exec:check_unsafe_exec: use while_each_thread() rather than next_thread()
[linux-2.6-block.git] / fs / exec.c
... / ...
CommitLineData
1/*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * #!-checking implemented by tytso.
9 */
10/*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25#include <linux/slab.h>
26#include <linux/file.h>
27#include <linux/fdtable.h>
28#include <linux/mm.h>
29#include <linux/stat.h>
30#include <linux/fcntl.h>
31#include <linux/swap.h>
32#include <linux/string.h>
33#include <linux/init.h>
34#include <linux/pagemap.h>
35#include <linux/perf_event.h>
36#include <linux/highmem.h>
37#include <linux/spinlock.h>
38#include <linux/key.h>
39#include <linux/personality.h>
40#include <linux/binfmts.h>
41#include <linux/utsname.h>
42#include <linux/pid_namespace.h>
43#include <linux/module.h>
44#include <linux/namei.h>
45#include <linux/mount.h>
46#include <linux/security.h>
47#include <linux/syscalls.h>
48#include <linux/tsacct_kern.h>
49#include <linux/cn_proc.h>
50#include <linux/audit.h>
51#include <linux/tracehook.h>
52#include <linux/kmod.h>
53#include <linux/fsnotify.h>
54#include <linux/fs_struct.h>
55#include <linux/pipe_fs_i.h>
56#include <linux/oom.h>
57#include <linux/compat.h>
58
59#include <asm/uaccess.h>
60#include <asm/mmu_context.h>
61#include <asm/tlb.h>
62
63#include <trace/events/task.h>
64#include "internal.h"
65
66#include <trace/events/sched.h>
67
68int suid_dumpable = 0;
69
70static LIST_HEAD(formats);
71static DEFINE_RWLOCK(binfmt_lock);
72
73void __register_binfmt(struct linux_binfmt * fmt, int insert)
74{
75 BUG_ON(!fmt);
76 if (WARN_ON(!fmt->load_binary))
77 return;
78 write_lock(&binfmt_lock);
79 insert ? list_add(&fmt->lh, &formats) :
80 list_add_tail(&fmt->lh, &formats);
81 write_unlock(&binfmt_lock);
82}
83
84EXPORT_SYMBOL(__register_binfmt);
85
86void unregister_binfmt(struct linux_binfmt * fmt)
87{
88 write_lock(&binfmt_lock);
89 list_del(&fmt->lh);
90 write_unlock(&binfmt_lock);
91}
92
93EXPORT_SYMBOL(unregister_binfmt);
94
95static inline void put_binfmt(struct linux_binfmt * fmt)
96{
97 module_put(fmt->module);
98}
99
100/*
101 * Note that a shared library must be both readable and executable due to
102 * security reasons.
103 *
104 * Also note that we take the address to load from from the file itself.
105 */
106SYSCALL_DEFINE1(uselib, const char __user *, library)
107{
108 struct linux_binfmt *fmt;
109 struct file *file;
110 struct filename *tmp = getname(library);
111 int error = PTR_ERR(tmp);
112 static const struct open_flags uselib_flags = {
113 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
114 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
115 .intent = LOOKUP_OPEN,
116 .lookup_flags = LOOKUP_FOLLOW,
117 };
118
119 if (IS_ERR(tmp))
120 goto out;
121
122 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
123 putname(tmp);
124 error = PTR_ERR(file);
125 if (IS_ERR(file))
126 goto out;
127
128 error = -EINVAL;
129 if (!S_ISREG(file_inode(file)->i_mode))
130 goto exit;
131
132 error = -EACCES;
133 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
134 goto exit;
135
136 fsnotify_open(file);
137
138 error = -ENOEXEC;
139
140 read_lock(&binfmt_lock);
141 list_for_each_entry(fmt, &formats, lh) {
142 if (!fmt->load_shlib)
143 continue;
144 if (!try_module_get(fmt->module))
145 continue;
146 read_unlock(&binfmt_lock);
147 error = fmt->load_shlib(file);
148 read_lock(&binfmt_lock);
149 put_binfmt(fmt);
150 if (error != -ENOEXEC)
151 break;
152 }
153 read_unlock(&binfmt_lock);
154exit:
155 fput(file);
156out:
157 return error;
158}
159
160#ifdef CONFIG_MMU
161/*
162 * The nascent bprm->mm is not visible until exec_mmap() but it can
163 * use a lot of memory, account these pages in current->mm temporary
164 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
165 * change the counter back via acct_arg_size(0).
166 */
167static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
168{
169 struct mm_struct *mm = current->mm;
170 long diff = (long)(pages - bprm->vma_pages);
171
172 if (!mm || !diff)
173 return;
174
175 bprm->vma_pages = pages;
176 add_mm_counter(mm, MM_ANONPAGES, diff);
177}
178
179static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
180 int write)
181{
182 struct page *page;
183 int ret;
184
185#ifdef CONFIG_STACK_GROWSUP
186 if (write) {
187 ret = expand_downwards(bprm->vma, pos);
188 if (ret < 0)
189 return NULL;
190 }
191#endif
192 ret = get_user_pages(current, bprm->mm, pos,
193 1, write, 1, &page, NULL);
194 if (ret <= 0)
195 return NULL;
196
197 if (write) {
198 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
199 struct rlimit *rlim;
200
201 acct_arg_size(bprm, size / PAGE_SIZE);
202
203 /*
204 * We've historically supported up to 32 pages (ARG_MAX)
205 * of argument strings even with small stacks
206 */
207 if (size <= ARG_MAX)
208 return page;
209
210 /*
211 * Limit to 1/4-th the stack size for the argv+env strings.
212 * This ensures that:
213 * - the remaining binfmt code will not run out of stack space,
214 * - the program will have a reasonable amount of stack left
215 * to work from.
216 */
217 rlim = current->signal->rlim;
218 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
219 put_page(page);
220 return NULL;
221 }
222 }
223
224 return page;
225}
226
227static void put_arg_page(struct page *page)
228{
229 put_page(page);
230}
231
232static void free_arg_page(struct linux_binprm *bprm, int i)
233{
234}
235
236static void free_arg_pages(struct linux_binprm *bprm)
237{
238}
239
240static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
241 struct page *page)
242{
243 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
244}
245
246static int __bprm_mm_init(struct linux_binprm *bprm)
247{
248 int err;
249 struct vm_area_struct *vma = NULL;
250 struct mm_struct *mm = bprm->mm;
251
252 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
253 if (!vma)
254 return -ENOMEM;
255
256 down_write(&mm->mmap_sem);
257 vma->vm_mm = mm;
258
259 /*
260 * Place the stack at the largest stack address the architecture
261 * supports. Later, we'll move this to an appropriate place. We don't
262 * use STACK_TOP because that can depend on attributes which aren't
263 * configured yet.
264 */
265 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
266 vma->vm_end = STACK_TOP_MAX;
267 vma->vm_start = vma->vm_end - PAGE_SIZE;
268 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
269 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
270 INIT_LIST_HEAD(&vma->anon_vma_chain);
271
272 err = insert_vm_struct(mm, vma);
273 if (err)
274 goto err;
275
276 mm->stack_vm = mm->total_vm = 1;
277 up_write(&mm->mmap_sem);
278 bprm->p = vma->vm_end - sizeof(void *);
279 return 0;
280err:
281 up_write(&mm->mmap_sem);
282 bprm->vma = NULL;
283 kmem_cache_free(vm_area_cachep, vma);
284 return err;
285}
286
287static bool valid_arg_len(struct linux_binprm *bprm, long len)
288{
289 return len <= MAX_ARG_STRLEN;
290}
291
292#else
293
294static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
295{
296}
297
298static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
299 int write)
300{
301 struct page *page;
302
303 page = bprm->page[pos / PAGE_SIZE];
304 if (!page && write) {
305 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
306 if (!page)
307 return NULL;
308 bprm->page[pos / PAGE_SIZE] = page;
309 }
310
311 return page;
312}
313
314static void put_arg_page(struct page *page)
315{
316}
317
318static void free_arg_page(struct linux_binprm *bprm, int i)
319{
320 if (bprm->page[i]) {
321 __free_page(bprm->page[i]);
322 bprm->page[i] = NULL;
323 }
324}
325
326static void free_arg_pages(struct linux_binprm *bprm)
327{
328 int i;
329
330 for (i = 0; i < MAX_ARG_PAGES; i++)
331 free_arg_page(bprm, i);
332}
333
334static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
335 struct page *page)
336{
337}
338
339static int __bprm_mm_init(struct linux_binprm *bprm)
340{
341 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
342 return 0;
343}
344
345static bool valid_arg_len(struct linux_binprm *bprm, long len)
346{
347 return len <= bprm->p;
348}
349
350#endif /* CONFIG_MMU */
351
352/*
353 * Create a new mm_struct and populate it with a temporary stack
354 * vm_area_struct. We don't have enough context at this point to set the stack
355 * flags, permissions, and offset, so we use temporary values. We'll update
356 * them later in setup_arg_pages().
357 */
358static int bprm_mm_init(struct linux_binprm *bprm)
359{
360 int err;
361 struct mm_struct *mm = NULL;
362
363 bprm->mm = mm = mm_alloc();
364 err = -ENOMEM;
365 if (!mm)
366 goto err;
367
368 err = init_new_context(current, mm);
369 if (err)
370 goto err;
371
372 err = __bprm_mm_init(bprm);
373 if (err)
374 goto err;
375
376 return 0;
377
378err:
379 if (mm) {
380 bprm->mm = NULL;
381 mmdrop(mm);
382 }
383
384 return err;
385}
386
387struct user_arg_ptr {
388#ifdef CONFIG_COMPAT
389 bool is_compat;
390#endif
391 union {
392 const char __user *const __user *native;
393#ifdef CONFIG_COMPAT
394 const compat_uptr_t __user *compat;
395#endif
396 } ptr;
397};
398
399static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
400{
401 const char __user *native;
402
403#ifdef CONFIG_COMPAT
404 if (unlikely(argv.is_compat)) {
405 compat_uptr_t compat;
406
407 if (get_user(compat, argv.ptr.compat + nr))
408 return ERR_PTR(-EFAULT);
409
410 return compat_ptr(compat);
411 }
412#endif
413
414 if (get_user(native, argv.ptr.native + nr))
415 return ERR_PTR(-EFAULT);
416
417 return native;
418}
419
420/*
421 * count() counts the number of strings in array ARGV.
422 */
423static int count(struct user_arg_ptr argv, int max)
424{
425 int i = 0;
426
427 if (argv.ptr.native != NULL) {
428 for (;;) {
429 const char __user *p = get_user_arg_ptr(argv, i);
430
431 if (!p)
432 break;
433
434 if (IS_ERR(p))
435 return -EFAULT;
436
437 if (i >= max)
438 return -E2BIG;
439 ++i;
440
441 if (fatal_signal_pending(current))
442 return -ERESTARTNOHAND;
443 cond_resched();
444 }
445 }
446 return i;
447}
448
449/*
450 * 'copy_strings()' copies argument/environment strings from the old
451 * processes's memory to the new process's stack. The call to get_user_pages()
452 * ensures the destination page is created and not swapped out.
453 */
454static int copy_strings(int argc, struct user_arg_ptr argv,
455 struct linux_binprm *bprm)
456{
457 struct page *kmapped_page = NULL;
458 char *kaddr = NULL;
459 unsigned long kpos = 0;
460 int ret;
461
462 while (argc-- > 0) {
463 const char __user *str;
464 int len;
465 unsigned long pos;
466
467 ret = -EFAULT;
468 str = get_user_arg_ptr(argv, argc);
469 if (IS_ERR(str))
470 goto out;
471
472 len = strnlen_user(str, MAX_ARG_STRLEN);
473 if (!len)
474 goto out;
475
476 ret = -E2BIG;
477 if (!valid_arg_len(bprm, len))
478 goto out;
479
480 /* We're going to work our way backwords. */
481 pos = bprm->p;
482 str += len;
483 bprm->p -= len;
484
485 while (len > 0) {
486 int offset, bytes_to_copy;
487
488 if (fatal_signal_pending(current)) {
489 ret = -ERESTARTNOHAND;
490 goto out;
491 }
492 cond_resched();
493
494 offset = pos % PAGE_SIZE;
495 if (offset == 0)
496 offset = PAGE_SIZE;
497
498 bytes_to_copy = offset;
499 if (bytes_to_copy > len)
500 bytes_to_copy = len;
501
502 offset -= bytes_to_copy;
503 pos -= bytes_to_copy;
504 str -= bytes_to_copy;
505 len -= bytes_to_copy;
506
507 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
508 struct page *page;
509
510 page = get_arg_page(bprm, pos, 1);
511 if (!page) {
512 ret = -E2BIG;
513 goto out;
514 }
515
516 if (kmapped_page) {
517 flush_kernel_dcache_page(kmapped_page);
518 kunmap(kmapped_page);
519 put_arg_page(kmapped_page);
520 }
521 kmapped_page = page;
522 kaddr = kmap(kmapped_page);
523 kpos = pos & PAGE_MASK;
524 flush_arg_page(bprm, kpos, kmapped_page);
525 }
526 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
527 ret = -EFAULT;
528 goto out;
529 }
530 }
531 }
532 ret = 0;
533out:
534 if (kmapped_page) {
535 flush_kernel_dcache_page(kmapped_page);
536 kunmap(kmapped_page);
537 put_arg_page(kmapped_page);
538 }
539 return ret;
540}
541
542/*
543 * Like copy_strings, but get argv and its values from kernel memory.
544 */
545int copy_strings_kernel(int argc, const char *const *__argv,
546 struct linux_binprm *bprm)
547{
548 int r;
549 mm_segment_t oldfs = get_fs();
550 struct user_arg_ptr argv = {
551 .ptr.native = (const char __user *const __user *)__argv,
552 };
553
554 set_fs(KERNEL_DS);
555 r = copy_strings(argc, argv, bprm);
556 set_fs(oldfs);
557
558 return r;
559}
560EXPORT_SYMBOL(copy_strings_kernel);
561
562#ifdef CONFIG_MMU
563
564/*
565 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
566 * the binfmt code determines where the new stack should reside, we shift it to
567 * its final location. The process proceeds as follows:
568 *
569 * 1) Use shift to calculate the new vma endpoints.
570 * 2) Extend vma to cover both the old and new ranges. This ensures the
571 * arguments passed to subsequent functions are consistent.
572 * 3) Move vma's page tables to the new range.
573 * 4) Free up any cleared pgd range.
574 * 5) Shrink the vma to cover only the new range.
575 */
576static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
577{
578 struct mm_struct *mm = vma->vm_mm;
579 unsigned long old_start = vma->vm_start;
580 unsigned long old_end = vma->vm_end;
581 unsigned long length = old_end - old_start;
582 unsigned long new_start = old_start - shift;
583 unsigned long new_end = old_end - shift;
584 struct mmu_gather tlb;
585
586 BUG_ON(new_start > new_end);
587
588 /*
589 * ensure there are no vmas between where we want to go
590 * and where we are
591 */
592 if (vma != find_vma(mm, new_start))
593 return -EFAULT;
594
595 /*
596 * cover the whole range: [new_start, old_end)
597 */
598 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
599 return -ENOMEM;
600
601 /*
602 * move the page tables downwards, on failure we rely on
603 * process cleanup to remove whatever mess we made.
604 */
605 if (length != move_page_tables(vma, old_start,
606 vma, new_start, length, false))
607 return -ENOMEM;
608
609 lru_add_drain();
610 tlb_gather_mmu(&tlb, mm, old_start, old_end);
611 if (new_end > old_start) {
612 /*
613 * when the old and new regions overlap clear from new_end.
614 */
615 free_pgd_range(&tlb, new_end, old_end, new_end,
616 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
617 } else {
618 /*
619 * otherwise, clean from old_start; this is done to not touch
620 * the address space in [new_end, old_start) some architectures
621 * have constraints on va-space that make this illegal (IA64) -
622 * for the others its just a little faster.
623 */
624 free_pgd_range(&tlb, old_start, old_end, new_end,
625 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
626 }
627 tlb_finish_mmu(&tlb, old_start, old_end);
628
629 /*
630 * Shrink the vma to just the new range. Always succeeds.
631 */
632 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
633
634 return 0;
635}
636
637/*
638 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
639 * the stack is optionally relocated, and some extra space is added.
640 */
641int setup_arg_pages(struct linux_binprm *bprm,
642 unsigned long stack_top,
643 int executable_stack)
644{
645 unsigned long ret;
646 unsigned long stack_shift;
647 struct mm_struct *mm = current->mm;
648 struct vm_area_struct *vma = bprm->vma;
649 struct vm_area_struct *prev = NULL;
650 unsigned long vm_flags;
651 unsigned long stack_base;
652 unsigned long stack_size;
653 unsigned long stack_expand;
654 unsigned long rlim_stack;
655
656#ifdef CONFIG_STACK_GROWSUP
657 /* Limit stack size to 1GB */
658 stack_base = rlimit_max(RLIMIT_STACK);
659 if (stack_base > (1 << 30))
660 stack_base = 1 << 30;
661
662 /* Make sure we didn't let the argument array grow too large. */
663 if (vma->vm_end - vma->vm_start > stack_base)
664 return -ENOMEM;
665
666 stack_base = PAGE_ALIGN(stack_top - stack_base);
667
668 stack_shift = vma->vm_start - stack_base;
669 mm->arg_start = bprm->p - stack_shift;
670 bprm->p = vma->vm_end - stack_shift;
671#else
672 stack_top = arch_align_stack(stack_top);
673 stack_top = PAGE_ALIGN(stack_top);
674
675 if (unlikely(stack_top < mmap_min_addr) ||
676 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
677 return -ENOMEM;
678
679 stack_shift = vma->vm_end - stack_top;
680
681 bprm->p -= stack_shift;
682 mm->arg_start = bprm->p;
683#endif
684
685 if (bprm->loader)
686 bprm->loader -= stack_shift;
687 bprm->exec -= stack_shift;
688
689 down_write(&mm->mmap_sem);
690 vm_flags = VM_STACK_FLAGS;
691
692 /*
693 * Adjust stack execute permissions; explicitly enable for
694 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
695 * (arch default) otherwise.
696 */
697 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
698 vm_flags |= VM_EXEC;
699 else if (executable_stack == EXSTACK_DISABLE_X)
700 vm_flags &= ~VM_EXEC;
701 vm_flags |= mm->def_flags;
702 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
703
704 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
705 vm_flags);
706 if (ret)
707 goto out_unlock;
708 BUG_ON(prev != vma);
709
710 /* Move stack pages down in memory. */
711 if (stack_shift) {
712 ret = shift_arg_pages(vma, stack_shift);
713 if (ret)
714 goto out_unlock;
715 }
716
717 /* mprotect_fixup is overkill to remove the temporary stack flags */
718 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
719
720 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
721 stack_size = vma->vm_end - vma->vm_start;
722 /*
723 * Align this down to a page boundary as expand_stack
724 * will align it up.
725 */
726 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
727#ifdef CONFIG_STACK_GROWSUP
728 if (stack_size + stack_expand > rlim_stack)
729 stack_base = vma->vm_start + rlim_stack;
730 else
731 stack_base = vma->vm_end + stack_expand;
732#else
733 if (stack_size + stack_expand > rlim_stack)
734 stack_base = vma->vm_end - rlim_stack;
735 else
736 stack_base = vma->vm_start - stack_expand;
737#endif
738 current->mm->start_stack = bprm->p;
739 ret = expand_stack(vma, stack_base);
740 if (ret)
741 ret = -EFAULT;
742
743out_unlock:
744 up_write(&mm->mmap_sem);
745 return ret;
746}
747EXPORT_SYMBOL(setup_arg_pages);
748
749#endif /* CONFIG_MMU */
750
751struct file *open_exec(const char *name)
752{
753 struct file *file;
754 int err;
755 struct filename tmp = { .name = name };
756 static const struct open_flags open_exec_flags = {
757 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
758 .acc_mode = MAY_EXEC | MAY_OPEN,
759 .intent = LOOKUP_OPEN,
760 .lookup_flags = LOOKUP_FOLLOW,
761 };
762
763 file = do_filp_open(AT_FDCWD, &tmp, &open_exec_flags);
764 if (IS_ERR(file))
765 goto out;
766
767 err = -EACCES;
768 if (!S_ISREG(file_inode(file)->i_mode))
769 goto exit;
770
771 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
772 goto exit;
773
774 fsnotify_open(file);
775
776 err = deny_write_access(file);
777 if (err)
778 goto exit;
779
780out:
781 return file;
782
783exit:
784 fput(file);
785 return ERR_PTR(err);
786}
787EXPORT_SYMBOL(open_exec);
788
789int kernel_read(struct file *file, loff_t offset,
790 char *addr, unsigned long count)
791{
792 mm_segment_t old_fs;
793 loff_t pos = offset;
794 int result;
795
796 old_fs = get_fs();
797 set_fs(get_ds());
798 /* The cast to a user pointer is valid due to the set_fs() */
799 result = vfs_read(file, (void __user *)addr, count, &pos);
800 set_fs(old_fs);
801 return result;
802}
803
804EXPORT_SYMBOL(kernel_read);
805
806ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
807{
808 ssize_t res = file->f_op->read(file, (void __user *)addr, len, &pos);
809 if (res > 0)
810 flush_icache_range(addr, addr + len);
811 return res;
812}
813EXPORT_SYMBOL(read_code);
814
815static int exec_mmap(struct mm_struct *mm)
816{
817 struct task_struct *tsk;
818 struct mm_struct * old_mm, *active_mm;
819
820 /* Notify parent that we're no longer interested in the old VM */
821 tsk = current;
822 old_mm = current->mm;
823 mm_release(tsk, old_mm);
824
825 if (old_mm) {
826 sync_mm_rss(old_mm);
827 /*
828 * Make sure that if there is a core dump in progress
829 * for the old mm, we get out and die instead of going
830 * through with the exec. We must hold mmap_sem around
831 * checking core_state and changing tsk->mm.
832 */
833 down_read(&old_mm->mmap_sem);
834 if (unlikely(old_mm->core_state)) {
835 up_read(&old_mm->mmap_sem);
836 return -EINTR;
837 }
838 }
839 task_lock(tsk);
840 active_mm = tsk->active_mm;
841 tsk->mm = mm;
842 tsk->active_mm = mm;
843 activate_mm(active_mm, mm);
844 task_unlock(tsk);
845 arch_pick_mmap_layout(mm);
846 if (old_mm) {
847 up_read(&old_mm->mmap_sem);
848 BUG_ON(active_mm != old_mm);
849 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
850 mm_update_next_owner(old_mm);
851 mmput(old_mm);
852 return 0;
853 }
854 mmdrop(active_mm);
855 return 0;
856}
857
858/*
859 * This function makes sure the current process has its own signal table,
860 * so that flush_signal_handlers can later reset the handlers without
861 * disturbing other processes. (Other processes might share the signal
862 * table via the CLONE_SIGHAND option to clone().)
863 */
864static int de_thread(struct task_struct *tsk)
865{
866 struct signal_struct *sig = tsk->signal;
867 struct sighand_struct *oldsighand = tsk->sighand;
868 spinlock_t *lock = &oldsighand->siglock;
869
870 if (thread_group_empty(tsk))
871 goto no_thread_group;
872
873 /*
874 * Kill all other threads in the thread group.
875 */
876 spin_lock_irq(lock);
877 if (signal_group_exit(sig)) {
878 /*
879 * Another group action in progress, just
880 * return so that the signal is processed.
881 */
882 spin_unlock_irq(lock);
883 return -EAGAIN;
884 }
885
886 sig->group_exit_task = tsk;
887 sig->notify_count = zap_other_threads(tsk);
888 if (!thread_group_leader(tsk))
889 sig->notify_count--;
890
891 while (sig->notify_count) {
892 __set_current_state(TASK_KILLABLE);
893 spin_unlock_irq(lock);
894 schedule();
895 if (unlikely(__fatal_signal_pending(tsk)))
896 goto killed;
897 spin_lock_irq(lock);
898 }
899 spin_unlock_irq(lock);
900
901 /*
902 * At this point all other threads have exited, all we have to
903 * do is to wait for the thread group leader to become inactive,
904 * and to assume its PID:
905 */
906 if (!thread_group_leader(tsk)) {
907 struct task_struct *leader = tsk->group_leader;
908
909 sig->notify_count = -1; /* for exit_notify() */
910 for (;;) {
911 threadgroup_change_begin(tsk);
912 write_lock_irq(&tasklist_lock);
913 if (likely(leader->exit_state))
914 break;
915 __set_current_state(TASK_KILLABLE);
916 write_unlock_irq(&tasklist_lock);
917 threadgroup_change_end(tsk);
918 schedule();
919 if (unlikely(__fatal_signal_pending(tsk)))
920 goto killed;
921 }
922
923 /*
924 * The only record we have of the real-time age of a
925 * process, regardless of execs it's done, is start_time.
926 * All the past CPU time is accumulated in signal_struct
927 * from sister threads now dead. But in this non-leader
928 * exec, nothing survives from the original leader thread,
929 * whose birth marks the true age of this process now.
930 * When we take on its identity by switching to its PID, we
931 * also take its birthdate (always earlier than our own).
932 */
933 tsk->start_time = leader->start_time;
934 tsk->real_start_time = leader->real_start_time;
935
936 BUG_ON(!same_thread_group(leader, tsk));
937 BUG_ON(has_group_leader_pid(tsk));
938 /*
939 * An exec() starts a new thread group with the
940 * TGID of the previous thread group. Rehash the
941 * two threads with a switched PID, and release
942 * the former thread group leader:
943 */
944
945 /* Become a process group leader with the old leader's pid.
946 * The old leader becomes a thread of the this thread group.
947 * Note: The old leader also uses this pid until release_task
948 * is called. Odd but simple and correct.
949 */
950 tsk->pid = leader->pid;
951 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
952 transfer_pid(leader, tsk, PIDTYPE_PGID);
953 transfer_pid(leader, tsk, PIDTYPE_SID);
954
955 list_replace_rcu(&leader->tasks, &tsk->tasks);
956 list_replace_init(&leader->sibling, &tsk->sibling);
957
958 tsk->group_leader = tsk;
959 leader->group_leader = tsk;
960
961 tsk->exit_signal = SIGCHLD;
962 leader->exit_signal = -1;
963
964 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
965 leader->exit_state = EXIT_DEAD;
966
967 /*
968 * We are going to release_task()->ptrace_unlink() silently,
969 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
970 * the tracer wont't block again waiting for this thread.
971 */
972 if (unlikely(leader->ptrace))
973 __wake_up_parent(leader, leader->parent);
974 write_unlock_irq(&tasklist_lock);
975 threadgroup_change_end(tsk);
976
977 release_task(leader);
978 }
979
980 sig->group_exit_task = NULL;
981 sig->notify_count = 0;
982
983no_thread_group:
984 /* we have changed execution domain */
985 tsk->exit_signal = SIGCHLD;
986
987 exit_itimers(sig);
988 flush_itimer_signals();
989
990 if (atomic_read(&oldsighand->count) != 1) {
991 struct sighand_struct *newsighand;
992 /*
993 * This ->sighand is shared with the CLONE_SIGHAND
994 * but not CLONE_THREAD task, switch to the new one.
995 */
996 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
997 if (!newsighand)
998 return -ENOMEM;
999
1000 atomic_set(&newsighand->count, 1);
1001 memcpy(newsighand->action, oldsighand->action,
1002 sizeof(newsighand->action));
1003
1004 write_lock_irq(&tasklist_lock);
1005 spin_lock(&oldsighand->siglock);
1006 rcu_assign_pointer(tsk->sighand, newsighand);
1007 spin_unlock(&oldsighand->siglock);
1008 write_unlock_irq(&tasklist_lock);
1009
1010 __cleanup_sighand(oldsighand);
1011 }
1012
1013 BUG_ON(!thread_group_leader(tsk));
1014 return 0;
1015
1016killed:
1017 /* protects against exit_notify() and __exit_signal() */
1018 read_lock(&tasklist_lock);
1019 sig->group_exit_task = NULL;
1020 sig->notify_count = 0;
1021 read_unlock(&tasklist_lock);
1022 return -EAGAIN;
1023}
1024
1025char *get_task_comm(char *buf, struct task_struct *tsk)
1026{
1027 /* buf must be at least sizeof(tsk->comm) in size */
1028 task_lock(tsk);
1029 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1030 task_unlock(tsk);
1031 return buf;
1032}
1033EXPORT_SYMBOL_GPL(get_task_comm);
1034
1035/*
1036 * These functions flushes out all traces of the currently running executable
1037 * so that a new one can be started
1038 */
1039
1040void set_task_comm(struct task_struct *tsk, char *buf)
1041{
1042 task_lock(tsk);
1043 trace_task_rename(tsk, buf);
1044 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1045 task_unlock(tsk);
1046 perf_event_comm(tsk);
1047}
1048
1049static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1050{
1051 int i, ch;
1052
1053 /* Copies the binary name from after last slash */
1054 for (i = 0; (ch = *(fn++)) != '\0';) {
1055 if (ch == '/')
1056 i = 0; /* overwrite what we wrote */
1057 else
1058 if (i < len - 1)
1059 tcomm[i++] = ch;
1060 }
1061 tcomm[i] = '\0';
1062}
1063
1064int flush_old_exec(struct linux_binprm * bprm)
1065{
1066 int retval;
1067
1068 /*
1069 * Make sure we have a private signal table and that
1070 * we are unassociated from the previous thread group.
1071 */
1072 retval = de_thread(current);
1073 if (retval)
1074 goto out;
1075
1076 set_mm_exe_file(bprm->mm, bprm->file);
1077
1078 filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1079 /*
1080 * Release all of the old mmap stuff
1081 */
1082 acct_arg_size(bprm, 0);
1083 retval = exec_mmap(bprm->mm);
1084 if (retval)
1085 goto out;
1086
1087 bprm->mm = NULL; /* We're using it now */
1088
1089 set_fs(USER_DS);
1090 current->flags &=
1091 ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | PF_NOFREEZE);
1092 flush_thread();
1093 current->personality &= ~bprm->per_clear;
1094
1095 return 0;
1096
1097out:
1098 return retval;
1099}
1100EXPORT_SYMBOL(flush_old_exec);
1101
1102void would_dump(struct linux_binprm *bprm, struct file *file)
1103{
1104 if (inode_permission(file_inode(file), MAY_READ) < 0)
1105 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1106}
1107EXPORT_SYMBOL(would_dump);
1108
1109void setup_new_exec(struct linux_binprm * bprm)
1110{
1111 arch_pick_mmap_layout(current->mm);
1112
1113 /* This is the point of no return */
1114 current->sas_ss_sp = current->sas_ss_size = 0;
1115
1116 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1117 set_dumpable(current->mm, SUID_DUMP_USER);
1118 else
1119 set_dumpable(current->mm, suid_dumpable);
1120
1121 set_task_comm(current, bprm->tcomm);
1122
1123 /* Set the new mm task size. We have to do that late because it may
1124 * depend on TIF_32BIT which is only updated in flush_thread() on
1125 * some architectures like powerpc
1126 */
1127 current->mm->task_size = TASK_SIZE;
1128
1129 /* install the new credentials */
1130 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1131 !gid_eq(bprm->cred->gid, current_egid())) {
1132 current->pdeath_signal = 0;
1133 } else {
1134 would_dump(bprm, bprm->file);
1135 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1136 set_dumpable(current->mm, suid_dumpable);
1137 }
1138
1139 /* An exec changes our domain. We are no longer part of the thread
1140 group */
1141
1142 current->self_exec_id++;
1143
1144 flush_signal_handlers(current, 0);
1145 do_close_on_exec(current->files);
1146}
1147EXPORT_SYMBOL(setup_new_exec);
1148
1149/*
1150 * Prepare credentials and lock ->cred_guard_mutex.
1151 * install_exec_creds() commits the new creds and drops the lock.
1152 * Or, if exec fails before, free_bprm() should release ->cred and
1153 * and unlock.
1154 */
1155int prepare_bprm_creds(struct linux_binprm *bprm)
1156{
1157 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1158 return -ERESTARTNOINTR;
1159
1160 bprm->cred = prepare_exec_creds();
1161 if (likely(bprm->cred))
1162 return 0;
1163
1164 mutex_unlock(&current->signal->cred_guard_mutex);
1165 return -ENOMEM;
1166}
1167
1168void free_bprm(struct linux_binprm *bprm)
1169{
1170 free_arg_pages(bprm);
1171 if (bprm->cred) {
1172 mutex_unlock(&current->signal->cred_guard_mutex);
1173 abort_creds(bprm->cred);
1174 }
1175 /* If a binfmt changed the interp, free it. */
1176 if (bprm->interp != bprm->filename)
1177 kfree(bprm->interp);
1178 kfree(bprm);
1179}
1180
1181int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1182{
1183 /* If a binfmt changed the interp, free it first. */
1184 if (bprm->interp != bprm->filename)
1185 kfree(bprm->interp);
1186 bprm->interp = kstrdup(interp, GFP_KERNEL);
1187 if (!bprm->interp)
1188 return -ENOMEM;
1189 return 0;
1190}
1191EXPORT_SYMBOL(bprm_change_interp);
1192
1193/*
1194 * install the new credentials for this executable
1195 */
1196void install_exec_creds(struct linux_binprm *bprm)
1197{
1198 security_bprm_committing_creds(bprm);
1199
1200 commit_creds(bprm->cred);
1201 bprm->cred = NULL;
1202
1203 /*
1204 * Disable monitoring for regular users
1205 * when executing setuid binaries. Must
1206 * wait until new credentials are committed
1207 * by commit_creds() above
1208 */
1209 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1210 perf_event_exit_task(current);
1211 /*
1212 * cred_guard_mutex must be held at least to this point to prevent
1213 * ptrace_attach() from altering our determination of the task's
1214 * credentials; any time after this it may be unlocked.
1215 */
1216 security_bprm_committed_creds(bprm);
1217 mutex_unlock(&current->signal->cred_guard_mutex);
1218}
1219EXPORT_SYMBOL(install_exec_creds);
1220
1221/*
1222 * determine how safe it is to execute the proposed program
1223 * - the caller must hold ->cred_guard_mutex to protect against
1224 * PTRACE_ATTACH
1225 */
1226static int check_unsafe_exec(struct linux_binprm *bprm)
1227{
1228 struct task_struct *p = current, *t;
1229 unsigned n_fs;
1230 int res = 0;
1231
1232 if (p->ptrace) {
1233 if (p->ptrace & PT_PTRACE_CAP)
1234 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1235 else
1236 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1237 }
1238
1239 /*
1240 * This isn't strictly necessary, but it makes it harder for LSMs to
1241 * mess up.
1242 */
1243 if (current->no_new_privs)
1244 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1245
1246 t = p;
1247 n_fs = 1;
1248 spin_lock(&p->fs->lock);
1249 rcu_read_lock();
1250 while_each_thread(p, t) {
1251 if (t->fs == p->fs)
1252 n_fs++;
1253 }
1254 rcu_read_unlock();
1255
1256 if (p->fs->users > n_fs) {
1257 bprm->unsafe |= LSM_UNSAFE_SHARE;
1258 } else {
1259 res = -EAGAIN;
1260 if (!p->fs->in_exec) {
1261 p->fs->in_exec = 1;
1262 res = 1;
1263 }
1264 }
1265 spin_unlock(&p->fs->lock);
1266
1267 return res;
1268}
1269
1270/*
1271 * Fill the binprm structure from the inode.
1272 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1273 *
1274 * This may be called multiple times for binary chains (scripts for example).
1275 */
1276int prepare_binprm(struct linux_binprm *bprm)
1277{
1278 struct inode *inode = file_inode(bprm->file);
1279 umode_t mode = inode->i_mode;
1280 int retval;
1281
1282
1283 /* clear any previous set[ug]id data from a previous binary */
1284 bprm->cred->euid = current_euid();
1285 bprm->cred->egid = current_egid();
1286
1287 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1288 !current->no_new_privs &&
1289 kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) &&
1290 kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) {
1291 /* Set-uid? */
1292 if (mode & S_ISUID) {
1293 bprm->per_clear |= PER_CLEAR_ON_SETID;
1294 bprm->cred->euid = inode->i_uid;
1295 }
1296
1297 /* Set-gid? */
1298 /*
1299 * If setgid is set but no group execute bit then this
1300 * is a candidate for mandatory locking, not a setgid
1301 * executable.
1302 */
1303 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1304 bprm->per_clear |= PER_CLEAR_ON_SETID;
1305 bprm->cred->egid = inode->i_gid;
1306 }
1307 }
1308
1309 /* fill in binprm security blob */
1310 retval = security_bprm_set_creds(bprm);
1311 if (retval)
1312 return retval;
1313 bprm->cred_prepared = 1;
1314
1315 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1316 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1317}
1318
1319EXPORT_SYMBOL(prepare_binprm);
1320
1321/*
1322 * Arguments are '\0' separated strings found at the location bprm->p
1323 * points to; chop off the first by relocating brpm->p to right after
1324 * the first '\0' encountered.
1325 */
1326int remove_arg_zero(struct linux_binprm *bprm)
1327{
1328 int ret = 0;
1329 unsigned long offset;
1330 char *kaddr;
1331 struct page *page;
1332
1333 if (!bprm->argc)
1334 return 0;
1335
1336 do {
1337 offset = bprm->p & ~PAGE_MASK;
1338 page = get_arg_page(bprm, bprm->p, 0);
1339 if (!page) {
1340 ret = -EFAULT;
1341 goto out;
1342 }
1343 kaddr = kmap_atomic(page);
1344
1345 for (; offset < PAGE_SIZE && kaddr[offset];
1346 offset++, bprm->p++)
1347 ;
1348
1349 kunmap_atomic(kaddr);
1350 put_arg_page(page);
1351
1352 if (offset == PAGE_SIZE)
1353 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1354 } while (offset == PAGE_SIZE);
1355
1356 bprm->p++;
1357 bprm->argc--;
1358 ret = 0;
1359
1360out:
1361 return ret;
1362}
1363EXPORT_SYMBOL(remove_arg_zero);
1364
1365#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1366/*
1367 * cycle the list of binary formats handler, until one recognizes the image
1368 */
1369int search_binary_handler(struct linux_binprm *bprm)
1370{
1371 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1372 struct linux_binfmt *fmt;
1373 int retval;
1374
1375 /* This allows 4 levels of binfmt rewrites before failing hard. */
1376 if (bprm->recursion_depth > 5)
1377 return -ELOOP;
1378
1379 retval = security_bprm_check(bprm);
1380 if (retval)
1381 return retval;
1382
1383 retval = -ENOENT;
1384 retry:
1385 read_lock(&binfmt_lock);
1386 list_for_each_entry(fmt, &formats, lh) {
1387 if (!try_module_get(fmt->module))
1388 continue;
1389 read_unlock(&binfmt_lock);
1390 bprm->recursion_depth++;
1391 retval = fmt->load_binary(bprm);
1392 bprm->recursion_depth--;
1393 if (retval >= 0 || retval != -ENOEXEC ||
1394 bprm->mm == NULL || bprm->file == NULL) {
1395 put_binfmt(fmt);
1396 return retval;
1397 }
1398 read_lock(&binfmt_lock);
1399 put_binfmt(fmt);
1400 }
1401 read_unlock(&binfmt_lock);
1402
1403 if (need_retry && retval == -ENOEXEC) {
1404 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1405 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1406 return retval;
1407 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1408 return retval;
1409 need_retry = false;
1410 goto retry;
1411 }
1412
1413 return retval;
1414}
1415EXPORT_SYMBOL(search_binary_handler);
1416
1417static int exec_binprm(struct linux_binprm *bprm)
1418{
1419 pid_t old_pid, old_vpid;
1420 int ret;
1421
1422 /* Need to fetch pid before load_binary changes it */
1423 old_pid = current->pid;
1424 rcu_read_lock();
1425 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1426 rcu_read_unlock();
1427
1428 ret = search_binary_handler(bprm);
1429 if (ret >= 0) {
1430 audit_bprm(bprm);
1431 trace_sched_process_exec(current, old_pid, bprm);
1432 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1433 current->did_exec = 1;
1434 proc_exec_connector(current);
1435
1436 if (bprm->file) {
1437 allow_write_access(bprm->file);
1438 fput(bprm->file);
1439 bprm->file = NULL; /* to catch use-after-free */
1440 }
1441 }
1442
1443 return ret;
1444}
1445
1446/*
1447 * sys_execve() executes a new program.
1448 */
1449static int do_execve_common(const char *filename,
1450 struct user_arg_ptr argv,
1451 struct user_arg_ptr envp)
1452{
1453 struct linux_binprm *bprm;
1454 struct file *file;
1455 struct files_struct *displaced;
1456 bool clear_in_exec;
1457 int retval;
1458
1459 /*
1460 * We move the actual failure in case of RLIMIT_NPROC excess from
1461 * set*uid() to execve() because too many poorly written programs
1462 * don't check setuid() return code. Here we additionally recheck
1463 * whether NPROC limit is still exceeded.
1464 */
1465 if ((current->flags & PF_NPROC_EXCEEDED) &&
1466 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1467 retval = -EAGAIN;
1468 goto out_ret;
1469 }
1470
1471 /* We're below the limit (still or again), so we don't want to make
1472 * further execve() calls fail. */
1473 current->flags &= ~PF_NPROC_EXCEEDED;
1474
1475 retval = unshare_files(&displaced);
1476 if (retval)
1477 goto out_ret;
1478
1479 retval = -ENOMEM;
1480 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1481 if (!bprm)
1482 goto out_files;
1483
1484 retval = prepare_bprm_creds(bprm);
1485 if (retval)
1486 goto out_free;
1487
1488 retval = check_unsafe_exec(bprm);
1489 if (retval < 0)
1490 goto out_free;
1491 clear_in_exec = retval;
1492 current->in_execve = 1;
1493
1494 file = open_exec(filename);
1495 retval = PTR_ERR(file);
1496 if (IS_ERR(file))
1497 goto out_unmark;
1498
1499 sched_exec();
1500
1501 bprm->file = file;
1502 bprm->filename = filename;
1503 bprm->interp = filename;
1504
1505 retval = bprm_mm_init(bprm);
1506 if (retval)
1507 goto out_file;
1508
1509 bprm->argc = count(argv, MAX_ARG_STRINGS);
1510 if ((retval = bprm->argc) < 0)
1511 goto out;
1512
1513 bprm->envc = count(envp, MAX_ARG_STRINGS);
1514 if ((retval = bprm->envc) < 0)
1515 goto out;
1516
1517 retval = prepare_binprm(bprm);
1518 if (retval < 0)
1519 goto out;
1520
1521 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1522 if (retval < 0)
1523 goto out;
1524
1525 bprm->exec = bprm->p;
1526 retval = copy_strings(bprm->envc, envp, bprm);
1527 if (retval < 0)
1528 goto out;
1529
1530 retval = copy_strings(bprm->argc, argv, bprm);
1531 if (retval < 0)
1532 goto out;
1533
1534 retval = exec_binprm(bprm);
1535 if (retval < 0)
1536 goto out;
1537
1538 /* execve succeeded */
1539 current->fs->in_exec = 0;
1540 current->in_execve = 0;
1541 acct_update_integrals(current);
1542 task_numa_free(current);
1543 free_bprm(bprm);
1544 if (displaced)
1545 put_files_struct(displaced);
1546 return retval;
1547
1548out:
1549 if (bprm->mm) {
1550 acct_arg_size(bprm, 0);
1551 mmput(bprm->mm);
1552 }
1553
1554out_file:
1555 if (bprm->file) {
1556 allow_write_access(bprm->file);
1557 fput(bprm->file);
1558 }
1559
1560out_unmark:
1561 if (clear_in_exec)
1562 current->fs->in_exec = 0;
1563 current->in_execve = 0;
1564
1565out_free:
1566 free_bprm(bprm);
1567
1568out_files:
1569 if (displaced)
1570 reset_files_struct(displaced);
1571out_ret:
1572 return retval;
1573}
1574
1575int do_execve(const char *filename,
1576 const char __user *const __user *__argv,
1577 const char __user *const __user *__envp)
1578{
1579 struct user_arg_ptr argv = { .ptr.native = __argv };
1580 struct user_arg_ptr envp = { .ptr.native = __envp };
1581 return do_execve_common(filename, argv, envp);
1582}
1583
1584#ifdef CONFIG_COMPAT
1585static int compat_do_execve(const char *filename,
1586 const compat_uptr_t __user *__argv,
1587 const compat_uptr_t __user *__envp)
1588{
1589 struct user_arg_ptr argv = {
1590 .is_compat = true,
1591 .ptr.compat = __argv,
1592 };
1593 struct user_arg_ptr envp = {
1594 .is_compat = true,
1595 .ptr.compat = __envp,
1596 };
1597 return do_execve_common(filename, argv, envp);
1598}
1599#endif
1600
1601void set_binfmt(struct linux_binfmt *new)
1602{
1603 struct mm_struct *mm = current->mm;
1604
1605 if (mm->binfmt)
1606 module_put(mm->binfmt->module);
1607
1608 mm->binfmt = new;
1609 if (new)
1610 __module_get(new->module);
1611}
1612EXPORT_SYMBOL(set_binfmt);
1613
1614/*
1615 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1616 */
1617void set_dumpable(struct mm_struct *mm, int value)
1618{
1619 unsigned long old, new;
1620
1621 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1622 return;
1623
1624 do {
1625 old = ACCESS_ONCE(mm->flags);
1626 new = (old & ~MMF_DUMPABLE_MASK) | value;
1627 } while (cmpxchg(&mm->flags, old, new) != old);
1628}
1629
1630SYSCALL_DEFINE3(execve,
1631 const char __user *, filename,
1632 const char __user *const __user *, argv,
1633 const char __user *const __user *, envp)
1634{
1635 struct filename *path = getname(filename);
1636 int error = PTR_ERR(path);
1637 if (!IS_ERR(path)) {
1638 error = do_execve(path->name, argv, envp);
1639 putname(path);
1640 }
1641 return error;
1642}
1643#ifdef CONFIG_COMPAT
1644asmlinkage long compat_sys_execve(const char __user * filename,
1645 const compat_uptr_t __user * argv,
1646 const compat_uptr_t __user * envp)
1647{
1648 struct filename *path = getname(filename);
1649 int error = PTR_ERR(path);
1650 if (!IS_ERR(path)) {
1651 error = compat_do_execve(path->name, argv, envp);
1652 putname(path);
1653 }
1654 return error;
1655}
1656#endif