init_dummy_netdev(struct net_device *dev);
2197
2198DECLARE_PER_CPU(int, xmit_recursion);
2199static inline int dev_recursion_level(void)
2200{
2201 return this_cpu_read(xmit_recursion);
2202}
2203
2204struct net_device *dev_get_by_index(struct net *net, int ifindex);
2205struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2206struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2207int netdev_get_name(struct net *net, char *name, int ifindex);
2208int dev_restart(struct net_device *dev);
2209int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2210
2211static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2212{
2213 return NAPI_GRO_CB(skb)->data_offset;
2214}
2215
2216static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2217{
2218 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2219}
2220
2221static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2222{
2223 NAPI_GRO_CB(skb)->data_offset += len;
2224}
2225
2226static inline void *skb_gro_header_fast(struct sk_buff *skb,
2227 unsigned int offset)
2228{
2229 return NAPI_GRO_CB(skb)->frag0 + offset;
2230}
2231
2232static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2233{
2234 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2235}
2236
2237static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2238 unsigned int offset)
2239{
2240 if (!pskb_may_pull(skb, hlen))
2241 return NULL;
2242
2243 NAPI_GRO_CB(skb)->frag0 = NULL;
2244 NAPI_GRO_CB(skb)->frag0_len = 0;
2245 return skb->data + offset;
2246}
2247
2248static inline void *skb_gro_network_header(struct sk_buff *skb)
2249{
2250 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2251 skb_network_offset(skb);
2252}
2253
2254static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2255 const void *start, unsigned int len)
2256{
2257 if (NAPI_GRO_CB(skb)->csum_valid)
2258 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2259 csum_partial(start, len, 0));
2260}
2261
2262/* GRO checksum functions. These are logical equivalents of the normal
2263 * checksum functions (in skbuff.h) except that they operate on the GRO
2264 * offsets and fields in sk_buff.
2265 */
2266
2267__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2268
2269static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2270{
2271 return (NAPI_GRO_CB(skb)->gro_remcsum_start - skb_headroom(skb) ==
2272 skb_gro_offset(skb));
2273}
2274
2275static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2276 bool zero_okay,
2277 __sum16 check)
2278{
2279 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2280 skb_checksum_start_offset(skb) <
2281 skb_gro_offset(skb)) &&
2282 !skb_at_gro_remcsum_start(skb) &&
2283 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2284 (!zero_okay || check));
2285}
2286
2287static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2288 __wsum psum)
2289{
2290 if (NAPI_GRO_CB(skb)->csum_valid &&
2291 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2292 return 0;
2293
2294 NAPI_GRO_CB(skb)->csum = psum;
2295
2296 return __skb_gro_checksum_complete(skb);
2297}
2298
2299static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2300{
2301 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2302 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2303 NAPI_GRO_CB(skb)->csum_cnt--;
2304 } else {
2305 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2306 * verified a new top level checksum or an encapsulated one
2307 * during GRO. This saves work if we fallback to normal path.
2308 */
2309 __skb_incr_checksum_unnecessary(skb);
2310 }
2311}
2312
2313#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2314 compute_pseudo) \
2315({ \
2316 __sum16 __ret = 0; \
2317 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2318 __ret = __skb_gro_checksum_validate_complete(skb, \
2319 compute_pseudo(skb, proto)); \
2320 if (__ret) \
2321 __skb_mark_checksum_bad(skb); \
2322 else \
2323 skb_gro_incr_csum_unnecessary(skb); \
2324 __ret; \
2325})
2326
2327#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2328 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2329
2330#define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2331 compute_pseudo) \
2332 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2333
2334#define skb_gro_checksum_simple_validate(skb) \
2335 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2336
2337static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2338{
2339 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2340 !NAPI_GRO_CB(skb)->csum_valid);
2341}
2342
2343static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2344 __sum16 check, __wsum pseudo)
2345{
2346 NAPI_GRO_CB(skb)->csum = ~pseudo;
2347 NAPI_GRO_CB(skb)->csum_valid = 1;
2348}
2349
2350#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2351do { \
2352 if (__skb_gro_checksum_convert_check(skb)) \
2353 __skb_gro_checksum_convert(skb, check, \
2354 compute_pseudo(skb, proto)); \
2355} while (0)
2356
2357struct gro_remcsum {
2358 int offset;
2359 __wsum delta;
2360};
2361
2362static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2363{
2364 grc->offset = 0;
2365 grc->delta = 0;
2366}
2367
2368static inline void skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2369 int start, int offset,
2370 struct gro_remcsum *grc,
2371 bool nopartial)
2372{
2373 __wsum delta;
2374
2375 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2376
2377 if (!nopartial) {
2378 NAPI_GRO_CB(skb)->gro_remcsum_start =
2379 ((unsigned char *)ptr + start) - skb->head;
2380 return;
2381 }
2382
2383 delta = remcsum_adjust(ptr, NAPI_GRO_CB(skb)->csum, start, offset);
2384
2385 /* Adjust skb->csum since we changed the packet */
2386 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2387
2388 grc->offset = (ptr + offset) - (void *)skb->head;
2389 grc->delta = delta;
2390}
2391
2392static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2393 struct gro_remcsum *grc)
2394{
2395 if (!grc->delta)
2396 return;
2397
2398 remcsum_unadjust((__sum16 *)(skb->head + grc->offset), grc->delta);
2399}
2400
2401static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2402 unsigned short type,
2403 const void *daddr, const void *saddr,
2404 unsigned int len)
2405{
2406 if (!dev->header_ops || !dev->header_ops->create)
2407 return 0;
2408
2409 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2410}
2411
2412static inline int dev_parse_header(const struct sk_buff *skb,
2413 unsigned char *haddr)
2414{
2415 const struct net_device *dev = skb->dev;
2416
2417 if (!dev->header_ops || !dev->header_ops->parse)
2418 return 0;
2419 return dev->header_ops->parse(skb, haddr);
2420}
2421
2422typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2423int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2424static inline int unregister_gifconf(unsigned int family)
2425{
2426 return register_gifconf(family, NULL);
2427}
2428
2429#ifdef CONFIG_NET_FLOW_LIMIT
2430#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2431struct sd_flow_limit {
2432 u64 count;
2433 unsigned int num_buckets;
2434 unsigned int history_head;
2435 u16 history[FLOW_LIMIT_HISTORY];
2436 u8 buckets[];
2437};
2438
2439extern int netdev_flow_limit_table_len;
2440#endif /* CONFIG_NET_FLOW_LIMIT */
2441
2442/*
2443 * Incoming packets are placed on per-cpu queues
2444 */
2445struct softnet_data {
2446 struct list_head poll_list;
2447 struct sk_buff_head process_queue;
2448
2449 /* stats */
2450 unsigned int processed;
2451 unsigned int time_squeeze;
2452 unsigned int cpu_collision;
2453 unsigned int received_rps;
2454#ifdef CONFIG_RPS
2455 struct softnet_data *rps_ipi_list;
2456#endif
2457#ifdef CONFIG_NET_FLOW_LIMIT
2458 struct sd_flow_limit __rcu *flow_limit;
2459#endif
2460 struct Qdisc *output_queue;
2461 struct Qdisc **output_queue_tailp;
2462 struct sk_buff *completion_queue;
2463
2464#ifdef CONFIG_RPS
2465 /* Elements below can be accessed between CPUs for RPS */
2466 struct call_single_data csd ____cacheline_aligned_in_smp;
2467 struct softnet_data *rps_ipi_next;
2468 unsigned int cpu;
2469 unsigned int input_queue_head;
2470 unsigned int input_queue_tail;
2471#endif
2472 unsigned int dropped;
2473 struct sk_buff_head input_pkt_queue;
2474 struct napi_struct backlog;
2475
2476};
2477
2478static inline void input_queue_head_incr(struct softnet_data *sd)
2479{
2480#ifdef CONFIG_RPS
2481 sd->input_queue_head++;
2482#endif
2483}
2484
2485static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2486 unsigned int *qtail)
2487{
2488#ifdef CONFIG_RPS
2489 *qtail = ++sd->input_queue_tail;
2490#endif
2491}
2492
2493DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2494
2495void __netif_schedule(struct Qdisc *q);
2496void netif_schedule_queue(struct netdev_queue *txq);
2497
2498static inline void netif_tx_schedule_all(struct net_device *dev)
2499{
2500 unsigned int i;
2501
2502 for (i = 0; i < dev->num_tx_queues; i++)
2503 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2504}
2505
2506static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2507{
2508 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2509}
2510
2511/**
2512 * netif_start_queue - allow transmit
2513 * @dev: network device
2514 *
2515 * Allow upper layers to call the device hard_start_xmit routine.
2516 */
2517static inline void netif_start_queue(struct net_device *dev)
2518{
2519 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2520}
2521
2522static inline void netif_tx_start_all_queues(struct net_device *dev)
2523{
2524 unsigned int i;
2525
2526 for (i = 0; i < dev->num_tx_queues; i++) {
2527 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2528 netif_tx_start_queue(txq);
2529 }
2530}
2531
2532void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2533
2534/**
2535 * netif_wake_queue - restart transmit
2536 * @dev: network device
2537 *
2538 * Allow upper layers to call the device hard_start_xmit routine.
2539 * Used for flow control when transmit resources are available.
2540 */
2541static inline void netif_wake_queue(struct net_device *dev)
2542{
2543 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2544}
2545
2546static inline void netif_tx_wake_all_queues(struct net_device *dev)
2547{
2548 unsigned int i;
2549
2550 for (i = 0; i < dev->num_tx_queues; i++) {
2551 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2552 netif_tx_wake_queue(txq);
2553 }
2554}
2555
2556static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2557{
2558 if (WARN_ON(!dev_queue)) {
2559 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2560 return;
2561 }
2562 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2563}
2564
2565/**
2566 * netif_stop_queue - stop transmitted packets
2567 * @dev: network device
2568 *
2569 * Stop upper layers calling the device hard_start_xmit routine.
2570 * Used for flow control when transmit resources are unavailable.
2571 */
2572static inline void netif_stop_queue(struct net_device *dev)
2573{
2574 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2575}
2576
2577static inline void netif_tx_stop_all_queues(struct net_device *dev)
2578{
2579 unsigned int i;
2580
2581 for (i = 0; i < dev->num_tx_queues; i++) {
2582 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2583 netif_tx_stop_queue(txq);
2584 }
2585}
2586
2587static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2588{
2589 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2590}
2591
2592/**
2593 * netif_queue_stopped - test if transmit queue is flowblocked
2594 * @dev: network device
2595 *
2596 * Test if transmit queue on device is currently unable to send.
2597 */
2598static inline bool netif_queue_stopped(const struct net_device *dev)
2599{
2600 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2601}
2602
2603static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2604{
2605 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2606}
2607
2608static inline bool
2609netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2610{
2611 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2612}
2613
2614static inline bool
2615netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2616{
2617 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2618}
2619
2620/**
2621 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2622 * @dev_queue: pointer to transmit queue
2623 *
2624 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2625 * to give appropriate hint to the cpu.
2626 */
2627static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2628{
2629#ifdef CONFIG_BQL
2630 prefetchw(&dev_queue->dql.num_queued);
2631#endif
2632}
2633
2634/**
2635 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2636 * @dev_queue: pointer to transmit queue
2637 *
2638 * BQL enabled drivers might use this helper in their TX completion path,
2639 * to give appropriate hint to the cpu.
2640 */
2641static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2642{
2643#ifdef CONFIG_BQL
2644 prefetchw(&dev_queue->dql.limit);
2645#endif
2646}
2647
2648static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2649 unsigned int bytes)
2650{
2651#ifdef CONFIG_BQL
2652 dql_queued(&dev_queue->dql, bytes);
2653
2654 if (likely(dql_avail(&dev_queue->dql) >= 0))
2655 return;
2656
2657 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2658
2659 /*
2660 * The XOFF flag must be set before checking the dql_avail below,
2661 * because in netdev_tx_completed_queue we update the dql_completed
2662 * before checking the XOFF flag.
2663 */
2664 smp_mb();
2665
2666 /* check again in case another CPU has just made room avail */
2667 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2668 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2669#endif
2670}
2671
2672/**
2673 * netdev_sent_queue - report the number of bytes queued to hardware
2674 * @dev: network device
2675 * @bytes: number of bytes queued to the hardware device queue
2676 *
2677 * Report the number of bytes queued for sending/completion to the network
2678 * device hardware queue. @bytes should be a good approximation and should
2679 * exactly match netdev_completed_queue() @bytes
2680 */
2681static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2682{
2683 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2684}
2685
2686static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2687 unsigned int pkts, unsigned int bytes)
2688{
2689#ifdef CONFIG_BQL
2690 if (unlikely(!bytes))
2691 return;
2692
2693 dql_completed(&dev_queue->dql, bytes);
2694
2695 /*
2696 * Without the memory barrier there is a small possiblity that
2697 * netdev_tx_sent_queue will miss the update and cause the queue to
2698 * be stopped forever
2699 */
2700 smp_mb();
2701
2702 if (dql_avail(&dev_queue->dql) < 0)
2703 return;
2704
2705 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2706 netif_schedule_queue(dev_queue);
2707#endif
2708}
2709
2710/**
2711 * netdev_completed_queue - report bytes and packets completed by device
2712 * @dev: network device
2713 * @pkts: actual number of packets sent over the medium
2714 * @bytes: actual number of bytes sent over the medium
2715 *
2716 * Report the number of bytes and packets transmitted by the network device
2717 * hardware queue over the physical medium, @bytes must exactly match the
2718 * @bytes amount passed to netdev_sent_queue()
2719 */
2720static inline void netdev_completed_queue(struct net_device *dev,
2721 unsigned int pkts, unsigned int bytes)
2722{
2723 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2724}
2725
2726static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2727{
2728#ifdef CONFIG_BQL
2729 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2730 dql_reset(&q->dql);
2731#endif
2732}
2733
2734/**
2735 * netdev_reset_queue - reset the packets and bytes count of a network device
2736 * @dev_queue: network device
2737 *
2738 * Reset the bytes and packet count of a network device and clear the
2739 * software flow control OFF bit for this network device
2740 */
2741static inline void netdev_reset_queue(struct net_device *dev_queue)
2742{
2743 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2744}
2745
2746/**
2747 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
2748 * @dev: network device
2749 * @queue_index: given tx queue index
2750 *
2751 * Returns 0 if given tx queue index >= number of device tx queues,
2752 * otherwise returns the originally passed tx queue index.
2753 */
2754static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2755{
2756 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2757 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2758 dev->name, queue_index,
2759 dev->real_num_tx_queues);
2760 return 0;
2761 }
2762
2763 return queue_index;
2764}
2765
2766/**
2767 * netif_running - test if up
2768 * @dev: network device
2769 *
2770 * Test if the device has been brought up.
2771 */
2772static inline bool netif_running(const struct net_device *dev)
2773{
2774 return test_bit(__LINK_STATE_START, &dev->state);
2775}
2776
2777/*
2778 * Routines to manage the subqueues on a device. We only need start
2779 * stop, and a check if it's stopped. All other device management is
2780 * done at the overall netdevice level.
2781 * Also test the device if we're multiqueue.
2782 */
2783
2784/**
2785 * netif_start_subqueue - allow sending packets on subqueue
2786 * @dev: network device
2787 * @queue_index: sub queue index
2788 *
2789 * Start individual transmit queue of a device with multiple transmit queues.
2790 */
2791static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2792{
2793 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2794
2795 netif_tx_start_queue(txq);
2796}
2797
2798/**
2799 * netif_stop_subqueue - stop sending packets on subqueue
2800 * @dev: network device
2801 * @queue_index: sub queue index
2802 *
2803 * Stop individual transmit queue of a device with multiple transmit queues.
2804 */
2805static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2806{
2807 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2808 netif_tx_stop_queue(txq);
2809}
2810
2811/**
2812 * netif_subqueue_stopped - test status of subqueue
2813 * @dev: network device
2814 * @queue_index: sub queue index
2815 *
2816 * Check individual transmit queue of a device with multiple transmit queues.
2817 */
2818static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2819 u16 queue_index)
2820{
2821 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2822
2823 return netif_tx_queue_stopped(txq);
2824}
2825
2826static inline bool netif_subqueue_stopped(const struct net_device *dev,
2827 struct sk_buff *skb)
2828{
2829 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2830}
2831
2832void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2833
2834#ifdef CONFIG_XPS
2835int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2836 u16 index);
2837#else
2838static inline int netif_set_xps_queue(struct net_device *dev,
2839 const struct cpumask *mask,
2840 u16 index)
2841{
2842 return 0;
2843}
2844#endif
2845
2846/*
2847 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2848 * as a distribution range limit for the returned value.
2849 */
2850static inline u16 skb_tx_hash(const struct net_device *dev,
2851 struct sk_buff *skb)
2852{
2853 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2854}
2855
2856/**
2857 * netif_is_multiqueue - test if device has multiple transmit queues
2858 * @dev: network device
2859 *
2860 * Check if device has multiple transmit queues
2861 */
2862static inline bool netif_is_multiqueue(const struct net_device *dev)
2863{
2864 return dev->num_tx_queues > 1;
2865}
2866
2867int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2868
2869#ifdef CONFIG_SYSFS
2870int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2871#else
2872static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2873 unsigned int rxq)
2874{
2875 return 0;
2876}
2877#endif
2878
2879#ifdef CONFIG_SYSFS
2880static inline unsigned int get_netdev_rx_queue_index(
2881 struct netdev_rx_queue *queue)
2882{
2883 struct net_device *dev = queue->dev;
2884 int index = queue - dev->_rx;
2885
2886 BUG_ON(index >= dev->num_rx_queues);
2887 return index;
2888}
2889#endif
2890
2891#define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2892int netif_get_num_default_rss_queues(void);
2893
2894enum skb_free_reason {
2895 SKB_REASON_CONSUMED,
2896 SKB_REASON_DROPPED,
2897};
2898
2899void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2900void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2901
2902/*
2903 * It is not allowed to call kfree_skb() or consume_skb() from hardware
2904 * interrupt context or with hardware interrupts being disabled.
2905 * (in_irq() || irqs_disabled())
2906 *
2907 * We provide four helpers that can be used in following contexts :
2908 *
2909 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2910 * replacing kfree_skb(skb)
2911 *
2912 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2913 * Typically used in place of consume_skb(skb) in TX completion path
2914 *
2915 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2916 * replacing kfree_skb(skb)
2917 *
2918 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2919 * and consumed a packet. Used in place of consume_skb(skb)
2920 */
2921static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2922{
2923 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2924}
2925
2926static inline void dev_consume_skb_irq(struct sk_buff *skb)
2927{
2928 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2929}
2930
2931static inline void dev_kfree_skb_any(struct sk_buff *skb)
2932{
2933 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2934}
2935
2936static inline void dev_consume_skb_any(struct sk_buff *skb)
2937{
2938 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2939}
2940
2941int netif_rx(struct sk_buff *skb);
2942int netif_rx_ni(struct sk_buff *skb);
2943int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb);
2944static inline int netif_receive_skb(struct sk_buff *skb)
2945{
2946 return netif_receive_skb_sk(skb->sk, skb);
2947}
2948gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2949void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2950struct sk_buff *napi_get_frags(struct napi_struct *napi);
2951gro_result_t napi_gro_frags(struct napi_struct *napi);
2952struct packet_offload *gro_find_receive_by_type(__be16 type);
2953struct packet_offload *gro_find_complete_by_type(__be16 type);
2954
2955static inline void napi_free_frags(struct napi_struct *napi)
2956{
2957 kfree_skb(napi->skb);
2958 napi->skb = NULL;
2959}
2960
2961int netdev_rx_handler_register(struct net_device *dev,
2962 rx_handler_func_t *rx_handler,
2963 void *rx_handler_data);
2964void netdev_rx_handler_unregister(struct net_device *dev);
2965
2966bool dev_valid_name(const char *name);
2967int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2968int dev_ethtool(struct net *net, struct ifreq *);
2969unsigned int dev_get_flags(const struct net_device *);
2970int __dev_change_flags(struct net_device *, unsigned int flags);
2971int dev_change_flags(struct net_device *, unsigned int);
2972void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2973 unsigned int gchanges);
2974int dev_change_name(struct net_device *, const char *);
2975int dev_set_alias(struct net_device *, const char *, size_t);
2976int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2977int dev_set_mtu(struct net_device *, int);
2978void dev_set_group(struct net_device *, int);
2979int dev_set_mac_address(struct net_device *, struct sockaddr *);
2980int dev_change_carrier(struct net_device *, bool new_carrier);
2981int dev_get_phys_port_id(struct net_device *dev,
2982 struct netdev_phys_item_id *ppid);
2983int dev_get_phys_port_name(struct net_device *dev,
2984 char *name, size_t len);
2985struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
2986struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2987 struct netdev_queue *txq, int *ret);
2988int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2989int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2990bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2991
2992extern int netdev_budget;
2993
2994/* Called by rtnetlink.c:rtnl_unlock() */
2995void netdev_run_todo(void);
2996
2997/**
2998 * dev_put - release reference to device
2999 * @dev: network device
3000 *
3001 * Release reference to device to allow it to be freed.
3002 */
3003static inline void dev_put(struct net_device *dev)
3004{
3005 this_cpu_dec(*dev->pcpu_refcnt);
3006}
3007
3008/**
3009 * dev_hold - get reference to device
3010 * @dev: network device
3011 *
3012 * Hold reference to device to keep it from being freed.
3013 */
3014static inline void dev_hold(struct net_device *dev)
3015{
3016 this_cpu_inc(*dev->pcpu_refcnt);
3017}
3018
3019/* Carrier loss detection, dial on demand. The functions netif_carrier_on
3020 * and _off may be called from IRQ context, but it is caller
3021 * who is responsible for serialization of these calls.
3022 *
3023 * The name carrier is inappropriate, these functions should really be
3024 * called netif_lowerlayer_*() because they represent the state of any
3025 * kind of lower layer not just hardware media.
3026 */
3027
3028void linkwatch_init_dev(struct net_device *dev);
3029void linkwatch_fire_event(struct net_device *dev);
3030void linkwatch_forget_dev(struct net_device *dev);
3031
3032/**
3033 * netif_carrier_ok - test if carrier present
3034 * @dev: network device
3035 *
3036 * Check if carrier is present on device
3037 */
3038static inline bool netif_carrier_ok(const struct net_device *dev)
3039{
3040 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3041}
3042
3043unsigned long dev_trans_start(struct net_device *dev);
3044
3045void __netdev_watchdog_up(struct net_device *dev);
3046
3047void netif_carrier_on(struct net_device *dev);
3048
3049void netif_carrier_off(struct net_device *dev);
3050
3051/**
3052 * netif_dormant_on - mark device as dormant.
3053 * @dev: network device
3054 *
3055 * Mark device as dormant (as per RFC2863).
3056 *
3057 * The dormant state indicates that the relevant interface is not
3058 * actually in a condition to pass packets (i.e., it is not 'up') but is
3059 * in a "pending" state, waiting for some external event. For "on-
3060 * demand" interfaces, this new state identifies the situation where the
3061 * interface is waiting for events to place it in the up state.
3062 *
3063 */
3064static inline void netif_dormant_on(struct net_device *dev)
3065{
3066 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3067 linkwatch_fire_event(dev);
3068}
3069
3070/**
3071 * netif_dormant_off - set device as not dormant.
3072 * @dev: network device
3073 *
3074 * Device is not in dormant state.
3075 */
3076static inline void netif_dormant_off(struct net_device *dev)
3077{
3078 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3079 linkwatch_fire_event(dev);
3080}
3081
3082/**
3083 * netif_dormant - test if carrier present
3084 * @dev: network device
3085 *
3086 * Check if carrier is present on device
3087 */
3088static inline bool netif_dormant(const struct net_device *dev)
3089{
3090 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3091}
3092
3093
3094/**
3095 * netif_oper_up - test if device is operational
3096 * @dev: network device
3097 *
3098 * Check if carrier is operational
3099 */
3100static inline bool netif_oper_up(const struct net_device *dev)
3101{
3102 return (dev->operstate == IF_OPER_UP ||
3103 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3104}
3105
3106/**
3107 * netif_device_present - is device available or removed
3108 * @dev: network device
3109 *
3110 * Check if device has not been removed from system.
3111 */
3112static inline bool netif_device_present(struct net_device *dev)
3113{
3114 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3115}
3116
3117void netif_device_detach(struct net_device *dev);
3118
3119void netif_device_attach(struct net_device *dev);
3120
3121/*
3122 * Network interface message level settings
3123 */
3124
3125enum {
3126 NETIF_MSG_DRV = 0x0001,
3127 NETIF_MSG_PROBE = 0x0002,
3128 NETIF_MSG_LINK = 0x0004,
3129 NETIF_MSG_TIMER = 0x0008,
3130 NETIF_MSG_IFDOWN = 0x0010,
3131 NETIF_MSG_IFUP = 0x0020,
3132 NETIF_MSG_RX_ERR = 0x0040,
3133 NETIF_MSG_TX_ERR = 0x0080,
3134 NETIF_MSG_TX_QUEUED = 0x0100,
3135 NETIF_MSG_INTR = 0x0200,
3136 NETIF_MSG_TX_DONE = 0x0400,
3137 NETIF_MSG_RX_STATUS = 0x0800,
3138 NETIF_MSG_PKTDATA = 0x1000,
3139 NETIF_MSG_HW = 0x2000,
3140 NETIF_MSG_WOL = 0x4000,
3141};
3142
3143#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3144#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3145#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3146#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3147#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3148#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3149#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3150#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3151#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3152#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3153#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3154#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3155#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3156#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3157#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3158
3159static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3160{
3161 /* use default */
3162 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3163 return default_msg_enable_bits;
3164 if (debug_value == 0) /* no output */
3165 return 0;
3166 /* set low N bits */
3167 return (1 << debug_value) - 1;
3168}
3169
3170static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3171{
3172 spin_lock(&txq->_xmit_lock);
3173 txq->xmit_lock_owner = cpu;
3174}
3175
3176static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3177{
3178 spin_lock_bh(&txq->_xmit_lock);
3179 txq->xmit_lock_owner = smp_processor_id();
3180}
3181
3182static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3183{
3184 bool ok = spin_trylock(&txq->_xmit_lock);
3185 if (likely(ok))
3186 txq->xmit_lock_owner = smp_processor_id();
3187 return ok;
3188}
3189
3190static inline void __netif_tx_unlock(struct netdev_queue *txq)
3191{
3192 txq->xmit_lock_owner = -1;
3193 spin_unlock(&txq->_xmit_lock);
3194}
3195
3196static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3197{
3198 txq->xmit_lock_owner = -1;
3199 spin_unlock_bh(&txq->_xmit_lock);
3200}
3201
3202static inline void txq_trans_update(struct netdev_queue *txq)
3203{
3204 if (txq->xmit_lock_owner != -1)
3205 txq->trans_start = jiffies;
3206}
3207
3208/**
3209 * netif_tx_lock - grab network device transmit lock
3210 * @dev: network device
3211 *
3212 * Get network device transmit lock
3213 */
3214static inline void netif_tx_lock(struct net_device *dev)
3215{
3216 unsigned int i;
3217 int cpu;
3218
3219 spin_lock(&dev->tx_global_lock);
3220 cpu = smp_processor_id();
3221 for (i = 0; i < dev->num_tx_queues; i++) {
3222 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3223
3224 /* We are the only thread of execution doing a
3225 * freeze, but we have to grab the _xmit_lock in
3226 * order to synchronize with threads which are in
3227 * the ->hard_start_xmit() handler and already
3228 * checked the frozen bit.
3229 */
3230 __netif_tx_lock(txq, cpu);
3231 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3232 __netif_tx_unlock(txq);
3233 }
3234}
3235
3236static inline void netif_tx_lock_bh(struct net_device *dev)
3237{
3238 local_bh_disable();
3239 netif_tx_lock(dev);
3240}
3241
3242static inline void netif_tx_unlock(struct net_device *dev)
3243{
3244 unsigned int i;
3245
3246 for (i = 0; i < dev->num_tx_queues; i++) {
3247 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3248
3249 /* No need to grab the _xmit_lock here. If the
3250 * queue is not stopped for another reason, we
3251 * force a schedule.
3252 */
3253 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3254 netif_schedule_queue(txq);
3255 }
3256 spin_unlock(&dev->tx_global_lock);
3257}
3258
3259static inline void netif_tx_unlock_bh(struct net_device *dev)
3260{
3261 netif_tx_unlock(dev);
3262 local_bh_enable();
3263}
3264
3265#define HARD_TX_LOCK(dev, txq, cpu) { \
3266 if ((dev->features & NETIF_F_LLTX) == 0) { \
3267 __netif_tx_lock(txq, cpu); \
3268 } \
3269}
3270
3271#define HARD_TX_TRYLOCK(dev, txq) \
3272 (((dev->features & NETIF_F_LLTX) == 0) ? \
3273 __netif_tx_trylock(txq) : \
3274 true )
3275
3276#define HARD_TX_UNLOCK(dev, txq) { \
3277 if ((dev->features & NETIF_F_LLTX) == 0) { \
3278 __netif_tx_unlock(txq); \
3279 } \
3280}
3281
3282static inline void netif_tx_disable(struct net_device *dev)
3283{
3284 unsigned int i;
3285 int cpu;
3286
3287 local_bh_disable();
3288 cpu = smp_processor_id();
3289 for (i = 0; i < dev->num_tx_queues; i++) {
3290 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3291
3292 __netif_tx_lock(txq, cpu);
3293 netif_tx_stop_queue(txq);
3294 __netif_tx_unlock(txq);
3295 }
3296 local_bh_enable();
3297}
3298
3299static inline void netif_addr_lock(struct net_device *dev)
3300{
3301 spin_lock(&dev->addr_list_lock);
3302}
3303
3304static inline void netif_addr_lock_nested(struct net_device *dev)
3305{
3306 int subclass = SINGLE_DEPTH_NESTING;
3307
3308 if (dev->netdev_ops->ndo_get_lock_subclass)
3309 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3310
3311 spin_lock_nested(&dev->addr_list_lock, subclass);
3312}
3313
3314static inline void netif_addr_lock_bh(struct net_device *dev)
3315{
3316 spin_lock_bh(&dev->addr_list_lock);
3317}
3318
3319static inline void netif_addr_unlock(struct net_device *dev)
3320{
3321 spin_unlock(&dev->addr_list_lock);
3322}
3323
3324static inline void netif_addr_unlock_bh(struct net_device *dev)
3325{
3326 spin_unlock_bh(&dev->addr_list_lock);
3327}
3328
3329/*
3330 * dev_addrs walker. Should be used only for read access. Call with
3331 * rcu_read_lock held.
3332 */
3333#define for_each_dev_addr(dev, ha) \
3334 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3335
3336/* These functions live elsewhere (drivers/net/net_init.c, but related) */
3337
3338void ether_setup(struct net_device *dev);
3339
3340/* Support for loadable net-drivers */
3341struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3342 unsigned char name_assign_type,
3343 void (*setup)(struct net_device *),
3344 unsigned int txqs, unsigned int rxqs);
3345#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3346 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3347
3348#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3349 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3350 count)
3351
3352int register_netdev(struct net_device *dev);
3353void unregister_netdev(struct net_device *dev);
3354
3355/* General hardware address lists handling functions */
3356int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3357 struct netdev_hw_addr_list *from_list, int addr_len);
3358void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3359 struct netdev_hw_addr_list *from_list, int addr_len);
3360int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3361 struct net_device *dev,
3362 int (*sync)(struct net_device *, const unsigned char *),
3363 int (*unsync)(struct net_device *,
3364 const unsigned char *));
3365void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3366 struct net_device *dev,
3367 int (*unsync)(struct net_device *,
3368 const unsigned char *));
3369void __hw_addr_init(struct netdev_hw_addr_list *list);
3370
3371/* Functions used for device addresses handling */
3372int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3373 unsigned char addr_type);
3374int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3375 unsigned char addr_type);
3376void dev_addr_flush(struct net_device *dev);
3377int dev_addr_init(struct net_device *dev);
3378
3379/* Functions used for unicast addresses handling */
3380int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3381int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3382int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3383int dev_uc_sync(struct net_device *to, struct net_device *from);
3384int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3385void dev_uc_unsync(struct net_device *to, struct net_device *from);
3386void dev_uc_flush(struct net_device *dev);
3387void dev_uc_init(struct net_device *dev);
3388
3389/**
3390 * __dev_uc_sync - Synchonize device's unicast list
3391 * @dev: device to sync
3392 * @sync: function to call if address should be added
3393 * @unsync: function to call if address should be removed
3394 *
3395 * Add newly added addresses to the interface, and release
3396 * addresses that have been deleted.
3397 **/
3398static inline int __dev_uc_sync(struct net_device *dev,
3399 int (*sync)(struct net_device *,
3400 const unsigned char *),
3401 int (*unsync)(struct net_device *,
3402 const unsigned char *))
3403{
3404 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3405}
3406
3407/**
3408 * __dev_uc_unsync - Remove synchronized addresses from device
3409 * @dev: device to sync
3410 * @unsync: function to call if address should be removed
3411 *
3412 * Remove all addresses that were added to the device by dev_uc_sync().
3413 **/
3414static inline void __dev_uc_unsync(struct net_device *dev,
3415 int (*unsync)(struct net_device *,
3416 const unsigned char *))
3417{
3418 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3419}
3420
3421/* Functions used for multicast addresses handling */
3422int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3423int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3424int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3425int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3426int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3427int dev_mc_sync(struct net_device *to, struct net_device *from);
3428int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3429void dev_mc_unsync(struct net_device *to, struct net_device *from);
3430void dev_mc_flush(struct net_device *dev);
3431void dev_mc_init(struct net_device *dev);
3432
3433/**
3434 * __dev_mc_sync - Synchonize device's multicast list
3435 * @dev: device to sync
3436 * @sync: function to call if address should be added
3437 * @unsync: function to call if address should be removed
3438 *
3439 * Add newly added addresses to the interface, and release
3440 * addresses that have been deleted.
3441 **/
3442static inline int __dev_mc_sync(struct net_device *dev,
3443 int (*sync)(struct net_device *,
3444 const unsigned char *),
3445 int (*unsync)(struct net_device *,
3446 const unsigned char *))
3447{
3448 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3449}
3450
3451/**
3452 * __dev_mc_unsync - Remove synchronized addresses from device
3453 * @dev: device to sync
3454 * @unsync: function to call if address should be removed
3455 *
3456 * Remove all addresses that were added to the device by dev_mc_sync().
3457 **/
3458static inline void __dev_mc_unsync(struct net_device *dev,
3459 int (*unsync)(struct net_device *,
3460 const unsigned char *))
3461{
3462 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3463}
3464
3465/* Functions used for secondary unicast and multicast support */
3466void dev_set_rx_mode(struct net_device *dev);
3467void __dev_set_rx_mode(struct net_device *dev);
3468int dev_set_promiscuity(struct net_device *dev, int inc);
3469int dev_set_allmulti(struct net_device *dev, int inc);
3470void netdev_state_change(struct net_device *dev);
3471void netdev_notify_peers(struct net_device *dev);
3472void netdev_features_change(struct net_device *dev);
3473/* Load a device via the kmod */
3474void dev_load(struct net *net, const char *name);
3475struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3476 struct rtnl_link_stats64 *storage);
3477void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3478 const struct net_device_stats *netdev_stats);
3479
3480extern int netdev_max_backlog;
3481extern int netdev_tstamp_prequeue;
3482extern int weight_p;
3483extern int bpf_jit_enable;
3484
3485bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3486struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3487 struct list_head **iter);
3488struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3489 struct list_head **iter);
3490
3491/* iterate through upper list, must be called under RCU read lock */
3492#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3493 for (iter = &(dev)->adj_list.upper, \
3494 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3495 updev; \
3496 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3497
3498/* iterate through upper list, must be called under RCU read lock */
3499#define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3500 for (iter = &(dev)->all_adj_list.upper, \
3501 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3502 updev; \
3503 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3504
3505void *netdev_lower_get_next_private(struct net_device *dev,
3506 struct list_head **iter);
3507void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3508 struct list_head **iter);
3509
3510#define netdev_for_each_lower_private(dev, priv, iter) \
3511 for (iter = (dev)->adj_list.lower.next, \
3512 priv = netdev_lower_get_next_private(dev, &(iter)); \
3513 priv; \
3514 priv = netdev_lower_get_next_private(dev, &(iter)))
3515
3516#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3517 for (iter = &(dev)->adj_list.lower, \
3518 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3519 priv; \
3520 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3521
3522void *netdev_lower_get_next(struct net_device *dev,
3523 struct list_head **iter);
3524#define netdev_for_each_lower_dev(dev, ldev, iter) \
3525 for (iter = &(dev)->adj_list.lower, \
3526 ldev = netdev_lower_get_next(dev, &(iter)); \
3527 ldev; \
3528 ldev = netdev_lower_get_next(dev, &(iter)))
3529
3530void *netdev_adjacent_get_private(struct list_head *adj_list);
3531void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3532struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3533struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3534int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3535int netdev_master_upper_dev_link(struct net_device *dev,
3536 struct net_device *upper_dev);
3537int netdev_master_upper_dev_link_private(struct net_device *dev,
3538 struct net_device *upper_dev,
3539 void *private);
3540void netdev_upper_dev_unlink(struct net_device *dev,
3541 struct net_device *upper_dev);
3542void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3543void *netdev_lower_dev_get_private(struct net_device *dev,
3544 struct net_device *lower_dev);
3545
3546/* RSS keys are 40 or 52 bytes long */
3547#define NETDEV_RSS_KEY_LEN 52
3548extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3549void netdev_rss_key_fill(void *buffer, size_t len);
3550
3551int dev_get_nest_level(struct net_device *dev,
3552 bool (*type_check)(struct net_device *dev));
3553int skb_checksum_help(struct sk_buff *skb);
3554struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3555 netdev_features_t features, bool tx_path);
3556struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3557 netdev_features_t features);
3558
3559struct netdev_bonding_info {
3560 ifslave slave;
3561 ifbond master;
3562};
3563
3564struct netdev_notifier_bonding_info {
3565 struct netdev_notifier_info info; /* must be first */
3566 struct netdev_bonding_info bonding_info;
3567};
3568
3569void netdev_bonding_info_change(struct net_device *dev,
3570 struct netdev_bonding_info *bonding_info);
3571
3572static inline
3573struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3574{
3575 return __skb_gso_segment(skb, features, true);
3576}
3577__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3578
3579static inline bool can_checksum_protocol(netdev_features_t features,
3580 __be16 protocol)
3581{
3582 return ((features & NETIF_F_GEN_CSUM) ||
3583 ((features & NETIF_F_V4_CSUM) &&
3584 protocol == htons(ETH_P_IP)) ||
3585 ((features & NETIF_F_V6_CSUM) &&
3586 protocol == htons(ETH_P_IPV6)) ||
3587 ((features & NETIF_F_FCOE_CRC) &&
3588 protocol == htons(ETH_P_FCOE)));
3589}
3590
3591#ifdef CONFIG_BUG
3592void netdev_rx_csum_fault(struct net_device *dev);
3593#else
3594static inline void netdev_rx_csum_fault(struct net_device *dev)
3595{
3596}
3597#endif
3598/* rx skb timestamps */
3599void net_enable_timestamp(void);
3600void net_disable_timestamp(void);
3601
3602#ifdef CONFIG_PROC_FS
3603int __init dev_proc_init(void);
3604#else
3605#define dev_proc_init() 0
3606#endif
3607
3608static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3609 struct sk_buff *skb, struct net_device *dev,
3610 bool more)
3611{
3612 skb->xmit_more = more ? 1 : 0;
3613 return ops->ndo_start_xmit(skb, dev);
3614}
3615
3616static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3617 struct netdev_queue *txq, bool more)
3618{
3619 const struct net_device_ops *ops = dev->netdev_ops;
3620 int rc;
3621
3622 rc = __netdev_start_xmit(ops, skb, dev, more);
3623 if (rc == NETDEV_TX_OK)
3624 txq_trans_update(txq);
3625
3626 return rc;
3627}
3628
3629int netdev_class_create_file_ns(struct class_attribute *class_attr,
3630 const void *ns);
3631void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3632 const void *ns);
3633
3634static inline int netdev_class_create_file(struct class_attribute *class_attr)
3635{
3636 return netdev_class_create_file_ns(class_attr, NULL);
3637}
3638
3639static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3640{
3641 netdev_class_remove_file_ns(class_attr, NULL);
3642}
3643
3644extern struct kobj_ns_type_operations net_ns_type_operations;
3645
3646const char *netdev_drivername(const struct net_device *dev);
3647
3648void linkwatch_run_queue(void);
3649
3650static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3651 netdev_features_t f2)
3652{
3653 if (f1 & NETIF_F_GEN_CSUM)
3654 f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3655 if (f2 & NETIF_F_GEN_CSUM)
3656 f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3657 f1 &= f2;
3658 if (f1 & NETIF_F_GEN_CSUM)
3659 f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3660
3661 return f1;
3662}
3663
3664static inline netdev_features_t netdev_get_wanted_features(
3665 struct net_device *dev)
3666{
3667 return (dev->features & ~dev->hw_features) | dev->wanted_features;
3668}
3669netdev_features_t netdev_increment_features(netdev_features_t all,
3670 netdev_features_t one, netdev_features_t mask);
3671
3672/* Allow TSO being used on stacked device :
3673 * Performing the GSO segmentation before last device
3674 * is a performance improvement.
3675 */
3676static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3677 netdev_features_t mask)
3678{
3679 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3680}
3681
3682int __netdev_update_features(struct net_device *dev);
3683void netdev_update_features(struct net_device *dev);
3684void netdev_change_features(struct net_device *dev);
3685
3686void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3687 struct net_device *dev);
3688
3689netdev_features_t passthru_features_check(struct sk_buff *skb,
3690 struct net_device *dev,
3691 netdev_features_t features);
3692netdev_features_t netif_skb_features(struct sk_buff *skb);
3693
3694static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3695{
3696 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3697
3698 /* check flags correspondence */
3699 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3700 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3701 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3702 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3703 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3704 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3705 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3706 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3707 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3708 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3709 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3710 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3711 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3712
3713 return (features & feature) == feature;
3714}
3715
3716static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3717{
3718 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3719 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3720}
3721
3722static inline bool netif_needs_gso(struct sk_buff *skb,
3723 netdev_features_t features)
3724{
3725 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3726 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3727 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3728}
3729
3730static inline void netif_set_gso_max_size(struct net_device *dev,
3731 unsigned int size)
3732{
3733 dev->gso_max_size = size;
3734}
3735
3736static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3737 int pulled_hlen, u16 mac_offset,
3738 int mac_len)
3739{
3740 skb->protocol = protocol;
3741 skb->encapsulation = 1;
3742 skb_push(skb, pulled_hlen);
3743 skb_reset_transport_header(skb);
3744 skb->mac_header = mac_offset;
3745 skb->network_header = skb->mac_header + mac_len;
3746 skb->mac_len = mac_len;
3747}
3748
3749static inline bool netif_is_macvlan(struct net_device *dev)
3750{
3751 return dev->priv_flags & IFF_MACVLAN;
3752}
3753
3754static inline bool netif_is_macvlan_port(struct net_device *dev)
3755{
3756 return dev->priv_flags & IFF_MACVLAN_PORT;
3757}
3758
3759static inline bool netif_is_ipvlan(struct net_device *dev)
3760{
3761 return dev->priv_flags & IFF_IPVLAN_SLAVE;
3762}
3763
3764static inline bool netif_is_ipvlan_port(struct net_device *dev)
3765{
3766 return dev->priv_flags & IFF_IPVLAN_MASTER;
3767}
3768
3769static inline bool netif_is_bond_master(struct net_device *dev)
3770{
3771 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3772}
3773
3774static inline bool netif_is_bond_slave(struct net_device *dev)
3775{
3776 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3777}
3778
3779static inline bool netif_supports_nofcs(struct net_device *dev)
3780{
3781 return dev->priv_flags & IFF_SUPP_NOFCS;
3782}
3783
3784/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3785static inline void netif_keep_dst(struct net_device *dev)
3786{
3787 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3788}
3789
3790extern struct pernet_operations __net_initdata loopback_net_ops;
3791
3792/* Logging, debugging and troubleshooting/diagnostic helpers. */
3793
3794/* netdev_printk helpers, similar to dev_printk */
3795
3796static inline const char *netdev_name(const struct net_device *dev)
3797{
3798 if (!dev->name[0] || strchr(dev->name, '%'))
3799 return "(unnamed net_device)";
3800 return dev->name;
3801}
3802
3803static inline const char *netdev_reg_state(const struct net_device *dev)
3804{
3805 switch (dev->reg_state) {
3806 case NETREG_UNINITIALIZED: return " (uninitialized)";
3807 case NETREG_REGISTERED: return "";
3808 case NETREG_UNREGISTERING: return " (unregistering)";
3809 case NETREG_UNREGISTERED: return " (unregistered)";
3810 case NETREG_RELEASED: return " (released)";
3811 case NETREG_DUMMY: return " (dummy)";
3812 }
3813
3814 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3815 return " (unknown)";
3816}
3817
3818__printf(3, 4)
3819void netdev_printk(const char *level, const struct net_device *dev,
3820 const char *format, ...);
3821__printf(2, 3)
3822void netdev_emerg(const struct net_device *dev, const char *format, ...);
3823__printf(2, 3)
3824void netdev_alert(const struct net_device *dev, const char *format, ...);
3825__printf(2, 3)
3826void netdev_crit(const struct net_device *dev, const char *format, ...);
3827__printf(2, 3)
3828void netdev_err(const struct net_device *dev, const char *format, ...);
3829__printf(2, 3)
3830void netdev_warn(const struct net_device *dev, const char *format, ...);
3831__printf(2, 3)
3832void netdev_notice(const struct net_device *dev, const char *format, ...);
3833__printf(2, 3)
3834void netdev_info(const struct net_device *dev, const char *format, ...);
3835
3836#define MODULE_ALIAS_NETDEV(device) \
3837 MODULE_ALIAS("netdev-" device)
3838
3839#if defined(CONFIG_DYNAMIC_DEBUG)
3840#define netdev_dbg(__dev, format, args...) \
3841do { \
3842 dynamic_netdev_dbg(__dev, format, ##args); \
3843} while (0)
3844#elif defined(DEBUG)
3845#define netdev_dbg(__dev, format, args...) \
3846 netdev_printk(KERN_DEBUG, __dev, format, ##args)
3847#else
3848#define netdev_dbg(__dev, format, args...) \
3849({ \
3850 if (0) \
3851 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3852})
3853#endif
3854
3855#if defined(VERBOSE_DEBUG)
3856#define netdev_vdbg netdev_dbg
3857#else
3858
3859#define netdev_vdbg(dev, format, args...) \
3860({ \
3861 if (0) \
3862 netdev_printk(KERN_DEBUG, dev, format, ##args); \
3863 0; \
3864})
3865#endif
3866
3867/*
3868 * netdev_WARN() acts like dev_printk(), but with the key difference
3869 * of using a WARN/WARN_ON to get the message out, including the
3870 * file/line information and a backtrace.
3871 */
3872#define netdev_WARN(dev, format, args...) \
3873 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
3874 netdev_reg_state(dev), ##args)
3875
3876/* netif printk helpers, similar to netdev_printk */
3877
3878#define netif_printk(priv, type, level, dev, fmt, args...) \
3879do { \
3880 if (netif_msg_##type(priv)) \
3881 netdev_printk(level, (dev), fmt, ##args); \
3882} while (0)
3883
3884#define netif_level(level, priv, type, dev, fmt, args...) \
3885do { \
3886 if (netif_msg_##type(priv)) \
3887 netdev_##level(dev, fmt, ##args); \
3888} while (0)
3889
3890#define netif_emerg(priv, type, dev, fmt, args...) \
3891 netif_level(emerg, priv, type, dev, fmt, ##args)
3892#define netif_alert(priv, type, dev, fmt, args...) \
3893 netif_level(alert, priv, type, dev, fmt, ##args)
3894#define netif_crit(priv, type, dev, fmt, args...) \
3895 netif_level(crit, priv, type, dev, fmt, ##args)
3896#define netif_err(priv, type, dev, fmt, args...) \
3897 netif_level(err, priv, type, dev, fmt, ##args)
3898#define netif_warn(priv, type, dev, fmt, args...) \
3899 netif_level(warn, priv, type, dev, fmt, ##args)
3900#define netif_notice(priv, type, dev, fmt, args...) \
3901 netif_level(notice, priv, type, dev, fmt, ##args)
3902#define netif_info(priv, type, dev, fmt, args...) \
3903 netif_level(info, priv, type, dev, fmt, ##args)
3904
3905#if defined(CONFIG_DYNAMIC_DEBUG)
3906#define netif_dbg(priv, type, netdev, format, args...) \
3907do { \
3908 if (netif_msg_##type(priv)) \
3909 dynamic_netdev_dbg(netdev, format, ##args); \
3910} while (0)
3911#elif defined(DEBUG)
3912#define netif_dbg(priv, type, dev, format, args...) \
3913 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3914#else
3915#define netif_dbg(priv, type, dev, format, args...) \
3916({ \
3917 if (0) \
3918 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3919 0; \
3920})
3921#endif
3922
3923#if defined(VERBOSE_DEBUG)
3924#define netif_vdbg netif_dbg
3925#else
3926#define netif_vdbg(priv, type, dev, format, args...) \
3927({ \
3928 if (0) \
3929 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3930 0; \
3931})
3932#endif
3933
3934/*
3935 * The list of packet types we will receive (as opposed to discard)
3936 * and the routines to invoke.
3937 *
3938 * Why 16. Because with 16 the only overlap we get on a hash of the
3939 * low nibble of the protocol value is RARP/SNAP/X.25.
3940 *
3941 * NOTE: That is no longer true with the addition of VLAN tags. Not
3942 * sure which should go first, but I bet it won't make much
3943 * difference if we are running VLANs. The good news is that
3944 * this protocol won't be in the list unless compiled in, so
3945 * the average user (w/out VLANs) will not be adversely affected.
3946 * --BLG
3947 *
3948 * 0800 IP
3949 * 8100 802.1Q VLAN
3950 * 0001 802.3
3951 * 0002 AX.25
3952 * 0004 802.2
3953 * 8035 RARP
3954 * 0005 SNAP
3955 * 0805 X.25
3956 * 0806 ARP
3957 * 8137 IPX
3958 * 0009 Localtalk
3959 * 86DD IPv6
3960 */
3961#define PTYPE_HASH_SIZE (16)
3962#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3963
3964#endif /* _LINUX_NETDEVICE_H */