Btrfs: Fix allocation completions in tree log replay
[linux-2.6-block.git] / fs / btrfs / inode.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/kernel.h>
20#include <linux/bio.h>
21#include <linux/buffer_head.h>
22#include <linux/file.h>
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
29#include <linux/smp_lock.h>
30#include <linux/backing-dev.h>
31#include <linux/mpage.h>
32#include <linux/swap.h>
33#include <linux/writeback.h>
34#include <linux/statfs.h>
35#include <linux/compat.h>
36#include <linux/bit_spinlock.h>
37#include <linux/version.h>
38#include <linux/xattr.h>
39#include <linux/posix_acl.h>
40#include "ctree.h"
41#include "disk-io.h"
42#include "transaction.h"
43#include "btrfs_inode.h"
44#include "ioctl.h"
45#include "print-tree.h"
46#include "volumes.h"
47#include "ordered-data.h"
48#include "xattr.h"
49#include "compat.h"
50#include "tree-log.h"
51
52struct btrfs_iget_args {
53 u64 ino;
54 struct btrfs_root *root;
55};
56
57static struct inode_operations btrfs_dir_inode_operations;
58static struct inode_operations btrfs_symlink_inode_operations;
59static struct inode_operations btrfs_dir_ro_inode_operations;
60static struct inode_operations btrfs_special_inode_operations;
61static struct inode_operations btrfs_file_inode_operations;
62static struct address_space_operations btrfs_aops;
63static struct address_space_operations btrfs_symlink_aops;
64static struct file_operations btrfs_dir_file_operations;
65static struct extent_io_ops btrfs_extent_io_ops;
66
67static struct kmem_cache *btrfs_inode_cachep;
68struct kmem_cache *btrfs_trans_handle_cachep;
69struct kmem_cache *btrfs_transaction_cachep;
70struct kmem_cache *btrfs_bit_radix_cachep;
71struct kmem_cache *btrfs_path_cachep;
72
73#define S_SHIFT 12
74static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
76 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
77 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
78 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
79 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
80 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
81 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
82};
83
84static void btrfs_truncate(struct inode *inode);
85
86int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
87 int for_del)
88{
89 u64 total;
90 u64 used;
91 u64 thresh;
92 unsigned long flags;
93 int ret = 0;
94
95 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
96 total = btrfs_super_total_bytes(&root->fs_info->super_copy);
97 used = btrfs_super_bytes_used(&root->fs_info->super_copy);
98 if (for_del)
99 thresh = total * 90;
100 else
101 thresh = total * 85;
102
103 do_div(thresh, 100);
104
105 if (used + root->fs_info->delalloc_bytes + num_required > thresh)
106 ret = -ENOSPC;
107 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
108 return ret;
109}
110
111static int cow_file_range(struct inode *inode, u64 start, u64 end)
112{
113 struct btrfs_root *root = BTRFS_I(inode)->root;
114 struct btrfs_trans_handle *trans;
115 u64 alloc_hint = 0;
116 u64 num_bytes;
117 u64 cur_alloc_size;
118 u64 blocksize = root->sectorsize;
119 u64 orig_num_bytes;
120 struct btrfs_key ins;
121 struct extent_map *em;
122 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
123 int ret = 0;
124
125 trans = btrfs_join_transaction(root, 1);
126 BUG_ON(!trans);
127 btrfs_set_trans_block_group(trans, inode);
128
129 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
130 num_bytes = max(blocksize, num_bytes);
131 orig_num_bytes = num_bytes;
132
133 if (alloc_hint == EXTENT_MAP_INLINE)
134 goto out;
135
136 BUG_ON(num_bytes > btrfs_super_total_bytes(&root->fs_info->super_copy));
137 mutex_lock(&BTRFS_I(inode)->extent_mutex);
138 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1);
139 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
140
141 while(num_bytes > 0) {
142 cur_alloc_size = min(num_bytes, root->fs_info->max_extent);
143 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
144 root->sectorsize, 0, alloc_hint,
145 (u64)-1, &ins, 1);
146 if (ret) {
147 WARN_ON(1);
148 goto out;
149 }
150 em = alloc_extent_map(GFP_NOFS);
151 em->start = start;
152 em->len = ins.offset;
153 em->block_start = ins.objectid;
154 em->bdev = root->fs_info->fs_devices->latest_bdev;
155 mutex_lock(&BTRFS_I(inode)->extent_mutex);
156 set_bit(EXTENT_FLAG_PINNED, &em->flags);
157 while(1) {
158 spin_lock(&em_tree->lock);
159 ret = add_extent_mapping(em_tree, em);
160 spin_unlock(&em_tree->lock);
161 if (ret != -EEXIST) {
162 free_extent_map(em);
163 break;
164 }
165 btrfs_drop_extent_cache(inode, start,
166 start + ins.offset - 1);
167 }
168 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
169
170 cur_alloc_size = ins.offset;
171 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
172 ins.offset, 0);
173 BUG_ON(ret);
174 if (num_bytes < cur_alloc_size) {
175 printk("num_bytes %Lu cur_alloc %Lu\n", num_bytes,
176 cur_alloc_size);
177 break;
178 }
179 num_bytes -= cur_alloc_size;
180 alloc_hint = ins.objectid + ins.offset;
181 start += cur_alloc_size;
182 }
183out:
184 btrfs_end_transaction(trans, root);
185 return ret;
186}
187
188static int run_delalloc_nocow(struct inode *inode, u64 start, u64 end)
189{
190 u64 extent_start;
191 u64 extent_end;
192 u64 bytenr;
193 u64 loops = 0;
194 u64 total_fs_bytes;
195 struct btrfs_root *root = BTRFS_I(inode)->root;
196 struct btrfs_block_group_cache *block_group;
197 struct btrfs_trans_handle *trans;
198 struct extent_buffer *leaf;
199 int found_type;
200 struct btrfs_path *path;
201 struct btrfs_file_extent_item *item;
202 int ret;
203 int err = 0;
204 struct btrfs_key found_key;
205
206 total_fs_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
207 path = btrfs_alloc_path();
208 BUG_ON(!path);
209 trans = btrfs_join_transaction(root, 1);
210 BUG_ON(!trans);
211again:
212 ret = btrfs_lookup_file_extent(NULL, root, path,
213 inode->i_ino, start, 0);
214 if (ret < 0) {
215 err = ret;
216 goto out;
217 }
218
219 if (ret != 0) {
220 if (path->slots[0] == 0)
221 goto not_found;
222 path->slots[0]--;
223 }
224
225 leaf = path->nodes[0];
226 item = btrfs_item_ptr(leaf, path->slots[0],
227 struct btrfs_file_extent_item);
228
229 /* are we inside the extent that was found? */
230 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
231 found_type = btrfs_key_type(&found_key);
232 if (found_key.objectid != inode->i_ino ||
233 found_type != BTRFS_EXTENT_DATA_KEY)
234 goto not_found;
235
236 found_type = btrfs_file_extent_type(leaf, item);
237 extent_start = found_key.offset;
238 if (found_type == BTRFS_FILE_EXTENT_REG) {
239 u64 extent_num_bytes;
240
241 extent_num_bytes = btrfs_file_extent_num_bytes(leaf, item);
242 extent_end = extent_start + extent_num_bytes;
243 err = 0;
244
245 if (loops && start != extent_start)
246 goto not_found;
247
248 if (start < extent_start || start >= extent_end)
249 goto not_found;
250
251 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
252 if (bytenr == 0)
253 goto not_found;
254
255 if (btrfs_cross_ref_exists(trans, root, &found_key, bytenr))
256 goto not_found;
257 /*
258 * we may be called by the resizer, make sure we're inside
259 * the limits of the FS
260 */
261 block_group = btrfs_lookup_block_group(root->fs_info,
262 bytenr);
263 if (!block_group || block_group->ro)
264 goto not_found;
265
266 bytenr += btrfs_file_extent_offset(leaf, item);
267 extent_num_bytes = min(end + 1, extent_end) - start;
268 ret = btrfs_add_ordered_extent(inode, start, bytenr,
269 extent_num_bytes, 1);
270 if (ret) {
271 err = ret;
272 goto out;
273 }
274
275 btrfs_release_path(root, path);
276 start = extent_end;
277 if (start <= end) {
278 loops++;
279 goto again;
280 }
281 } else {
282not_found:
283 btrfs_end_transaction(trans, root);
284 btrfs_free_path(path);
285 return cow_file_range(inode, start, end);
286 }
287out:
288 WARN_ON(err);
289 btrfs_end_transaction(trans, root);
290 btrfs_free_path(path);
291 return err;
292}
293
294static int run_delalloc_range(struct inode *inode, u64 start, u64 end)
295{
296 struct btrfs_root *root = BTRFS_I(inode)->root;
297 int ret;
298
299 if (btrfs_test_opt(root, NODATACOW) ||
300 btrfs_test_flag(inode, NODATACOW))
301 ret = run_delalloc_nocow(inode, start, end);
302 else
303 ret = cow_file_range(inode, start, end);
304
305 return ret;
306}
307
308int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
309 unsigned long old, unsigned long bits)
310{
311 unsigned long flags;
312 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
313 struct btrfs_root *root = BTRFS_I(inode)->root;
314 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
315 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
316 root->fs_info->delalloc_bytes += end - start + 1;
317 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
318 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
319 &root->fs_info->delalloc_inodes);
320 }
321 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
322 }
323 return 0;
324}
325
326int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
327 unsigned long old, unsigned long bits)
328{
329 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
330 struct btrfs_root *root = BTRFS_I(inode)->root;
331 unsigned long flags;
332
333 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
334 if (end - start + 1 > root->fs_info->delalloc_bytes) {
335 printk("warning: delalloc account %Lu %Lu\n",
336 end - start + 1, root->fs_info->delalloc_bytes);
337 root->fs_info->delalloc_bytes = 0;
338 BTRFS_I(inode)->delalloc_bytes = 0;
339 } else {
340 root->fs_info->delalloc_bytes -= end - start + 1;
341 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
342 }
343 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
344 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
345 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
346 }
347 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
348 }
349 return 0;
350}
351
352int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
353 size_t size, struct bio *bio)
354{
355 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
356 struct btrfs_mapping_tree *map_tree;
357 u64 logical = bio->bi_sector << 9;
358 u64 length = 0;
359 u64 map_length;
360 int ret;
361
362 length = bio->bi_size;
363 map_tree = &root->fs_info->mapping_tree;
364 map_length = length;
365 ret = btrfs_map_block(map_tree, READ, logical,
366 &map_length, NULL, 0);
367
368 if (map_length < length + size) {
369 return 1;
370 }
371 return 0;
372}
373
374int __btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
375 int mirror_num)
376{
377 struct btrfs_root *root = BTRFS_I(inode)->root;
378 int ret = 0;
379
380 ret = btrfs_csum_one_bio(root, inode, bio);
381 BUG_ON(ret);
382
383 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
384}
385
386int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
387 int mirror_num)
388{
389 struct btrfs_root *root = BTRFS_I(inode)->root;
390 int ret = 0;
391
392 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
393 BUG_ON(ret);
394
395 if (btrfs_test_opt(root, NODATASUM) ||
396 btrfs_test_flag(inode, NODATASUM)) {
397 goto mapit;
398 }
399
400 if (!(rw & (1 << BIO_RW))) {
401 btrfs_lookup_bio_sums(root, inode, bio);
402 goto mapit;
403 }
404 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
405 inode, rw, bio, mirror_num,
406 __btrfs_submit_bio_hook);
407mapit:
408 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
409}
410
411static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
412 struct inode *inode, u64 file_offset,
413 struct list_head *list)
414{
415 struct list_head *cur;
416 struct btrfs_ordered_sum *sum;
417
418 btrfs_set_trans_block_group(trans, inode);
419 list_for_each(cur, list) {
420 sum = list_entry(cur, struct btrfs_ordered_sum, list);
421 btrfs_csum_file_blocks(trans, BTRFS_I(inode)->root,
422 inode, sum);
423 }
424 return 0;
425}
426
427int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
428{
429 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
430 GFP_NOFS);
431}
432
433struct btrfs_writepage_fixup {
434 struct page *page;
435 struct btrfs_work work;
436};
437
438/* see btrfs_writepage_start_hook for details on why this is required */
439void btrfs_writepage_fixup_worker(struct btrfs_work *work)
440{
441 struct btrfs_writepage_fixup *fixup;
442 struct btrfs_ordered_extent *ordered;
443 struct page *page;
444 struct inode *inode;
445 u64 page_start;
446 u64 page_end;
447
448 fixup = container_of(work, struct btrfs_writepage_fixup, work);
449 page = fixup->page;
450again:
451 lock_page(page);
452 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
453 ClearPageChecked(page);
454 goto out_page;
455 }
456
457 inode = page->mapping->host;
458 page_start = page_offset(page);
459 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
460
461 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
462
463 /* already ordered? We're done */
464 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
465 EXTENT_ORDERED, 0)) {
466 goto out;
467 }
468
469 ordered = btrfs_lookup_ordered_extent(inode, page_start);
470 if (ordered) {
471 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
472 page_end, GFP_NOFS);
473 unlock_page(page);
474 btrfs_start_ordered_extent(inode, ordered, 1);
475 goto again;
476 }
477
478 btrfs_set_extent_delalloc(inode, page_start, page_end);
479 ClearPageChecked(page);
480out:
481 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
482out_page:
483 unlock_page(page);
484 page_cache_release(page);
485}
486
487/*
488 * There are a few paths in the higher layers of the kernel that directly
489 * set the page dirty bit without asking the filesystem if it is a
490 * good idea. This causes problems because we want to make sure COW
491 * properly happens and the data=ordered rules are followed.
492 *
493 * In our case any range that doesn't have the EXTENT_ORDERED bit set
494 * hasn't been properly setup for IO. We kick off an async process
495 * to fix it up. The async helper will wait for ordered extents, set
496 * the delalloc bit and make it safe to write the page.
497 */
498int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
499{
500 struct inode *inode = page->mapping->host;
501 struct btrfs_writepage_fixup *fixup;
502 struct btrfs_root *root = BTRFS_I(inode)->root;
503 int ret;
504
505 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
506 EXTENT_ORDERED, 0);
507 if (ret)
508 return 0;
509
510 if (PageChecked(page))
511 return -EAGAIN;
512
513 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
514 if (!fixup)
515 return -EAGAIN;
516
517 SetPageChecked(page);
518 page_cache_get(page);
519 fixup->work.func = btrfs_writepage_fixup_worker;
520 fixup->page = page;
521 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
522 return -EAGAIN;
523}
524
525static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
526{
527 struct btrfs_root *root = BTRFS_I(inode)->root;
528 struct btrfs_trans_handle *trans;
529 struct btrfs_ordered_extent *ordered_extent;
530 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
531 struct btrfs_file_extent_item *extent_item;
532 struct btrfs_path *path = NULL;
533 struct extent_buffer *leaf;
534 u64 alloc_hint = 0;
535 struct list_head list;
536 struct btrfs_key ins;
537 int ret;
538
539 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
540 if (!ret)
541 return 0;
542
543 trans = btrfs_join_transaction(root, 1);
544
545 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
546 BUG_ON(!ordered_extent);
547 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
548 goto nocow;
549
550 path = btrfs_alloc_path();
551 BUG_ON(!path);
552
553 lock_extent(io_tree, ordered_extent->file_offset,
554 ordered_extent->file_offset + ordered_extent->len - 1,
555 GFP_NOFS);
556
557 INIT_LIST_HEAD(&list);
558
559 mutex_lock(&BTRFS_I(inode)->extent_mutex);
560
561 ret = btrfs_drop_extents(trans, root, inode,
562 ordered_extent->file_offset,
563 ordered_extent->file_offset +
564 ordered_extent->len,
565 ordered_extent->file_offset, &alloc_hint);
566 BUG_ON(ret);
567
568 ins.objectid = inode->i_ino;
569 ins.offset = ordered_extent->file_offset;
570 ins.type = BTRFS_EXTENT_DATA_KEY;
571 ret = btrfs_insert_empty_item(trans, root, path, &ins,
572 sizeof(*extent_item));
573 BUG_ON(ret);
574 leaf = path->nodes[0];
575 extent_item = btrfs_item_ptr(leaf, path->slots[0],
576 struct btrfs_file_extent_item);
577 btrfs_set_file_extent_generation(leaf, extent_item, trans->transid);
578 btrfs_set_file_extent_type(leaf, extent_item, BTRFS_FILE_EXTENT_REG);
579 btrfs_set_file_extent_disk_bytenr(leaf, extent_item,
580 ordered_extent->start);
581 btrfs_set_file_extent_disk_num_bytes(leaf, extent_item,
582 ordered_extent->len);
583 btrfs_set_file_extent_offset(leaf, extent_item, 0);
584 btrfs_set_file_extent_num_bytes(leaf, extent_item,
585 ordered_extent->len);
586 btrfs_mark_buffer_dirty(leaf);
587
588 btrfs_drop_extent_cache(inode, ordered_extent->file_offset,
589 ordered_extent->file_offset +
590 ordered_extent->len - 1);
591 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
592
593 ins.objectid = ordered_extent->start;
594 ins.offset = ordered_extent->len;
595 ins.type = BTRFS_EXTENT_ITEM_KEY;
596 ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
597 root->root_key.objectid,
598 trans->transid, inode->i_ino,
599 ordered_extent->file_offset, &ins);
600 BUG_ON(ret);
601 btrfs_release_path(root, path);
602
603 inode->i_blocks += ordered_extent->len >> 9;
604 unlock_extent(io_tree, ordered_extent->file_offset,
605 ordered_extent->file_offset + ordered_extent->len - 1,
606 GFP_NOFS);
607nocow:
608 add_pending_csums(trans, inode, ordered_extent->file_offset,
609 &ordered_extent->list);
610
611 mutex_lock(&BTRFS_I(inode)->extent_mutex);
612 btrfs_ordered_update_i_size(inode, ordered_extent);
613 btrfs_update_inode(trans, root, inode);
614 btrfs_remove_ordered_extent(inode, ordered_extent);
615 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
616
617 /* once for us */
618 btrfs_put_ordered_extent(ordered_extent);
619 /* once for the tree */
620 btrfs_put_ordered_extent(ordered_extent);
621
622 btrfs_end_transaction(trans, root);
623 if (path)
624 btrfs_free_path(path);
625 return 0;
626}
627
628int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
629 struct extent_state *state, int uptodate)
630{
631 return btrfs_finish_ordered_io(page->mapping->host, start, end);
632}
633
634struct io_failure_record {
635 struct page *page;
636 u64 start;
637 u64 len;
638 u64 logical;
639 int last_mirror;
640};
641
642int btrfs_io_failed_hook(struct bio *failed_bio,
643 struct page *page, u64 start, u64 end,
644 struct extent_state *state)
645{
646 struct io_failure_record *failrec = NULL;
647 u64 private;
648 struct extent_map *em;
649 struct inode *inode = page->mapping->host;
650 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
651 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
652 struct bio *bio;
653 int num_copies;
654 int ret;
655 int rw;
656 u64 logical;
657
658 ret = get_state_private(failure_tree, start, &private);
659 if (ret) {
660 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
661 if (!failrec)
662 return -ENOMEM;
663 failrec->start = start;
664 failrec->len = end - start + 1;
665 failrec->last_mirror = 0;
666
667 spin_lock(&em_tree->lock);
668 em = lookup_extent_mapping(em_tree, start, failrec->len);
669 if (em->start > start || em->start + em->len < start) {
670 free_extent_map(em);
671 em = NULL;
672 }
673 spin_unlock(&em_tree->lock);
674
675 if (!em || IS_ERR(em)) {
676 kfree(failrec);
677 return -EIO;
678 }
679 logical = start - em->start;
680 logical = em->block_start + logical;
681 failrec->logical = logical;
682 free_extent_map(em);
683 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
684 EXTENT_DIRTY, GFP_NOFS);
685 set_state_private(failure_tree, start,
686 (u64)(unsigned long)failrec);
687 } else {
688 failrec = (struct io_failure_record *)(unsigned long)private;
689 }
690 num_copies = btrfs_num_copies(
691 &BTRFS_I(inode)->root->fs_info->mapping_tree,
692 failrec->logical, failrec->len);
693 failrec->last_mirror++;
694 if (!state) {
695 spin_lock_irq(&BTRFS_I(inode)->io_tree.lock);
696 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
697 failrec->start,
698 EXTENT_LOCKED);
699 if (state && state->start != failrec->start)
700 state = NULL;
701 spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock);
702 }
703 if (!state || failrec->last_mirror > num_copies) {
704 set_state_private(failure_tree, failrec->start, 0);
705 clear_extent_bits(failure_tree, failrec->start,
706 failrec->start + failrec->len - 1,
707 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
708 kfree(failrec);
709 return -EIO;
710 }
711 bio = bio_alloc(GFP_NOFS, 1);
712 bio->bi_private = state;
713 bio->bi_end_io = failed_bio->bi_end_io;
714 bio->bi_sector = failrec->logical >> 9;
715 bio->bi_bdev = failed_bio->bi_bdev;
716 bio->bi_size = 0;
717 bio_add_page(bio, page, failrec->len, start - page_offset(page));
718 if (failed_bio->bi_rw & (1 << BIO_RW))
719 rw = WRITE;
720 else
721 rw = READ;
722
723 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
724 failrec->last_mirror);
725 return 0;
726}
727
728int btrfs_clean_io_failures(struct inode *inode, u64 start)
729{
730 u64 private;
731 u64 private_failure;
732 struct io_failure_record *failure;
733 int ret;
734
735 private = 0;
736 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
737 (u64)-1, 1, EXTENT_DIRTY)) {
738 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
739 start, &private_failure);
740 if (ret == 0) {
741 failure = (struct io_failure_record *)(unsigned long)
742 private_failure;
743 set_state_private(&BTRFS_I(inode)->io_failure_tree,
744 failure->start, 0);
745 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
746 failure->start,
747 failure->start + failure->len - 1,
748 EXTENT_DIRTY | EXTENT_LOCKED,
749 GFP_NOFS);
750 kfree(failure);
751 }
752 }
753 return 0;
754}
755
756int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
757 struct extent_state *state)
758{
759 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
760 struct inode *inode = page->mapping->host;
761 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
762 char *kaddr;
763 u64 private = ~(u32)0;
764 int ret;
765 struct btrfs_root *root = BTRFS_I(inode)->root;
766 u32 csum = ~(u32)0;
767 unsigned long flags;
768
769 if (btrfs_test_opt(root, NODATASUM) ||
770 btrfs_test_flag(inode, NODATASUM))
771 return 0;
772 if (state && state->start == start) {
773 private = state->private;
774 ret = 0;
775 } else {
776 ret = get_state_private(io_tree, start, &private);
777 }
778 local_irq_save(flags);
779 kaddr = kmap_atomic(page, KM_IRQ0);
780 if (ret) {
781 goto zeroit;
782 }
783 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
784 btrfs_csum_final(csum, (char *)&csum);
785 if (csum != private) {
786 goto zeroit;
787 }
788 kunmap_atomic(kaddr, KM_IRQ0);
789 local_irq_restore(flags);
790
791 /* if the io failure tree for this inode is non-empty,
792 * check to see if we've recovered from a failed IO
793 */
794 btrfs_clean_io_failures(inode, start);
795 return 0;
796
797zeroit:
798 printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n",
799 page->mapping->host->i_ino, (unsigned long long)start, csum,
800 private);
801 memset(kaddr + offset, 1, end - start + 1);
802 flush_dcache_page(page);
803 kunmap_atomic(kaddr, KM_IRQ0);
804 local_irq_restore(flags);
805 if (private == 0)
806 return 0;
807 return -EIO;
808}
809
810/*
811 * This creates an orphan entry for the given inode in case something goes
812 * wrong in the middle of an unlink/truncate.
813 */
814int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
815{
816 struct btrfs_root *root = BTRFS_I(inode)->root;
817 int ret = 0;
818
819 spin_lock(&root->list_lock);
820
821 /* already on the orphan list, we're good */
822 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
823 spin_unlock(&root->list_lock);
824 return 0;
825 }
826
827 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
828
829 spin_unlock(&root->list_lock);
830
831 /*
832 * insert an orphan item to track this unlinked/truncated file
833 */
834 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
835
836 return ret;
837}
838
839/*
840 * We have done the truncate/delete so we can go ahead and remove the orphan
841 * item for this particular inode.
842 */
843int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
844{
845 struct btrfs_root *root = BTRFS_I(inode)->root;
846 int ret = 0;
847
848 spin_lock(&root->list_lock);
849
850 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
851 spin_unlock(&root->list_lock);
852 return 0;
853 }
854
855 list_del_init(&BTRFS_I(inode)->i_orphan);
856 if (!trans) {
857 spin_unlock(&root->list_lock);
858 return 0;
859 }
860
861 spin_unlock(&root->list_lock);
862
863 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
864
865 return ret;
866}
867
868/*
869 * this cleans up any orphans that may be left on the list from the last use
870 * of this root.
871 */
872void btrfs_orphan_cleanup(struct btrfs_root *root)
873{
874 struct btrfs_path *path;
875 struct extent_buffer *leaf;
876 struct btrfs_item *item;
877 struct btrfs_key key, found_key;
878 struct btrfs_trans_handle *trans;
879 struct inode *inode;
880 int ret = 0, nr_unlink = 0, nr_truncate = 0;
881
882 /* don't do orphan cleanup if the fs is readonly. */
883 if (root->inode->i_sb->s_flags & MS_RDONLY)
884 return;
885
886 path = btrfs_alloc_path();
887 if (!path)
888 return;
889 path->reada = -1;
890
891 key.objectid = BTRFS_ORPHAN_OBJECTID;
892 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
893 key.offset = (u64)-1;
894
895 trans = btrfs_start_transaction(root, 1);
896 btrfs_set_trans_block_group(trans, root->inode);
897
898 while (1) {
899 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
900 if (ret < 0) {
901 printk(KERN_ERR "Error searching slot for orphan: %d"
902 "\n", ret);
903 break;
904 }
905
906 /*
907 * if ret == 0 means we found what we were searching for, which
908 * is weird, but possible, so only screw with path if we didnt
909 * find the key and see if we have stuff that matches
910 */
911 if (ret > 0) {
912 if (path->slots[0] == 0)
913 break;
914 path->slots[0]--;
915 }
916
917 /* pull out the item */
918 leaf = path->nodes[0];
919 item = btrfs_item_nr(leaf, path->slots[0]);
920 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
921
922 /* make sure the item matches what we want */
923 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
924 break;
925 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
926 break;
927
928 /* release the path since we're done with it */
929 btrfs_release_path(root, path);
930
931 /*
932 * this is where we are basically btrfs_lookup, without the
933 * crossing root thing. we store the inode number in the
934 * offset of the orphan item.
935 */
936 inode = btrfs_iget_locked(root->inode->i_sb,
937 found_key.offset, root);
938 if (!inode)
939 break;
940
941 if (inode->i_state & I_NEW) {
942 BTRFS_I(inode)->root = root;
943
944 /* have to set the location manually */
945 BTRFS_I(inode)->location.objectid = inode->i_ino;
946 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
947 BTRFS_I(inode)->location.offset = 0;
948
949 btrfs_read_locked_inode(inode);
950 unlock_new_inode(inode);
951 }
952
953 /*
954 * add this inode to the orphan list so btrfs_orphan_del does
955 * the proper thing when we hit it
956 */
957 spin_lock(&root->list_lock);
958 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
959 spin_unlock(&root->list_lock);
960
961 /*
962 * if this is a bad inode, means we actually succeeded in
963 * removing the inode, but not the orphan record, which means
964 * we need to manually delete the orphan since iput will just
965 * do a destroy_inode
966 */
967 if (is_bad_inode(inode)) {
968 btrfs_orphan_del(trans, inode);
969 iput(inode);
970 continue;
971 }
972
973 /* if we have links, this was a truncate, lets do that */
974 if (inode->i_nlink) {
975 nr_truncate++;
976 btrfs_truncate(inode);
977 } else {
978 nr_unlink++;
979 }
980
981 /* this will do delete_inode and everything for us */
982 iput(inode);
983 }
984
985 if (nr_unlink)
986 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
987 if (nr_truncate)
988 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
989
990 btrfs_free_path(path);
991 btrfs_end_transaction(trans, root);
992}
993
994void btrfs_read_locked_inode(struct inode *inode)
995{
996 struct btrfs_path *path;
997 struct extent_buffer *leaf;
998 struct btrfs_inode_item *inode_item;
999 struct btrfs_timespec *tspec;
1000 struct btrfs_root *root = BTRFS_I(inode)->root;
1001 struct btrfs_key location;
1002 u64 alloc_group_block;
1003 u32 rdev;
1004 int ret;
1005
1006 path = btrfs_alloc_path();
1007 BUG_ON(!path);
1008 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1009
1010 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1011 if (ret)
1012 goto make_bad;
1013
1014 leaf = path->nodes[0];
1015 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1016 struct btrfs_inode_item);
1017
1018 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1019 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1020 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1021 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1022 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1023
1024 tspec = btrfs_inode_atime(inode_item);
1025 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1026 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1027
1028 tspec = btrfs_inode_mtime(inode_item);
1029 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1030 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1031
1032 tspec = btrfs_inode_ctime(inode_item);
1033 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1034 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1035
1036 inode->i_blocks = btrfs_inode_nblocks(leaf, inode_item);
1037 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
1038 inode->i_generation = BTRFS_I(inode)->generation;
1039 inode->i_rdev = 0;
1040 rdev = btrfs_inode_rdev(leaf, inode_item);
1041
1042 BTRFS_I(inode)->index_cnt = (u64)-1;
1043
1044 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
1045 BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info,
1046 alloc_group_block);
1047 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
1048 if (!BTRFS_I(inode)->block_group) {
1049 BTRFS_I(inode)->block_group = btrfs_find_block_group(root,
1050 NULL, 0,
1051 BTRFS_BLOCK_GROUP_METADATA, 0);
1052 }
1053 btrfs_free_path(path);
1054 inode_item = NULL;
1055
1056 switch (inode->i_mode & S_IFMT) {
1057 case S_IFREG:
1058 inode->i_mapping->a_ops = &btrfs_aops;
1059 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1060 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1061 inode->i_fop = &btrfs_file_operations;
1062 inode->i_op = &btrfs_file_inode_operations;
1063 break;
1064 case S_IFDIR:
1065 inode->i_fop = &btrfs_dir_file_operations;
1066 if (root == root->fs_info->tree_root)
1067 inode->i_op = &btrfs_dir_ro_inode_operations;
1068 else
1069 inode->i_op = &btrfs_dir_inode_operations;
1070 break;
1071 case S_IFLNK:
1072 inode->i_op = &btrfs_symlink_inode_operations;
1073 inode->i_mapping->a_ops = &btrfs_symlink_aops;
1074 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1075 break;
1076 default:
1077 init_special_inode(inode, inode->i_mode, rdev);
1078 break;
1079 }
1080 return;
1081
1082make_bad:
1083 btrfs_free_path(path);
1084 make_bad_inode(inode);
1085}
1086
1087static void fill_inode_item(struct btrfs_trans_handle *trans,
1088 struct extent_buffer *leaf,
1089 struct btrfs_inode_item *item,
1090 struct inode *inode)
1091{
1092 btrfs_set_inode_uid(leaf, item, inode->i_uid);
1093 btrfs_set_inode_gid(leaf, item, inode->i_gid);
1094 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
1095 btrfs_set_inode_mode(leaf, item, inode->i_mode);
1096 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
1097
1098 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
1099 inode->i_atime.tv_sec);
1100 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
1101 inode->i_atime.tv_nsec);
1102
1103 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
1104 inode->i_mtime.tv_sec);
1105 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
1106 inode->i_mtime.tv_nsec);
1107
1108 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
1109 inode->i_ctime.tv_sec);
1110 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
1111 inode->i_ctime.tv_nsec);
1112
1113 btrfs_set_inode_nblocks(leaf, item, inode->i_blocks);
1114 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
1115 btrfs_set_inode_transid(leaf, item, trans->transid);
1116 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
1117 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
1118 btrfs_set_inode_block_group(leaf, item,
1119 BTRFS_I(inode)->block_group->key.objectid);
1120}
1121
1122int noinline btrfs_update_inode(struct btrfs_trans_handle *trans,
1123 struct btrfs_root *root,
1124 struct inode *inode)
1125{
1126 struct btrfs_inode_item *inode_item;
1127 struct btrfs_path *path;
1128 struct extent_buffer *leaf;
1129 int ret;
1130
1131 path = btrfs_alloc_path();
1132 BUG_ON(!path);
1133 ret = btrfs_lookup_inode(trans, root, path,
1134 &BTRFS_I(inode)->location, 1);
1135 if (ret) {
1136 if (ret > 0)
1137 ret = -ENOENT;
1138 goto failed;
1139 }
1140
1141 leaf = path->nodes[0];
1142 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1143 struct btrfs_inode_item);
1144
1145 fill_inode_item(trans, leaf, inode_item, inode);
1146 btrfs_mark_buffer_dirty(leaf);
1147 btrfs_set_inode_last_trans(trans, inode);
1148 ret = 0;
1149failed:
1150 btrfs_free_path(path);
1151 return ret;
1152}
1153
1154
1155int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
1156 struct btrfs_root *root,
1157 struct inode *dir, struct inode *inode,
1158 const char *name, int name_len)
1159{
1160 struct btrfs_path *path;
1161 int ret = 0;
1162 struct extent_buffer *leaf;
1163 struct btrfs_dir_item *di;
1164 struct btrfs_key key;
1165 u64 index;
1166
1167 path = btrfs_alloc_path();
1168 if (!path) {
1169 ret = -ENOMEM;
1170 goto err;
1171 }
1172
1173 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
1174 name, name_len, -1);
1175 if (IS_ERR(di)) {
1176 ret = PTR_ERR(di);
1177 goto err;
1178 }
1179 if (!di) {
1180 ret = -ENOENT;
1181 goto err;
1182 }
1183 leaf = path->nodes[0];
1184 btrfs_dir_item_key_to_cpu(leaf, di, &key);
1185 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1186 if (ret)
1187 goto err;
1188 btrfs_release_path(root, path);
1189
1190 ret = btrfs_del_inode_ref(trans, root, name, name_len,
1191 inode->i_ino,
1192 dir->i_ino, &index);
1193 if (ret) {
1194 printk("failed to delete reference to %.*s, "
1195 "inode %lu parent %lu\n", name_len, name,
1196 inode->i_ino, dir->i_ino);
1197 goto err;
1198 }
1199
1200 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
1201 index, name, name_len, -1);
1202 if (IS_ERR(di)) {
1203 ret = PTR_ERR(di);
1204 goto err;
1205 }
1206 if (!di) {
1207 ret = -ENOENT;
1208 goto err;
1209 }
1210 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1211 btrfs_release_path(root, path);
1212
1213 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
1214 inode, dir->i_ino);
1215 BUG_ON(ret != 0 && ret != -ENOENT);
1216 if (ret != -ENOENT)
1217 BTRFS_I(dir)->log_dirty_trans = trans->transid;
1218
1219 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
1220 dir, index);
1221 BUG_ON(ret);
1222err:
1223 btrfs_free_path(path);
1224 if (ret)
1225 goto out;
1226
1227 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
1228 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
1229 btrfs_update_inode(trans, root, dir);
1230 btrfs_drop_nlink(inode);
1231 ret = btrfs_update_inode(trans, root, inode);
1232 dir->i_sb->s_dirt = 1;
1233out:
1234 return ret;
1235}
1236
1237static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
1238{
1239 struct btrfs_root *root;
1240 struct btrfs_trans_handle *trans;
1241 struct inode *inode = dentry->d_inode;
1242 int ret;
1243 unsigned long nr = 0;
1244
1245 root = BTRFS_I(dir)->root;
1246
1247 ret = btrfs_check_free_space(root, 1, 1);
1248 if (ret)
1249 goto fail;
1250
1251 trans = btrfs_start_transaction(root, 1);
1252
1253 btrfs_set_trans_block_group(trans, dir);
1254 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
1255 dentry->d_name.name, dentry->d_name.len);
1256
1257 if (inode->i_nlink == 0)
1258 ret = btrfs_orphan_add(trans, inode);
1259
1260 nr = trans->blocks_used;
1261
1262 btrfs_end_transaction_throttle(trans, root);
1263fail:
1264 btrfs_btree_balance_dirty(root, nr);
1265 return ret;
1266}
1267
1268static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
1269{
1270 struct inode *inode = dentry->d_inode;
1271 int err = 0;
1272 int ret;
1273 struct btrfs_root *root = BTRFS_I(dir)->root;
1274 struct btrfs_trans_handle *trans;
1275 unsigned long nr = 0;
1276
1277 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
1278 return -ENOTEMPTY;
1279 }
1280
1281 ret = btrfs_check_free_space(root, 1, 1);
1282 if (ret)
1283 goto fail;
1284
1285 trans = btrfs_start_transaction(root, 1);
1286 btrfs_set_trans_block_group(trans, dir);
1287
1288 err = btrfs_orphan_add(trans, inode);
1289 if (err)
1290 goto fail_trans;
1291
1292 /* now the directory is empty */
1293 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
1294 dentry->d_name.name, dentry->d_name.len);
1295 if (!err) {
1296 btrfs_i_size_write(inode, 0);
1297 }
1298
1299fail_trans:
1300 nr = trans->blocks_used;
1301 ret = btrfs_end_transaction_throttle(trans, root);
1302fail:
1303 btrfs_btree_balance_dirty(root, nr);
1304
1305 if (ret && !err)
1306 err = ret;
1307 return err;
1308}
1309
1310/*
1311 * this can truncate away extent items, csum items and directory items.
1312 * It starts at a high offset and removes keys until it can't find
1313 * any higher than i_size.
1314 *
1315 * csum items that cross the new i_size are truncated to the new size
1316 * as well.
1317 *
1318 * min_type is the minimum key type to truncate down to. If set to 0, this
1319 * will kill all the items on this inode, including the INODE_ITEM_KEY.
1320 */
1321noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
1322 struct btrfs_root *root,
1323 struct inode *inode,
1324 u64 new_size, u32 min_type)
1325{
1326 int ret;
1327 struct btrfs_path *path;
1328 struct btrfs_key key;
1329 struct btrfs_key found_key;
1330 u32 found_type;
1331 struct extent_buffer *leaf;
1332 struct btrfs_file_extent_item *fi;
1333 u64 extent_start = 0;
1334 u64 extent_num_bytes = 0;
1335 u64 item_end = 0;
1336 u64 root_gen = 0;
1337 u64 root_owner = 0;
1338 int found_extent;
1339 int del_item;
1340 int pending_del_nr = 0;
1341 int pending_del_slot = 0;
1342 int extent_type = -1;
1343 u64 mask = root->sectorsize - 1;
1344
1345 if (root->ref_cows)
1346 btrfs_drop_extent_cache(inode,
1347 new_size & (~mask), (u64)-1);
1348 path = btrfs_alloc_path();
1349 path->reada = -1;
1350 BUG_ON(!path);
1351
1352 /* FIXME, add redo link to tree so we don't leak on crash */
1353 key.objectid = inode->i_ino;
1354 key.offset = (u64)-1;
1355 key.type = (u8)-1;
1356
1357 btrfs_init_path(path);
1358search_again:
1359 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1360 if (ret < 0) {
1361 goto error;
1362 }
1363 if (ret > 0) {
1364 /* there are no items in the tree for us to truncate, we're
1365 * done
1366 */
1367 if (path->slots[0] == 0) {
1368 ret = 0;
1369 goto error;
1370 }
1371 path->slots[0]--;
1372 }
1373
1374 while(1) {
1375 fi = NULL;
1376 leaf = path->nodes[0];
1377 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1378 found_type = btrfs_key_type(&found_key);
1379
1380 if (found_key.objectid != inode->i_ino)
1381 break;
1382
1383 if (found_type < min_type)
1384 break;
1385
1386 item_end = found_key.offset;
1387 if (found_type == BTRFS_EXTENT_DATA_KEY) {
1388 fi = btrfs_item_ptr(leaf, path->slots[0],
1389 struct btrfs_file_extent_item);
1390 extent_type = btrfs_file_extent_type(leaf, fi);
1391 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1392 item_end +=
1393 btrfs_file_extent_num_bytes(leaf, fi);
1394 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1395 struct btrfs_item *item = btrfs_item_nr(leaf,
1396 path->slots[0]);
1397 item_end += btrfs_file_extent_inline_len(leaf,
1398 item);
1399 }
1400 item_end--;
1401 }
1402 if (found_type == BTRFS_CSUM_ITEM_KEY) {
1403 ret = btrfs_csum_truncate(trans, root, path,
1404 new_size);
1405 BUG_ON(ret);
1406 }
1407 if (item_end < new_size) {
1408 if (found_type == BTRFS_DIR_ITEM_KEY) {
1409 found_type = BTRFS_INODE_ITEM_KEY;
1410 } else if (found_type == BTRFS_EXTENT_ITEM_KEY) {
1411 found_type = BTRFS_CSUM_ITEM_KEY;
1412 } else if (found_type == BTRFS_EXTENT_DATA_KEY) {
1413 found_type = BTRFS_XATTR_ITEM_KEY;
1414 } else if (found_type == BTRFS_XATTR_ITEM_KEY) {
1415 found_type = BTRFS_INODE_REF_KEY;
1416 } else if (found_type) {
1417 found_type--;
1418 } else {
1419 break;
1420 }
1421 btrfs_set_key_type(&key, found_type);
1422 goto next;
1423 }
1424 if (found_key.offset >= new_size)
1425 del_item = 1;
1426 else
1427 del_item = 0;
1428 found_extent = 0;
1429
1430 /* FIXME, shrink the extent if the ref count is only 1 */
1431 if (found_type != BTRFS_EXTENT_DATA_KEY)
1432 goto delete;
1433
1434 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1435 u64 num_dec;
1436 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
1437 if (!del_item) {
1438 u64 orig_num_bytes =
1439 btrfs_file_extent_num_bytes(leaf, fi);
1440 extent_num_bytes = new_size -
1441 found_key.offset + root->sectorsize - 1;
1442 extent_num_bytes = extent_num_bytes &
1443 ~((u64)root->sectorsize - 1);
1444 btrfs_set_file_extent_num_bytes(leaf, fi,
1445 extent_num_bytes);
1446 num_dec = (orig_num_bytes -
1447 extent_num_bytes);
1448 if (root->ref_cows && extent_start != 0)
1449 dec_i_blocks(inode, num_dec);
1450 btrfs_mark_buffer_dirty(leaf);
1451 } else {
1452 extent_num_bytes =
1453 btrfs_file_extent_disk_num_bytes(leaf,
1454 fi);
1455 /* FIXME blocksize != 4096 */
1456 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
1457 if (extent_start != 0) {
1458 found_extent = 1;
1459 if (root->ref_cows)
1460 dec_i_blocks(inode, num_dec);
1461 }
1462 root_gen = btrfs_header_generation(leaf);
1463 root_owner = btrfs_header_owner(leaf);
1464 }
1465 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1466 if (!del_item) {
1467 u32 size = new_size - found_key.offset;
1468
1469 if (root->ref_cows) {
1470 dec_i_blocks(inode, item_end + 1 -
1471 found_key.offset - size);
1472 }
1473 size =
1474 btrfs_file_extent_calc_inline_size(size);
1475 ret = btrfs_truncate_item(trans, root, path,
1476 size, 1);
1477 BUG_ON(ret);
1478 } else if (root->ref_cows) {
1479 dec_i_blocks(inode, item_end + 1 -
1480 found_key.offset);
1481 }
1482 }
1483delete:
1484 if (del_item) {
1485 if (!pending_del_nr) {
1486 /* no pending yet, add ourselves */
1487 pending_del_slot = path->slots[0];
1488 pending_del_nr = 1;
1489 } else if (pending_del_nr &&
1490 path->slots[0] + 1 == pending_del_slot) {
1491 /* hop on the pending chunk */
1492 pending_del_nr++;
1493 pending_del_slot = path->slots[0];
1494 } else {
1495 printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot);
1496 }
1497 } else {
1498 break;
1499 }
1500 if (found_extent) {
1501 ret = btrfs_free_extent(trans, root, extent_start,
1502 extent_num_bytes,
1503 leaf->start, root_owner,
1504 root_gen, inode->i_ino,
1505 found_key.offset, 0);
1506 BUG_ON(ret);
1507 }
1508next:
1509 if (path->slots[0] == 0) {
1510 if (pending_del_nr)
1511 goto del_pending;
1512 btrfs_release_path(root, path);
1513 goto search_again;
1514 }
1515
1516 path->slots[0]--;
1517 if (pending_del_nr &&
1518 path->slots[0] + 1 != pending_del_slot) {
1519 struct btrfs_key debug;
1520del_pending:
1521 btrfs_item_key_to_cpu(path->nodes[0], &debug,
1522 pending_del_slot);
1523 ret = btrfs_del_items(trans, root, path,
1524 pending_del_slot,
1525 pending_del_nr);
1526 BUG_ON(ret);
1527 pending_del_nr = 0;
1528 btrfs_release_path(root, path);
1529 goto search_again;
1530 }
1531 }
1532 ret = 0;
1533error:
1534 if (pending_del_nr) {
1535 ret = btrfs_del_items(trans, root, path, pending_del_slot,
1536 pending_del_nr);
1537 }
1538 btrfs_free_path(path);
1539 inode->i_sb->s_dirt = 1;
1540 return ret;
1541}
1542
1543/*
1544 * taken from block_truncate_page, but does cow as it zeros out
1545 * any bytes left in the last page in the file.
1546 */
1547static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
1548{
1549 struct inode *inode = mapping->host;
1550 struct btrfs_root *root = BTRFS_I(inode)->root;
1551 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1552 struct btrfs_ordered_extent *ordered;
1553 char *kaddr;
1554 u32 blocksize = root->sectorsize;
1555 pgoff_t index = from >> PAGE_CACHE_SHIFT;
1556 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1557 struct page *page;
1558 int ret = 0;
1559 u64 page_start;
1560 u64 page_end;
1561
1562 if ((offset & (blocksize - 1)) == 0)
1563 goto out;
1564
1565 ret = -ENOMEM;
1566again:
1567 page = grab_cache_page(mapping, index);
1568 if (!page)
1569 goto out;
1570
1571 page_start = page_offset(page);
1572 page_end = page_start + PAGE_CACHE_SIZE - 1;
1573
1574 if (!PageUptodate(page)) {
1575 ret = btrfs_readpage(NULL, page);
1576 lock_page(page);
1577 if (page->mapping != mapping) {
1578 unlock_page(page);
1579 page_cache_release(page);
1580 goto again;
1581 }
1582 if (!PageUptodate(page)) {
1583 ret = -EIO;
1584 goto out_unlock;
1585 }
1586 }
1587 wait_on_page_writeback(page);
1588
1589 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
1590 set_page_extent_mapped(page);
1591
1592 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1593 if (ordered) {
1594 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1595 unlock_page(page);
1596 page_cache_release(page);
1597 btrfs_start_ordered_extent(inode, ordered, 1);
1598 btrfs_put_ordered_extent(ordered);
1599 goto again;
1600 }
1601
1602 btrfs_set_extent_delalloc(inode, page_start, page_end);
1603 ret = 0;
1604 if (offset != PAGE_CACHE_SIZE) {
1605 kaddr = kmap(page);
1606 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
1607 flush_dcache_page(page);
1608 kunmap(page);
1609 }
1610 ClearPageChecked(page);
1611 set_page_dirty(page);
1612 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1613
1614out_unlock:
1615 unlock_page(page);
1616 page_cache_release(page);
1617out:
1618 return ret;
1619}
1620
1621static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
1622{
1623 struct inode *inode = dentry->d_inode;
1624 int err;
1625
1626 err = inode_change_ok(inode, attr);
1627 if (err)
1628 return err;
1629
1630 if (S_ISREG(inode->i_mode) &&
1631 attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
1632 struct btrfs_trans_handle *trans;
1633 struct btrfs_root *root = BTRFS_I(inode)->root;
1634 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1635
1636 u64 mask = root->sectorsize - 1;
1637 u64 hole_start = (inode->i_size + mask) & ~mask;
1638 u64 block_end = (attr->ia_size + mask) & ~mask;
1639 u64 hole_size;
1640 u64 alloc_hint = 0;
1641
1642 if (attr->ia_size <= hole_start)
1643 goto out;
1644
1645 err = btrfs_check_free_space(root, 1, 0);
1646 if (err)
1647 goto fail;
1648
1649 btrfs_truncate_page(inode->i_mapping, inode->i_size);
1650
1651 hole_size = block_end - hole_start;
1652 while(1) {
1653 struct btrfs_ordered_extent *ordered;
1654 btrfs_wait_ordered_range(inode, hole_start, hole_size);
1655
1656 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1657 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
1658 if (ordered) {
1659 unlock_extent(io_tree, hole_start,
1660 block_end - 1, GFP_NOFS);
1661 btrfs_put_ordered_extent(ordered);
1662 } else {
1663 break;
1664 }
1665 }
1666
1667 trans = btrfs_start_transaction(root, 1);
1668 btrfs_set_trans_block_group(trans, inode);
1669 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1670 err = btrfs_drop_extents(trans, root, inode,
1671 hole_start, block_end, hole_start,
1672 &alloc_hint);
1673
1674 if (alloc_hint != EXTENT_MAP_INLINE) {
1675 err = btrfs_insert_file_extent(trans, root,
1676 inode->i_ino,
1677 hole_start, 0, 0,
1678 hole_size, 0);
1679 btrfs_drop_extent_cache(inode, hole_start,
1680 (u64)-1);
1681 btrfs_check_file(root, inode);
1682 }
1683 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1684 btrfs_end_transaction(trans, root);
1685 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1686 if (err)
1687 return err;
1688 }
1689out:
1690 err = inode_setattr(inode, attr);
1691
1692 if (!err && ((attr->ia_valid & ATTR_MODE)))
1693 err = btrfs_acl_chmod(inode);
1694fail:
1695 return err;
1696}
1697
1698void btrfs_delete_inode(struct inode *inode)
1699{
1700 struct btrfs_trans_handle *trans;
1701 struct btrfs_root *root = BTRFS_I(inode)->root;
1702 unsigned long nr;
1703 int ret;
1704
1705 truncate_inode_pages(&inode->i_data, 0);
1706 if (is_bad_inode(inode)) {
1707 btrfs_orphan_del(NULL, inode);
1708 goto no_delete;
1709 }
1710 btrfs_wait_ordered_range(inode, 0, (u64)-1);
1711
1712 btrfs_i_size_write(inode, 0);
1713 trans = btrfs_start_transaction(root, 1);
1714
1715 btrfs_set_trans_block_group(trans, inode);
1716 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
1717 if (ret) {
1718 btrfs_orphan_del(NULL, inode);
1719 goto no_delete_lock;
1720 }
1721
1722 btrfs_orphan_del(trans, inode);
1723
1724 nr = trans->blocks_used;
1725 clear_inode(inode);
1726
1727 btrfs_end_transaction(trans, root);
1728 btrfs_btree_balance_dirty(root, nr);
1729 return;
1730
1731no_delete_lock:
1732 nr = trans->blocks_used;
1733 btrfs_end_transaction(trans, root);
1734 btrfs_btree_balance_dirty(root, nr);
1735no_delete:
1736 clear_inode(inode);
1737}
1738
1739/*
1740 * this returns the key found in the dir entry in the location pointer.
1741 * If no dir entries were found, location->objectid is 0.
1742 */
1743static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
1744 struct btrfs_key *location)
1745{
1746 const char *name = dentry->d_name.name;
1747 int namelen = dentry->d_name.len;
1748 struct btrfs_dir_item *di;
1749 struct btrfs_path *path;
1750 struct btrfs_root *root = BTRFS_I(dir)->root;
1751 int ret = 0;
1752
1753 path = btrfs_alloc_path();
1754 BUG_ON(!path);
1755
1756 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
1757 namelen, 0);
1758 if (IS_ERR(di))
1759 ret = PTR_ERR(di);
1760 if (!di || IS_ERR(di)) {
1761 goto out_err;
1762 }
1763 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
1764out:
1765 btrfs_free_path(path);
1766 return ret;
1767out_err:
1768 location->objectid = 0;
1769 goto out;
1770}
1771
1772/*
1773 * when we hit a tree root in a directory, the btrfs part of the inode
1774 * needs to be changed to reflect the root directory of the tree root. This
1775 * is kind of like crossing a mount point.
1776 */
1777static int fixup_tree_root_location(struct btrfs_root *root,
1778 struct btrfs_key *location,
1779 struct btrfs_root **sub_root,
1780 struct dentry *dentry)
1781{
1782 struct btrfs_root_item *ri;
1783
1784 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
1785 return 0;
1786 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1787 return 0;
1788
1789 *sub_root = btrfs_read_fs_root(root->fs_info, location,
1790 dentry->d_name.name,
1791 dentry->d_name.len);
1792 if (IS_ERR(*sub_root))
1793 return PTR_ERR(*sub_root);
1794
1795 ri = &(*sub_root)->root_item;
1796 location->objectid = btrfs_root_dirid(ri);
1797 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
1798 location->offset = 0;
1799
1800 return 0;
1801}
1802
1803static noinline void init_btrfs_i(struct inode *inode)
1804{
1805 struct btrfs_inode *bi = BTRFS_I(inode);
1806
1807 bi->i_acl = NULL;
1808 bi->i_default_acl = NULL;
1809
1810 bi->generation = 0;
1811 bi->last_trans = 0;
1812 bi->logged_trans = 0;
1813 bi->delalloc_bytes = 0;
1814 bi->disk_i_size = 0;
1815 bi->flags = 0;
1816 bi->index_cnt = (u64)-1;
1817 bi->log_dirty_trans = 0;
1818 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
1819 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
1820 inode->i_mapping, GFP_NOFS);
1821 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
1822 inode->i_mapping, GFP_NOFS);
1823 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
1824 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
1825 mutex_init(&BTRFS_I(inode)->csum_mutex);
1826 mutex_init(&BTRFS_I(inode)->extent_mutex);
1827 mutex_init(&BTRFS_I(inode)->log_mutex);
1828}
1829
1830static int btrfs_init_locked_inode(struct inode *inode, void *p)
1831{
1832 struct btrfs_iget_args *args = p;
1833 inode->i_ino = args->ino;
1834 init_btrfs_i(inode);
1835 BTRFS_I(inode)->root = args->root;
1836 return 0;
1837}
1838
1839static int btrfs_find_actor(struct inode *inode, void *opaque)
1840{
1841 struct btrfs_iget_args *args = opaque;
1842 return (args->ino == inode->i_ino &&
1843 args->root == BTRFS_I(inode)->root);
1844}
1845
1846struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
1847 struct btrfs_root *root)
1848{
1849 struct inode *inode;
1850 struct btrfs_iget_args args;
1851 args.ino = objectid;
1852 args.root = root;
1853
1854 inode = iget5_locked(s, objectid, btrfs_find_actor,
1855 btrfs_init_locked_inode,
1856 (void *)&args);
1857 return inode;
1858}
1859
1860/* Get an inode object given its location and corresponding root.
1861 * Returns in *is_new if the inode was read from disk
1862 */
1863struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
1864 struct btrfs_root *root, int *is_new)
1865{
1866 struct inode *inode;
1867
1868 inode = btrfs_iget_locked(s, location->objectid, root);
1869 if (!inode)
1870 return ERR_PTR(-EACCES);
1871
1872 if (inode->i_state & I_NEW) {
1873 BTRFS_I(inode)->root = root;
1874 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
1875 btrfs_read_locked_inode(inode);
1876 unlock_new_inode(inode);
1877 if (is_new)
1878 *is_new = 1;
1879 } else {
1880 if (is_new)
1881 *is_new = 0;
1882 }
1883
1884 return inode;
1885}
1886
1887static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
1888 struct nameidata *nd)
1889{
1890 struct inode * inode;
1891 struct btrfs_inode *bi = BTRFS_I(dir);
1892 struct btrfs_root *root = bi->root;
1893 struct btrfs_root *sub_root = root;
1894 struct btrfs_key location;
1895 int ret, new, do_orphan = 0;
1896
1897 if (dentry->d_name.len > BTRFS_NAME_LEN)
1898 return ERR_PTR(-ENAMETOOLONG);
1899
1900 ret = btrfs_inode_by_name(dir, dentry, &location);
1901
1902 if (ret < 0)
1903 return ERR_PTR(ret);
1904
1905 inode = NULL;
1906 if (location.objectid) {
1907 ret = fixup_tree_root_location(root, &location, &sub_root,
1908 dentry);
1909 if (ret < 0)
1910 return ERR_PTR(ret);
1911 if (ret > 0)
1912 return ERR_PTR(-ENOENT);
1913 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
1914 if (IS_ERR(inode))
1915 return ERR_CAST(inode);
1916
1917 /* the inode and parent dir are two different roots */
1918 if (new && root != sub_root) {
1919 igrab(inode);
1920 sub_root->inode = inode;
1921 do_orphan = 1;
1922 }
1923 }
1924
1925 if (unlikely(do_orphan))
1926 btrfs_orphan_cleanup(sub_root);
1927
1928 return d_splice_alias(inode, dentry);
1929}
1930
1931static unsigned char btrfs_filetype_table[] = {
1932 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
1933};
1934
1935static int btrfs_real_readdir(struct file *filp, void *dirent,
1936 filldir_t filldir)
1937{
1938 struct inode *inode = filp->f_dentry->d_inode;
1939 struct btrfs_root *root = BTRFS_I(inode)->root;
1940 struct btrfs_item *item;
1941 struct btrfs_dir_item *di;
1942 struct btrfs_key key;
1943 struct btrfs_key found_key;
1944 struct btrfs_path *path;
1945 int ret;
1946 u32 nritems;
1947 struct extent_buffer *leaf;
1948 int slot;
1949 int advance;
1950 unsigned char d_type;
1951 int over = 0;
1952 u32 di_cur;
1953 u32 di_total;
1954 u32 di_len;
1955 int key_type = BTRFS_DIR_INDEX_KEY;
1956 char tmp_name[32];
1957 char *name_ptr;
1958 int name_len;
1959
1960 /* FIXME, use a real flag for deciding about the key type */
1961 if (root->fs_info->tree_root == root)
1962 key_type = BTRFS_DIR_ITEM_KEY;
1963
1964 /* special case for "." */
1965 if (filp->f_pos == 0) {
1966 over = filldir(dirent, ".", 1,
1967 1, inode->i_ino,
1968 DT_DIR);
1969 if (over)
1970 return 0;
1971 filp->f_pos = 1;
1972 }
1973 /* special case for .., just use the back ref */
1974 if (filp->f_pos == 1) {
1975 u64 pino = parent_ino(filp->f_path.dentry);
1976 over = filldir(dirent, "..", 2,
1977 2, pino, DT_DIR);
1978 if (over)
1979 return 0;
1980 filp->f_pos = 2;
1981 }
1982
1983 path = btrfs_alloc_path();
1984 path->reada = 2;
1985
1986 btrfs_set_key_type(&key, key_type);
1987 key.offset = filp->f_pos;
1988 key.objectid = inode->i_ino;
1989
1990 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1991 if (ret < 0)
1992 goto err;
1993 advance = 0;
1994
1995 while (1) {
1996 leaf = path->nodes[0];
1997 nritems = btrfs_header_nritems(leaf);
1998 slot = path->slots[0];
1999 if (advance || slot >= nritems) {
2000 if (slot >= nritems - 1) {
2001 ret = btrfs_next_leaf(root, path);
2002 if (ret)
2003 break;
2004 leaf = path->nodes[0];
2005 nritems = btrfs_header_nritems(leaf);
2006 slot = path->slots[0];
2007 } else {
2008 slot++;
2009 path->slots[0]++;
2010 }
2011 }
2012 advance = 1;
2013 item = btrfs_item_nr(leaf, slot);
2014 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2015
2016 if (found_key.objectid != key.objectid)
2017 break;
2018 if (btrfs_key_type(&found_key) != key_type)
2019 break;
2020 if (found_key.offset < filp->f_pos)
2021 continue;
2022
2023 filp->f_pos = found_key.offset;
2024
2025 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
2026 di_cur = 0;
2027 di_total = btrfs_item_size(leaf, item);
2028
2029 while (di_cur < di_total) {
2030 struct btrfs_key location;
2031
2032 name_len = btrfs_dir_name_len(leaf, di);
2033 if (name_len <= sizeof(tmp_name)) {
2034 name_ptr = tmp_name;
2035 } else {
2036 name_ptr = kmalloc(name_len, GFP_NOFS);
2037 if (!name_ptr) {
2038 ret = -ENOMEM;
2039 goto err;
2040 }
2041 }
2042 read_extent_buffer(leaf, name_ptr,
2043 (unsigned long)(di + 1), name_len);
2044
2045 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
2046 btrfs_dir_item_key_to_cpu(leaf, di, &location);
2047 over = filldir(dirent, name_ptr, name_len,
2048 found_key.offset, location.objectid,
2049 d_type);
2050
2051 if (name_ptr != tmp_name)
2052 kfree(name_ptr);
2053
2054 if (over)
2055 goto nopos;
2056
2057 di_len = btrfs_dir_name_len(leaf, di) +
2058 btrfs_dir_data_len(leaf, di) + sizeof(*di);
2059 di_cur += di_len;
2060 di = (struct btrfs_dir_item *)((char *)di + di_len);
2061 }
2062 }
2063
2064 /* Reached end of directory/root. Bump pos past the last item. */
2065 if (key_type == BTRFS_DIR_INDEX_KEY)
2066 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
2067 else
2068 filp->f_pos++;
2069nopos:
2070 ret = 0;
2071err:
2072 btrfs_free_path(path);
2073 return ret;
2074}
2075
2076/* Kernels earlier than 2.6.28 still have the NFS deadlock where nfsd
2077 will call the file system's ->lookup() method from within its
2078 filldir callback, which in turn was called from the file system's
2079 ->readdir() method. And will deadlock for many file systems. */
2080#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28)
2081
2082struct nfshack_dirent {
2083 u64 ino;
2084 loff_t offset;
2085 int namlen;
2086 unsigned int d_type;
2087 char name[];
2088};
2089
2090struct nfshack_readdir {
2091 char *dirent;
2092 size_t used;
2093 int full;
2094};
2095
2096
2097
2098static int btrfs_nfshack_filldir(void *__buf, const char *name, int namlen,
2099 loff_t offset, u64 ino, unsigned int d_type)
2100{
2101 struct nfshack_readdir *buf = __buf;
2102 struct nfshack_dirent *de = (void *)(buf->dirent + buf->used);
2103 unsigned int reclen;
2104
2105 reclen = ALIGN(sizeof(struct nfshack_dirent) + namlen, sizeof(u64));
2106 if (buf->used + reclen > PAGE_SIZE) {
2107 buf->full = 1;
2108 return -EINVAL;
2109 }
2110
2111 de->namlen = namlen;
2112 de->offset = offset;
2113 de->ino = ino;
2114 de->d_type = d_type;
2115 memcpy(de->name, name, namlen);
2116 buf->used += reclen;
2117
2118 return 0;
2119}
2120
2121static int btrfs_nfshack_readdir(struct file *file, void *dirent,
2122 filldir_t filldir)
2123{
2124 struct nfshack_readdir buf;
2125 struct nfshack_dirent *de;
2126 int err;
2127 int size;
2128 loff_t offset;
2129
2130 buf.dirent = (void *)__get_free_page(GFP_KERNEL);
2131 if (!buf.dirent)
2132 return -ENOMEM;
2133
2134 offset = file->f_pos;
2135
2136 do {
2137 unsigned int reclen;
2138
2139 buf.used = 0;
2140 buf.full = 0;
2141 err = btrfs_real_readdir(file, &buf, btrfs_nfshack_filldir);
2142 if (err)
2143 break;
2144
2145 size = buf.used;
2146
2147 if (!size)
2148 break;
2149
2150 de = (struct nfshack_dirent *)buf.dirent;
2151 while (size > 0) {
2152 offset = de->offset;
2153
2154 if (filldir(dirent, de->name, de->namlen, de->offset,
2155 de->ino, de->d_type))
2156 goto done;
2157 offset = file->f_pos;
2158
2159 reclen = ALIGN(sizeof(*de) + de->namlen,
2160 sizeof(u64));
2161 size -= reclen;
2162 de = (struct nfshack_dirent *)((char *)de + reclen);
2163 }
2164 } while (buf.full);
2165
2166 done:
2167 free_page((unsigned long)buf.dirent);
2168 file->f_pos = offset;
2169
2170 return err;
2171}
2172#endif
2173
2174int btrfs_write_inode(struct inode *inode, int wait)
2175{
2176 struct btrfs_root *root = BTRFS_I(inode)->root;
2177 struct btrfs_trans_handle *trans;
2178 int ret = 0;
2179
2180 if (root->fs_info->closing > 1)
2181 return 0;
2182
2183 if (wait) {
2184 trans = btrfs_join_transaction(root, 1);
2185 btrfs_set_trans_block_group(trans, inode);
2186 ret = btrfs_commit_transaction(trans, root);
2187 }
2188 return ret;
2189}
2190
2191/*
2192 * This is somewhat expensive, updating the tree every time the
2193 * inode changes. But, it is most likely to find the inode in cache.
2194 * FIXME, needs more benchmarking...there are no reasons other than performance
2195 * to keep or drop this code.
2196 */
2197void btrfs_dirty_inode(struct inode *inode)
2198{
2199 struct btrfs_root *root = BTRFS_I(inode)->root;
2200 struct btrfs_trans_handle *trans;
2201
2202 trans = btrfs_join_transaction(root, 1);
2203 btrfs_set_trans_block_group(trans, inode);
2204 btrfs_update_inode(trans, root, inode);
2205 btrfs_end_transaction(trans, root);
2206}
2207
2208static int btrfs_set_inode_index_count(struct inode *inode)
2209{
2210 struct btrfs_root *root = BTRFS_I(inode)->root;
2211 struct btrfs_key key, found_key;
2212 struct btrfs_path *path;
2213 struct extent_buffer *leaf;
2214 int ret;
2215
2216 key.objectid = inode->i_ino;
2217 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
2218 key.offset = (u64)-1;
2219
2220 path = btrfs_alloc_path();
2221 if (!path)
2222 return -ENOMEM;
2223
2224 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2225 if (ret < 0)
2226 goto out;
2227 /* FIXME: we should be able to handle this */
2228 if (ret == 0)
2229 goto out;
2230 ret = 0;
2231
2232 /*
2233 * MAGIC NUMBER EXPLANATION:
2234 * since we search a directory based on f_pos we have to start at 2
2235 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
2236 * else has to start at 2
2237 */
2238 if (path->slots[0] == 0) {
2239 BTRFS_I(inode)->index_cnt = 2;
2240 goto out;
2241 }
2242
2243 path->slots[0]--;
2244
2245 leaf = path->nodes[0];
2246 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2247
2248 if (found_key.objectid != inode->i_ino ||
2249 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
2250 BTRFS_I(inode)->index_cnt = 2;
2251 goto out;
2252 }
2253
2254 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
2255out:
2256 btrfs_free_path(path);
2257 return ret;
2258}
2259
2260static int btrfs_set_inode_index(struct inode *dir, struct inode *inode,
2261 u64 *index)
2262{
2263 int ret = 0;
2264
2265 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
2266 ret = btrfs_set_inode_index_count(dir);
2267 if (ret) {
2268 return ret;
2269 }
2270 }
2271
2272 *index = BTRFS_I(dir)->index_cnt;
2273 BTRFS_I(dir)->index_cnt++;
2274
2275 return ret;
2276}
2277
2278static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
2279 struct btrfs_root *root,
2280 struct inode *dir,
2281 const char *name, int name_len,
2282 u64 ref_objectid,
2283 u64 objectid,
2284 struct btrfs_block_group_cache *group,
2285 int mode, u64 *index)
2286{
2287 struct inode *inode;
2288 struct btrfs_inode_item *inode_item;
2289 struct btrfs_block_group_cache *new_inode_group;
2290 struct btrfs_key *location;
2291 struct btrfs_path *path;
2292 struct btrfs_inode_ref *ref;
2293 struct btrfs_key key[2];
2294 u32 sizes[2];
2295 unsigned long ptr;
2296 int ret;
2297 int owner;
2298
2299 path = btrfs_alloc_path();
2300 BUG_ON(!path);
2301
2302 inode = new_inode(root->fs_info->sb);
2303 if (!inode)
2304 return ERR_PTR(-ENOMEM);
2305
2306 if (dir) {
2307 ret = btrfs_set_inode_index(dir, inode, index);
2308 if (ret)
2309 return ERR_PTR(ret);
2310 }
2311 /*
2312 * index_cnt is ignored for everything but a dir,
2313 * btrfs_get_inode_index_count has an explanation for the magic
2314 * number
2315 */
2316 init_btrfs_i(inode);
2317 BTRFS_I(inode)->index_cnt = 2;
2318 BTRFS_I(inode)->root = root;
2319 BTRFS_I(inode)->generation = trans->transid;
2320
2321 if (mode & S_IFDIR)
2322 owner = 0;
2323 else
2324 owner = 1;
2325 new_inode_group = btrfs_find_block_group(root, group, 0,
2326 BTRFS_BLOCK_GROUP_METADATA, owner);
2327 if (!new_inode_group) {
2328 printk("find_block group failed\n");
2329 new_inode_group = group;
2330 }
2331 BTRFS_I(inode)->block_group = new_inode_group;
2332
2333 key[0].objectid = objectid;
2334 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
2335 key[0].offset = 0;
2336
2337 key[1].objectid = objectid;
2338 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
2339 key[1].offset = ref_objectid;
2340
2341 sizes[0] = sizeof(struct btrfs_inode_item);
2342 sizes[1] = name_len + sizeof(*ref);
2343
2344 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
2345 if (ret != 0)
2346 goto fail;
2347
2348 if (objectid > root->highest_inode)
2349 root->highest_inode = objectid;
2350
2351 inode->i_uid = current->fsuid;
2352 inode->i_gid = current->fsgid;
2353 inode->i_mode = mode;
2354 inode->i_ino = objectid;
2355 inode->i_blocks = 0;
2356 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2357 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2358 struct btrfs_inode_item);
2359 fill_inode_item(trans, path->nodes[0], inode_item, inode);
2360
2361 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
2362 struct btrfs_inode_ref);
2363 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
2364 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
2365 ptr = (unsigned long)(ref + 1);
2366 write_extent_buffer(path->nodes[0], name, ptr, name_len);
2367
2368 btrfs_mark_buffer_dirty(path->nodes[0]);
2369 btrfs_free_path(path);
2370
2371 location = &BTRFS_I(inode)->location;
2372 location->objectid = objectid;
2373 location->offset = 0;
2374 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2375
2376 insert_inode_hash(inode);
2377 return inode;
2378fail:
2379 if (dir)
2380 BTRFS_I(dir)->index_cnt--;
2381 btrfs_free_path(path);
2382 return ERR_PTR(ret);
2383}
2384
2385static inline u8 btrfs_inode_type(struct inode *inode)
2386{
2387 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
2388}
2389
2390int btrfs_add_link(struct btrfs_trans_handle *trans,
2391 struct inode *parent_inode, struct inode *inode,
2392 const char *name, int name_len, int add_backref, u64 index)
2393{
2394 int ret;
2395 struct btrfs_key key;
2396 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
2397
2398 key.objectid = inode->i_ino;
2399 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
2400 key.offset = 0;
2401
2402 ret = btrfs_insert_dir_item(trans, root, name, name_len,
2403 parent_inode->i_ino,
2404 &key, btrfs_inode_type(inode),
2405 index);
2406 if (ret == 0) {
2407 if (add_backref) {
2408 ret = btrfs_insert_inode_ref(trans, root,
2409 name, name_len,
2410 inode->i_ino,
2411 parent_inode->i_ino,
2412 index);
2413 }
2414 btrfs_i_size_write(parent_inode, parent_inode->i_size +
2415 name_len * 2);
2416 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
2417 ret = btrfs_update_inode(trans, root, parent_inode);
2418 }
2419 return ret;
2420}
2421
2422static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
2423 struct dentry *dentry, struct inode *inode,
2424 int backref, u64 index)
2425{
2426 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
2427 inode, dentry->d_name.name,
2428 dentry->d_name.len, backref, index);
2429 if (!err) {
2430 d_instantiate(dentry, inode);
2431 return 0;
2432 }
2433 if (err > 0)
2434 err = -EEXIST;
2435 return err;
2436}
2437
2438static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
2439 int mode, dev_t rdev)
2440{
2441 struct btrfs_trans_handle *trans;
2442 struct btrfs_root *root = BTRFS_I(dir)->root;
2443 struct inode *inode = NULL;
2444 int err;
2445 int drop_inode = 0;
2446 u64 objectid;
2447 unsigned long nr = 0;
2448 u64 index = 0;
2449
2450 if (!new_valid_dev(rdev))
2451 return -EINVAL;
2452
2453 err = btrfs_check_free_space(root, 1, 0);
2454 if (err)
2455 goto fail;
2456
2457 trans = btrfs_start_transaction(root, 1);
2458 btrfs_set_trans_block_group(trans, dir);
2459
2460 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2461 if (err) {
2462 err = -ENOSPC;
2463 goto out_unlock;
2464 }
2465
2466 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2467 dentry->d_name.len,
2468 dentry->d_parent->d_inode->i_ino, objectid,
2469 BTRFS_I(dir)->block_group, mode, &index);
2470 err = PTR_ERR(inode);
2471 if (IS_ERR(inode))
2472 goto out_unlock;
2473
2474 err = btrfs_init_acl(inode, dir);
2475 if (err) {
2476 drop_inode = 1;
2477 goto out_unlock;
2478 }
2479
2480 btrfs_set_trans_block_group(trans, inode);
2481 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2482 if (err)
2483 drop_inode = 1;
2484 else {
2485 inode->i_op = &btrfs_special_inode_operations;
2486 init_special_inode(inode, inode->i_mode, rdev);
2487 btrfs_update_inode(trans, root, inode);
2488 }
2489 dir->i_sb->s_dirt = 1;
2490 btrfs_update_inode_block_group(trans, inode);
2491 btrfs_update_inode_block_group(trans, dir);
2492out_unlock:
2493 nr = trans->blocks_used;
2494 btrfs_end_transaction_throttle(trans, root);
2495fail:
2496 if (drop_inode) {
2497 inode_dec_link_count(inode);
2498 iput(inode);
2499 }
2500 btrfs_btree_balance_dirty(root, nr);
2501 return err;
2502}
2503
2504static int btrfs_create(struct inode *dir, struct dentry *dentry,
2505 int mode, struct nameidata *nd)
2506{
2507 struct btrfs_trans_handle *trans;
2508 struct btrfs_root *root = BTRFS_I(dir)->root;
2509 struct inode *inode = NULL;
2510 int err;
2511 int drop_inode = 0;
2512 unsigned long nr = 0;
2513 u64 objectid;
2514 u64 index = 0;
2515
2516 err = btrfs_check_free_space(root, 1, 0);
2517 if (err)
2518 goto fail;
2519 trans = btrfs_start_transaction(root, 1);
2520 btrfs_set_trans_block_group(trans, dir);
2521
2522 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2523 if (err) {
2524 err = -ENOSPC;
2525 goto out_unlock;
2526 }
2527
2528 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2529 dentry->d_name.len,
2530 dentry->d_parent->d_inode->i_ino,
2531 objectid, BTRFS_I(dir)->block_group, mode,
2532 &index);
2533 err = PTR_ERR(inode);
2534 if (IS_ERR(inode))
2535 goto out_unlock;
2536
2537 err = btrfs_init_acl(inode, dir);
2538 if (err) {
2539 drop_inode = 1;
2540 goto out_unlock;
2541 }
2542
2543 btrfs_set_trans_block_group(trans, inode);
2544 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2545 if (err)
2546 drop_inode = 1;
2547 else {
2548 inode->i_mapping->a_ops = &btrfs_aops;
2549 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2550 inode->i_fop = &btrfs_file_operations;
2551 inode->i_op = &btrfs_file_inode_operations;
2552 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2553 }
2554 dir->i_sb->s_dirt = 1;
2555 btrfs_update_inode_block_group(trans, inode);
2556 btrfs_update_inode_block_group(trans, dir);
2557out_unlock:
2558 nr = trans->blocks_used;
2559 btrfs_end_transaction_throttle(trans, root);
2560fail:
2561 if (drop_inode) {
2562 inode_dec_link_count(inode);
2563 iput(inode);
2564 }
2565 btrfs_btree_balance_dirty(root, nr);
2566 return err;
2567}
2568
2569static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
2570 struct dentry *dentry)
2571{
2572 struct btrfs_trans_handle *trans;
2573 struct btrfs_root *root = BTRFS_I(dir)->root;
2574 struct inode *inode = old_dentry->d_inode;
2575 u64 index;
2576 unsigned long nr = 0;
2577 int err;
2578 int drop_inode = 0;
2579
2580 if (inode->i_nlink == 0)
2581 return -ENOENT;
2582
2583 btrfs_inc_nlink(inode);
2584 err = btrfs_check_free_space(root, 1, 0);
2585 if (err)
2586 goto fail;
2587 err = btrfs_set_inode_index(dir, inode, &index);
2588 if (err)
2589 goto fail;
2590
2591 trans = btrfs_start_transaction(root, 1);
2592
2593 btrfs_set_trans_block_group(trans, dir);
2594 atomic_inc(&inode->i_count);
2595
2596 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
2597
2598 if (err)
2599 drop_inode = 1;
2600
2601 dir->i_sb->s_dirt = 1;
2602 btrfs_update_inode_block_group(trans, dir);
2603 err = btrfs_update_inode(trans, root, inode);
2604
2605 if (err)
2606 drop_inode = 1;
2607
2608 nr = trans->blocks_used;
2609 btrfs_end_transaction_throttle(trans, root);
2610fail:
2611 if (drop_inode) {
2612 inode_dec_link_count(inode);
2613 iput(inode);
2614 }
2615 btrfs_btree_balance_dirty(root, nr);
2616 return err;
2617}
2618
2619static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2620{
2621 struct inode *inode = NULL;
2622 struct btrfs_trans_handle *trans;
2623 struct btrfs_root *root = BTRFS_I(dir)->root;
2624 int err = 0;
2625 int drop_on_err = 0;
2626 u64 objectid = 0;
2627 u64 index = 0;
2628 unsigned long nr = 1;
2629
2630 err = btrfs_check_free_space(root, 1, 0);
2631 if (err)
2632 goto out_unlock;
2633
2634 trans = btrfs_start_transaction(root, 1);
2635 btrfs_set_trans_block_group(trans, dir);
2636
2637 if (IS_ERR(trans)) {
2638 err = PTR_ERR(trans);
2639 goto out_unlock;
2640 }
2641
2642 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2643 if (err) {
2644 err = -ENOSPC;
2645 goto out_unlock;
2646 }
2647
2648 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2649 dentry->d_name.len,
2650 dentry->d_parent->d_inode->i_ino, objectid,
2651 BTRFS_I(dir)->block_group, S_IFDIR | mode,
2652 &index);
2653 if (IS_ERR(inode)) {
2654 err = PTR_ERR(inode);
2655 goto out_fail;
2656 }
2657
2658 drop_on_err = 1;
2659
2660 err = btrfs_init_acl(inode, dir);
2661 if (err)
2662 goto out_fail;
2663
2664 inode->i_op = &btrfs_dir_inode_operations;
2665 inode->i_fop = &btrfs_dir_file_operations;
2666 btrfs_set_trans_block_group(trans, inode);
2667
2668 btrfs_i_size_write(inode, 0);
2669 err = btrfs_update_inode(trans, root, inode);
2670 if (err)
2671 goto out_fail;
2672
2673 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
2674 inode, dentry->d_name.name,
2675 dentry->d_name.len, 0, index);
2676 if (err)
2677 goto out_fail;
2678
2679 d_instantiate(dentry, inode);
2680 drop_on_err = 0;
2681 dir->i_sb->s_dirt = 1;
2682 btrfs_update_inode_block_group(trans, inode);
2683 btrfs_update_inode_block_group(trans, dir);
2684
2685out_fail:
2686 nr = trans->blocks_used;
2687 btrfs_end_transaction_throttle(trans, root);
2688
2689out_unlock:
2690 if (drop_on_err)
2691 iput(inode);
2692 btrfs_btree_balance_dirty(root, nr);
2693 return err;
2694}
2695
2696static int merge_extent_mapping(struct extent_map_tree *em_tree,
2697 struct extent_map *existing,
2698 struct extent_map *em,
2699 u64 map_start, u64 map_len)
2700{
2701 u64 start_diff;
2702
2703 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
2704 start_diff = map_start - em->start;
2705 em->start = map_start;
2706 em->len = map_len;
2707 if (em->block_start < EXTENT_MAP_LAST_BYTE)
2708 em->block_start += start_diff;
2709 return add_extent_mapping(em_tree, em);
2710}
2711
2712struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
2713 size_t pg_offset, u64 start, u64 len,
2714 int create)
2715{
2716 int ret;
2717 int err = 0;
2718 u64 bytenr;
2719 u64 extent_start = 0;
2720 u64 extent_end = 0;
2721 u64 objectid = inode->i_ino;
2722 u32 found_type;
2723 struct btrfs_path *path = NULL;
2724 struct btrfs_root *root = BTRFS_I(inode)->root;
2725 struct btrfs_file_extent_item *item;
2726 struct extent_buffer *leaf;
2727 struct btrfs_key found_key;
2728 struct extent_map *em = NULL;
2729 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2730 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2731 struct btrfs_trans_handle *trans = NULL;
2732
2733again:
2734 spin_lock(&em_tree->lock);
2735 em = lookup_extent_mapping(em_tree, start, len);
2736 if (em)
2737 em->bdev = root->fs_info->fs_devices->latest_bdev;
2738 spin_unlock(&em_tree->lock);
2739
2740 if (em) {
2741 if (em->start > start || em->start + em->len <= start)
2742 free_extent_map(em);
2743 else if (em->block_start == EXTENT_MAP_INLINE && page)
2744 free_extent_map(em);
2745 else
2746 goto out;
2747 }
2748 em = alloc_extent_map(GFP_NOFS);
2749 if (!em) {
2750 err = -ENOMEM;
2751 goto out;
2752 }
2753 em->bdev = root->fs_info->fs_devices->latest_bdev;
2754 em->start = EXTENT_MAP_HOLE;
2755 em->len = (u64)-1;
2756
2757 if (!path) {
2758 path = btrfs_alloc_path();
2759 BUG_ON(!path);
2760 }
2761
2762 ret = btrfs_lookup_file_extent(trans, root, path,
2763 objectid, start, trans != NULL);
2764 if (ret < 0) {
2765 err = ret;
2766 goto out;
2767 }
2768
2769 if (ret != 0) {
2770 if (path->slots[0] == 0)
2771 goto not_found;
2772 path->slots[0]--;
2773 }
2774
2775 leaf = path->nodes[0];
2776 item = btrfs_item_ptr(leaf, path->slots[0],
2777 struct btrfs_file_extent_item);
2778 /* are we inside the extent that was found? */
2779 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2780 found_type = btrfs_key_type(&found_key);
2781 if (found_key.objectid != objectid ||
2782 found_type != BTRFS_EXTENT_DATA_KEY) {
2783 goto not_found;
2784 }
2785
2786 found_type = btrfs_file_extent_type(leaf, item);
2787 extent_start = found_key.offset;
2788 if (found_type == BTRFS_FILE_EXTENT_REG) {
2789 extent_end = extent_start +
2790 btrfs_file_extent_num_bytes(leaf, item);
2791 err = 0;
2792 if (start < extent_start || start >= extent_end) {
2793 em->start = start;
2794 if (start < extent_start) {
2795 if (start + len <= extent_start)
2796 goto not_found;
2797 em->len = extent_end - extent_start;
2798 } else {
2799 em->len = len;
2800 }
2801 goto not_found_em;
2802 }
2803 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
2804 if (bytenr == 0) {
2805 em->start = extent_start;
2806 em->len = extent_end - extent_start;
2807 em->block_start = EXTENT_MAP_HOLE;
2808 goto insert;
2809 }
2810 bytenr += btrfs_file_extent_offset(leaf, item);
2811 em->block_start = bytenr;
2812 em->start = extent_start;
2813 em->len = extent_end - extent_start;
2814 goto insert;
2815 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
2816 u64 page_start;
2817 unsigned long ptr;
2818 char *map;
2819 size_t size;
2820 size_t extent_offset;
2821 size_t copy_size;
2822
2823 size = btrfs_file_extent_inline_len(leaf, btrfs_item_nr(leaf,
2824 path->slots[0]));
2825 extent_end = (extent_start + size + root->sectorsize - 1) &
2826 ~((u64)root->sectorsize - 1);
2827 if (start < extent_start || start >= extent_end) {
2828 em->start = start;
2829 if (start < extent_start) {
2830 if (start + len <= extent_start)
2831 goto not_found;
2832 em->len = extent_end - extent_start;
2833 } else {
2834 em->len = len;
2835 }
2836 goto not_found_em;
2837 }
2838 em->block_start = EXTENT_MAP_INLINE;
2839
2840 if (!page) {
2841 em->start = extent_start;
2842 em->len = size;
2843 goto out;
2844 }
2845
2846 page_start = page_offset(page) + pg_offset;
2847 extent_offset = page_start - extent_start;
2848 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
2849 size - extent_offset);
2850 em->start = extent_start + extent_offset;
2851 em->len = (copy_size + root->sectorsize - 1) &
2852 ~((u64)root->sectorsize - 1);
2853 map = kmap(page);
2854 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
2855 if (create == 0 && !PageUptodate(page)) {
2856 read_extent_buffer(leaf, map + pg_offset, ptr,
2857 copy_size);
2858 flush_dcache_page(page);
2859 } else if (create && PageUptodate(page)) {
2860 if (!trans) {
2861 kunmap(page);
2862 free_extent_map(em);
2863 em = NULL;
2864 btrfs_release_path(root, path);
2865 trans = btrfs_join_transaction(root, 1);
2866 goto again;
2867 }
2868 write_extent_buffer(leaf, map + pg_offset, ptr,
2869 copy_size);
2870 btrfs_mark_buffer_dirty(leaf);
2871 }
2872 kunmap(page);
2873 set_extent_uptodate(io_tree, em->start,
2874 extent_map_end(em) - 1, GFP_NOFS);
2875 goto insert;
2876 } else {
2877 printk("unkknown found_type %d\n", found_type);
2878 WARN_ON(1);
2879 }
2880not_found:
2881 em->start = start;
2882 em->len = len;
2883not_found_em:
2884 em->block_start = EXTENT_MAP_HOLE;
2885insert:
2886 btrfs_release_path(root, path);
2887 if (em->start > start || extent_map_end(em) <= start) {
2888 printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len);
2889 err = -EIO;
2890 goto out;
2891 }
2892
2893 err = 0;
2894 spin_lock(&em_tree->lock);
2895 ret = add_extent_mapping(em_tree, em);
2896 /* it is possible that someone inserted the extent into the tree
2897 * while we had the lock dropped. It is also possible that
2898 * an overlapping map exists in the tree
2899 */
2900 if (ret == -EEXIST) {
2901 struct extent_map *existing;
2902
2903 ret = 0;
2904
2905 existing = lookup_extent_mapping(em_tree, start, len);
2906 if (existing && (existing->start > start ||
2907 existing->start + existing->len <= start)) {
2908 free_extent_map(existing);
2909 existing = NULL;
2910 }
2911 if (!existing) {
2912 existing = lookup_extent_mapping(em_tree, em->start,
2913 em->len);
2914 if (existing) {
2915 err = merge_extent_mapping(em_tree, existing,
2916 em, start,
2917 root->sectorsize);
2918 free_extent_map(existing);
2919 if (err) {
2920 free_extent_map(em);
2921 em = NULL;
2922 }
2923 } else {
2924 err = -EIO;
2925 printk("failing to insert %Lu %Lu\n",
2926 start, len);
2927 free_extent_map(em);
2928 em = NULL;
2929 }
2930 } else {
2931 free_extent_map(em);
2932 em = existing;
2933 err = 0;
2934 }
2935 }
2936 spin_unlock(&em_tree->lock);
2937out:
2938 if (path)
2939 btrfs_free_path(path);
2940 if (trans) {
2941 ret = btrfs_end_transaction(trans, root);
2942 if (!err) {
2943 err = ret;
2944 }
2945 }
2946 if (err) {
2947 free_extent_map(em);
2948 WARN_ON(1);
2949 return ERR_PTR(err);
2950 }
2951 return em;
2952}
2953
2954#if 0 /* waiting for O_DIRECT reads */
2955static int btrfs_get_block(struct inode *inode, sector_t iblock,
2956 struct buffer_head *bh_result, int create)
2957{
2958 struct extent_map *em;
2959 u64 start = (u64)iblock << inode->i_blkbits;
2960 struct btrfs_multi_bio *multi = NULL;
2961 struct btrfs_root *root = BTRFS_I(inode)->root;
2962 u64 len;
2963 u64 logical;
2964 u64 map_length;
2965 int ret = 0;
2966
2967 em = btrfs_get_extent(inode, NULL, 0, start, bh_result->b_size, 0);
2968
2969 if (!em || IS_ERR(em))
2970 goto out;
2971
2972 if (em->start > start || em->start + em->len <= start) {
2973 goto out;
2974 }
2975
2976 if (em->block_start == EXTENT_MAP_INLINE) {
2977 ret = -EINVAL;
2978 goto out;
2979 }
2980
2981 len = em->start + em->len - start;
2982 len = min_t(u64, len, INT_LIMIT(typeof(bh_result->b_size)));
2983
2984 if (em->block_start == EXTENT_MAP_HOLE ||
2985 em->block_start == EXTENT_MAP_DELALLOC) {
2986 bh_result->b_size = len;
2987 goto out;
2988 }
2989
2990 logical = start - em->start;
2991 logical = em->block_start + logical;
2992
2993 map_length = len;
2994 ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
2995 logical, &map_length, &multi, 0);
2996 BUG_ON(ret);
2997 bh_result->b_blocknr = multi->stripes[0].physical >> inode->i_blkbits;
2998 bh_result->b_size = min(map_length, len);
2999
3000 bh_result->b_bdev = multi->stripes[0].dev->bdev;
3001 set_buffer_mapped(bh_result);
3002 kfree(multi);
3003out:
3004 free_extent_map(em);
3005 return ret;
3006}
3007#endif
3008
3009static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
3010 const struct iovec *iov, loff_t offset,
3011 unsigned long nr_segs)
3012{
3013 return -EINVAL;
3014#if 0
3015 struct file *file = iocb->ki_filp;
3016 struct inode *inode = file->f_mapping->host;
3017
3018 if (rw == WRITE)
3019 return -EINVAL;
3020
3021 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3022 offset, nr_segs, btrfs_get_block, NULL);
3023#endif
3024}
3025
3026static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
3027{
3028 return extent_bmap(mapping, iblock, btrfs_get_extent);
3029}
3030
3031int btrfs_readpage(struct file *file, struct page *page)
3032{
3033 struct extent_io_tree *tree;
3034 tree = &BTRFS_I(page->mapping->host)->io_tree;
3035 return extent_read_full_page(tree, page, btrfs_get_extent);
3036}
3037
3038static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
3039{
3040 struct extent_io_tree *tree;
3041
3042
3043 if (current->flags & PF_MEMALLOC) {
3044 redirty_page_for_writepage(wbc, page);
3045 unlock_page(page);
3046 return 0;
3047 }
3048 tree = &BTRFS_I(page->mapping->host)->io_tree;
3049 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
3050}
3051
3052int btrfs_writepages(struct address_space *mapping,
3053 struct writeback_control *wbc)
3054{
3055 struct extent_io_tree *tree;
3056 tree = &BTRFS_I(mapping->host)->io_tree;
3057 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
3058}
3059
3060static int
3061btrfs_readpages(struct file *file, struct address_space *mapping,
3062 struct list_head *pages, unsigned nr_pages)
3063{
3064 struct extent_io_tree *tree;
3065 tree = &BTRFS_I(mapping->host)->io_tree;
3066 return extent_readpages(tree, mapping, pages, nr_pages,
3067 btrfs_get_extent);
3068}
3069static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3070{
3071 struct extent_io_tree *tree;
3072 struct extent_map_tree *map;
3073 int ret;
3074
3075 tree = &BTRFS_I(page->mapping->host)->io_tree;
3076 map = &BTRFS_I(page->mapping->host)->extent_tree;
3077 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
3078 if (ret == 1) {
3079 ClearPagePrivate(page);
3080 set_page_private(page, 0);
3081 page_cache_release(page);
3082 }
3083 return ret;
3084}
3085
3086static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3087{
3088 if (PageWriteback(page) || PageDirty(page))
3089 return 0;
3090 return __btrfs_releasepage(page, gfp_flags);
3091}
3092
3093static void btrfs_invalidatepage(struct page *page, unsigned long offset)
3094{
3095 struct extent_io_tree *tree;
3096 struct btrfs_ordered_extent *ordered;
3097 u64 page_start = page_offset(page);
3098 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
3099
3100 wait_on_page_writeback(page);
3101 tree = &BTRFS_I(page->mapping->host)->io_tree;
3102 if (offset) {
3103 btrfs_releasepage(page, GFP_NOFS);
3104 return;
3105 }
3106
3107 lock_extent(tree, page_start, page_end, GFP_NOFS);
3108 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
3109 page_offset(page));
3110 if (ordered) {
3111 /*
3112 * IO on this page will never be started, so we need
3113 * to account for any ordered extents now
3114 */
3115 clear_extent_bit(tree, page_start, page_end,
3116 EXTENT_DIRTY | EXTENT_DELALLOC |
3117 EXTENT_LOCKED, 1, 0, GFP_NOFS);
3118 btrfs_finish_ordered_io(page->mapping->host,
3119 page_start, page_end);
3120 btrfs_put_ordered_extent(ordered);
3121 lock_extent(tree, page_start, page_end, GFP_NOFS);
3122 }
3123 clear_extent_bit(tree, page_start, page_end,
3124 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3125 EXTENT_ORDERED,
3126 1, 1, GFP_NOFS);
3127 __btrfs_releasepage(page, GFP_NOFS);
3128
3129 ClearPageChecked(page);
3130 if (PagePrivate(page)) {
3131 ClearPagePrivate(page);
3132 set_page_private(page, 0);
3133 page_cache_release(page);
3134 }
3135}
3136
3137/*
3138 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
3139 * called from a page fault handler when a page is first dirtied. Hence we must
3140 * be careful to check for EOF conditions here. We set the page up correctly
3141 * for a written page which means we get ENOSPC checking when writing into
3142 * holes and correct delalloc and unwritten extent mapping on filesystems that
3143 * support these features.
3144 *
3145 * We are not allowed to take the i_mutex here so we have to play games to
3146 * protect against truncate races as the page could now be beyond EOF. Because
3147 * vmtruncate() writes the inode size before removing pages, once we have the
3148 * page lock we can determine safely if the page is beyond EOF. If it is not
3149 * beyond EOF, then the page is guaranteed safe against truncation until we
3150 * unlock the page.
3151 */
3152int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
3153{
3154 struct inode *inode = fdentry(vma->vm_file)->d_inode;
3155 struct btrfs_root *root = BTRFS_I(inode)->root;
3156 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3157 struct btrfs_ordered_extent *ordered;
3158 char *kaddr;
3159 unsigned long zero_start;
3160 loff_t size;
3161 int ret;
3162 u64 page_start;
3163 u64 page_end;
3164
3165 ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
3166 if (ret)
3167 goto out;
3168
3169 ret = -EINVAL;
3170again:
3171 lock_page(page);
3172 size = i_size_read(inode);
3173 page_start = page_offset(page);
3174 page_end = page_start + PAGE_CACHE_SIZE - 1;
3175
3176 if ((page->mapping != inode->i_mapping) ||
3177 (page_start >= size)) {
3178 /* page got truncated out from underneath us */
3179 goto out_unlock;
3180 }
3181 wait_on_page_writeback(page);
3182
3183 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3184 set_page_extent_mapped(page);
3185
3186 /*
3187 * we can't set the delalloc bits if there are pending ordered
3188 * extents. Drop our locks and wait for them to finish
3189 */
3190 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3191 if (ordered) {
3192 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3193 unlock_page(page);
3194 btrfs_start_ordered_extent(inode, ordered, 1);
3195 btrfs_put_ordered_extent(ordered);
3196 goto again;
3197 }
3198
3199 btrfs_set_extent_delalloc(inode, page_start, page_end);
3200 ret = 0;
3201
3202 /* page is wholly or partially inside EOF */
3203 if (page_start + PAGE_CACHE_SIZE > size)
3204 zero_start = size & ~PAGE_CACHE_MASK;
3205 else
3206 zero_start = PAGE_CACHE_SIZE;
3207
3208 if (zero_start != PAGE_CACHE_SIZE) {
3209 kaddr = kmap(page);
3210 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
3211 flush_dcache_page(page);
3212 kunmap(page);
3213 }
3214 ClearPageChecked(page);
3215 set_page_dirty(page);
3216 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3217
3218out_unlock:
3219 unlock_page(page);
3220out:
3221 return ret;
3222}
3223
3224static void btrfs_truncate(struct inode *inode)
3225{
3226 struct btrfs_root *root = BTRFS_I(inode)->root;
3227 int ret;
3228 struct btrfs_trans_handle *trans;
3229 unsigned long nr;
3230 u64 mask = root->sectorsize - 1;
3231
3232 if (!S_ISREG(inode->i_mode))
3233 return;
3234 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3235 return;
3236
3237 btrfs_truncate_page(inode->i_mapping, inode->i_size);
3238 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
3239
3240 trans = btrfs_start_transaction(root, 1);
3241 btrfs_set_trans_block_group(trans, inode);
3242 btrfs_i_size_write(inode, inode->i_size);
3243
3244 ret = btrfs_orphan_add(trans, inode);
3245 if (ret)
3246 goto out;
3247 /* FIXME, add redo link to tree so we don't leak on crash */
3248 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
3249 BTRFS_EXTENT_DATA_KEY);
3250 btrfs_update_inode(trans, root, inode);
3251
3252 ret = btrfs_orphan_del(trans, inode);
3253 BUG_ON(ret);
3254
3255out:
3256 nr = trans->blocks_used;
3257 ret = btrfs_end_transaction_throttle(trans, root);
3258 BUG_ON(ret);
3259 btrfs_btree_balance_dirty(root, nr);
3260}
3261
3262/*
3263 * Invalidate a single dcache entry at the root of the filesystem.
3264 * Needed after creation of snapshot or subvolume.
3265 */
3266void btrfs_invalidate_dcache_root(struct btrfs_root *root, char *name,
3267 int namelen)
3268{
3269 struct dentry *alias, *entry;
3270 struct qstr qstr;
3271
3272 alias = d_find_alias(root->fs_info->sb->s_root->d_inode);
3273 if (alias) {
3274 qstr.name = name;
3275 qstr.len = namelen;
3276 /* change me if btrfs ever gets a d_hash operation */
3277 qstr.hash = full_name_hash(qstr.name, qstr.len);
3278 entry = d_lookup(alias, &qstr);
3279 dput(alias);
3280 if (entry) {
3281 d_invalidate(entry);
3282 dput(entry);
3283 }
3284 }
3285}
3286
3287int btrfs_create_subvol_root(struct btrfs_root *new_root,
3288 struct btrfs_trans_handle *trans, u64 new_dirid,
3289 struct btrfs_block_group_cache *block_group)
3290{
3291 struct inode *inode;
3292 u64 index = 0;
3293
3294 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
3295 new_dirid, block_group, S_IFDIR | 0700, &index);
3296 if (IS_ERR(inode))
3297 return PTR_ERR(inode);
3298 inode->i_op = &btrfs_dir_inode_operations;
3299 inode->i_fop = &btrfs_dir_file_operations;
3300 new_root->inode = inode;
3301
3302 inode->i_nlink = 1;
3303 btrfs_i_size_write(inode, 0);
3304
3305 return btrfs_update_inode(trans, new_root, inode);
3306}
3307
3308unsigned long btrfs_force_ra(struct address_space *mapping,
3309 struct file_ra_state *ra, struct file *file,
3310 pgoff_t offset, pgoff_t last_index)
3311{
3312 pgoff_t req_size = last_index - offset + 1;
3313
3314#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
3315 offset = page_cache_readahead(mapping, ra, file, offset, req_size);
3316 return offset;
3317#else
3318 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3319 return offset + req_size;
3320#endif
3321}
3322
3323struct inode *btrfs_alloc_inode(struct super_block *sb)
3324{
3325 struct btrfs_inode *ei;
3326
3327 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
3328 if (!ei)
3329 return NULL;
3330 ei->last_trans = 0;
3331 ei->logged_trans = 0;
3332 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
3333 ei->i_acl = BTRFS_ACL_NOT_CACHED;
3334 ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
3335 INIT_LIST_HEAD(&ei->i_orphan);
3336 return &ei->vfs_inode;
3337}
3338
3339void btrfs_destroy_inode(struct inode *inode)
3340{
3341 struct btrfs_ordered_extent *ordered;
3342 WARN_ON(!list_empty(&inode->i_dentry));
3343 WARN_ON(inode->i_data.nrpages);
3344
3345 if (BTRFS_I(inode)->i_acl &&
3346 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
3347 posix_acl_release(BTRFS_I(inode)->i_acl);
3348 if (BTRFS_I(inode)->i_default_acl &&
3349 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
3350 posix_acl_release(BTRFS_I(inode)->i_default_acl);
3351
3352 spin_lock(&BTRFS_I(inode)->root->list_lock);
3353 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
3354 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
3355 " list\n", inode->i_ino);
3356 dump_stack();
3357 }
3358 spin_unlock(&BTRFS_I(inode)->root->list_lock);
3359
3360 while(1) {
3361 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
3362 if (!ordered)
3363 break;
3364 else {
3365 printk("found ordered extent %Lu %Lu\n",
3366 ordered->file_offset, ordered->len);
3367 btrfs_remove_ordered_extent(inode, ordered);
3368 btrfs_put_ordered_extent(ordered);
3369 btrfs_put_ordered_extent(ordered);
3370 }
3371 }
3372 btrfs_drop_extent_cache(inode, 0, (u64)-1);
3373 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
3374}
3375
3376#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3377static void init_once(void *foo)
3378#elif LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
3379static void init_once(struct kmem_cache * cachep, void *foo)
3380#else
3381static void init_once(void * foo, struct kmem_cache * cachep,
3382 unsigned long flags)
3383#endif
3384{
3385 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
3386
3387 inode_init_once(&ei->vfs_inode);
3388}
3389
3390void btrfs_destroy_cachep(void)
3391{
3392 if (btrfs_inode_cachep)
3393 kmem_cache_destroy(btrfs_inode_cachep);
3394 if (btrfs_trans_handle_cachep)
3395 kmem_cache_destroy(btrfs_trans_handle_cachep);
3396 if (btrfs_transaction_cachep)
3397 kmem_cache_destroy(btrfs_transaction_cachep);
3398 if (btrfs_bit_radix_cachep)
3399 kmem_cache_destroy(btrfs_bit_radix_cachep);
3400 if (btrfs_path_cachep)
3401 kmem_cache_destroy(btrfs_path_cachep);
3402}
3403
3404struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
3405 unsigned long extra_flags,
3406#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3407 void (*ctor)(void *)
3408#elif LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
3409 void (*ctor)(struct kmem_cache *, void *)
3410#else
3411 void (*ctor)(void *, struct kmem_cache *,
3412 unsigned long)
3413#endif
3414 )
3415{
3416 return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
3417 SLAB_MEM_SPREAD | extra_flags), ctor
3418#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
3419 ,NULL
3420#endif
3421 );
3422}
3423
3424int btrfs_init_cachep(void)
3425{
3426 btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
3427 sizeof(struct btrfs_inode),
3428 0, init_once);
3429 if (!btrfs_inode_cachep)
3430 goto fail;
3431 btrfs_trans_handle_cachep =
3432 btrfs_cache_create("btrfs_trans_handle_cache",
3433 sizeof(struct btrfs_trans_handle),
3434 0, NULL);
3435 if (!btrfs_trans_handle_cachep)
3436 goto fail;
3437 btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
3438 sizeof(struct btrfs_transaction),
3439 0, NULL);
3440 if (!btrfs_transaction_cachep)
3441 goto fail;
3442 btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
3443 sizeof(struct btrfs_path),
3444 0, NULL);
3445 if (!btrfs_path_cachep)
3446 goto fail;
3447 btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
3448 SLAB_DESTROY_BY_RCU, NULL);
3449 if (!btrfs_bit_radix_cachep)
3450 goto fail;
3451 return 0;
3452fail:
3453 btrfs_destroy_cachep();
3454 return -ENOMEM;
3455}
3456
3457static int btrfs_getattr(struct vfsmount *mnt,
3458 struct dentry *dentry, struct kstat *stat)
3459{
3460 struct inode *inode = dentry->d_inode;
3461 generic_fillattr(inode, stat);
3462 stat->blksize = PAGE_CACHE_SIZE;
3463 stat->blocks = inode->i_blocks + (BTRFS_I(inode)->delalloc_bytes >> 9);
3464 return 0;
3465}
3466
3467static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
3468 struct inode * new_dir,struct dentry *new_dentry)
3469{
3470 struct btrfs_trans_handle *trans;
3471 struct btrfs_root *root = BTRFS_I(old_dir)->root;
3472 struct inode *new_inode = new_dentry->d_inode;
3473 struct inode *old_inode = old_dentry->d_inode;
3474 struct timespec ctime = CURRENT_TIME;
3475 u64 index = 0;
3476 int ret;
3477
3478 if (S_ISDIR(old_inode->i_mode) && new_inode &&
3479 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
3480 return -ENOTEMPTY;
3481 }
3482
3483 ret = btrfs_check_free_space(root, 1, 0);
3484 if (ret)
3485 goto out_unlock;
3486
3487 trans = btrfs_start_transaction(root, 1);
3488
3489 btrfs_set_trans_block_group(trans, new_dir);
3490
3491 btrfs_inc_nlink(old_dentry->d_inode);
3492 old_dir->i_ctime = old_dir->i_mtime = ctime;
3493 new_dir->i_ctime = new_dir->i_mtime = ctime;
3494 old_inode->i_ctime = ctime;
3495
3496 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
3497 old_dentry->d_name.name,
3498 old_dentry->d_name.len);
3499 if (ret)
3500 goto out_fail;
3501
3502 if (new_inode) {
3503 new_inode->i_ctime = CURRENT_TIME;
3504 ret = btrfs_unlink_inode(trans, root, new_dir,
3505 new_dentry->d_inode,
3506 new_dentry->d_name.name,
3507 new_dentry->d_name.len);
3508 if (ret)
3509 goto out_fail;
3510 if (new_inode->i_nlink == 0) {
3511 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
3512 if (ret)
3513 goto out_fail;
3514 }
3515
3516 }
3517 ret = btrfs_set_inode_index(new_dir, old_inode, &index);
3518 if (ret)
3519 goto out_fail;
3520
3521 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
3522 old_inode, new_dentry->d_name.name,
3523 new_dentry->d_name.len, 1, index);
3524 if (ret)
3525 goto out_fail;
3526
3527out_fail:
3528 btrfs_end_transaction_throttle(trans, root);
3529out_unlock:
3530 return ret;
3531}
3532
3533int btrfs_start_delalloc_inodes(struct btrfs_root *root)
3534{
3535 struct list_head *head = &root->fs_info->delalloc_inodes;
3536 struct btrfs_inode *binode;
3537 unsigned long flags;
3538
3539 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3540 while(!list_empty(head)) {
3541 binode = list_entry(head->next, struct btrfs_inode,
3542 delalloc_inodes);
3543 atomic_inc(&binode->vfs_inode.i_count);
3544 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3545 filemap_write_and_wait(binode->vfs_inode.i_mapping);
3546 iput(&binode->vfs_inode);
3547 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3548 }
3549 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3550 return 0;
3551}
3552
3553static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
3554 const char *symname)
3555{
3556 struct btrfs_trans_handle *trans;
3557 struct btrfs_root *root = BTRFS_I(dir)->root;
3558 struct btrfs_path *path;
3559 struct btrfs_key key;
3560 struct inode *inode = NULL;
3561 int err;
3562 int drop_inode = 0;
3563 u64 objectid;
3564 u64 index = 0 ;
3565 int name_len;
3566 int datasize;
3567 unsigned long ptr;
3568 struct btrfs_file_extent_item *ei;
3569 struct extent_buffer *leaf;
3570 unsigned long nr = 0;
3571
3572 name_len = strlen(symname) + 1;
3573 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
3574 return -ENAMETOOLONG;
3575
3576 err = btrfs_check_free_space(root, 1, 0);
3577 if (err)
3578 goto out_fail;
3579
3580 trans = btrfs_start_transaction(root, 1);
3581 btrfs_set_trans_block_group(trans, dir);
3582
3583 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3584 if (err) {
3585 err = -ENOSPC;
3586 goto out_unlock;
3587 }
3588
3589 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3590 dentry->d_name.len,
3591 dentry->d_parent->d_inode->i_ino, objectid,
3592 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
3593 &index);
3594 err = PTR_ERR(inode);
3595 if (IS_ERR(inode))
3596 goto out_unlock;
3597
3598 err = btrfs_init_acl(inode, dir);
3599 if (err) {
3600 drop_inode = 1;
3601 goto out_unlock;
3602 }
3603
3604 btrfs_set_trans_block_group(trans, inode);
3605 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3606 if (err)
3607 drop_inode = 1;
3608 else {
3609 inode->i_mapping->a_ops = &btrfs_aops;
3610 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3611 inode->i_fop = &btrfs_file_operations;
3612 inode->i_op = &btrfs_file_inode_operations;
3613 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3614 }
3615 dir->i_sb->s_dirt = 1;
3616 btrfs_update_inode_block_group(trans, inode);
3617 btrfs_update_inode_block_group(trans, dir);
3618 if (drop_inode)
3619 goto out_unlock;
3620
3621 path = btrfs_alloc_path();
3622 BUG_ON(!path);
3623 key.objectid = inode->i_ino;
3624 key.offset = 0;
3625 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
3626 datasize = btrfs_file_extent_calc_inline_size(name_len);
3627 err = btrfs_insert_empty_item(trans, root, path, &key,
3628 datasize);
3629 if (err) {
3630 drop_inode = 1;
3631 goto out_unlock;
3632 }
3633 leaf = path->nodes[0];
3634 ei = btrfs_item_ptr(leaf, path->slots[0],
3635 struct btrfs_file_extent_item);
3636 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
3637 btrfs_set_file_extent_type(leaf, ei,
3638 BTRFS_FILE_EXTENT_INLINE);
3639 ptr = btrfs_file_extent_inline_start(ei);
3640 write_extent_buffer(leaf, symname, ptr, name_len);
3641 btrfs_mark_buffer_dirty(leaf);
3642 btrfs_free_path(path);
3643
3644 inode->i_op = &btrfs_symlink_inode_operations;
3645 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3646 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3647 btrfs_i_size_write(inode, name_len - 1);
3648 err = btrfs_update_inode(trans, root, inode);
3649 if (err)
3650 drop_inode = 1;
3651
3652out_unlock:
3653 nr = trans->blocks_used;
3654 btrfs_end_transaction_throttle(trans, root);
3655out_fail:
3656 if (drop_inode) {
3657 inode_dec_link_count(inode);
3658 iput(inode);
3659 }
3660 btrfs_btree_balance_dirty(root, nr);
3661 return err;
3662}
3663
3664static int btrfs_set_page_dirty(struct page *page)
3665{
3666 return __set_page_dirty_nobuffers(page);
3667}
3668
3669#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3670static int btrfs_permission(struct inode *inode, int mask)
3671#else
3672static int btrfs_permission(struct inode *inode, int mask,
3673 struct nameidata *nd)
3674#endif
3675{
3676 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
3677 return -EACCES;
3678 return generic_permission(inode, mask, btrfs_check_acl);
3679}
3680
3681static struct inode_operations btrfs_dir_inode_operations = {
3682 .lookup = btrfs_lookup,
3683 .create = btrfs_create,
3684 .unlink = btrfs_unlink,
3685 .link = btrfs_link,
3686 .mkdir = btrfs_mkdir,
3687 .rmdir = btrfs_rmdir,
3688 .rename = btrfs_rename,
3689 .symlink = btrfs_symlink,
3690 .setattr = btrfs_setattr,
3691 .mknod = btrfs_mknod,
3692 .setxattr = btrfs_setxattr,
3693 .getxattr = btrfs_getxattr,
3694 .listxattr = btrfs_listxattr,
3695 .removexattr = btrfs_removexattr,
3696 .permission = btrfs_permission,
3697};
3698static struct inode_operations btrfs_dir_ro_inode_operations = {
3699 .lookup = btrfs_lookup,
3700 .permission = btrfs_permission,
3701};
3702static struct file_operations btrfs_dir_file_operations = {
3703 .llseek = generic_file_llseek,
3704 .read = generic_read_dir,
3705#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28)
3706 .readdir = btrfs_nfshack_readdir,
3707#else /* NFSd readdir/lookup deadlock is fixed */
3708 .readdir = btrfs_real_readdir,
3709#endif
3710 .unlocked_ioctl = btrfs_ioctl,
3711#ifdef CONFIG_COMPAT
3712 .compat_ioctl = btrfs_ioctl,
3713#endif
3714 .release = btrfs_release_file,
3715 .fsync = btrfs_sync_file,
3716};
3717
3718static struct extent_io_ops btrfs_extent_io_ops = {
3719 .fill_delalloc = run_delalloc_range,
3720 .submit_bio_hook = btrfs_submit_bio_hook,
3721 .merge_bio_hook = btrfs_merge_bio_hook,
3722 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
3723 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
3724 .writepage_start_hook = btrfs_writepage_start_hook,
3725 .readpage_io_failed_hook = btrfs_io_failed_hook,
3726 .set_bit_hook = btrfs_set_bit_hook,
3727 .clear_bit_hook = btrfs_clear_bit_hook,
3728};
3729
3730static struct address_space_operations btrfs_aops = {
3731 .readpage = btrfs_readpage,
3732 .writepage = btrfs_writepage,
3733 .writepages = btrfs_writepages,
3734 .readpages = btrfs_readpages,
3735 .sync_page = block_sync_page,
3736 .bmap = btrfs_bmap,
3737 .direct_IO = btrfs_direct_IO,
3738 .invalidatepage = btrfs_invalidatepage,
3739 .releasepage = btrfs_releasepage,
3740 .set_page_dirty = btrfs_set_page_dirty,
3741};
3742
3743static struct address_space_operations btrfs_symlink_aops = {
3744 .readpage = btrfs_readpage,
3745 .writepage = btrfs_writepage,
3746 .invalidatepage = btrfs_invalidatepage,
3747 .releasepage = btrfs_releasepage,
3748};
3749
3750static struct inode_operations btrfs_file_inode_operations = {
3751 .truncate = btrfs_truncate,
3752 .getattr = btrfs_getattr,
3753 .setattr = btrfs_setattr,
3754 .setxattr = btrfs_setxattr,
3755 .getxattr = btrfs_getxattr,
3756 .listxattr = btrfs_listxattr,
3757 .removexattr = btrfs_removexattr,
3758 .permission = btrfs_permission,
3759};
3760static struct inode_operations btrfs_special_inode_operations = {
3761 .getattr = btrfs_getattr,
3762 .setattr = btrfs_setattr,
3763 .permission = btrfs_permission,
3764 .setxattr = btrfs_setxattr,
3765 .getxattr = btrfs_getxattr,
3766 .listxattr = btrfs_listxattr,
3767 .removexattr = btrfs_removexattr,
3768};
3769static struct inode_operations btrfs_symlink_inode_operations = {
3770 .readlink = generic_readlink,
3771 .follow_link = page_follow_link_light,
3772 .put_link = page_put_link,
3773 .permission = btrfs_permission,
3774};