Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / include / linux / netdevice.h
... / ...
CommitLineData
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25#ifndef _LINUX_NETDEVICE_H
26#define _LINUX_NETDEVICE_H
27
28#include <linux/timer.h>
29#include <linux/bug.h>
30#include <linux/delay.h>
31#include <linux/atomic.h>
32#include <linux/prefetch.h>
33#include <asm/cache.h>
34#include <asm/byteorder.h>
35
36#include <linux/percpu.h>
37#include <linux/rculist.h>
38#include <linux/dmaengine.h>
39#include <linux/workqueue.h>
40#include <linux/dynamic_queue_limits.h>
41
42#include <linux/ethtool.h>
43#include <net/net_namespace.h>
44#include <net/dsa.h>
45#ifdef CONFIG_DCB
46#include <net/dcbnl.h>
47#endif
48#include <net/netprio_cgroup.h>
49
50#include <linux/netdev_features.h>
51#include <linux/neighbour.h>
52#include <uapi/linux/netdevice.h>
53#include <uapi/linux/if_bonding.h>
54#include <uapi/linux/pkt_cls.h>
55
56struct netpoll_info;
57struct device;
58struct phy_device;
59/* 802.11 specific */
60struct wireless_dev;
61/* 802.15.4 specific */
62struct wpan_dev;
63struct mpls_dev;
64
65void netdev_set_default_ethtool_ops(struct net_device *dev,
66 const struct ethtool_ops *ops);
67
68/* Backlog congestion levels */
69#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
70#define NET_RX_DROP 1 /* packet dropped */
71
72/*
73 * Transmit return codes: transmit return codes originate from three different
74 * namespaces:
75 *
76 * - qdisc return codes
77 * - driver transmit return codes
78 * - errno values
79 *
80 * Drivers are allowed to return any one of those in their hard_start_xmit()
81 * function. Real network devices commonly used with qdiscs should only return
82 * the driver transmit return codes though - when qdiscs are used, the actual
83 * transmission happens asynchronously, so the value is not propagated to
84 * higher layers. Virtual network devices transmit synchronously; in this case
85 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
86 * others are propagated to higher layers.
87 */
88
89/* qdisc ->enqueue() return codes. */
90#define NET_XMIT_SUCCESS 0x00
91#define NET_XMIT_DROP 0x01 /* skb dropped */
92#define NET_XMIT_CN 0x02 /* congestion notification */
93#define NET_XMIT_POLICED 0x03 /* skb is shot by police */
94#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
95
96/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
97 * indicates that the device will soon be dropping packets, or already drops
98 * some packets of the same priority; prompting us to send less aggressively. */
99#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
100#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
101
102/* Driver transmit return codes */
103#define NETDEV_TX_MASK 0xf0
104
105enum netdev_tx {
106 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
107 NETDEV_TX_OK = 0x00, /* driver took care of packet */
108 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
109 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
110};
111typedef enum netdev_tx netdev_tx_t;
112
113/*
114 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
115 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
116 */
117static inline bool dev_xmit_complete(int rc)
118{
119 /*
120 * Positive cases with an skb consumed by a driver:
121 * - successful transmission (rc == NETDEV_TX_OK)
122 * - error while transmitting (rc < 0)
123 * - error while queueing to a different device (rc & NET_XMIT_MASK)
124 */
125 if (likely(rc < NET_XMIT_MASK))
126 return true;
127
128 return false;
129}
130
131/*
132 * Compute the worst-case header length according to the protocols
133 * used.
134 */
135
136#if defined(CONFIG_HYPERV_NET)
137# define LL_MAX_HEADER 128
138#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
139# if defined(CONFIG_MAC80211_MESH)
140# define LL_MAX_HEADER 128
141# else
142# define LL_MAX_HEADER 96
143# endif
144#else
145# define LL_MAX_HEADER 32
146#endif
147
148#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
149 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
150#define MAX_HEADER LL_MAX_HEADER
151#else
152#define MAX_HEADER (LL_MAX_HEADER + 48)
153#endif
154
155/*
156 * Old network device statistics. Fields are native words
157 * (unsigned long) so they can be read and written atomically.
158 */
159
160struct net_device_stats {
161 unsigned long rx_packets;
162 unsigned long tx_packets;
163 unsigned long rx_bytes;
164 unsigned long tx_bytes;
165 unsigned long rx_errors;
166 unsigned long tx_errors;
167 unsigned long rx_dropped;
168 unsigned long tx_dropped;
169 unsigned long multicast;
170 unsigned long collisions;
171 unsigned long rx_length_errors;
172 unsigned long rx_over_errors;
173 unsigned long rx_crc_errors;
174 unsigned long rx_frame_errors;
175 unsigned long rx_fifo_errors;
176 unsigned long rx_missed_errors;
177 unsigned long tx_aborted_errors;
178 unsigned long tx_carrier_errors;
179 unsigned long tx_fifo_errors;
180 unsigned long tx_heartbeat_errors;
181 unsigned long tx_window_errors;
182 unsigned long rx_compressed;
183 unsigned long tx_compressed;
184};
185
186
187#include <linux/cache.h>
188#include <linux/skbuff.h>
189
190#ifdef CONFIG_RPS
191#include <linux/static_key.h>
192extern struct static_key rps_needed;
193#endif
194
195struct neighbour;
196struct neigh_parms;
197struct sk_buff;
198
199struct netdev_hw_addr {
200 struct list_head list;
201 unsigned char addr[MAX_ADDR_LEN];
202 unsigned char type;
203#define NETDEV_HW_ADDR_T_LAN 1
204#define NETDEV_HW_ADDR_T_SAN 2
205#define NETDEV_HW_ADDR_T_SLAVE 3
206#define NETDEV_HW_ADDR_T_UNICAST 4
207#define NETDEV_HW_ADDR_T_MULTICAST 5
208 bool global_use;
209 int sync_cnt;
210 int refcount;
211 int synced;
212 struct rcu_head rcu_head;
213};
214
215struct netdev_hw_addr_list {
216 struct list_head list;
217 int count;
218};
219
220#define netdev_hw_addr_list_count(l) ((l)->count)
221#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
222#define netdev_hw_addr_list_for_each(ha, l) \
223 list_for_each_entry(ha, &(l)->list, list)
224
225#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
226#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
227#define netdev_for_each_uc_addr(ha, dev) \
228 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
229
230#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
231#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
232#define netdev_for_each_mc_addr(ha, dev) \
233 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
234
235struct hh_cache {
236 u16 hh_len;
237 u16 __pad;
238 seqlock_t hh_lock;
239
240 /* cached hardware header; allow for machine alignment needs. */
241#define HH_DATA_MOD 16
242#define HH_DATA_OFF(__len) \
243 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
244#define HH_DATA_ALIGN(__len) \
245 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
246 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
247};
248
249/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
250 * Alternative is:
251 * dev->hard_header_len ? (dev->hard_header_len +
252 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
253 *
254 * We could use other alignment values, but we must maintain the
255 * relationship HH alignment <= LL alignment.
256 */
257#define LL_RESERVED_SPACE(dev) \
258 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
259#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
260 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
261
262struct header_ops {
263 int (*create) (struct sk_buff *skb, struct net_device *dev,
264 unsigned short type, const void *daddr,
265 const void *saddr, unsigned int len);
266 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
267 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
268 void (*cache_update)(struct hh_cache *hh,
269 const struct net_device *dev,
270 const unsigned char *haddr);
271 bool (*validate)(const char *ll_header, unsigned int len);
272};
273
274/* These flag bits are private to the generic network queueing
275 * layer; they may not be explicitly referenced by any other
276 * code.
277 */
278
279enum netdev_state_t {
280 __LINK_STATE_START,
281 __LINK_STATE_PRESENT,
282 __LINK_STATE_NOCARRIER,
283 __LINK_STATE_LINKWATCH_PENDING,
284 __LINK_STATE_DORMANT,
285};
286
287
288/*
289 * This structure holds boot-time configured netdevice settings. They
290 * are then used in the device probing.
291 */
292struct netdev_boot_setup {
293 char name[IFNAMSIZ];
294 struct ifmap map;
295};
296#define NETDEV_BOOT_SETUP_MAX 8
297
298int __init netdev_boot_setup(char *str);
299
300/*
301 * Structure for NAPI scheduling similar to tasklet but with weighting
302 */
303struct napi_struct {
304 /* The poll_list must only be managed by the entity which
305 * changes the state of the NAPI_STATE_SCHED bit. This means
306 * whoever atomically sets that bit can add this napi_struct
307 * to the per-CPU poll_list, and whoever clears that bit
308 * can remove from the list right before clearing the bit.
309 */
310 struct list_head poll_list;
311
312 unsigned long state;
313 int weight;
314 unsigned int gro_count;
315 int (*poll)(struct napi_struct *, int);
316#ifdef CONFIG_NETPOLL
317 spinlock_t poll_lock;
318 int poll_owner;
319#endif
320 struct net_device *dev;
321 struct sk_buff *gro_list;
322 struct sk_buff *skb;
323 struct hrtimer timer;
324 struct list_head dev_list;
325 struct hlist_node napi_hash_node;
326 unsigned int napi_id;
327};
328
329enum {
330 NAPI_STATE_SCHED, /* Poll is scheduled */
331 NAPI_STATE_DISABLE, /* Disable pending */
332 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
333 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
334 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
335};
336
337enum gro_result {
338 GRO_MERGED,
339 GRO_MERGED_FREE,
340 GRO_HELD,
341 GRO_NORMAL,
342 GRO_DROP,
343};
344typedef enum gro_result gro_result_t;
345
346/*
347 * enum rx_handler_result - Possible return values for rx_handlers.
348 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
349 * further.
350 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
351 * case skb->dev was changed by rx_handler.
352 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
353 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
354 *
355 * rx_handlers are functions called from inside __netif_receive_skb(), to do
356 * special processing of the skb, prior to delivery to protocol handlers.
357 *
358 * Currently, a net_device can only have a single rx_handler registered. Trying
359 * to register a second rx_handler will return -EBUSY.
360 *
361 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
362 * To unregister a rx_handler on a net_device, use
363 * netdev_rx_handler_unregister().
364 *
365 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
366 * do with the skb.
367 *
368 * If the rx_handler consumed the skb in some way, it should return
369 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
370 * the skb to be delivered in some other way.
371 *
372 * If the rx_handler changed skb->dev, to divert the skb to another
373 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
374 * new device will be called if it exists.
375 *
376 * If the rx_handler decides the skb should be ignored, it should return
377 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
378 * are registered on exact device (ptype->dev == skb->dev).
379 *
380 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
381 * delivered, it should return RX_HANDLER_PASS.
382 *
383 * A device without a registered rx_handler will behave as if rx_handler
384 * returned RX_HANDLER_PASS.
385 */
386
387enum rx_handler_result {
388 RX_HANDLER_CONSUMED,
389 RX_HANDLER_ANOTHER,
390 RX_HANDLER_EXACT,
391 RX_HANDLER_PASS,
392};
393typedef enum rx_handler_result rx_handler_result_t;
394typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
395
396void __napi_schedule(struct napi_struct *n);
397void __napi_schedule_irqoff(struct napi_struct *n);
398
399static inline bool napi_disable_pending(struct napi_struct *n)
400{
401 return test_bit(NAPI_STATE_DISABLE, &n->state);
402}
403
404/**
405 * napi_schedule_prep - check if NAPI can be scheduled
406 * @n: NAPI context
407 *
408 * Test if NAPI routine is already running, and if not mark
409 * it as running. This is used as a condition variable to
410 * insure only one NAPI poll instance runs. We also make
411 * sure there is no pending NAPI disable.
412 */
413static inline bool napi_schedule_prep(struct napi_struct *n)
414{
415 return !napi_disable_pending(n) &&
416 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
417}
418
419/**
420 * napi_schedule - schedule NAPI poll
421 * @n: NAPI context
422 *
423 * Schedule NAPI poll routine to be called if it is not already
424 * running.
425 */
426static inline void napi_schedule(struct napi_struct *n)
427{
428 if (napi_schedule_prep(n))
429 __napi_schedule(n);
430}
431
432/**
433 * napi_schedule_irqoff - schedule NAPI poll
434 * @n: NAPI context
435 *
436 * Variant of napi_schedule(), assuming hard irqs are masked.
437 */
438static inline void napi_schedule_irqoff(struct napi_struct *n)
439{
440 if (napi_schedule_prep(n))
441 __napi_schedule_irqoff(n);
442}
443
444/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
445static inline bool napi_reschedule(struct napi_struct *napi)
446{
447 if (napi_schedule_prep(napi)) {
448 __napi_schedule(napi);
449 return true;
450 }
451 return false;
452}
453
454void __napi_complete(struct napi_struct *n);
455void napi_complete_done(struct napi_struct *n, int work_done);
456/**
457 * napi_complete - NAPI processing complete
458 * @n: NAPI context
459 *
460 * Mark NAPI processing as complete.
461 * Consider using napi_complete_done() instead.
462 */
463static inline void napi_complete(struct napi_struct *n)
464{
465 return napi_complete_done(n, 0);
466}
467
468/**
469 * napi_hash_add - add a NAPI to global hashtable
470 * @napi: NAPI context
471 *
472 * Generate a new napi_id and store a @napi under it in napi_hash.
473 * Used for busy polling (CONFIG_NET_RX_BUSY_POLL).
474 * Note: This is normally automatically done from netif_napi_add(),
475 * so might disappear in a future Linux version.
476 */
477void napi_hash_add(struct napi_struct *napi);
478
479/**
480 * napi_hash_del - remove a NAPI from global table
481 * @napi: NAPI context
482 *
483 * Warning: caller must observe RCU grace period
484 * before freeing memory containing @napi, if
485 * this function returns true.
486 * Note: core networking stack automatically calls it
487 * from netif_napi_del().
488 * Drivers might want to call this helper to combine all
489 * the needed RCU grace periods into a single one.
490 */
491bool napi_hash_del(struct napi_struct *napi);
492
493/**
494 * napi_disable - prevent NAPI from scheduling
495 * @n: NAPI context
496 *
497 * Stop NAPI from being scheduled on this context.
498 * Waits till any outstanding processing completes.
499 */
500void napi_disable(struct napi_struct *n);
501
502/**
503 * napi_enable - enable NAPI scheduling
504 * @n: NAPI context
505 *
506 * Resume NAPI from being scheduled on this context.
507 * Must be paired with napi_disable.
508 */
509static inline void napi_enable(struct napi_struct *n)
510{
511 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
512 smp_mb__before_atomic();
513 clear_bit(NAPI_STATE_SCHED, &n->state);
514 clear_bit(NAPI_STATE_NPSVC, &n->state);
515}
516
517/**
518 * napi_synchronize - wait until NAPI is not running
519 * @n: NAPI context
520 *
521 * Wait until NAPI is done being scheduled on this context.
522 * Waits till any outstanding processing completes but
523 * does not disable future activations.
524 */
525static inline void napi_synchronize(const struct napi_struct *n)
526{
527 if (IS_ENABLED(CONFIG_SMP))
528 while (test_bit(NAPI_STATE_SCHED, &n->state))
529 msleep(1);
530 else
531 barrier();
532}
533
534enum netdev_queue_state_t {
535 __QUEUE_STATE_DRV_XOFF,
536 __QUEUE_STATE_STACK_XOFF,
537 __QUEUE_STATE_FROZEN,
538};
539
540#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
541#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
542#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
543
544#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
545#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
546 QUEUE_STATE_FROZEN)
547#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
548 QUEUE_STATE_FROZEN)
549
550/*
551 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
552 * netif_tx_* functions below are used to manipulate this flag. The
553 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
554 * queue independently. The netif_xmit_*stopped functions below are called
555 * to check if the queue has been stopped by the driver or stack (either
556 * of the XOFF bits are set in the state). Drivers should not need to call
557 * netif_xmit*stopped functions, they should only be using netif_tx_*.
558 */
559
560struct netdev_queue {
561/*
562 * read-mostly part
563 */
564 struct net_device *dev;
565 struct Qdisc __rcu *qdisc;
566 struct Qdisc *qdisc_sleeping;
567#ifdef CONFIG_SYSFS
568 struct kobject kobj;
569#endif
570#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
571 int numa_node;
572#endif
573/*
574 * write-mostly part
575 */
576 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
577 int xmit_lock_owner;
578 /*
579 * please use this field instead of dev->trans_start
580 */
581 unsigned long trans_start;
582
583 /*
584 * Number of TX timeouts for this queue
585 * (/sys/class/net/DEV/Q/trans_timeout)
586 */
587 unsigned long trans_timeout;
588
589 unsigned long state;
590
591#ifdef CONFIG_BQL
592 struct dql dql;
593#endif
594 unsigned long tx_maxrate;
595} ____cacheline_aligned_in_smp;
596
597static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
598{
599#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
600 return q->numa_node;
601#else
602 return NUMA_NO_NODE;
603#endif
604}
605
606static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
607{
608#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
609 q->numa_node = node;
610#endif
611}
612
613#ifdef CONFIG_RPS
614/*
615 * This structure holds an RPS map which can be of variable length. The
616 * map is an array of CPUs.
617 */
618struct rps_map {
619 unsigned int len;
620 struct rcu_head rcu;
621 u16 cpus[0];
622};
623#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
624
625/*
626 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
627 * tail pointer for that CPU's input queue at the time of last enqueue, and
628 * a hardware filter index.
629 */
630struct rps_dev_flow {
631 u16 cpu;
632 u16 filter;
633 unsigned int last_qtail;
634};
635#define RPS_NO_FILTER 0xffff
636
637/*
638 * The rps_dev_flow_table structure contains a table of flow mappings.
639 */
640struct rps_dev_flow_table {
641 unsigned int mask;
642 struct rcu_head rcu;
643 struct rps_dev_flow flows[0];
644};
645#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
646 ((_num) * sizeof(struct rps_dev_flow)))
647
648/*
649 * The rps_sock_flow_table contains mappings of flows to the last CPU
650 * on which they were processed by the application (set in recvmsg).
651 * Each entry is a 32bit value. Upper part is the high-order bits
652 * of flow hash, lower part is CPU number.
653 * rps_cpu_mask is used to partition the space, depending on number of
654 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
655 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
656 * meaning we use 32-6=26 bits for the hash.
657 */
658struct rps_sock_flow_table {
659 u32 mask;
660
661 u32 ents[0] ____cacheline_aligned_in_smp;
662};
663#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
664
665#define RPS_NO_CPU 0xffff
666
667extern u32 rps_cpu_mask;
668extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
669
670static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
671 u32 hash)
672{
673 if (table && hash) {
674 unsigned int index = hash & table->mask;
675 u32 val = hash & ~rps_cpu_mask;
676
677 /* We only give a hint, preemption can change CPU under us */
678 val |= raw_smp_processor_id();
679
680 if (table->ents[index] != val)
681 table->ents[index] = val;
682 }
683}
684
685#ifdef CONFIG_RFS_ACCEL
686bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
687 u16 filter_id);
688#endif
689#endif /* CONFIG_RPS */
690
691/* This structure contains an instance of an RX queue. */
692struct netdev_rx_queue {
693#ifdef CONFIG_RPS
694 struct rps_map __rcu *rps_map;
695 struct rps_dev_flow_table __rcu *rps_flow_table;
696#endif
697 struct kobject kobj;
698 struct net_device *dev;
699} ____cacheline_aligned_in_smp;
700
701/*
702 * RX queue sysfs structures and functions.
703 */
704struct rx_queue_attribute {
705 struct attribute attr;
706 ssize_t (*show)(struct netdev_rx_queue *queue,
707 struct rx_queue_attribute *attr, char *buf);
708 ssize_t (*store)(struct netdev_rx_queue *queue,
709 struct rx_queue_attribute *attr, const char *buf, size_t len);
710};
711
712#ifdef CONFIG_XPS
713/*
714 * This structure holds an XPS map which can be of variable length. The
715 * map is an array of queues.
716 */
717struct xps_map {
718 unsigned int len;
719 unsigned int alloc_len;
720 struct rcu_head rcu;
721 u16 queues[0];
722};
723#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
724#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
725 - sizeof(struct xps_map)) / sizeof(u16))
726
727/*
728 * This structure holds all XPS maps for device. Maps are indexed by CPU.
729 */
730struct xps_dev_maps {
731 struct rcu_head rcu;
732 struct xps_map __rcu *cpu_map[0];
733};
734#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
735 (nr_cpu_ids * sizeof(struct xps_map *)))
736#endif /* CONFIG_XPS */
737
738#define TC_MAX_QUEUE 16
739#define TC_BITMASK 15
740/* HW offloaded queuing disciplines txq count and offset maps */
741struct netdev_tc_txq {
742 u16 count;
743 u16 offset;
744};
745
746#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
747/*
748 * This structure is to hold information about the device
749 * configured to run FCoE protocol stack.
750 */
751struct netdev_fcoe_hbainfo {
752 char manufacturer[64];
753 char serial_number[64];
754 char hardware_version[64];
755 char driver_version[64];
756 char optionrom_version[64];
757 char firmware_version[64];
758 char model[256];
759 char model_description[256];
760};
761#endif
762
763#define MAX_PHYS_ITEM_ID_LEN 32
764
765/* This structure holds a unique identifier to identify some
766 * physical item (port for example) used by a netdevice.
767 */
768struct netdev_phys_item_id {
769 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
770 unsigned char id_len;
771};
772
773static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
774 struct netdev_phys_item_id *b)
775{
776 return a->id_len == b->id_len &&
777 memcmp(a->id, b->id, a->id_len) == 0;
778}
779
780typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
781 struct sk_buff *skb);
782
783/* These structures hold the attributes of qdisc and classifiers
784 * that are being passed to the netdevice through the setup_tc op.
785 */
786enum {
787 TC_SETUP_MQPRIO,
788 TC_SETUP_CLSU32,
789 TC_SETUP_CLSFLOWER,
790};
791
792struct tc_cls_u32_offload;
793
794struct tc_to_netdev {
795 unsigned int type;
796 union {
797 u8 tc;
798 struct tc_cls_u32_offload *cls_u32;
799 struct tc_cls_flower_offload *cls_flower;
800 };
801};
802
803
804/*
805 * This structure defines the management hooks for network devices.
806 * The following hooks can be defined; unless noted otherwise, they are
807 * optional and can be filled with a null pointer.
808 *
809 * int (*ndo_init)(struct net_device *dev);
810 * This function is called once when a network device is registered.
811 * The network device can use this for any late stage initialization
812 * or semantic validation. It can fail with an error code which will
813 * be propagated back to register_netdev.
814 *
815 * void (*ndo_uninit)(struct net_device *dev);
816 * This function is called when device is unregistered or when registration
817 * fails. It is not called if init fails.
818 *
819 * int (*ndo_open)(struct net_device *dev);
820 * This function is called when a network device transitions to the up
821 * state.
822 *
823 * int (*ndo_stop)(struct net_device *dev);
824 * This function is called when a network device transitions to the down
825 * state.
826 *
827 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
828 * struct net_device *dev);
829 * Called when a packet needs to be transmitted.
830 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
831 * the queue before that can happen; it's for obsolete devices and weird
832 * corner cases, but the stack really does a non-trivial amount
833 * of useless work if you return NETDEV_TX_BUSY.
834 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
835 * Required; cannot be NULL.
836 *
837 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
838 * netdev_features_t features);
839 * Adjusts the requested feature flags according to device-specific
840 * constraints, and returns the resulting flags. Must not modify
841 * the device state.
842 *
843 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
844 * void *accel_priv, select_queue_fallback_t fallback);
845 * Called to decide which queue to use when device supports multiple
846 * transmit queues.
847 *
848 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
849 * This function is called to allow device receiver to make
850 * changes to configuration when multicast or promiscuous is enabled.
851 *
852 * void (*ndo_set_rx_mode)(struct net_device *dev);
853 * This function is called device changes address list filtering.
854 * If driver handles unicast address filtering, it should set
855 * IFF_UNICAST_FLT in its priv_flags.
856 *
857 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
858 * This function is called when the Media Access Control address
859 * needs to be changed. If this interface is not defined, the
860 * MAC address can not be changed.
861 *
862 * int (*ndo_validate_addr)(struct net_device *dev);
863 * Test if Media Access Control address is valid for the device.
864 *
865 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
866 * Called when a user requests an ioctl which can't be handled by
867 * the generic interface code. If not defined ioctls return
868 * not supported error code.
869 *
870 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
871 * Used to set network devices bus interface parameters. This interface
872 * is retained for legacy reasons; new devices should use the bus
873 * interface (PCI) for low level management.
874 *
875 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
876 * Called when a user wants to change the Maximum Transfer Unit
877 * of a device. If not defined, any request to change MTU will
878 * will return an error.
879 *
880 * void (*ndo_tx_timeout)(struct net_device *dev);
881 * Callback used when the transmitter has not made any progress
882 * for dev->watchdog ticks.
883 *
884 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
885 * struct rtnl_link_stats64 *storage);
886 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
887 * Called when a user wants to get the network device usage
888 * statistics. Drivers must do one of the following:
889 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
890 * rtnl_link_stats64 structure passed by the caller.
891 * 2. Define @ndo_get_stats to update a net_device_stats structure
892 * (which should normally be dev->stats) and return a pointer to
893 * it. The structure may be changed asynchronously only if each
894 * field is written atomically.
895 * 3. Update dev->stats asynchronously and atomically, and define
896 * neither operation.
897 *
898 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
899 * If device supports VLAN filtering this function is called when a
900 * VLAN id is registered.
901 *
902 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
903 * If device supports VLAN filtering this function is called when a
904 * VLAN id is unregistered.
905 *
906 * void (*ndo_poll_controller)(struct net_device *dev);
907 *
908 * SR-IOV management functions.
909 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
910 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
911 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
912 * int max_tx_rate);
913 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
914 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
915 * int (*ndo_get_vf_config)(struct net_device *dev,
916 * int vf, struct ifla_vf_info *ivf);
917 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
918 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
919 * struct nlattr *port[]);
920 *
921 * Enable or disable the VF ability to query its RSS Redirection Table and
922 * Hash Key. This is needed since on some devices VF share this information
923 * with PF and querying it may introduce a theoretical security risk.
924 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
925 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
926 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
927 * Called to setup 'tc' number of traffic classes in the net device. This
928 * is always called from the stack with the rtnl lock held and netif tx
929 * queues stopped. This allows the netdevice to perform queue management
930 * safely.
931 *
932 * Fiber Channel over Ethernet (FCoE) offload functions.
933 * int (*ndo_fcoe_enable)(struct net_device *dev);
934 * Called when the FCoE protocol stack wants to start using LLD for FCoE
935 * so the underlying device can perform whatever needed configuration or
936 * initialization to support acceleration of FCoE traffic.
937 *
938 * int (*ndo_fcoe_disable)(struct net_device *dev);
939 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
940 * so the underlying device can perform whatever needed clean-ups to
941 * stop supporting acceleration of FCoE traffic.
942 *
943 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
944 * struct scatterlist *sgl, unsigned int sgc);
945 * Called when the FCoE Initiator wants to initialize an I/O that
946 * is a possible candidate for Direct Data Placement (DDP). The LLD can
947 * perform necessary setup and returns 1 to indicate the device is set up
948 * successfully to perform DDP on this I/O, otherwise this returns 0.
949 *
950 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
951 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
952 * indicated by the FC exchange id 'xid', so the underlying device can
953 * clean up and reuse resources for later DDP requests.
954 *
955 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
956 * struct scatterlist *sgl, unsigned int sgc);
957 * Called when the FCoE Target wants to initialize an I/O that
958 * is a possible candidate for Direct Data Placement (DDP). The LLD can
959 * perform necessary setup and returns 1 to indicate the device is set up
960 * successfully to perform DDP on this I/O, otherwise this returns 0.
961 *
962 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
963 * struct netdev_fcoe_hbainfo *hbainfo);
964 * Called when the FCoE Protocol stack wants information on the underlying
965 * device. This information is utilized by the FCoE protocol stack to
966 * register attributes with Fiber Channel management service as per the
967 * FC-GS Fabric Device Management Information(FDMI) specification.
968 *
969 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
970 * Called when the underlying device wants to override default World Wide
971 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
972 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
973 * protocol stack to use.
974 *
975 * RFS acceleration.
976 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
977 * u16 rxq_index, u32 flow_id);
978 * Set hardware filter for RFS. rxq_index is the target queue index;
979 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
980 * Return the filter ID on success, or a negative error code.
981 *
982 * Slave management functions (for bridge, bonding, etc).
983 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
984 * Called to make another netdev an underling.
985 *
986 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
987 * Called to release previously enslaved netdev.
988 *
989 * Feature/offload setting functions.
990 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
991 * Called to update device configuration to new features. Passed
992 * feature set might be less than what was returned by ndo_fix_features()).
993 * Must return >0 or -errno if it changed dev->features itself.
994 *
995 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
996 * struct net_device *dev,
997 * const unsigned char *addr, u16 vid, u16 flags)
998 * Adds an FDB entry to dev for addr.
999 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1000 * struct net_device *dev,
1001 * const unsigned char *addr, u16 vid)
1002 * Deletes the FDB entry from dev coresponding to addr.
1003 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1004 * struct net_device *dev, struct net_device *filter_dev,
1005 * int idx)
1006 * Used to add FDB entries to dump requests. Implementers should add
1007 * entries to skb and update idx with the number of entries.
1008 *
1009 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1010 * u16 flags)
1011 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1012 * struct net_device *dev, u32 filter_mask,
1013 * int nlflags)
1014 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1015 * u16 flags);
1016 *
1017 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1018 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1019 * which do not represent real hardware may define this to allow their
1020 * userspace components to manage their virtual carrier state. Devices
1021 * that determine carrier state from physical hardware properties (eg
1022 * network cables) or protocol-dependent mechanisms (eg
1023 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1024 *
1025 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1026 * struct netdev_phys_item_id *ppid);
1027 * Called to get ID of physical port of this device. If driver does
1028 * not implement this, it is assumed that the hw is not able to have
1029 * multiple net devices on single physical port.
1030 *
1031 * void (*ndo_add_vxlan_port)(struct net_device *dev,
1032 * sa_family_t sa_family, __be16 port);
1033 * Called by vxlan to notify a driver about the UDP port and socket
1034 * address family that vxlan is listening to. It is called only when
1035 * a new port starts listening. The operation is protected by the
1036 * vxlan_net->sock_lock.
1037 *
1038 * void (*ndo_add_geneve_port)(struct net_device *dev,
1039 * sa_family_t sa_family, __be16 port);
1040 * Called by geneve to notify a driver about the UDP port and socket
1041 * address family that geneve is listnening to. It is called only when
1042 * a new port starts listening. The operation is protected by the
1043 * geneve_net->sock_lock.
1044 *
1045 * void (*ndo_del_geneve_port)(struct net_device *dev,
1046 * sa_family_t sa_family, __be16 port);
1047 * Called by geneve to notify the driver about a UDP port and socket
1048 * address family that geneve is not listening to anymore. The operation
1049 * is protected by the geneve_net->sock_lock.
1050 *
1051 * void (*ndo_del_vxlan_port)(struct net_device *dev,
1052 * sa_family_t sa_family, __be16 port);
1053 * Called by vxlan to notify the driver about a UDP port and socket
1054 * address family that vxlan is not listening to anymore. The operation
1055 * is protected by the vxlan_net->sock_lock.
1056 *
1057 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1058 * struct net_device *dev)
1059 * Called by upper layer devices to accelerate switching or other
1060 * station functionality into hardware. 'pdev is the lowerdev
1061 * to use for the offload and 'dev' is the net device that will
1062 * back the offload. Returns a pointer to the private structure
1063 * the upper layer will maintain.
1064 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1065 * Called by upper layer device to delete the station created
1066 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1067 * the station and priv is the structure returned by the add
1068 * operation.
1069 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1070 * struct net_device *dev,
1071 * void *priv);
1072 * Callback to use for xmit over the accelerated station. This
1073 * is used in place of ndo_start_xmit on accelerated net
1074 * devices.
1075 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1076 * struct net_device *dev
1077 * netdev_features_t features);
1078 * Called by core transmit path to determine if device is capable of
1079 * performing offload operations on a given packet. This is to give
1080 * the device an opportunity to implement any restrictions that cannot
1081 * be otherwise expressed by feature flags. The check is called with
1082 * the set of features that the stack has calculated and it returns
1083 * those the driver believes to be appropriate.
1084 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1085 * int queue_index, u32 maxrate);
1086 * Called when a user wants to set a max-rate limitation of specific
1087 * TX queue.
1088 * int (*ndo_get_iflink)(const struct net_device *dev);
1089 * Called to get the iflink value of this device.
1090 * void (*ndo_change_proto_down)(struct net_device *dev,
1091 * bool proto_down);
1092 * This function is used to pass protocol port error state information
1093 * to the switch driver. The switch driver can react to the proto_down
1094 * by doing a phys down on the associated switch port.
1095 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1096 * This function is used to get egress tunnel information for given skb.
1097 * This is useful for retrieving outer tunnel header parameters while
1098 * sampling packet.
1099 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1100 * This function is used to specify the headroom that the skb must
1101 * consider when allocation skb during packet reception. Setting
1102 * appropriate rx headroom value allows avoiding skb head copy on
1103 * forward. Setting a negative value resets the rx headroom to the
1104 * default value.
1105 *
1106 */
1107struct net_device_ops {
1108 int (*ndo_init)(struct net_device *dev);
1109 void (*ndo_uninit)(struct net_device *dev);
1110 int (*ndo_open)(struct net_device *dev);
1111 int (*ndo_stop)(struct net_device *dev);
1112 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1113 struct net_device *dev);
1114 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1115 struct net_device *dev,
1116 netdev_features_t features);
1117 u16 (*ndo_select_queue)(struct net_device *dev,
1118 struct sk_buff *skb,
1119 void *accel_priv,
1120 select_queue_fallback_t fallback);
1121 void (*ndo_change_rx_flags)(struct net_device *dev,
1122 int flags);
1123 void (*ndo_set_rx_mode)(struct net_device *dev);
1124 int (*ndo_set_mac_address)(struct net_device *dev,
1125 void *addr);
1126 int (*ndo_validate_addr)(struct net_device *dev);
1127 int (*ndo_do_ioctl)(struct net_device *dev,
1128 struct ifreq *ifr, int cmd);
1129 int (*ndo_set_config)(struct net_device *dev,
1130 struct ifmap *map);
1131 int (*ndo_change_mtu)(struct net_device *dev,
1132 int new_mtu);
1133 int (*ndo_neigh_setup)(struct net_device *dev,
1134 struct neigh_parms *);
1135 void (*ndo_tx_timeout) (struct net_device *dev);
1136
1137 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1138 struct rtnl_link_stats64 *storage);
1139 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1140
1141 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1142 __be16 proto, u16 vid);
1143 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1144 __be16 proto, u16 vid);
1145#ifdef CONFIG_NET_POLL_CONTROLLER
1146 void (*ndo_poll_controller)(struct net_device *dev);
1147 int (*ndo_netpoll_setup)(struct net_device *dev,
1148 struct netpoll_info *info);
1149 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1150#endif
1151#ifdef CONFIG_NET_RX_BUSY_POLL
1152 int (*ndo_busy_poll)(struct napi_struct *dev);
1153#endif
1154 int (*ndo_set_vf_mac)(struct net_device *dev,
1155 int queue, u8 *mac);
1156 int (*ndo_set_vf_vlan)(struct net_device *dev,
1157 int queue, u16 vlan, u8 qos);
1158 int (*ndo_set_vf_rate)(struct net_device *dev,
1159 int vf, int min_tx_rate,
1160 int max_tx_rate);
1161 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1162 int vf, bool setting);
1163 int (*ndo_set_vf_trust)(struct net_device *dev,
1164 int vf, bool setting);
1165 int (*ndo_get_vf_config)(struct net_device *dev,
1166 int vf,
1167 struct ifla_vf_info *ivf);
1168 int (*ndo_set_vf_link_state)(struct net_device *dev,
1169 int vf, int link_state);
1170 int (*ndo_get_vf_stats)(struct net_device *dev,
1171 int vf,
1172 struct ifla_vf_stats
1173 *vf_stats);
1174 int (*ndo_set_vf_port)(struct net_device *dev,
1175 int vf,
1176 struct nlattr *port[]);
1177 int (*ndo_get_vf_port)(struct net_device *dev,
1178 int vf, struct sk_buff *skb);
1179 int (*ndo_set_vf_guid)(struct net_device *dev,
1180 int vf, u64 guid,
1181 int guid_type);
1182 int (*ndo_set_vf_rss_query_en)(
1183 struct net_device *dev,
1184 int vf, bool setting);
1185 int (*ndo_setup_tc)(struct net_device *dev,
1186 u32 handle,
1187 __be16 protocol,
1188 struct tc_to_netdev *tc);
1189#if IS_ENABLED(CONFIG_FCOE)
1190 int (*ndo_fcoe_enable)(struct net_device *dev);
1191 int (*ndo_fcoe_disable)(struct net_device *dev);
1192 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1193 u16 xid,
1194 struct scatterlist *sgl,
1195 unsigned int sgc);
1196 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1197 u16 xid);
1198 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1199 u16 xid,
1200 struct scatterlist *sgl,
1201 unsigned int sgc);
1202 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1203 struct netdev_fcoe_hbainfo *hbainfo);
1204#endif
1205
1206#if IS_ENABLED(CONFIG_LIBFCOE)
1207#define NETDEV_FCOE_WWNN 0
1208#define NETDEV_FCOE_WWPN 1
1209 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1210 u64 *wwn, int type);
1211#endif
1212
1213#ifdef CONFIG_RFS_ACCEL
1214 int (*ndo_rx_flow_steer)(struct net_device *dev,
1215 const struct sk_buff *skb,
1216 u16 rxq_index,
1217 u32 flow_id);
1218#endif
1219 int (*ndo_add_slave)(struct net_device *dev,
1220 struct net_device *slave_dev);
1221 int (*ndo_del_slave)(struct net_device *dev,
1222 struct net_device *slave_dev);
1223 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1224 netdev_features_t features);
1225 int (*ndo_set_features)(struct net_device *dev,
1226 netdev_features_t features);
1227 int (*ndo_neigh_construct)(struct neighbour *n);
1228 void (*ndo_neigh_destroy)(struct neighbour *n);
1229
1230 int (*ndo_fdb_add)(struct ndmsg *ndm,
1231 struct nlattr *tb[],
1232 struct net_device *dev,
1233 const unsigned char *addr,
1234 u16 vid,
1235 u16 flags);
1236 int (*ndo_fdb_del)(struct ndmsg *ndm,
1237 struct nlattr *tb[],
1238 struct net_device *dev,
1239 const unsigned char *addr,
1240 u16 vid);
1241 int (*ndo_fdb_dump)(struct sk_buff *skb,
1242 struct netlink_callback *cb,
1243 struct net_device *dev,
1244 struct net_device *filter_dev,
1245 int idx);
1246
1247 int (*ndo_bridge_setlink)(struct net_device *dev,
1248 struct nlmsghdr *nlh,
1249 u16 flags);
1250 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1251 u32 pid, u32 seq,
1252 struct net_device *dev,
1253 u32 filter_mask,
1254 int nlflags);
1255 int (*ndo_bridge_dellink)(struct net_device *dev,
1256 struct nlmsghdr *nlh,
1257 u16 flags);
1258 int (*ndo_change_carrier)(struct net_device *dev,
1259 bool new_carrier);
1260 int (*ndo_get_phys_port_id)(struct net_device *dev,
1261 struct netdev_phys_item_id *ppid);
1262 int (*ndo_get_phys_port_name)(struct net_device *dev,
1263 char *name, size_t len);
1264 void (*ndo_add_vxlan_port)(struct net_device *dev,
1265 sa_family_t sa_family,
1266 __be16 port);
1267 void (*ndo_del_vxlan_port)(struct net_device *dev,
1268 sa_family_t sa_family,
1269 __be16 port);
1270 void (*ndo_add_geneve_port)(struct net_device *dev,
1271 sa_family_t sa_family,
1272 __be16 port);
1273 void (*ndo_del_geneve_port)(struct net_device *dev,
1274 sa_family_t sa_family,
1275 __be16 port);
1276 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1277 struct net_device *dev);
1278 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1279 void *priv);
1280
1281 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1282 struct net_device *dev,
1283 void *priv);
1284 int (*ndo_get_lock_subclass)(struct net_device *dev);
1285 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1286 int queue_index,
1287 u32 maxrate);
1288 int (*ndo_get_iflink)(const struct net_device *dev);
1289 int (*ndo_change_proto_down)(struct net_device *dev,
1290 bool proto_down);
1291 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1292 struct sk_buff *skb);
1293 void (*ndo_set_rx_headroom)(struct net_device *dev,
1294 int needed_headroom);
1295};
1296
1297/**
1298 * enum net_device_priv_flags - &struct net_device priv_flags
1299 *
1300 * These are the &struct net_device, they are only set internally
1301 * by drivers and used in the kernel. These flags are invisible to
1302 * userspace; this means that the order of these flags can change
1303 * during any kernel release.
1304 *
1305 * You should have a pretty good reason to be extending these flags.
1306 *
1307 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1308 * @IFF_EBRIDGE: Ethernet bridging device
1309 * @IFF_BONDING: bonding master or slave
1310 * @IFF_ISATAP: ISATAP interface (RFC4214)
1311 * @IFF_WAN_HDLC: WAN HDLC device
1312 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1313 * release skb->dst
1314 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1315 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1316 * @IFF_MACVLAN_PORT: device used as macvlan port
1317 * @IFF_BRIDGE_PORT: device used as bridge port
1318 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1319 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1320 * @IFF_UNICAST_FLT: Supports unicast filtering
1321 * @IFF_TEAM_PORT: device used as team port
1322 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1323 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1324 * change when it's running
1325 * @IFF_MACVLAN: Macvlan device
1326 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1327 * underlying stacked devices
1328 * @IFF_IPVLAN_MASTER: IPvlan master device
1329 * @IFF_IPVLAN_SLAVE: IPvlan slave device
1330 * @IFF_L3MDEV_MASTER: device is an L3 master device
1331 * @IFF_NO_QUEUE: device can run without qdisc attached
1332 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1333 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1334 * @IFF_TEAM: device is a team device
1335 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1336 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1337 * entity (i.e. the master device for bridged veth)
1338 * @IFF_MACSEC: device is a MACsec device
1339 */
1340enum netdev_priv_flags {
1341 IFF_802_1Q_VLAN = 1<<0,
1342 IFF_EBRIDGE = 1<<1,
1343 IFF_BONDING = 1<<2,
1344 IFF_ISATAP = 1<<3,
1345 IFF_WAN_HDLC = 1<<4,
1346 IFF_XMIT_DST_RELEASE = 1<<5,
1347 IFF_DONT_BRIDGE = 1<<6,
1348 IFF_DISABLE_NETPOLL = 1<<7,
1349 IFF_MACVLAN_PORT = 1<<8,
1350 IFF_BRIDGE_PORT = 1<<9,
1351 IFF_OVS_DATAPATH = 1<<10,
1352 IFF_TX_SKB_SHARING = 1<<11,
1353 IFF_UNICAST_FLT = 1<<12,
1354 IFF_TEAM_PORT = 1<<13,
1355 IFF_SUPP_NOFCS = 1<<14,
1356 IFF_LIVE_ADDR_CHANGE = 1<<15,
1357 IFF_MACVLAN = 1<<16,
1358 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1359 IFF_IPVLAN_MASTER = 1<<18,
1360 IFF_IPVLAN_SLAVE = 1<<19,
1361 IFF_L3MDEV_MASTER = 1<<20,
1362 IFF_NO_QUEUE = 1<<21,
1363 IFF_OPENVSWITCH = 1<<22,
1364 IFF_L3MDEV_SLAVE = 1<<23,
1365 IFF_TEAM = 1<<24,
1366 IFF_RXFH_CONFIGURED = 1<<25,
1367 IFF_PHONY_HEADROOM = 1<<26,
1368 IFF_MACSEC = 1<<27,
1369};
1370
1371#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1372#define IFF_EBRIDGE IFF_EBRIDGE
1373#define IFF_BONDING IFF_BONDING
1374#define IFF_ISATAP IFF_ISATAP
1375#define IFF_WAN_HDLC IFF_WAN_HDLC
1376#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1377#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1378#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1379#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1380#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1381#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1382#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1383#define IFF_UNICAST_FLT IFF_UNICAST_FLT
1384#define IFF_TEAM_PORT IFF_TEAM_PORT
1385#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1386#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1387#define IFF_MACVLAN IFF_MACVLAN
1388#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1389#define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1390#define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1391#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1392#define IFF_NO_QUEUE IFF_NO_QUEUE
1393#define IFF_OPENVSWITCH IFF_OPENVSWITCH
1394#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1395#define IFF_TEAM IFF_TEAM
1396#define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1397#define IFF_MACSEC IFF_MACSEC
1398
1399/**
1400 * struct net_device - The DEVICE structure.
1401 * Actually, this whole structure is a big mistake. It mixes I/O
1402 * data with strictly "high-level" data, and it has to know about
1403 * almost every data structure used in the INET module.
1404 *
1405 * @name: This is the first field of the "visible" part of this structure
1406 * (i.e. as seen by users in the "Space.c" file). It is the name
1407 * of the interface.
1408 *
1409 * @name_hlist: Device name hash chain, please keep it close to name[]
1410 * @ifalias: SNMP alias
1411 * @mem_end: Shared memory end
1412 * @mem_start: Shared memory start
1413 * @base_addr: Device I/O address
1414 * @irq: Device IRQ number
1415 *
1416 * @carrier_changes: Stats to monitor carrier on<->off transitions
1417 *
1418 * @state: Generic network queuing layer state, see netdev_state_t
1419 * @dev_list: The global list of network devices
1420 * @napi_list: List entry used for polling NAPI devices
1421 * @unreg_list: List entry when we are unregistering the
1422 * device; see the function unregister_netdev
1423 * @close_list: List entry used when we are closing the device
1424 * @ptype_all: Device-specific packet handlers for all protocols
1425 * @ptype_specific: Device-specific, protocol-specific packet handlers
1426 *
1427 * @adj_list: Directly linked devices, like slaves for bonding
1428 * @all_adj_list: All linked devices, *including* neighbours
1429 * @features: Currently active device features
1430 * @hw_features: User-changeable features
1431 *
1432 * @wanted_features: User-requested features
1433 * @vlan_features: Mask of features inheritable by VLAN devices
1434 *
1435 * @hw_enc_features: Mask of features inherited by encapsulating devices
1436 * This field indicates what encapsulation
1437 * offloads the hardware is capable of doing,
1438 * and drivers will need to set them appropriately.
1439 *
1440 * @mpls_features: Mask of features inheritable by MPLS
1441 *
1442 * @ifindex: interface index
1443 * @group: The group the device belongs to
1444 *
1445 * @stats: Statistics struct, which was left as a legacy, use
1446 * rtnl_link_stats64 instead
1447 *
1448 * @rx_dropped: Dropped packets by core network,
1449 * do not use this in drivers
1450 * @tx_dropped: Dropped packets by core network,
1451 * do not use this in drivers
1452 * @rx_nohandler: nohandler dropped packets by core network on
1453 * inactive devices, do not use this in drivers
1454 *
1455 * @wireless_handlers: List of functions to handle Wireless Extensions,
1456 * instead of ioctl,
1457 * see <net/iw_handler.h> for details.
1458 * @wireless_data: Instance data managed by the core of wireless extensions
1459 *
1460 * @netdev_ops: Includes several pointers to callbacks,
1461 * if one wants to override the ndo_*() functions
1462 * @ethtool_ops: Management operations
1463 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1464 * of Layer 2 headers.
1465 *
1466 * @flags: Interface flags (a la BSD)
1467 * @priv_flags: Like 'flags' but invisible to userspace,
1468 * see if.h for the definitions
1469 * @gflags: Global flags ( kept as legacy )
1470 * @padded: How much padding added by alloc_netdev()
1471 * @operstate: RFC2863 operstate
1472 * @link_mode: Mapping policy to operstate
1473 * @if_port: Selectable AUI, TP, ...
1474 * @dma: DMA channel
1475 * @mtu: Interface MTU value
1476 * @type: Interface hardware type
1477 * @hard_header_len: Maximum hardware header length.
1478 *
1479 * @needed_headroom: Extra headroom the hardware may need, but not in all
1480 * cases can this be guaranteed
1481 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1482 * cases can this be guaranteed. Some cases also use
1483 * LL_MAX_HEADER instead to allocate the skb
1484 *
1485 * interface address info:
1486 *
1487 * @perm_addr: Permanent hw address
1488 * @addr_assign_type: Hw address assignment type
1489 * @addr_len: Hardware address length
1490 * @neigh_priv_len; Used in neigh_alloc(),
1491 * initialized only in atm/clip.c
1492 * @dev_id: Used to differentiate devices that share
1493 * the same link layer address
1494 * @dev_port: Used to differentiate devices that share
1495 * the same function
1496 * @addr_list_lock: XXX: need comments on this one
1497 * @uc_promisc: Counter that indicates promiscuous mode
1498 * has been enabled due to the need to listen to
1499 * additional unicast addresses in a device that
1500 * does not implement ndo_set_rx_mode()
1501 * @uc: unicast mac addresses
1502 * @mc: multicast mac addresses
1503 * @dev_addrs: list of device hw addresses
1504 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1505 * @promiscuity: Number of times the NIC is told to work in
1506 * promiscuous mode; if it becomes 0 the NIC will
1507 * exit promiscuous mode
1508 * @allmulti: Counter, enables or disables allmulticast mode
1509 *
1510 * @vlan_info: VLAN info
1511 * @dsa_ptr: dsa specific data
1512 * @tipc_ptr: TIPC specific data
1513 * @atalk_ptr: AppleTalk link
1514 * @ip_ptr: IPv4 specific data
1515 * @dn_ptr: DECnet specific data
1516 * @ip6_ptr: IPv6 specific data
1517 * @ax25_ptr: AX.25 specific data
1518 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1519 *
1520 * @last_rx: Time of last Rx
1521 * @dev_addr: Hw address (before bcast,
1522 * because most packets are unicast)
1523 *
1524 * @_rx: Array of RX queues
1525 * @num_rx_queues: Number of RX queues
1526 * allocated at register_netdev() time
1527 * @real_num_rx_queues: Number of RX queues currently active in device
1528 *
1529 * @rx_handler: handler for received packets
1530 * @rx_handler_data: XXX: need comments on this one
1531 * @ingress_queue: XXX: need comments on this one
1532 * @broadcast: hw bcast address
1533 *
1534 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1535 * indexed by RX queue number. Assigned by driver.
1536 * This must only be set if the ndo_rx_flow_steer
1537 * operation is defined
1538 * @index_hlist: Device index hash chain
1539 *
1540 * @_tx: Array of TX queues
1541 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1542 * @real_num_tx_queues: Number of TX queues currently active in device
1543 * @qdisc: Root qdisc from userspace point of view
1544 * @tx_queue_len: Max frames per queue allowed
1545 * @tx_global_lock: XXX: need comments on this one
1546 *
1547 * @xps_maps: XXX: need comments on this one
1548 *
1549 * @offload_fwd_mark: Offload device fwding mark
1550 *
1551 * @trans_start: Time (in jiffies) of last Tx
1552 * @watchdog_timeo: Represents the timeout that is used by
1553 * the watchdog (see dev_watchdog())
1554 * @watchdog_timer: List of timers
1555 *
1556 * @pcpu_refcnt: Number of references to this device
1557 * @todo_list: Delayed register/unregister
1558 * @link_watch_list: XXX: need comments on this one
1559 *
1560 * @reg_state: Register/unregister state machine
1561 * @dismantle: Device is going to be freed
1562 * @rtnl_link_state: This enum represents the phases of creating
1563 * a new link
1564 *
1565 * @destructor: Called from unregister,
1566 * can be used to call free_netdev
1567 * @npinfo: XXX: need comments on this one
1568 * @nd_net: Network namespace this network device is inside
1569 *
1570 * @ml_priv: Mid-layer private
1571 * @lstats: Loopback statistics
1572 * @tstats: Tunnel statistics
1573 * @dstats: Dummy statistics
1574 * @vstats: Virtual ethernet statistics
1575 *
1576 * @garp_port: GARP
1577 * @mrp_port: MRP
1578 *
1579 * @dev: Class/net/name entry
1580 * @sysfs_groups: Space for optional device, statistics and wireless
1581 * sysfs groups
1582 *
1583 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1584 * @rtnl_link_ops: Rtnl_link_ops
1585 *
1586 * @gso_max_size: Maximum size of generic segmentation offload
1587 * @gso_max_segs: Maximum number of segments that can be passed to the
1588 * NIC for GSO
1589 * @gso_min_segs: Minimum number of segments that can be passed to the
1590 * NIC for GSO
1591 *
1592 * @dcbnl_ops: Data Center Bridging netlink ops
1593 * @num_tc: Number of traffic classes in the net device
1594 * @tc_to_txq: XXX: need comments on this one
1595 * @prio_tc_map XXX: need comments on this one
1596 *
1597 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1598 *
1599 * @priomap: XXX: need comments on this one
1600 * @phydev: Physical device may attach itself
1601 * for hardware timestamping
1602 *
1603 * @qdisc_tx_busylock: XXX: need comments on this one
1604 *
1605 * @proto_down: protocol port state information can be sent to the
1606 * switch driver and used to set the phys state of the
1607 * switch port.
1608 *
1609 * FIXME: cleanup struct net_device such that network protocol info
1610 * moves out.
1611 */
1612
1613struct net_device {
1614 char name[IFNAMSIZ];
1615 struct hlist_node name_hlist;
1616 char *ifalias;
1617 /*
1618 * I/O specific fields
1619 * FIXME: Merge these and struct ifmap into one
1620 */
1621 unsigned long mem_end;
1622 unsigned long mem_start;
1623 unsigned long base_addr;
1624 int irq;
1625
1626 atomic_t carrier_changes;
1627
1628 /*
1629 * Some hardware also needs these fields (state,dev_list,
1630 * napi_list,unreg_list,close_list) but they are not
1631 * part of the usual set specified in Space.c.
1632 */
1633
1634 unsigned long state;
1635
1636 struct list_head dev_list;
1637 struct list_head napi_list;
1638 struct list_head unreg_list;
1639 struct list_head close_list;
1640 struct list_head ptype_all;
1641 struct list_head ptype_specific;
1642
1643 struct {
1644 struct list_head upper;
1645 struct list_head lower;
1646 } adj_list;
1647
1648 struct {
1649 struct list_head upper;
1650 struct list_head lower;
1651 } all_adj_list;
1652
1653 netdev_features_t features;
1654 netdev_features_t hw_features;
1655 netdev_features_t wanted_features;
1656 netdev_features_t vlan_features;
1657 netdev_features_t hw_enc_features;
1658 netdev_features_t mpls_features;
1659
1660 int ifindex;
1661 int group;
1662
1663 struct net_device_stats stats;
1664
1665 atomic_long_t rx_dropped;
1666 atomic_long_t tx_dropped;
1667 atomic_long_t rx_nohandler;
1668
1669#ifdef CONFIG_WIRELESS_EXT
1670 const struct iw_handler_def *wireless_handlers;
1671 struct iw_public_data *wireless_data;
1672#endif
1673 const struct net_device_ops *netdev_ops;
1674 const struct ethtool_ops *ethtool_ops;
1675#ifdef CONFIG_NET_SWITCHDEV
1676 const struct switchdev_ops *switchdev_ops;
1677#endif
1678#ifdef CONFIG_NET_L3_MASTER_DEV
1679 const struct l3mdev_ops *l3mdev_ops;
1680#endif
1681
1682 const struct header_ops *header_ops;
1683
1684 unsigned int flags;
1685 unsigned int priv_flags;
1686
1687 unsigned short gflags;
1688 unsigned short padded;
1689
1690 unsigned char operstate;
1691 unsigned char link_mode;
1692
1693 unsigned char if_port;
1694 unsigned char dma;
1695
1696 unsigned int mtu;
1697 unsigned short type;
1698 unsigned short hard_header_len;
1699
1700 unsigned short needed_headroom;
1701 unsigned short needed_tailroom;
1702
1703 /* Interface address info. */
1704 unsigned char perm_addr[MAX_ADDR_LEN];
1705 unsigned char addr_assign_type;
1706 unsigned char addr_len;
1707 unsigned short neigh_priv_len;
1708 unsigned short dev_id;
1709 unsigned short dev_port;
1710 spinlock_t addr_list_lock;
1711 unsigned char name_assign_type;
1712 bool uc_promisc;
1713 struct netdev_hw_addr_list uc;
1714 struct netdev_hw_addr_list mc;
1715 struct netdev_hw_addr_list dev_addrs;
1716
1717#ifdef CONFIG_SYSFS
1718 struct kset *queues_kset;
1719#endif
1720 unsigned int promiscuity;
1721 unsigned int allmulti;
1722
1723
1724 /* Protocol-specific pointers */
1725
1726#if IS_ENABLED(CONFIG_VLAN_8021Q)
1727 struct vlan_info __rcu *vlan_info;
1728#endif
1729#if IS_ENABLED(CONFIG_NET_DSA)
1730 struct dsa_switch_tree *dsa_ptr;
1731#endif
1732#if IS_ENABLED(CONFIG_TIPC)
1733 struct tipc_bearer __rcu *tipc_ptr;
1734#endif
1735 void *atalk_ptr;
1736 struct in_device __rcu *ip_ptr;
1737 struct dn_dev __rcu *dn_ptr;
1738 struct inet6_dev __rcu *ip6_ptr;
1739 void *ax25_ptr;
1740 struct wireless_dev *ieee80211_ptr;
1741 struct wpan_dev *ieee802154_ptr;
1742#if IS_ENABLED(CONFIG_MPLS_ROUTING)
1743 struct mpls_dev __rcu *mpls_ptr;
1744#endif
1745
1746/*
1747 * Cache lines mostly used on receive path (including eth_type_trans())
1748 */
1749 unsigned long last_rx;
1750
1751 /* Interface address info used in eth_type_trans() */
1752 unsigned char *dev_addr;
1753
1754#ifdef CONFIG_SYSFS
1755 struct netdev_rx_queue *_rx;
1756
1757 unsigned int num_rx_queues;
1758 unsigned int real_num_rx_queues;
1759#endif
1760
1761 unsigned long gro_flush_timeout;
1762 rx_handler_func_t __rcu *rx_handler;
1763 void __rcu *rx_handler_data;
1764
1765#ifdef CONFIG_NET_CLS_ACT
1766 struct tcf_proto __rcu *ingress_cl_list;
1767#endif
1768 struct netdev_queue __rcu *ingress_queue;
1769#ifdef CONFIG_NETFILTER_INGRESS
1770 struct list_head nf_hooks_ingress;
1771#endif
1772
1773 unsigned char broadcast[MAX_ADDR_LEN];
1774#ifdef CONFIG_RFS_ACCEL
1775 struct cpu_rmap *rx_cpu_rmap;
1776#endif
1777 struct hlist_node index_hlist;
1778
1779/*
1780 * Cache lines mostly used on transmit path
1781 */
1782 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1783 unsigned int num_tx_queues;
1784 unsigned int real_num_tx_queues;
1785 struct Qdisc *qdisc;
1786 unsigned long tx_queue_len;
1787 spinlock_t tx_global_lock;
1788 int watchdog_timeo;
1789
1790#ifdef CONFIG_XPS
1791 struct xps_dev_maps __rcu *xps_maps;
1792#endif
1793#ifdef CONFIG_NET_CLS_ACT
1794 struct tcf_proto __rcu *egress_cl_list;
1795#endif
1796#ifdef CONFIG_NET_SWITCHDEV
1797 u32 offload_fwd_mark;
1798#endif
1799
1800 /* These may be needed for future network-power-down code. */
1801
1802 /*
1803 * trans_start here is expensive for high speed devices on SMP,
1804 * please use netdev_queue->trans_start instead.
1805 */
1806 unsigned long trans_start;
1807
1808 struct timer_list watchdog_timer;
1809
1810 int __percpu *pcpu_refcnt;
1811 struct list_head todo_list;
1812
1813 struct list_head link_watch_list;
1814
1815 enum { NETREG_UNINITIALIZED=0,
1816 NETREG_REGISTERED, /* completed register_netdevice */
1817 NETREG_UNREGISTERING, /* called unregister_netdevice */
1818 NETREG_UNREGISTERED, /* completed unregister todo */
1819 NETREG_RELEASED, /* called free_netdev */
1820 NETREG_DUMMY, /* dummy device for NAPI poll */
1821 } reg_state:8;
1822
1823 bool dismantle;
1824
1825 enum {
1826 RTNL_LINK_INITIALIZED,
1827 RTNL_LINK_INITIALIZING,
1828 } rtnl_link_state:16;
1829
1830 void (*destructor)(struct net_device *dev);
1831
1832#ifdef CONFIG_NETPOLL
1833 struct netpoll_info __rcu *npinfo;
1834#endif
1835
1836 possible_net_t nd_net;
1837
1838 /* mid-layer private */
1839 union {
1840 void *ml_priv;
1841 struct pcpu_lstats __percpu *lstats;
1842 struct pcpu_sw_netstats __percpu *tstats;
1843 struct pcpu_dstats __percpu *dstats;
1844 struct pcpu_vstats __percpu *vstats;
1845 };
1846
1847 struct garp_port __rcu *garp_port;
1848 struct mrp_port __rcu *mrp_port;
1849
1850 struct device dev;
1851 const struct attribute_group *sysfs_groups[4];
1852 const struct attribute_group *sysfs_rx_queue_group;
1853
1854 const struct rtnl_link_ops *rtnl_link_ops;
1855
1856 /* for setting kernel sock attribute on TCP connection setup */
1857#define GSO_MAX_SIZE 65536
1858 unsigned int gso_max_size;
1859#define GSO_MAX_SEGS 65535
1860 u16 gso_max_segs;
1861 u16 gso_min_segs;
1862#ifdef CONFIG_DCB
1863 const struct dcbnl_rtnl_ops *dcbnl_ops;
1864#endif
1865 u8 num_tc;
1866 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1867 u8 prio_tc_map[TC_BITMASK + 1];
1868
1869#if IS_ENABLED(CONFIG_FCOE)
1870 unsigned int fcoe_ddp_xid;
1871#endif
1872#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1873 struct netprio_map __rcu *priomap;
1874#endif
1875 struct phy_device *phydev;
1876 struct lock_class_key *qdisc_tx_busylock;
1877 bool proto_down;
1878};
1879#define to_net_dev(d) container_of(d, struct net_device, dev)
1880
1881#define NETDEV_ALIGN 32
1882
1883static inline
1884int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1885{
1886 return dev->prio_tc_map[prio & TC_BITMASK];
1887}
1888
1889static inline
1890int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1891{
1892 if (tc >= dev->num_tc)
1893 return -EINVAL;
1894
1895 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1896 return 0;
1897}
1898
1899static inline
1900void netdev_reset_tc(struct net_device *dev)
1901{
1902 dev->num_tc = 0;
1903 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1904 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1905}
1906
1907static inline
1908int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1909{
1910 if (tc >= dev->num_tc)
1911 return -EINVAL;
1912
1913 dev->tc_to_txq[tc].count = count;
1914 dev->tc_to_txq[tc].offset = offset;
1915 return 0;
1916}
1917
1918static inline
1919int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1920{
1921 if (num_tc > TC_MAX_QUEUE)
1922 return -EINVAL;
1923
1924 dev->num_tc = num_tc;
1925 return 0;
1926}
1927
1928static inline
1929int netdev_get_num_tc(struct net_device *dev)
1930{
1931 return dev->num_tc;
1932}
1933
1934static inline
1935struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1936 unsigned int index)
1937{
1938 return &dev->_tx[index];
1939}
1940
1941static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1942 const struct sk_buff *skb)
1943{
1944 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1945}
1946
1947static inline void netdev_for_each_tx_queue(struct net_device *dev,
1948 void (*f)(struct net_device *,
1949 struct netdev_queue *,
1950 void *),
1951 void *arg)
1952{
1953 unsigned int i;
1954
1955 for (i = 0; i < dev->num_tx_queues; i++)
1956 f(dev, &dev->_tx[i], arg);
1957}
1958
1959struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1960 struct sk_buff *skb,
1961 void *accel_priv);
1962
1963/* returns the headroom that the master device needs to take in account
1964 * when forwarding to this dev
1965 */
1966static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1967{
1968 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1969}
1970
1971static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
1972{
1973 if (dev->netdev_ops->ndo_set_rx_headroom)
1974 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
1975}
1976
1977/* set the device rx headroom to the dev's default */
1978static inline void netdev_reset_rx_headroom(struct net_device *dev)
1979{
1980 netdev_set_rx_headroom(dev, -1);
1981}
1982
1983/*
1984 * Net namespace inlines
1985 */
1986static inline
1987struct net *dev_net(const struct net_device *dev)
1988{
1989 return read_pnet(&dev->nd_net);
1990}
1991
1992static inline
1993void dev_net_set(struct net_device *dev, struct net *net)
1994{
1995 write_pnet(&dev->nd_net, net);
1996}
1997
1998static inline bool netdev_uses_dsa(struct net_device *dev)
1999{
2000#if IS_ENABLED(CONFIG_NET_DSA)
2001 if (dev->dsa_ptr != NULL)
2002 return dsa_uses_tagged_protocol(dev->dsa_ptr);
2003#endif
2004 return false;
2005}
2006
2007/**
2008 * netdev_priv - access network device private data
2009 * @dev: network device
2010 *
2011 * Get network device private data
2012 */
2013static inline void *netdev_priv(const struct net_device *dev)
2014{
2015 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2016}
2017
2018/* Set the sysfs physical device reference for the network logical device
2019 * if set prior to registration will cause a symlink during initialization.
2020 */
2021#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2022
2023/* Set the sysfs device type for the network logical device to allow
2024 * fine-grained identification of different network device types. For
2025 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2026 */
2027#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2028
2029/* Default NAPI poll() weight
2030 * Device drivers are strongly advised to not use bigger value
2031 */
2032#define NAPI_POLL_WEIGHT 64
2033
2034/**
2035 * netif_napi_add - initialize a NAPI context
2036 * @dev: network device
2037 * @napi: NAPI context
2038 * @poll: polling function
2039 * @weight: default weight
2040 *
2041 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2042 * *any* of the other NAPI-related functions.
2043 */
2044void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2045 int (*poll)(struct napi_struct *, int), int weight);
2046
2047/**
2048 * netif_tx_napi_add - initialize a NAPI context
2049 * @dev: network device
2050 * @napi: NAPI context
2051 * @poll: polling function
2052 * @weight: default weight
2053 *
2054 * This variant of netif_napi_add() should be used from drivers using NAPI
2055 * to exclusively poll a TX queue.
2056 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2057 */
2058static inline void netif_tx_napi_add(struct net_device *dev,
2059 struct napi_struct *napi,
2060 int (*poll)(struct napi_struct *, int),
2061 int weight)
2062{
2063 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2064 netif_napi_add(dev, napi, poll, weight);
2065}
2066
2067/**
2068 * netif_napi_del - remove a NAPI context
2069 * @napi: NAPI context
2070 *
2071 * netif_napi_del() removes a NAPI context from the network device NAPI list
2072 */
2073void netif_napi_del(struct napi_struct *napi);
2074
2075struct napi_gro_cb {
2076 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2077 void *frag0;
2078
2079 /* Length of frag0. */
2080 unsigned int frag0_len;
2081
2082 /* This indicates where we are processing relative to skb->data. */
2083 int data_offset;
2084
2085 /* This is non-zero if the packet cannot be merged with the new skb. */
2086 u16 flush;
2087
2088 /* Save the IP ID here and check when we get to the transport layer */
2089 u16 flush_id;
2090
2091 /* Number of segments aggregated. */
2092 u16 count;
2093
2094 /* Start offset for remote checksum offload */
2095 u16 gro_remcsum_start;
2096
2097 /* jiffies when first packet was created/queued */
2098 unsigned long age;
2099
2100 /* Used in ipv6_gro_receive() and foo-over-udp */
2101 u16 proto;
2102
2103 /* This is non-zero if the packet may be of the same flow. */
2104 u8 same_flow:1;
2105
2106 /* Used in tunnel GRO receive */
2107 u8 encap_mark:1;
2108
2109 /* GRO checksum is valid */
2110 u8 csum_valid:1;
2111
2112 /* Number of checksums via CHECKSUM_UNNECESSARY */
2113 u8 csum_cnt:3;
2114
2115 /* Free the skb? */
2116 u8 free:2;
2117#define NAPI_GRO_FREE 1
2118#define NAPI_GRO_FREE_STOLEN_HEAD 2
2119
2120 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2121 u8 is_ipv6:1;
2122
2123 /* Used in GRE, set in fou/gue_gro_receive */
2124 u8 is_fou:1;
2125
2126 /* 6 bit hole */
2127
2128 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2129 __wsum csum;
2130
2131 /* used in skb_gro_receive() slow path */
2132 struct sk_buff *last;
2133};
2134
2135#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2136
2137struct packet_type {
2138 __be16 type; /* This is really htons(ether_type). */
2139 struct net_device *dev; /* NULL is wildcarded here */
2140 int (*func) (struct sk_buff *,
2141 struct net_device *,
2142 struct packet_type *,
2143 struct net_device *);
2144 bool (*id_match)(struct packet_type *ptype,
2145 struct sock *sk);
2146 void *af_packet_priv;
2147 struct list_head list;
2148};
2149
2150struct offload_callbacks {
2151 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2152 netdev_features_t features);
2153 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2154 struct sk_buff *skb);
2155 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2156};
2157
2158struct packet_offload {
2159 __be16 type; /* This is really htons(ether_type). */
2160 u16 priority;
2161 struct offload_callbacks callbacks;
2162 struct list_head list;
2163};
2164
2165struct udp_offload;
2166
2167/* 'skb->encapsulation' is set before gro_complete() is called. gro_complete()
2168 * must set 'skb->inner_mac_header' to the beginning of tunnel payload.
2169 */
2170struct udp_offload_callbacks {
2171 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2172 struct sk_buff *skb,
2173 struct udp_offload *uoff);
2174 int (*gro_complete)(struct sk_buff *skb,
2175 int nhoff,
2176 struct udp_offload *uoff);
2177};
2178
2179struct udp_offload {
2180 __be16 port;
2181 u8 ipproto;
2182 struct udp_offload_callbacks callbacks;
2183};
2184
2185/* often modified stats are per-CPU, other are shared (netdev->stats) */
2186struct pcpu_sw_netstats {
2187 u64 rx_packets;
2188 u64 rx_bytes;
2189 u64 tx_packets;
2190 u64 tx_bytes;
2191 struct u64_stats_sync syncp;
2192};
2193
2194#define __netdev_alloc_pcpu_stats(type, gfp) \
2195({ \
2196 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2197 if (pcpu_stats) { \
2198 int __cpu; \
2199 for_each_possible_cpu(__cpu) { \
2200 typeof(type) *stat; \
2201 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2202 u64_stats_init(&stat->syncp); \
2203 } \
2204 } \
2205 pcpu_stats; \
2206})
2207
2208#define netdev_alloc_pcpu_stats(type) \
2209 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2210
2211enum netdev_lag_tx_type {
2212 NETDEV_LAG_TX_TYPE_UNKNOWN,
2213 NETDEV_LAG_TX_TYPE_RANDOM,
2214 NETDEV_LAG_TX_TYPE_BROADCAST,
2215 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2216 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2217 NETDEV_LAG_TX_TYPE_HASH,
2218};
2219
2220struct netdev_lag_upper_info {
2221 enum netdev_lag_tx_type tx_type;
2222};
2223
2224struct netdev_lag_lower_state_info {
2225 u8 link_up : 1,
2226 tx_enabled : 1;
2227};
2228
2229#include <linux/notifier.h>
2230
2231/* netdevice notifier chain. Please remember to update the rtnetlink
2232 * notification exclusion list in rtnetlink_event() when adding new
2233 * types.
2234 */
2235#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2236#define NETDEV_DOWN 0x0002
2237#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2238 detected a hardware crash and restarted
2239 - we can use this eg to kick tcp sessions
2240 once done */
2241#define NETDEV_CHANGE 0x0004 /* Notify device state change */
2242#define NETDEV_REGISTER 0x0005
2243#define NETDEV_UNREGISTER 0x0006
2244#define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2245#define NETDEV_CHANGEADDR 0x0008
2246#define NETDEV_GOING_DOWN 0x0009
2247#define NETDEV_CHANGENAME 0x000A
2248#define NETDEV_FEAT_CHANGE 0x000B
2249#define NETDEV_BONDING_FAILOVER 0x000C
2250#define NETDEV_PRE_UP 0x000D
2251#define NETDEV_PRE_TYPE_CHANGE 0x000E
2252#define NETDEV_POST_TYPE_CHANGE 0x000F
2253#define NETDEV_POST_INIT 0x0010
2254#define NETDEV_UNREGISTER_FINAL 0x0011
2255#define NETDEV_RELEASE 0x0012
2256#define NETDEV_NOTIFY_PEERS 0x0013
2257#define NETDEV_JOIN 0x0014
2258#define NETDEV_CHANGEUPPER 0x0015
2259#define NETDEV_RESEND_IGMP 0x0016
2260#define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2261#define NETDEV_CHANGEINFODATA 0x0018
2262#define NETDEV_BONDING_INFO 0x0019
2263#define NETDEV_PRECHANGEUPPER 0x001A
2264#define NETDEV_CHANGELOWERSTATE 0x001B
2265
2266int register_netdevice_notifier(struct notifier_block *nb);
2267int unregister_netdevice_notifier(struct notifier_block *nb);
2268
2269struct netdev_notifier_info {
2270 struct net_device *dev;
2271};
2272
2273struct netdev_notifier_change_info {
2274 struct netdev_notifier_info info; /* must be first */
2275 unsigned int flags_changed;
2276};
2277
2278struct netdev_notifier_changeupper_info {
2279 struct netdev_notifier_info info; /* must be first */
2280 struct net_device *upper_dev; /* new upper dev */
2281 bool master; /* is upper dev master */
2282 bool linking; /* is the notification for link or unlink */
2283 void *upper_info; /* upper dev info */
2284};
2285
2286struct netdev_notifier_changelowerstate_info {
2287 struct netdev_notifier_info info; /* must be first */
2288 void *lower_state_info; /* is lower dev state */
2289};
2290
2291static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2292 struct net_device *dev)
2293{
2294 info->dev = dev;
2295}
2296
2297static inline struct net_device *
2298netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2299{
2300 return info->dev;
2301}
2302
2303int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2304
2305
2306extern rwlock_t dev_base_lock; /* Device list lock */
2307
2308#define for_each_netdev(net, d) \
2309 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2310#define for_each_netdev_reverse(net, d) \
2311 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2312#define for_each_netdev_rcu(net, d) \
2313 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2314#define for_each_netdev_safe(net, d, n) \
2315 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2316#define for_each_netdev_continue(net, d) \
2317 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2318#define for_each_netdev_continue_rcu(net, d) \
2319 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2320#define for_each_netdev_in_bond_rcu(bond, slave) \
2321 for_each_netdev_rcu(&init_net, slave) \
2322 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2323#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2324
2325static inline struct net_device *next_net_device(struct net_device *dev)
2326{
2327 struct list_head *lh;
2328 struct net *net;
2329
2330 net = dev_net(dev);
2331 lh = dev->dev_list.next;
2332 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2333}
2334
2335static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2336{
2337 struct list_head *lh;
2338 struct net *net;
2339
2340 net = dev_net(dev);
2341 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2342 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2343}
2344
2345static inline struct net_device *first_net_device(struct net *net)
2346{
2347 return list_empty(&net->dev_base_head) ? NULL :
2348 net_device_entry(net->dev_base_head.next);
2349}
2350
2351static inline struct net_device *first_net_device_rcu(struct net *net)
2352{
2353 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2354
2355 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2356}
2357
2358int netdev_boot_setup_check(struct net_device *dev);
2359unsigned long netdev_boot_base(const char *prefix, int unit);
2360struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2361 const char *hwaddr);
2362struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2363struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2364void dev_add_pack(struct packet_type *pt);
2365void dev_remove_pack(struct packet_type *pt);
2366void __dev_remove_pack(struct packet_type *pt);
2367void dev_add_offload(struct packet_offload *po);
2368void dev_remove_offload(struct packet_offload *po);
2369
2370int dev_get_iflink(const struct net_device *dev);
2371int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2372struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2373 unsigned short mask);
2374struct net_device *dev_get_by_name(struct net *net, const char *name);
2375struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2376struct net_device *__dev_get_by_name(struct net *net, const char *name);
2377int dev_alloc_name(struct net_device *dev, const char *name);
2378int dev_open(struct net_device *dev);
2379int dev_close(struct net_device *dev);
2380int dev_close_many(struct list_head *head, bool unlink);
2381void dev_disable_lro(struct net_device *dev);
2382int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2383int dev_queue_xmit(struct sk_buff *skb);
2384int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2385int register_netdevice(struct net_device *dev);
2386void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2387void unregister_netdevice_many(struct list_head *head);
2388static inline void unregister_netdevice(struct net_device *dev)
2389{
2390 unregister_netdevice_queue(dev, NULL);
2391}
2392
2393int netdev_refcnt_read(const struct net_device *dev);
2394void free_netdev(struct net_device *dev);
2395void netdev_freemem(struct net_device *dev);
2396void synchronize_net(void);
2397int init_dummy_netdev(struct net_device *dev);
2398
2399DECLARE_PER_CPU(int, xmit_recursion);
2400static inline int dev_recursion_level(void)
2401{
2402 return this_cpu_read(xmit_recursion);
2403}
2404
2405struct net_device *dev_get_by_index(struct net *net, int ifindex);
2406struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2407struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2408int netdev_get_name(struct net *net, char *name, int ifindex);
2409int dev_restart(struct net_device *dev);
2410int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2411
2412static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2413{
2414 return NAPI_GRO_CB(skb)->data_offset;
2415}
2416
2417static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2418{
2419 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2420}
2421
2422static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2423{
2424 NAPI_GRO_CB(skb)->data_offset += len;
2425}
2426
2427static inline void *skb_gro_header_fast(struct sk_buff *skb,
2428 unsigned int offset)
2429{
2430 return NAPI_GRO_CB(skb)->frag0 + offset;
2431}
2432
2433static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2434{
2435 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2436}
2437
2438static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2439 unsigned int offset)
2440{
2441 if (!pskb_may_pull(skb, hlen))
2442 return NULL;
2443
2444 NAPI_GRO_CB(skb)->frag0 = NULL;
2445 NAPI_GRO_CB(skb)->frag0_len = 0;
2446 return skb->data + offset;
2447}
2448
2449static inline void *skb_gro_network_header(struct sk_buff *skb)
2450{
2451 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2452 skb_network_offset(skb);
2453}
2454
2455static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2456 const void *start, unsigned int len)
2457{
2458 if (NAPI_GRO_CB(skb)->csum_valid)
2459 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2460 csum_partial(start, len, 0));
2461}
2462
2463/* GRO checksum functions. These are logical equivalents of the normal
2464 * checksum functions (in skbuff.h) except that they operate on the GRO
2465 * offsets and fields in sk_buff.
2466 */
2467
2468__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2469
2470static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2471{
2472 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2473}
2474
2475static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2476 bool zero_okay,
2477 __sum16 check)
2478{
2479 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2480 skb_checksum_start_offset(skb) <
2481 skb_gro_offset(skb)) &&
2482 !skb_at_gro_remcsum_start(skb) &&
2483 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2484 (!zero_okay || check));
2485}
2486
2487static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2488 __wsum psum)
2489{
2490 if (NAPI_GRO_CB(skb)->csum_valid &&
2491 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2492 return 0;
2493
2494 NAPI_GRO_CB(skb)->csum = psum;
2495
2496 return __skb_gro_checksum_complete(skb);
2497}
2498
2499static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2500{
2501 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2502 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2503 NAPI_GRO_CB(skb)->csum_cnt--;
2504 } else {
2505 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2506 * verified a new top level checksum or an encapsulated one
2507 * during GRO. This saves work if we fallback to normal path.
2508 */
2509 __skb_incr_checksum_unnecessary(skb);
2510 }
2511}
2512
2513#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2514 compute_pseudo) \
2515({ \
2516 __sum16 __ret = 0; \
2517 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2518 __ret = __skb_gro_checksum_validate_complete(skb, \
2519 compute_pseudo(skb, proto)); \
2520 if (__ret) \
2521 __skb_mark_checksum_bad(skb); \
2522 else \
2523 skb_gro_incr_csum_unnecessary(skb); \
2524 __ret; \
2525})
2526
2527#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2528 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2529
2530#define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2531 compute_pseudo) \
2532 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2533
2534#define skb_gro_checksum_simple_validate(skb) \
2535 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2536
2537static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2538{
2539 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2540 !NAPI_GRO_CB(skb)->csum_valid);
2541}
2542
2543static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2544 __sum16 check, __wsum pseudo)
2545{
2546 NAPI_GRO_CB(skb)->csum = ~pseudo;
2547 NAPI_GRO_CB(skb)->csum_valid = 1;
2548}
2549
2550#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2551do { \
2552 if (__skb_gro_checksum_convert_check(skb)) \
2553 __skb_gro_checksum_convert(skb, check, \
2554 compute_pseudo(skb, proto)); \
2555} while (0)
2556
2557struct gro_remcsum {
2558 int offset;
2559 __wsum delta;
2560};
2561
2562static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2563{
2564 grc->offset = 0;
2565 grc->delta = 0;
2566}
2567
2568static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2569 unsigned int off, size_t hdrlen,
2570 int start, int offset,
2571 struct gro_remcsum *grc,
2572 bool nopartial)
2573{
2574 __wsum delta;
2575 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2576
2577 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2578
2579 if (!nopartial) {
2580 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2581 return ptr;
2582 }
2583
2584 ptr = skb_gro_header_fast(skb, off);
2585 if (skb_gro_header_hard(skb, off + plen)) {
2586 ptr = skb_gro_header_slow(skb, off + plen, off);
2587 if (!ptr)
2588 return NULL;
2589 }
2590
2591 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2592 start, offset);
2593
2594 /* Adjust skb->csum since we changed the packet */
2595 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2596
2597 grc->offset = off + hdrlen + offset;
2598 grc->delta = delta;
2599
2600 return ptr;
2601}
2602
2603static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2604 struct gro_remcsum *grc)
2605{
2606 void *ptr;
2607 size_t plen = grc->offset + sizeof(u16);
2608
2609 if (!grc->delta)
2610 return;
2611
2612 ptr = skb_gro_header_fast(skb, grc->offset);
2613 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2614 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2615 if (!ptr)
2616 return;
2617 }
2618
2619 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2620}
2621
2622struct skb_csum_offl_spec {
2623 __u16 ipv4_okay:1,
2624 ipv6_okay:1,
2625 encap_okay:1,
2626 ip_options_okay:1,
2627 ext_hdrs_okay:1,
2628 tcp_okay:1,
2629 udp_okay:1,
2630 sctp_okay:1,
2631 vlan_okay:1,
2632 no_encapped_ipv6:1,
2633 no_not_encapped:1;
2634};
2635
2636bool __skb_csum_offload_chk(struct sk_buff *skb,
2637 const struct skb_csum_offl_spec *spec,
2638 bool *csum_encapped,
2639 bool csum_help);
2640
2641static inline bool skb_csum_offload_chk(struct sk_buff *skb,
2642 const struct skb_csum_offl_spec *spec,
2643 bool *csum_encapped,
2644 bool csum_help)
2645{
2646 if (skb->ip_summed != CHECKSUM_PARTIAL)
2647 return false;
2648
2649 return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help);
2650}
2651
2652static inline bool skb_csum_offload_chk_help(struct sk_buff *skb,
2653 const struct skb_csum_offl_spec *spec)
2654{
2655 bool csum_encapped;
2656
2657 return skb_csum_offload_chk(skb, spec, &csum_encapped, true);
2658}
2659
2660static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb)
2661{
2662 static const struct skb_csum_offl_spec csum_offl_spec = {
2663 .ipv4_okay = 1,
2664 .ip_options_okay = 1,
2665 .ipv6_okay = 1,
2666 .vlan_okay = 1,
2667 .tcp_okay = 1,
2668 .udp_okay = 1,
2669 };
2670
2671 return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2672}
2673
2674static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb)
2675{
2676 static const struct skb_csum_offl_spec csum_offl_spec = {
2677 .ipv4_okay = 1,
2678 .ip_options_okay = 1,
2679 .tcp_okay = 1,
2680 .udp_okay = 1,
2681 .vlan_okay = 1,
2682 };
2683
2684 return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2685}
2686
2687static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2688 unsigned short type,
2689 const void *daddr, const void *saddr,
2690 unsigned int len)
2691{
2692 if (!dev->header_ops || !dev->header_ops->create)
2693 return 0;
2694
2695 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2696}
2697
2698static inline int dev_parse_header(const struct sk_buff *skb,
2699 unsigned char *haddr)
2700{
2701 const struct net_device *dev = skb->dev;
2702
2703 if (!dev->header_ops || !dev->header_ops->parse)
2704 return 0;
2705 return dev->header_ops->parse(skb, haddr);
2706}
2707
2708/* ll_header must have at least hard_header_len allocated */
2709static inline bool dev_validate_header(const struct net_device *dev,
2710 char *ll_header, int len)
2711{
2712 if (likely(len >= dev->hard_header_len))
2713 return true;
2714
2715 if (capable(CAP_SYS_RAWIO)) {
2716 memset(ll_header + len, 0, dev->hard_header_len - len);
2717 return true;
2718 }
2719
2720 if (dev->header_ops && dev->header_ops->validate)
2721 return dev->header_ops->validate(ll_header, len);
2722
2723 return false;
2724}
2725
2726typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2727int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2728static inline int unregister_gifconf(unsigned int family)
2729{
2730 return register_gifconf(family, NULL);
2731}
2732
2733#ifdef CONFIG_NET_FLOW_LIMIT
2734#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2735struct sd_flow_limit {
2736 u64 count;
2737 unsigned int num_buckets;
2738 unsigned int history_head;
2739 u16 history[FLOW_LIMIT_HISTORY];
2740 u8 buckets[];
2741};
2742
2743extern int netdev_flow_limit_table_len;
2744#endif /* CONFIG_NET_FLOW_LIMIT */
2745
2746/*
2747 * Incoming packets are placed on per-CPU queues
2748 */
2749struct softnet_data {
2750 struct list_head poll_list;
2751 struct sk_buff_head process_queue;
2752
2753 /* stats */
2754 unsigned int processed;
2755 unsigned int time_squeeze;
2756 unsigned int cpu_collision;
2757 unsigned int received_rps;
2758#ifdef CONFIG_RPS
2759 struct softnet_data *rps_ipi_list;
2760#endif
2761#ifdef CONFIG_NET_FLOW_LIMIT
2762 struct sd_flow_limit __rcu *flow_limit;
2763#endif
2764 struct Qdisc *output_queue;
2765 struct Qdisc **output_queue_tailp;
2766 struct sk_buff *completion_queue;
2767
2768#ifdef CONFIG_RPS
2769 /* Elements below can be accessed between CPUs for RPS */
2770 struct call_single_data csd ____cacheline_aligned_in_smp;
2771 struct softnet_data *rps_ipi_next;
2772 unsigned int cpu;
2773 unsigned int input_queue_head;
2774 unsigned int input_queue_tail;
2775#endif
2776 unsigned int dropped;
2777 struct sk_buff_head input_pkt_queue;
2778 struct napi_struct backlog;
2779
2780};
2781
2782static inline void input_queue_head_incr(struct softnet_data *sd)
2783{
2784#ifdef CONFIG_RPS
2785 sd->input_queue_head++;
2786#endif
2787}
2788
2789static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2790 unsigned int *qtail)
2791{
2792#ifdef CONFIG_RPS
2793 *qtail = ++sd->input_queue_tail;
2794#endif
2795}
2796
2797DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2798
2799void __netif_schedule(struct Qdisc *q);
2800void netif_schedule_queue(struct netdev_queue *txq);
2801
2802static inline void netif_tx_schedule_all(struct net_device *dev)
2803{
2804 unsigned int i;
2805
2806 for (i = 0; i < dev->num_tx_queues; i++)
2807 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2808}
2809
2810static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2811{
2812 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2813}
2814
2815/**
2816 * netif_start_queue - allow transmit
2817 * @dev: network device
2818 *
2819 * Allow upper layers to call the device hard_start_xmit routine.
2820 */
2821static inline void netif_start_queue(struct net_device *dev)
2822{
2823 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2824}
2825
2826static inline void netif_tx_start_all_queues(struct net_device *dev)
2827{
2828 unsigned int i;
2829
2830 for (i = 0; i < dev->num_tx_queues; i++) {
2831 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2832 netif_tx_start_queue(txq);
2833 }
2834}
2835
2836void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2837
2838/**
2839 * netif_wake_queue - restart transmit
2840 * @dev: network device
2841 *
2842 * Allow upper layers to call the device hard_start_xmit routine.
2843 * Used for flow control when transmit resources are available.
2844 */
2845static inline void netif_wake_queue(struct net_device *dev)
2846{
2847 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2848}
2849
2850static inline void netif_tx_wake_all_queues(struct net_device *dev)
2851{
2852 unsigned int i;
2853
2854 for (i = 0; i < dev->num_tx_queues; i++) {
2855 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2856 netif_tx_wake_queue(txq);
2857 }
2858}
2859
2860static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2861{
2862 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2863}
2864
2865/**
2866 * netif_stop_queue - stop transmitted packets
2867 * @dev: network device
2868 *
2869 * Stop upper layers calling the device hard_start_xmit routine.
2870 * Used for flow control when transmit resources are unavailable.
2871 */
2872static inline void netif_stop_queue(struct net_device *dev)
2873{
2874 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2875}
2876
2877void netif_tx_stop_all_queues(struct net_device *dev);
2878
2879static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2880{
2881 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2882}
2883
2884/**
2885 * netif_queue_stopped - test if transmit queue is flowblocked
2886 * @dev: network device
2887 *
2888 * Test if transmit queue on device is currently unable to send.
2889 */
2890static inline bool netif_queue_stopped(const struct net_device *dev)
2891{
2892 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2893}
2894
2895static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2896{
2897 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2898}
2899
2900static inline bool
2901netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2902{
2903 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2904}
2905
2906static inline bool
2907netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2908{
2909 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2910}
2911
2912/**
2913 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2914 * @dev_queue: pointer to transmit queue
2915 *
2916 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2917 * to give appropriate hint to the CPU.
2918 */
2919static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2920{
2921#ifdef CONFIG_BQL
2922 prefetchw(&dev_queue->dql.num_queued);
2923#endif
2924}
2925
2926/**
2927 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2928 * @dev_queue: pointer to transmit queue
2929 *
2930 * BQL enabled drivers might use this helper in their TX completion path,
2931 * to give appropriate hint to the CPU.
2932 */
2933static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2934{
2935#ifdef CONFIG_BQL
2936 prefetchw(&dev_queue->dql.limit);
2937#endif
2938}
2939
2940static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2941 unsigned int bytes)
2942{
2943#ifdef CONFIG_BQL
2944 dql_queued(&dev_queue->dql, bytes);
2945
2946 if (likely(dql_avail(&dev_queue->dql) >= 0))
2947 return;
2948
2949 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2950
2951 /*
2952 * The XOFF flag must be set before checking the dql_avail below,
2953 * because in netdev_tx_completed_queue we update the dql_completed
2954 * before checking the XOFF flag.
2955 */
2956 smp_mb();
2957
2958 /* check again in case another CPU has just made room avail */
2959 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2960 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2961#endif
2962}
2963
2964/**
2965 * netdev_sent_queue - report the number of bytes queued to hardware
2966 * @dev: network device
2967 * @bytes: number of bytes queued to the hardware device queue
2968 *
2969 * Report the number of bytes queued for sending/completion to the network
2970 * device hardware queue. @bytes should be a good approximation and should
2971 * exactly match netdev_completed_queue() @bytes
2972 */
2973static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2974{
2975 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2976}
2977
2978static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2979 unsigned int pkts, unsigned int bytes)
2980{
2981#ifdef CONFIG_BQL
2982 if (unlikely(!bytes))
2983 return;
2984
2985 dql_completed(&dev_queue->dql, bytes);
2986
2987 /*
2988 * Without the memory barrier there is a small possiblity that
2989 * netdev_tx_sent_queue will miss the update and cause the queue to
2990 * be stopped forever
2991 */
2992 smp_mb();
2993
2994 if (dql_avail(&dev_queue->dql) < 0)
2995 return;
2996
2997 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2998 netif_schedule_queue(dev_queue);
2999#endif
3000}
3001
3002/**
3003 * netdev_completed_queue - report bytes and packets completed by device
3004 * @dev: network device
3005 * @pkts: actual number of packets sent over the medium
3006 * @bytes: actual number of bytes sent over the medium
3007 *
3008 * Report the number of bytes and packets transmitted by the network device
3009 * hardware queue over the physical medium, @bytes must exactly match the
3010 * @bytes amount passed to netdev_sent_queue()
3011 */
3012static inline void netdev_completed_queue(struct net_device *dev,
3013 unsigned int pkts, unsigned int bytes)
3014{
3015 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3016}
3017
3018static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3019{
3020#ifdef CONFIG_BQL
3021 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3022 dql_reset(&q->dql);
3023#endif
3024}
3025
3026/**
3027 * netdev_reset_queue - reset the packets and bytes count of a network device
3028 * @dev_queue: network device
3029 *
3030 * Reset the bytes and packet count of a network device and clear the
3031 * software flow control OFF bit for this network device
3032 */
3033static inline void netdev_reset_queue(struct net_device *dev_queue)
3034{
3035 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3036}
3037
3038/**
3039 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3040 * @dev: network device
3041 * @queue_index: given tx queue index
3042 *
3043 * Returns 0 if given tx queue index >= number of device tx queues,
3044 * otherwise returns the originally passed tx queue index.
3045 */
3046static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3047{
3048 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3049 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3050 dev->name, queue_index,
3051 dev->real_num_tx_queues);
3052 return 0;
3053 }
3054
3055 return queue_index;
3056}
3057
3058/**
3059 * netif_running - test if up
3060 * @dev: network device
3061 *
3062 * Test if the device has been brought up.
3063 */
3064static inline bool netif_running(const struct net_device *dev)
3065{
3066 return test_bit(__LINK_STATE_START, &dev->state);
3067}
3068
3069/*
3070 * Routines to manage the subqueues on a device. We only need start,
3071 * stop, and a check if it's stopped. All other device management is
3072 * done at the overall netdevice level.
3073 * Also test the device if we're multiqueue.
3074 */
3075
3076/**
3077 * netif_start_subqueue - allow sending packets on subqueue
3078 * @dev: network device
3079 * @queue_index: sub queue index
3080 *
3081 * Start individual transmit queue of a device with multiple transmit queues.
3082 */
3083static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3084{
3085 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3086
3087 netif_tx_start_queue(txq);
3088}
3089
3090/**
3091 * netif_stop_subqueue - stop sending packets on subqueue
3092 * @dev: network device
3093 * @queue_index: sub queue index
3094 *
3095 * Stop individual transmit queue of a device with multiple transmit queues.
3096 */
3097static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3098{
3099 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3100 netif_tx_stop_queue(txq);
3101}
3102
3103/**
3104 * netif_subqueue_stopped - test status of subqueue
3105 * @dev: network device
3106 * @queue_index: sub queue index
3107 *
3108 * Check individual transmit queue of a device with multiple transmit queues.
3109 */
3110static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3111 u16 queue_index)
3112{
3113 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3114
3115 return netif_tx_queue_stopped(txq);
3116}
3117
3118static inline bool netif_subqueue_stopped(const struct net_device *dev,
3119 struct sk_buff *skb)
3120{
3121 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3122}
3123
3124void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
3125
3126#ifdef CONFIG_XPS
3127int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3128 u16 index);
3129#else
3130static inline int netif_set_xps_queue(struct net_device *dev,
3131 const struct cpumask *mask,
3132 u16 index)
3133{
3134 return 0;
3135}
3136#endif
3137
3138u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3139 unsigned int num_tx_queues);
3140
3141/*
3142 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3143 * as a distribution range limit for the returned value.
3144 */
3145static inline u16 skb_tx_hash(const struct net_device *dev,
3146 struct sk_buff *skb)
3147{
3148 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3149}
3150
3151/**
3152 * netif_is_multiqueue - test if device has multiple transmit queues
3153 * @dev: network device
3154 *
3155 * Check if device has multiple transmit queues
3156 */
3157static inline bool netif_is_multiqueue(const struct net_device *dev)
3158{
3159 return dev->num_tx_queues > 1;
3160}
3161
3162int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3163
3164#ifdef CONFIG_SYSFS
3165int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3166#else
3167static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3168 unsigned int rxq)
3169{
3170 return 0;
3171}
3172#endif
3173
3174#ifdef CONFIG_SYSFS
3175static inline unsigned int get_netdev_rx_queue_index(
3176 struct netdev_rx_queue *queue)
3177{
3178 struct net_device *dev = queue->dev;
3179 int index = queue - dev->_rx;
3180
3181 BUG_ON(index >= dev->num_rx_queues);
3182 return index;
3183}
3184#endif
3185
3186#define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3187int netif_get_num_default_rss_queues(void);
3188
3189enum skb_free_reason {
3190 SKB_REASON_CONSUMED,
3191 SKB_REASON_DROPPED,
3192};
3193
3194void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3195void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3196
3197/*
3198 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3199 * interrupt context or with hardware interrupts being disabled.
3200 * (in_irq() || irqs_disabled())
3201 *
3202 * We provide four helpers that can be used in following contexts :
3203 *
3204 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3205 * replacing kfree_skb(skb)
3206 *
3207 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3208 * Typically used in place of consume_skb(skb) in TX completion path
3209 *
3210 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3211 * replacing kfree_skb(skb)
3212 *
3213 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3214 * and consumed a packet. Used in place of consume_skb(skb)
3215 */
3216static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3217{
3218 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3219}
3220
3221static inline void dev_consume_skb_irq(struct sk_buff *skb)
3222{
3223 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3224}
3225
3226static inline void dev_kfree_skb_any(struct sk_buff *skb)
3227{
3228 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3229}
3230
3231static inline void dev_consume_skb_any(struct sk_buff *skb)
3232{
3233 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3234}
3235
3236int netif_rx(struct sk_buff *skb);
3237int netif_rx_ni(struct sk_buff *skb);
3238int netif_receive_skb(struct sk_buff *skb);
3239gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3240void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3241struct sk_buff *napi_get_frags(struct napi_struct *napi);
3242gro_result_t napi_gro_frags(struct napi_struct *napi);
3243struct packet_offload *gro_find_receive_by_type(__be16 type);
3244struct packet_offload *gro_find_complete_by_type(__be16 type);
3245
3246static inline void napi_free_frags(struct napi_struct *napi)
3247{
3248 kfree_skb(napi->skb);
3249 napi->skb = NULL;
3250}
3251
3252int netdev_rx_handler_register(struct net_device *dev,
3253 rx_handler_func_t *rx_handler,
3254 void *rx_handler_data);
3255void netdev_rx_handler_unregister(struct net_device *dev);
3256
3257bool dev_valid_name(const char *name);
3258int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3259int dev_ethtool(struct net *net, struct ifreq *);
3260unsigned int dev_get_flags(const struct net_device *);
3261int __dev_change_flags(struct net_device *, unsigned int flags);
3262int dev_change_flags(struct net_device *, unsigned int);
3263void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3264 unsigned int gchanges);
3265int dev_change_name(struct net_device *, const char *);
3266int dev_set_alias(struct net_device *, const char *, size_t);
3267int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3268int dev_set_mtu(struct net_device *, int);
3269void dev_set_group(struct net_device *, int);
3270int dev_set_mac_address(struct net_device *, struct sockaddr *);
3271int dev_change_carrier(struct net_device *, bool new_carrier);
3272int dev_get_phys_port_id(struct net_device *dev,
3273 struct netdev_phys_item_id *ppid);
3274int dev_get_phys_port_name(struct net_device *dev,
3275 char *name, size_t len);
3276int dev_change_proto_down(struct net_device *dev, bool proto_down);
3277struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3278struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3279 struct netdev_queue *txq, int *ret);
3280int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3281int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3282bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
3283
3284extern int netdev_budget;
3285
3286/* Called by rtnetlink.c:rtnl_unlock() */
3287void netdev_run_todo(void);
3288
3289/**
3290 * dev_put - release reference to device
3291 * @dev: network device
3292 *
3293 * Release reference to device to allow it to be freed.
3294 */
3295static inline void dev_put(struct net_device *dev)
3296{
3297 this_cpu_dec(*dev->pcpu_refcnt);
3298}
3299
3300/**
3301 * dev_hold - get reference to device
3302 * @dev: network device
3303 *
3304 * Hold reference to device to keep it from being freed.
3305 */
3306static inline void dev_hold(struct net_device *dev)
3307{
3308 this_cpu_inc(*dev->pcpu_refcnt);
3309}
3310
3311/* Carrier loss detection, dial on demand. The functions netif_carrier_on
3312 * and _off may be called from IRQ context, but it is caller
3313 * who is responsible for serialization of these calls.
3314 *
3315 * The name carrier is inappropriate, these functions should really be
3316 * called netif_lowerlayer_*() because they represent the state of any
3317 * kind of lower layer not just hardware media.
3318 */
3319
3320void linkwatch_init_dev(struct net_device *dev);
3321void linkwatch_fire_event(struct net_device *dev);
3322void linkwatch_forget_dev(struct net_device *dev);
3323
3324/**
3325 * netif_carrier_ok - test if carrier present
3326 * @dev: network device
3327 *
3328 * Check if carrier is present on device
3329 */
3330static inline bool netif_carrier_ok(const struct net_device *dev)
3331{
3332 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3333}
3334
3335unsigned long dev_trans_start(struct net_device *dev);
3336
3337void __netdev_watchdog_up(struct net_device *dev);
3338
3339void netif_carrier_on(struct net_device *dev);
3340
3341void netif_carrier_off(struct net_device *dev);
3342
3343/**
3344 * netif_dormant_on - mark device as dormant.
3345 * @dev: network device
3346 *
3347 * Mark device as dormant (as per RFC2863).
3348 *
3349 * The dormant state indicates that the relevant interface is not
3350 * actually in a condition to pass packets (i.e., it is not 'up') but is
3351 * in a "pending" state, waiting for some external event. For "on-
3352 * demand" interfaces, this new state identifies the situation where the
3353 * interface is waiting for events to place it in the up state.
3354 */
3355static inline void netif_dormant_on(struct net_device *dev)
3356{
3357 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3358 linkwatch_fire_event(dev);
3359}
3360
3361/**
3362 * netif_dormant_off - set device as not dormant.
3363 * @dev: network device
3364 *
3365 * Device is not in dormant state.
3366 */
3367static inline void netif_dormant_off(struct net_device *dev)
3368{
3369 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3370 linkwatch_fire_event(dev);
3371}
3372
3373/**
3374 * netif_dormant - test if carrier present
3375 * @dev: network device
3376 *
3377 * Check if carrier is present on device
3378 */
3379static inline bool netif_dormant(const struct net_device *dev)
3380{
3381 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3382}
3383
3384
3385/**
3386 * netif_oper_up - test if device is operational
3387 * @dev: network device
3388 *
3389 * Check if carrier is operational
3390 */
3391static inline bool netif_oper_up(const struct net_device *dev)
3392{
3393 return (dev->operstate == IF_OPER_UP ||
3394 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3395}
3396
3397/**
3398 * netif_device_present - is device available or removed
3399 * @dev: network device
3400 *
3401 * Check if device has not been removed from system.
3402 */
3403static inline bool netif_device_present(struct net_device *dev)
3404{
3405 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3406}
3407
3408void netif_device_detach(struct net_device *dev);
3409
3410void netif_device_attach(struct net_device *dev);
3411
3412/*
3413 * Network interface message level settings
3414 */
3415
3416enum {
3417 NETIF_MSG_DRV = 0x0001,
3418 NETIF_MSG_PROBE = 0x0002,
3419 NETIF_MSG_LINK = 0x0004,
3420 NETIF_MSG_TIMER = 0x0008,
3421 NETIF_MSG_IFDOWN = 0x0010,
3422 NETIF_MSG_IFUP = 0x0020,
3423 NETIF_MSG_RX_ERR = 0x0040,
3424 NETIF_MSG_TX_ERR = 0x0080,
3425 NETIF_MSG_TX_QUEUED = 0x0100,
3426 NETIF_MSG_INTR = 0x0200,
3427 NETIF_MSG_TX_DONE = 0x0400,
3428 NETIF_MSG_RX_STATUS = 0x0800,
3429 NETIF_MSG_PKTDATA = 0x1000,
3430 NETIF_MSG_HW = 0x2000,
3431 NETIF_MSG_WOL = 0x4000,
3432};
3433
3434#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3435#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3436#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3437#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3438#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3439#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3440#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3441#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3442#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3443#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3444#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3445#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3446#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3447#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3448#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3449
3450static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3451{
3452 /* use default */
3453 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3454 return default_msg_enable_bits;
3455 if (debug_value == 0) /* no output */
3456 return 0;
3457 /* set low N bits */
3458 return (1 << debug_value) - 1;
3459}
3460
3461static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3462{
3463 spin_lock(&txq->_xmit_lock);
3464 txq->xmit_lock_owner = cpu;
3465}
3466
3467static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3468{
3469 spin_lock_bh(&txq->_xmit_lock);
3470 txq->xmit_lock_owner = smp_processor_id();
3471}
3472
3473static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3474{
3475 bool ok = spin_trylock(&txq->_xmit_lock);
3476 if (likely(ok))
3477 txq->xmit_lock_owner = smp_processor_id();
3478 return ok;
3479}
3480
3481static inline void __netif_tx_unlock(struct netdev_queue *txq)
3482{
3483 txq->xmit_lock_owner = -1;
3484 spin_unlock(&txq->_xmit_lock);
3485}
3486
3487static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3488{
3489 txq->xmit_lock_owner = -1;
3490 spin_unlock_bh(&txq->_xmit_lock);
3491}
3492
3493static inline void txq_trans_update(struct netdev_queue *txq)
3494{
3495 if (txq->xmit_lock_owner != -1)
3496 txq->trans_start = jiffies;
3497}
3498
3499/**
3500 * netif_tx_lock - grab network device transmit lock
3501 * @dev: network device
3502 *
3503 * Get network device transmit lock
3504 */
3505static inline void netif_tx_lock(struct net_device *dev)
3506{
3507 unsigned int i;
3508 int cpu;
3509
3510 spin_lock(&dev->tx_global_lock);
3511 cpu = smp_processor_id();
3512 for (i = 0; i < dev->num_tx_queues; i++) {
3513 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3514
3515 /* We are the only thread of execution doing a
3516 * freeze, but we have to grab the _xmit_lock in
3517 * order to synchronize with threads which are in
3518 * the ->hard_start_xmit() handler and already
3519 * checked the frozen bit.
3520 */
3521 __netif_tx_lock(txq, cpu);
3522 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3523 __netif_tx_unlock(txq);
3524 }
3525}
3526
3527static inline void netif_tx_lock_bh(struct net_device *dev)
3528{
3529 local_bh_disable();
3530 netif_tx_lock(dev);
3531}
3532
3533static inline void netif_tx_unlock(struct net_device *dev)
3534{
3535 unsigned int i;
3536
3537 for (i = 0; i < dev->num_tx_queues; i++) {
3538 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3539
3540 /* No need to grab the _xmit_lock here. If the
3541 * queue is not stopped for another reason, we
3542 * force a schedule.
3543 */
3544 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3545 netif_schedule_queue(txq);
3546 }
3547 spin_unlock(&dev->tx_global_lock);
3548}
3549
3550static inline void netif_tx_unlock_bh(struct net_device *dev)
3551{
3552 netif_tx_unlock(dev);
3553 local_bh_enable();
3554}
3555
3556#define HARD_TX_LOCK(dev, txq, cpu) { \
3557 if ((dev->features & NETIF_F_LLTX) == 0) { \
3558 __netif_tx_lock(txq, cpu); \
3559 } \
3560}
3561
3562#define HARD_TX_TRYLOCK(dev, txq) \
3563 (((dev->features & NETIF_F_LLTX) == 0) ? \
3564 __netif_tx_trylock(txq) : \
3565 true )
3566
3567#define HARD_TX_UNLOCK(dev, txq) { \
3568 if ((dev->features & NETIF_F_LLTX) == 0) { \
3569 __netif_tx_unlock(txq); \
3570 } \
3571}
3572
3573static inline void netif_tx_disable(struct net_device *dev)
3574{
3575 unsigned int i;
3576 int cpu;
3577
3578 local_bh_disable();
3579 cpu = smp_processor_id();
3580 for (i = 0; i < dev->num_tx_queues; i++) {
3581 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3582
3583 __netif_tx_lock(txq, cpu);
3584 netif_tx_stop_queue(txq);
3585 __netif_tx_unlock(txq);
3586 }
3587 local_bh_enable();
3588}
3589
3590static inline void netif_addr_lock(struct net_device *dev)
3591{
3592 spin_lock(&dev->addr_list_lock);
3593}
3594
3595static inline void netif_addr_lock_nested(struct net_device *dev)
3596{
3597 int subclass = SINGLE_DEPTH_NESTING;
3598
3599 if (dev->netdev_ops->ndo_get_lock_subclass)
3600 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3601
3602 spin_lock_nested(&dev->addr_list_lock, subclass);
3603}
3604
3605static inline void netif_addr_lock_bh(struct net_device *dev)
3606{
3607 spin_lock_bh(&dev->addr_list_lock);
3608}
3609
3610static inline void netif_addr_unlock(struct net_device *dev)
3611{
3612 spin_unlock(&dev->addr_list_lock);
3613}
3614
3615static inline void netif_addr_unlock_bh(struct net_device *dev)
3616{
3617 spin_unlock_bh(&dev->addr_list_lock);
3618}
3619
3620/*
3621 * dev_addrs walker. Should be used only for read access. Call with
3622 * rcu_read_lock held.
3623 */
3624#define for_each_dev_addr(dev, ha) \
3625 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3626
3627/* These functions live elsewhere (drivers/net/net_init.c, but related) */
3628
3629void ether_setup(struct net_device *dev);
3630
3631/* Support for loadable net-drivers */
3632struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3633 unsigned char name_assign_type,
3634 void (*setup)(struct net_device *),
3635 unsigned int txqs, unsigned int rxqs);
3636#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3637 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3638
3639#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3640 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3641 count)
3642
3643int register_netdev(struct net_device *dev);
3644void unregister_netdev(struct net_device *dev);
3645
3646/* General hardware address lists handling functions */
3647int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3648 struct netdev_hw_addr_list *from_list, int addr_len);
3649void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3650 struct netdev_hw_addr_list *from_list, int addr_len);
3651int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3652 struct net_device *dev,
3653 int (*sync)(struct net_device *, const unsigned char *),
3654 int (*unsync)(struct net_device *,
3655 const unsigned char *));
3656void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3657 struct net_device *dev,
3658 int (*unsync)(struct net_device *,
3659 const unsigned char *));
3660void __hw_addr_init(struct netdev_hw_addr_list *list);
3661
3662/* Functions used for device addresses handling */
3663int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3664 unsigned char addr_type);
3665int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3666 unsigned char addr_type);
3667void dev_addr_flush(struct net_device *dev);
3668int dev_addr_init(struct net_device *dev);
3669
3670/* Functions used for unicast addresses handling */
3671int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3672int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3673int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3674int dev_uc_sync(struct net_device *to, struct net_device *from);
3675int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3676void dev_uc_unsync(struct net_device *to, struct net_device *from);
3677void dev_uc_flush(struct net_device *dev);
3678void dev_uc_init(struct net_device *dev);
3679
3680/**
3681 * __dev_uc_sync - Synchonize device's unicast list
3682 * @dev: device to sync
3683 * @sync: function to call if address should be added
3684 * @unsync: function to call if address should be removed
3685 *
3686 * Add newly added addresses to the interface, and release
3687 * addresses that have been deleted.
3688 */
3689static inline int __dev_uc_sync(struct net_device *dev,
3690 int (*sync)(struct net_device *,
3691 const unsigned char *),
3692 int (*unsync)(struct net_device *,
3693 const unsigned char *))
3694{
3695 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3696}
3697
3698/**
3699 * __dev_uc_unsync - Remove synchronized addresses from device
3700 * @dev: device to sync
3701 * @unsync: function to call if address should be removed
3702 *
3703 * Remove all addresses that were added to the device by dev_uc_sync().
3704 */
3705static inline void __dev_uc_unsync(struct net_device *dev,
3706 int (*unsync)(struct net_device *,
3707 const unsigned char *))
3708{
3709 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3710}
3711
3712/* Functions used for multicast addresses handling */
3713int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3714int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3715int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3716int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3717int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3718int dev_mc_sync(struct net_device *to, struct net_device *from);
3719int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3720void dev_mc_unsync(struct net_device *to, struct net_device *from);
3721void dev_mc_flush(struct net_device *dev);
3722void dev_mc_init(struct net_device *dev);
3723
3724/**
3725 * __dev_mc_sync - Synchonize device's multicast list
3726 * @dev: device to sync
3727 * @sync: function to call if address should be added
3728 * @unsync: function to call if address should be removed
3729 *
3730 * Add newly added addresses to the interface, and release
3731 * addresses that have been deleted.
3732 */
3733static inline int __dev_mc_sync(struct net_device *dev,
3734 int (*sync)(struct net_device *,
3735 const unsigned char *),
3736 int (*unsync)(struct net_device *,
3737 const unsigned char *))
3738{
3739 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3740}
3741
3742/**
3743 * __dev_mc_unsync - Remove synchronized addresses from device
3744 * @dev: device to sync
3745 * @unsync: function to call if address should be removed
3746 *
3747 * Remove all addresses that were added to the device by dev_mc_sync().
3748 */
3749static inline void __dev_mc_unsync(struct net_device *dev,
3750 int (*unsync)(struct net_device *,
3751 const unsigned char *))
3752{
3753 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3754}
3755
3756/* Functions used for secondary unicast and multicast support */
3757void dev_set_rx_mode(struct net_device *dev);
3758void __dev_set_rx_mode(struct net_device *dev);
3759int dev_set_promiscuity(struct net_device *dev, int inc);
3760int dev_set_allmulti(struct net_device *dev, int inc);
3761void netdev_state_change(struct net_device *dev);
3762void netdev_notify_peers(struct net_device *dev);
3763void netdev_features_change(struct net_device *dev);
3764/* Load a device via the kmod */
3765void dev_load(struct net *net, const char *name);
3766struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3767 struct rtnl_link_stats64 *storage);
3768void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3769 const struct net_device_stats *netdev_stats);
3770
3771extern int netdev_max_backlog;
3772extern int netdev_tstamp_prequeue;
3773extern int weight_p;
3774extern int bpf_jit_enable;
3775
3776bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3777struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3778 struct list_head **iter);
3779struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3780 struct list_head **iter);
3781
3782/* iterate through upper list, must be called under RCU read lock */
3783#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3784 for (iter = &(dev)->adj_list.upper, \
3785 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3786 updev; \
3787 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3788
3789/* iterate through upper list, must be called under RCU read lock */
3790#define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3791 for (iter = &(dev)->all_adj_list.upper, \
3792 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3793 updev; \
3794 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3795
3796void *netdev_lower_get_next_private(struct net_device *dev,
3797 struct list_head **iter);
3798void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3799 struct list_head **iter);
3800
3801#define netdev_for_each_lower_private(dev, priv, iter) \
3802 for (iter = (dev)->adj_list.lower.next, \
3803 priv = netdev_lower_get_next_private(dev, &(iter)); \
3804 priv; \
3805 priv = netdev_lower_get_next_private(dev, &(iter)))
3806
3807#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3808 for (iter = &(dev)->adj_list.lower, \
3809 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3810 priv; \
3811 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3812
3813void *netdev_lower_get_next(struct net_device *dev,
3814 struct list_head **iter);
3815#define netdev_for_each_lower_dev(dev, ldev, iter) \
3816 for (iter = (dev)->adj_list.lower.next, \
3817 ldev = netdev_lower_get_next(dev, &(iter)); \
3818 ldev; \
3819 ldev = netdev_lower_get_next(dev, &(iter)))
3820
3821void *netdev_adjacent_get_private(struct list_head *adj_list);
3822void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3823struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3824struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3825int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3826int netdev_master_upper_dev_link(struct net_device *dev,
3827 struct net_device *upper_dev,
3828 void *upper_priv, void *upper_info);
3829void netdev_upper_dev_unlink(struct net_device *dev,
3830 struct net_device *upper_dev);
3831void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3832void *netdev_lower_dev_get_private(struct net_device *dev,
3833 struct net_device *lower_dev);
3834void netdev_lower_state_changed(struct net_device *lower_dev,
3835 void *lower_state_info);
3836
3837/* RSS keys are 40 or 52 bytes long */
3838#define NETDEV_RSS_KEY_LEN 52
3839extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3840void netdev_rss_key_fill(void *buffer, size_t len);
3841
3842int dev_get_nest_level(struct net_device *dev,
3843 bool (*type_check)(const struct net_device *dev));
3844int skb_checksum_help(struct sk_buff *skb);
3845struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3846 netdev_features_t features, bool tx_path);
3847struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3848 netdev_features_t features);
3849
3850struct netdev_bonding_info {
3851 ifslave slave;
3852 ifbond master;
3853};
3854
3855struct netdev_notifier_bonding_info {
3856 struct netdev_notifier_info info; /* must be first */
3857 struct netdev_bonding_info bonding_info;
3858};
3859
3860void netdev_bonding_info_change(struct net_device *dev,
3861 struct netdev_bonding_info *bonding_info);
3862
3863static inline
3864struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3865{
3866 return __skb_gso_segment(skb, features, true);
3867}
3868__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3869
3870static inline bool can_checksum_protocol(netdev_features_t features,
3871 __be16 protocol)
3872{
3873 if (protocol == htons(ETH_P_FCOE))
3874 return !!(features & NETIF_F_FCOE_CRC);
3875
3876 /* Assume this is an IP checksum (not SCTP CRC) */
3877
3878 if (features & NETIF_F_HW_CSUM) {
3879 /* Can checksum everything */
3880 return true;
3881 }
3882
3883 switch (protocol) {
3884 case htons(ETH_P_IP):
3885 return !!(features & NETIF_F_IP_CSUM);
3886 case htons(ETH_P_IPV6):
3887 return !!(features & NETIF_F_IPV6_CSUM);
3888 default:
3889 return false;
3890 }
3891}
3892
3893/* Map an ethertype into IP protocol if possible */
3894static inline int eproto_to_ipproto(int eproto)
3895{
3896 switch (eproto) {
3897 case htons(ETH_P_IP):
3898 return IPPROTO_IP;
3899 case htons(ETH_P_IPV6):
3900 return IPPROTO_IPV6;
3901 default:
3902 return -1;
3903 }
3904}
3905
3906#ifdef CONFIG_BUG
3907void netdev_rx_csum_fault(struct net_device *dev);
3908#else
3909static inline void netdev_rx_csum_fault(struct net_device *dev)
3910{
3911}
3912#endif
3913/* rx skb timestamps */
3914void net_enable_timestamp(void);
3915void net_disable_timestamp(void);
3916
3917#ifdef CONFIG_PROC_FS
3918int __init dev_proc_init(void);
3919#else
3920#define dev_proc_init() 0
3921#endif
3922
3923static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3924 struct sk_buff *skb, struct net_device *dev,
3925 bool more)
3926{
3927 skb->xmit_more = more ? 1 : 0;
3928 return ops->ndo_start_xmit(skb, dev);
3929}
3930
3931static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3932 struct netdev_queue *txq, bool more)
3933{
3934 const struct net_device_ops *ops = dev->netdev_ops;
3935 int rc;
3936
3937 rc = __netdev_start_xmit(ops, skb, dev, more);
3938 if (rc == NETDEV_TX_OK)
3939 txq_trans_update(txq);
3940
3941 return rc;
3942}
3943
3944int netdev_class_create_file_ns(struct class_attribute *class_attr,
3945 const void *ns);
3946void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3947 const void *ns);
3948
3949static inline int netdev_class_create_file(struct class_attribute *class_attr)
3950{
3951 return netdev_class_create_file_ns(class_attr, NULL);
3952}
3953
3954static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3955{
3956 netdev_class_remove_file_ns(class_attr, NULL);
3957}
3958
3959extern struct kobj_ns_type_operations net_ns_type_operations;
3960
3961const char *netdev_drivername(const struct net_device *dev);
3962
3963void linkwatch_run_queue(void);
3964
3965static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3966 netdev_features_t f2)
3967{
3968 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
3969 if (f1 & NETIF_F_HW_CSUM)
3970 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3971 else
3972 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3973 }
3974
3975 return f1 & f2;
3976}
3977
3978static inline netdev_features_t netdev_get_wanted_features(
3979 struct net_device *dev)
3980{
3981 return (dev->features & ~dev->hw_features) | dev->wanted_features;
3982}
3983netdev_features_t netdev_increment_features(netdev_features_t all,
3984 netdev_features_t one, netdev_features_t mask);
3985
3986/* Allow TSO being used on stacked device :
3987 * Performing the GSO segmentation before last device
3988 * is a performance improvement.
3989 */
3990static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3991 netdev_features_t mask)
3992{
3993 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3994}
3995
3996int __netdev_update_features(struct net_device *dev);
3997void netdev_update_features(struct net_device *dev);
3998void netdev_change_features(struct net_device *dev);
3999
4000void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4001 struct net_device *dev);
4002
4003netdev_features_t passthru_features_check(struct sk_buff *skb,
4004 struct net_device *dev,
4005 netdev_features_t features);
4006netdev_features_t netif_skb_features(struct sk_buff *skb);
4007
4008static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4009{
4010 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4011
4012 /* check flags correspondence */
4013 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4014 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
4015 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4016 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4017 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4018 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4019 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4020 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4021 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
4022 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
4023 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4024 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4025 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4026
4027 return (features & feature) == feature;
4028}
4029
4030static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4031{
4032 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4033 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4034}
4035
4036static inline bool netif_needs_gso(struct sk_buff *skb,
4037 netdev_features_t features)
4038{
4039 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4040 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4041 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4042}
4043
4044static inline void netif_set_gso_max_size(struct net_device *dev,
4045 unsigned int size)
4046{
4047 dev->gso_max_size = size;
4048}
4049
4050static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4051 int pulled_hlen, u16 mac_offset,
4052 int mac_len)
4053{
4054 skb->protocol = protocol;
4055 skb->encapsulation = 1;
4056 skb_push(skb, pulled_hlen);
4057 skb_reset_transport_header(skb);
4058 skb->mac_header = mac_offset;
4059 skb->network_header = skb->mac_header + mac_len;
4060 skb->mac_len = mac_len;
4061}
4062
4063static inline bool netif_is_macsec(const struct net_device *dev)
4064{
4065 return dev->priv_flags & IFF_MACSEC;
4066}
4067
4068static inline bool netif_is_macvlan(const struct net_device *dev)
4069{
4070 return dev->priv_flags & IFF_MACVLAN;
4071}
4072
4073static inline bool netif_is_macvlan_port(const struct net_device *dev)
4074{
4075 return dev->priv_flags & IFF_MACVLAN_PORT;
4076}
4077
4078static inline bool netif_is_ipvlan(const struct net_device *dev)
4079{
4080 return dev->priv_flags & IFF_IPVLAN_SLAVE;
4081}
4082
4083static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4084{
4085 return dev->priv_flags & IFF_IPVLAN_MASTER;
4086}
4087
4088static inline bool netif_is_bond_master(const struct net_device *dev)
4089{
4090 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4091}
4092
4093static inline bool netif_is_bond_slave(const struct net_device *dev)
4094{
4095 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4096}
4097
4098static inline bool netif_supports_nofcs(struct net_device *dev)
4099{
4100 return dev->priv_flags & IFF_SUPP_NOFCS;
4101}
4102
4103static inline bool netif_is_l3_master(const struct net_device *dev)
4104{
4105 return dev->priv_flags & IFF_L3MDEV_MASTER;
4106}
4107
4108static inline bool netif_is_l3_slave(const struct net_device *dev)
4109{
4110 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4111}
4112
4113static inline bool netif_is_bridge_master(const struct net_device *dev)
4114{
4115 return dev->priv_flags & IFF_EBRIDGE;
4116}
4117
4118static inline bool netif_is_bridge_port(const struct net_device *dev)
4119{
4120 return dev->priv_flags & IFF_BRIDGE_PORT;
4121}
4122
4123static inline bool netif_is_ovs_master(const struct net_device *dev)
4124{
4125 return dev->priv_flags & IFF_OPENVSWITCH;
4126}
4127
4128static inline bool netif_is_team_master(const struct net_device *dev)
4129{
4130 return dev->priv_flags & IFF_TEAM;
4131}
4132
4133static inline bool netif_is_team_port(const struct net_device *dev)
4134{
4135 return dev->priv_flags & IFF_TEAM_PORT;
4136}
4137
4138static inline bool netif_is_lag_master(const struct net_device *dev)
4139{
4140 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4141}
4142
4143static inline bool netif_is_lag_port(const struct net_device *dev)
4144{
4145 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4146}
4147
4148static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4149{
4150 return dev->priv_flags & IFF_RXFH_CONFIGURED;
4151}
4152
4153/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4154static inline void netif_keep_dst(struct net_device *dev)
4155{
4156 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4157}
4158
4159extern struct pernet_operations __net_initdata loopback_net_ops;
4160
4161/* Logging, debugging and troubleshooting/diagnostic helpers. */
4162
4163/* netdev_printk helpers, similar to dev_printk */
4164
4165static inline const char *netdev_name(const struct net_device *dev)
4166{
4167 if (!dev->name[0] || strchr(dev->name, '%'))
4168 return "(unnamed net_device)";
4169 return dev->name;
4170}
4171
4172static inline const char *netdev_reg_state(const struct net_device *dev)
4173{
4174 switch (dev->reg_state) {
4175 case NETREG_UNINITIALIZED: return " (uninitialized)";
4176 case NETREG_REGISTERED: return "";
4177 case NETREG_UNREGISTERING: return " (unregistering)";
4178 case NETREG_UNREGISTERED: return " (unregistered)";
4179 case NETREG_RELEASED: return " (released)";
4180 case NETREG_DUMMY: return " (dummy)";
4181 }
4182
4183 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4184 return " (unknown)";
4185}
4186
4187__printf(3, 4)
4188void netdev_printk(const char *level, const struct net_device *dev,
4189 const char *format, ...);
4190__printf(2, 3)
4191void netdev_emerg(const struct net_device *dev, const char *format, ...);
4192__printf(2, 3)
4193void netdev_alert(const struct net_device *dev, const char *format, ...);
4194__printf(2, 3)
4195void netdev_crit(const struct net_device *dev, const char *format, ...);
4196__printf(2, 3)
4197void netdev_err(const struct net_device *dev, const char *format, ...);
4198__printf(2, 3)
4199void netdev_warn(const struct net_device *dev, const char *format, ...);
4200__printf(2, 3)
4201void netdev_notice(const struct net_device *dev, const char *format, ...);
4202__printf(2, 3)
4203void netdev_info(const struct net_device *dev, const char *format, ...);
4204
4205#define MODULE_ALIAS_NETDEV(device) \
4206 MODULE_ALIAS("netdev-" device)
4207
4208#if defined(CONFIG_DYNAMIC_DEBUG)
4209#define netdev_dbg(__dev, format, args...) \
4210do { \
4211 dynamic_netdev_dbg(__dev, format, ##args); \
4212} while (0)
4213#elif defined(DEBUG)
4214#define netdev_dbg(__dev, format, args...) \
4215 netdev_printk(KERN_DEBUG, __dev, format, ##args)
4216#else
4217#define netdev_dbg(__dev, format, args...) \
4218({ \
4219 if (0) \
4220 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4221})
4222#endif
4223
4224#if defined(VERBOSE_DEBUG)
4225#define netdev_vdbg netdev_dbg
4226#else
4227
4228#define netdev_vdbg(dev, format, args...) \
4229({ \
4230 if (0) \
4231 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4232 0; \
4233})
4234#endif
4235
4236/*
4237 * netdev_WARN() acts like dev_printk(), but with the key difference
4238 * of using a WARN/WARN_ON to get the message out, including the
4239 * file/line information and a backtrace.
4240 */
4241#define netdev_WARN(dev, format, args...) \
4242 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
4243 netdev_reg_state(dev), ##args)
4244
4245/* netif printk helpers, similar to netdev_printk */
4246
4247#define netif_printk(priv, type, level, dev, fmt, args...) \
4248do { \
4249 if (netif_msg_##type(priv)) \
4250 netdev_printk(level, (dev), fmt, ##args); \
4251} while (0)
4252
4253#define netif_level(level, priv, type, dev, fmt, args...) \
4254do { \
4255 if (netif_msg_##type(priv)) \
4256 netdev_##level(dev, fmt, ##args); \
4257} while (0)
4258
4259#define netif_emerg(priv, type, dev, fmt, args...) \
4260 netif_level(emerg, priv, type, dev, fmt, ##args)
4261#define netif_alert(priv, type, dev, fmt, args...) \
4262 netif_level(alert, priv, type, dev, fmt, ##args)
4263#define netif_crit(priv, type, dev, fmt, args...) \
4264 netif_level(crit, priv, type, dev, fmt, ##args)
4265#define netif_err(priv, type, dev, fmt, args...) \
4266 netif_level(err, priv, type, dev, fmt, ##args)
4267#define netif_warn(priv, type, dev, fmt, args...) \
4268 netif_level(warn, priv, type, dev, fmt, ##args)
4269#define netif_notice(priv, type, dev, fmt, args...) \
4270 netif_level(notice, priv, type, dev, fmt, ##args)
4271#define netif_info(priv, type, dev, fmt, args...) \
4272 netif_level(info, priv, type, dev, fmt, ##args)
4273
4274#if defined(CONFIG_DYNAMIC_DEBUG)
4275#define netif_dbg(priv, type, netdev, format, args...) \
4276do { \
4277 if (netif_msg_##type(priv)) \
4278 dynamic_netdev_dbg(netdev, format, ##args); \
4279} while (0)
4280#elif defined(DEBUG)
4281#define netif_dbg(priv, type, dev, format, args...) \
4282 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4283#else
4284#define netif_dbg(priv, type, dev, format, args...) \
4285({ \
4286 if (0) \
4287 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4288 0; \
4289})
4290#endif
4291
4292#if defined(VERBOSE_DEBUG)
4293#define netif_vdbg netif_dbg
4294#else
4295#define netif_vdbg(priv, type, dev, format, args...) \
4296({ \
4297 if (0) \
4298 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4299 0; \
4300})
4301#endif
4302
4303/*
4304 * The list of packet types we will receive (as opposed to discard)
4305 * and the routines to invoke.
4306 *
4307 * Why 16. Because with 16 the only overlap we get on a hash of the
4308 * low nibble of the protocol value is RARP/SNAP/X.25.
4309 *
4310 * NOTE: That is no longer true with the addition of VLAN tags. Not
4311 * sure which should go first, but I bet it won't make much
4312 * difference if we are running VLANs. The good news is that
4313 * this protocol won't be in the list unless compiled in, so
4314 * the average user (w/out VLANs) will not be adversely affected.
4315 * --BLG
4316 *
4317 * 0800 IP
4318 * 8100 802.1Q VLAN
4319 * 0001 802.3
4320 * 0002 AX.25
4321 * 0004 802.2
4322 * 8035 RARP
4323 * 0005 SNAP
4324 * 0805 X.25
4325 * 0806 ARP
4326 * 8137 IPX
4327 * 0009 Localtalk
4328 * 86DD IPv6
4329 */
4330#define PTYPE_HASH_SIZE (16)
4331#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4332
4333#endif /* _LINUX_NETDEVICE_H */