nvme: fix drvdata setup for the nvme device
[linux-2.6-block.git] / drivers / nvme / host / pci.c
... / ...
CommitLineData
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15#include <linux/aer.h>
16#include <linux/bitops.h>
17#include <linux/blkdev.h>
18#include <linux/blk-mq.h>
19#include <linux/cpu.h>
20#include <linux/delay.h>
21#include <linux/errno.h>
22#include <linux/fs.h>
23#include <linux/genhd.h>
24#include <linux/hdreg.h>
25#include <linux/idr.h>
26#include <linux/init.h>
27#include <linux/interrupt.h>
28#include <linux/io.h>
29#include <linux/kdev_t.h>
30#include <linux/kthread.h>
31#include <linux/kernel.h>
32#include <linux/mm.h>
33#include <linux/module.h>
34#include <linux/moduleparam.h>
35#include <linux/mutex.h>
36#include <linux/pci.h>
37#include <linux/poison.h>
38#include <linux/ptrace.h>
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/t10-pi.h>
42#include <linux/types.h>
43#include <linux/io-64-nonatomic-lo-hi.h>
44#include <asm/unaligned.h>
45
46#include "nvme.h"
47
48#define NVME_Q_DEPTH 1024
49#define NVME_AQ_DEPTH 256
50#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
51#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
52
53/*
54 * We handle AEN commands ourselves and don't even let the
55 * block layer know about them.
56 */
57#define NVME_NR_AEN_COMMANDS 1
58#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS)
59
60unsigned char admin_timeout = 60;
61module_param(admin_timeout, byte, 0644);
62MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
63
64unsigned char nvme_io_timeout = 30;
65module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
66MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
67
68unsigned char shutdown_timeout = 5;
69module_param(shutdown_timeout, byte, 0644);
70MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
71
72static int use_threaded_interrupts;
73module_param(use_threaded_interrupts, int, 0);
74
75static bool use_cmb_sqes = true;
76module_param(use_cmb_sqes, bool, 0644);
77MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
78
79static LIST_HEAD(dev_list);
80static struct task_struct *nvme_thread;
81static struct workqueue_struct *nvme_workq;
82static wait_queue_head_t nvme_kthread_wait;
83
84struct nvme_dev;
85struct nvme_queue;
86
87static int nvme_reset(struct nvme_dev *dev);
88static void nvme_process_cq(struct nvme_queue *nvmeq);
89static void nvme_remove_dead_ctrl(struct nvme_dev *dev);
90static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
91
92/*
93 * Represents an NVM Express device. Each nvme_dev is a PCI function.
94 */
95struct nvme_dev {
96 struct list_head node;
97 struct nvme_queue **queues;
98 struct blk_mq_tag_set tagset;
99 struct blk_mq_tag_set admin_tagset;
100 u32 __iomem *dbs;
101 struct device *dev;
102 struct dma_pool *prp_page_pool;
103 struct dma_pool *prp_small_pool;
104 unsigned queue_count;
105 unsigned online_queues;
106 unsigned max_qid;
107 int q_depth;
108 u32 db_stride;
109 struct msix_entry *entry;
110 void __iomem *bar;
111 struct work_struct reset_work;
112 struct work_struct scan_work;
113 struct work_struct remove_work;
114 struct mutex shutdown_lock;
115 bool subsystem;
116 void __iomem *cmb;
117 dma_addr_t cmb_dma_addr;
118 u64 cmb_size;
119 u32 cmbsz;
120 unsigned long flags;
121
122#define NVME_CTRL_RESETTING 0
123
124 struct nvme_ctrl ctrl;
125 struct completion ioq_wait;
126};
127
128static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
129{
130 return container_of(ctrl, struct nvme_dev, ctrl);
131}
132
133/*
134 * An NVM Express queue. Each device has at least two (one for admin
135 * commands and one for I/O commands).
136 */
137struct nvme_queue {
138 struct device *q_dmadev;
139 struct nvme_dev *dev;
140 char irqname[24]; /* nvme4294967295-65535\0 */
141 spinlock_t q_lock;
142 struct nvme_command *sq_cmds;
143 struct nvme_command __iomem *sq_cmds_io;
144 volatile struct nvme_completion *cqes;
145 struct blk_mq_tags **tags;
146 dma_addr_t sq_dma_addr;
147 dma_addr_t cq_dma_addr;
148 u32 __iomem *q_db;
149 u16 q_depth;
150 s16 cq_vector;
151 u16 sq_head;
152 u16 sq_tail;
153 u16 cq_head;
154 u16 qid;
155 u8 cq_phase;
156 u8 cqe_seen;
157};
158
159/*
160 * The nvme_iod describes the data in an I/O, including the list of PRP
161 * entries. You can't see it in this data structure because C doesn't let
162 * me express that. Use nvme_init_iod to ensure there's enough space
163 * allocated to store the PRP list.
164 */
165struct nvme_iod {
166 struct nvme_queue *nvmeq;
167 int aborted;
168 int npages; /* In the PRP list. 0 means small pool in use */
169 int nents; /* Used in scatterlist */
170 int length; /* Of data, in bytes */
171 dma_addr_t first_dma;
172 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
173 struct scatterlist *sg;
174 struct scatterlist inline_sg[0];
175};
176
177/*
178 * Check we didin't inadvertently grow the command struct
179 */
180static inline void _nvme_check_size(void)
181{
182 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
183 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
184 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
185 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
186 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
187 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
188 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
189 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
190 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
191 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
192 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
193 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
194}
195
196/*
197 * Max size of iod being embedded in the request payload
198 */
199#define NVME_INT_PAGES 2
200#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
201
202/*
203 * Will slightly overestimate the number of pages needed. This is OK
204 * as it only leads to a small amount of wasted memory for the lifetime of
205 * the I/O.
206 */
207static int nvme_npages(unsigned size, struct nvme_dev *dev)
208{
209 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
210 dev->ctrl.page_size);
211 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
212}
213
214static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
215 unsigned int size, unsigned int nseg)
216{
217 return sizeof(__le64 *) * nvme_npages(size, dev) +
218 sizeof(struct scatterlist) * nseg;
219}
220
221static unsigned int nvme_cmd_size(struct nvme_dev *dev)
222{
223 return sizeof(struct nvme_iod) +
224 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
225}
226
227static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
228 unsigned int hctx_idx)
229{
230 struct nvme_dev *dev = data;
231 struct nvme_queue *nvmeq = dev->queues[0];
232
233 WARN_ON(hctx_idx != 0);
234 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
235 WARN_ON(nvmeq->tags);
236
237 hctx->driver_data = nvmeq;
238 nvmeq->tags = &dev->admin_tagset.tags[0];
239 return 0;
240}
241
242static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
243{
244 struct nvme_queue *nvmeq = hctx->driver_data;
245
246 nvmeq->tags = NULL;
247}
248
249static int nvme_admin_init_request(void *data, struct request *req,
250 unsigned int hctx_idx, unsigned int rq_idx,
251 unsigned int numa_node)
252{
253 struct nvme_dev *dev = data;
254 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
255 struct nvme_queue *nvmeq = dev->queues[0];
256
257 BUG_ON(!nvmeq);
258 iod->nvmeq = nvmeq;
259 return 0;
260}
261
262static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
263 unsigned int hctx_idx)
264{
265 struct nvme_dev *dev = data;
266 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
267
268 if (!nvmeq->tags)
269 nvmeq->tags = &dev->tagset.tags[hctx_idx];
270
271 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
272 hctx->driver_data = nvmeq;
273 return 0;
274}
275
276static int nvme_init_request(void *data, struct request *req,
277 unsigned int hctx_idx, unsigned int rq_idx,
278 unsigned int numa_node)
279{
280 struct nvme_dev *dev = data;
281 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
282 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
283
284 BUG_ON(!nvmeq);
285 iod->nvmeq = nvmeq;
286 return 0;
287}
288
289static void nvme_complete_async_event(struct nvme_dev *dev,
290 struct nvme_completion *cqe)
291{
292 u16 status = le16_to_cpu(cqe->status) >> 1;
293 u32 result = le32_to_cpu(cqe->result);
294
295 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
296 ++dev->ctrl.event_limit;
297 if (status != NVME_SC_SUCCESS)
298 return;
299
300 switch (result & 0xff07) {
301 case NVME_AER_NOTICE_NS_CHANGED:
302 dev_info(dev->dev, "rescanning\n");
303 queue_work(nvme_workq, &dev->scan_work);
304 default:
305 dev_warn(dev->dev, "async event result %08x\n", result);
306 }
307}
308
309/**
310 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
311 * @nvmeq: The queue to use
312 * @cmd: The command to send
313 *
314 * Safe to use from interrupt context
315 */
316static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
317 struct nvme_command *cmd)
318{
319 u16 tail = nvmeq->sq_tail;
320
321 if (nvmeq->sq_cmds_io)
322 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
323 else
324 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
325
326 if (++tail == nvmeq->q_depth)
327 tail = 0;
328 writel(tail, nvmeq->q_db);
329 nvmeq->sq_tail = tail;
330}
331
332static __le64 **iod_list(struct request *req)
333{
334 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
335 return (__le64 **)(iod->sg + req->nr_phys_segments);
336}
337
338static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
339{
340 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
341 int nseg = rq->nr_phys_segments;
342 unsigned size;
343
344 if (rq->cmd_flags & REQ_DISCARD)
345 size = sizeof(struct nvme_dsm_range);
346 else
347 size = blk_rq_bytes(rq);
348
349 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
350 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
351 if (!iod->sg)
352 return BLK_MQ_RQ_QUEUE_BUSY;
353 } else {
354 iod->sg = iod->inline_sg;
355 }
356
357 iod->aborted = 0;
358 iod->npages = -1;
359 iod->nents = 0;
360 iod->length = size;
361 return 0;
362}
363
364static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
365{
366 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
367 const int last_prp = dev->ctrl.page_size / 8 - 1;
368 int i;
369 __le64 **list = iod_list(req);
370 dma_addr_t prp_dma = iod->first_dma;
371
372 if (iod->npages == 0)
373 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
374 for (i = 0; i < iod->npages; i++) {
375 __le64 *prp_list = list[i];
376 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
377 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
378 prp_dma = next_prp_dma;
379 }
380
381 if (iod->sg != iod->inline_sg)
382 kfree(iod->sg);
383}
384
385#ifdef CONFIG_BLK_DEV_INTEGRITY
386static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
387{
388 if (be32_to_cpu(pi->ref_tag) == v)
389 pi->ref_tag = cpu_to_be32(p);
390}
391
392static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
393{
394 if (be32_to_cpu(pi->ref_tag) == p)
395 pi->ref_tag = cpu_to_be32(v);
396}
397
398/**
399 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
400 *
401 * The virtual start sector is the one that was originally submitted by the
402 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
403 * start sector may be different. Remap protection information to match the
404 * physical LBA on writes, and back to the original seed on reads.
405 *
406 * Type 0 and 3 do not have a ref tag, so no remapping required.
407 */
408static void nvme_dif_remap(struct request *req,
409 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
410{
411 struct nvme_ns *ns = req->rq_disk->private_data;
412 struct bio_integrity_payload *bip;
413 struct t10_pi_tuple *pi;
414 void *p, *pmap;
415 u32 i, nlb, ts, phys, virt;
416
417 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
418 return;
419
420 bip = bio_integrity(req->bio);
421 if (!bip)
422 return;
423
424 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
425
426 p = pmap;
427 virt = bip_get_seed(bip);
428 phys = nvme_block_nr(ns, blk_rq_pos(req));
429 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
430 ts = ns->disk->queue->integrity.tuple_size;
431
432 for (i = 0; i < nlb; i++, virt++, phys++) {
433 pi = (struct t10_pi_tuple *)p;
434 dif_swap(phys, virt, pi);
435 p += ts;
436 }
437 kunmap_atomic(pmap);
438}
439#else /* CONFIG_BLK_DEV_INTEGRITY */
440static void nvme_dif_remap(struct request *req,
441 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
442{
443}
444static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
445{
446}
447static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
448{
449}
450#endif
451
452static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
453 int total_len)
454{
455 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
456 struct dma_pool *pool;
457 int length = total_len;
458 struct scatterlist *sg = iod->sg;
459 int dma_len = sg_dma_len(sg);
460 u64 dma_addr = sg_dma_address(sg);
461 u32 page_size = dev->ctrl.page_size;
462 int offset = dma_addr & (page_size - 1);
463 __le64 *prp_list;
464 __le64 **list = iod_list(req);
465 dma_addr_t prp_dma;
466 int nprps, i;
467
468 length -= (page_size - offset);
469 if (length <= 0)
470 return true;
471
472 dma_len -= (page_size - offset);
473 if (dma_len) {
474 dma_addr += (page_size - offset);
475 } else {
476 sg = sg_next(sg);
477 dma_addr = sg_dma_address(sg);
478 dma_len = sg_dma_len(sg);
479 }
480
481 if (length <= page_size) {
482 iod->first_dma = dma_addr;
483 return true;
484 }
485
486 nprps = DIV_ROUND_UP(length, page_size);
487 if (nprps <= (256 / 8)) {
488 pool = dev->prp_small_pool;
489 iod->npages = 0;
490 } else {
491 pool = dev->prp_page_pool;
492 iod->npages = 1;
493 }
494
495 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
496 if (!prp_list) {
497 iod->first_dma = dma_addr;
498 iod->npages = -1;
499 return false;
500 }
501 list[0] = prp_list;
502 iod->first_dma = prp_dma;
503 i = 0;
504 for (;;) {
505 if (i == page_size >> 3) {
506 __le64 *old_prp_list = prp_list;
507 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
508 if (!prp_list)
509 return false;
510 list[iod->npages++] = prp_list;
511 prp_list[0] = old_prp_list[i - 1];
512 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
513 i = 1;
514 }
515 prp_list[i++] = cpu_to_le64(dma_addr);
516 dma_len -= page_size;
517 dma_addr += page_size;
518 length -= page_size;
519 if (length <= 0)
520 break;
521 if (dma_len > 0)
522 continue;
523 BUG_ON(dma_len < 0);
524 sg = sg_next(sg);
525 dma_addr = sg_dma_address(sg);
526 dma_len = sg_dma_len(sg);
527 }
528
529 return true;
530}
531
532static int nvme_map_data(struct nvme_dev *dev, struct request *req,
533 struct nvme_command *cmnd)
534{
535 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
536 struct request_queue *q = req->q;
537 enum dma_data_direction dma_dir = rq_data_dir(req) ?
538 DMA_TO_DEVICE : DMA_FROM_DEVICE;
539 int ret = BLK_MQ_RQ_QUEUE_ERROR;
540
541 sg_init_table(iod->sg, req->nr_phys_segments);
542 iod->nents = blk_rq_map_sg(q, req, iod->sg);
543 if (!iod->nents)
544 goto out;
545
546 ret = BLK_MQ_RQ_QUEUE_BUSY;
547 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
548 goto out;
549
550 if (!nvme_setup_prps(dev, req, blk_rq_bytes(req)))
551 goto out_unmap;
552
553 ret = BLK_MQ_RQ_QUEUE_ERROR;
554 if (blk_integrity_rq(req)) {
555 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
556 goto out_unmap;
557
558 sg_init_table(&iod->meta_sg, 1);
559 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
560 goto out_unmap;
561
562 if (rq_data_dir(req))
563 nvme_dif_remap(req, nvme_dif_prep);
564
565 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
566 goto out_unmap;
567 }
568
569 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
570 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
571 if (blk_integrity_rq(req))
572 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
573 return BLK_MQ_RQ_QUEUE_OK;
574
575out_unmap:
576 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
577out:
578 return ret;
579}
580
581static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
582{
583 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
584 enum dma_data_direction dma_dir = rq_data_dir(req) ?
585 DMA_TO_DEVICE : DMA_FROM_DEVICE;
586
587 if (iod->nents) {
588 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
589 if (blk_integrity_rq(req)) {
590 if (!rq_data_dir(req))
591 nvme_dif_remap(req, nvme_dif_complete);
592 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
593 }
594 }
595
596 nvme_free_iod(dev, req);
597}
598
599/*
600 * We reuse the small pool to allocate the 16-byte range here as it is not
601 * worth having a special pool for these or additional cases to handle freeing
602 * the iod.
603 */
604static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
605 struct request *req, struct nvme_command *cmnd)
606{
607 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
608 struct nvme_dsm_range *range;
609
610 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
611 &iod->first_dma);
612 if (!range)
613 return BLK_MQ_RQ_QUEUE_BUSY;
614 iod_list(req)[0] = (__le64 *)range;
615 iod->npages = 0;
616
617 range->cattr = cpu_to_le32(0);
618 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
619 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
620
621 memset(cmnd, 0, sizeof(*cmnd));
622 cmnd->dsm.opcode = nvme_cmd_dsm;
623 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
624 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
625 cmnd->dsm.nr = 0;
626 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
627 return BLK_MQ_RQ_QUEUE_OK;
628}
629
630/*
631 * NOTE: ns is NULL when called on the admin queue.
632 */
633static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
634 const struct blk_mq_queue_data *bd)
635{
636 struct nvme_ns *ns = hctx->queue->queuedata;
637 struct nvme_queue *nvmeq = hctx->driver_data;
638 struct nvme_dev *dev = nvmeq->dev;
639 struct request *req = bd->rq;
640 struct nvme_command cmnd;
641 int ret = BLK_MQ_RQ_QUEUE_OK;
642
643 /*
644 * If formated with metadata, require the block layer provide a buffer
645 * unless this namespace is formated such that the metadata can be
646 * stripped/generated by the controller with PRACT=1.
647 */
648 if (ns && ns->ms && !blk_integrity_rq(req)) {
649 if (!(ns->pi_type && ns->ms == 8) &&
650 req->cmd_type != REQ_TYPE_DRV_PRIV) {
651 blk_mq_end_request(req, -EFAULT);
652 return BLK_MQ_RQ_QUEUE_OK;
653 }
654 }
655
656 ret = nvme_init_iod(req, dev);
657 if (ret)
658 return ret;
659
660 if (req->cmd_flags & REQ_DISCARD) {
661 ret = nvme_setup_discard(nvmeq, ns, req, &cmnd);
662 } else {
663 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
664 memcpy(&cmnd, req->cmd, sizeof(cmnd));
665 else if (req->cmd_flags & REQ_FLUSH)
666 nvme_setup_flush(ns, &cmnd);
667 else
668 nvme_setup_rw(ns, req, &cmnd);
669
670 if (req->nr_phys_segments)
671 ret = nvme_map_data(dev, req, &cmnd);
672 }
673
674 if (ret)
675 goto out;
676
677 cmnd.common.command_id = req->tag;
678 blk_mq_start_request(req);
679
680 spin_lock_irq(&nvmeq->q_lock);
681 __nvme_submit_cmd(nvmeq, &cmnd);
682 nvme_process_cq(nvmeq);
683 spin_unlock_irq(&nvmeq->q_lock);
684 return BLK_MQ_RQ_QUEUE_OK;
685out:
686 nvme_free_iod(dev, req);
687 return ret;
688}
689
690static void nvme_complete_rq(struct request *req)
691{
692 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
693 struct nvme_dev *dev = iod->nvmeq->dev;
694 int error = 0;
695
696 nvme_unmap_data(dev, req);
697
698 if (unlikely(req->errors)) {
699 if (nvme_req_needs_retry(req, req->errors)) {
700 nvme_requeue_req(req);
701 return;
702 }
703
704 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
705 error = req->errors;
706 else
707 error = nvme_error_status(req->errors);
708 }
709
710 if (unlikely(iod->aborted)) {
711 dev_warn(dev->dev,
712 "completing aborted command with status: %04x\n",
713 req->errors);
714 }
715
716 blk_mq_end_request(req, error);
717}
718
719static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
720{
721 u16 head, phase;
722
723 head = nvmeq->cq_head;
724 phase = nvmeq->cq_phase;
725
726 for (;;) {
727 struct nvme_completion cqe = nvmeq->cqes[head];
728 u16 status = le16_to_cpu(cqe.status);
729 struct request *req;
730
731 if ((status & 1) != phase)
732 break;
733 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
734 if (++head == nvmeq->q_depth) {
735 head = 0;
736 phase = !phase;
737 }
738
739 if (tag && *tag == cqe.command_id)
740 *tag = -1;
741
742 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
743 dev_warn(nvmeq->q_dmadev,
744 "invalid id %d completed on queue %d\n",
745 cqe.command_id, le16_to_cpu(cqe.sq_id));
746 continue;
747 }
748
749 /*
750 * AEN requests are special as they don't time out and can
751 * survive any kind of queue freeze and often don't respond to
752 * aborts. We don't even bother to allocate a struct request
753 * for them but rather special case them here.
754 */
755 if (unlikely(nvmeq->qid == 0 &&
756 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
757 nvme_complete_async_event(nvmeq->dev, &cqe);
758 continue;
759 }
760
761 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
762 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
763 u32 result = le32_to_cpu(cqe.result);
764 req->special = (void *)(uintptr_t)result;
765 }
766 blk_mq_complete_request(req, status >> 1);
767
768 }
769
770 /* If the controller ignores the cq head doorbell and continuously
771 * writes to the queue, it is theoretically possible to wrap around
772 * the queue twice and mistakenly return IRQ_NONE. Linux only
773 * requires that 0.1% of your interrupts are handled, so this isn't
774 * a big problem.
775 */
776 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
777 return;
778
779 if (likely(nvmeq->cq_vector >= 0))
780 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
781 nvmeq->cq_head = head;
782 nvmeq->cq_phase = phase;
783
784 nvmeq->cqe_seen = 1;
785}
786
787static void nvme_process_cq(struct nvme_queue *nvmeq)
788{
789 __nvme_process_cq(nvmeq, NULL);
790}
791
792static irqreturn_t nvme_irq(int irq, void *data)
793{
794 irqreturn_t result;
795 struct nvme_queue *nvmeq = data;
796 spin_lock(&nvmeq->q_lock);
797 nvme_process_cq(nvmeq);
798 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
799 nvmeq->cqe_seen = 0;
800 spin_unlock(&nvmeq->q_lock);
801 return result;
802}
803
804static irqreturn_t nvme_irq_check(int irq, void *data)
805{
806 struct nvme_queue *nvmeq = data;
807 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
808 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
809 return IRQ_NONE;
810 return IRQ_WAKE_THREAD;
811}
812
813static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
814{
815 struct nvme_queue *nvmeq = hctx->driver_data;
816
817 if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
818 nvmeq->cq_phase) {
819 spin_lock_irq(&nvmeq->q_lock);
820 __nvme_process_cq(nvmeq, &tag);
821 spin_unlock_irq(&nvmeq->q_lock);
822
823 if (tag == -1)
824 return 1;
825 }
826
827 return 0;
828}
829
830static void nvme_submit_async_event(struct nvme_dev *dev)
831{
832 struct nvme_command c;
833
834 memset(&c, 0, sizeof(c));
835 c.common.opcode = nvme_admin_async_event;
836 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + --dev->ctrl.event_limit;
837
838 __nvme_submit_cmd(dev->queues[0], &c);
839}
840
841static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
842{
843 struct nvme_command c;
844
845 memset(&c, 0, sizeof(c));
846 c.delete_queue.opcode = opcode;
847 c.delete_queue.qid = cpu_to_le16(id);
848
849 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
850}
851
852static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
853 struct nvme_queue *nvmeq)
854{
855 struct nvme_command c;
856 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
857
858 /*
859 * Note: we (ab)use the fact the the prp fields survive if no data
860 * is attached to the request.
861 */
862 memset(&c, 0, sizeof(c));
863 c.create_cq.opcode = nvme_admin_create_cq;
864 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
865 c.create_cq.cqid = cpu_to_le16(qid);
866 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
867 c.create_cq.cq_flags = cpu_to_le16(flags);
868 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
869
870 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
871}
872
873static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
874 struct nvme_queue *nvmeq)
875{
876 struct nvme_command c;
877 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
878
879 /*
880 * Note: we (ab)use the fact the the prp fields survive if no data
881 * is attached to the request.
882 */
883 memset(&c, 0, sizeof(c));
884 c.create_sq.opcode = nvme_admin_create_sq;
885 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
886 c.create_sq.sqid = cpu_to_le16(qid);
887 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
888 c.create_sq.sq_flags = cpu_to_le16(flags);
889 c.create_sq.cqid = cpu_to_le16(qid);
890
891 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
892}
893
894static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
895{
896 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
897}
898
899static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
900{
901 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
902}
903
904static void abort_endio(struct request *req, int error)
905{
906 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
907 struct nvme_queue *nvmeq = iod->nvmeq;
908 u32 result = (u32)(uintptr_t)req->special;
909 u16 status = req->errors;
910
911 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
912 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
913
914 blk_mq_free_request(req);
915}
916
917static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
918{
919 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
920 struct nvme_queue *nvmeq = iod->nvmeq;
921 struct nvme_dev *dev = nvmeq->dev;
922 struct request *abort_req;
923 struct nvme_command cmd;
924
925 /*
926 * Shutdown immediately if controller times out while starting. The
927 * reset work will see the pci device disabled when it gets the forced
928 * cancellation error. All outstanding requests are completed on
929 * shutdown, so we return BLK_EH_HANDLED.
930 */
931 if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
932 dev_warn(dev->dev,
933 "I/O %d QID %d timeout, disable controller\n",
934 req->tag, nvmeq->qid);
935 nvme_dev_disable(dev, false);
936 req->errors = NVME_SC_CANCELLED;
937 return BLK_EH_HANDLED;
938 }
939
940 /*
941 * Shutdown the controller immediately and schedule a reset if the
942 * command was already aborted once before and still hasn't been
943 * returned to the driver, or if this is the admin queue.
944 */
945 if (!nvmeq->qid || iod->aborted) {
946 dev_warn(dev->dev,
947 "I/O %d QID %d timeout, reset controller\n",
948 req->tag, nvmeq->qid);
949 nvme_dev_disable(dev, false);
950 queue_work(nvme_workq, &dev->reset_work);
951
952 /*
953 * Mark the request as handled, since the inline shutdown
954 * forces all outstanding requests to complete.
955 */
956 req->errors = NVME_SC_CANCELLED;
957 return BLK_EH_HANDLED;
958 }
959
960 iod->aborted = 1;
961
962 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
963 atomic_inc(&dev->ctrl.abort_limit);
964 return BLK_EH_RESET_TIMER;
965 }
966
967 memset(&cmd, 0, sizeof(cmd));
968 cmd.abort.opcode = nvme_admin_abort_cmd;
969 cmd.abort.cid = req->tag;
970 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
971
972 dev_warn(nvmeq->q_dmadev, "I/O %d QID %d timeout, aborting\n",
973 req->tag, nvmeq->qid);
974
975 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
976 BLK_MQ_REQ_NOWAIT);
977 if (IS_ERR(abort_req)) {
978 atomic_inc(&dev->ctrl.abort_limit);
979 return BLK_EH_RESET_TIMER;
980 }
981
982 abort_req->timeout = ADMIN_TIMEOUT;
983 abort_req->end_io_data = NULL;
984 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
985
986 /*
987 * The aborted req will be completed on receiving the abort req.
988 * We enable the timer again. If hit twice, it'll cause a device reset,
989 * as the device then is in a faulty state.
990 */
991 return BLK_EH_RESET_TIMER;
992}
993
994static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
995{
996 struct nvme_queue *nvmeq = data;
997 int status;
998
999 if (!blk_mq_request_started(req))
1000 return;
1001
1002 dev_warn(nvmeq->q_dmadev,
1003 "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid);
1004
1005 status = NVME_SC_ABORT_REQ;
1006 if (blk_queue_dying(req->q))
1007 status |= NVME_SC_DNR;
1008 blk_mq_complete_request(req, status);
1009}
1010
1011static void nvme_free_queue(struct nvme_queue *nvmeq)
1012{
1013 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1014 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1015 if (nvmeq->sq_cmds)
1016 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1017 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1018 kfree(nvmeq);
1019}
1020
1021static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1022{
1023 int i;
1024
1025 for (i = dev->queue_count - 1; i >= lowest; i--) {
1026 struct nvme_queue *nvmeq = dev->queues[i];
1027 dev->queue_count--;
1028 dev->queues[i] = NULL;
1029 nvme_free_queue(nvmeq);
1030 }
1031}
1032
1033/**
1034 * nvme_suspend_queue - put queue into suspended state
1035 * @nvmeq - queue to suspend
1036 */
1037static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1038{
1039 int vector;
1040
1041 spin_lock_irq(&nvmeq->q_lock);
1042 if (nvmeq->cq_vector == -1) {
1043 spin_unlock_irq(&nvmeq->q_lock);
1044 return 1;
1045 }
1046 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1047 nvmeq->dev->online_queues--;
1048 nvmeq->cq_vector = -1;
1049 spin_unlock_irq(&nvmeq->q_lock);
1050
1051 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1052 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
1053
1054 irq_set_affinity_hint(vector, NULL);
1055 free_irq(vector, nvmeq);
1056
1057 return 0;
1058}
1059
1060static void nvme_clear_queue(struct nvme_queue *nvmeq)
1061{
1062 spin_lock_irq(&nvmeq->q_lock);
1063 if (nvmeq->tags && *nvmeq->tags)
1064 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1065 spin_unlock_irq(&nvmeq->q_lock);
1066}
1067
1068static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1069{
1070 struct nvme_queue *nvmeq = dev->queues[0];
1071
1072 if (!nvmeq)
1073 return;
1074 if (nvme_suspend_queue(nvmeq))
1075 return;
1076
1077 if (shutdown)
1078 nvme_shutdown_ctrl(&dev->ctrl);
1079 else
1080 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1081 dev->bar + NVME_REG_CAP));
1082
1083 spin_lock_irq(&nvmeq->q_lock);
1084 nvme_process_cq(nvmeq);
1085 spin_unlock_irq(&nvmeq->q_lock);
1086}
1087
1088static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1089 int entry_size)
1090{
1091 int q_depth = dev->q_depth;
1092 unsigned q_size_aligned = roundup(q_depth * entry_size,
1093 dev->ctrl.page_size);
1094
1095 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1096 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1097 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1098 q_depth = div_u64(mem_per_q, entry_size);
1099
1100 /*
1101 * Ensure the reduced q_depth is above some threshold where it
1102 * would be better to map queues in system memory with the
1103 * original depth
1104 */
1105 if (q_depth < 64)
1106 return -ENOMEM;
1107 }
1108
1109 return q_depth;
1110}
1111
1112static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1113 int qid, int depth)
1114{
1115 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1116 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1117 dev->ctrl.page_size);
1118 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1119 nvmeq->sq_cmds_io = dev->cmb + offset;
1120 } else {
1121 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1122 &nvmeq->sq_dma_addr, GFP_KERNEL);
1123 if (!nvmeq->sq_cmds)
1124 return -ENOMEM;
1125 }
1126
1127 return 0;
1128}
1129
1130static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1131 int depth)
1132{
1133 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1134 if (!nvmeq)
1135 return NULL;
1136
1137 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1138 &nvmeq->cq_dma_addr, GFP_KERNEL);
1139 if (!nvmeq->cqes)
1140 goto free_nvmeq;
1141
1142 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1143 goto free_cqdma;
1144
1145 nvmeq->q_dmadev = dev->dev;
1146 nvmeq->dev = dev;
1147 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1148 dev->ctrl.instance, qid);
1149 spin_lock_init(&nvmeq->q_lock);
1150 nvmeq->cq_head = 0;
1151 nvmeq->cq_phase = 1;
1152 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1153 nvmeq->q_depth = depth;
1154 nvmeq->qid = qid;
1155 nvmeq->cq_vector = -1;
1156 dev->queues[qid] = nvmeq;
1157
1158 /* make sure queue descriptor is set before queue count, for kthread */
1159 mb();
1160 dev->queue_count++;
1161
1162 return nvmeq;
1163
1164 free_cqdma:
1165 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1166 nvmeq->cq_dma_addr);
1167 free_nvmeq:
1168 kfree(nvmeq);
1169 return NULL;
1170}
1171
1172static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1173 const char *name)
1174{
1175 if (use_threaded_interrupts)
1176 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1177 nvme_irq_check, nvme_irq, IRQF_SHARED,
1178 name, nvmeq);
1179 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1180 IRQF_SHARED, name, nvmeq);
1181}
1182
1183static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1184{
1185 struct nvme_dev *dev = nvmeq->dev;
1186
1187 spin_lock_irq(&nvmeq->q_lock);
1188 nvmeq->sq_tail = 0;
1189 nvmeq->cq_head = 0;
1190 nvmeq->cq_phase = 1;
1191 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1192 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1193 dev->online_queues++;
1194 spin_unlock_irq(&nvmeq->q_lock);
1195}
1196
1197static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1198{
1199 struct nvme_dev *dev = nvmeq->dev;
1200 int result;
1201
1202 nvmeq->cq_vector = qid - 1;
1203 result = adapter_alloc_cq(dev, qid, nvmeq);
1204 if (result < 0)
1205 return result;
1206
1207 result = adapter_alloc_sq(dev, qid, nvmeq);
1208 if (result < 0)
1209 goto release_cq;
1210
1211 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1212 if (result < 0)
1213 goto release_sq;
1214
1215 nvme_init_queue(nvmeq, qid);
1216 return result;
1217
1218 release_sq:
1219 adapter_delete_sq(dev, qid);
1220 release_cq:
1221 adapter_delete_cq(dev, qid);
1222 return result;
1223}
1224
1225static struct blk_mq_ops nvme_mq_admin_ops = {
1226 .queue_rq = nvme_queue_rq,
1227 .complete = nvme_complete_rq,
1228 .map_queue = blk_mq_map_queue,
1229 .init_hctx = nvme_admin_init_hctx,
1230 .exit_hctx = nvme_admin_exit_hctx,
1231 .init_request = nvme_admin_init_request,
1232 .timeout = nvme_timeout,
1233};
1234
1235static struct blk_mq_ops nvme_mq_ops = {
1236 .queue_rq = nvme_queue_rq,
1237 .complete = nvme_complete_rq,
1238 .map_queue = blk_mq_map_queue,
1239 .init_hctx = nvme_init_hctx,
1240 .init_request = nvme_init_request,
1241 .timeout = nvme_timeout,
1242 .poll = nvme_poll,
1243};
1244
1245static void nvme_dev_remove_admin(struct nvme_dev *dev)
1246{
1247 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1248 blk_cleanup_queue(dev->ctrl.admin_q);
1249 blk_mq_free_tag_set(&dev->admin_tagset);
1250 }
1251}
1252
1253static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1254{
1255 if (!dev->ctrl.admin_q) {
1256 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1257 dev->admin_tagset.nr_hw_queues = 1;
1258
1259 /*
1260 * Subtract one to leave an empty queue entry for 'Full Queue'
1261 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1262 */
1263 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1264 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1265 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1266 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1267 dev->admin_tagset.driver_data = dev;
1268
1269 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1270 return -ENOMEM;
1271
1272 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1273 if (IS_ERR(dev->ctrl.admin_q)) {
1274 blk_mq_free_tag_set(&dev->admin_tagset);
1275 return -ENOMEM;
1276 }
1277 if (!blk_get_queue(dev->ctrl.admin_q)) {
1278 nvme_dev_remove_admin(dev);
1279 dev->ctrl.admin_q = NULL;
1280 return -ENODEV;
1281 }
1282 } else
1283 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1284
1285 return 0;
1286}
1287
1288static int nvme_configure_admin_queue(struct nvme_dev *dev)
1289{
1290 int result;
1291 u32 aqa;
1292 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1293 struct nvme_queue *nvmeq;
1294
1295 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1296 NVME_CAP_NSSRC(cap) : 0;
1297
1298 if (dev->subsystem &&
1299 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1300 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1301
1302 result = nvme_disable_ctrl(&dev->ctrl, cap);
1303 if (result < 0)
1304 return result;
1305
1306 nvmeq = dev->queues[0];
1307 if (!nvmeq) {
1308 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1309 if (!nvmeq)
1310 return -ENOMEM;
1311 }
1312
1313 aqa = nvmeq->q_depth - 1;
1314 aqa |= aqa << 16;
1315
1316 writel(aqa, dev->bar + NVME_REG_AQA);
1317 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1318 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1319
1320 result = nvme_enable_ctrl(&dev->ctrl, cap);
1321 if (result)
1322 goto free_nvmeq;
1323
1324 nvmeq->cq_vector = 0;
1325 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1326 if (result) {
1327 nvmeq->cq_vector = -1;
1328 goto free_nvmeq;
1329 }
1330
1331 return result;
1332
1333 free_nvmeq:
1334 nvme_free_queues(dev, 0);
1335 return result;
1336}
1337
1338static int nvme_kthread(void *data)
1339{
1340 struct nvme_dev *dev, *next;
1341
1342 while (!kthread_should_stop()) {
1343 set_current_state(TASK_INTERRUPTIBLE);
1344 spin_lock(&dev_list_lock);
1345 list_for_each_entry_safe(dev, next, &dev_list, node) {
1346 int i;
1347 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1348
1349 /*
1350 * Skip controllers currently under reset.
1351 */
1352 if (work_pending(&dev->reset_work) || work_busy(&dev->reset_work))
1353 continue;
1354
1355 if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
1356 csts & NVME_CSTS_CFS) {
1357 if (queue_work(nvme_workq, &dev->reset_work)) {
1358 dev_warn(dev->dev,
1359 "Failed status: %x, reset controller\n",
1360 readl(dev->bar + NVME_REG_CSTS));
1361 }
1362 continue;
1363 }
1364 for (i = 0; i < dev->queue_count; i++) {
1365 struct nvme_queue *nvmeq = dev->queues[i];
1366 if (!nvmeq)
1367 continue;
1368 spin_lock_irq(&nvmeq->q_lock);
1369 nvme_process_cq(nvmeq);
1370
1371 while (i == 0 && dev->ctrl.event_limit > 0)
1372 nvme_submit_async_event(dev);
1373 spin_unlock_irq(&nvmeq->q_lock);
1374 }
1375 }
1376 spin_unlock(&dev_list_lock);
1377 schedule_timeout(round_jiffies_relative(HZ));
1378 }
1379 return 0;
1380}
1381
1382static int nvme_create_io_queues(struct nvme_dev *dev)
1383{
1384 unsigned i, max;
1385 int ret = 0;
1386
1387 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1388 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1389 ret = -ENOMEM;
1390 break;
1391 }
1392 }
1393
1394 max = min(dev->max_qid, dev->queue_count - 1);
1395 for (i = dev->online_queues; i <= max; i++) {
1396 ret = nvme_create_queue(dev->queues[i], i);
1397 if (ret) {
1398 nvme_free_queues(dev, i);
1399 break;
1400 }
1401 }
1402
1403 /*
1404 * Ignore failing Create SQ/CQ commands, we can continue with less
1405 * than the desired aount of queues, and even a controller without
1406 * I/O queues an still be used to issue admin commands. This might
1407 * be useful to upgrade a buggy firmware for example.
1408 */
1409 return ret >= 0 ? 0 : ret;
1410}
1411
1412static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1413{
1414 u64 szu, size, offset;
1415 u32 cmbloc;
1416 resource_size_t bar_size;
1417 struct pci_dev *pdev = to_pci_dev(dev->dev);
1418 void __iomem *cmb;
1419 dma_addr_t dma_addr;
1420
1421 if (!use_cmb_sqes)
1422 return NULL;
1423
1424 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1425 if (!(NVME_CMB_SZ(dev->cmbsz)))
1426 return NULL;
1427
1428 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1429
1430 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1431 size = szu * NVME_CMB_SZ(dev->cmbsz);
1432 offset = szu * NVME_CMB_OFST(cmbloc);
1433 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1434
1435 if (offset > bar_size)
1436 return NULL;
1437
1438 /*
1439 * Controllers may support a CMB size larger than their BAR,
1440 * for example, due to being behind a bridge. Reduce the CMB to
1441 * the reported size of the BAR
1442 */
1443 if (size > bar_size - offset)
1444 size = bar_size - offset;
1445
1446 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1447 cmb = ioremap_wc(dma_addr, size);
1448 if (!cmb)
1449 return NULL;
1450
1451 dev->cmb_dma_addr = dma_addr;
1452 dev->cmb_size = size;
1453 return cmb;
1454}
1455
1456static inline void nvme_release_cmb(struct nvme_dev *dev)
1457{
1458 if (dev->cmb) {
1459 iounmap(dev->cmb);
1460 dev->cmb = NULL;
1461 }
1462}
1463
1464static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1465{
1466 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1467}
1468
1469static int nvme_setup_io_queues(struct nvme_dev *dev)
1470{
1471 struct nvme_queue *adminq = dev->queues[0];
1472 struct pci_dev *pdev = to_pci_dev(dev->dev);
1473 int result, i, vecs, nr_io_queues, size;
1474
1475 nr_io_queues = num_possible_cpus();
1476 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1477 if (result < 0)
1478 return result;
1479
1480 /*
1481 * Degraded controllers might return an error when setting the queue
1482 * count. We still want to be able to bring them online and offer
1483 * access to the admin queue, as that might be only way to fix them up.
1484 */
1485 if (result > 0) {
1486 dev_err(dev->dev, "Could not set queue count (%d)\n", result);
1487 nr_io_queues = 0;
1488 result = 0;
1489 }
1490
1491 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1492 result = nvme_cmb_qdepth(dev, nr_io_queues,
1493 sizeof(struct nvme_command));
1494 if (result > 0)
1495 dev->q_depth = result;
1496 else
1497 nvme_release_cmb(dev);
1498 }
1499
1500 size = db_bar_size(dev, nr_io_queues);
1501 if (size > 8192) {
1502 iounmap(dev->bar);
1503 do {
1504 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1505 if (dev->bar)
1506 break;
1507 if (!--nr_io_queues)
1508 return -ENOMEM;
1509 size = db_bar_size(dev, nr_io_queues);
1510 } while (1);
1511 dev->dbs = dev->bar + 4096;
1512 adminq->q_db = dev->dbs;
1513 }
1514
1515 /* Deregister the admin queue's interrupt */
1516 free_irq(dev->entry[0].vector, adminq);
1517
1518 /*
1519 * If we enable msix early due to not intx, disable it again before
1520 * setting up the full range we need.
1521 */
1522 if (!pdev->irq)
1523 pci_disable_msix(pdev);
1524
1525 for (i = 0; i < nr_io_queues; i++)
1526 dev->entry[i].entry = i;
1527 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1528 if (vecs < 0) {
1529 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1530 if (vecs < 0) {
1531 vecs = 1;
1532 } else {
1533 for (i = 0; i < vecs; i++)
1534 dev->entry[i].vector = i + pdev->irq;
1535 }
1536 }
1537
1538 /*
1539 * Should investigate if there's a performance win from allocating
1540 * more queues than interrupt vectors; it might allow the submission
1541 * path to scale better, even if the receive path is limited by the
1542 * number of interrupts.
1543 */
1544 nr_io_queues = vecs;
1545 dev->max_qid = nr_io_queues;
1546
1547 result = queue_request_irq(dev, adminq, adminq->irqname);
1548 if (result) {
1549 adminq->cq_vector = -1;
1550 goto free_queues;
1551 }
1552 return nvme_create_io_queues(dev);
1553
1554 free_queues:
1555 nvme_free_queues(dev, 1);
1556 return result;
1557}
1558
1559static void nvme_set_irq_hints(struct nvme_dev *dev)
1560{
1561 struct nvme_queue *nvmeq;
1562 int i;
1563
1564 for (i = 0; i < dev->online_queues; i++) {
1565 nvmeq = dev->queues[i];
1566
1567 if (!nvmeq->tags || !(*nvmeq->tags))
1568 continue;
1569
1570 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1571 blk_mq_tags_cpumask(*nvmeq->tags));
1572 }
1573}
1574
1575static void nvme_dev_scan(struct work_struct *work)
1576{
1577 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
1578
1579 if (!dev->tagset.tags)
1580 return;
1581 nvme_scan_namespaces(&dev->ctrl);
1582 nvme_set_irq_hints(dev);
1583}
1584
1585static void nvme_del_queue_end(struct request *req, int error)
1586{
1587 struct nvme_queue *nvmeq = req->end_io_data;
1588
1589 blk_mq_free_request(req);
1590 complete(&nvmeq->dev->ioq_wait);
1591}
1592
1593static void nvme_del_cq_end(struct request *req, int error)
1594{
1595 struct nvme_queue *nvmeq = req->end_io_data;
1596
1597 if (!error) {
1598 unsigned long flags;
1599
1600 spin_lock_irqsave(&nvmeq->q_lock, flags);
1601 nvme_process_cq(nvmeq);
1602 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1603 }
1604
1605 nvme_del_queue_end(req, error);
1606}
1607
1608static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1609{
1610 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1611 struct request *req;
1612 struct nvme_command cmd;
1613
1614 memset(&cmd, 0, sizeof(cmd));
1615 cmd.delete_queue.opcode = opcode;
1616 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1617
1618 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
1619 if (IS_ERR(req))
1620 return PTR_ERR(req);
1621
1622 req->timeout = ADMIN_TIMEOUT;
1623 req->end_io_data = nvmeq;
1624
1625 blk_execute_rq_nowait(q, NULL, req, false,
1626 opcode == nvme_admin_delete_cq ?
1627 nvme_del_cq_end : nvme_del_queue_end);
1628 return 0;
1629}
1630
1631static void nvme_disable_io_queues(struct nvme_dev *dev)
1632{
1633 int pass;
1634 unsigned long timeout;
1635 u8 opcode = nvme_admin_delete_sq;
1636
1637 for (pass = 0; pass < 2; pass++) {
1638 int sent = 0, i = dev->queue_count - 1;
1639
1640 reinit_completion(&dev->ioq_wait);
1641 retry:
1642 timeout = ADMIN_TIMEOUT;
1643 for (; i > 0; i--) {
1644 struct nvme_queue *nvmeq = dev->queues[i];
1645
1646 if (!pass)
1647 nvme_suspend_queue(nvmeq);
1648 if (nvme_delete_queue(nvmeq, opcode))
1649 break;
1650 ++sent;
1651 }
1652 while (sent--) {
1653 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1654 if (timeout == 0)
1655 return;
1656 if (i)
1657 goto retry;
1658 }
1659 opcode = nvme_admin_delete_cq;
1660 }
1661}
1662
1663/*
1664 * Return: error value if an error occurred setting up the queues or calling
1665 * Identify Device. 0 if these succeeded, even if adding some of the
1666 * namespaces failed. At the moment, these failures are silent. TBD which
1667 * failures should be reported.
1668 */
1669static int nvme_dev_add(struct nvme_dev *dev)
1670{
1671 if (!dev->ctrl.tagset) {
1672 dev->tagset.ops = &nvme_mq_ops;
1673 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1674 dev->tagset.timeout = NVME_IO_TIMEOUT;
1675 dev->tagset.numa_node = dev_to_node(dev->dev);
1676 dev->tagset.queue_depth =
1677 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1678 dev->tagset.cmd_size = nvme_cmd_size(dev);
1679 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1680 dev->tagset.driver_data = dev;
1681
1682 if (blk_mq_alloc_tag_set(&dev->tagset))
1683 return 0;
1684 dev->ctrl.tagset = &dev->tagset;
1685 } else {
1686 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1687
1688 /* Free previously allocated queues that are no longer usable */
1689 nvme_free_queues(dev, dev->online_queues);
1690 }
1691
1692 queue_work(nvme_workq, &dev->scan_work);
1693 return 0;
1694}
1695
1696static int nvme_dev_map(struct nvme_dev *dev)
1697{
1698 u64 cap;
1699 int bars, result = -ENOMEM;
1700 struct pci_dev *pdev = to_pci_dev(dev->dev);
1701
1702 if (pci_enable_device_mem(pdev))
1703 return result;
1704
1705 dev->entry[0].vector = pdev->irq;
1706 pci_set_master(pdev);
1707 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1708 if (!bars)
1709 goto disable_pci;
1710
1711 if (pci_request_selected_regions(pdev, bars, "nvme"))
1712 goto disable_pci;
1713
1714 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1715 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1716 goto disable;
1717
1718 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1719 if (!dev->bar)
1720 goto disable;
1721
1722 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1723 result = -ENODEV;
1724 goto unmap;
1725 }
1726
1727 /*
1728 * Some devices don't advertse INTx interrupts, pre-enable a single
1729 * MSIX vec for setup. We'll adjust this later.
1730 */
1731 if (!pdev->irq) {
1732 result = pci_enable_msix(pdev, dev->entry, 1);
1733 if (result < 0)
1734 goto unmap;
1735 }
1736
1737 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1738
1739 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1740 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1741 dev->dbs = dev->bar + 4096;
1742
1743 /*
1744 * Temporary fix for the Apple controller found in the MacBook8,1 and
1745 * some MacBook7,1 to avoid controller resets and data loss.
1746 */
1747 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1748 dev->q_depth = 2;
1749 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1750 "queue depth=%u to work around controller resets\n",
1751 dev->q_depth);
1752 }
1753
1754 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1755 dev->cmb = nvme_map_cmb(dev);
1756
1757 pci_enable_pcie_error_reporting(pdev);
1758 pci_save_state(pdev);
1759 return 0;
1760
1761 unmap:
1762 iounmap(dev->bar);
1763 dev->bar = NULL;
1764 disable:
1765 pci_release_regions(pdev);
1766 disable_pci:
1767 pci_disable_device(pdev);
1768 return result;
1769}
1770
1771static void nvme_dev_unmap(struct nvme_dev *dev)
1772{
1773 struct pci_dev *pdev = to_pci_dev(dev->dev);
1774
1775 if (pdev->msi_enabled)
1776 pci_disable_msi(pdev);
1777 else if (pdev->msix_enabled)
1778 pci_disable_msix(pdev);
1779
1780 if (dev->bar) {
1781 iounmap(dev->bar);
1782 dev->bar = NULL;
1783 pci_release_regions(pdev);
1784 }
1785
1786 if (pci_is_enabled(pdev)) {
1787 pci_disable_pcie_error_reporting(pdev);
1788 pci_disable_device(pdev);
1789 }
1790}
1791
1792static int nvme_dev_list_add(struct nvme_dev *dev)
1793{
1794 bool start_thread = false;
1795
1796 spin_lock(&dev_list_lock);
1797 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
1798 start_thread = true;
1799 nvme_thread = NULL;
1800 }
1801 list_add(&dev->node, &dev_list);
1802 spin_unlock(&dev_list_lock);
1803
1804 if (start_thread) {
1805 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1806 wake_up_all(&nvme_kthread_wait);
1807 } else
1808 wait_event_killable(nvme_kthread_wait, nvme_thread);
1809
1810 if (IS_ERR_OR_NULL(nvme_thread))
1811 return nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
1812
1813 return 0;
1814}
1815
1816/*
1817* Remove the node from the device list and check
1818* for whether or not we need to stop the nvme_thread.
1819*/
1820static void nvme_dev_list_remove(struct nvme_dev *dev)
1821{
1822 struct task_struct *tmp = NULL;
1823
1824 spin_lock(&dev_list_lock);
1825 list_del_init(&dev->node);
1826 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
1827 tmp = nvme_thread;
1828 nvme_thread = NULL;
1829 }
1830 spin_unlock(&dev_list_lock);
1831
1832 if (tmp)
1833 kthread_stop(tmp);
1834}
1835
1836static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1837{
1838 int i;
1839 u32 csts = -1;
1840
1841 nvme_dev_list_remove(dev);
1842
1843 mutex_lock(&dev->shutdown_lock);
1844 if (dev->bar) {
1845 nvme_stop_queues(&dev->ctrl);
1846 csts = readl(dev->bar + NVME_REG_CSTS);
1847 }
1848 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1849 for (i = dev->queue_count - 1; i >= 0; i--) {
1850 struct nvme_queue *nvmeq = dev->queues[i];
1851 nvme_suspend_queue(nvmeq);
1852 }
1853 } else {
1854 nvme_disable_io_queues(dev);
1855 nvme_disable_admin_queue(dev, shutdown);
1856 }
1857 nvme_dev_unmap(dev);
1858
1859 for (i = dev->queue_count - 1; i >= 0; i--)
1860 nvme_clear_queue(dev->queues[i]);
1861 mutex_unlock(&dev->shutdown_lock);
1862}
1863
1864static int nvme_setup_prp_pools(struct nvme_dev *dev)
1865{
1866 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1867 PAGE_SIZE, PAGE_SIZE, 0);
1868 if (!dev->prp_page_pool)
1869 return -ENOMEM;
1870
1871 /* Optimisation for I/Os between 4k and 128k */
1872 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1873 256, 256, 0);
1874 if (!dev->prp_small_pool) {
1875 dma_pool_destroy(dev->prp_page_pool);
1876 return -ENOMEM;
1877 }
1878 return 0;
1879}
1880
1881static void nvme_release_prp_pools(struct nvme_dev *dev)
1882{
1883 dma_pool_destroy(dev->prp_page_pool);
1884 dma_pool_destroy(dev->prp_small_pool);
1885}
1886
1887static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1888{
1889 struct nvme_dev *dev = to_nvme_dev(ctrl);
1890
1891 put_device(dev->dev);
1892 if (dev->tagset.tags)
1893 blk_mq_free_tag_set(&dev->tagset);
1894 if (dev->ctrl.admin_q)
1895 blk_put_queue(dev->ctrl.admin_q);
1896 kfree(dev->queues);
1897 kfree(dev->entry);
1898 kfree(dev);
1899}
1900
1901static void nvme_reset_work(struct work_struct *work)
1902{
1903 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1904 int result;
1905
1906 if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
1907 goto out;
1908
1909 /*
1910 * If we're called to reset a live controller first shut it down before
1911 * moving on.
1912 */
1913 if (dev->bar)
1914 nvme_dev_disable(dev, false);
1915
1916 set_bit(NVME_CTRL_RESETTING, &dev->flags);
1917
1918 result = nvme_dev_map(dev);
1919 if (result)
1920 goto out;
1921
1922 result = nvme_configure_admin_queue(dev);
1923 if (result)
1924 goto unmap;
1925
1926 nvme_init_queue(dev->queues[0], 0);
1927 result = nvme_alloc_admin_tags(dev);
1928 if (result)
1929 goto disable;
1930
1931 result = nvme_init_identify(&dev->ctrl);
1932 if (result)
1933 goto free_tags;
1934
1935 result = nvme_setup_io_queues(dev);
1936 if (result)
1937 goto free_tags;
1938
1939 dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS;
1940
1941 result = nvme_dev_list_add(dev);
1942 if (result)
1943 goto remove;
1944
1945 /*
1946 * Keep the controller around but remove all namespaces if we don't have
1947 * any working I/O queue.
1948 */
1949 if (dev->online_queues < 2) {
1950 dev_warn(dev->dev, "IO queues not created\n");
1951 nvme_remove_namespaces(&dev->ctrl);
1952 } else {
1953 nvme_start_queues(&dev->ctrl);
1954 nvme_dev_add(dev);
1955 }
1956
1957 clear_bit(NVME_CTRL_RESETTING, &dev->flags);
1958 return;
1959
1960 remove:
1961 nvme_dev_list_remove(dev);
1962 free_tags:
1963 nvme_dev_remove_admin(dev);
1964 blk_put_queue(dev->ctrl.admin_q);
1965 dev->ctrl.admin_q = NULL;
1966 dev->queues[0]->tags = NULL;
1967 disable:
1968 nvme_disable_admin_queue(dev, false);
1969 unmap:
1970 nvme_dev_unmap(dev);
1971 out:
1972 nvme_remove_dead_ctrl(dev);
1973}
1974
1975static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1976{
1977 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1978 struct pci_dev *pdev = to_pci_dev(dev->dev);
1979
1980 if (pci_get_drvdata(pdev))
1981 pci_stop_and_remove_bus_device_locked(pdev);
1982 nvme_put_ctrl(&dev->ctrl);
1983}
1984
1985static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
1986{
1987 dev_warn(dev->dev, "Removing after probe failure\n");
1988 kref_get(&dev->ctrl.kref);
1989 if (!schedule_work(&dev->remove_work))
1990 nvme_put_ctrl(&dev->ctrl);
1991}
1992
1993static int nvme_reset(struct nvme_dev *dev)
1994{
1995 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1996 return -ENODEV;
1997
1998 if (!queue_work(nvme_workq, &dev->reset_work))
1999 return -EBUSY;
2000
2001 flush_work(&dev->reset_work);
2002 return 0;
2003}
2004
2005static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2006{
2007 *val = readl(to_nvme_dev(ctrl)->bar + off);
2008 return 0;
2009}
2010
2011static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2012{
2013 writel(val, to_nvme_dev(ctrl)->bar + off);
2014 return 0;
2015}
2016
2017static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2018{
2019 *val = readq(to_nvme_dev(ctrl)->bar + off);
2020 return 0;
2021}
2022
2023static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
2024{
2025 struct nvme_dev *dev = to_nvme_dev(ctrl);
2026
2027 return !dev->bar || dev->online_queues < 2;
2028}
2029
2030static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2031{
2032 return nvme_reset(to_nvme_dev(ctrl));
2033}
2034
2035static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2036 .reg_read32 = nvme_pci_reg_read32,
2037 .reg_write32 = nvme_pci_reg_write32,
2038 .reg_read64 = nvme_pci_reg_read64,
2039 .io_incapable = nvme_pci_io_incapable,
2040 .reset_ctrl = nvme_pci_reset_ctrl,
2041 .free_ctrl = nvme_pci_free_ctrl,
2042};
2043
2044static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2045{
2046 int node, result = -ENOMEM;
2047 struct nvme_dev *dev;
2048
2049 node = dev_to_node(&pdev->dev);
2050 if (node == NUMA_NO_NODE)
2051 set_dev_node(&pdev->dev, 0);
2052
2053 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2054 if (!dev)
2055 return -ENOMEM;
2056 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2057 GFP_KERNEL, node);
2058 if (!dev->entry)
2059 goto free;
2060 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2061 GFP_KERNEL, node);
2062 if (!dev->queues)
2063 goto free;
2064
2065 dev->dev = get_device(&pdev->dev);
2066 pci_set_drvdata(pdev, dev);
2067
2068 INIT_LIST_HEAD(&dev->node);
2069 INIT_WORK(&dev->scan_work, nvme_dev_scan);
2070 INIT_WORK(&dev->reset_work, nvme_reset_work);
2071 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2072 mutex_init(&dev->shutdown_lock);
2073 init_completion(&dev->ioq_wait);
2074
2075 result = nvme_setup_prp_pools(dev);
2076 if (result)
2077 goto put_pci;
2078
2079 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2080 id->driver_data);
2081 if (result)
2082 goto release_pools;
2083
2084 queue_work(nvme_workq, &dev->reset_work);
2085 return 0;
2086
2087 release_pools:
2088 nvme_release_prp_pools(dev);
2089 put_pci:
2090 put_device(dev->dev);
2091 free:
2092 kfree(dev->queues);
2093 kfree(dev->entry);
2094 kfree(dev);
2095 return result;
2096}
2097
2098static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2099{
2100 struct nvme_dev *dev = pci_get_drvdata(pdev);
2101
2102 if (prepare)
2103 nvme_dev_disable(dev, false);
2104 else
2105 queue_work(nvme_workq, &dev->reset_work);
2106}
2107
2108static void nvme_shutdown(struct pci_dev *pdev)
2109{
2110 struct nvme_dev *dev = pci_get_drvdata(pdev);
2111 nvme_dev_disable(dev, true);
2112}
2113
2114static void nvme_remove(struct pci_dev *pdev)
2115{
2116 struct nvme_dev *dev = pci_get_drvdata(pdev);
2117
2118 spin_lock(&dev_list_lock);
2119 list_del_init(&dev->node);
2120 spin_unlock(&dev_list_lock);
2121
2122 pci_set_drvdata(pdev, NULL);
2123 flush_work(&dev->reset_work);
2124 flush_work(&dev->scan_work);
2125 nvme_remove_namespaces(&dev->ctrl);
2126 nvme_uninit_ctrl(&dev->ctrl);
2127 nvme_dev_disable(dev, true);
2128 nvme_dev_remove_admin(dev);
2129 nvme_free_queues(dev, 0);
2130 nvme_release_cmb(dev);
2131 nvme_release_prp_pools(dev);
2132 nvme_put_ctrl(&dev->ctrl);
2133}
2134
2135#ifdef CONFIG_PM_SLEEP
2136static int nvme_suspend(struct device *dev)
2137{
2138 struct pci_dev *pdev = to_pci_dev(dev);
2139 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2140
2141 nvme_dev_disable(ndev, true);
2142 return 0;
2143}
2144
2145static int nvme_resume(struct device *dev)
2146{
2147 struct pci_dev *pdev = to_pci_dev(dev);
2148 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2149
2150 queue_work(nvme_workq, &ndev->reset_work);
2151 return 0;
2152}
2153#endif
2154
2155static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2156
2157static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2158 pci_channel_state_t state)
2159{
2160 struct nvme_dev *dev = pci_get_drvdata(pdev);
2161
2162 /*
2163 * A frozen channel requires a reset. When detected, this method will
2164 * shutdown the controller to quiesce. The controller will be restarted
2165 * after the slot reset through driver's slot_reset callback.
2166 */
2167 dev_warn(&pdev->dev, "error detected: state:%d\n", state);
2168 switch (state) {
2169 case pci_channel_io_normal:
2170 return PCI_ERS_RESULT_CAN_RECOVER;
2171 case pci_channel_io_frozen:
2172 nvme_dev_disable(dev, false);
2173 return PCI_ERS_RESULT_NEED_RESET;
2174 case pci_channel_io_perm_failure:
2175 return PCI_ERS_RESULT_DISCONNECT;
2176 }
2177 return PCI_ERS_RESULT_NEED_RESET;
2178}
2179
2180static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2181{
2182 struct nvme_dev *dev = pci_get_drvdata(pdev);
2183
2184 dev_info(&pdev->dev, "restart after slot reset\n");
2185 pci_restore_state(pdev);
2186 queue_work(nvme_workq, &dev->reset_work);
2187 return PCI_ERS_RESULT_RECOVERED;
2188}
2189
2190static void nvme_error_resume(struct pci_dev *pdev)
2191{
2192 pci_cleanup_aer_uncorrect_error_status(pdev);
2193}
2194
2195static const struct pci_error_handlers nvme_err_handler = {
2196 .error_detected = nvme_error_detected,
2197 .slot_reset = nvme_slot_reset,
2198 .resume = nvme_error_resume,
2199 .reset_notify = nvme_reset_notify,
2200};
2201
2202/* Move to pci_ids.h later */
2203#define PCI_CLASS_STORAGE_EXPRESS 0x010802
2204
2205static const struct pci_device_id nvme_id_table[] = {
2206 { PCI_VDEVICE(INTEL, 0x0953),
2207 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
2208 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2209 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2210 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2211 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2212 { 0, }
2213};
2214MODULE_DEVICE_TABLE(pci, nvme_id_table);
2215
2216static struct pci_driver nvme_driver = {
2217 .name = "nvme",
2218 .id_table = nvme_id_table,
2219 .probe = nvme_probe,
2220 .remove = nvme_remove,
2221 .shutdown = nvme_shutdown,
2222 .driver = {
2223 .pm = &nvme_dev_pm_ops,
2224 },
2225 .err_handler = &nvme_err_handler,
2226};
2227
2228static int __init nvme_init(void)
2229{
2230 int result;
2231
2232 init_waitqueue_head(&nvme_kthread_wait);
2233
2234 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2235 if (!nvme_workq)
2236 return -ENOMEM;
2237
2238 result = nvme_core_init();
2239 if (result < 0)
2240 goto kill_workq;
2241
2242 result = pci_register_driver(&nvme_driver);
2243 if (result)
2244 goto core_exit;
2245 return 0;
2246
2247 core_exit:
2248 nvme_core_exit();
2249 kill_workq:
2250 destroy_workqueue(nvme_workq);
2251 return result;
2252}
2253
2254static void __exit nvme_exit(void)
2255{
2256 pci_unregister_driver(&nvme_driver);
2257 nvme_core_exit();
2258 destroy_workqueue(nvme_workq);
2259 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2260 _nvme_check_size();
2261}
2262
2263MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2264MODULE_LICENSE("GPL");
2265MODULE_VERSION("1.0");
2266module_init(nvme_init);
2267module_exit(nvme_exit);