io_uring: add mapping support for NOMMU archs
[linux-2.6-block.git] / fs / io_uring.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42#include <linux/kernel.h>
43#include <linux/init.h>
44#include <linux/errno.h>
45#include <linux/syscalls.h>
46#include <linux/compat.h>
47#include <linux/refcount.h>
48#include <linux/uio.h>
49
50#include <linux/sched/signal.h>
51#include <linux/fs.h>
52#include <linux/file.h>
53#include <linux/fdtable.h>
54#include <linux/mm.h>
55#include <linux/mman.h>
56#include <linux/mmu_context.h>
57#include <linux/percpu.h>
58#include <linux/slab.h>
59#include <linux/kthread.h>
60#include <linux/blkdev.h>
61#include <linux/bvec.h>
62#include <linux/net.h>
63#include <net/sock.h>
64#include <net/af_unix.h>
65#include <net/scm.h>
66#include <linux/anon_inodes.h>
67#include <linux/sched/mm.h>
68#include <linux/uaccess.h>
69#include <linux/nospec.h>
70#include <linux/sizes.h>
71#include <linux/hugetlb.h>
72
73#define CREATE_TRACE_POINTS
74#include <trace/events/io_uring.h>
75
76#include <uapi/linux/io_uring.h>
77
78#include "internal.h"
79#include "io-wq.h"
80
81#define IORING_MAX_ENTRIES 32768
82#define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
83
84/*
85 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
86 */
87#define IORING_FILE_TABLE_SHIFT 9
88#define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
89#define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
90#define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
91
92struct io_uring {
93 u32 head ____cacheline_aligned_in_smp;
94 u32 tail ____cacheline_aligned_in_smp;
95};
96
97/*
98 * This data is shared with the application through the mmap at offsets
99 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
100 *
101 * The offsets to the member fields are published through struct
102 * io_sqring_offsets when calling io_uring_setup.
103 */
104struct io_rings {
105 /*
106 * Head and tail offsets into the ring; the offsets need to be
107 * masked to get valid indices.
108 *
109 * The kernel controls head of the sq ring and the tail of the cq ring,
110 * and the application controls tail of the sq ring and the head of the
111 * cq ring.
112 */
113 struct io_uring sq, cq;
114 /*
115 * Bitmasks to apply to head and tail offsets (constant, equals
116 * ring_entries - 1)
117 */
118 u32 sq_ring_mask, cq_ring_mask;
119 /* Ring sizes (constant, power of 2) */
120 u32 sq_ring_entries, cq_ring_entries;
121 /*
122 * Number of invalid entries dropped by the kernel due to
123 * invalid index stored in array
124 *
125 * Written by the kernel, shouldn't be modified by the
126 * application (i.e. get number of "new events" by comparing to
127 * cached value).
128 *
129 * After a new SQ head value was read by the application this
130 * counter includes all submissions that were dropped reaching
131 * the new SQ head (and possibly more).
132 */
133 u32 sq_dropped;
134 /*
135 * Runtime flags
136 *
137 * Written by the kernel, shouldn't be modified by the
138 * application.
139 *
140 * The application needs a full memory barrier before checking
141 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
142 */
143 u32 sq_flags;
144 /*
145 * Number of completion events lost because the queue was full;
146 * this should be avoided by the application by making sure
147 * there are not more requests pending thatn there is space in
148 * the completion queue.
149 *
150 * Written by the kernel, shouldn't be modified by the
151 * application (i.e. get number of "new events" by comparing to
152 * cached value).
153 *
154 * As completion events come in out of order this counter is not
155 * ordered with any other data.
156 */
157 u32 cq_overflow;
158 /*
159 * Ring buffer of completion events.
160 *
161 * The kernel writes completion events fresh every time they are
162 * produced, so the application is allowed to modify pending
163 * entries.
164 */
165 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
166};
167
168struct io_mapped_ubuf {
169 u64 ubuf;
170 size_t len;
171 struct bio_vec *bvec;
172 unsigned int nr_bvecs;
173};
174
175struct fixed_file_table {
176 struct file **files;
177};
178
179struct io_ring_ctx {
180 struct {
181 struct percpu_ref refs;
182 } ____cacheline_aligned_in_smp;
183
184 struct {
185 unsigned int flags;
186 bool compat;
187 bool account_mem;
188 bool cq_overflow_flushed;
189
190 /*
191 * Ring buffer of indices into array of io_uring_sqe, which is
192 * mmapped by the application using the IORING_OFF_SQES offset.
193 *
194 * This indirection could e.g. be used to assign fixed
195 * io_uring_sqe entries to operations and only submit them to
196 * the queue when needed.
197 *
198 * The kernel modifies neither the indices array nor the entries
199 * array.
200 */
201 u32 *sq_array;
202 unsigned cached_sq_head;
203 unsigned sq_entries;
204 unsigned sq_mask;
205 unsigned sq_thread_idle;
206 unsigned cached_sq_dropped;
207 atomic_t cached_cq_overflow;
208 struct io_uring_sqe *sq_sqes;
209
210 struct list_head defer_list;
211 struct list_head timeout_list;
212 struct list_head cq_overflow_list;
213
214 wait_queue_head_t inflight_wait;
215 } ____cacheline_aligned_in_smp;
216
217 struct io_rings *rings;
218
219 /* IO offload */
220 struct io_wq *io_wq;
221 struct task_struct *sqo_thread; /* if using sq thread polling */
222 struct mm_struct *sqo_mm;
223 wait_queue_head_t sqo_wait;
224
225 /*
226 * If used, fixed file set. Writers must ensure that ->refs is dead,
227 * readers must ensure that ->refs is alive as long as the file* is
228 * used. Only updated through io_uring_register(2).
229 */
230 struct fixed_file_table *file_table;
231 unsigned nr_user_files;
232
233 /* if used, fixed mapped user buffers */
234 unsigned nr_user_bufs;
235 struct io_mapped_ubuf *user_bufs;
236
237 struct user_struct *user;
238
239 /* 0 is for ctx quiesce/reinit/free, 1 is for sqo_thread started */
240 struct completion *completions;
241
242 /* if all else fails... */
243 struct io_kiocb *fallback_req;
244
245#if defined(CONFIG_UNIX)
246 struct socket *ring_sock;
247#endif
248
249 struct {
250 unsigned cached_cq_tail;
251 unsigned cq_entries;
252 unsigned cq_mask;
253 atomic_t cq_timeouts;
254 struct wait_queue_head cq_wait;
255 struct fasync_struct *cq_fasync;
256 struct eventfd_ctx *cq_ev_fd;
257 } ____cacheline_aligned_in_smp;
258
259 struct {
260 struct mutex uring_lock;
261 wait_queue_head_t wait;
262 } ____cacheline_aligned_in_smp;
263
264 struct {
265 spinlock_t completion_lock;
266 bool poll_multi_file;
267 /*
268 * ->poll_list is protected by the ctx->uring_lock for
269 * io_uring instances that don't use IORING_SETUP_SQPOLL.
270 * For SQPOLL, only the single threaded io_sq_thread() will
271 * manipulate the list, hence no extra locking is needed there.
272 */
273 struct list_head poll_list;
274 struct rb_root cancel_tree;
275
276 spinlock_t inflight_lock;
277 struct list_head inflight_list;
278 } ____cacheline_aligned_in_smp;
279};
280
281struct sqe_submit {
282 const struct io_uring_sqe *sqe;
283 struct file *ring_file;
284 int ring_fd;
285 u32 sequence;
286 bool has_user;
287 bool in_async;
288 bool needs_fixed_file;
289};
290
291/*
292 * First field must be the file pointer in all the
293 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
294 */
295struct io_poll_iocb {
296 struct file *file;
297 struct wait_queue_head *head;
298 __poll_t events;
299 bool done;
300 bool canceled;
301 struct wait_queue_entry wait;
302};
303
304struct io_timeout {
305 struct file *file;
306 struct hrtimer timer;
307};
308
309/*
310 * NOTE! Each of the iocb union members has the file pointer
311 * as the first entry in their struct definition. So you can
312 * access the file pointer through any of the sub-structs,
313 * or directly as just 'ki_filp' in this struct.
314 */
315struct io_kiocb {
316 union {
317 struct file *file;
318 struct kiocb rw;
319 struct io_poll_iocb poll;
320 struct io_timeout timeout;
321 };
322
323 struct sqe_submit submit;
324
325 struct io_ring_ctx *ctx;
326 union {
327 struct list_head list;
328 struct rb_node rb_node;
329 };
330 struct list_head link_list;
331 unsigned int flags;
332 refcount_t refs;
333#define REQ_F_NOWAIT 1 /* must not punt to workers */
334#define REQ_F_IOPOLL_COMPLETED 2 /* polled IO has completed */
335#define REQ_F_FIXED_FILE 4 /* ctx owns file */
336#define REQ_F_SEQ_PREV 8 /* sequential with previous */
337#define REQ_F_IO_DRAIN 16 /* drain existing IO first */
338#define REQ_F_IO_DRAINED 32 /* drain done */
339#define REQ_F_LINK 64 /* linked sqes */
340#define REQ_F_LINK_TIMEOUT 128 /* has linked timeout */
341#define REQ_F_FAIL_LINK 256 /* fail rest of links */
342#define REQ_F_SHADOW_DRAIN 512 /* link-drain shadow req */
343#define REQ_F_TIMEOUT 1024 /* timeout request */
344#define REQ_F_ISREG 2048 /* regular file */
345#define REQ_F_MUST_PUNT 4096 /* must be punted even for NONBLOCK */
346#define REQ_F_TIMEOUT_NOSEQ 8192 /* no timeout sequence */
347#define REQ_F_INFLIGHT 16384 /* on inflight list */
348#define REQ_F_COMP_LOCKED 32768 /* completion under lock */
349 u64 user_data;
350 u32 result;
351 u32 sequence;
352
353 struct list_head inflight_entry;
354
355 struct io_wq_work work;
356};
357
358#define IO_PLUG_THRESHOLD 2
359#define IO_IOPOLL_BATCH 8
360
361struct io_submit_state {
362 struct blk_plug plug;
363
364 /*
365 * io_kiocb alloc cache
366 */
367 void *reqs[IO_IOPOLL_BATCH];
368 unsigned int free_reqs;
369 unsigned int cur_req;
370
371 /*
372 * File reference cache
373 */
374 struct file *file;
375 unsigned int fd;
376 unsigned int has_refs;
377 unsigned int used_refs;
378 unsigned int ios_left;
379};
380
381static void io_wq_submit_work(struct io_wq_work **workptr);
382static void io_cqring_fill_event(struct io_kiocb *req, long res);
383static void __io_free_req(struct io_kiocb *req);
384static void io_put_req(struct io_kiocb *req);
385static void io_double_put_req(struct io_kiocb *req);
386
387static struct kmem_cache *req_cachep;
388
389static const struct file_operations io_uring_fops;
390
391struct sock *io_uring_get_socket(struct file *file)
392{
393#if defined(CONFIG_UNIX)
394 if (file->f_op == &io_uring_fops) {
395 struct io_ring_ctx *ctx = file->private_data;
396
397 return ctx->ring_sock->sk;
398 }
399#endif
400 return NULL;
401}
402EXPORT_SYMBOL(io_uring_get_socket);
403
404static void io_ring_ctx_ref_free(struct percpu_ref *ref)
405{
406 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
407
408 complete(&ctx->completions[0]);
409}
410
411static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
412{
413 struct io_ring_ctx *ctx;
414
415 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
416 if (!ctx)
417 return NULL;
418
419 ctx->fallback_req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
420 if (!ctx->fallback_req)
421 goto err;
422
423 ctx->completions = kmalloc(2 * sizeof(struct completion), GFP_KERNEL);
424 if (!ctx->completions)
425 goto err;
426
427 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
428 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
429 goto err;
430
431 ctx->flags = p->flags;
432 init_waitqueue_head(&ctx->cq_wait);
433 INIT_LIST_HEAD(&ctx->cq_overflow_list);
434 init_completion(&ctx->completions[0]);
435 init_completion(&ctx->completions[1]);
436 mutex_init(&ctx->uring_lock);
437 init_waitqueue_head(&ctx->wait);
438 spin_lock_init(&ctx->completion_lock);
439 INIT_LIST_HEAD(&ctx->poll_list);
440 ctx->cancel_tree = RB_ROOT;
441 INIT_LIST_HEAD(&ctx->defer_list);
442 INIT_LIST_HEAD(&ctx->timeout_list);
443 init_waitqueue_head(&ctx->inflight_wait);
444 spin_lock_init(&ctx->inflight_lock);
445 INIT_LIST_HEAD(&ctx->inflight_list);
446 return ctx;
447err:
448 if (ctx->fallback_req)
449 kmem_cache_free(req_cachep, ctx->fallback_req);
450 kfree(ctx->completions);
451 kfree(ctx);
452 return NULL;
453}
454
455static inline bool __req_need_defer(struct io_kiocb *req)
456{
457 struct io_ring_ctx *ctx = req->ctx;
458
459 return req->sequence != ctx->cached_cq_tail + ctx->cached_sq_dropped
460 + atomic_read(&ctx->cached_cq_overflow);
461}
462
463static inline bool req_need_defer(struct io_kiocb *req)
464{
465 if ((req->flags & (REQ_F_IO_DRAIN|REQ_F_IO_DRAINED)) == REQ_F_IO_DRAIN)
466 return __req_need_defer(req);
467
468 return false;
469}
470
471static struct io_kiocb *io_get_deferred_req(struct io_ring_ctx *ctx)
472{
473 struct io_kiocb *req;
474
475 req = list_first_entry_or_null(&ctx->defer_list, struct io_kiocb, list);
476 if (req && !req_need_defer(req)) {
477 list_del_init(&req->list);
478 return req;
479 }
480
481 return NULL;
482}
483
484static struct io_kiocb *io_get_timeout_req(struct io_ring_ctx *ctx)
485{
486 struct io_kiocb *req;
487
488 req = list_first_entry_or_null(&ctx->timeout_list, struct io_kiocb, list);
489 if (req) {
490 if (req->flags & REQ_F_TIMEOUT_NOSEQ)
491 return NULL;
492 if (!__req_need_defer(req)) {
493 list_del_init(&req->list);
494 return req;
495 }
496 }
497
498 return NULL;
499}
500
501static void __io_commit_cqring(struct io_ring_ctx *ctx)
502{
503 struct io_rings *rings = ctx->rings;
504
505 if (ctx->cached_cq_tail != READ_ONCE(rings->cq.tail)) {
506 /* order cqe stores with ring update */
507 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
508
509 if (wq_has_sleeper(&ctx->cq_wait)) {
510 wake_up_interruptible(&ctx->cq_wait);
511 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
512 }
513 }
514}
515
516static inline bool io_sqe_needs_user(const struct io_uring_sqe *sqe)
517{
518 u8 opcode = READ_ONCE(sqe->opcode);
519
520 return !(opcode == IORING_OP_READ_FIXED ||
521 opcode == IORING_OP_WRITE_FIXED);
522}
523
524static inline bool io_prep_async_work(struct io_kiocb *req)
525{
526 bool do_hashed = false;
527
528 if (req->submit.sqe) {
529 switch (req->submit.sqe->opcode) {
530 case IORING_OP_WRITEV:
531 case IORING_OP_WRITE_FIXED:
532 do_hashed = true;
533 /* fall-through */
534 case IORING_OP_READV:
535 case IORING_OP_READ_FIXED:
536 case IORING_OP_SENDMSG:
537 case IORING_OP_RECVMSG:
538 case IORING_OP_ACCEPT:
539 case IORING_OP_POLL_ADD:
540 /*
541 * We know REQ_F_ISREG is not set on some of these
542 * opcodes, but this enables us to keep the check in
543 * just one place.
544 */
545 if (!(req->flags & REQ_F_ISREG))
546 req->work.flags |= IO_WQ_WORK_UNBOUND;
547 break;
548 }
549 if (io_sqe_needs_user(req->submit.sqe))
550 req->work.flags |= IO_WQ_WORK_NEEDS_USER;
551 }
552
553 return do_hashed;
554}
555
556static inline void io_queue_async_work(struct io_kiocb *req)
557{
558 bool do_hashed = io_prep_async_work(req);
559 struct io_ring_ctx *ctx = req->ctx;
560
561 trace_io_uring_queue_async_work(ctx, do_hashed, req, &req->work,
562 req->flags);
563 if (!do_hashed) {
564 io_wq_enqueue(ctx->io_wq, &req->work);
565 } else {
566 io_wq_enqueue_hashed(ctx->io_wq, &req->work,
567 file_inode(req->file));
568 }
569}
570
571static void io_kill_timeout(struct io_kiocb *req)
572{
573 int ret;
574
575 ret = hrtimer_try_to_cancel(&req->timeout.timer);
576 if (ret != -1) {
577 atomic_inc(&req->ctx->cq_timeouts);
578 list_del_init(&req->list);
579 io_cqring_fill_event(req, 0);
580 io_put_req(req);
581 }
582}
583
584static void io_kill_timeouts(struct io_ring_ctx *ctx)
585{
586 struct io_kiocb *req, *tmp;
587
588 spin_lock_irq(&ctx->completion_lock);
589 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, list)
590 io_kill_timeout(req);
591 spin_unlock_irq(&ctx->completion_lock);
592}
593
594static void io_commit_cqring(struct io_ring_ctx *ctx)
595{
596 struct io_kiocb *req;
597
598 while ((req = io_get_timeout_req(ctx)) != NULL)
599 io_kill_timeout(req);
600
601 __io_commit_cqring(ctx);
602
603 while ((req = io_get_deferred_req(ctx)) != NULL) {
604 if (req->flags & REQ_F_SHADOW_DRAIN) {
605 /* Just for drain, free it. */
606 __io_free_req(req);
607 continue;
608 }
609 req->flags |= REQ_F_IO_DRAINED;
610 io_queue_async_work(req);
611 }
612}
613
614static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
615{
616 struct io_rings *rings = ctx->rings;
617 unsigned tail;
618
619 tail = ctx->cached_cq_tail;
620 /*
621 * writes to the cq entry need to come after reading head; the
622 * control dependency is enough as we're using WRITE_ONCE to
623 * fill the cq entry
624 */
625 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
626 return NULL;
627
628 ctx->cached_cq_tail++;
629 return &rings->cqes[tail & ctx->cq_mask];
630}
631
632static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
633{
634 if (waitqueue_active(&ctx->wait))
635 wake_up(&ctx->wait);
636 if (waitqueue_active(&ctx->sqo_wait))
637 wake_up(&ctx->sqo_wait);
638 if (ctx->cq_ev_fd)
639 eventfd_signal(ctx->cq_ev_fd, 1);
640}
641
642static void io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
643{
644 struct io_rings *rings = ctx->rings;
645 struct io_uring_cqe *cqe;
646 struct io_kiocb *req;
647 unsigned long flags;
648 LIST_HEAD(list);
649
650 if (!force) {
651 if (list_empty_careful(&ctx->cq_overflow_list))
652 return;
653 if ((ctx->cached_cq_tail - READ_ONCE(rings->cq.head) ==
654 rings->cq_ring_entries))
655 return;
656 }
657
658 spin_lock_irqsave(&ctx->completion_lock, flags);
659
660 /* if force is set, the ring is going away. always drop after that */
661 if (force)
662 ctx->cq_overflow_flushed = true;
663
664 while (!list_empty(&ctx->cq_overflow_list)) {
665 cqe = io_get_cqring(ctx);
666 if (!cqe && !force)
667 break;
668
669 req = list_first_entry(&ctx->cq_overflow_list, struct io_kiocb,
670 list);
671 list_move(&req->list, &list);
672 if (cqe) {
673 WRITE_ONCE(cqe->user_data, req->user_data);
674 WRITE_ONCE(cqe->res, req->result);
675 WRITE_ONCE(cqe->flags, 0);
676 } else {
677 WRITE_ONCE(ctx->rings->cq_overflow,
678 atomic_inc_return(&ctx->cached_cq_overflow));
679 }
680 }
681
682 io_commit_cqring(ctx);
683 spin_unlock_irqrestore(&ctx->completion_lock, flags);
684 io_cqring_ev_posted(ctx);
685
686 while (!list_empty(&list)) {
687 req = list_first_entry(&list, struct io_kiocb, list);
688 list_del(&req->list);
689 io_put_req(req);
690 }
691}
692
693static void io_cqring_fill_event(struct io_kiocb *req, long res)
694{
695 struct io_ring_ctx *ctx = req->ctx;
696 struct io_uring_cqe *cqe;
697
698 trace_io_uring_complete(ctx, req->user_data, res);
699
700 /*
701 * If we can't get a cq entry, userspace overflowed the
702 * submission (by quite a lot). Increment the overflow count in
703 * the ring.
704 */
705 cqe = io_get_cqring(ctx);
706 if (likely(cqe)) {
707 WRITE_ONCE(cqe->user_data, req->user_data);
708 WRITE_ONCE(cqe->res, res);
709 WRITE_ONCE(cqe->flags, 0);
710 } else if (ctx->cq_overflow_flushed) {
711 WRITE_ONCE(ctx->rings->cq_overflow,
712 atomic_inc_return(&ctx->cached_cq_overflow));
713 } else {
714 refcount_inc(&req->refs);
715 req->result = res;
716 list_add_tail(&req->list, &ctx->cq_overflow_list);
717 }
718}
719
720static void io_cqring_add_event(struct io_kiocb *req, long res)
721{
722 struct io_ring_ctx *ctx = req->ctx;
723 unsigned long flags;
724
725 spin_lock_irqsave(&ctx->completion_lock, flags);
726 io_cqring_fill_event(req, res);
727 io_commit_cqring(ctx);
728 spin_unlock_irqrestore(&ctx->completion_lock, flags);
729
730 io_cqring_ev_posted(ctx);
731}
732
733static inline bool io_is_fallback_req(struct io_kiocb *req)
734{
735 return req == (struct io_kiocb *)
736 ((unsigned long) req->ctx->fallback_req & ~1UL);
737}
738
739static struct io_kiocb *io_get_fallback_req(struct io_ring_ctx *ctx)
740{
741 struct io_kiocb *req;
742
743 req = ctx->fallback_req;
744 if (!test_and_set_bit_lock(0, (unsigned long *) ctx->fallback_req))
745 return req;
746
747 return NULL;
748}
749
750static struct io_kiocb *io_get_req(struct io_ring_ctx *ctx,
751 struct io_submit_state *state)
752{
753 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
754 struct io_kiocb *req;
755
756 if (!percpu_ref_tryget(&ctx->refs))
757 return NULL;
758
759 if (!state) {
760 req = kmem_cache_alloc(req_cachep, gfp);
761 if (unlikely(!req))
762 goto fallback;
763 } else if (!state->free_reqs) {
764 size_t sz;
765 int ret;
766
767 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
768 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
769
770 /*
771 * Bulk alloc is all-or-nothing. If we fail to get a batch,
772 * retry single alloc to be on the safe side.
773 */
774 if (unlikely(ret <= 0)) {
775 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
776 if (!state->reqs[0])
777 goto fallback;
778 ret = 1;
779 }
780 state->free_reqs = ret - 1;
781 state->cur_req = 1;
782 req = state->reqs[0];
783 } else {
784 req = state->reqs[state->cur_req];
785 state->free_reqs--;
786 state->cur_req++;
787 }
788
789got_it:
790 req->file = NULL;
791 req->ctx = ctx;
792 req->flags = 0;
793 /* one is dropped after submission, the other at completion */
794 refcount_set(&req->refs, 2);
795 req->result = 0;
796 INIT_IO_WORK(&req->work, io_wq_submit_work);
797 return req;
798fallback:
799 req = io_get_fallback_req(ctx);
800 if (req)
801 goto got_it;
802 percpu_ref_put(&ctx->refs);
803 return NULL;
804}
805
806static void io_free_req_many(struct io_ring_ctx *ctx, void **reqs, int *nr)
807{
808 if (*nr) {
809 kmem_cache_free_bulk(req_cachep, *nr, reqs);
810 percpu_ref_put_many(&ctx->refs, *nr);
811 *nr = 0;
812 }
813}
814
815static void __io_free_req(struct io_kiocb *req)
816{
817 struct io_ring_ctx *ctx = req->ctx;
818
819 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
820 fput(req->file);
821 if (req->flags & REQ_F_INFLIGHT) {
822 unsigned long flags;
823
824 spin_lock_irqsave(&ctx->inflight_lock, flags);
825 list_del(&req->inflight_entry);
826 if (waitqueue_active(&ctx->inflight_wait))
827 wake_up(&ctx->inflight_wait);
828 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
829 }
830 percpu_ref_put(&ctx->refs);
831 if (likely(!io_is_fallback_req(req)))
832 kmem_cache_free(req_cachep, req);
833 else
834 clear_bit_unlock(0, (unsigned long *) ctx->fallback_req);
835}
836
837static bool io_link_cancel_timeout(struct io_kiocb *req)
838{
839 struct io_ring_ctx *ctx = req->ctx;
840 int ret;
841
842 ret = hrtimer_try_to_cancel(&req->timeout.timer);
843 if (ret != -1) {
844 io_cqring_fill_event(req, -ECANCELED);
845 io_commit_cqring(ctx);
846 req->flags &= ~REQ_F_LINK;
847 io_put_req(req);
848 return true;
849 }
850
851 return false;
852}
853
854static void io_req_link_next(struct io_kiocb *req, struct io_kiocb **nxtptr)
855{
856 struct io_ring_ctx *ctx = req->ctx;
857 struct io_kiocb *nxt;
858 bool wake_ev = false;
859
860 /*
861 * The list should never be empty when we are called here. But could
862 * potentially happen if the chain is messed up, check to be on the
863 * safe side.
864 */
865 nxt = list_first_entry_or_null(&req->link_list, struct io_kiocb, list);
866 while (nxt) {
867 list_del_init(&nxt->list);
868 if (!list_empty(&req->link_list)) {
869 INIT_LIST_HEAD(&nxt->link_list);
870 list_splice(&req->link_list, &nxt->link_list);
871 nxt->flags |= REQ_F_LINK;
872 }
873
874 /*
875 * If we're in async work, we can continue processing the chain
876 * in this context instead of having to queue up new async work.
877 */
878 if (req->flags & REQ_F_LINK_TIMEOUT) {
879 wake_ev = io_link_cancel_timeout(nxt);
880
881 /* we dropped this link, get next */
882 nxt = list_first_entry_or_null(&req->link_list,
883 struct io_kiocb, list);
884 } else if (nxtptr && io_wq_current_is_worker()) {
885 *nxtptr = nxt;
886 break;
887 } else {
888 io_queue_async_work(nxt);
889 break;
890 }
891 }
892
893 if (wake_ev)
894 io_cqring_ev_posted(ctx);
895}
896
897/*
898 * Called if REQ_F_LINK is set, and we fail the head request
899 */
900static void io_fail_links(struct io_kiocb *req)
901{
902 struct io_ring_ctx *ctx = req->ctx;
903 struct io_kiocb *link;
904 unsigned long flags;
905
906 spin_lock_irqsave(&ctx->completion_lock, flags);
907
908 while (!list_empty(&req->link_list)) {
909 link = list_first_entry(&req->link_list, struct io_kiocb, list);
910 list_del_init(&link->list);
911
912 trace_io_uring_fail_link(req, link);
913
914 if ((req->flags & REQ_F_LINK_TIMEOUT) &&
915 link->submit.sqe->opcode == IORING_OP_LINK_TIMEOUT) {
916 io_link_cancel_timeout(link);
917 } else {
918 io_cqring_fill_event(link, -ECANCELED);
919 io_double_put_req(link);
920 }
921 }
922
923 io_commit_cqring(ctx);
924 spin_unlock_irqrestore(&ctx->completion_lock, flags);
925 io_cqring_ev_posted(ctx);
926}
927
928static void io_free_req_find_next(struct io_kiocb *req, struct io_kiocb **nxt)
929{
930 if (likely(!(req->flags & REQ_F_LINK))) {
931 __io_free_req(req);
932 return;
933 }
934
935 /*
936 * If LINK is set, we have dependent requests in this chain. If we
937 * didn't fail this request, queue the first one up, moving any other
938 * dependencies to the next request. In case of failure, fail the rest
939 * of the chain.
940 */
941 if (req->flags & REQ_F_FAIL_LINK) {
942 io_fail_links(req);
943 } else if ((req->flags & (REQ_F_LINK_TIMEOUT | REQ_F_COMP_LOCKED)) ==
944 REQ_F_LINK_TIMEOUT) {
945 struct io_ring_ctx *ctx = req->ctx;
946 unsigned long flags;
947
948 /*
949 * If this is a timeout link, we could be racing with the
950 * timeout timer. Grab the completion lock for this case to
951 * protect against that.
952 */
953 spin_lock_irqsave(&ctx->completion_lock, flags);
954 io_req_link_next(req, nxt);
955 spin_unlock_irqrestore(&ctx->completion_lock, flags);
956 } else {
957 io_req_link_next(req, nxt);
958 }
959
960 __io_free_req(req);
961}
962
963static void io_free_req(struct io_kiocb *req)
964{
965 io_free_req_find_next(req, NULL);
966}
967
968/*
969 * Drop reference to request, return next in chain (if there is one) if this
970 * was the last reference to this request.
971 */
972static void io_put_req_find_next(struct io_kiocb *req, struct io_kiocb **nxtptr)
973{
974 struct io_kiocb *nxt = NULL;
975
976 if (refcount_dec_and_test(&req->refs))
977 io_free_req_find_next(req, &nxt);
978
979 if (nxt) {
980 if (nxtptr)
981 *nxtptr = nxt;
982 else
983 io_queue_async_work(nxt);
984 }
985}
986
987static void io_put_req(struct io_kiocb *req)
988{
989 if (refcount_dec_and_test(&req->refs))
990 io_free_req(req);
991}
992
993static void io_double_put_req(struct io_kiocb *req)
994{
995 /* drop both submit and complete references */
996 if (refcount_sub_and_test(2, &req->refs))
997 __io_free_req(req);
998}
999
1000static unsigned io_cqring_events(struct io_ring_ctx *ctx, bool noflush)
1001{
1002 struct io_rings *rings = ctx->rings;
1003
1004 /*
1005 * noflush == true is from the waitqueue handler, just ensure we wake
1006 * up the task, and the next invocation will flush the entries. We
1007 * cannot safely to it from here.
1008 */
1009 if (noflush && !list_empty(&ctx->cq_overflow_list))
1010 return -1U;
1011
1012 io_cqring_overflow_flush(ctx, false);
1013
1014 /* See comment at the top of this file */
1015 smp_rmb();
1016 return READ_ONCE(rings->cq.tail) - READ_ONCE(rings->cq.head);
1017}
1018
1019static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
1020{
1021 struct io_rings *rings = ctx->rings;
1022
1023 /* make sure SQ entry isn't read before tail */
1024 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
1025}
1026
1027/*
1028 * Find and free completed poll iocbs
1029 */
1030static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
1031 struct list_head *done)
1032{
1033 void *reqs[IO_IOPOLL_BATCH];
1034 struct io_kiocb *req;
1035 int to_free;
1036
1037 to_free = 0;
1038 while (!list_empty(done)) {
1039 req = list_first_entry(done, struct io_kiocb, list);
1040 list_del(&req->list);
1041
1042 io_cqring_fill_event(req, req->result);
1043 (*nr_events)++;
1044
1045 if (refcount_dec_and_test(&req->refs)) {
1046 /* If we're not using fixed files, we have to pair the
1047 * completion part with the file put. Use regular
1048 * completions for those, only batch free for fixed
1049 * file and non-linked commands.
1050 */
1051 if (((req->flags & (REQ_F_FIXED_FILE|REQ_F_LINK)) ==
1052 REQ_F_FIXED_FILE) && !io_is_fallback_req(req)) {
1053 reqs[to_free++] = req;
1054 if (to_free == ARRAY_SIZE(reqs))
1055 io_free_req_many(ctx, reqs, &to_free);
1056 } else {
1057 io_free_req(req);
1058 }
1059 }
1060 }
1061
1062 io_commit_cqring(ctx);
1063 io_free_req_many(ctx, reqs, &to_free);
1064}
1065
1066static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
1067 long min)
1068{
1069 struct io_kiocb *req, *tmp;
1070 LIST_HEAD(done);
1071 bool spin;
1072 int ret;
1073
1074 /*
1075 * Only spin for completions if we don't have multiple devices hanging
1076 * off our complete list, and we're under the requested amount.
1077 */
1078 spin = !ctx->poll_multi_file && *nr_events < min;
1079
1080 ret = 0;
1081 list_for_each_entry_safe(req, tmp, &ctx->poll_list, list) {
1082 struct kiocb *kiocb = &req->rw;
1083
1084 /*
1085 * Move completed entries to our local list. If we find a
1086 * request that requires polling, break out and complete
1087 * the done list first, if we have entries there.
1088 */
1089 if (req->flags & REQ_F_IOPOLL_COMPLETED) {
1090 list_move_tail(&req->list, &done);
1091 continue;
1092 }
1093 if (!list_empty(&done))
1094 break;
1095
1096 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
1097 if (ret < 0)
1098 break;
1099
1100 if (ret && spin)
1101 spin = false;
1102 ret = 0;
1103 }
1104
1105 if (!list_empty(&done))
1106 io_iopoll_complete(ctx, nr_events, &done);
1107
1108 return ret;
1109}
1110
1111/*
1112 * Poll for a mininum of 'min' events. Note that if min == 0 we consider that a
1113 * non-spinning poll check - we'll still enter the driver poll loop, but only
1114 * as a non-spinning completion check.
1115 */
1116static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
1117 long min)
1118{
1119 while (!list_empty(&ctx->poll_list) && !need_resched()) {
1120 int ret;
1121
1122 ret = io_do_iopoll(ctx, nr_events, min);
1123 if (ret < 0)
1124 return ret;
1125 if (!min || *nr_events >= min)
1126 return 0;
1127 }
1128
1129 return 1;
1130}
1131
1132/*
1133 * We can't just wait for polled events to come to us, we have to actively
1134 * find and complete them.
1135 */
1136static void io_iopoll_reap_events(struct io_ring_ctx *ctx)
1137{
1138 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1139 return;
1140
1141 mutex_lock(&ctx->uring_lock);
1142 while (!list_empty(&ctx->poll_list)) {
1143 unsigned int nr_events = 0;
1144
1145 io_iopoll_getevents(ctx, &nr_events, 1);
1146
1147 /*
1148 * Ensure we allow local-to-the-cpu processing to take place,
1149 * in this case we need to ensure that we reap all events.
1150 */
1151 cond_resched();
1152 }
1153 mutex_unlock(&ctx->uring_lock);
1154}
1155
1156static int __io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
1157 long min)
1158{
1159 int iters = 0, ret = 0;
1160
1161 do {
1162 int tmin = 0;
1163
1164 /*
1165 * Don't enter poll loop if we already have events pending.
1166 * If we do, we can potentially be spinning for commands that
1167 * already triggered a CQE (eg in error).
1168 */
1169 if (io_cqring_events(ctx, false))
1170 break;
1171
1172 /*
1173 * If a submit got punted to a workqueue, we can have the
1174 * application entering polling for a command before it gets
1175 * issued. That app will hold the uring_lock for the duration
1176 * of the poll right here, so we need to take a breather every
1177 * now and then to ensure that the issue has a chance to add
1178 * the poll to the issued list. Otherwise we can spin here
1179 * forever, while the workqueue is stuck trying to acquire the
1180 * very same mutex.
1181 */
1182 if (!(++iters & 7)) {
1183 mutex_unlock(&ctx->uring_lock);
1184 mutex_lock(&ctx->uring_lock);
1185 }
1186
1187 if (*nr_events < min)
1188 tmin = min - *nr_events;
1189
1190 ret = io_iopoll_getevents(ctx, nr_events, tmin);
1191 if (ret <= 0)
1192 break;
1193 ret = 0;
1194 } while (min && !*nr_events && !need_resched());
1195
1196 return ret;
1197}
1198
1199static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
1200 long min)
1201{
1202 int ret;
1203
1204 /*
1205 * We disallow the app entering submit/complete with polling, but we
1206 * still need to lock the ring to prevent racing with polled issue
1207 * that got punted to a workqueue.
1208 */
1209 mutex_lock(&ctx->uring_lock);
1210 ret = __io_iopoll_check(ctx, nr_events, min);
1211 mutex_unlock(&ctx->uring_lock);
1212 return ret;
1213}
1214
1215static void kiocb_end_write(struct io_kiocb *req)
1216{
1217 /*
1218 * Tell lockdep we inherited freeze protection from submission
1219 * thread.
1220 */
1221 if (req->flags & REQ_F_ISREG) {
1222 struct inode *inode = file_inode(req->file);
1223
1224 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1225 }
1226 file_end_write(req->file);
1227}
1228
1229static void io_complete_rw_common(struct kiocb *kiocb, long res)
1230{
1231 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
1232
1233 if (kiocb->ki_flags & IOCB_WRITE)
1234 kiocb_end_write(req);
1235
1236 if ((req->flags & REQ_F_LINK) && res != req->result)
1237 req->flags |= REQ_F_FAIL_LINK;
1238 io_cqring_add_event(req, res);
1239}
1240
1241static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
1242{
1243 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
1244
1245 io_complete_rw_common(kiocb, res);
1246 io_put_req(req);
1247}
1248
1249static struct io_kiocb *__io_complete_rw(struct kiocb *kiocb, long res)
1250{
1251 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
1252 struct io_kiocb *nxt = NULL;
1253
1254 io_complete_rw_common(kiocb, res);
1255 io_put_req_find_next(req, &nxt);
1256
1257 return nxt;
1258}
1259
1260static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
1261{
1262 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
1263
1264 if (kiocb->ki_flags & IOCB_WRITE)
1265 kiocb_end_write(req);
1266
1267 if ((req->flags & REQ_F_LINK) && res != req->result)
1268 req->flags |= REQ_F_FAIL_LINK;
1269 req->result = res;
1270 if (res != -EAGAIN)
1271 req->flags |= REQ_F_IOPOLL_COMPLETED;
1272}
1273
1274/*
1275 * After the iocb has been issued, it's safe to be found on the poll list.
1276 * Adding the kiocb to the list AFTER submission ensures that we don't
1277 * find it from a io_iopoll_getevents() thread before the issuer is done
1278 * accessing the kiocb cookie.
1279 */
1280static void io_iopoll_req_issued(struct io_kiocb *req)
1281{
1282 struct io_ring_ctx *ctx = req->ctx;
1283
1284 /*
1285 * Track whether we have multiple files in our lists. This will impact
1286 * how we do polling eventually, not spinning if we're on potentially
1287 * different devices.
1288 */
1289 if (list_empty(&ctx->poll_list)) {
1290 ctx->poll_multi_file = false;
1291 } else if (!ctx->poll_multi_file) {
1292 struct io_kiocb *list_req;
1293
1294 list_req = list_first_entry(&ctx->poll_list, struct io_kiocb,
1295 list);
1296 if (list_req->rw.ki_filp != req->rw.ki_filp)
1297 ctx->poll_multi_file = true;
1298 }
1299
1300 /*
1301 * For fast devices, IO may have already completed. If it has, add
1302 * it to the front so we find it first.
1303 */
1304 if (req->flags & REQ_F_IOPOLL_COMPLETED)
1305 list_add(&req->list, &ctx->poll_list);
1306 else
1307 list_add_tail(&req->list, &ctx->poll_list);
1308}
1309
1310static void io_file_put(struct io_submit_state *state)
1311{
1312 if (state->file) {
1313 int diff = state->has_refs - state->used_refs;
1314
1315 if (diff)
1316 fput_many(state->file, diff);
1317 state->file = NULL;
1318 }
1319}
1320
1321/*
1322 * Get as many references to a file as we have IOs left in this submission,
1323 * assuming most submissions are for one file, or at least that each file
1324 * has more than one submission.
1325 */
1326static struct file *io_file_get(struct io_submit_state *state, int fd)
1327{
1328 if (!state)
1329 return fget(fd);
1330
1331 if (state->file) {
1332 if (state->fd == fd) {
1333 state->used_refs++;
1334 state->ios_left--;
1335 return state->file;
1336 }
1337 io_file_put(state);
1338 }
1339 state->file = fget_many(fd, state->ios_left);
1340 if (!state->file)
1341 return NULL;
1342
1343 state->fd = fd;
1344 state->has_refs = state->ios_left;
1345 state->used_refs = 1;
1346 state->ios_left--;
1347 return state->file;
1348}
1349
1350/*
1351 * If we tracked the file through the SCM inflight mechanism, we could support
1352 * any file. For now, just ensure that anything potentially problematic is done
1353 * inline.
1354 */
1355static bool io_file_supports_async(struct file *file)
1356{
1357 umode_t mode = file_inode(file)->i_mode;
1358
1359 if (S_ISBLK(mode) || S_ISCHR(mode))
1360 return true;
1361 if (S_ISREG(mode) && file->f_op != &io_uring_fops)
1362 return true;
1363
1364 return false;
1365}
1366
1367static int io_prep_rw(struct io_kiocb *req, bool force_nonblock)
1368{
1369 const struct io_uring_sqe *sqe = req->submit.sqe;
1370 struct io_ring_ctx *ctx = req->ctx;
1371 struct kiocb *kiocb = &req->rw;
1372 unsigned ioprio;
1373 int ret;
1374
1375 if (!req->file)
1376 return -EBADF;
1377
1378 if (S_ISREG(file_inode(req->file)->i_mode))
1379 req->flags |= REQ_F_ISREG;
1380
1381 /*
1382 * If the file doesn't support async, mark it as REQ_F_MUST_PUNT so
1383 * we know to async punt it even if it was opened O_NONBLOCK
1384 */
1385 if (force_nonblock && !io_file_supports_async(req->file)) {
1386 req->flags |= REQ_F_MUST_PUNT;
1387 return -EAGAIN;
1388 }
1389
1390 kiocb->ki_pos = READ_ONCE(sqe->off);
1391 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
1392 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
1393
1394 ioprio = READ_ONCE(sqe->ioprio);
1395 if (ioprio) {
1396 ret = ioprio_check_cap(ioprio);
1397 if (ret)
1398 return ret;
1399
1400 kiocb->ki_ioprio = ioprio;
1401 } else
1402 kiocb->ki_ioprio = get_current_ioprio();
1403
1404 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
1405 if (unlikely(ret))
1406 return ret;
1407
1408 /* don't allow async punt if RWF_NOWAIT was requested */
1409 if ((kiocb->ki_flags & IOCB_NOWAIT) ||
1410 (req->file->f_flags & O_NONBLOCK))
1411 req->flags |= REQ_F_NOWAIT;
1412
1413 if (force_nonblock)
1414 kiocb->ki_flags |= IOCB_NOWAIT;
1415
1416 if (ctx->flags & IORING_SETUP_IOPOLL) {
1417 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
1418 !kiocb->ki_filp->f_op->iopoll)
1419 return -EOPNOTSUPP;
1420
1421 kiocb->ki_flags |= IOCB_HIPRI;
1422 kiocb->ki_complete = io_complete_rw_iopoll;
1423 req->result = 0;
1424 } else {
1425 if (kiocb->ki_flags & IOCB_HIPRI)
1426 return -EINVAL;
1427 kiocb->ki_complete = io_complete_rw;
1428 }
1429 return 0;
1430}
1431
1432static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
1433{
1434 switch (ret) {
1435 case -EIOCBQUEUED:
1436 break;
1437 case -ERESTARTSYS:
1438 case -ERESTARTNOINTR:
1439 case -ERESTARTNOHAND:
1440 case -ERESTART_RESTARTBLOCK:
1441 /*
1442 * We can't just restart the syscall, since previously
1443 * submitted sqes may already be in progress. Just fail this
1444 * IO with EINTR.
1445 */
1446 ret = -EINTR;
1447 /* fall through */
1448 default:
1449 kiocb->ki_complete(kiocb, ret, 0);
1450 }
1451}
1452
1453static void kiocb_done(struct kiocb *kiocb, ssize_t ret, struct io_kiocb **nxt,
1454 bool in_async)
1455{
1456 if (in_async && ret >= 0 && nxt && kiocb->ki_complete == io_complete_rw)
1457 *nxt = __io_complete_rw(kiocb, ret);
1458 else
1459 io_rw_done(kiocb, ret);
1460}
1461
1462static int io_import_fixed(struct io_ring_ctx *ctx, int rw,
1463 const struct io_uring_sqe *sqe,
1464 struct iov_iter *iter)
1465{
1466 size_t len = READ_ONCE(sqe->len);
1467 struct io_mapped_ubuf *imu;
1468 unsigned index, buf_index;
1469 size_t offset;
1470 u64 buf_addr;
1471
1472 /* attempt to use fixed buffers without having provided iovecs */
1473 if (unlikely(!ctx->user_bufs))
1474 return -EFAULT;
1475
1476 buf_index = READ_ONCE(sqe->buf_index);
1477 if (unlikely(buf_index >= ctx->nr_user_bufs))
1478 return -EFAULT;
1479
1480 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
1481 imu = &ctx->user_bufs[index];
1482 buf_addr = READ_ONCE(sqe->addr);
1483
1484 /* overflow */
1485 if (buf_addr + len < buf_addr)
1486 return -EFAULT;
1487 /* not inside the mapped region */
1488 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
1489 return -EFAULT;
1490
1491 /*
1492 * May not be a start of buffer, set size appropriately
1493 * and advance us to the beginning.
1494 */
1495 offset = buf_addr - imu->ubuf;
1496 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
1497
1498 if (offset) {
1499 /*
1500 * Don't use iov_iter_advance() here, as it's really slow for
1501 * using the latter parts of a big fixed buffer - it iterates
1502 * over each segment manually. We can cheat a bit here, because
1503 * we know that:
1504 *
1505 * 1) it's a BVEC iter, we set it up
1506 * 2) all bvecs are PAGE_SIZE in size, except potentially the
1507 * first and last bvec
1508 *
1509 * So just find our index, and adjust the iterator afterwards.
1510 * If the offset is within the first bvec (or the whole first
1511 * bvec, just use iov_iter_advance(). This makes it easier
1512 * since we can just skip the first segment, which may not
1513 * be PAGE_SIZE aligned.
1514 */
1515 const struct bio_vec *bvec = imu->bvec;
1516
1517 if (offset <= bvec->bv_len) {
1518 iov_iter_advance(iter, offset);
1519 } else {
1520 unsigned long seg_skip;
1521
1522 /* skip first vec */
1523 offset -= bvec->bv_len;
1524 seg_skip = 1 + (offset >> PAGE_SHIFT);
1525
1526 iter->bvec = bvec + seg_skip;
1527 iter->nr_segs -= seg_skip;
1528 iter->count -= bvec->bv_len + offset;
1529 iter->iov_offset = offset & ~PAGE_MASK;
1530 }
1531 }
1532
1533 return len;
1534}
1535
1536static ssize_t io_import_iovec(struct io_ring_ctx *ctx, int rw,
1537 const struct sqe_submit *s, struct iovec **iovec,
1538 struct iov_iter *iter)
1539{
1540 const struct io_uring_sqe *sqe = s->sqe;
1541 void __user *buf = u64_to_user_ptr(READ_ONCE(sqe->addr));
1542 size_t sqe_len = READ_ONCE(sqe->len);
1543 u8 opcode;
1544
1545 /*
1546 * We're reading ->opcode for the second time, but the first read
1547 * doesn't care whether it's _FIXED or not, so it doesn't matter
1548 * whether ->opcode changes concurrently. The first read does care
1549 * about whether it is a READ or a WRITE, so we don't trust this read
1550 * for that purpose and instead let the caller pass in the read/write
1551 * flag.
1552 */
1553 opcode = READ_ONCE(sqe->opcode);
1554 if (opcode == IORING_OP_READ_FIXED ||
1555 opcode == IORING_OP_WRITE_FIXED) {
1556 ssize_t ret = io_import_fixed(ctx, rw, sqe, iter);
1557 *iovec = NULL;
1558 return ret;
1559 }
1560
1561 if (!s->has_user)
1562 return -EFAULT;
1563
1564#ifdef CONFIG_COMPAT
1565 if (ctx->compat)
1566 return compat_import_iovec(rw, buf, sqe_len, UIO_FASTIOV,
1567 iovec, iter);
1568#endif
1569
1570 return import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter);
1571}
1572
1573/*
1574 * For files that don't have ->read_iter() and ->write_iter(), handle them
1575 * by looping over ->read() or ->write() manually.
1576 */
1577static ssize_t loop_rw_iter(int rw, struct file *file, struct kiocb *kiocb,
1578 struct iov_iter *iter)
1579{
1580 ssize_t ret = 0;
1581
1582 /*
1583 * Don't support polled IO through this interface, and we can't
1584 * support non-blocking either. For the latter, this just causes
1585 * the kiocb to be handled from an async context.
1586 */
1587 if (kiocb->ki_flags & IOCB_HIPRI)
1588 return -EOPNOTSUPP;
1589 if (kiocb->ki_flags & IOCB_NOWAIT)
1590 return -EAGAIN;
1591
1592 while (iov_iter_count(iter)) {
1593 struct iovec iovec = iov_iter_iovec(iter);
1594 ssize_t nr;
1595
1596 if (rw == READ) {
1597 nr = file->f_op->read(file, iovec.iov_base,
1598 iovec.iov_len, &kiocb->ki_pos);
1599 } else {
1600 nr = file->f_op->write(file, iovec.iov_base,
1601 iovec.iov_len, &kiocb->ki_pos);
1602 }
1603
1604 if (nr < 0) {
1605 if (!ret)
1606 ret = nr;
1607 break;
1608 }
1609 ret += nr;
1610 if (nr != iovec.iov_len)
1611 break;
1612 iov_iter_advance(iter, nr);
1613 }
1614
1615 return ret;
1616}
1617
1618static int io_read(struct io_kiocb *req, struct io_kiocb **nxt,
1619 bool force_nonblock)
1620{
1621 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1622 struct kiocb *kiocb = &req->rw;
1623 struct iov_iter iter;
1624 struct file *file;
1625 size_t iov_count;
1626 ssize_t read_size, ret;
1627
1628 ret = io_prep_rw(req, force_nonblock);
1629 if (ret)
1630 return ret;
1631 file = kiocb->ki_filp;
1632
1633 if (unlikely(!(file->f_mode & FMODE_READ)))
1634 return -EBADF;
1635
1636 ret = io_import_iovec(req->ctx, READ, &req->submit, &iovec, &iter);
1637 if (ret < 0)
1638 return ret;
1639
1640 read_size = ret;
1641 if (req->flags & REQ_F_LINK)
1642 req->result = read_size;
1643
1644 iov_count = iov_iter_count(&iter);
1645 ret = rw_verify_area(READ, file, &kiocb->ki_pos, iov_count);
1646 if (!ret) {
1647 ssize_t ret2;
1648
1649 if (file->f_op->read_iter)
1650 ret2 = call_read_iter(file, kiocb, &iter);
1651 else
1652 ret2 = loop_rw_iter(READ, file, kiocb, &iter);
1653
1654 /*
1655 * In case of a short read, punt to async. This can happen
1656 * if we have data partially cached. Alternatively we can
1657 * return the short read, in which case the application will
1658 * need to issue another SQE and wait for it. That SQE will
1659 * need async punt anyway, so it's more efficient to do it
1660 * here.
1661 */
1662 if (force_nonblock && !(req->flags & REQ_F_NOWAIT) &&
1663 (req->flags & REQ_F_ISREG) &&
1664 ret2 > 0 && ret2 < read_size)
1665 ret2 = -EAGAIN;
1666 /* Catch -EAGAIN return for forced non-blocking submission */
1667 if (!force_nonblock || ret2 != -EAGAIN)
1668 kiocb_done(kiocb, ret2, nxt, req->submit.in_async);
1669 else
1670 ret = -EAGAIN;
1671 }
1672 kfree(iovec);
1673 return ret;
1674}
1675
1676static int io_write(struct io_kiocb *req, struct io_kiocb **nxt,
1677 bool force_nonblock)
1678{
1679 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1680 struct kiocb *kiocb = &req->rw;
1681 struct iov_iter iter;
1682 struct file *file;
1683 size_t iov_count;
1684 ssize_t ret;
1685
1686 ret = io_prep_rw(req, force_nonblock);
1687 if (ret)
1688 return ret;
1689
1690 file = kiocb->ki_filp;
1691 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1692 return -EBADF;
1693
1694 ret = io_import_iovec(req->ctx, WRITE, &req->submit, &iovec, &iter);
1695 if (ret < 0)
1696 return ret;
1697
1698 if (req->flags & REQ_F_LINK)
1699 req->result = ret;
1700
1701 iov_count = iov_iter_count(&iter);
1702
1703 ret = -EAGAIN;
1704 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT))
1705 goto out_free;
1706
1707 ret = rw_verify_area(WRITE, file, &kiocb->ki_pos, iov_count);
1708 if (!ret) {
1709 ssize_t ret2;
1710
1711 /*
1712 * Open-code file_start_write here to grab freeze protection,
1713 * which will be released by another thread in
1714 * io_complete_rw(). Fool lockdep by telling it the lock got
1715 * released so that it doesn't complain about the held lock when
1716 * we return to userspace.
1717 */
1718 if (req->flags & REQ_F_ISREG) {
1719 __sb_start_write(file_inode(file)->i_sb,
1720 SB_FREEZE_WRITE, true);
1721 __sb_writers_release(file_inode(file)->i_sb,
1722 SB_FREEZE_WRITE);
1723 }
1724 kiocb->ki_flags |= IOCB_WRITE;
1725
1726 if (file->f_op->write_iter)
1727 ret2 = call_write_iter(file, kiocb, &iter);
1728 else
1729 ret2 = loop_rw_iter(WRITE, file, kiocb, &iter);
1730 if (!force_nonblock || ret2 != -EAGAIN)
1731 kiocb_done(kiocb, ret2, nxt, req->submit.in_async);
1732 else
1733 ret = -EAGAIN;
1734 }
1735out_free:
1736 kfree(iovec);
1737 return ret;
1738}
1739
1740/*
1741 * IORING_OP_NOP just posts a completion event, nothing else.
1742 */
1743static int io_nop(struct io_kiocb *req)
1744{
1745 struct io_ring_ctx *ctx = req->ctx;
1746
1747 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1748 return -EINVAL;
1749
1750 io_cqring_add_event(req, 0);
1751 io_put_req(req);
1752 return 0;
1753}
1754
1755static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1756{
1757 struct io_ring_ctx *ctx = req->ctx;
1758
1759 if (!req->file)
1760 return -EBADF;
1761
1762 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1763 return -EINVAL;
1764 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
1765 return -EINVAL;
1766
1767 return 0;
1768}
1769
1770static int io_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1771 struct io_kiocb **nxt, bool force_nonblock)
1772{
1773 loff_t sqe_off = READ_ONCE(sqe->off);
1774 loff_t sqe_len = READ_ONCE(sqe->len);
1775 loff_t end = sqe_off + sqe_len;
1776 unsigned fsync_flags;
1777 int ret;
1778
1779 fsync_flags = READ_ONCE(sqe->fsync_flags);
1780 if (unlikely(fsync_flags & ~IORING_FSYNC_DATASYNC))
1781 return -EINVAL;
1782
1783 ret = io_prep_fsync(req, sqe);
1784 if (ret)
1785 return ret;
1786
1787 /* fsync always requires a blocking context */
1788 if (force_nonblock)
1789 return -EAGAIN;
1790
1791 ret = vfs_fsync_range(req->rw.ki_filp, sqe_off,
1792 end > 0 ? end : LLONG_MAX,
1793 fsync_flags & IORING_FSYNC_DATASYNC);
1794
1795 if (ret < 0 && (req->flags & REQ_F_LINK))
1796 req->flags |= REQ_F_FAIL_LINK;
1797 io_cqring_add_event(req, ret);
1798 io_put_req_find_next(req, nxt);
1799 return 0;
1800}
1801
1802static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1803{
1804 struct io_ring_ctx *ctx = req->ctx;
1805 int ret = 0;
1806
1807 if (!req->file)
1808 return -EBADF;
1809
1810 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1811 return -EINVAL;
1812 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
1813 return -EINVAL;
1814
1815 return ret;
1816}
1817
1818static int io_sync_file_range(struct io_kiocb *req,
1819 const struct io_uring_sqe *sqe,
1820 struct io_kiocb **nxt,
1821 bool force_nonblock)
1822{
1823 loff_t sqe_off;
1824 loff_t sqe_len;
1825 unsigned flags;
1826 int ret;
1827
1828 ret = io_prep_sfr(req, sqe);
1829 if (ret)
1830 return ret;
1831
1832 /* sync_file_range always requires a blocking context */
1833 if (force_nonblock)
1834 return -EAGAIN;
1835
1836 sqe_off = READ_ONCE(sqe->off);
1837 sqe_len = READ_ONCE(sqe->len);
1838 flags = READ_ONCE(sqe->sync_range_flags);
1839
1840 ret = sync_file_range(req->rw.ki_filp, sqe_off, sqe_len, flags);
1841
1842 if (ret < 0 && (req->flags & REQ_F_LINK))
1843 req->flags |= REQ_F_FAIL_LINK;
1844 io_cqring_add_event(req, ret);
1845 io_put_req_find_next(req, nxt);
1846 return 0;
1847}
1848
1849#if defined(CONFIG_NET)
1850static int io_send_recvmsg(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1851 struct io_kiocb **nxt, bool force_nonblock,
1852 long (*fn)(struct socket *, struct user_msghdr __user *,
1853 unsigned int))
1854{
1855 struct socket *sock;
1856 int ret;
1857
1858 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
1859 return -EINVAL;
1860
1861 sock = sock_from_file(req->file, &ret);
1862 if (sock) {
1863 struct user_msghdr __user *msg;
1864 unsigned flags;
1865
1866 flags = READ_ONCE(sqe->msg_flags);
1867 if (flags & MSG_DONTWAIT)
1868 req->flags |= REQ_F_NOWAIT;
1869 else if (force_nonblock)
1870 flags |= MSG_DONTWAIT;
1871
1872 msg = (struct user_msghdr __user *) (unsigned long)
1873 READ_ONCE(sqe->addr);
1874
1875 ret = fn(sock, msg, flags);
1876 if (force_nonblock && ret == -EAGAIN)
1877 return ret;
1878 }
1879
1880 io_cqring_add_event(req, ret);
1881 if (ret < 0 && (req->flags & REQ_F_LINK))
1882 req->flags |= REQ_F_FAIL_LINK;
1883 io_put_req_find_next(req, nxt);
1884 return 0;
1885}
1886#endif
1887
1888static int io_sendmsg(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1889 struct io_kiocb **nxt, bool force_nonblock)
1890{
1891#if defined(CONFIG_NET)
1892 return io_send_recvmsg(req, sqe, nxt, force_nonblock,
1893 __sys_sendmsg_sock);
1894#else
1895 return -EOPNOTSUPP;
1896#endif
1897}
1898
1899static int io_recvmsg(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1900 struct io_kiocb **nxt, bool force_nonblock)
1901{
1902#if defined(CONFIG_NET)
1903 return io_send_recvmsg(req, sqe, nxt, force_nonblock,
1904 __sys_recvmsg_sock);
1905#else
1906 return -EOPNOTSUPP;
1907#endif
1908}
1909
1910static int io_accept(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1911 struct io_kiocb **nxt, bool force_nonblock)
1912{
1913#if defined(CONFIG_NET)
1914 struct sockaddr __user *addr;
1915 int __user *addr_len;
1916 unsigned file_flags;
1917 int flags, ret;
1918
1919 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
1920 return -EINVAL;
1921 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
1922 return -EINVAL;
1923
1924 addr = (struct sockaddr __user *) (unsigned long) READ_ONCE(sqe->addr);
1925 addr_len = (int __user *) (unsigned long) READ_ONCE(sqe->addr2);
1926 flags = READ_ONCE(sqe->accept_flags);
1927 file_flags = force_nonblock ? O_NONBLOCK : 0;
1928
1929 ret = __sys_accept4_file(req->file, file_flags, addr, addr_len, flags);
1930 if (ret == -EAGAIN && force_nonblock) {
1931 req->work.flags |= IO_WQ_WORK_NEEDS_FILES;
1932 return -EAGAIN;
1933 }
1934 if (ret == -ERESTARTSYS)
1935 ret = -EINTR;
1936 if (ret < 0 && (req->flags & REQ_F_LINK))
1937 req->flags |= REQ_F_FAIL_LINK;
1938 io_cqring_add_event(req, ret);
1939 io_put_req_find_next(req, nxt);
1940 return 0;
1941#else
1942 return -EOPNOTSUPP;
1943#endif
1944}
1945
1946static inline void io_poll_remove_req(struct io_kiocb *req)
1947{
1948 if (!RB_EMPTY_NODE(&req->rb_node)) {
1949 rb_erase(&req->rb_node, &req->ctx->cancel_tree);
1950 RB_CLEAR_NODE(&req->rb_node);
1951 }
1952}
1953
1954static void io_poll_remove_one(struct io_kiocb *req)
1955{
1956 struct io_poll_iocb *poll = &req->poll;
1957
1958 spin_lock(&poll->head->lock);
1959 WRITE_ONCE(poll->canceled, true);
1960 if (!list_empty(&poll->wait.entry)) {
1961 list_del_init(&poll->wait.entry);
1962 io_queue_async_work(req);
1963 }
1964 spin_unlock(&poll->head->lock);
1965 io_poll_remove_req(req);
1966}
1967
1968static void io_poll_remove_all(struct io_ring_ctx *ctx)
1969{
1970 struct rb_node *node;
1971 struct io_kiocb *req;
1972
1973 spin_lock_irq(&ctx->completion_lock);
1974 while ((node = rb_first(&ctx->cancel_tree)) != NULL) {
1975 req = rb_entry(node, struct io_kiocb, rb_node);
1976 io_poll_remove_one(req);
1977 }
1978 spin_unlock_irq(&ctx->completion_lock);
1979}
1980
1981static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
1982{
1983 struct rb_node *p, *parent = NULL;
1984 struct io_kiocb *req;
1985
1986 p = ctx->cancel_tree.rb_node;
1987 while (p) {
1988 parent = p;
1989 req = rb_entry(parent, struct io_kiocb, rb_node);
1990 if (sqe_addr < req->user_data) {
1991 p = p->rb_left;
1992 } else if (sqe_addr > req->user_data) {
1993 p = p->rb_right;
1994 } else {
1995 io_poll_remove_one(req);
1996 return 0;
1997 }
1998 }
1999
2000 return -ENOENT;
2001}
2002
2003/*
2004 * Find a running poll command that matches one specified in sqe->addr,
2005 * and remove it if found.
2006 */
2007static int io_poll_remove(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2008{
2009 struct io_ring_ctx *ctx = req->ctx;
2010 int ret;
2011
2012 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
2013 return -EINVAL;
2014 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
2015 sqe->poll_events)
2016 return -EINVAL;
2017
2018 spin_lock_irq(&ctx->completion_lock);
2019 ret = io_poll_cancel(ctx, READ_ONCE(sqe->addr));
2020 spin_unlock_irq(&ctx->completion_lock);
2021
2022 io_cqring_add_event(req, ret);
2023 if (ret < 0 && (req->flags & REQ_F_LINK))
2024 req->flags |= REQ_F_FAIL_LINK;
2025 io_put_req(req);
2026 return 0;
2027}
2028
2029static void io_poll_complete(struct io_kiocb *req, __poll_t mask)
2030{
2031 struct io_ring_ctx *ctx = req->ctx;
2032
2033 req->poll.done = true;
2034 io_cqring_fill_event(req, mangle_poll(mask));
2035 io_commit_cqring(ctx);
2036}
2037
2038static void io_poll_complete_work(struct io_wq_work **workptr)
2039{
2040 struct io_wq_work *work = *workptr;
2041 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2042 struct io_poll_iocb *poll = &req->poll;
2043 struct poll_table_struct pt = { ._key = poll->events };
2044 struct io_ring_ctx *ctx = req->ctx;
2045 struct io_kiocb *nxt = NULL;
2046 __poll_t mask = 0;
2047
2048 if (work->flags & IO_WQ_WORK_CANCEL)
2049 WRITE_ONCE(poll->canceled, true);
2050
2051 if (!READ_ONCE(poll->canceled))
2052 mask = vfs_poll(poll->file, &pt) & poll->events;
2053
2054 /*
2055 * Note that ->ki_cancel callers also delete iocb from active_reqs after
2056 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
2057 * synchronize with them. In the cancellation case the list_del_init
2058 * itself is not actually needed, but harmless so we keep it in to
2059 * avoid further branches in the fast path.
2060 */
2061 spin_lock_irq(&ctx->completion_lock);
2062 if (!mask && !READ_ONCE(poll->canceled)) {
2063 add_wait_queue(poll->head, &poll->wait);
2064 spin_unlock_irq(&ctx->completion_lock);
2065 return;
2066 }
2067 io_poll_remove_req(req);
2068 io_poll_complete(req, mask);
2069 spin_unlock_irq(&ctx->completion_lock);
2070
2071 io_cqring_ev_posted(ctx);
2072
2073 io_put_req_find_next(req, &nxt);
2074 if (nxt)
2075 *workptr = &nxt->work;
2076}
2077
2078static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
2079 void *key)
2080{
2081 struct io_poll_iocb *poll = container_of(wait, struct io_poll_iocb,
2082 wait);
2083 struct io_kiocb *req = container_of(poll, struct io_kiocb, poll);
2084 struct io_ring_ctx *ctx = req->ctx;
2085 __poll_t mask = key_to_poll(key);
2086 unsigned long flags;
2087
2088 /* for instances that support it check for an event match first: */
2089 if (mask && !(mask & poll->events))
2090 return 0;
2091
2092 list_del_init(&poll->wait.entry);
2093
2094 /*
2095 * Run completion inline if we can. We're using trylock here because
2096 * we are violating the completion_lock -> poll wq lock ordering.
2097 * If we have a link timeout we're going to need the completion_lock
2098 * for finalizing the request, mark us as having grabbed that already.
2099 */
2100 if (mask && spin_trylock_irqsave(&ctx->completion_lock, flags)) {
2101 io_poll_remove_req(req);
2102 io_poll_complete(req, mask);
2103 req->flags |= REQ_F_COMP_LOCKED;
2104 io_put_req(req);
2105 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2106
2107 io_cqring_ev_posted(ctx);
2108 } else {
2109 io_queue_async_work(req);
2110 }
2111
2112 return 1;
2113}
2114
2115struct io_poll_table {
2116 struct poll_table_struct pt;
2117 struct io_kiocb *req;
2118 int error;
2119};
2120
2121static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
2122 struct poll_table_struct *p)
2123{
2124 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
2125
2126 if (unlikely(pt->req->poll.head)) {
2127 pt->error = -EINVAL;
2128 return;
2129 }
2130
2131 pt->error = 0;
2132 pt->req->poll.head = head;
2133 add_wait_queue(head, &pt->req->poll.wait);
2134}
2135
2136static void io_poll_req_insert(struct io_kiocb *req)
2137{
2138 struct io_ring_ctx *ctx = req->ctx;
2139 struct rb_node **p = &ctx->cancel_tree.rb_node;
2140 struct rb_node *parent = NULL;
2141 struct io_kiocb *tmp;
2142
2143 while (*p) {
2144 parent = *p;
2145 tmp = rb_entry(parent, struct io_kiocb, rb_node);
2146 if (req->user_data < tmp->user_data)
2147 p = &(*p)->rb_left;
2148 else
2149 p = &(*p)->rb_right;
2150 }
2151 rb_link_node(&req->rb_node, parent, p);
2152 rb_insert_color(&req->rb_node, &ctx->cancel_tree);
2153}
2154
2155static int io_poll_add(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2156 struct io_kiocb **nxt)
2157{
2158 struct io_poll_iocb *poll = &req->poll;
2159 struct io_ring_ctx *ctx = req->ctx;
2160 struct io_poll_table ipt;
2161 bool cancel = false;
2162 __poll_t mask;
2163 u16 events;
2164
2165 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
2166 return -EINVAL;
2167 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
2168 return -EINVAL;
2169 if (!poll->file)
2170 return -EBADF;
2171
2172 req->submit.sqe = NULL;
2173 INIT_IO_WORK(&req->work, io_poll_complete_work);
2174 events = READ_ONCE(sqe->poll_events);
2175 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP;
2176 RB_CLEAR_NODE(&req->rb_node);
2177
2178 poll->head = NULL;
2179 poll->done = false;
2180 poll->canceled = false;
2181
2182 ipt.pt._qproc = io_poll_queue_proc;
2183 ipt.pt._key = poll->events;
2184 ipt.req = req;
2185 ipt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
2186
2187 /* initialized the list so that we can do list_empty checks */
2188 INIT_LIST_HEAD(&poll->wait.entry);
2189 init_waitqueue_func_entry(&poll->wait, io_poll_wake);
2190
2191 INIT_LIST_HEAD(&req->list);
2192
2193 mask = vfs_poll(poll->file, &ipt.pt) & poll->events;
2194
2195 spin_lock_irq(&ctx->completion_lock);
2196 if (likely(poll->head)) {
2197 spin_lock(&poll->head->lock);
2198 if (unlikely(list_empty(&poll->wait.entry))) {
2199 if (ipt.error)
2200 cancel = true;
2201 ipt.error = 0;
2202 mask = 0;
2203 }
2204 if (mask || ipt.error)
2205 list_del_init(&poll->wait.entry);
2206 else if (cancel)
2207 WRITE_ONCE(poll->canceled, true);
2208 else if (!poll->done) /* actually waiting for an event */
2209 io_poll_req_insert(req);
2210 spin_unlock(&poll->head->lock);
2211 }
2212 if (mask) { /* no async, we'd stolen it */
2213 ipt.error = 0;
2214 io_poll_complete(req, mask);
2215 }
2216 spin_unlock_irq(&ctx->completion_lock);
2217
2218 if (mask) {
2219 io_cqring_ev_posted(ctx);
2220 io_put_req_find_next(req, nxt);
2221 }
2222 return ipt.error;
2223}
2224
2225static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
2226{
2227 struct io_ring_ctx *ctx;
2228 struct io_kiocb *req;
2229 unsigned long flags;
2230
2231 req = container_of(timer, struct io_kiocb, timeout.timer);
2232 ctx = req->ctx;
2233 atomic_inc(&ctx->cq_timeouts);
2234
2235 spin_lock_irqsave(&ctx->completion_lock, flags);
2236 /*
2237 * We could be racing with timeout deletion. If the list is empty,
2238 * then timeout lookup already found it and will be handling it.
2239 */
2240 if (!list_empty(&req->list)) {
2241 struct io_kiocb *prev;
2242
2243 /*
2244 * Adjust the reqs sequence before the current one because it
2245 * will consume a slot in the cq_ring and the the cq_tail
2246 * pointer will be increased, otherwise other timeout reqs may
2247 * return in advance without waiting for enough wait_nr.
2248 */
2249 prev = req;
2250 list_for_each_entry_continue_reverse(prev, &ctx->timeout_list, list)
2251 prev->sequence++;
2252 list_del_init(&req->list);
2253 }
2254
2255 io_cqring_fill_event(req, -ETIME);
2256 io_commit_cqring(ctx);
2257 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2258
2259 io_cqring_ev_posted(ctx);
2260 if (req->flags & REQ_F_LINK)
2261 req->flags |= REQ_F_FAIL_LINK;
2262 io_put_req(req);
2263 return HRTIMER_NORESTART;
2264}
2265
2266static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
2267{
2268 struct io_kiocb *req;
2269 int ret = -ENOENT;
2270
2271 list_for_each_entry(req, &ctx->timeout_list, list) {
2272 if (user_data == req->user_data) {
2273 list_del_init(&req->list);
2274 ret = 0;
2275 break;
2276 }
2277 }
2278
2279 if (ret == -ENOENT)
2280 return ret;
2281
2282 ret = hrtimer_try_to_cancel(&req->timeout.timer);
2283 if (ret == -1)
2284 return -EALREADY;
2285
2286 io_cqring_fill_event(req, -ECANCELED);
2287 io_put_req(req);
2288 return 0;
2289}
2290
2291/*
2292 * Remove or update an existing timeout command
2293 */
2294static int io_timeout_remove(struct io_kiocb *req,
2295 const struct io_uring_sqe *sqe)
2296{
2297 struct io_ring_ctx *ctx = req->ctx;
2298 unsigned flags;
2299 int ret;
2300
2301 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
2302 return -EINVAL;
2303 if (sqe->flags || sqe->ioprio || sqe->buf_index || sqe->len)
2304 return -EINVAL;
2305 flags = READ_ONCE(sqe->timeout_flags);
2306 if (flags)
2307 return -EINVAL;
2308
2309 spin_lock_irq(&ctx->completion_lock);
2310 ret = io_timeout_cancel(ctx, READ_ONCE(sqe->addr));
2311
2312 io_cqring_fill_event(req, ret);
2313 io_commit_cqring(ctx);
2314 spin_unlock_irq(&ctx->completion_lock);
2315 io_cqring_ev_posted(ctx);
2316 if (ret < 0 && req->flags & REQ_F_LINK)
2317 req->flags |= REQ_F_FAIL_LINK;
2318 io_put_req(req);
2319 return 0;
2320}
2321
2322static int io_timeout(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2323{
2324 unsigned count;
2325 struct io_ring_ctx *ctx = req->ctx;
2326 struct list_head *entry;
2327 enum hrtimer_mode mode;
2328 struct timespec64 ts;
2329 unsigned span = 0;
2330 unsigned flags;
2331
2332 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
2333 return -EINVAL;
2334 if (sqe->flags || sqe->ioprio || sqe->buf_index || sqe->len != 1)
2335 return -EINVAL;
2336 flags = READ_ONCE(sqe->timeout_flags);
2337 if (flags & ~IORING_TIMEOUT_ABS)
2338 return -EINVAL;
2339
2340 if (get_timespec64(&ts, u64_to_user_ptr(sqe->addr)))
2341 return -EFAULT;
2342
2343 if (flags & IORING_TIMEOUT_ABS)
2344 mode = HRTIMER_MODE_ABS;
2345 else
2346 mode = HRTIMER_MODE_REL;
2347
2348 hrtimer_init(&req->timeout.timer, CLOCK_MONOTONIC, mode);
2349 req->flags |= REQ_F_TIMEOUT;
2350
2351 /*
2352 * sqe->off holds how many events that need to occur for this
2353 * timeout event to be satisfied. If it isn't set, then this is
2354 * a pure timeout request, sequence isn't used.
2355 */
2356 count = READ_ONCE(sqe->off);
2357 if (!count) {
2358 req->flags |= REQ_F_TIMEOUT_NOSEQ;
2359 spin_lock_irq(&ctx->completion_lock);
2360 entry = ctx->timeout_list.prev;
2361 goto add;
2362 }
2363
2364 req->sequence = ctx->cached_sq_head + count - 1;
2365 /* reuse it to store the count */
2366 req->submit.sequence = count;
2367
2368 /*
2369 * Insertion sort, ensuring the first entry in the list is always
2370 * the one we need first.
2371 */
2372 spin_lock_irq(&ctx->completion_lock);
2373 list_for_each_prev(entry, &ctx->timeout_list) {
2374 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb, list);
2375 unsigned nxt_sq_head;
2376 long long tmp, tmp_nxt;
2377
2378 if (nxt->flags & REQ_F_TIMEOUT_NOSEQ)
2379 continue;
2380
2381 /*
2382 * Since cached_sq_head + count - 1 can overflow, use type long
2383 * long to store it.
2384 */
2385 tmp = (long long)ctx->cached_sq_head + count - 1;
2386 nxt_sq_head = nxt->sequence - nxt->submit.sequence + 1;
2387 tmp_nxt = (long long)nxt_sq_head + nxt->submit.sequence - 1;
2388
2389 /*
2390 * cached_sq_head may overflow, and it will never overflow twice
2391 * once there is some timeout req still be valid.
2392 */
2393 if (ctx->cached_sq_head < nxt_sq_head)
2394 tmp += UINT_MAX;
2395
2396 if (tmp > tmp_nxt)
2397 break;
2398
2399 /*
2400 * Sequence of reqs after the insert one and itself should
2401 * be adjusted because each timeout req consumes a slot.
2402 */
2403 span++;
2404 nxt->sequence++;
2405 }
2406 req->sequence -= span;
2407add:
2408 list_add(&req->list, entry);
2409 req->timeout.timer.function = io_timeout_fn;
2410 hrtimer_start(&req->timeout.timer, timespec64_to_ktime(ts), mode);
2411 spin_unlock_irq(&ctx->completion_lock);
2412 return 0;
2413}
2414
2415static bool io_cancel_cb(struct io_wq_work *work, void *data)
2416{
2417 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2418
2419 return req->user_data == (unsigned long) data;
2420}
2421
2422static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
2423{
2424 enum io_wq_cancel cancel_ret;
2425 int ret = 0;
2426
2427 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr);
2428 switch (cancel_ret) {
2429 case IO_WQ_CANCEL_OK:
2430 ret = 0;
2431 break;
2432 case IO_WQ_CANCEL_RUNNING:
2433 ret = -EALREADY;
2434 break;
2435 case IO_WQ_CANCEL_NOTFOUND:
2436 ret = -ENOENT;
2437 break;
2438 }
2439
2440 return ret;
2441}
2442
2443static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
2444 struct io_kiocb *req, __u64 sqe_addr,
2445 struct io_kiocb **nxt)
2446{
2447 unsigned long flags;
2448 int ret;
2449
2450 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
2451 if (ret != -ENOENT) {
2452 spin_lock_irqsave(&ctx->completion_lock, flags);
2453 goto done;
2454 }
2455
2456 spin_lock_irqsave(&ctx->completion_lock, flags);
2457 ret = io_timeout_cancel(ctx, sqe_addr);
2458 if (ret != -ENOENT)
2459 goto done;
2460 ret = io_poll_cancel(ctx, sqe_addr);
2461done:
2462 io_cqring_fill_event(req, ret);
2463 io_commit_cqring(ctx);
2464 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2465 io_cqring_ev_posted(ctx);
2466
2467 if (ret < 0 && (req->flags & REQ_F_LINK))
2468 req->flags |= REQ_F_FAIL_LINK;
2469 io_put_req_find_next(req, nxt);
2470}
2471
2472static int io_async_cancel(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2473 struct io_kiocb **nxt)
2474{
2475 struct io_ring_ctx *ctx = req->ctx;
2476
2477 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
2478 return -EINVAL;
2479 if (sqe->flags || sqe->ioprio || sqe->off || sqe->len ||
2480 sqe->cancel_flags)
2481 return -EINVAL;
2482
2483 io_async_find_and_cancel(ctx, req, READ_ONCE(sqe->addr), NULL);
2484 return 0;
2485}
2486
2487static int io_req_defer(struct io_kiocb *req)
2488{
2489 const struct io_uring_sqe *sqe = req->submit.sqe;
2490 struct io_uring_sqe *sqe_copy;
2491 struct io_ring_ctx *ctx = req->ctx;
2492
2493 /* Still need defer if there is pending req in defer list. */
2494 if (!req_need_defer(req) && list_empty(&ctx->defer_list))
2495 return 0;
2496
2497 sqe_copy = kmalloc(sizeof(*sqe_copy), GFP_KERNEL);
2498 if (!sqe_copy)
2499 return -EAGAIN;
2500
2501 spin_lock_irq(&ctx->completion_lock);
2502 if (!req_need_defer(req) && list_empty(&ctx->defer_list)) {
2503 spin_unlock_irq(&ctx->completion_lock);
2504 kfree(sqe_copy);
2505 return 0;
2506 }
2507
2508 memcpy(sqe_copy, sqe, sizeof(*sqe_copy));
2509 req->submit.sqe = sqe_copy;
2510
2511 trace_io_uring_defer(ctx, req, false);
2512 list_add_tail(&req->list, &ctx->defer_list);
2513 spin_unlock_irq(&ctx->completion_lock);
2514 return -EIOCBQUEUED;
2515}
2516
2517static int __io_submit_sqe(struct io_kiocb *req, struct io_kiocb **nxt,
2518 bool force_nonblock)
2519{
2520 int ret, opcode;
2521 struct sqe_submit *s = &req->submit;
2522 struct io_ring_ctx *ctx = req->ctx;
2523
2524 opcode = READ_ONCE(s->sqe->opcode);
2525 switch (opcode) {
2526 case IORING_OP_NOP:
2527 ret = io_nop(req);
2528 break;
2529 case IORING_OP_READV:
2530 if (unlikely(s->sqe->buf_index))
2531 return -EINVAL;
2532 ret = io_read(req, nxt, force_nonblock);
2533 break;
2534 case IORING_OP_WRITEV:
2535 if (unlikely(s->sqe->buf_index))
2536 return -EINVAL;
2537 ret = io_write(req, nxt, force_nonblock);
2538 break;
2539 case IORING_OP_READ_FIXED:
2540 ret = io_read(req, nxt, force_nonblock);
2541 break;
2542 case IORING_OP_WRITE_FIXED:
2543 ret = io_write(req, nxt, force_nonblock);
2544 break;
2545 case IORING_OP_FSYNC:
2546 ret = io_fsync(req, s->sqe, nxt, force_nonblock);
2547 break;
2548 case IORING_OP_POLL_ADD:
2549 ret = io_poll_add(req, s->sqe, nxt);
2550 break;
2551 case IORING_OP_POLL_REMOVE:
2552 ret = io_poll_remove(req, s->sqe);
2553 break;
2554 case IORING_OP_SYNC_FILE_RANGE:
2555 ret = io_sync_file_range(req, s->sqe, nxt, force_nonblock);
2556 break;
2557 case IORING_OP_SENDMSG:
2558 ret = io_sendmsg(req, s->sqe, nxt, force_nonblock);
2559 break;
2560 case IORING_OP_RECVMSG:
2561 ret = io_recvmsg(req, s->sqe, nxt, force_nonblock);
2562 break;
2563 case IORING_OP_TIMEOUT:
2564 ret = io_timeout(req, s->sqe);
2565 break;
2566 case IORING_OP_TIMEOUT_REMOVE:
2567 ret = io_timeout_remove(req, s->sqe);
2568 break;
2569 case IORING_OP_ACCEPT:
2570 ret = io_accept(req, s->sqe, nxt, force_nonblock);
2571 break;
2572 case IORING_OP_ASYNC_CANCEL:
2573 ret = io_async_cancel(req, s->sqe, nxt);
2574 break;
2575 default:
2576 ret = -EINVAL;
2577 break;
2578 }
2579
2580 if (ret)
2581 return ret;
2582
2583 if (ctx->flags & IORING_SETUP_IOPOLL) {
2584 if (req->result == -EAGAIN)
2585 return -EAGAIN;
2586
2587 /* workqueue context doesn't hold uring_lock, grab it now */
2588 if (s->in_async)
2589 mutex_lock(&ctx->uring_lock);
2590 io_iopoll_req_issued(req);
2591 if (s->in_async)
2592 mutex_unlock(&ctx->uring_lock);
2593 }
2594
2595 return 0;
2596}
2597
2598static void io_wq_submit_work(struct io_wq_work **workptr)
2599{
2600 struct io_wq_work *work = *workptr;
2601 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2602 struct sqe_submit *s = &req->submit;
2603 const struct io_uring_sqe *sqe = s->sqe;
2604 struct io_kiocb *nxt = NULL;
2605 int ret = 0;
2606
2607 /* Ensure we clear previously set non-block flag */
2608 req->rw.ki_flags &= ~IOCB_NOWAIT;
2609
2610 if (work->flags & IO_WQ_WORK_CANCEL)
2611 ret = -ECANCELED;
2612
2613 if (!ret) {
2614 s->has_user = (work->flags & IO_WQ_WORK_HAS_MM) != 0;
2615 s->in_async = true;
2616 do {
2617 ret = __io_submit_sqe(req, &nxt, false);
2618 /*
2619 * We can get EAGAIN for polled IO even though we're
2620 * forcing a sync submission from here, since we can't
2621 * wait for request slots on the block side.
2622 */
2623 if (ret != -EAGAIN)
2624 break;
2625 cond_resched();
2626 } while (1);
2627 }
2628
2629 /* drop submission reference */
2630 io_put_req(req);
2631
2632 if (ret) {
2633 if (req->flags & REQ_F_LINK)
2634 req->flags |= REQ_F_FAIL_LINK;
2635 io_cqring_add_event(req, ret);
2636 io_put_req(req);
2637 }
2638
2639 /* async context always use a copy of the sqe */
2640 kfree(sqe);
2641
2642 /* if a dependent link is ready, pass it back */
2643 if (!ret && nxt) {
2644 io_prep_async_work(nxt);
2645 *workptr = &nxt->work;
2646 }
2647}
2648
2649static bool io_op_needs_file(const struct io_uring_sqe *sqe)
2650{
2651 int op = READ_ONCE(sqe->opcode);
2652
2653 switch (op) {
2654 case IORING_OP_NOP:
2655 case IORING_OP_POLL_REMOVE:
2656 case IORING_OP_TIMEOUT:
2657 case IORING_OP_TIMEOUT_REMOVE:
2658 case IORING_OP_ASYNC_CANCEL:
2659 case IORING_OP_LINK_TIMEOUT:
2660 return false;
2661 default:
2662 return true;
2663 }
2664}
2665
2666static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
2667 int index)
2668{
2669 struct fixed_file_table *table;
2670
2671 table = &ctx->file_table[index >> IORING_FILE_TABLE_SHIFT];
2672 return table->files[index & IORING_FILE_TABLE_MASK];
2673}
2674
2675static int io_req_set_file(struct io_submit_state *state, struct io_kiocb *req)
2676{
2677 struct sqe_submit *s = &req->submit;
2678 struct io_ring_ctx *ctx = req->ctx;
2679 unsigned flags;
2680 int fd;
2681
2682 flags = READ_ONCE(s->sqe->flags);
2683 fd = READ_ONCE(s->sqe->fd);
2684
2685 if (flags & IOSQE_IO_DRAIN)
2686 req->flags |= REQ_F_IO_DRAIN;
2687 /*
2688 * All io need record the previous position, if LINK vs DARIN,
2689 * it can be used to mark the position of the first IO in the
2690 * link list.
2691 */
2692 req->sequence = s->sequence;
2693
2694 if (!io_op_needs_file(s->sqe))
2695 return 0;
2696
2697 if (flags & IOSQE_FIXED_FILE) {
2698 if (unlikely(!ctx->file_table ||
2699 (unsigned) fd >= ctx->nr_user_files))
2700 return -EBADF;
2701 fd = array_index_nospec(fd, ctx->nr_user_files);
2702 req->file = io_file_from_index(ctx, fd);
2703 if (!req->file)
2704 return -EBADF;
2705 req->flags |= REQ_F_FIXED_FILE;
2706 } else {
2707 if (s->needs_fixed_file)
2708 return -EBADF;
2709 trace_io_uring_file_get(ctx, fd);
2710 req->file = io_file_get(state, fd);
2711 if (unlikely(!req->file))
2712 return -EBADF;
2713 }
2714
2715 return 0;
2716}
2717
2718static int io_grab_files(struct io_kiocb *req)
2719{
2720 int ret = -EBADF;
2721 struct io_ring_ctx *ctx = req->ctx;
2722
2723 rcu_read_lock();
2724 spin_lock_irq(&ctx->inflight_lock);
2725 /*
2726 * We use the f_ops->flush() handler to ensure that we can flush
2727 * out work accessing these files if the fd is closed. Check if
2728 * the fd has changed since we started down this path, and disallow
2729 * this operation if it has.
2730 */
2731 if (fcheck(req->submit.ring_fd) == req->submit.ring_file) {
2732 list_add(&req->inflight_entry, &ctx->inflight_list);
2733 req->flags |= REQ_F_INFLIGHT;
2734 req->work.files = current->files;
2735 ret = 0;
2736 }
2737 spin_unlock_irq(&ctx->inflight_lock);
2738 rcu_read_unlock();
2739
2740 return ret;
2741}
2742
2743static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
2744{
2745 struct io_kiocb *req = container_of(timer, struct io_kiocb,
2746 timeout.timer);
2747 struct io_ring_ctx *ctx = req->ctx;
2748 struct io_kiocb *prev = NULL;
2749 unsigned long flags;
2750
2751 spin_lock_irqsave(&ctx->completion_lock, flags);
2752
2753 /*
2754 * We don't expect the list to be empty, that will only happen if we
2755 * race with the completion of the linked work.
2756 */
2757 if (!list_empty(&req->list)) {
2758 prev = list_entry(req->list.prev, struct io_kiocb, link_list);
2759 if (refcount_inc_not_zero(&prev->refs))
2760 list_del_init(&req->list);
2761 else
2762 prev = NULL;
2763 }
2764
2765 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2766
2767 if (prev) {
2768 io_async_find_and_cancel(ctx, req, prev->user_data, NULL);
2769 io_put_req(prev);
2770 } else {
2771 io_cqring_add_event(req, -ETIME);
2772 io_put_req(req);
2773 }
2774 return HRTIMER_NORESTART;
2775}
2776
2777static void io_queue_linked_timeout(struct io_kiocb *req, struct timespec64 *ts,
2778 enum hrtimer_mode *mode)
2779{
2780 struct io_ring_ctx *ctx = req->ctx;
2781
2782 /*
2783 * If the list is now empty, then our linked request finished before
2784 * we got a chance to setup the timer
2785 */
2786 spin_lock_irq(&ctx->completion_lock);
2787 if (!list_empty(&req->list)) {
2788 req->timeout.timer.function = io_link_timeout_fn;
2789 hrtimer_start(&req->timeout.timer, timespec64_to_ktime(*ts),
2790 *mode);
2791 }
2792 spin_unlock_irq(&ctx->completion_lock);
2793
2794 /* drop submission reference */
2795 io_put_req(req);
2796}
2797
2798static int io_validate_link_timeout(const struct io_uring_sqe *sqe,
2799 struct timespec64 *ts)
2800{
2801 if (sqe->ioprio || sqe->buf_index || sqe->len != 1 || sqe->off)
2802 return -EINVAL;
2803 if (sqe->timeout_flags & ~IORING_TIMEOUT_ABS)
2804 return -EINVAL;
2805 if (get_timespec64(ts, u64_to_user_ptr(sqe->addr)))
2806 return -EFAULT;
2807
2808 return 0;
2809}
2810
2811static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req,
2812 struct timespec64 *ts,
2813 enum hrtimer_mode *mode)
2814{
2815 struct io_kiocb *nxt;
2816 int ret;
2817
2818 if (!(req->flags & REQ_F_LINK))
2819 return NULL;
2820
2821 nxt = list_first_entry_or_null(&req->link_list, struct io_kiocb, list);
2822 if (!nxt || nxt->submit.sqe->opcode != IORING_OP_LINK_TIMEOUT)
2823 return NULL;
2824
2825 ret = io_validate_link_timeout(nxt->submit.sqe, ts);
2826 if (ret) {
2827 list_del_init(&nxt->list);
2828 io_cqring_add_event(nxt, ret);
2829 io_double_put_req(nxt);
2830 return ERR_PTR(-ECANCELED);
2831 }
2832
2833 if (nxt->submit.sqe->timeout_flags & IORING_TIMEOUT_ABS)
2834 *mode = HRTIMER_MODE_ABS;
2835 else
2836 *mode = HRTIMER_MODE_REL;
2837
2838 req->flags |= REQ_F_LINK_TIMEOUT;
2839 hrtimer_init(&nxt->timeout.timer, CLOCK_MONOTONIC, *mode);
2840 return nxt;
2841}
2842
2843static int __io_queue_sqe(struct io_kiocb *req)
2844{
2845 enum hrtimer_mode mode;
2846 struct io_kiocb *nxt;
2847 struct timespec64 ts;
2848 int ret;
2849
2850 nxt = io_prep_linked_timeout(req, &ts, &mode);
2851 if (IS_ERR(nxt)) {
2852 ret = PTR_ERR(nxt);
2853 nxt = NULL;
2854 goto err;
2855 }
2856
2857 ret = __io_submit_sqe(req, NULL, true);
2858
2859 /*
2860 * We async punt it if the file wasn't marked NOWAIT, or if the file
2861 * doesn't support non-blocking read/write attempts
2862 */
2863 if (ret == -EAGAIN && (!(req->flags & REQ_F_NOWAIT) ||
2864 (req->flags & REQ_F_MUST_PUNT))) {
2865 struct sqe_submit *s = &req->submit;
2866 struct io_uring_sqe *sqe_copy;
2867
2868 sqe_copy = kmemdup(s->sqe, sizeof(*sqe_copy), GFP_KERNEL);
2869 if (sqe_copy) {
2870 s->sqe = sqe_copy;
2871 if (req->work.flags & IO_WQ_WORK_NEEDS_FILES) {
2872 ret = io_grab_files(req);
2873 if (ret) {
2874 kfree(sqe_copy);
2875 goto err;
2876 }
2877 }
2878
2879 /*
2880 * Queued up for async execution, worker will release
2881 * submit reference when the iocb is actually submitted.
2882 */
2883 io_queue_async_work(req);
2884
2885 if (nxt)
2886 io_queue_linked_timeout(nxt, &ts, &mode);
2887
2888 return 0;
2889 }
2890 }
2891
2892err:
2893 /* drop submission reference */
2894 io_put_req(req);
2895
2896 if (nxt) {
2897 if (!ret)
2898 io_queue_linked_timeout(nxt, &ts, &mode);
2899 else
2900 io_put_req(nxt);
2901 }
2902
2903 /* and drop final reference, if we failed */
2904 if (ret) {
2905 io_cqring_add_event(req, ret);
2906 if (req->flags & REQ_F_LINK)
2907 req->flags |= REQ_F_FAIL_LINK;
2908 io_put_req(req);
2909 }
2910
2911 return ret;
2912}
2913
2914static int io_queue_sqe(struct io_kiocb *req)
2915{
2916 int ret;
2917
2918 ret = io_req_defer(req);
2919 if (ret) {
2920 if (ret != -EIOCBQUEUED) {
2921 io_cqring_add_event(req, ret);
2922 io_double_put_req(req);
2923 }
2924 return 0;
2925 }
2926
2927 return __io_queue_sqe(req);
2928}
2929
2930static int io_queue_link_head(struct io_kiocb *req, struct io_kiocb *shadow)
2931{
2932 int ret;
2933 int need_submit = false;
2934 struct io_ring_ctx *ctx = req->ctx;
2935
2936 if (!shadow)
2937 return io_queue_sqe(req);
2938
2939 /*
2940 * Mark the first IO in link list as DRAIN, let all the following
2941 * IOs enter the defer list. all IO needs to be completed before link
2942 * list.
2943 */
2944 req->flags |= REQ_F_IO_DRAIN;
2945 ret = io_req_defer(req);
2946 if (ret) {
2947 if (ret != -EIOCBQUEUED) {
2948 io_cqring_add_event(req, ret);
2949 io_double_put_req(req);
2950 __io_free_req(shadow);
2951 return 0;
2952 }
2953 } else {
2954 /*
2955 * If ret == 0 means that all IOs in front of link io are
2956 * running done. let's queue link head.
2957 */
2958 need_submit = true;
2959 }
2960
2961 /* Insert shadow req to defer_list, blocking next IOs */
2962 spin_lock_irq(&ctx->completion_lock);
2963 trace_io_uring_defer(ctx, shadow, true);
2964 list_add_tail(&shadow->list, &ctx->defer_list);
2965 spin_unlock_irq(&ctx->completion_lock);
2966
2967 if (need_submit)
2968 return __io_queue_sqe(req);
2969
2970 return 0;
2971}
2972
2973#define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK)
2974
2975static void io_submit_sqe(struct io_kiocb *req, struct io_submit_state *state,
2976 struct io_kiocb **link)
2977{
2978 struct io_uring_sqe *sqe_copy;
2979 struct sqe_submit *s = &req->submit;
2980 struct io_ring_ctx *ctx = req->ctx;
2981 int ret;
2982
2983 req->user_data = s->sqe->user_data;
2984
2985 /* enforce forwards compatibility on users */
2986 if (unlikely(s->sqe->flags & ~SQE_VALID_FLAGS)) {
2987 ret = -EINVAL;
2988 goto err_req;
2989 }
2990
2991 ret = io_req_set_file(state, req);
2992 if (unlikely(ret)) {
2993err_req:
2994 io_cqring_add_event(req, ret);
2995 io_double_put_req(req);
2996 return;
2997 }
2998
2999 /*
3000 * If we already have a head request, queue this one for async
3001 * submittal once the head completes. If we don't have a head but
3002 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
3003 * submitted sync once the chain is complete. If none of those
3004 * conditions are true (normal request), then just queue it.
3005 */
3006 if (*link) {
3007 struct io_kiocb *prev = *link;
3008
3009 sqe_copy = kmemdup(s->sqe, sizeof(*sqe_copy), GFP_KERNEL);
3010 if (!sqe_copy) {
3011 ret = -EAGAIN;
3012 goto err_req;
3013 }
3014
3015 s->sqe = sqe_copy;
3016 trace_io_uring_link(ctx, req, prev);
3017 list_add_tail(&req->list, &prev->link_list);
3018 } else if (s->sqe->flags & IOSQE_IO_LINK) {
3019 req->flags |= REQ_F_LINK;
3020
3021 INIT_LIST_HEAD(&req->link_list);
3022 *link = req;
3023 } else if (READ_ONCE(s->sqe->opcode) == IORING_OP_LINK_TIMEOUT) {
3024 /* Only valid as a linked SQE */
3025 ret = -EINVAL;
3026 goto err_req;
3027 } else {
3028 io_queue_sqe(req);
3029 }
3030}
3031
3032/*
3033 * Batched submission is done, ensure local IO is flushed out.
3034 */
3035static void io_submit_state_end(struct io_submit_state *state)
3036{
3037 blk_finish_plug(&state->plug);
3038 io_file_put(state);
3039 if (state->free_reqs)
3040 kmem_cache_free_bulk(req_cachep, state->free_reqs,
3041 &state->reqs[state->cur_req]);
3042}
3043
3044/*
3045 * Start submission side cache.
3046 */
3047static void io_submit_state_start(struct io_submit_state *state,
3048 struct io_ring_ctx *ctx, unsigned max_ios)
3049{
3050 blk_start_plug(&state->plug);
3051 state->free_reqs = 0;
3052 state->file = NULL;
3053 state->ios_left = max_ios;
3054}
3055
3056static void io_commit_sqring(struct io_ring_ctx *ctx)
3057{
3058 struct io_rings *rings = ctx->rings;
3059
3060 if (ctx->cached_sq_head != READ_ONCE(rings->sq.head)) {
3061 /*
3062 * Ensure any loads from the SQEs are done at this point,
3063 * since once we write the new head, the application could
3064 * write new data to them.
3065 */
3066 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
3067 }
3068}
3069
3070/*
3071 * Fetch an sqe, if one is available. Note that s->sqe will point to memory
3072 * that is mapped by userspace. This means that care needs to be taken to
3073 * ensure that reads are stable, as we cannot rely on userspace always
3074 * being a good citizen. If members of the sqe are validated and then later
3075 * used, it's important that those reads are done through READ_ONCE() to
3076 * prevent a re-load down the line.
3077 */
3078static bool io_get_sqring(struct io_ring_ctx *ctx, struct sqe_submit *s)
3079{
3080 struct io_rings *rings = ctx->rings;
3081 u32 *sq_array = ctx->sq_array;
3082 unsigned head;
3083
3084 /*
3085 * The cached sq head (or cq tail) serves two purposes:
3086 *
3087 * 1) allows us to batch the cost of updating the user visible
3088 * head updates.
3089 * 2) allows the kernel side to track the head on its own, even
3090 * though the application is the one updating it.
3091 */
3092 head = ctx->cached_sq_head;
3093 /* make sure SQ entry isn't read before tail */
3094 if (head == smp_load_acquire(&rings->sq.tail))
3095 return false;
3096
3097 head = READ_ONCE(sq_array[head & ctx->sq_mask]);
3098 if (head < ctx->sq_entries) {
3099 s->ring_file = NULL;
3100 s->sqe = &ctx->sq_sqes[head];
3101 s->sequence = ctx->cached_sq_head;
3102 ctx->cached_sq_head++;
3103 return true;
3104 }
3105
3106 /* drop invalid entries */
3107 ctx->cached_sq_head++;
3108 ctx->cached_sq_dropped++;
3109 WRITE_ONCE(rings->sq_dropped, ctx->cached_sq_dropped);
3110 return false;
3111}
3112
3113static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr,
3114 struct file *ring_file, int ring_fd,
3115 struct mm_struct **mm, bool async)
3116{
3117 struct io_submit_state state, *statep = NULL;
3118 struct io_kiocb *link = NULL;
3119 struct io_kiocb *shadow_req = NULL;
3120 int i, submitted = 0;
3121 bool mm_fault = false;
3122
3123 if (!list_empty(&ctx->cq_overflow_list)) {
3124 io_cqring_overflow_flush(ctx, false);
3125 return -EBUSY;
3126 }
3127
3128 if (nr > IO_PLUG_THRESHOLD) {
3129 io_submit_state_start(&state, ctx, nr);
3130 statep = &state;
3131 }
3132
3133 for (i = 0; i < nr; i++) {
3134 struct io_kiocb *req;
3135 unsigned int sqe_flags;
3136
3137 req = io_get_req(ctx, statep);
3138 if (unlikely(!req)) {
3139 if (!submitted)
3140 submitted = -EAGAIN;
3141 break;
3142 }
3143 if (!io_get_sqring(ctx, &req->submit)) {
3144 __io_free_req(req);
3145 break;
3146 }
3147
3148 if (io_sqe_needs_user(req->submit.sqe) && !*mm) {
3149 mm_fault = mm_fault || !mmget_not_zero(ctx->sqo_mm);
3150 if (!mm_fault) {
3151 use_mm(ctx->sqo_mm);
3152 *mm = ctx->sqo_mm;
3153 }
3154 }
3155
3156 sqe_flags = req->submit.sqe->flags;
3157
3158 if (link && (sqe_flags & IOSQE_IO_DRAIN)) {
3159 if (!shadow_req) {
3160 shadow_req = io_get_req(ctx, NULL);
3161 if (unlikely(!shadow_req))
3162 goto out;
3163 shadow_req->flags |= (REQ_F_IO_DRAIN | REQ_F_SHADOW_DRAIN);
3164 refcount_dec(&shadow_req->refs);
3165 }
3166 shadow_req->sequence = req->submit.sequence;
3167 }
3168
3169out:
3170 req->submit.ring_file = ring_file;
3171 req->submit.ring_fd = ring_fd;
3172 req->submit.has_user = *mm != NULL;
3173 req->submit.in_async = async;
3174 req->submit.needs_fixed_file = async;
3175 trace_io_uring_submit_sqe(ctx, req->submit.sqe->user_data,
3176 true, async);
3177 io_submit_sqe(req, statep, &link);
3178 submitted++;
3179
3180 /*
3181 * If previous wasn't linked and we have a linked command,
3182 * that's the end of the chain. Submit the previous link.
3183 */
3184 if (!(sqe_flags & IOSQE_IO_LINK) && link) {
3185 io_queue_link_head(link, shadow_req);
3186 link = NULL;
3187 shadow_req = NULL;
3188 }
3189 }
3190
3191 if (link)
3192 io_queue_link_head(link, shadow_req);
3193 if (statep)
3194 io_submit_state_end(&state);
3195
3196 /* Commit SQ ring head once we've consumed and submitted all SQEs */
3197 io_commit_sqring(ctx);
3198
3199 return submitted;
3200}
3201
3202static int io_sq_thread(void *data)
3203{
3204 struct io_ring_ctx *ctx = data;
3205 struct mm_struct *cur_mm = NULL;
3206 mm_segment_t old_fs;
3207 DEFINE_WAIT(wait);
3208 unsigned inflight;
3209 unsigned long timeout;
3210 int ret;
3211
3212 complete(&ctx->completions[1]);
3213
3214 old_fs = get_fs();
3215 set_fs(USER_DS);
3216
3217 ret = timeout = inflight = 0;
3218 while (!kthread_should_park()) {
3219 unsigned int to_submit;
3220
3221 if (inflight) {
3222 unsigned nr_events = 0;
3223
3224 if (ctx->flags & IORING_SETUP_IOPOLL) {
3225 /*
3226 * inflight is the count of the maximum possible
3227 * entries we submitted, but it can be smaller
3228 * if we dropped some of them. If we don't have
3229 * poll entries available, then we know that we
3230 * have nothing left to poll for. Reset the
3231 * inflight count to zero in that case.
3232 */
3233 mutex_lock(&ctx->uring_lock);
3234 if (!list_empty(&ctx->poll_list))
3235 __io_iopoll_check(ctx, &nr_events, 0);
3236 else
3237 inflight = 0;
3238 mutex_unlock(&ctx->uring_lock);
3239 } else {
3240 /*
3241 * Normal IO, just pretend everything completed.
3242 * We don't have to poll completions for that.
3243 */
3244 nr_events = inflight;
3245 }
3246
3247 inflight -= nr_events;
3248 if (!inflight)
3249 timeout = jiffies + ctx->sq_thread_idle;
3250 }
3251
3252 to_submit = io_sqring_entries(ctx);
3253
3254 /*
3255 * If submit got -EBUSY, flag us as needing the application
3256 * to enter the kernel to reap and flush events.
3257 */
3258 if (!to_submit || ret == -EBUSY) {
3259 /*
3260 * We're polling. If we're within the defined idle
3261 * period, then let us spin without work before going
3262 * to sleep. The exception is if we got EBUSY doing
3263 * more IO, we should wait for the application to
3264 * reap events and wake us up.
3265 */
3266 if (inflight ||
3267 (!time_after(jiffies, timeout) && ret != -EBUSY)) {
3268 cond_resched();
3269 continue;
3270 }
3271
3272 /*
3273 * Drop cur_mm before scheduling, we can't hold it for
3274 * long periods (or over schedule()). Do this before
3275 * adding ourselves to the waitqueue, as the unuse/drop
3276 * may sleep.
3277 */
3278 if (cur_mm) {
3279 unuse_mm(cur_mm);
3280 mmput(cur_mm);
3281 cur_mm = NULL;
3282 }
3283
3284 prepare_to_wait(&ctx->sqo_wait, &wait,
3285 TASK_INTERRUPTIBLE);
3286
3287 /* Tell userspace we may need a wakeup call */
3288 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
3289 /* make sure to read SQ tail after writing flags */
3290 smp_mb();
3291
3292 to_submit = io_sqring_entries(ctx);
3293 if (!to_submit || ret == -EBUSY) {
3294 if (kthread_should_park()) {
3295 finish_wait(&ctx->sqo_wait, &wait);
3296 break;
3297 }
3298 if (signal_pending(current))
3299 flush_signals(current);
3300 schedule();
3301 finish_wait(&ctx->sqo_wait, &wait);
3302
3303 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
3304 continue;
3305 }
3306 finish_wait(&ctx->sqo_wait, &wait);
3307
3308 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
3309 }
3310
3311 to_submit = min(to_submit, ctx->sq_entries);
3312 ret = io_submit_sqes(ctx, to_submit, NULL, -1, &cur_mm, true);
3313 if (ret > 0)
3314 inflight += ret;
3315 }
3316
3317 set_fs(old_fs);
3318 if (cur_mm) {
3319 unuse_mm(cur_mm);
3320 mmput(cur_mm);
3321 }
3322
3323 kthread_parkme();
3324
3325 return 0;
3326}
3327
3328struct io_wait_queue {
3329 struct wait_queue_entry wq;
3330 struct io_ring_ctx *ctx;
3331 unsigned to_wait;
3332 unsigned nr_timeouts;
3333};
3334
3335static inline bool io_should_wake(struct io_wait_queue *iowq, bool noflush)
3336{
3337 struct io_ring_ctx *ctx = iowq->ctx;
3338
3339 /*
3340 * Wake up if we have enough events, or if a timeout occured since we
3341 * started waiting. For timeouts, we always want to return to userspace,
3342 * regardless of event count.
3343 */
3344 return io_cqring_events(ctx, noflush) >= iowq->to_wait ||
3345 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
3346}
3347
3348static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
3349 int wake_flags, void *key)
3350{
3351 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
3352 wq);
3353
3354 /* use noflush == true, as we can't safely rely on locking context */
3355 if (!io_should_wake(iowq, true))
3356 return -1;
3357
3358 return autoremove_wake_function(curr, mode, wake_flags, key);
3359}
3360
3361/*
3362 * Wait until events become available, if we don't already have some. The
3363 * application must reap them itself, as they reside on the shared cq ring.
3364 */
3365static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
3366 const sigset_t __user *sig, size_t sigsz)
3367{
3368 struct io_wait_queue iowq = {
3369 .wq = {
3370 .private = current,
3371 .func = io_wake_function,
3372 .entry = LIST_HEAD_INIT(iowq.wq.entry),
3373 },
3374 .ctx = ctx,
3375 .to_wait = min_events,
3376 };
3377 struct io_rings *rings = ctx->rings;
3378 int ret = 0;
3379
3380 if (io_cqring_events(ctx, false) >= min_events)
3381 return 0;
3382
3383 if (sig) {
3384#ifdef CONFIG_COMPAT
3385 if (in_compat_syscall())
3386 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
3387 sigsz);
3388 else
3389#endif
3390 ret = set_user_sigmask(sig, sigsz);
3391
3392 if (ret)
3393 return ret;
3394 }
3395
3396 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
3397 trace_io_uring_cqring_wait(ctx, min_events);
3398 do {
3399 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
3400 TASK_INTERRUPTIBLE);
3401 if (io_should_wake(&iowq, false))
3402 break;
3403 schedule();
3404 if (signal_pending(current)) {
3405 ret = -EINTR;
3406 break;
3407 }
3408 } while (1);
3409 finish_wait(&ctx->wait, &iowq.wq);
3410
3411 restore_saved_sigmask_unless(ret == -EINTR);
3412
3413 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
3414}
3415
3416static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
3417{
3418#if defined(CONFIG_UNIX)
3419 if (ctx->ring_sock) {
3420 struct sock *sock = ctx->ring_sock->sk;
3421 struct sk_buff *skb;
3422
3423 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
3424 kfree_skb(skb);
3425 }
3426#else
3427 int i;
3428
3429 for (i = 0; i < ctx->nr_user_files; i++) {
3430 struct file *file;
3431
3432 file = io_file_from_index(ctx, i);
3433 if (file)
3434 fput(file);
3435 }
3436#endif
3437}
3438
3439static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
3440{
3441 unsigned nr_tables, i;
3442
3443 if (!ctx->file_table)
3444 return -ENXIO;
3445
3446 __io_sqe_files_unregister(ctx);
3447 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
3448 for (i = 0; i < nr_tables; i++)
3449 kfree(ctx->file_table[i].files);
3450 kfree(ctx->file_table);
3451 ctx->file_table = NULL;
3452 ctx->nr_user_files = 0;
3453 return 0;
3454}
3455
3456static void io_sq_thread_stop(struct io_ring_ctx *ctx)
3457{
3458 if (ctx->sqo_thread) {
3459 wait_for_completion(&ctx->completions[1]);
3460 /*
3461 * The park is a bit of a work-around, without it we get
3462 * warning spews on shutdown with SQPOLL set and affinity
3463 * set to a single CPU.
3464 */
3465 kthread_park(ctx->sqo_thread);
3466 kthread_stop(ctx->sqo_thread);
3467 ctx->sqo_thread = NULL;
3468 }
3469}
3470
3471static void io_finish_async(struct io_ring_ctx *ctx)
3472{
3473 io_sq_thread_stop(ctx);
3474
3475 if (ctx->io_wq) {
3476 io_wq_destroy(ctx->io_wq);
3477 ctx->io_wq = NULL;
3478 }
3479}
3480
3481#if defined(CONFIG_UNIX)
3482static void io_destruct_skb(struct sk_buff *skb)
3483{
3484 struct io_ring_ctx *ctx = skb->sk->sk_user_data;
3485
3486 if (ctx->io_wq)
3487 io_wq_flush(ctx->io_wq);
3488
3489 unix_destruct_scm(skb);
3490}
3491
3492/*
3493 * Ensure the UNIX gc is aware of our file set, so we are certain that
3494 * the io_uring can be safely unregistered on process exit, even if we have
3495 * loops in the file referencing.
3496 */
3497static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
3498{
3499 struct sock *sk = ctx->ring_sock->sk;
3500 struct scm_fp_list *fpl;
3501 struct sk_buff *skb;
3502 int i, nr_files;
3503
3504 if (!capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) {
3505 unsigned long inflight = ctx->user->unix_inflight + nr;
3506
3507 if (inflight > task_rlimit(current, RLIMIT_NOFILE))
3508 return -EMFILE;
3509 }
3510
3511 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
3512 if (!fpl)
3513 return -ENOMEM;
3514
3515 skb = alloc_skb(0, GFP_KERNEL);
3516 if (!skb) {
3517 kfree(fpl);
3518 return -ENOMEM;
3519 }
3520
3521 skb->sk = sk;
3522
3523 nr_files = 0;
3524 fpl->user = get_uid(ctx->user);
3525 for (i = 0; i < nr; i++) {
3526 struct file *file = io_file_from_index(ctx, i + offset);
3527
3528 if (!file)
3529 continue;
3530 fpl->fp[nr_files] = get_file(file);
3531 unix_inflight(fpl->user, fpl->fp[nr_files]);
3532 nr_files++;
3533 }
3534
3535 if (nr_files) {
3536 fpl->max = SCM_MAX_FD;
3537 fpl->count = nr_files;
3538 UNIXCB(skb).fp = fpl;
3539 skb->destructor = io_destruct_skb;
3540 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
3541 skb_queue_head(&sk->sk_receive_queue, skb);
3542
3543 for (i = 0; i < nr_files; i++)
3544 fput(fpl->fp[i]);
3545 } else {
3546 kfree_skb(skb);
3547 kfree(fpl);
3548 }
3549
3550 return 0;
3551}
3552
3553/*
3554 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
3555 * causes regular reference counting to break down. We rely on the UNIX
3556 * garbage collection to take care of this problem for us.
3557 */
3558static int io_sqe_files_scm(struct io_ring_ctx *ctx)
3559{
3560 unsigned left, total;
3561 int ret = 0;
3562
3563 total = 0;
3564 left = ctx->nr_user_files;
3565 while (left) {
3566 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
3567
3568 ret = __io_sqe_files_scm(ctx, this_files, total);
3569 if (ret)
3570 break;
3571 left -= this_files;
3572 total += this_files;
3573 }
3574
3575 if (!ret)
3576 return 0;
3577
3578 while (total < ctx->nr_user_files) {
3579 struct file *file = io_file_from_index(ctx, total);
3580
3581 if (file)
3582 fput(file);
3583 total++;
3584 }
3585
3586 return ret;
3587}
3588#else
3589static int io_sqe_files_scm(struct io_ring_ctx *ctx)
3590{
3591 return 0;
3592}
3593#endif
3594
3595static int io_sqe_alloc_file_tables(struct io_ring_ctx *ctx, unsigned nr_tables,
3596 unsigned nr_files)
3597{
3598 int i;
3599
3600 for (i = 0; i < nr_tables; i++) {
3601 struct fixed_file_table *table = &ctx->file_table[i];
3602 unsigned this_files;
3603
3604 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
3605 table->files = kcalloc(this_files, sizeof(struct file *),
3606 GFP_KERNEL);
3607 if (!table->files)
3608 break;
3609 nr_files -= this_files;
3610 }
3611
3612 if (i == nr_tables)
3613 return 0;
3614
3615 for (i = 0; i < nr_tables; i++) {
3616 struct fixed_file_table *table = &ctx->file_table[i];
3617 kfree(table->files);
3618 }
3619 return 1;
3620}
3621
3622static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
3623 unsigned nr_args)
3624{
3625 __s32 __user *fds = (__s32 __user *) arg;
3626 unsigned nr_tables;
3627 int fd, ret = 0;
3628 unsigned i;
3629
3630 if (ctx->file_table)
3631 return -EBUSY;
3632 if (!nr_args)
3633 return -EINVAL;
3634 if (nr_args > IORING_MAX_FIXED_FILES)
3635 return -EMFILE;
3636
3637 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
3638 ctx->file_table = kcalloc(nr_tables, sizeof(struct fixed_file_table),
3639 GFP_KERNEL);
3640 if (!ctx->file_table)
3641 return -ENOMEM;
3642
3643 if (io_sqe_alloc_file_tables(ctx, nr_tables, nr_args)) {
3644 kfree(ctx->file_table);
3645 ctx->file_table = NULL;
3646 return -ENOMEM;
3647 }
3648
3649 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
3650 struct fixed_file_table *table;
3651 unsigned index;
3652
3653 ret = -EFAULT;
3654 if (copy_from_user(&fd, &fds[i], sizeof(fd)))
3655 break;
3656 /* allow sparse sets */
3657 if (fd == -1) {
3658 ret = 0;
3659 continue;
3660 }
3661
3662 table = &ctx->file_table[i >> IORING_FILE_TABLE_SHIFT];
3663 index = i & IORING_FILE_TABLE_MASK;
3664 table->files[index] = fget(fd);
3665
3666 ret = -EBADF;
3667 if (!table->files[index])
3668 break;
3669 /*
3670 * Don't allow io_uring instances to be registered. If UNIX
3671 * isn't enabled, then this causes a reference cycle and this
3672 * instance can never get freed. If UNIX is enabled we'll
3673 * handle it just fine, but there's still no point in allowing
3674 * a ring fd as it doesn't support regular read/write anyway.
3675 */
3676 if (table->files[index]->f_op == &io_uring_fops) {
3677 fput(table->files[index]);
3678 break;
3679 }
3680 ret = 0;
3681 }
3682
3683 if (ret) {
3684 for (i = 0; i < ctx->nr_user_files; i++) {
3685 struct file *file;
3686
3687 file = io_file_from_index(ctx, i);
3688 if (file)
3689 fput(file);
3690 }
3691 for (i = 0; i < nr_tables; i++)
3692 kfree(ctx->file_table[i].files);
3693
3694 kfree(ctx->file_table);
3695 ctx->file_table = NULL;
3696 ctx->nr_user_files = 0;
3697 return ret;
3698 }
3699
3700 ret = io_sqe_files_scm(ctx);
3701 if (ret)
3702 io_sqe_files_unregister(ctx);
3703
3704 return ret;
3705}
3706
3707static void io_sqe_file_unregister(struct io_ring_ctx *ctx, int index)
3708{
3709#if defined(CONFIG_UNIX)
3710 struct file *file = io_file_from_index(ctx, index);
3711 struct sock *sock = ctx->ring_sock->sk;
3712 struct sk_buff_head list, *head = &sock->sk_receive_queue;
3713 struct sk_buff *skb;
3714 int i;
3715
3716 __skb_queue_head_init(&list);
3717
3718 /*
3719 * Find the skb that holds this file in its SCM_RIGHTS. When found,
3720 * remove this entry and rearrange the file array.
3721 */
3722 skb = skb_dequeue(head);
3723 while (skb) {
3724 struct scm_fp_list *fp;
3725
3726 fp = UNIXCB(skb).fp;
3727 for (i = 0; i < fp->count; i++) {
3728 int left;
3729
3730 if (fp->fp[i] != file)
3731 continue;
3732
3733 unix_notinflight(fp->user, fp->fp[i]);
3734 left = fp->count - 1 - i;
3735 if (left) {
3736 memmove(&fp->fp[i], &fp->fp[i + 1],
3737 left * sizeof(struct file *));
3738 }
3739 fp->count--;
3740 if (!fp->count) {
3741 kfree_skb(skb);
3742 skb = NULL;
3743 } else {
3744 __skb_queue_tail(&list, skb);
3745 }
3746 fput(file);
3747 file = NULL;
3748 break;
3749 }
3750
3751 if (!file)
3752 break;
3753
3754 __skb_queue_tail(&list, skb);
3755
3756 skb = skb_dequeue(head);
3757 }
3758
3759 if (skb_peek(&list)) {
3760 spin_lock_irq(&head->lock);
3761 while ((skb = __skb_dequeue(&list)) != NULL)
3762 __skb_queue_tail(head, skb);
3763 spin_unlock_irq(&head->lock);
3764 }
3765#else
3766 fput(io_file_from_index(ctx, index));
3767#endif
3768}
3769
3770static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
3771 int index)
3772{
3773#if defined(CONFIG_UNIX)
3774 struct sock *sock = ctx->ring_sock->sk;
3775 struct sk_buff_head *head = &sock->sk_receive_queue;
3776 struct sk_buff *skb;
3777
3778 /*
3779 * See if we can merge this file into an existing skb SCM_RIGHTS
3780 * file set. If there's no room, fall back to allocating a new skb
3781 * and filling it in.
3782 */
3783 spin_lock_irq(&head->lock);
3784 skb = skb_peek(head);
3785 if (skb) {
3786 struct scm_fp_list *fpl = UNIXCB(skb).fp;
3787
3788 if (fpl->count < SCM_MAX_FD) {
3789 __skb_unlink(skb, head);
3790 spin_unlock_irq(&head->lock);
3791 fpl->fp[fpl->count] = get_file(file);
3792 unix_inflight(fpl->user, fpl->fp[fpl->count]);
3793 fpl->count++;
3794 spin_lock_irq(&head->lock);
3795 __skb_queue_head(head, skb);
3796 } else {
3797 skb = NULL;
3798 }
3799 }
3800 spin_unlock_irq(&head->lock);
3801
3802 if (skb) {
3803 fput(file);
3804 return 0;
3805 }
3806
3807 return __io_sqe_files_scm(ctx, 1, index);
3808#else
3809 return 0;
3810#endif
3811}
3812
3813static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
3814 unsigned nr_args)
3815{
3816 struct io_uring_files_update up;
3817 __s32 __user *fds;
3818 int fd, i, err;
3819 __u32 done;
3820
3821 if (!ctx->file_table)
3822 return -ENXIO;
3823 if (!nr_args)
3824 return -EINVAL;
3825 if (copy_from_user(&up, arg, sizeof(up)))
3826 return -EFAULT;
3827 if (check_add_overflow(up.offset, nr_args, &done))
3828 return -EOVERFLOW;
3829 if (done > ctx->nr_user_files)
3830 return -EINVAL;
3831
3832 done = 0;
3833 fds = (__s32 __user *) up.fds;
3834 while (nr_args) {
3835 struct fixed_file_table *table;
3836 unsigned index;
3837
3838 err = 0;
3839 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
3840 err = -EFAULT;
3841 break;
3842 }
3843 i = array_index_nospec(up.offset, ctx->nr_user_files);
3844 table = &ctx->file_table[i >> IORING_FILE_TABLE_SHIFT];
3845 index = i & IORING_FILE_TABLE_MASK;
3846 if (table->files[index]) {
3847 io_sqe_file_unregister(ctx, i);
3848 table->files[index] = NULL;
3849 }
3850 if (fd != -1) {
3851 struct file *file;
3852
3853 file = fget(fd);
3854 if (!file) {
3855 err = -EBADF;
3856 break;
3857 }
3858 /*
3859 * Don't allow io_uring instances to be registered. If
3860 * UNIX isn't enabled, then this causes a reference
3861 * cycle and this instance can never get freed. If UNIX
3862 * is enabled we'll handle it just fine, but there's
3863 * still no point in allowing a ring fd as it doesn't
3864 * support regular read/write anyway.
3865 */
3866 if (file->f_op == &io_uring_fops) {
3867 fput(file);
3868 err = -EBADF;
3869 break;
3870 }
3871 table->files[index] = file;
3872 err = io_sqe_file_register(ctx, file, i);
3873 if (err)
3874 break;
3875 }
3876 nr_args--;
3877 done++;
3878 up.offset++;
3879 }
3880
3881 return done ? done : err;
3882}
3883
3884static void io_put_work(struct io_wq_work *work)
3885{
3886 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3887
3888 io_put_req(req);
3889}
3890
3891static void io_get_work(struct io_wq_work *work)
3892{
3893 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3894
3895 refcount_inc(&req->refs);
3896}
3897
3898static int io_sq_offload_start(struct io_ring_ctx *ctx,
3899 struct io_uring_params *p)
3900{
3901 unsigned concurrency;
3902 int ret;
3903
3904 init_waitqueue_head(&ctx->sqo_wait);
3905 mmgrab(current->mm);
3906 ctx->sqo_mm = current->mm;
3907
3908 if (ctx->flags & IORING_SETUP_SQPOLL) {
3909 ret = -EPERM;
3910 if (!capable(CAP_SYS_ADMIN))
3911 goto err;
3912
3913 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
3914 if (!ctx->sq_thread_idle)
3915 ctx->sq_thread_idle = HZ;
3916
3917 if (p->flags & IORING_SETUP_SQ_AFF) {
3918 int cpu = p->sq_thread_cpu;
3919
3920 ret = -EINVAL;
3921 if (cpu >= nr_cpu_ids)
3922 goto err;
3923 if (!cpu_online(cpu))
3924 goto err;
3925
3926 ctx->sqo_thread = kthread_create_on_cpu(io_sq_thread,
3927 ctx, cpu,
3928 "io_uring-sq");
3929 } else {
3930 ctx->sqo_thread = kthread_create(io_sq_thread, ctx,
3931 "io_uring-sq");
3932 }
3933 if (IS_ERR(ctx->sqo_thread)) {
3934 ret = PTR_ERR(ctx->sqo_thread);
3935 ctx->sqo_thread = NULL;
3936 goto err;
3937 }
3938 wake_up_process(ctx->sqo_thread);
3939 } else if (p->flags & IORING_SETUP_SQ_AFF) {
3940 /* Can't have SQ_AFF without SQPOLL */
3941 ret = -EINVAL;
3942 goto err;
3943 }
3944
3945 /* Do QD, or 4 * CPUS, whatever is smallest */
3946 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
3947 ctx->io_wq = io_wq_create(concurrency, ctx->sqo_mm, ctx->user,
3948 io_get_work, io_put_work);
3949 if (IS_ERR(ctx->io_wq)) {
3950 ret = PTR_ERR(ctx->io_wq);
3951 ctx->io_wq = NULL;
3952 goto err;
3953 }
3954
3955 return 0;
3956err:
3957 io_finish_async(ctx);
3958 mmdrop(ctx->sqo_mm);
3959 ctx->sqo_mm = NULL;
3960 return ret;
3961}
3962
3963static void io_unaccount_mem(struct user_struct *user, unsigned long nr_pages)
3964{
3965 atomic_long_sub(nr_pages, &user->locked_vm);
3966}
3967
3968static int io_account_mem(struct user_struct *user, unsigned long nr_pages)
3969{
3970 unsigned long page_limit, cur_pages, new_pages;
3971
3972 /* Don't allow more pages than we can safely lock */
3973 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
3974
3975 do {
3976 cur_pages = atomic_long_read(&user->locked_vm);
3977 new_pages = cur_pages + nr_pages;
3978 if (new_pages > page_limit)
3979 return -ENOMEM;
3980 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
3981 new_pages) != cur_pages);
3982
3983 return 0;
3984}
3985
3986static void io_mem_free(void *ptr)
3987{
3988 struct page *page;
3989
3990 if (!ptr)
3991 return;
3992
3993 page = virt_to_head_page(ptr);
3994 if (put_page_testzero(page))
3995 free_compound_page(page);
3996}
3997
3998static void *io_mem_alloc(size_t size)
3999{
4000 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
4001 __GFP_NORETRY;
4002
4003 return (void *) __get_free_pages(gfp_flags, get_order(size));
4004}
4005
4006static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
4007 size_t *sq_offset)
4008{
4009 struct io_rings *rings;
4010 size_t off, sq_array_size;
4011
4012 off = struct_size(rings, cqes, cq_entries);
4013 if (off == SIZE_MAX)
4014 return SIZE_MAX;
4015
4016#ifdef CONFIG_SMP
4017 off = ALIGN(off, SMP_CACHE_BYTES);
4018 if (off == 0)
4019 return SIZE_MAX;
4020#endif
4021
4022 sq_array_size = array_size(sizeof(u32), sq_entries);
4023 if (sq_array_size == SIZE_MAX)
4024 return SIZE_MAX;
4025
4026 if (check_add_overflow(off, sq_array_size, &off))
4027 return SIZE_MAX;
4028
4029 if (sq_offset)
4030 *sq_offset = off;
4031
4032 return off;
4033}
4034
4035static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
4036{
4037 size_t pages;
4038
4039 pages = (size_t)1 << get_order(
4040 rings_size(sq_entries, cq_entries, NULL));
4041 pages += (size_t)1 << get_order(
4042 array_size(sizeof(struct io_uring_sqe), sq_entries));
4043
4044 return pages;
4045}
4046
4047static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
4048{
4049 int i, j;
4050
4051 if (!ctx->user_bufs)
4052 return -ENXIO;
4053
4054 for (i = 0; i < ctx->nr_user_bufs; i++) {
4055 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
4056
4057 for (j = 0; j < imu->nr_bvecs; j++)
4058 put_user_page(imu->bvec[j].bv_page);
4059
4060 if (ctx->account_mem)
4061 io_unaccount_mem(ctx->user, imu->nr_bvecs);
4062 kvfree(imu->bvec);
4063 imu->nr_bvecs = 0;
4064 }
4065
4066 kfree(ctx->user_bufs);
4067 ctx->user_bufs = NULL;
4068 ctx->nr_user_bufs = 0;
4069 return 0;
4070}
4071
4072static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
4073 void __user *arg, unsigned index)
4074{
4075 struct iovec __user *src;
4076
4077#ifdef CONFIG_COMPAT
4078 if (ctx->compat) {
4079 struct compat_iovec __user *ciovs;
4080 struct compat_iovec ciov;
4081
4082 ciovs = (struct compat_iovec __user *) arg;
4083 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
4084 return -EFAULT;
4085
4086 dst->iov_base = (void __user *) (unsigned long) ciov.iov_base;
4087 dst->iov_len = ciov.iov_len;
4088 return 0;
4089 }
4090#endif
4091 src = (struct iovec __user *) arg;
4092 if (copy_from_user(dst, &src[index], sizeof(*dst)))
4093 return -EFAULT;
4094 return 0;
4095}
4096
4097static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
4098 unsigned nr_args)
4099{
4100 struct vm_area_struct **vmas = NULL;
4101 struct page **pages = NULL;
4102 int i, j, got_pages = 0;
4103 int ret = -EINVAL;
4104
4105 if (ctx->user_bufs)
4106 return -EBUSY;
4107 if (!nr_args || nr_args > UIO_MAXIOV)
4108 return -EINVAL;
4109
4110 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
4111 GFP_KERNEL);
4112 if (!ctx->user_bufs)
4113 return -ENOMEM;
4114
4115 for (i = 0; i < nr_args; i++) {
4116 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
4117 unsigned long off, start, end, ubuf;
4118 int pret, nr_pages;
4119 struct iovec iov;
4120 size_t size;
4121
4122 ret = io_copy_iov(ctx, &iov, arg, i);
4123 if (ret)
4124 goto err;
4125
4126 /*
4127 * Don't impose further limits on the size and buffer
4128 * constraints here, we'll -EINVAL later when IO is
4129 * submitted if they are wrong.
4130 */
4131 ret = -EFAULT;
4132 if (!iov.iov_base || !iov.iov_len)
4133 goto err;
4134
4135 /* arbitrary limit, but we need something */
4136 if (iov.iov_len > SZ_1G)
4137 goto err;
4138
4139 ubuf = (unsigned long) iov.iov_base;
4140 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
4141 start = ubuf >> PAGE_SHIFT;
4142 nr_pages = end - start;
4143
4144 if (ctx->account_mem) {
4145 ret = io_account_mem(ctx->user, nr_pages);
4146 if (ret)
4147 goto err;
4148 }
4149
4150 ret = 0;
4151 if (!pages || nr_pages > got_pages) {
4152 kfree(vmas);
4153 kfree(pages);
4154 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
4155 GFP_KERNEL);
4156 vmas = kvmalloc_array(nr_pages,
4157 sizeof(struct vm_area_struct *),
4158 GFP_KERNEL);
4159 if (!pages || !vmas) {
4160 ret = -ENOMEM;
4161 if (ctx->account_mem)
4162 io_unaccount_mem(ctx->user, nr_pages);
4163 goto err;
4164 }
4165 got_pages = nr_pages;
4166 }
4167
4168 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
4169 GFP_KERNEL);
4170 ret = -ENOMEM;
4171 if (!imu->bvec) {
4172 if (ctx->account_mem)
4173 io_unaccount_mem(ctx->user, nr_pages);
4174 goto err;
4175 }
4176
4177 ret = 0;
4178 down_read(&current->mm->mmap_sem);
4179 pret = get_user_pages(ubuf, nr_pages,
4180 FOLL_WRITE | FOLL_LONGTERM,
4181 pages, vmas);
4182 if (pret == nr_pages) {
4183 /* don't support file backed memory */
4184 for (j = 0; j < nr_pages; j++) {
4185 struct vm_area_struct *vma = vmas[j];
4186
4187 if (vma->vm_file &&
4188 !is_file_hugepages(vma->vm_file)) {
4189 ret = -EOPNOTSUPP;
4190 break;
4191 }
4192 }
4193 } else {
4194 ret = pret < 0 ? pret : -EFAULT;
4195 }
4196 up_read(&current->mm->mmap_sem);
4197 if (ret) {
4198 /*
4199 * if we did partial map, or found file backed vmas,
4200 * release any pages we did get
4201 */
4202 if (pret > 0)
4203 put_user_pages(pages, pret);
4204 if (ctx->account_mem)
4205 io_unaccount_mem(ctx->user, nr_pages);
4206 kvfree(imu->bvec);
4207 goto err;
4208 }
4209
4210 off = ubuf & ~PAGE_MASK;
4211 size = iov.iov_len;
4212 for (j = 0; j < nr_pages; j++) {
4213 size_t vec_len;
4214
4215 vec_len = min_t(size_t, size, PAGE_SIZE - off);
4216 imu->bvec[j].bv_page = pages[j];
4217 imu->bvec[j].bv_len = vec_len;
4218 imu->bvec[j].bv_offset = off;
4219 off = 0;
4220 size -= vec_len;
4221 }
4222 /* store original address for later verification */
4223 imu->ubuf = ubuf;
4224 imu->len = iov.iov_len;
4225 imu->nr_bvecs = nr_pages;
4226
4227 ctx->nr_user_bufs++;
4228 }
4229 kvfree(pages);
4230 kvfree(vmas);
4231 return 0;
4232err:
4233 kvfree(pages);
4234 kvfree(vmas);
4235 io_sqe_buffer_unregister(ctx);
4236 return ret;
4237}
4238
4239static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
4240{
4241 __s32 __user *fds = arg;
4242 int fd;
4243
4244 if (ctx->cq_ev_fd)
4245 return -EBUSY;
4246
4247 if (copy_from_user(&fd, fds, sizeof(*fds)))
4248 return -EFAULT;
4249
4250 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
4251 if (IS_ERR(ctx->cq_ev_fd)) {
4252 int ret = PTR_ERR(ctx->cq_ev_fd);
4253 ctx->cq_ev_fd = NULL;
4254 return ret;
4255 }
4256
4257 return 0;
4258}
4259
4260static int io_eventfd_unregister(struct io_ring_ctx *ctx)
4261{
4262 if (ctx->cq_ev_fd) {
4263 eventfd_ctx_put(ctx->cq_ev_fd);
4264 ctx->cq_ev_fd = NULL;
4265 return 0;
4266 }
4267
4268 return -ENXIO;
4269}
4270
4271static void io_ring_ctx_free(struct io_ring_ctx *ctx)
4272{
4273 io_finish_async(ctx);
4274 if (ctx->sqo_mm)
4275 mmdrop(ctx->sqo_mm);
4276
4277 io_iopoll_reap_events(ctx);
4278 io_sqe_buffer_unregister(ctx);
4279 io_sqe_files_unregister(ctx);
4280 io_eventfd_unregister(ctx);
4281
4282#if defined(CONFIG_UNIX)
4283 if (ctx->ring_sock) {
4284 ctx->ring_sock->file = NULL; /* so that iput() is called */
4285 sock_release(ctx->ring_sock);
4286 }
4287#endif
4288
4289 io_mem_free(ctx->rings);
4290 io_mem_free(ctx->sq_sqes);
4291
4292 percpu_ref_exit(&ctx->refs);
4293 if (ctx->account_mem)
4294 io_unaccount_mem(ctx->user,
4295 ring_pages(ctx->sq_entries, ctx->cq_entries));
4296 free_uid(ctx->user);
4297 kfree(ctx->completions);
4298 kmem_cache_free(req_cachep, ctx->fallback_req);
4299 kfree(ctx);
4300}
4301
4302static __poll_t io_uring_poll(struct file *file, poll_table *wait)
4303{
4304 struct io_ring_ctx *ctx = file->private_data;
4305 __poll_t mask = 0;
4306
4307 poll_wait(file, &ctx->cq_wait, wait);
4308 /*
4309 * synchronizes with barrier from wq_has_sleeper call in
4310 * io_commit_cqring
4311 */
4312 smp_rmb();
4313 if (READ_ONCE(ctx->rings->sq.tail) - ctx->cached_sq_head !=
4314 ctx->rings->sq_ring_entries)
4315 mask |= EPOLLOUT | EPOLLWRNORM;
4316 if (READ_ONCE(ctx->rings->cq.head) != ctx->cached_cq_tail)
4317 mask |= EPOLLIN | EPOLLRDNORM;
4318
4319 return mask;
4320}
4321
4322static int io_uring_fasync(int fd, struct file *file, int on)
4323{
4324 struct io_ring_ctx *ctx = file->private_data;
4325
4326 return fasync_helper(fd, file, on, &ctx->cq_fasync);
4327}
4328
4329static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
4330{
4331 mutex_lock(&ctx->uring_lock);
4332 percpu_ref_kill(&ctx->refs);
4333 mutex_unlock(&ctx->uring_lock);
4334
4335 io_kill_timeouts(ctx);
4336 io_poll_remove_all(ctx);
4337
4338 if (ctx->io_wq)
4339 io_wq_cancel_all(ctx->io_wq);
4340
4341 io_iopoll_reap_events(ctx);
4342 /* if we failed setting up the ctx, we might not have any rings */
4343 if (ctx->rings)
4344 io_cqring_overflow_flush(ctx, true);
4345 wait_for_completion(&ctx->completions[0]);
4346 io_ring_ctx_free(ctx);
4347}
4348
4349static int io_uring_release(struct inode *inode, struct file *file)
4350{
4351 struct io_ring_ctx *ctx = file->private_data;
4352
4353 file->private_data = NULL;
4354 io_ring_ctx_wait_and_kill(ctx);
4355 return 0;
4356}
4357
4358static void io_uring_cancel_files(struct io_ring_ctx *ctx,
4359 struct files_struct *files)
4360{
4361 struct io_kiocb *req;
4362 DEFINE_WAIT(wait);
4363
4364 while (!list_empty_careful(&ctx->inflight_list)) {
4365 struct io_kiocb *cancel_req = NULL;
4366
4367 spin_lock_irq(&ctx->inflight_lock);
4368 list_for_each_entry(req, &ctx->inflight_list, inflight_entry) {
4369 if (req->work.files != files)
4370 continue;
4371 /* req is being completed, ignore */
4372 if (!refcount_inc_not_zero(&req->refs))
4373 continue;
4374 cancel_req = req;
4375 break;
4376 }
4377 if (cancel_req)
4378 prepare_to_wait(&ctx->inflight_wait, &wait,
4379 TASK_UNINTERRUPTIBLE);
4380 spin_unlock_irq(&ctx->inflight_lock);
4381
4382 /* We need to keep going until we don't find a matching req */
4383 if (!cancel_req)
4384 break;
4385
4386 io_wq_cancel_work(ctx->io_wq, &cancel_req->work);
4387 io_put_req(cancel_req);
4388 schedule();
4389 }
4390 finish_wait(&ctx->inflight_wait, &wait);
4391}
4392
4393static int io_uring_flush(struct file *file, void *data)
4394{
4395 struct io_ring_ctx *ctx = file->private_data;
4396
4397 io_uring_cancel_files(ctx, data);
4398 if (fatal_signal_pending(current) || (current->flags & PF_EXITING)) {
4399 io_cqring_overflow_flush(ctx, true);
4400 io_wq_cancel_all(ctx->io_wq);
4401 }
4402 return 0;
4403}
4404
4405static void *io_uring_validate_mmap_request(struct file *file,
4406 loff_t pgoff, size_t sz)
4407{
4408 struct io_ring_ctx *ctx = file->private_data;
4409 loff_t offset = pgoff << PAGE_SHIFT;
4410 struct page *page;
4411 void *ptr;
4412
4413 switch (offset) {
4414 case IORING_OFF_SQ_RING:
4415 case IORING_OFF_CQ_RING:
4416 ptr = ctx->rings;
4417 break;
4418 case IORING_OFF_SQES:
4419 ptr = ctx->sq_sqes;
4420 break;
4421 default:
4422 return ERR_PTR(-EINVAL);
4423 }
4424
4425 page = virt_to_head_page(ptr);
4426 if (sz > page_size(page))
4427 return ERR_PTR(-EINVAL);
4428
4429 return ptr;
4430}
4431
4432#ifdef CONFIG_MMU
4433
4434static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
4435{
4436 size_t sz = vma->vm_end - vma->vm_start;
4437 unsigned long pfn;
4438 void *ptr;
4439
4440 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
4441 if (IS_ERR(ptr))
4442 return PTR_ERR(ptr);
4443
4444 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
4445 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
4446}
4447
4448#else /* !CONFIG_MMU */
4449
4450static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
4451{
4452 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
4453}
4454
4455static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
4456{
4457 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
4458}
4459
4460static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
4461 unsigned long addr, unsigned long len,
4462 unsigned long pgoff, unsigned long flags)
4463{
4464 void *ptr;
4465
4466 ptr = io_uring_validate_mmap_request(file, pgoff, len);
4467 if (IS_ERR(ptr))
4468 return PTR_ERR(ptr);
4469
4470 return (unsigned long) ptr;
4471}
4472
4473#endif /* !CONFIG_MMU */
4474
4475SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
4476 u32, min_complete, u32, flags, const sigset_t __user *, sig,
4477 size_t, sigsz)
4478{
4479 struct io_ring_ctx *ctx;
4480 long ret = -EBADF;
4481 int submitted = 0;
4482 struct fd f;
4483
4484 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP))
4485 return -EINVAL;
4486
4487 f = fdget(fd);
4488 if (!f.file)
4489 return -EBADF;
4490
4491 ret = -EOPNOTSUPP;
4492 if (f.file->f_op != &io_uring_fops)
4493 goto out_fput;
4494
4495 ret = -ENXIO;
4496 ctx = f.file->private_data;
4497 if (!percpu_ref_tryget(&ctx->refs))
4498 goto out_fput;
4499
4500 /*
4501 * For SQ polling, the thread will do all submissions and completions.
4502 * Just return the requested submit count, and wake the thread if
4503 * we were asked to.
4504 */
4505 ret = 0;
4506 if (ctx->flags & IORING_SETUP_SQPOLL) {
4507 if (!list_empty_careful(&ctx->cq_overflow_list))
4508 io_cqring_overflow_flush(ctx, false);
4509 if (flags & IORING_ENTER_SQ_WAKEUP)
4510 wake_up(&ctx->sqo_wait);
4511 submitted = to_submit;
4512 } else if (to_submit) {
4513 struct mm_struct *cur_mm;
4514
4515 to_submit = min(to_submit, ctx->sq_entries);
4516 mutex_lock(&ctx->uring_lock);
4517 /* already have mm, so io_submit_sqes() won't try to grab it */
4518 cur_mm = ctx->sqo_mm;
4519 submitted = io_submit_sqes(ctx, to_submit, f.file, fd,
4520 &cur_mm, false);
4521 mutex_unlock(&ctx->uring_lock);
4522 }
4523 if (flags & IORING_ENTER_GETEVENTS) {
4524 unsigned nr_events = 0;
4525
4526 min_complete = min(min_complete, ctx->cq_entries);
4527
4528 if (ctx->flags & IORING_SETUP_IOPOLL) {
4529 ret = io_iopoll_check(ctx, &nr_events, min_complete);
4530 } else {
4531 ret = io_cqring_wait(ctx, min_complete, sig, sigsz);
4532 }
4533 }
4534
4535 percpu_ref_put(&ctx->refs);
4536out_fput:
4537 fdput(f);
4538 return submitted ? submitted : ret;
4539}
4540
4541static const struct file_operations io_uring_fops = {
4542 .release = io_uring_release,
4543 .flush = io_uring_flush,
4544 .mmap = io_uring_mmap,
4545#ifndef CONFIG_MMU
4546 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
4547 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
4548#endif
4549 .poll = io_uring_poll,
4550 .fasync = io_uring_fasync,
4551};
4552
4553static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
4554 struct io_uring_params *p)
4555{
4556 struct io_rings *rings;
4557 size_t size, sq_array_offset;
4558
4559 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
4560 if (size == SIZE_MAX)
4561 return -EOVERFLOW;
4562
4563 rings = io_mem_alloc(size);
4564 if (!rings)
4565 return -ENOMEM;
4566
4567 ctx->rings = rings;
4568 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
4569 rings->sq_ring_mask = p->sq_entries - 1;
4570 rings->cq_ring_mask = p->cq_entries - 1;
4571 rings->sq_ring_entries = p->sq_entries;
4572 rings->cq_ring_entries = p->cq_entries;
4573 ctx->sq_mask = rings->sq_ring_mask;
4574 ctx->cq_mask = rings->cq_ring_mask;
4575 ctx->sq_entries = rings->sq_ring_entries;
4576 ctx->cq_entries = rings->cq_ring_entries;
4577
4578 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
4579 if (size == SIZE_MAX)
4580 return -EOVERFLOW;
4581
4582 ctx->sq_sqes = io_mem_alloc(size);
4583 if (!ctx->sq_sqes)
4584 return -ENOMEM;
4585
4586 return 0;
4587}
4588
4589/*
4590 * Allocate an anonymous fd, this is what constitutes the application
4591 * visible backing of an io_uring instance. The application mmaps this
4592 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
4593 * we have to tie this fd to a socket for file garbage collection purposes.
4594 */
4595static int io_uring_get_fd(struct io_ring_ctx *ctx)
4596{
4597 struct file *file;
4598 int ret;
4599
4600#if defined(CONFIG_UNIX)
4601 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
4602 &ctx->ring_sock);
4603 if (ret)
4604 return ret;
4605#endif
4606
4607 ret = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
4608 if (ret < 0)
4609 goto err;
4610
4611 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
4612 O_RDWR | O_CLOEXEC);
4613 if (IS_ERR(file)) {
4614 put_unused_fd(ret);
4615 ret = PTR_ERR(file);
4616 goto err;
4617 }
4618
4619#if defined(CONFIG_UNIX)
4620 ctx->ring_sock->file = file;
4621 ctx->ring_sock->sk->sk_user_data = ctx;
4622#endif
4623 fd_install(ret, file);
4624 return ret;
4625err:
4626#if defined(CONFIG_UNIX)
4627 sock_release(ctx->ring_sock);
4628 ctx->ring_sock = NULL;
4629#endif
4630 return ret;
4631}
4632
4633static int io_uring_create(unsigned entries, struct io_uring_params *p)
4634{
4635 struct user_struct *user = NULL;
4636 struct io_ring_ctx *ctx;
4637 bool account_mem;
4638 int ret;
4639
4640 if (!entries || entries > IORING_MAX_ENTRIES)
4641 return -EINVAL;
4642
4643 /*
4644 * Use twice as many entries for the CQ ring. It's possible for the
4645 * application to drive a higher depth than the size of the SQ ring,
4646 * since the sqes are only used at submission time. This allows for
4647 * some flexibility in overcommitting a bit. If the application has
4648 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
4649 * of CQ ring entries manually.
4650 */
4651 p->sq_entries = roundup_pow_of_two(entries);
4652 if (p->flags & IORING_SETUP_CQSIZE) {
4653 /*
4654 * If IORING_SETUP_CQSIZE is set, we do the same roundup
4655 * to a power-of-two, if it isn't already. We do NOT impose
4656 * any cq vs sq ring sizing.
4657 */
4658 if (p->cq_entries < p->sq_entries || p->cq_entries > IORING_MAX_CQ_ENTRIES)
4659 return -EINVAL;
4660 p->cq_entries = roundup_pow_of_two(p->cq_entries);
4661 } else {
4662 p->cq_entries = 2 * p->sq_entries;
4663 }
4664
4665 user = get_uid(current_user());
4666 account_mem = !capable(CAP_IPC_LOCK);
4667
4668 if (account_mem) {
4669 ret = io_account_mem(user,
4670 ring_pages(p->sq_entries, p->cq_entries));
4671 if (ret) {
4672 free_uid(user);
4673 return ret;
4674 }
4675 }
4676
4677 ctx = io_ring_ctx_alloc(p);
4678 if (!ctx) {
4679 if (account_mem)
4680 io_unaccount_mem(user, ring_pages(p->sq_entries,
4681 p->cq_entries));
4682 free_uid(user);
4683 return -ENOMEM;
4684 }
4685 ctx->compat = in_compat_syscall();
4686 ctx->account_mem = account_mem;
4687 ctx->user = user;
4688
4689 ret = io_allocate_scq_urings(ctx, p);
4690 if (ret)
4691 goto err;
4692
4693 ret = io_sq_offload_start(ctx, p);
4694 if (ret)
4695 goto err;
4696
4697 memset(&p->sq_off, 0, sizeof(p->sq_off));
4698 p->sq_off.head = offsetof(struct io_rings, sq.head);
4699 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
4700 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
4701 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
4702 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
4703 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
4704 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
4705
4706 memset(&p->cq_off, 0, sizeof(p->cq_off));
4707 p->cq_off.head = offsetof(struct io_rings, cq.head);
4708 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
4709 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
4710 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
4711 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
4712 p->cq_off.cqes = offsetof(struct io_rings, cqes);
4713
4714 /*
4715 * Install ring fd as the very last thing, so we don't risk someone
4716 * having closed it before we finish setup
4717 */
4718 ret = io_uring_get_fd(ctx);
4719 if (ret < 0)
4720 goto err;
4721
4722 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP;
4723 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
4724 return ret;
4725err:
4726 io_ring_ctx_wait_and_kill(ctx);
4727 return ret;
4728}
4729
4730/*
4731 * Sets up an aio uring context, and returns the fd. Applications asks for a
4732 * ring size, we return the actual sq/cq ring sizes (among other things) in the
4733 * params structure passed in.
4734 */
4735static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4736{
4737 struct io_uring_params p;
4738 long ret;
4739 int i;
4740
4741 if (copy_from_user(&p, params, sizeof(p)))
4742 return -EFAULT;
4743 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4744 if (p.resv[i])
4745 return -EINVAL;
4746 }
4747
4748 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4749 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE))
4750 return -EINVAL;
4751
4752 ret = io_uring_create(entries, &p);
4753 if (ret < 0)
4754 return ret;
4755
4756 if (copy_to_user(params, &p, sizeof(p)))
4757 return -EFAULT;
4758
4759 return ret;
4760}
4761
4762SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4763 struct io_uring_params __user *, params)
4764{
4765 return io_uring_setup(entries, params);
4766}
4767
4768static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4769 void __user *arg, unsigned nr_args)
4770 __releases(ctx->uring_lock)
4771 __acquires(ctx->uring_lock)
4772{
4773 int ret;
4774
4775 /*
4776 * We're inside the ring mutex, if the ref is already dying, then
4777 * someone else killed the ctx or is already going through
4778 * io_uring_register().
4779 */
4780 if (percpu_ref_is_dying(&ctx->refs))
4781 return -ENXIO;
4782
4783 percpu_ref_kill(&ctx->refs);
4784
4785 /*
4786 * Drop uring mutex before waiting for references to exit. If another
4787 * thread is currently inside io_uring_enter() it might need to grab
4788 * the uring_lock to make progress. If we hold it here across the drain
4789 * wait, then we can deadlock. It's safe to drop the mutex here, since
4790 * no new references will come in after we've killed the percpu ref.
4791 */
4792 mutex_unlock(&ctx->uring_lock);
4793 wait_for_completion(&ctx->completions[0]);
4794 mutex_lock(&ctx->uring_lock);
4795
4796 switch (opcode) {
4797 case IORING_REGISTER_BUFFERS:
4798 ret = io_sqe_buffer_register(ctx, arg, nr_args);
4799 break;
4800 case IORING_UNREGISTER_BUFFERS:
4801 ret = -EINVAL;
4802 if (arg || nr_args)
4803 break;
4804 ret = io_sqe_buffer_unregister(ctx);
4805 break;
4806 case IORING_REGISTER_FILES:
4807 ret = io_sqe_files_register(ctx, arg, nr_args);
4808 break;
4809 case IORING_UNREGISTER_FILES:
4810 ret = -EINVAL;
4811 if (arg || nr_args)
4812 break;
4813 ret = io_sqe_files_unregister(ctx);
4814 break;
4815 case IORING_REGISTER_FILES_UPDATE:
4816 ret = io_sqe_files_update(ctx, arg, nr_args);
4817 break;
4818 case IORING_REGISTER_EVENTFD:
4819 ret = -EINVAL;
4820 if (nr_args != 1)
4821 break;
4822 ret = io_eventfd_register(ctx, arg);
4823 break;
4824 case IORING_UNREGISTER_EVENTFD:
4825 ret = -EINVAL;
4826 if (arg || nr_args)
4827 break;
4828 ret = io_eventfd_unregister(ctx);
4829 break;
4830 default:
4831 ret = -EINVAL;
4832 break;
4833 }
4834
4835 /* bring the ctx back to life */
4836 reinit_completion(&ctx->completions[0]);
4837 percpu_ref_reinit(&ctx->refs);
4838 return ret;
4839}
4840
4841SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4842 void __user *, arg, unsigned int, nr_args)
4843{
4844 struct io_ring_ctx *ctx;
4845 long ret = -EBADF;
4846 struct fd f;
4847
4848 f = fdget(fd);
4849 if (!f.file)
4850 return -EBADF;
4851
4852 ret = -EOPNOTSUPP;
4853 if (f.file->f_op != &io_uring_fops)
4854 goto out_fput;
4855
4856 ctx = f.file->private_data;
4857
4858 mutex_lock(&ctx->uring_lock);
4859 ret = __io_uring_register(ctx, opcode, arg, nr_args);
4860 mutex_unlock(&ctx->uring_lock);
4861 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
4862 ctx->cq_ev_fd != NULL, ret);
4863out_fput:
4864 fdput(f);
4865 return ret;
4866}
4867
4868static int __init io_uring_init(void)
4869{
4870 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
4871 return 0;
4872};
4873__initcall(io_uring_init);