ima: define a new hook to measure and appraise a file already in memory
[linux-2.6-block.git] / fs / exec.c
... / ...
CommitLineData
1/*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * #!-checking implemented by tytso.
9 */
10/*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25#include <linux/slab.h>
26#include <linux/file.h>
27#include <linux/fdtable.h>
28#include <linux/mm.h>
29#include <linux/vmacache.h>
30#include <linux/stat.h>
31#include <linux/fcntl.h>
32#include <linux/swap.h>
33#include <linux/string.h>
34#include <linux/init.h>
35#include <linux/pagemap.h>
36#include <linux/perf_event.h>
37#include <linux/highmem.h>
38#include <linux/spinlock.h>
39#include <linux/key.h>
40#include <linux/personality.h>
41#include <linux/binfmts.h>
42#include <linux/utsname.h>
43#include <linux/pid_namespace.h>
44#include <linux/module.h>
45#include <linux/namei.h>
46#include <linux/mount.h>
47#include <linux/security.h>
48#include <linux/syscalls.h>
49#include <linux/tsacct_kern.h>
50#include <linux/cn_proc.h>
51#include <linux/audit.h>
52#include <linux/tracehook.h>
53#include <linux/kmod.h>
54#include <linux/fsnotify.h>
55#include <linux/fs_struct.h>
56#include <linux/pipe_fs_i.h>
57#include <linux/oom.h>
58#include <linux/compat.h>
59#include <linux/vmalloc.h>
60
61#include <asm/uaccess.h>
62#include <asm/mmu_context.h>
63#include <asm/tlb.h>
64
65#include <trace/events/task.h>
66#include "internal.h"
67
68#include <trace/events/sched.h>
69
70int suid_dumpable = 0;
71
72static LIST_HEAD(formats);
73static DEFINE_RWLOCK(binfmt_lock);
74
75void __register_binfmt(struct linux_binfmt * fmt, int insert)
76{
77 BUG_ON(!fmt);
78 if (WARN_ON(!fmt->load_binary))
79 return;
80 write_lock(&binfmt_lock);
81 insert ? list_add(&fmt->lh, &formats) :
82 list_add_tail(&fmt->lh, &formats);
83 write_unlock(&binfmt_lock);
84}
85
86EXPORT_SYMBOL(__register_binfmt);
87
88void unregister_binfmt(struct linux_binfmt * fmt)
89{
90 write_lock(&binfmt_lock);
91 list_del(&fmt->lh);
92 write_unlock(&binfmt_lock);
93}
94
95EXPORT_SYMBOL(unregister_binfmt);
96
97static inline void put_binfmt(struct linux_binfmt * fmt)
98{
99 module_put(fmt->module);
100}
101
102bool path_noexec(const struct path *path)
103{
104 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
105 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
106}
107
108#ifdef CONFIG_USELIB
109/*
110 * Note that a shared library must be both readable and executable due to
111 * security reasons.
112 *
113 * Also note that we take the address to load from from the file itself.
114 */
115SYSCALL_DEFINE1(uselib, const char __user *, library)
116{
117 struct linux_binfmt *fmt;
118 struct file *file;
119 struct filename *tmp = getname(library);
120 int error = PTR_ERR(tmp);
121 static const struct open_flags uselib_flags = {
122 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123 .acc_mode = MAY_READ | MAY_EXEC,
124 .intent = LOOKUP_OPEN,
125 .lookup_flags = LOOKUP_FOLLOW,
126 };
127
128 if (IS_ERR(tmp))
129 goto out;
130
131 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
132 putname(tmp);
133 error = PTR_ERR(file);
134 if (IS_ERR(file))
135 goto out;
136
137 error = -EINVAL;
138 if (!S_ISREG(file_inode(file)->i_mode))
139 goto exit;
140
141 error = -EACCES;
142 if (path_noexec(&file->f_path))
143 goto exit;
144
145 fsnotify_open(file);
146
147 error = -ENOEXEC;
148
149 read_lock(&binfmt_lock);
150 list_for_each_entry(fmt, &formats, lh) {
151 if (!fmt->load_shlib)
152 continue;
153 if (!try_module_get(fmt->module))
154 continue;
155 read_unlock(&binfmt_lock);
156 error = fmt->load_shlib(file);
157 read_lock(&binfmt_lock);
158 put_binfmt(fmt);
159 if (error != -ENOEXEC)
160 break;
161 }
162 read_unlock(&binfmt_lock);
163exit:
164 fput(file);
165out:
166 return error;
167}
168#endif /* #ifdef CONFIG_USELIB */
169
170#ifdef CONFIG_MMU
171/*
172 * The nascent bprm->mm is not visible until exec_mmap() but it can
173 * use a lot of memory, account these pages in current->mm temporary
174 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175 * change the counter back via acct_arg_size(0).
176 */
177static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
178{
179 struct mm_struct *mm = current->mm;
180 long diff = (long)(pages - bprm->vma_pages);
181
182 if (!mm || !diff)
183 return;
184
185 bprm->vma_pages = pages;
186 add_mm_counter(mm, MM_ANONPAGES, diff);
187}
188
189static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190 int write)
191{
192 struct page *page;
193 int ret;
194
195#ifdef CONFIG_STACK_GROWSUP
196 if (write) {
197 ret = expand_downwards(bprm->vma, pos);
198 if (ret < 0)
199 return NULL;
200 }
201#endif
202 ret = get_user_pages(current, bprm->mm, pos,
203 1, write, 1, &page, NULL);
204 if (ret <= 0)
205 return NULL;
206
207 if (write) {
208 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
209 struct rlimit *rlim;
210
211 acct_arg_size(bprm, size / PAGE_SIZE);
212
213 /*
214 * We've historically supported up to 32 pages (ARG_MAX)
215 * of argument strings even with small stacks
216 */
217 if (size <= ARG_MAX)
218 return page;
219
220 /*
221 * Limit to 1/4-th the stack size for the argv+env strings.
222 * This ensures that:
223 * - the remaining binfmt code will not run out of stack space,
224 * - the program will have a reasonable amount of stack left
225 * to work from.
226 */
227 rlim = current->signal->rlim;
228 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
229 put_page(page);
230 return NULL;
231 }
232 }
233
234 return page;
235}
236
237static void put_arg_page(struct page *page)
238{
239 put_page(page);
240}
241
242static void free_arg_page(struct linux_binprm *bprm, int i)
243{
244}
245
246static void free_arg_pages(struct linux_binprm *bprm)
247{
248}
249
250static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
251 struct page *page)
252{
253 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
254}
255
256static int __bprm_mm_init(struct linux_binprm *bprm)
257{
258 int err;
259 struct vm_area_struct *vma = NULL;
260 struct mm_struct *mm = bprm->mm;
261
262 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
263 if (!vma)
264 return -ENOMEM;
265
266 down_write(&mm->mmap_sem);
267 vma->vm_mm = mm;
268
269 /*
270 * Place the stack at the largest stack address the architecture
271 * supports. Later, we'll move this to an appropriate place. We don't
272 * use STACK_TOP because that can depend on attributes which aren't
273 * configured yet.
274 */
275 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
276 vma->vm_end = STACK_TOP_MAX;
277 vma->vm_start = vma->vm_end - PAGE_SIZE;
278 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
279 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
280 INIT_LIST_HEAD(&vma->anon_vma_chain);
281
282 err = insert_vm_struct(mm, vma);
283 if (err)
284 goto err;
285
286 mm->stack_vm = mm->total_vm = 1;
287 arch_bprm_mm_init(mm, vma);
288 up_write(&mm->mmap_sem);
289 bprm->p = vma->vm_end - sizeof(void *);
290 return 0;
291err:
292 up_write(&mm->mmap_sem);
293 bprm->vma = NULL;
294 kmem_cache_free(vm_area_cachep, vma);
295 return err;
296}
297
298static bool valid_arg_len(struct linux_binprm *bprm, long len)
299{
300 return len <= MAX_ARG_STRLEN;
301}
302
303#else
304
305static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
306{
307}
308
309static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
310 int write)
311{
312 struct page *page;
313
314 page = bprm->page[pos / PAGE_SIZE];
315 if (!page && write) {
316 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
317 if (!page)
318 return NULL;
319 bprm->page[pos / PAGE_SIZE] = page;
320 }
321
322 return page;
323}
324
325static void put_arg_page(struct page *page)
326{
327}
328
329static void free_arg_page(struct linux_binprm *bprm, int i)
330{
331 if (bprm->page[i]) {
332 __free_page(bprm->page[i]);
333 bprm->page[i] = NULL;
334 }
335}
336
337static void free_arg_pages(struct linux_binprm *bprm)
338{
339 int i;
340
341 for (i = 0; i < MAX_ARG_PAGES; i++)
342 free_arg_page(bprm, i);
343}
344
345static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
346 struct page *page)
347{
348}
349
350static int __bprm_mm_init(struct linux_binprm *bprm)
351{
352 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
353 return 0;
354}
355
356static bool valid_arg_len(struct linux_binprm *bprm, long len)
357{
358 return len <= bprm->p;
359}
360
361#endif /* CONFIG_MMU */
362
363/*
364 * Create a new mm_struct and populate it with a temporary stack
365 * vm_area_struct. We don't have enough context at this point to set the stack
366 * flags, permissions, and offset, so we use temporary values. We'll update
367 * them later in setup_arg_pages().
368 */
369static int bprm_mm_init(struct linux_binprm *bprm)
370{
371 int err;
372 struct mm_struct *mm = NULL;
373
374 bprm->mm = mm = mm_alloc();
375 err = -ENOMEM;
376 if (!mm)
377 goto err;
378
379 err = __bprm_mm_init(bprm);
380 if (err)
381 goto err;
382
383 return 0;
384
385err:
386 if (mm) {
387 bprm->mm = NULL;
388 mmdrop(mm);
389 }
390
391 return err;
392}
393
394struct user_arg_ptr {
395#ifdef CONFIG_COMPAT
396 bool is_compat;
397#endif
398 union {
399 const char __user *const __user *native;
400#ifdef CONFIG_COMPAT
401 const compat_uptr_t __user *compat;
402#endif
403 } ptr;
404};
405
406static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
407{
408 const char __user *native;
409
410#ifdef CONFIG_COMPAT
411 if (unlikely(argv.is_compat)) {
412 compat_uptr_t compat;
413
414 if (get_user(compat, argv.ptr.compat + nr))
415 return ERR_PTR(-EFAULT);
416
417 return compat_ptr(compat);
418 }
419#endif
420
421 if (get_user(native, argv.ptr.native + nr))
422 return ERR_PTR(-EFAULT);
423
424 return native;
425}
426
427/*
428 * count() counts the number of strings in array ARGV.
429 */
430static int count(struct user_arg_ptr argv, int max)
431{
432 int i = 0;
433
434 if (argv.ptr.native != NULL) {
435 for (;;) {
436 const char __user *p = get_user_arg_ptr(argv, i);
437
438 if (!p)
439 break;
440
441 if (IS_ERR(p))
442 return -EFAULT;
443
444 if (i >= max)
445 return -E2BIG;
446 ++i;
447
448 if (fatal_signal_pending(current))
449 return -ERESTARTNOHAND;
450 cond_resched();
451 }
452 }
453 return i;
454}
455
456/*
457 * 'copy_strings()' copies argument/environment strings from the old
458 * processes's memory to the new process's stack. The call to get_user_pages()
459 * ensures the destination page is created and not swapped out.
460 */
461static int copy_strings(int argc, struct user_arg_ptr argv,
462 struct linux_binprm *bprm)
463{
464 struct page *kmapped_page = NULL;
465 char *kaddr = NULL;
466 unsigned long kpos = 0;
467 int ret;
468
469 while (argc-- > 0) {
470 const char __user *str;
471 int len;
472 unsigned long pos;
473
474 ret = -EFAULT;
475 str = get_user_arg_ptr(argv, argc);
476 if (IS_ERR(str))
477 goto out;
478
479 len = strnlen_user(str, MAX_ARG_STRLEN);
480 if (!len)
481 goto out;
482
483 ret = -E2BIG;
484 if (!valid_arg_len(bprm, len))
485 goto out;
486
487 /* We're going to work our way backwords. */
488 pos = bprm->p;
489 str += len;
490 bprm->p -= len;
491
492 while (len > 0) {
493 int offset, bytes_to_copy;
494
495 if (fatal_signal_pending(current)) {
496 ret = -ERESTARTNOHAND;
497 goto out;
498 }
499 cond_resched();
500
501 offset = pos % PAGE_SIZE;
502 if (offset == 0)
503 offset = PAGE_SIZE;
504
505 bytes_to_copy = offset;
506 if (bytes_to_copy > len)
507 bytes_to_copy = len;
508
509 offset -= bytes_to_copy;
510 pos -= bytes_to_copy;
511 str -= bytes_to_copy;
512 len -= bytes_to_copy;
513
514 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
515 struct page *page;
516
517 page = get_arg_page(bprm, pos, 1);
518 if (!page) {
519 ret = -E2BIG;
520 goto out;
521 }
522
523 if (kmapped_page) {
524 flush_kernel_dcache_page(kmapped_page);
525 kunmap(kmapped_page);
526 put_arg_page(kmapped_page);
527 }
528 kmapped_page = page;
529 kaddr = kmap(kmapped_page);
530 kpos = pos & PAGE_MASK;
531 flush_arg_page(bprm, kpos, kmapped_page);
532 }
533 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
534 ret = -EFAULT;
535 goto out;
536 }
537 }
538 }
539 ret = 0;
540out:
541 if (kmapped_page) {
542 flush_kernel_dcache_page(kmapped_page);
543 kunmap(kmapped_page);
544 put_arg_page(kmapped_page);
545 }
546 return ret;
547}
548
549/*
550 * Like copy_strings, but get argv and its values from kernel memory.
551 */
552int copy_strings_kernel(int argc, const char *const *__argv,
553 struct linux_binprm *bprm)
554{
555 int r;
556 mm_segment_t oldfs = get_fs();
557 struct user_arg_ptr argv = {
558 .ptr.native = (const char __user *const __user *)__argv,
559 };
560
561 set_fs(KERNEL_DS);
562 r = copy_strings(argc, argv, bprm);
563 set_fs(oldfs);
564
565 return r;
566}
567EXPORT_SYMBOL(copy_strings_kernel);
568
569#ifdef CONFIG_MMU
570
571/*
572 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
573 * the binfmt code determines where the new stack should reside, we shift it to
574 * its final location. The process proceeds as follows:
575 *
576 * 1) Use shift to calculate the new vma endpoints.
577 * 2) Extend vma to cover both the old and new ranges. This ensures the
578 * arguments passed to subsequent functions are consistent.
579 * 3) Move vma's page tables to the new range.
580 * 4) Free up any cleared pgd range.
581 * 5) Shrink the vma to cover only the new range.
582 */
583static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
584{
585 struct mm_struct *mm = vma->vm_mm;
586 unsigned long old_start = vma->vm_start;
587 unsigned long old_end = vma->vm_end;
588 unsigned long length = old_end - old_start;
589 unsigned long new_start = old_start - shift;
590 unsigned long new_end = old_end - shift;
591 struct mmu_gather tlb;
592
593 BUG_ON(new_start > new_end);
594
595 /*
596 * ensure there are no vmas between where we want to go
597 * and where we are
598 */
599 if (vma != find_vma(mm, new_start))
600 return -EFAULT;
601
602 /*
603 * cover the whole range: [new_start, old_end)
604 */
605 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
606 return -ENOMEM;
607
608 /*
609 * move the page tables downwards, on failure we rely on
610 * process cleanup to remove whatever mess we made.
611 */
612 if (length != move_page_tables(vma, old_start,
613 vma, new_start, length, false))
614 return -ENOMEM;
615
616 lru_add_drain();
617 tlb_gather_mmu(&tlb, mm, old_start, old_end);
618 if (new_end > old_start) {
619 /*
620 * when the old and new regions overlap clear from new_end.
621 */
622 free_pgd_range(&tlb, new_end, old_end, new_end,
623 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
624 } else {
625 /*
626 * otherwise, clean from old_start; this is done to not touch
627 * the address space in [new_end, old_start) some architectures
628 * have constraints on va-space that make this illegal (IA64) -
629 * for the others its just a little faster.
630 */
631 free_pgd_range(&tlb, old_start, old_end, new_end,
632 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
633 }
634 tlb_finish_mmu(&tlb, old_start, old_end);
635
636 /*
637 * Shrink the vma to just the new range. Always succeeds.
638 */
639 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
640
641 return 0;
642}
643
644/*
645 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
646 * the stack is optionally relocated, and some extra space is added.
647 */
648int setup_arg_pages(struct linux_binprm *bprm,
649 unsigned long stack_top,
650 int executable_stack)
651{
652 unsigned long ret;
653 unsigned long stack_shift;
654 struct mm_struct *mm = current->mm;
655 struct vm_area_struct *vma = bprm->vma;
656 struct vm_area_struct *prev = NULL;
657 unsigned long vm_flags;
658 unsigned long stack_base;
659 unsigned long stack_size;
660 unsigned long stack_expand;
661 unsigned long rlim_stack;
662
663#ifdef CONFIG_STACK_GROWSUP
664 /* Limit stack size */
665 stack_base = rlimit_max(RLIMIT_STACK);
666 if (stack_base > STACK_SIZE_MAX)
667 stack_base = STACK_SIZE_MAX;
668
669 /* Add space for stack randomization. */
670 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
671
672 /* Make sure we didn't let the argument array grow too large. */
673 if (vma->vm_end - vma->vm_start > stack_base)
674 return -ENOMEM;
675
676 stack_base = PAGE_ALIGN(stack_top - stack_base);
677
678 stack_shift = vma->vm_start - stack_base;
679 mm->arg_start = bprm->p - stack_shift;
680 bprm->p = vma->vm_end - stack_shift;
681#else
682 stack_top = arch_align_stack(stack_top);
683 stack_top = PAGE_ALIGN(stack_top);
684
685 if (unlikely(stack_top < mmap_min_addr) ||
686 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
687 return -ENOMEM;
688
689 stack_shift = vma->vm_end - stack_top;
690
691 bprm->p -= stack_shift;
692 mm->arg_start = bprm->p;
693#endif
694
695 if (bprm->loader)
696 bprm->loader -= stack_shift;
697 bprm->exec -= stack_shift;
698
699 down_write(&mm->mmap_sem);
700 vm_flags = VM_STACK_FLAGS;
701
702 /*
703 * Adjust stack execute permissions; explicitly enable for
704 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
705 * (arch default) otherwise.
706 */
707 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
708 vm_flags |= VM_EXEC;
709 else if (executable_stack == EXSTACK_DISABLE_X)
710 vm_flags &= ~VM_EXEC;
711 vm_flags |= mm->def_flags;
712 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
713
714 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
715 vm_flags);
716 if (ret)
717 goto out_unlock;
718 BUG_ON(prev != vma);
719
720 /* Move stack pages down in memory. */
721 if (stack_shift) {
722 ret = shift_arg_pages(vma, stack_shift);
723 if (ret)
724 goto out_unlock;
725 }
726
727 /* mprotect_fixup is overkill to remove the temporary stack flags */
728 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
729
730 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
731 stack_size = vma->vm_end - vma->vm_start;
732 /*
733 * Align this down to a page boundary as expand_stack
734 * will align it up.
735 */
736 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
737#ifdef CONFIG_STACK_GROWSUP
738 if (stack_size + stack_expand > rlim_stack)
739 stack_base = vma->vm_start + rlim_stack;
740 else
741 stack_base = vma->vm_end + stack_expand;
742#else
743 if (stack_size + stack_expand > rlim_stack)
744 stack_base = vma->vm_end - rlim_stack;
745 else
746 stack_base = vma->vm_start - stack_expand;
747#endif
748 current->mm->start_stack = bprm->p;
749 ret = expand_stack(vma, stack_base);
750 if (ret)
751 ret = -EFAULT;
752
753out_unlock:
754 up_write(&mm->mmap_sem);
755 return ret;
756}
757EXPORT_SYMBOL(setup_arg_pages);
758
759#endif /* CONFIG_MMU */
760
761static struct file *do_open_execat(int fd, struct filename *name, int flags)
762{
763 struct file *file;
764 int err;
765 struct open_flags open_exec_flags = {
766 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
767 .acc_mode = MAY_EXEC,
768 .intent = LOOKUP_OPEN,
769 .lookup_flags = LOOKUP_FOLLOW,
770 };
771
772 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
773 return ERR_PTR(-EINVAL);
774 if (flags & AT_SYMLINK_NOFOLLOW)
775 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
776 if (flags & AT_EMPTY_PATH)
777 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
778
779 file = do_filp_open(fd, name, &open_exec_flags);
780 if (IS_ERR(file))
781 goto out;
782
783 err = -EACCES;
784 if (!S_ISREG(file_inode(file)->i_mode))
785 goto exit;
786
787 if (path_noexec(&file->f_path))
788 goto exit;
789
790 err = deny_write_access(file);
791 if (err)
792 goto exit;
793
794 if (name->name[0] != '\0')
795 fsnotify_open(file);
796
797out:
798 return file;
799
800exit:
801 fput(file);
802 return ERR_PTR(err);
803}
804
805struct file *open_exec(const char *name)
806{
807 struct filename *filename = getname_kernel(name);
808 struct file *f = ERR_CAST(filename);
809
810 if (!IS_ERR(filename)) {
811 f = do_open_execat(AT_FDCWD, filename, 0);
812 putname(filename);
813 }
814 return f;
815}
816EXPORT_SYMBOL(open_exec);
817
818int kernel_read(struct file *file, loff_t offset,
819 char *addr, unsigned long count)
820{
821 mm_segment_t old_fs;
822 loff_t pos = offset;
823 int result;
824
825 old_fs = get_fs();
826 set_fs(get_ds());
827 /* The cast to a user pointer is valid due to the set_fs() */
828 result = vfs_read(file, (void __user *)addr, count, &pos);
829 set_fs(old_fs);
830 return result;
831}
832
833EXPORT_SYMBOL(kernel_read);
834
835int kernel_read_file(struct file *file, void **buf, loff_t *size,
836 loff_t max_size, enum kernel_read_file_id id)
837{
838 loff_t i_size, pos;
839 ssize_t bytes = 0;
840 int ret;
841
842 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
843 return -EINVAL;
844
845 i_size = i_size_read(file_inode(file));
846 if (max_size > 0 && i_size > max_size)
847 return -EFBIG;
848 if (i_size <= 0)
849 return -EINVAL;
850
851 *buf = vmalloc(i_size);
852 if (!*buf)
853 return -ENOMEM;
854
855 pos = 0;
856 while (pos < i_size) {
857 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
858 i_size - pos);
859 if (bytes < 0) {
860 ret = bytes;
861 goto out;
862 }
863
864 if (bytes == 0)
865 break;
866 pos += bytes;
867 }
868
869 if (pos != i_size) {
870 ret = -EIO;
871 goto out;
872 }
873
874 ret = security_kernel_post_read_file(file, *buf, i_size, id);
875 if (!ret)
876 *size = pos;
877
878out:
879 if (ret < 0) {
880 vfree(*buf);
881 *buf = NULL;
882 }
883 return ret;
884}
885EXPORT_SYMBOL_GPL(kernel_read_file);
886
887ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
888{
889 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
890 if (res > 0)
891 flush_icache_range(addr, addr + len);
892 return res;
893}
894EXPORT_SYMBOL(read_code);
895
896static int exec_mmap(struct mm_struct *mm)
897{
898 struct task_struct *tsk;
899 struct mm_struct *old_mm, *active_mm;
900
901 /* Notify parent that we're no longer interested in the old VM */
902 tsk = current;
903 old_mm = current->mm;
904 mm_release(tsk, old_mm);
905
906 if (old_mm) {
907 sync_mm_rss(old_mm);
908 /*
909 * Make sure that if there is a core dump in progress
910 * for the old mm, we get out and die instead of going
911 * through with the exec. We must hold mmap_sem around
912 * checking core_state and changing tsk->mm.
913 */
914 down_read(&old_mm->mmap_sem);
915 if (unlikely(old_mm->core_state)) {
916 up_read(&old_mm->mmap_sem);
917 return -EINTR;
918 }
919 }
920 task_lock(tsk);
921 active_mm = tsk->active_mm;
922 tsk->mm = mm;
923 tsk->active_mm = mm;
924 activate_mm(active_mm, mm);
925 tsk->mm->vmacache_seqnum = 0;
926 vmacache_flush(tsk);
927 task_unlock(tsk);
928 if (old_mm) {
929 up_read(&old_mm->mmap_sem);
930 BUG_ON(active_mm != old_mm);
931 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
932 mm_update_next_owner(old_mm);
933 mmput(old_mm);
934 return 0;
935 }
936 mmdrop(active_mm);
937 return 0;
938}
939
940/*
941 * This function makes sure the current process has its own signal table,
942 * so that flush_signal_handlers can later reset the handlers without
943 * disturbing other processes. (Other processes might share the signal
944 * table via the CLONE_SIGHAND option to clone().)
945 */
946static int de_thread(struct task_struct *tsk)
947{
948 struct signal_struct *sig = tsk->signal;
949 struct sighand_struct *oldsighand = tsk->sighand;
950 spinlock_t *lock = &oldsighand->siglock;
951
952 if (thread_group_empty(tsk))
953 goto no_thread_group;
954
955 /*
956 * Kill all other threads in the thread group.
957 */
958 spin_lock_irq(lock);
959 if (signal_group_exit(sig)) {
960 /*
961 * Another group action in progress, just
962 * return so that the signal is processed.
963 */
964 spin_unlock_irq(lock);
965 return -EAGAIN;
966 }
967
968 sig->group_exit_task = tsk;
969 sig->notify_count = zap_other_threads(tsk);
970 if (!thread_group_leader(tsk))
971 sig->notify_count--;
972
973 while (sig->notify_count) {
974 __set_current_state(TASK_KILLABLE);
975 spin_unlock_irq(lock);
976 schedule();
977 if (unlikely(__fatal_signal_pending(tsk)))
978 goto killed;
979 spin_lock_irq(lock);
980 }
981 spin_unlock_irq(lock);
982
983 /*
984 * At this point all other threads have exited, all we have to
985 * do is to wait for the thread group leader to become inactive,
986 * and to assume its PID:
987 */
988 if (!thread_group_leader(tsk)) {
989 struct task_struct *leader = tsk->group_leader;
990
991 for (;;) {
992 threadgroup_change_begin(tsk);
993 write_lock_irq(&tasklist_lock);
994 /*
995 * Do this under tasklist_lock to ensure that
996 * exit_notify() can't miss ->group_exit_task
997 */
998 sig->notify_count = -1;
999 if (likely(leader->exit_state))
1000 break;
1001 __set_current_state(TASK_KILLABLE);
1002 write_unlock_irq(&tasklist_lock);
1003 threadgroup_change_end(tsk);
1004 schedule();
1005 if (unlikely(__fatal_signal_pending(tsk)))
1006 goto killed;
1007 }
1008
1009 /*
1010 * The only record we have of the real-time age of a
1011 * process, regardless of execs it's done, is start_time.
1012 * All the past CPU time is accumulated in signal_struct
1013 * from sister threads now dead. But in this non-leader
1014 * exec, nothing survives from the original leader thread,
1015 * whose birth marks the true age of this process now.
1016 * When we take on its identity by switching to its PID, we
1017 * also take its birthdate (always earlier than our own).
1018 */
1019 tsk->start_time = leader->start_time;
1020 tsk->real_start_time = leader->real_start_time;
1021
1022 BUG_ON(!same_thread_group(leader, tsk));
1023 BUG_ON(has_group_leader_pid(tsk));
1024 /*
1025 * An exec() starts a new thread group with the
1026 * TGID of the previous thread group. Rehash the
1027 * two threads with a switched PID, and release
1028 * the former thread group leader:
1029 */
1030
1031 /* Become a process group leader with the old leader's pid.
1032 * The old leader becomes a thread of the this thread group.
1033 * Note: The old leader also uses this pid until release_task
1034 * is called. Odd but simple and correct.
1035 */
1036 tsk->pid = leader->pid;
1037 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1038 transfer_pid(leader, tsk, PIDTYPE_PGID);
1039 transfer_pid(leader, tsk, PIDTYPE_SID);
1040
1041 list_replace_rcu(&leader->tasks, &tsk->tasks);
1042 list_replace_init(&leader->sibling, &tsk->sibling);
1043
1044 tsk->group_leader = tsk;
1045 leader->group_leader = tsk;
1046
1047 tsk->exit_signal = SIGCHLD;
1048 leader->exit_signal = -1;
1049
1050 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1051 leader->exit_state = EXIT_DEAD;
1052
1053 /*
1054 * We are going to release_task()->ptrace_unlink() silently,
1055 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1056 * the tracer wont't block again waiting for this thread.
1057 */
1058 if (unlikely(leader->ptrace))
1059 __wake_up_parent(leader, leader->parent);
1060 write_unlock_irq(&tasklist_lock);
1061 threadgroup_change_end(tsk);
1062
1063 release_task(leader);
1064 }
1065
1066 sig->group_exit_task = NULL;
1067 sig->notify_count = 0;
1068
1069no_thread_group:
1070 /* we have changed execution domain */
1071 tsk->exit_signal = SIGCHLD;
1072
1073 exit_itimers(sig);
1074 flush_itimer_signals();
1075
1076 if (atomic_read(&oldsighand->count) != 1) {
1077 struct sighand_struct *newsighand;
1078 /*
1079 * This ->sighand is shared with the CLONE_SIGHAND
1080 * but not CLONE_THREAD task, switch to the new one.
1081 */
1082 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1083 if (!newsighand)
1084 return -ENOMEM;
1085
1086 atomic_set(&newsighand->count, 1);
1087 memcpy(newsighand->action, oldsighand->action,
1088 sizeof(newsighand->action));
1089
1090 write_lock_irq(&tasklist_lock);
1091 spin_lock(&oldsighand->siglock);
1092 rcu_assign_pointer(tsk->sighand, newsighand);
1093 spin_unlock(&oldsighand->siglock);
1094 write_unlock_irq(&tasklist_lock);
1095
1096 __cleanup_sighand(oldsighand);
1097 }
1098
1099 BUG_ON(!thread_group_leader(tsk));
1100 return 0;
1101
1102killed:
1103 /* protects against exit_notify() and __exit_signal() */
1104 read_lock(&tasklist_lock);
1105 sig->group_exit_task = NULL;
1106 sig->notify_count = 0;
1107 read_unlock(&tasklist_lock);
1108 return -EAGAIN;
1109}
1110
1111char *get_task_comm(char *buf, struct task_struct *tsk)
1112{
1113 /* buf must be at least sizeof(tsk->comm) in size */
1114 task_lock(tsk);
1115 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1116 task_unlock(tsk);
1117 return buf;
1118}
1119EXPORT_SYMBOL_GPL(get_task_comm);
1120
1121/*
1122 * These functions flushes out all traces of the currently running executable
1123 * so that a new one can be started
1124 */
1125
1126void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1127{
1128 task_lock(tsk);
1129 trace_task_rename(tsk, buf);
1130 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1131 task_unlock(tsk);
1132 perf_event_comm(tsk, exec);
1133}
1134
1135int flush_old_exec(struct linux_binprm * bprm)
1136{
1137 int retval;
1138
1139 /*
1140 * Make sure we have a private signal table and that
1141 * we are unassociated from the previous thread group.
1142 */
1143 retval = de_thread(current);
1144 if (retval)
1145 goto out;
1146
1147 /*
1148 * Must be called _before_ exec_mmap() as bprm->mm is
1149 * not visibile until then. This also enables the update
1150 * to be lockless.
1151 */
1152 set_mm_exe_file(bprm->mm, bprm->file);
1153
1154 /*
1155 * Release all of the old mmap stuff
1156 */
1157 acct_arg_size(bprm, 0);
1158 retval = exec_mmap(bprm->mm);
1159 if (retval)
1160 goto out;
1161
1162 bprm->mm = NULL; /* We're using it now */
1163
1164 set_fs(USER_DS);
1165 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1166 PF_NOFREEZE | PF_NO_SETAFFINITY);
1167 flush_thread();
1168 current->personality &= ~bprm->per_clear;
1169
1170 return 0;
1171
1172out:
1173 return retval;
1174}
1175EXPORT_SYMBOL(flush_old_exec);
1176
1177void would_dump(struct linux_binprm *bprm, struct file *file)
1178{
1179 if (inode_permission(file_inode(file), MAY_READ) < 0)
1180 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1181}
1182EXPORT_SYMBOL(would_dump);
1183
1184void setup_new_exec(struct linux_binprm * bprm)
1185{
1186 arch_pick_mmap_layout(current->mm);
1187
1188 /* This is the point of no return */
1189 current->sas_ss_sp = current->sas_ss_size = 0;
1190
1191 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1192 set_dumpable(current->mm, SUID_DUMP_USER);
1193 else
1194 set_dumpable(current->mm, suid_dumpable);
1195
1196 perf_event_exec();
1197 __set_task_comm(current, kbasename(bprm->filename), true);
1198
1199 /* Set the new mm task size. We have to do that late because it may
1200 * depend on TIF_32BIT which is only updated in flush_thread() on
1201 * some architectures like powerpc
1202 */
1203 current->mm->task_size = TASK_SIZE;
1204
1205 /* install the new credentials */
1206 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1207 !gid_eq(bprm->cred->gid, current_egid())) {
1208 current->pdeath_signal = 0;
1209 } else {
1210 would_dump(bprm, bprm->file);
1211 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1212 set_dumpable(current->mm, suid_dumpable);
1213 }
1214
1215 /* An exec changes our domain. We are no longer part of the thread
1216 group */
1217 current->self_exec_id++;
1218 flush_signal_handlers(current, 0);
1219 do_close_on_exec(current->files);
1220}
1221EXPORT_SYMBOL(setup_new_exec);
1222
1223/*
1224 * Prepare credentials and lock ->cred_guard_mutex.
1225 * install_exec_creds() commits the new creds and drops the lock.
1226 * Or, if exec fails before, free_bprm() should release ->cred and
1227 * and unlock.
1228 */
1229int prepare_bprm_creds(struct linux_binprm *bprm)
1230{
1231 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1232 return -ERESTARTNOINTR;
1233
1234 bprm->cred = prepare_exec_creds();
1235 if (likely(bprm->cred))
1236 return 0;
1237
1238 mutex_unlock(&current->signal->cred_guard_mutex);
1239 return -ENOMEM;
1240}
1241
1242static void free_bprm(struct linux_binprm *bprm)
1243{
1244 free_arg_pages(bprm);
1245 if (bprm->cred) {
1246 mutex_unlock(&current->signal->cred_guard_mutex);
1247 abort_creds(bprm->cred);
1248 }
1249 if (bprm->file) {
1250 allow_write_access(bprm->file);
1251 fput(bprm->file);
1252 }
1253 /* If a binfmt changed the interp, free it. */
1254 if (bprm->interp != bprm->filename)
1255 kfree(bprm->interp);
1256 kfree(bprm);
1257}
1258
1259int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1260{
1261 /* If a binfmt changed the interp, free it first. */
1262 if (bprm->interp != bprm->filename)
1263 kfree(bprm->interp);
1264 bprm->interp = kstrdup(interp, GFP_KERNEL);
1265 if (!bprm->interp)
1266 return -ENOMEM;
1267 return 0;
1268}
1269EXPORT_SYMBOL(bprm_change_interp);
1270
1271/*
1272 * install the new credentials for this executable
1273 */
1274void install_exec_creds(struct linux_binprm *bprm)
1275{
1276 security_bprm_committing_creds(bprm);
1277
1278 commit_creds(bprm->cred);
1279 bprm->cred = NULL;
1280
1281 /*
1282 * Disable monitoring for regular users
1283 * when executing setuid binaries. Must
1284 * wait until new credentials are committed
1285 * by commit_creds() above
1286 */
1287 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1288 perf_event_exit_task(current);
1289 /*
1290 * cred_guard_mutex must be held at least to this point to prevent
1291 * ptrace_attach() from altering our determination of the task's
1292 * credentials; any time after this it may be unlocked.
1293 */
1294 security_bprm_committed_creds(bprm);
1295 mutex_unlock(&current->signal->cred_guard_mutex);
1296}
1297EXPORT_SYMBOL(install_exec_creds);
1298
1299/*
1300 * determine how safe it is to execute the proposed program
1301 * - the caller must hold ->cred_guard_mutex to protect against
1302 * PTRACE_ATTACH or seccomp thread-sync
1303 */
1304static void check_unsafe_exec(struct linux_binprm *bprm)
1305{
1306 struct task_struct *p = current, *t;
1307 unsigned n_fs;
1308
1309 if (p->ptrace) {
1310 if (p->ptrace & PT_PTRACE_CAP)
1311 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1312 else
1313 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1314 }
1315
1316 /*
1317 * This isn't strictly necessary, but it makes it harder for LSMs to
1318 * mess up.
1319 */
1320 if (task_no_new_privs(current))
1321 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1322
1323 t = p;
1324 n_fs = 1;
1325 spin_lock(&p->fs->lock);
1326 rcu_read_lock();
1327 while_each_thread(p, t) {
1328 if (t->fs == p->fs)
1329 n_fs++;
1330 }
1331 rcu_read_unlock();
1332
1333 if (p->fs->users > n_fs)
1334 bprm->unsafe |= LSM_UNSAFE_SHARE;
1335 else
1336 p->fs->in_exec = 1;
1337 spin_unlock(&p->fs->lock);
1338}
1339
1340static void bprm_fill_uid(struct linux_binprm *bprm)
1341{
1342 struct inode *inode;
1343 unsigned int mode;
1344 kuid_t uid;
1345 kgid_t gid;
1346
1347 /* clear any previous set[ug]id data from a previous binary */
1348 bprm->cred->euid = current_euid();
1349 bprm->cred->egid = current_egid();
1350
1351 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1352 return;
1353
1354 if (task_no_new_privs(current))
1355 return;
1356
1357 inode = file_inode(bprm->file);
1358 mode = READ_ONCE(inode->i_mode);
1359 if (!(mode & (S_ISUID|S_ISGID)))
1360 return;
1361
1362 /* Be careful if suid/sgid is set */
1363 inode_lock(inode);
1364
1365 /* reload atomically mode/uid/gid now that lock held */
1366 mode = inode->i_mode;
1367 uid = inode->i_uid;
1368 gid = inode->i_gid;
1369 inode_unlock(inode);
1370
1371 /* We ignore suid/sgid if there are no mappings for them in the ns */
1372 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1373 !kgid_has_mapping(bprm->cred->user_ns, gid))
1374 return;
1375
1376 if (mode & S_ISUID) {
1377 bprm->per_clear |= PER_CLEAR_ON_SETID;
1378 bprm->cred->euid = uid;
1379 }
1380
1381 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1382 bprm->per_clear |= PER_CLEAR_ON_SETID;
1383 bprm->cred->egid = gid;
1384 }
1385}
1386
1387/*
1388 * Fill the binprm structure from the inode.
1389 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1390 *
1391 * This may be called multiple times for binary chains (scripts for example).
1392 */
1393int prepare_binprm(struct linux_binprm *bprm)
1394{
1395 int retval;
1396
1397 bprm_fill_uid(bprm);
1398
1399 /* fill in binprm security blob */
1400 retval = security_bprm_set_creds(bprm);
1401 if (retval)
1402 return retval;
1403 bprm->cred_prepared = 1;
1404
1405 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1406 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1407}
1408
1409EXPORT_SYMBOL(prepare_binprm);
1410
1411/*
1412 * Arguments are '\0' separated strings found at the location bprm->p
1413 * points to; chop off the first by relocating brpm->p to right after
1414 * the first '\0' encountered.
1415 */
1416int remove_arg_zero(struct linux_binprm *bprm)
1417{
1418 int ret = 0;
1419 unsigned long offset;
1420 char *kaddr;
1421 struct page *page;
1422
1423 if (!bprm->argc)
1424 return 0;
1425
1426 do {
1427 offset = bprm->p & ~PAGE_MASK;
1428 page = get_arg_page(bprm, bprm->p, 0);
1429 if (!page) {
1430 ret = -EFAULT;
1431 goto out;
1432 }
1433 kaddr = kmap_atomic(page);
1434
1435 for (; offset < PAGE_SIZE && kaddr[offset];
1436 offset++, bprm->p++)
1437 ;
1438
1439 kunmap_atomic(kaddr);
1440 put_arg_page(page);
1441
1442 if (offset == PAGE_SIZE)
1443 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1444 } while (offset == PAGE_SIZE);
1445
1446 bprm->p++;
1447 bprm->argc--;
1448 ret = 0;
1449
1450out:
1451 return ret;
1452}
1453EXPORT_SYMBOL(remove_arg_zero);
1454
1455#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1456/*
1457 * cycle the list of binary formats handler, until one recognizes the image
1458 */
1459int search_binary_handler(struct linux_binprm *bprm)
1460{
1461 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1462 struct linux_binfmt *fmt;
1463 int retval;
1464
1465 /* This allows 4 levels of binfmt rewrites before failing hard. */
1466 if (bprm->recursion_depth > 5)
1467 return -ELOOP;
1468
1469 retval = security_bprm_check(bprm);
1470 if (retval)
1471 return retval;
1472
1473 retval = -ENOENT;
1474 retry:
1475 read_lock(&binfmt_lock);
1476 list_for_each_entry(fmt, &formats, lh) {
1477 if (!try_module_get(fmt->module))
1478 continue;
1479 read_unlock(&binfmt_lock);
1480 bprm->recursion_depth++;
1481 retval = fmt->load_binary(bprm);
1482 read_lock(&binfmt_lock);
1483 put_binfmt(fmt);
1484 bprm->recursion_depth--;
1485 if (retval < 0 && !bprm->mm) {
1486 /* we got to flush_old_exec() and failed after it */
1487 read_unlock(&binfmt_lock);
1488 force_sigsegv(SIGSEGV, current);
1489 return retval;
1490 }
1491 if (retval != -ENOEXEC || !bprm->file) {
1492 read_unlock(&binfmt_lock);
1493 return retval;
1494 }
1495 }
1496 read_unlock(&binfmt_lock);
1497
1498 if (need_retry) {
1499 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1500 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1501 return retval;
1502 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1503 return retval;
1504 need_retry = false;
1505 goto retry;
1506 }
1507
1508 return retval;
1509}
1510EXPORT_SYMBOL(search_binary_handler);
1511
1512static int exec_binprm(struct linux_binprm *bprm)
1513{
1514 pid_t old_pid, old_vpid;
1515 int ret;
1516
1517 /* Need to fetch pid before load_binary changes it */
1518 old_pid = current->pid;
1519 rcu_read_lock();
1520 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1521 rcu_read_unlock();
1522
1523 ret = search_binary_handler(bprm);
1524 if (ret >= 0) {
1525 audit_bprm(bprm);
1526 trace_sched_process_exec(current, old_pid, bprm);
1527 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1528 proc_exec_connector(current);
1529 }
1530
1531 return ret;
1532}
1533
1534/*
1535 * sys_execve() executes a new program.
1536 */
1537static int do_execveat_common(int fd, struct filename *filename,
1538 struct user_arg_ptr argv,
1539 struct user_arg_ptr envp,
1540 int flags)
1541{
1542 char *pathbuf = NULL;
1543 struct linux_binprm *bprm;
1544 struct file *file;
1545 struct files_struct *displaced;
1546 int retval;
1547
1548 if (IS_ERR(filename))
1549 return PTR_ERR(filename);
1550
1551 /*
1552 * We move the actual failure in case of RLIMIT_NPROC excess from
1553 * set*uid() to execve() because too many poorly written programs
1554 * don't check setuid() return code. Here we additionally recheck
1555 * whether NPROC limit is still exceeded.
1556 */
1557 if ((current->flags & PF_NPROC_EXCEEDED) &&
1558 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1559 retval = -EAGAIN;
1560 goto out_ret;
1561 }
1562
1563 /* We're below the limit (still or again), so we don't want to make
1564 * further execve() calls fail. */
1565 current->flags &= ~PF_NPROC_EXCEEDED;
1566
1567 retval = unshare_files(&displaced);
1568 if (retval)
1569 goto out_ret;
1570
1571 retval = -ENOMEM;
1572 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1573 if (!bprm)
1574 goto out_files;
1575
1576 retval = prepare_bprm_creds(bprm);
1577 if (retval)
1578 goto out_free;
1579
1580 check_unsafe_exec(bprm);
1581 current->in_execve = 1;
1582
1583 file = do_open_execat(fd, filename, flags);
1584 retval = PTR_ERR(file);
1585 if (IS_ERR(file))
1586 goto out_unmark;
1587
1588 sched_exec();
1589
1590 bprm->file = file;
1591 if (fd == AT_FDCWD || filename->name[0] == '/') {
1592 bprm->filename = filename->name;
1593 } else {
1594 if (filename->name[0] == '\0')
1595 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1596 else
1597 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1598 fd, filename->name);
1599 if (!pathbuf) {
1600 retval = -ENOMEM;
1601 goto out_unmark;
1602 }
1603 /*
1604 * Record that a name derived from an O_CLOEXEC fd will be
1605 * inaccessible after exec. Relies on having exclusive access to
1606 * current->files (due to unshare_files above).
1607 */
1608 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1609 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1610 bprm->filename = pathbuf;
1611 }
1612 bprm->interp = bprm->filename;
1613
1614 retval = bprm_mm_init(bprm);
1615 if (retval)
1616 goto out_unmark;
1617
1618 bprm->argc = count(argv, MAX_ARG_STRINGS);
1619 if ((retval = bprm->argc) < 0)
1620 goto out;
1621
1622 bprm->envc = count(envp, MAX_ARG_STRINGS);
1623 if ((retval = bprm->envc) < 0)
1624 goto out;
1625
1626 retval = prepare_binprm(bprm);
1627 if (retval < 0)
1628 goto out;
1629
1630 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1631 if (retval < 0)
1632 goto out;
1633
1634 bprm->exec = bprm->p;
1635 retval = copy_strings(bprm->envc, envp, bprm);
1636 if (retval < 0)
1637 goto out;
1638
1639 retval = copy_strings(bprm->argc, argv, bprm);
1640 if (retval < 0)
1641 goto out;
1642
1643 retval = exec_binprm(bprm);
1644 if (retval < 0)
1645 goto out;
1646
1647 /* execve succeeded */
1648 current->fs->in_exec = 0;
1649 current->in_execve = 0;
1650 acct_update_integrals(current);
1651 task_numa_free(current);
1652 free_bprm(bprm);
1653 kfree(pathbuf);
1654 putname(filename);
1655 if (displaced)
1656 put_files_struct(displaced);
1657 return retval;
1658
1659out:
1660 if (bprm->mm) {
1661 acct_arg_size(bprm, 0);
1662 mmput(bprm->mm);
1663 }
1664
1665out_unmark:
1666 current->fs->in_exec = 0;
1667 current->in_execve = 0;
1668
1669out_free:
1670 free_bprm(bprm);
1671 kfree(pathbuf);
1672
1673out_files:
1674 if (displaced)
1675 reset_files_struct(displaced);
1676out_ret:
1677 putname(filename);
1678 return retval;
1679}
1680
1681int do_execve(struct filename *filename,
1682 const char __user *const __user *__argv,
1683 const char __user *const __user *__envp)
1684{
1685 struct user_arg_ptr argv = { .ptr.native = __argv };
1686 struct user_arg_ptr envp = { .ptr.native = __envp };
1687 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1688}
1689
1690int do_execveat(int fd, struct filename *filename,
1691 const char __user *const __user *__argv,
1692 const char __user *const __user *__envp,
1693 int flags)
1694{
1695 struct user_arg_ptr argv = { .ptr.native = __argv };
1696 struct user_arg_ptr envp = { .ptr.native = __envp };
1697
1698 return do_execveat_common(fd, filename, argv, envp, flags);
1699}
1700
1701#ifdef CONFIG_COMPAT
1702static int compat_do_execve(struct filename *filename,
1703 const compat_uptr_t __user *__argv,
1704 const compat_uptr_t __user *__envp)
1705{
1706 struct user_arg_ptr argv = {
1707 .is_compat = true,
1708 .ptr.compat = __argv,
1709 };
1710 struct user_arg_ptr envp = {
1711 .is_compat = true,
1712 .ptr.compat = __envp,
1713 };
1714 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1715}
1716
1717static int compat_do_execveat(int fd, struct filename *filename,
1718 const compat_uptr_t __user *__argv,
1719 const compat_uptr_t __user *__envp,
1720 int flags)
1721{
1722 struct user_arg_ptr argv = {
1723 .is_compat = true,
1724 .ptr.compat = __argv,
1725 };
1726 struct user_arg_ptr envp = {
1727 .is_compat = true,
1728 .ptr.compat = __envp,
1729 };
1730 return do_execveat_common(fd, filename, argv, envp, flags);
1731}
1732#endif
1733
1734void set_binfmt(struct linux_binfmt *new)
1735{
1736 struct mm_struct *mm = current->mm;
1737
1738 if (mm->binfmt)
1739 module_put(mm->binfmt->module);
1740
1741 mm->binfmt = new;
1742 if (new)
1743 __module_get(new->module);
1744}
1745EXPORT_SYMBOL(set_binfmt);
1746
1747/*
1748 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1749 */
1750void set_dumpable(struct mm_struct *mm, int value)
1751{
1752 unsigned long old, new;
1753
1754 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1755 return;
1756
1757 do {
1758 old = ACCESS_ONCE(mm->flags);
1759 new = (old & ~MMF_DUMPABLE_MASK) | value;
1760 } while (cmpxchg(&mm->flags, old, new) != old);
1761}
1762
1763SYSCALL_DEFINE3(execve,
1764 const char __user *, filename,
1765 const char __user *const __user *, argv,
1766 const char __user *const __user *, envp)
1767{
1768 return do_execve(getname(filename), argv, envp);
1769}
1770
1771SYSCALL_DEFINE5(execveat,
1772 int, fd, const char __user *, filename,
1773 const char __user *const __user *, argv,
1774 const char __user *const __user *, envp,
1775 int, flags)
1776{
1777 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1778
1779 return do_execveat(fd,
1780 getname_flags(filename, lookup_flags, NULL),
1781 argv, envp, flags);
1782}
1783
1784#ifdef CONFIG_COMPAT
1785COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1786 const compat_uptr_t __user *, argv,
1787 const compat_uptr_t __user *, envp)
1788{
1789 return compat_do_execve(getname(filename), argv, envp);
1790}
1791
1792COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1793 const char __user *, filename,
1794 const compat_uptr_t __user *, argv,
1795 const compat_uptr_t __user *, envp,
1796 int, flags)
1797{
1798 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1799
1800 return compat_do_execveat(fd,
1801 getname_flags(filename, lookup_flags, NULL),
1802 argv, envp, flags);
1803}
1804#endif