block: Document all members of blk_mq_tag_set and bkl_mq_queue_map
[linux-2.6-block.git] / include / linux / blk-mq.h
... / ...
CommitLineData
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef BLK_MQ_H
3#define BLK_MQ_H
4
5#include <linux/blkdev.h>
6#include <linux/sbitmap.h>
7#include <linux/srcu.h>
8
9struct blk_mq_tags;
10struct blk_flush_queue;
11
12/**
13 * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware block device
14 */
15struct blk_mq_hw_ctx {
16 struct {
17 spinlock_t lock;
18 struct list_head dispatch;
19 unsigned long state; /* BLK_MQ_S_* flags */
20 } ____cacheline_aligned_in_smp;
21
22 struct delayed_work run_work;
23 cpumask_var_t cpumask;
24 int next_cpu;
25 int next_cpu_batch;
26
27 unsigned long flags; /* BLK_MQ_F_* flags */
28
29 void *sched_data;
30 struct request_queue *queue;
31 struct blk_flush_queue *fq;
32
33 void *driver_data;
34
35 struct sbitmap ctx_map;
36
37 struct blk_mq_ctx *dispatch_from;
38 unsigned int dispatch_busy;
39
40 unsigned short type;
41 unsigned short nr_ctx;
42 struct blk_mq_ctx **ctxs;
43
44 spinlock_t dispatch_wait_lock;
45 wait_queue_entry_t dispatch_wait;
46 atomic_t wait_index;
47
48 struct blk_mq_tags *tags;
49 struct blk_mq_tags *sched_tags;
50
51 unsigned long queued;
52 unsigned long run;
53#define BLK_MQ_MAX_DISPATCH_ORDER 7
54 unsigned long dispatched[BLK_MQ_MAX_DISPATCH_ORDER];
55
56 unsigned int numa_node;
57 unsigned int queue_num;
58
59 atomic_t nr_active;
60
61 struct hlist_node cpuhp_dead;
62 struct kobject kobj;
63
64 unsigned long poll_considered;
65 unsigned long poll_invoked;
66 unsigned long poll_success;
67
68#ifdef CONFIG_BLK_DEBUG_FS
69 struct dentry *debugfs_dir;
70 struct dentry *sched_debugfs_dir;
71#endif
72
73 struct list_head hctx_list;
74
75 /* Must be the last member - see also blk_mq_hw_ctx_size(). */
76 struct srcu_struct srcu[0];
77};
78
79/**
80 * struct blk_mq_queue_map - ctx -> hctx mapping
81 * @mq_map: CPU ID to hardware queue index map. This is an array
82 * with nr_cpu_ids elements. Each element has a value in the range
83 * [@queue_offset, @queue_offset + @nr_queues).
84 * @nr_queues: Number of hardware queues to map CPU IDs onto.
85 * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe
86 * driver to map each hardware queue type (enum hctx_type) onto a distinct
87 * set of hardware queues.
88 */
89struct blk_mq_queue_map {
90 unsigned int *mq_map;
91 unsigned int nr_queues;
92 unsigned int queue_offset;
93};
94
95enum hctx_type {
96 HCTX_TYPE_DEFAULT, /* all I/O not otherwise accounted for */
97 HCTX_TYPE_READ, /* just for READ I/O */
98 HCTX_TYPE_POLL, /* polled I/O of any kind */
99
100 HCTX_MAX_TYPES,
101};
102
103/**
104 * struct blk_mq_tag_set - tag set that can be shared between request queues
105 * @map: One or more ctx -> hctx mappings. One map exists for each
106 * hardware queue type (enum hctx_type) that the driver wishes
107 * to support. There are no restrictions on maps being of the
108 * same size, and it's perfectly legal to share maps between
109 * types.
110 * @nr_maps: Number of elements in the @map array. A number in the range
111 * [1, HCTX_MAX_TYPES].
112 * @ops: Pointers to functions that implement block driver behavior.
113 * @nr_hw_queues: Number of hardware queues supported by the block driver that
114 * owns this data structure.
115 * @queue_depth: Number of tags per hardware queue, reserved tags included.
116 * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag
117 * allocations.
118 * @cmd_size: Number of additional bytes to allocate per request. The block
119 * driver owns these additional bytes.
120 * @numa_node: NUMA node the storage adapter has been connected to.
121 * @timeout: Request processing timeout in jiffies.
122 * @flags: Zero or more BLK_MQ_F_* flags.
123 * @driver_data: Pointer to data owned by the block driver that created this
124 * tag set.
125 * @tags: Tag sets. One tag set per hardware queue. Has @nr_hw_queues
126 * elements.
127 * @tag_list_lock: Serializes tag_list accesses.
128 * @tag_list: List of the request queues that use this tag set. See also
129 * request_queue.tag_set_list.
130 */
131struct blk_mq_tag_set {
132 struct blk_mq_queue_map map[HCTX_MAX_TYPES];
133 unsigned int nr_maps;
134 const struct blk_mq_ops *ops;
135 unsigned int nr_hw_queues;
136 unsigned int queue_depth;
137 unsigned int reserved_tags;
138 unsigned int cmd_size;
139 int numa_node;
140 unsigned int timeout;
141 unsigned int flags;
142 void *driver_data;
143
144 struct blk_mq_tags **tags;
145
146 struct mutex tag_list_lock;
147 struct list_head tag_list;
148};
149
150struct blk_mq_queue_data {
151 struct request *rq;
152 bool last;
153};
154
155typedef blk_status_t (queue_rq_fn)(struct blk_mq_hw_ctx *,
156 const struct blk_mq_queue_data *);
157typedef void (commit_rqs_fn)(struct blk_mq_hw_ctx *);
158typedef bool (get_budget_fn)(struct blk_mq_hw_ctx *);
159typedef void (put_budget_fn)(struct blk_mq_hw_ctx *);
160typedef enum blk_eh_timer_return (timeout_fn)(struct request *, bool);
161typedef int (init_hctx_fn)(struct blk_mq_hw_ctx *, void *, unsigned int);
162typedef void (exit_hctx_fn)(struct blk_mq_hw_ctx *, unsigned int);
163typedef int (init_request_fn)(struct blk_mq_tag_set *set, struct request *,
164 unsigned int, unsigned int);
165typedef void (exit_request_fn)(struct blk_mq_tag_set *set, struct request *,
166 unsigned int);
167
168typedef bool (busy_iter_fn)(struct blk_mq_hw_ctx *, struct request *, void *,
169 bool);
170typedef bool (busy_tag_iter_fn)(struct request *, void *, bool);
171typedef int (poll_fn)(struct blk_mq_hw_ctx *);
172typedef int (map_queues_fn)(struct blk_mq_tag_set *set);
173typedef bool (busy_fn)(struct request_queue *);
174typedef void (complete_fn)(struct request *);
175typedef void (cleanup_rq_fn)(struct request *);
176
177
178struct blk_mq_ops {
179 /*
180 * Queue request
181 */
182 queue_rq_fn *queue_rq;
183
184 /*
185 * If a driver uses bd->last to judge when to submit requests to
186 * hardware, it must define this function. In case of errors that
187 * make us stop issuing further requests, this hook serves the
188 * purpose of kicking the hardware (which the last request otherwise
189 * would have done).
190 */
191 commit_rqs_fn *commit_rqs;
192
193 /*
194 * Reserve budget before queue request, once .queue_rq is
195 * run, it is driver's responsibility to release the
196 * reserved budget. Also we have to handle failure case
197 * of .get_budget for avoiding I/O deadlock.
198 */
199 get_budget_fn *get_budget;
200 put_budget_fn *put_budget;
201
202 /*
203 * Called on request timeout
204 */
205 timeout_fn *timeout;
206
207 /*
208 * Called to poll for completion of a specific tag.
209 */
210 poll_fn *poll;
211
212 complete_fn *complete;
213
214 /*
215 * Called when the block layer side of a hardware queue has been
216 * set up, allowing the driver to allocate/init matching structures.
217 * Ditto for exit/teardown.
218 */
219 init_hctx_fn *init_hctx;
220 exit_hctx_fn *exit_hctx;
221
222 /*
223 * Called for every command allocated by the block layer to allow
224 * the driver to set up driver specific data.
225 *
226 * Tag greater than or equal to queue_depth is for setting up
227 * flush request.
228 *
229 * Ditto for exit/teardown.
230 */
231 init_request_fn *init_request;
232 exit_request_fn *exit_request;
233 /* Called from inside blk_get_request() */
234 void (*initialize_rq_fn)(struct request *rq);
235
236 /*
237 * Called before freeing one request which isn't completed yet,
238 * and usually for freeing the driver private data
239 */
240 cleanup_rq_fn *cleanup_rq;
241
242 /*
243 * If set, returns whether or not this queue currently is busy
244 */
245 busy_fn *busy;
246
247 map_queues_fn *map_queues;
248
249#ifdef CONFIG_BLK_DEBUG_FS
250 /*
251 * Used by the debugfs implementation to show driver-specific
252 * information about a request.
253 */
254 void (*show_rq)(struct seq_file *m, struct request *rq);
255#endif
256};
257
258enum {
259 BLK_MQ_F_SHOULD_MERGE = 1 << 0,
260 BLK_MQ_F_TAG_SHARED = 1 << 1,
261 BLK_MQ_F_BLOCKING = 1 << 5,
262 BLK_MQ_F_NO_SCHED = 1 << 6,
263 BLK_MQ_F_ALLOC_POLICY_START_BIT = 8,
264 BLK_MQ_F_ALLOC_POLICY_BITS = 1,
265
266 BLK_MQ_S_STOPPED = 0,
267 BLK_MQ_S_TAG_ACTIVE = 1,
268 BLK_MQ_S_SCHED_RESTART = 2,
269
270 BLK_MQ_MAX_DEPTH = 10240,
271
272 BLK_MQ_CPU_WORK_BATCH = 8,
273};
274#define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \
275 ((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \
276 ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1))
277#define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \
278 ((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \
279 << BLK_MQ_F_ALLOC_POLICY_START_BIT)
280
281struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *);
282struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
283 struct request_queue *q,
284 bool elevator_init);
285struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
286 const struct blk_mq_ops *ops,
287 unsigned int queue_depth,
288 unsigned int set_flags);
289void blk_mq_unregister_dev(struct device *, struct request_queue *);
290
291int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set);
292void blk_mq_free_tag_set(struct blk_mq_tag_set *set);
293
294void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule);
295
296void blk_mq_free_request(struct request *rq);
297bool blk_mq_can_queue(struct blk_mq_hw_ctx *);
298
299bool blk_mq_queue_inflight(struct request_queue *q);
300
301enum {
302 /* return when out of requests */
303 BLK_MQ_REQ_NOWAIT = (__force blk_mq_req_flags_t)(1 << 0),
304 /* allocate from reserved pool */
305 BLK_MQ_REQ_RESERVED = (__force blk_mq_req_flags_t)(1 << 1),
306 /* allocate internal/sched tag */
307 BLK_MQ_REQ_INTERNAL = (__force blk_mq_req_flags_t)(1 << 2),
308 /* set RQF_PREEMPT */
309 BLK_MQ_REQ_PREEMPT = (__force blk_mq_req_flags_t)(1 << 3),
310};
311
312struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
313 blk_mq_req_flags_t flags);
314struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
315 unsigned int op, blk_mq_req_flags_t flags,
316 unsigned int hctx_idx);
317struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag);
318
319enum {
320 BLK_MQ_UNIQUE_TAG_BITS = 16,
321 BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1,
322};
323
324u32 blk_mq_unique_tag(struct request *rq);
325
326static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag)
327{
328 return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS;
329}
330
331static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag)
332{
333 return unique_tag & BLK_MQ_UNIQUE_TAG_MASK;
334}
335
336
337int blk_mq_request_started(struct request *rq);
338int blk_mq_request_completed(struct request *rq);
339void blk_mq_start_request(struct request *rq);
340void blk_mq_end_request(struct request *rq, blk_status_t error);
341void __blk_mq_end_request(struct request *rq, blk_status_t error);
342
343void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list);
344void blk_mq_kick_requeue_list(struct request_queue *q);
345void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs);
346bool blk_mq_complete_request(struct request *rq);
347bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
348 struct bio *bio, unsigned int nr_segs);
349bool blk_mq_queue_stopped(struct request_queue *q);
350void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx);
351void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx);
352void blk_mq_stop_hw_queues(struct request_queue *q);
353void blk_mq_start_hw_queues(struct request_queue *q);
354void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
355void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async);
356void blk_mq_quiesce_queue(struct request_queue *q);
357void blk_mq_unquiesce_queue(struct request_queue *q);
358void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs);
359bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
360void blk_mq_run_hw_queues(struct request_queue *q, bool async);
361void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
362 busy_tag_iter_fn *fn, void *priv);
363void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset);
364void blk_mq_freeze_queue(struct request_queue *q);
365void blk_mq_unfreeze_queue(struct request_queue *q);
366void blk_freeze_queue_start(struct request_queue *q);
367void blk_mq_freeze_queue_wait(struct request_queue *q);
368int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
369 unsigned long timeout);
370
371int blk_mq_map_queues(struct blk_mq_queue_map *qmap);
372void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues);
373
374void blk_mq_quiesce_queue_nowait(struct request_queue *q);
375
376unsigned int blk_mq_rq_cpu(struct request *rq);
377
378/*
379 * Driver command data is immediately after the request. So subtract request
380 * size to get back to the original request, add request size to get the PDU.
381 */
382static inline struct request *blk_mq_rq_from_pdu(void *pdu)
383{
384 return pdu - sizeof(struct request);
385}
386static inline void *blk_mq_rq_to_pdu(struct request *rq)
387{
388 return rq + 1;
389}
390
391#define queue_for_each_hw_ctx(q, hctx, i) \
392 for ((i) = 0; (i) < (q)->nr_hw_queues && \
393 ({ hctx = (q)->queue_hw_ctx[i]; 1; }); (i)++)
394
395#define hctx_for_each_ctx(hctx, ctx, i) \
396 for ((i) = 0; (i) < (hctx)->nr_ctx && \
397 ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
398
399static inline blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx,
400 struct request *rq)
401{
402 if (rq->tag != -1)
403 return rq->tag | (hctx->queue_num << BLK_QC_T_SHIFT);
404
405 return rq->internal_tag | (hctx->queue_num << BLK_QC_T_SHIFT) |
406 BLK_QC_T_INTERNAL;
407}
408
409static inline void blk_mq_cleanup_rq(struct request *rq)
410{
411 if (rq->q->mq_ops->cleanup_rq)
412 rq->q->mq_ops->cleanup_rq(rq);
413}
414
415#endif