dm: enhance internal suspend and resume interface
[linux-2.6-block.git] / drivers / md / dm-thin.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-thin-metadata.h"
8#include "dm-bio-prison.h"
9#include "dm.h"
10
11#include <linux/device-mapper.h>
12#include <linux/dm-io.h>
13#include <linux/dm-kcopyd.h>
14#include <linux/log2.h>
15#include <linux/list.h>
16#include <linux/rculist.h>
17#include <linux/init.h>
18#include <linux/module.h>
19#include <linux/slab.h>
20#include <linux/sort.h>
21#include <linux/rbtree.h>
22
23#define DM_MSG_PREFIX "thin"
24
25/*
26 * Tunable constants
27 */
28#define ENDIO_HOOK_POOL_SIZE 1024
29#define MAPPING_POOL_SIZE 1024
30#define COMMIT_PERIOD HZ
31#define NO_SPACE_TIMEOUT_SECS 60
32
33static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
34
35DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
36 "A percentage of time allocated for copy on write");
37
38/*
39 * The block size of the device holding pool data must be
40 * between 64KB and 1GB.
41 */
42#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
43#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
44
45/*
46 * Device id is restricted to 24 bits.
47 */
48#define MAX_DEV_ID ((1 << 24) - 1)
49
50/*
51 * How do we handle breaking sharing of data blocks?
52 * =================================================
53 *
54 * We use a standard copy-on-write btree to store the mappings for the
55 * devices (note I'm talking about copy-on-write of the metadata here, not
56 * the data). When you take an internal snapshot you clone the root node
57 * of the origin btree. After this there is no concept of an origin or a
58 * snapshot. They are just two device trees that happen to point to the
59 * same data blocks.
60 *
61 * When we get a write in we decide if it's to a shared data block using
62 * some timestamp magic. If it is, we have to break sharing.
63 *
64 * Let's say we write to a shared block in what was the origin. The
65 * steps are:
66 *
67 * i) plug io further to this physical block. (see bio_prison code).
68 *
69 * ii) quiesce any read io to that shared data block. Obviously
70 * including all devices that share this block. (see dm_deferred_set code)
71 *
72 * iii) copy the data block to a newly allocate block. This step can be
73 * missed out if the io covers the block. (schedule_copy).
74 *
75 * iv) insert the new mapping into the origin's btree
76 * (process_prepared_mapping). This act of inserting breaks some
77 * sharing of btree nodes between the two devices. Breaking sharing only
78 * effects the btree of that specific device. Btrees for the other
79 * devices that share the block never change. The btree for the origin
80 * device as it was after the last commit is untouched, ie. we're using
81 * persistent data structures in the functional programming sense.
82 *
83 * v) unplug io to this physical block, including the io that triggered
84 * the breaking of sharing.
85 *
86 * Steps (ii) and (iii) occur in parallel.
87 *
88 * The metadata _doesn't_ need to be committed before the io continues. We
89 * get away with this because the io is always written to a _new_ block.
90 * If there's a crash, then:
91 *
92 * - The origin mapping will point to the old origin block (the shared
93 * one). This will contain the data as it was before the io that triggered
94 * the breaking of sharing came in.
95 *
96 * - The snap mapping still points to the old block. As it would after
97 * the commit.
98 *
99 * The downside of this scheme is the timestamp magic isn't perfect, and
100 * will continue to think that data block in the snapshot device is shared
101 * even after the write to the origin has broken sharing. I suspect data
102 * blocks will typically be shared by many different devices, so we're
103 * breaking sharing n + 1 times, rather than n, where n is the number of
104 * devices that reference this data block. At the moment I think the
105 * benefits far, far outweigh the disadvantages.
106 */
107
108/*----------------------------------------------------------------*/
109
110/*
111 * Key building.
112 */
113static void build_data_key(struct dm_thin_device *td,
114 dm_block_t b, struct dm_cell_key *key)
115{
116 key->virtual = 0;
117 key->dev = dm_thin_dev_id(td);
118 key->block_begin = b;
119 key->block_end = b + 1ULL;
120}
121
122static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
123 struct dm_cell_key *key)
124{
125 key->virtual = 1;
126 key->dev = dm_thin_dev_id(td);
127 key->block_begin = b;
128 key->block_end = b + 1ULL;
129}
130
131/*----------------------------------------------------------------*/
132
133#define THROTTLE_THRESHOLD (1 * HZ)
134
135struct throttle {
136 struct rw_semaphore lock;
137 unsigned long threshold;
138 bool throttle_applied;
139};
140
141static void throttle_init(struct throttle *t)
142{
143 init_rwsem(&t->lock);
144 t->throttle_applied = false;
145}
146
147static void throttle_work_start(struct throttle *t)
148{
149 t->threshold = jiffies + THROTTLE_THRESHOLD;
150}
151
152static void throttle_work_update(struct throttle *t)
153{
154 if (!t->throttle_applied && jiffies > t->threshold) {
155 down_write(&t->lock);
156 t->throttle_applied = true;
157 }
158}
159
160static void throttle_work_complete(struct throttle *t)
161{
162 if (t->throttle_applied) {
163 t->throttle_applied = false;
164 up_write(&t->lock);
165 }
166}
167
168static void throttle_lock(struct throttle *t)
169{
170 down_read(&t->lock);
171}
172
173static void throttle_unlock(struct throttle *t)
174{
175 up_read(&t->lock);
176}
177
178/*----------------------------------------------------------------*/
179
180/*
181 * A pool device ties together a metadata device and a data device. It
182 * also provides the interface for creating and destroying internal
183 * devices.
184 */
185struct dm_thin_new_mapping;
186
187/*
188 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
189 */
190enum pool_mode {
191 PM_WRITE, /* metadata may be changed */
192 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
193 PM_READ_ONLY, /* metadata may not be changed */
194 PM_FAIL, /* all I/O fails */
195};
196
197struct pool_features {
198 enum pool_mode mode;
199
200 bool zero_new_blocks:1;
201 bool discard_enabled:1;
202 bool discard_passdown:1;
203 bool error_if_no_space:1;
204};
205
206struct thin_c;
207typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
208typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
209typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
210
211#define CELL_SORT_ARRAY_SIZE 8192
212
213struct pool {
214 struct list_head list;
215 struct dm_target *ti; /* Only set if a pool target is bound */
216
217 struct mapped_device *pool_md;
218 struct block_device *md_dev;
219 struct dm_pool_metadata *pmd;
220
221 dm_block_t low_water_blocks;
222 uint32_t sectors_per_block;
223 int sectors_per_block_shift;
224
225 struct pool_features pf;
226 bool low_water_triggered:1; /* A dm event has been sent */
227 bool suspended:1;
228
229 struct dm_bio_prison *prison;
230 struct dm_kcopyd_client *copier;
231
232 struct workqueue_struct *wq;
233 struct throttle throttle;
234 struct work_struct worker;
235 struct delayed_work waker;
236 struct delayed_work no_space_timeout;
237
238 unsigned long last_commit_jiffies;
239 unsigned ref_count;
240
241 spinlock_t lock;
242 struct bio_list deferred_flush_bios;
243 struct list_head prepared_mappings;
244 struct list_head prepared_discards;
245 struct list_head active_thins;
246
247 struct dm_deferred_set *shared_read_ds;
248 struct dm_deferred_set *all_io_ds;
249
250 struct dm_thin_new_mapping *next_mapping;
251 mempool_t *mapping_pool;
252
253 process_bio_fn process_bio;
254 process_bio_fn process_discard;
255
256 process_cell_fn process_cell;
257 process_cell_fn process_discard_cell;
258
259 process_mapping_fn process_prepared_mapping;
260 process_mapping_fn process_prepared_discard;
261
262 struct dm_bio_prison_cell *cell_sort_array[CELL_SORT_ARRAY_SIZE];
263};
264
265static enum pool_mode get_pool_mode(struct pool *pool);
266static void metadata_operation_failed(struct pool *pool, const char *op, int r);
267
268/*
269 * Target context for a pool.
270 */
271struct pool_c {
272 struct dm_target *ti;
273 struct pool *pool;
274 struct dm_dev *data_dev;
275 struct dm_dev *metadata_dev;
276 struct dm_target_callbacks callbacks;
277
278 dm_block_t low_water_blocks;
279 struct pool_features requested_pf; /* Features requested during table load */
280 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
281};
282
283/*
284 * Target context for a thin.
285 */
286struct thin_c {
287 struct list_head list;
288 struct dm_dev *pool_dev;
289 struct dm_dev *origin_dev;
290 sector_t origin_size;
291 dm_thin_id dev_id;
292
293 struct pool *pool;
294 struct dm_thin_device *td;
295 bool requeue_mode:1;
296 spinlock_t lock;
297 struct list_head deferred_cells;
298 struct bio_list deferred_bio_list;
299 struct bio_list retry_on_resume_list;
300 struct rb_root sort_bio_list; /* sorted list of deferred bios */
301
302 /*
303 * Ensures the thin is not destroyed until the worker has finished
304 * iterating the active_thins list.
305 */
306 atomic_t refcount;
307 struct completion can_destroy;
308};
309
310/*----------------------------------------------------------------*/
311
312/*
313 * wake_worker() is used when new work is queued and when pool_resume is
314 * ready to continue deferred IO processing.
315 */
316static void wake_worker(struct pool *pool)
317{
318 queue_work(pool->wq, &pool->worker);
319}
320
321/*----------------------------------------------------------------*/
322
323static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
324 struct dm_bio_prison_cell **cell_result)
325{
326 int r;
327 struct dm_bio_prison_cell *cell_prealloc;
328
329 /*
330 * Allocate a cell from the prison's mempool.
331 * This might block but it can't fail.
332 */
333 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
334
335 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
336 if (r)
337 /*
338 * We reused an old cell; we can get rid of
339 * the new one.
340 */
341 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
342
343 return r;
344}
345
346static void cell_release(struct pool *pool,
347 struct dm_bio_prison_cell *cell,
348 struct bio_list *bios)
349{
350 dm_cell_release(pool->prison, cell, bios);
351 dm_bio_prison_free_cell(pool->prison, cell);
352}
353
354static void cell_visit_release(struct pool *pool,
355 void (*fn)(void *, struct dm_bio_prison_cell *),
356 void *context,
357 struct dm_bio_prison_cell *cell)
358{
359 dm_cell_visit_release(pool->prison, fn, context, cell);
360 dm_bio_prison_free_cell(pool->prison, cell);
361}
362
363static void cell_release_no_holder(struct pool *pool,
364 struct dm_bio_prison_cell *cell,
365 struct bio_list *bios)
366{
367 dm_cell_release_no_holder(pool->prison, cell, bios);
368 dm_bio_prison_free_cell(pool->prison, cell);
369}
370
371static void cell_error_with_code(struct pool *pool,
372 struct dm_bio_prison_cell *cell, int error_code)
373{
374 dm_cell_error(pool->prison, cell, error_code);
375 dm_bio_prison_free_cell(pool->prison, cell);
376}
377
378static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
379{
380 cell_error_with_code(pool, cell, -EIO);
381}
382
383static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
384{
385 cell_error_with_code(pool, cell, 0);
386}
387
388static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
389{
390 cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
391}
392
393/*----------------------------------------------------------------*/
394
395/*
396 * A global list of pools that uses a struct mapped_device as a key.
397 */
398static struct dm_thin_pool_table {
399 struct mutex mutex;
400 struct list_head pools;
401} dm_thin_pool_table;
402
403static void pool_table_init(void)
404{
405 mutex_init(&dm_thin_pool_table.mutex);
406 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
407}
408
409static void __pool_table_insert(struct pool *pool)
410{
411 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
412 list_add(&pool->list, &dm_thin_pool_table.pools);
413}
414
415static void __pool_table_remove(struct pool *pool)
416{
417 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
418 list_del(&pool->list);
419}
420
421static struct pool *__pool_table_lookup(struct mapped_device *md)
422{
423 struct pool *pool = NULL, *tmp;
424
425 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
426
427 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
428 if (tmp->pool_md == md) {
429 pool = tmp;
430 break;
431 }
432 }
433
434 return pool;
435}
436
437static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
438{
439 struct pool *pool = NULL, *tmp;
440
441 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
442
443 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
444 if (tmp->md_dev == md_dev) {
445 pool = tmp;
446 break;
447 }
448 }
449
450 return pool;
451}
452
453/*----------------------------------------------------------------*/
454
455struct dm_thin_endio_hook {
456 struct thin_c *tc;
457 struct dm_deferred_entry *shared_read_entry;
458 struct dm_deferred_entry *all_io_entry;
459 struct dm_thin_new_mapping *overwrite_mapping;
460 struct rb_node rb_node;
461};
462
463static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
464{
465 bio_list_merge(bios, master);
466 bio_list_init(master);
467}
468
469static void error_bio_list(struct bio_list *bios, int error)
470{
471 struct bio *bio;
472
473 while ((bio = bio_list_pop(bios)))
474 bio_endio(bio, error);
475}
476
477static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
478{
479 struct bio_list bios;
480 unsigned long flags;
481
482 bio_list_init(&bios);
483
484 spin_lock_irqsave(&tc->lock, flags);
485 __merge_bio_list(&bios, master);
486 spin_unlock_irqrestore(&tc->lock, flags);
487
488 error_bio_list(&bios, error);
489}
490
491static void requeue_deferred_cells(struct thin_c *tc)
492{
493 struct pool *pool = tc->pool;
494 unsigned long flags;
495 struct list_head cells;
496 struct dm_bio_prison_cell *cell, *tmp;
497
498 INIT_LIST_HEAD(&cells);
499
500 spin_lock_irqsave(&tc->lock, flags);
501 list_splice_init(&tc->deferred_cells, &cells);
502 spin_unlock_irqrestore(&tc->lock, flags);
503
504 list_for_each_entry_safe(cell, tmp, &cells, user_list)
505 cell_requeue(pool, cell);
506}
507
508static void requeue_io(struct thin_c *tc)
509{
510 struct bio_list bios;
511 unsigned long flags;
512
513 bio_list_init(&bios);
514
515 spin_lock_irqsave(&tc->lock, flags);
516 __merge_bio_list(&bios, &tc->deferred_bio_list);
517 __merge_bio_list(&bios, &tc->retry_on_resume_list);
518 spin_unlock_irqrestore(&tc->lock, flags);
519
520 error_bio_list(&bios, DM_ENDIO_REQUEUE);
521 requeue_deferred_cells(tc);
522}
523
524static void error_retry_list(struct pool *pool)
525{
526 struct thin_c *tc;
527
528 rcu_read_lock();
529 list_for_each_entry_rcu(tc, &pool->active_thins, list)
530 error_thin_bio_list(tc, &tc->retry_on_resume_list, -EIO);
531 rcu_read_unlock();
532}
533
534/*
535 * This section of code contains the logic for processing a thin device's IO.
536 * Much of the code depends on pool object resources (lists, workqueues, etc)
537 * but most is exclusively called from the thin target rather than the thin-pool
538 * target.
539 */
540
541static bool block_size_is_power_of_two(struct pool *pool)
542{
543 return pool->sectors_per_block_shift >= 0;
544}
545
546static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
547{
548 struct pool *pool = tc->pool;
549 sector_t block_nr = bio->bi_iter.bi_sector;
550
551 if (block_size_is_power_of_two(pool))
552 block_nr >>= pool->sectors_per_block_shift;
553 else
554 (void) sector_div(block_nr, pool->sectors_per_block);
555
556 return block_nr;
557}
558
559static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
560{
561 struct pool *pool = tc->pool;
562 sector_t bi_sector = bio->bi_iter.bi_sector;
563
564 bio->bi_bdev = tc->pool_dev->bdev;
565 if (block_size_is_power_of_two(pool))
566 bio->bi_iter.bi_sector =
567 (block << pool->sectors_per_block_shift) |
568 (bi_sector & (pool->sectors_per_block - 1));
569 else
570 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
571 sector_div(bi_sector, pool->sectors_per_block);
572}
573
574static void remap_to_origin(struct thin_c *tc, struct bio *bio)
575{
576 bio->bi_bdev = tc->origin_dev->bdev;
577}
578
579static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
580{
581 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
582 dm_thin_changed_this_transaction(tc->td);
583}
584
585static void inc_all_io_entry(struct pool *pool, struct bio *bio)
586{
587 struct dm_thin_endio_hook *h;
588
589 if (bio->bi_rw & REQ_DISCARD)
590 return;
591
592 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
593 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
594}
595
596static void issue(struct thin_c *tc, struct bio *bio)
597{
598 struct pool *pool = tc->pool;
599 unsigned long flags;
600
601 if (!bio_triggers_commit(tc, bio)) {
602 generic_make_request(bio);
603 return;
604 }
605
606 /*
607 * Complete bio with an error if earlier I/O caused changes to
608 * the metadata that can't be committed e.g, due to I/O errors
609 * on the metadata device.
610 */
611 if (dm_thin_aborted_changes(tc->td)) {
612 bio_io_error(bio);
613 return;
614 }
615
616 /*
617 * Batch together any bios that trigger commits and then issue a
618 * single commit for them in process_deferred_bios().
619 */
620 spin_lock_irqsave(&pool->lock, flags);
621 bio_list_add(&pool->deferred_flush_bios, bio);
622 spin_unlock_irqrestore(&pool->lock, flags);
623}
624
625static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
626{
627 remap_to_origin(tc, bio);
628 issue(tc, bio);
629}
630
631static void remap_and_issue(struct thin_c *tc, struct bio *bio,
632 dm_block_t block)
633{
634 remap(tc, bio, block);
635 issue(tc, bio);
636}
637
638/*----------------------------------------------------------------*/
639
640/*
641 * Bio endio functions.
642 */
643struct dm_thin_new_mapping {
644 struct list_head list;
645
646 bool pass_discard:1;
647 bool definitely_not_shared:1;
648
649 /*
650 * Track quiescing, copying and zeroing preparation actions. When this
651 * counter hits zero the block is prepared and can be inserted into the
652 * btree.
653 */
654 atomic_t prepare_actions;
655
656 int err;
657 struct thin_c *tc;
658 dm_block_t virt_block;
659 dm_block_t data_block;
660 struct dm_bio_prison_cell *cell, *cell2;
661
662 /*
663 * If the bio covers the whole area of a block then we can avoid
664 * zeroing or copying. Instead this bio is hooked. The bio will
665 * still be in the cell, so care has to be taken to avoid issuing
666 * the bio twice.
667 */
668 struct bio *bio;
669 bio_end_io_t *saved_bi_end_io;
670};
671
672static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
673{
674 struct pool *pool = m->tc->pool;
675
676 if (atomic_dec_and_test(&m->prepare_actions)) {
677 list_add_tail(&m->list, &pool->prepared_mappings);
678 wake_worker(pool);
679 }
680}
681
682static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
683{
684 unsigned long flags;
685 struct pool *pool = m->tc->pool;
686
687 spin_lock_irqsave(&pool->lock, flags);
688 __complete_mapping_preparation(m);
689 spin_unlock_irqrestore(&pool->lock, flags);
690}
691
692static void copy_complete(int read_err, unsigned long write_err, void *context)
693{
694 struct dm_thin_new_mapping *m = context;
695
696 m->err = read_err || write_err ? -EIO : 0;
697 complete_mapping_preparation(m);
698}
699
700static void overwrite_endio(struct bio *bio, int err)
701{
702 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
703 struct dm_thin_new_mapping *m = h->overwrite_mapping;
704
705 m->err = err;
706 complete_mapping_preparation(m);
707}
708
709/*----------------------------------------------------------------*/
710
711/*
712 * Workqueue.
713 */
714
715/*
716 * Prepared mapping jobs.
717 */
718
719/*
720 * This sends the bios in the cell, except the original holder, back
721 * to the deferred_bios list.
722 */
723static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
724{
725 struct pool *pool = tc->pool;
726 unsigned long flags;
727
728 spin_lock_irqsave(&tc->lock, flags);
729 cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
730 spin_unlock_irqrestore(&tc->lock, flags);
731
732 wake_worker(pool);
733}
734
735static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
736
737struct remap_info {
738 struct thin_c *tc;
739 struct bio_list defer_bios;
740 struct bio_list issue_bios;
741};
742
743static void __inc_remap_and_issue_cell(void *context,
744 struct dm_bio_prison_cell *cell)
745{
746 struct remap_info *info = context;
747 struct bio *bio;
748
749 while ((bio = bio_list_pop(&cell->bios))) {
750 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
751 bio_list_add(&info->defer_bios, bio);
752 else {
753 inc_all_io_entry(info->tc->pool, bio);
754
755 /*
756 * We can't issue the bios with the bio prison lock
757 * held, so we add them to a list to issue on
758 * return from this function.
759 */
760 bio_list_add(&info->issue_bios, bio);
761 }
762 }
763}
764
765static void inc_remap_and_issue_cell(struct thin_c *tc,
766 struct dm_bio_prison_cell *cell,
767 dm_block_t block)
768{
769 struct bio *bio;
770 struct remap_info info;
771
772 info.tc = tc;
773 bio_list_init(&info.defer_bios);
774 bio_list_init(&info.issue_bios);
775
776 /*
777 * We have to be careful to inc any bios we're about to issue
778 * before the cell is released, and avoid a race with new bios
779 * being added to the cell.
780 */
781 cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
782 &info, cell);
783
784 while ((bio = bio_list_pop(&info.defer_bios)))
785 thin_defer_bio(tc, bio);
786
787 while ((bio = bio_list_pop(&info.issue_bios)))
788 remap_and_issue(info.tc, bio, block);
789}
790
791static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
792{
793 if (m->bio) {
794 m->bio->bi_end_io = m->saved_bi_end_io;
795 atomic_inc(&m->bio->bi_remaining);
796 }
797 cell_error(m->tc->pool, m->cell);
798 list_del(&m->list);
799 mempool_free(m, m->tc->pool->mapping_pool);
800}
801
802static void process_prepared_mapping(struct dm_thin_new_mapping *m)
803{
804 struct thin_c *tc = m->tc;
805 struct pool *pool = tc->pool;
806 struct bio *bio;
807 int r;
808
809 bio = m->bio;
810 if (bio) {
811 bio->bi_end_io = m->saved_bi_end_io;
812 atomic_inc(&bio->bi_remaining);
813 }
814
815 if (m->err) {
816 cell_error(pool, m->cell);
817 goto out;
818 }
819
820 /*
821 * Commit the prepared block into the mapping btree.
822 * Any I/O for this block arriving after this point will get
823 * remapped to it directly.
824 */
825 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
826 if (r) {
827 metadata_operation_failed(pool, "dm_thin_insert_block", r);
828 cell_error(pool, m->cell);
829 goto out;
830 }
831
832 /*
833 * Release any bios held while the block was being provisioned.
834 * If we are processing a write bio that completely covers the block,
835 * we already processed it so can ignore it now when processing
836 * the bios in the cell.
837 */
838 if (bio) {
839 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
840 bio_endio(bio, 0);
841 } else {
842 inc_all_io_entry(tc->pool, m->cell->holder);
843 remap_and_issue(tc, m->cell->holder, m->data_block);
844 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
845 }
846
847out:
848 list_del(&m->list);
849 mempool_free(m, pool->mapping_pool);
850}
851
852static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
853{
854 struct thin_c *tc = m->tc;
855
856 bio_io_error(m->bio);
857 cell_defer_no_holder(tc, m->cell);
858 cell_defer_no_holder(tc, m->cell2);
859 mempool_free(m, tc->pool->mapping_pool);
860}
861
862static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
863{
864 struct thin_c *tc = m->tc;
865
866 inc_all_io_entry(tc->pool, m->bio);
867 cell_defer_no_holder(tc, m->cell);
868 cell_defer_no_holder(tc, m->cell2);
869
870 if (m->pass_discard)
871 if (m->definitely_not_shared)
872 remap_and_issue(tc, m->bio, m->data_block);
873 else {
874 bool used = false;
875 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
876 bio_endio(m->bio, 0);
877 else
878 remap_and_issue(tc, m->bio, m->data_block);
879 }
880 else
881 bio_endio(m->bio, 0);
882
883 mempool_free(m, tc->pool->mapping_pool);
884}
885
886static void process_prepared_discard(struct dm_thin_new_mapping *m)
887{
888 int r;
889 struct thin_c *tc = m->tc;
890
891 r = dm_thin_remove_block(tc->td, m->virt_block);
892 if (r)
893 DMERR_LIMIT("dm_thin_remove_block() failed");
894
895 process_prepared_discard_passdown(m);
896}
897
898static void process_prepared(struct pool *pool, struct list_head *head,
899 process_mapping_fn *fn)
900{
901 unsigned long flags;
902 struct list_head maps;
903 struct dm_thin_new_mapping *m, *tmp;
904
905 INIT_LIST_HEAD(&maps);
906 spin_lock_irqsave(&pool->lock, flags);
907 list_splice_init(head, &maps);
908 spin_unlock_irqrestore(&pool->lock, flags);
909
910 list_for_each_entry_safe(m, tmp, &maps, list)
911 (*fn)(m);
912}
913
914/*
915 * Deferred bio jobs.
916 */
917static int io_overlaps_block(struct pool *pool, struct bio *bio)
918{
919 return bio->bi_iter.bi_size ==
920 (pool->sectors_per_block << SECTOR_SHIFT);
921}
922
923static int io_overwrites_block(struct pool *pool, struct bio *bio)
924{
925 return (bio_data_dir(bio) == WRITE) &&
926 io_overlaps_block(pool, bio);
927}
928
929static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
930 bio_end_io_t *fn)
931{
932 *save = bio->bi_end_io;
933 bio->bi_end_io = fn;
934}
935
936static int ensure_next_mapping(struct pool *pool)
937{
938 if (pool->next_mapping)
939 return 0;
940
941 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
942
943 return pool->next_mapping ? 0 : -ENOMEM;
944}
945
946static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
947{
948 struct dm_thin_new_mapping *m = pool->next_mapping;
949
950 BUG_ON(!pool->next_mapping);
951
952 memset(m, 0, sizeof(struct dm_thin_new_mapping));
953 INIT_LIST_HEAD(&m->list);
954 m->bio = NULL;
955
956 pool->next_mapping = NULL;
957
958 return m;
959}
960
961static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
962 sector_t begin, sector_t end)
963{
964 int r;
965 struct dm_io_region to;
966
967 to.bdev = tc->pool_dev->bdev;
968 to.sector = begin;
969 to.count = end - begin;
970
971 r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
972 if (r < 0) {
973 DMERR_LIMIT("dm_kcopyd_zero() failed");
974 copy_complete(1, 1, m);
975 }
976}
977
978static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
979 dm_block_t data_block,
980 struct dm_thin_new_mapping *m)
981{
982 struct pool *pool = tc->pool;
983 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
984
985 h->overwrite_mapping = m;
986 m->bio = bio;
987 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
988 inc_all_io_entry(pool, bio);
989 remap_and_issue(tc, bio, data_block);
990}
991
992/*
993 * A partial copy also needs to zero the uncopied region.
994 */
995static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
996 struct dm_dev *origin, dm_block_t data_origin,
997 dm_block_t data_dest,
998 struct dm_bio_prison_cell *cell, struct bio *bio,
999 sector_t len)
1000{
1001 int r;
1002 struct pool *pool = tc->pool;
1003 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1004
1005 m->tc = tc;
1006 m->virt_block = virt_block;
1007 m->data_block = data_dest;
1008 m->cell = cell;
1009
1010 /*
1011 * quiesce action + copy action + an extra reference held for the
1012 * duration of this function (we may need to inc later for a
1013 * partial zero).
1014 */
1015 atomic_set(&m->prepare_actions, 3);
1016
1017 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1018 complete_mapping_preparation(m); /* already quiesced */
1019
1020 /*
1021 * IO to pool_dev remaps to the pool target's data_dev.
1022 *
1023 * If the whole block of data is being overwritten, we can issue the
1024 * bio immediately. Otherwise we use kcopyd to clone the data first.
1025 */
1026 if (io_overwrites_block(pool, bio))
1027 remap_and_issue_overwrite(tc, bio, data_dest, m);
1028 else {
1029 struct dm_io_region from, to;
1030
1031 from.bdev = origin->bdev;
1032 from.sector = data_origin * pool->sectors_per_block;
1033 from.count = len;
1034
1035 to.bdev = tc->pool_dev->bdev;
1036 to.sector = data_dest * pool->sectors_per_block;
1037 to.count = len;
1038
1039 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1040 0, copy_complete, m);
1041 if (r < 0) {
1042 DMERR_LIMIT("dm_kcopyd_copy() failed");
1043 copy_complete(1, 1, m);
1044
1045 /*
1046 * We allow the zero to be issued, to simplify the
1047 * error path. Otherwise we'd need to start
1048 * worrying about decrementing the prepare_actions
1049 * counter.
1050 */
1051 }
1052
1053 /*
1054 * Do we need to zero a tail region?
1055 */
1056 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1057 atomic_inc(&m->prepare_actions);
1058 ll_zero(tc, m,
1059 data_dest * pool->sectors_per_block + len,
1060 (data_dest + 1) * pool->sectors_per_block);
1061 }
1062 }
1063
1064 complete_mapping_preparation(m); /* drop our ref */
1065}
1066
1067static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1068 dm_block_t data_origin, dm_block_t data_dest,
1069 struct dm_bio_prison_cell *cell, struct bio *bio)
1070{
1071 schedule_copy(tc, virt_block, tc->pool_dev,
1072 data_origin, data_dest, cell, bio,
1073 tc->pool->sectors_per_block);
1074}
1075
1076static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1077 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1078 struct bio *bio)
1079{
1080 struct pool *pool = tc->pool;
1081 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1082
1083 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1084 m->tc = tc;
1085 m->virt_block = virt_block;
1086 m->data_block = data_block;
1087 m->cell = cell;
1088
1089 /*
1090 * If the whole block of data is being overwritten or we are not
1091 * zeroing pre-existing data, we can issue the bio immediately.
1092 * Otherwise we use kcopyd to zero the data first.
1093 */
1094 if (!pool->pf.zero_new_blocks)
1095 process_prepared_mapping(m);
1096
1097 else if (io_overwrites_block(pool, bio))
1098 remap_and_issue_overwrite(tc, bio, data_block, m);
1099
1100 else
1101 ll_zero(tc, m,
1102 data_block * pool->sectors_per_block,
1103 (data_block + 1) * pool->sectors_per_block);
1104}
1105
1106static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1107 dm_block_t data_dest,
1108 struct dm_bio_prison_cell *cell, struct bio *bio)
1109{
1110 struct pool *pool = tc->pool;
1111 sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1112 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1113
1114 if (virt_block_end <= tc->origin_size)
1115 schedule_copy(tc, virt_block, tc->origin_dev,
1116 virt_block, data_dest, cell, bio,
1117 pool->sectors_per_block);
1118
1119 else if (virt_block_begin < tc->origin_size)
1120 schedule_copy(tc, virt_block, tc->origin_dev,
1121 virt_block, data_dest, cell, bio,
1122 tc->origin_size - virt_block_begin);
1123
1124 else
1125 schedule_zero(tc, virt_block, data_dest, cell, bio);
1126}
1127
1128/*
1129 * A non-zero return indicates read_only or fail_io mode.
1130 * Many callers don't care about the return value.
1131 */
1132static int commit(struct pool *pool)
1133{
1134 int r;
1135
1136 if (get_pool_mode(pool) >= PM_READ_ONLY)
1137 return -EINVAL;
1138
1139 r = dm_pool_commit_metadata(pool->pmd);
1140 if (r)
1141 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1142
1143 return r;
1144}
1145
1146static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1147{
1148 unsigned long flags;
1149
1150 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1151 DMWARN("%s: reached low water mark for data device: sending event.",
1152 dm_device_name(pool->pool_md));
1153 spin_lock_irqsave(&pool->lock, flags);
1154 pool->low_water_triggered = true;
1155 spin_unlock_irqrestore(&pool->lock, flags);
1156 dm_table_event(pool->ti->table);
1157 }
1158}
1159
1160static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1161
1162static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1163{
1164 int r;
1165 dm_block_t free_blocks;
1166 struct pool *pool = tc->pool;
1167
1168 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1169 return -EINVAL;
1170
1171 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1172 if (r) {
1173 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1174 return r;
1175 }
1176
1177 check_low_water_mark(pool, free_blocks);
1178
1179 if (!free_blocks) {
1180 /*
1181 * Try to commit to see if that will free up some
1182 * more space.
1183 */
1184 r = commit(pool);
1185 if (r)
1186 return r;
1187
1188 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1189 if (r) {
1190 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1191 return r;
1192 }
1193
1194 if (!free_blocks) {
1195 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1196 return -ENOSPC;
1197 }
1198 }
1199
1200 r = dm_pool_alloc_data_block(pool->pmd, result);
1201 if (r) {
1202 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1203 return r;
1204 }
1205
1206 return 0;
1207}
1208
1209/*
1210 * If we have run out of space, queue bios until the device is
1211 * resumed, presumably after having been reloaded with more space.
1212 */
1213static void retry_on_resume(struct bio *bio)
1214{
1215 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1216 struct thin_c *tc = h->tc;
1217 unsigned long flags;
1218
1219 spin_lock_irqsave(&tc->lock, flags);
1220 bio_list_add(&tc->retry_on_resume_list, bio);
1221 spin_unlock_irqrestore(&tc->lock, flags);
1222}
1223
1224static int should_error_unserviceable_bio(struct pool *pool)
1225{
1226 enum pool_mode m = get_pool_mode(pool);
1227
1228 switch (m) {
1229 case PM_WRITE:
1230 /* Shouldn't get here */
1231 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1232 return -EIO;
1233
1234 case PM_OUT_OF_DATA_SPACE:
1235 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1236
1237 case PM_READ_ONLY:
1238 case PM_FAIL:
1239 return -EIO;
1240 default:
1241 /* Shouldn't get here */
1242 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1243 return -EIO;
1244 }
1245}
1246
1247static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1248{
1249 int error = should_error_unserviceable_bio(pool);
1250
1251 if (error)
1252 bio_endio(bio, error);
1253 else
1254 retry_on_resume(bio);
1255}
1256
1257static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1258{
1259 struct bio *bio;
1260 struct bio_list bios;
1261 int error;
1262
1263 error = should_error_unserviceable_bio(pool);
1264 if (error) {
1265 cell_error_with_code(pool, cell, error);
1266 return;
1267 }
1268
1269 bio_list_init(&bios);
1270 cell_release(pool, cell, &bios);
1271
1272 while ((bio = bio_list_pop(&bios)))
1273 retry_on_resume(bio);
1274}
1275
1276static void process_discard_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1277{
1278 int r;
1279 struct bio *bio = cell->holder;
1280 struct pool *pool = tc->pool;
1281 struct dm_bio_prison_cell *cell2;
1282 struct dm_cell_key key2;
1283 dm_block_t block = get_bio_block(tc, bio);
1284 struct dm_thin_lookup_result lookup_result;
1285 struct dm_thin_new_mapping *m;
1286
1287 if (tc->requeue_mode) {
1288 cell_requeue(pool, cell);
1289 return;
1290 }
1291
1292 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1293 switch (r) {
1294 case 0:
1295 /*
1296 * Check nobody is fiddling with this pool block. This can
1297 * happen if someone's in the process of breaking sharing
1298 * on this block.
1299 */
1300 build_data_key(tc->td, lookup_result.block, &key2);
1301 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1302 cell_defer_no_holder(tc, cell);
1303 break;
1304 }
1305
1306 if (io_overlaps_block(pool, bio)) {
1307 /*
1308 * IO may still be going to the destination block. We must
1309 * quiesce before we can do the removal.
1310 */
1311 m = get_next_mapping(pool);
1312 m->tc = tc;
1313 m->pass_discard = pool->pf.discard_passdown;
1314 m->definitely_not_shared = !lookup_result.shared;
1315 m->virt_block = block;
1316 m->data_block = lookup_result.block;
1317 m->cell = cell;
1318 m->cell2 = cell2;
1319 m->bio = bio;
1320
1321 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1322 pool->process_prepared_discard(m);
1323
1324 } else {
1325 inc_all_io_entry(pool, bio);
1326 cell_defer_no_holder(tc, cell);
1327 cell_defer_no_holder(tc, cell2);
1328
1329 /*
1330 * The DM core makes sure that the discard doesn't span
1331 * a block boundary. So we submit the discard of a
1332 * partial block appropriately.
1333 */
1334 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1335 remap_and_issue(tc, bio, lookup_result.block);
1336 else
1337 bio_endio(bio, 0);
1338 }
1339 break;
1340
1341 case -ENODATA:
1342 /*
1343 * It isn't provisioned, just forget it.
1344 */
1345 cell_defer_no_holder(tc, cell);
1346 bio_endio(bio, 0);
1347 break;
1348
1349 default:
1350 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1351 __func__, r);
1352 cell_defer_no_holder(tc, cell);
1353 bio_io_error(bio);
1354 break;
1355 }
1356}
1357
1358static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1359{
1360 struct dm_bio_prison_cell *cell;
1361 struct dm_cell_key key;
1362 dm_block_t block = get_bio_block(tc, bio);
1363
1364 build_virtual_key(tc->td, block, &key);
1365 if (bio_detain(tc->pool, &key, bio, &cell))
1366 return;
1367
1368 process_discard_cell(tc, cell);
1369}
1370
1371static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1372 struct dm_cell_key *key,
1373 struct dm_thin_lookup_result *lookup_result,
1374 struct dm_bio_prison_cell *cell)
1375{
1376 int r;
1377 dm_block_t data_block;
1378 struct pool *pool = tc->pool;
1379
1380 r = alloc_data_block(tc, &data_block);
1381 switch (r) {
1382 case 0:
1383 schedule_internal_copy(tc, block, lookup_result->block,
1384 data_block, cell, bio);
1385 break;
1386
1387 case -ENOSPC:
1388 retry_bios_on_resume(pool, cell);
1389 break;
1390
1391 default:
1392 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1393 __func__, r);
1394 cell_error(pool, cell);
1395 break;
1396 }
1397}
1398
1399static void __remap_and_issue_shared_cell(void *context,
1400 struct dm_bio_prison_cell *cell)
1401{
1402 struct remap_info *info = context;
1403 struct bio *bio;
1404
1405 while ((bio = bio_list_pop(&cell->bios))) {
1406 if ((bio_data_dir(bio) == WRITE) ||
1407 (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1408 bio_list_add(&info->defer_bios, bio);
1409 else {
1410 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1411
1412 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1413 inc_all_io_entry(info->tc->pool, bio);
1414 bio_list_add(&info->issue_bios, bio);
1415 }
1416 }
1417}
1418
1419static void remap_and_issue_shared_cell(struct thin_c *tc,
1420 struct dm_bio_prison_cell *cell,
1421 dm_block_t block)
1422{
1423 struct bio *bio;
1424 struct remap_info info;
1425
1426 info.tc = tc;
1427 bio_list_init(&info.defer_bios);
1428 bio_list_init(&info.issue_bios);
1429
1430 cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1431 &info, cell);
1432
1433 while ((bio = bio_list_pop(&info.defer_bios)))
1434 thin_defer_bio(tc, bio);
1435
1436 while ((bio = bio_list_pop(&info.issue_bios)))
1437 remap_and_issue(tc, bio, block);
1438}
1439
1440static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1441 dm_block_t block,
1442 struct dm_thin_lookup_result *lookup_result,
1443 struct dm_bio_prison_cell *virt_cell)
1444{
1445 struct dm_bio_prison_cell *data_cell;
1446 struct pool *pool = tc->pool;
1447 struct dm_cell_key key;
1448
1449 /*
1450 * If cell is already occupied, then sharing is already in the process
1451 * of being broken so we have nothing further to do here.
1452 */
1453 build_data_key(tc->td, lookup_result->block, &key);
1454 if (bio_detain(pool, &key, bio, &data_cell)) {
1455 cell_defer_no_holder(tc, virt_cell);
1456 return;
1457 }
1458
1459 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1460 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1461 cell_defer_no_holder(tc, virt_cell);
1462 } else {
1463 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1464
1465 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1466 inc_all_io_entry(pool, bio);
1467 remap_and_issue(tc, bio, lookup_result->block);
1468
1469 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1470 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1471 }
1472}
1473
1474static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1475 struct dm_bio_prison_cell *cell)
1476{
1477 int r;
1478 dm_block_t data_block;
1479 struct pool *pool = tc->pool;
1480
1481 /*
1482 * Remap empty bios (flushes) immediately, without provisioning.
1483 */
1484 if (!bio->bi_iter.bi_size) {
1485 inc_all_io_entry(pool, bio);
1486 cell_defer_no_holder(tc, cell);
1487
1488 remap_and_issue(tc, bio, 0);
1489 return;
1490 }
1491
1492 /*
1493 * Fill read bios with zeroes and complete them immediately.
1494 */
1495 if (bio_data_dir(bio) == READ) {
1496 zero_fill_bio(bio);
1497 cell_defer_no_holder(tc, cell);
1498 bio_endio(bio, 0);
1499 return;
1500 }
1501
1502 r = alloc_data_block(tc, &data_block);
1503 switch (r) {
1504 case 0:
1505 if (tc->origin_dev)
1506 schedule_external_copy(tc, block, data_block, cell, bio);
1507 else
1508 schedule_zero(tc, block, data_block, cell, bio);
1509 break;
1510
1511 case -ENOSPC:
1512 retry_bios_on_resume(pool, cell);
1513 break;
1514
1515 default:
1516 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1517 __func__, r);
1518 cell_error(pool, cell);
1519 break;
1520 }
1521}
1522
1523static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1524{
1525 int r;
1526 struct pool *pool = tc->pool;
1527 struct bio *bio = cell->holder;
1528 dm_block_t block = get_bio_block(tc, bio);
1529 struct dm_thin_lookup_result lookup_result;
1530
1531 if (tc->requeue_mode) {
1532 cell_requeue(pool, cell);
1533 return;
1534 }
1535
1536 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1537 switch (r) {
1538 case 0:
1539 if (lookup_result.shared)
1540 process_shared_bio(tc, bio, block, &lookup_result, cell);
1541 else {
1542 inc_all_io_entry(pool, bio);
1543 remap_and_issue(tc, bio, lookup_result.block);
1544 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1545 }
1546 break;
1547
1548 case -ENODATA:
1549 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1550 inc_all_io_entry(pool, bio);
1551 cell_defer_no_holder(tc, cell);
1552
1553 if (bio_end_sector(bio) <= tc->origin_size)
1554 remap_to_origin_and_issue(tc, bio);
1555
1556 else if (bio->bi_iter.bi_sector < tc->origin_size) {
1557 zero_fill_bio(bio);
1558 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1559 remap_to_origin_and_issue(tc, bio);
1560
1561 } else {
1562 zero_fill_bio(bio);
1563 bio_endio(bio, 0);
1564 }
1565 } else
1566 provision_block(tc, bio, block, cell);
1567 break;
1568
1569 default:
1570 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1571 __func__, r);
1572 cell_defer_no_holder(tc, cell);
1573 bio_io_error(bio);
1574 break;
1575 }
1576}
1577
1578static void process_bio(struct thin_c *tc, struct bio *bio)
1579{
1580 struct pool *pool = tc->pool;
1581 dm_block_t block = get_bio_block(tc, bio);
1582 struct dm_bio_prison_cell *cell;
1583 struct dm_cell_key key;
1584
1585 /*
1586 * If cell is already occupied, then the block is already
1587 * being provisioned so we have nothing further to do here.
1588 */
1589 build_virtual_key(tc->td, block, &key);
1590 if (bio_detain(pool, &key, bio, &cell))
1591 return;
1592
1593 process_cell(tc, cell);
1594}
1595
1596static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1597 struct dm_bio_prison_cell *cell)
1598{
1599 int r;
1600 int rw = bio_data_dir(bio);
1601 dm_block_t block = get_bio_block(tc, bio);
1602 struct dm_thin_lookup_result lookup_result;
1603
1604 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1605 switch (r) {
1606 case 0:
1607 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1608 handle_unserviceable_bio(tc->pool, bio);
1609 if (cell)
1610 cell_defer_no_holder(tc, cell);
1611 } else {
1612 inc_all_io_entry(tc->pool, bio);
1613 remap_and_issue(tc, bio, lookup_result.block);
1614 if (cell)
1615 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1616 }
1617 break;
1618
1619 case -ENODATA:
1620 if (cell)
1621 cell_defer_no_holder(tc, cell);
1622 if (rw != READ) {
1623 handle_unserviceable_bio(tc->pool, bio);
1624 break;
1625 }
1626
1627 if (tc->origin_dev) {
1628 inc_all_io_entry(tc->pool, bio);
1629 remap_to_origin_and_issue(tc, bio);
1630 break;
1631 }
1632
1633 zero_fill_bio(bio);
1634 bio_endio(bio, 0);
1635 break;
1636
1637 default:
1638 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1639 __func__, r);
1640 if (cell)
1641 cell_defer_no_holder(tc, cell);
1642 bio_io_error(bio);
1643 break;
1644 }
1645}
1646
1647static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1648{
1649 __process_bio_read_only(tc, bio, NULL);
1650}
1651
1652static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1653{
1654 __process_bio_read_only(tc, cell->holder, cell);
1655}
1656
1657static void process_bio_success(struct thin_c *tc, struct bio *bio)
1658{
1659 bio_endio(bio, 0);
1660}
1661
1662static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1663{
1664 bio_io_error(bio);
1665}
1666
1667static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1668{
1669 cell_success(tc->pool, cell);
1670}
1671
1672static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1673{
1674 cell_error(tc->pool, cell);
1675}
1676
1677/*
1678 * FIXME: should we also commit due to size of transaction, measured in
1679 * metadata blocks?
1680 */
1681static int need_commit_due_to_time(struct pool *pool)
1682{
1683 return jiffies < pool->last_commit_jiffies ||
1684 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1685}
1686
1687#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1688#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1689
1690static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1691{
1692 struct rb_node **rbp, *parent;
1693 struct dm_thin_endio_hook *pbd;
1694 sector_t bi_sector = bio->bi_iter.bi_sector;
1695
1696 rbp = &tc->sort_bio_list.rb_node;
1697 parent = NULL;
1698 while (*rbp) {
1699 parent = *rbp;
1700 pbd = thin_pbd(parent);
1701
1702 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1703 rbp = &(*rbp)->rb_left;
1704 else
1705 rbp = &(*rbp)->rb_right;
1706 }
1707
1708 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1709 rb_link_node(&pbd->rb_node, parent, rbp);
1710 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1711}
1712
1713static void __extract_sorted_bios(struct thin_c *tc)
1714{
1715 struct rb_node *node;
1716 struct dm_thin_endio_hook *pbd;
1717 struct bio *bio;
1718
1719 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1720 pbd = thin_pbd(node);
1721 bio = thin_bio(pbd);
1722
1723 bio_list_add(&tc->deferred_bio_list, bio);
1724 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1725 }
1726
1727 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1728}
1729
1730static void __sort_thin_deferred_bios(struct thin_c *tc)
1731{
1732 struct bio *bio;
1733 struct bio_list bios;
1734
1735 bio_list_init(&bios);
1736 bio_list_merge(&bios, &tc->deferred_bio_list);
1737 bio_list_init(&tc->deferred_bio_list);
1738
1739 /* Sort deferred_bio_list using rb-tree */
1740 while ((bio = bio_list_pop(&bios)))
1741 __thin_bio_rb_add(tc, bio);
1742
1743 /*
1744 * Transfer the sorted bios in sort_bio_list back to
1745 * deferred_bio_list to allow lockless submission of
1746 * all bios.
1747 */
1748 __extract_sorted_bios(tc);
1749}
1750
1751static void process_thin_deferred_bios(struct thin_c *tc)
1752{
1753 struct pool *pool = tc->pool;
1754 unsigned long flags;
1755 struct bio *bio;
1756 struct bio_list bios;
1757 struct blk_plug plug;
1758 unsigned count = 0;
1759
1760 if (tc->requeue_mode) {
1761 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
1762 return;
1763 }
1764
1765 bio_list_init(&bios);
1766
1767 spin_lock_irqsave(&tc->lock, flags);
1768
1769 if (bio_list_empty(&tc->deferred_bio_list)) {
1770 spin_unlock_irqrestore(&tc->lock, flags);
1771 return;
1772 }
1773
1774 __sort_thin_deferred_bios(tc);
1775
1776 bio_list_merge(&bios, &tc->deferred_bio_list);
1777 bio_list_init(&tc->deferred_bio_list);
1778
1779 spin_unlock_irqrestore(&tc->lock, flags);
1780
1781 blk_start_plug(&plug);
1782 while ((bio = bio_list_pop(&bios))) {
1783 /*
1784 * If we've got no free new_mapping structs, and processing
1785 * this bio might require one, we pause until there are some
1786 * prepared mappings to process.
1787 */
1788 if (ensure_next_mapping(pool)) {
1789 spin_lock_irqsave(&tc->lock, flags);
1790 bio_list_add(&tc->deferred_bio_list, bio);
1791 bio_list_merge(&tc->deferred_bio_list, &bios);
1792 spin_unlock_irqrestore(&tc->lock, flags);
1793 break;
1794 }
1795
1796 if (bio->bi_rw & REQ_DISCARD)
1797 pool->process_discard(tc, bio);
1798 else
1799 pool->process_bio(tc, bio);
1800
1801 if ((count++ & 127) == 0) {
1802 throttle_work_update(&pool->throttle);
1803 dm_pool_issue_prefetches(pool->pmd);
1804 }
1805 }
1806 blk_finish_plug(&plug);
1807}
1808
1809static int cmp_cells(const void *lhs, const void *rhs)
1810{
1811 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
1812 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
1813
1814 BUG_ON(!lhs_cell->holder);
1815 BUG_ON(!rhs_cell->holder);
1816
1817 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
1818 return -1;
1819
1820 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
1821 return 1;
1822
1823 return 0;
1824}
1825
1826static unsigned sort_cells(struct pool *pool, struct list_head *cells)
1827{
1828 unsigned count = 0;
1829 struct dm_bio_prison_cell *cell, *tmp;
1830
1831 list_for_each_entry_safe(cell, tmp, cells, user_list) {
1832 if (count >= CELL_SORT_ARRAY_SIZE)
1833 break;
1834
1835 pool->cell_sort_array[count++] = cell;
1836 list_del(&cell->user_list);
1837 }
1838
1839 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
1840
1841 return count;
1842}
1843
1844static void process_thin_deferred_cells(struct thin_c *tc)
1845{
1846 struct pool *pool = tc->pool;
1847 unsigned long flags;
1848 struct list_head cells;
1849 struct dm_bio_prison_cell *cell;
1850 unsigned i, j, count;
1851
1852 INIT_LIST_HEAD(&cells);
1853
1854 spin_lock_irqsave(&tc->lock, flags);
1855 list_splice_init(&tc->deferred_cells, &cells);
1856 spin_unlock_irqrestore(&tc->lock, flags);
1857
1858 if (list_empty(&cells))
1859 return;
1860
1861 do {
1862 count = sort_cells(tc->pool, &cells);
1863
1864 for (i = 0; i < count; i++) {
1865 cell = pool->cell_sort_array[i];
1866 BUG_ON(!cell->holder);
1867
1868 /*
1869 * If we've got no free new_mapping structs, and processing
1870 * this bio might require one, we pause until there are some
1871 * prepared mappings to process.
1872 */
1873 if (ensure_next_mapping(pool)) {
1874 for (j = i; j < count; j++)
1875 list_add(&pool->cell_sort_array[j]->user_list, &cells);
1876
1877 spin_lock_irqsave(&tc->lock, flags);
1878 list_splice(&cells, &tc->deferred_cells);
1879 spin_unlock_irqrestore(&tc->lock, flags);
1880 return;
1881 }
1882
1883 if (cell->holder->bi_rw & REQ_DISCARD)
1884 pool->process_discard_cell(tc, cell);
1885 else
1886 pool->process_cell(tc, cell);
1887 }
1888 } while (!list_empty(&cells));
1889}
1890
1891static void thin_get(struct thin_c *tc);
1892static void thin_put(struct thin_c *tc);
1893
1894/*
1895 * We can't hold rcu_read_lock() around code that can block. So we
1896 * find a thin with the rcu lock held; bump a refcount; then drop
1897 * the lock.
1898 */
1899static struct thin_c *get_first_thin(struct pool *pool)
1900{
1901 struct thin_c *tc = NULL;
1902
1903 rcu_read_lock();
1904 if (!list_empty(&pool->active_thins)) {
1905 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1906 thin_get(tc);
1907 }
1908 rcu_read_unlock();
1909
1910 return tc;
1911}
1912
1913static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1914{
1915 struct thin_c *old_tc = tc;
1916
1917 rcu_read_lock();
1918 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1919 thin_get(tc);
1920 thin_put(old_tc);
1921 rcu_read_unlock();
1922 return tc;
1923 }
1924 thin_put(old_tc);
1925 rcu_read_unlock();
1926
1927 return NULL;
1928}
1929
1930static void process_deferred_bios(struct pool *pool)
1931{
1932 unsigned long flags;
1933 struct bio *bio;
1934 struct bio_list bios;
1935 struct thin_c *tc;
1936
1937 tc = get_first_thin(pool);
1938 while (tc) {
1939 process_thin_deferred_cells(tc);
1940 process_thin_deferred_bios(tc);
1941 tc = get_next_thin(pool, tc);
1942 }
1943
1944 /*
1945 * If there are any deferred flush bios, we must commit
1946 * the metadata before issuing them.
1947 */
1948 bio_list_init(&bios);
1949 spin_lock_irqsave(&pool->lock, flags);
1950 bio_list_merge(&bios, &pool->deferred_flush_bios);
1951 bio_list_init(&pool->deferred_flush_bios);
1952 spin_unlock_irqrestore(&pool->lock, flags);
1953
1954 if (bio_list_empty(&bios) &&
1955 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1956 return;
1957
1958 if (commit(pool)) {
1959 while ((bio = bio_list_pop(&bios)))
1960 bio_io_error(bio);
1961 return;
1962 }
1963 pool->last_commit_jiffies = jiffies;
1964
1965 while ((bio = bio_list_pop(&bios)))
1966 generic_make_request(bio);
1967}
1968
1969static void do_worker(struct work_struct *ws)
1970{
1971 struct pool *pool = container_of(ws, struct pool, worker);
1972
1973 throttle_work_start(&pool->throttle);
1974 dm_pool_issue_prefetches(pool->pmd);
1975 throttle_work_update(&pool->throttle);
1976 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1977 throttle_work_update(&pool->throttle);
1978 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1979 throttle_work_update(&pool->throttle);
1980 process_deferred_bios(pool);
1981 throttle_work_complete(&pool->throttle);
1982}
1983
1984/*
1985 * We want to commit periodically so that not too much
1986 * unwritten data builds up.
1987 */
1988static void do_waker(struct work_struct *ws)
1989{
1990 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1991 wake_worker(pool);
1992 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1993}
1994
1995/*
1996 * We're holding onto IO to allow userland time to react. After the
1997 * timeout either the pool will have been resized (and thus back in
1998 * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
1999 */
2000static void do_no_space_timeout(struct work_struct *ws)
2001{
2002 struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2003 no_space_timeout);
2004
2005 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
2006 set_pool_mode(pool, PM_READ_ONLY);
2007}
2008
2009/*----------------------------------------------------------------*/
2010
2011struct pool_work {
2012 struct work_struct worker;
2013 struct completion complete;
2014};
2015
2016static struct pool_work *to_pool_work(struct work_struct *ws)
2017{
2018 return container_of(ws, struct pool_work, worker);
2019}
2020
2021static void pool_work_complete(struct pool_work *pw)
2022{
2023 complete(&pw->complete);
2024}
2025
2026static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2027 void (*fn)(struct work_struct *))
2028{
2029 INIT_WORK_ONSTACK(&pw->worker, fn);
2030 init_completion(&pw->complete);
2031 queue_work(pool->wq, &pw->worker);
2032 wait_for_completion(&pw->complete);
2033}
2034
2035/*----------------------------------------------------------------*/
2036
2037struct noflush_work {
2038 struct pool_work pw;
2039 struct thin_c *tc;
2040};
2041
2042static struct noflush_work *to_noflush(struct work_struct *ws)
2043{
2044 return container_of(to_pool_work(ws), struct noflush_work, pw);
2045}
2046
2047static void do_noflush_start(struct work_struct *ws)
2048{
2049 struct noflush_work *w = to_noflush(ws);
2050 w->tc->requeue_mode = true;
2051 requeue_io(w->tc);
2052 pool_work_complete(&w->pw);
2053}
2054
2055static void do_noflush_stop(struct work_struct *ws)
2056{
2057 struct noflush_work *w = to_noflush(ws);
2058 w->tc->requeue_mode = false;
2059 pool_work_complete(&w->pw);
2060}
2061
2062static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2063{
2064 struct noflush_work w;
2065
2066 w.tc = tc;
2067 pool_work_wait(&w.pw, tc->pool, fn);
2068}
2069
2070/*----------------------------------------------------------------*/
2071
2072static enum pool_mode get_pool_mode(struct pool *pool)
2073{
2074 return pool->pf.mode;
2075}
2076
2077static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2078{
2079 dm_table_event(pool->ti->table);
2080 DMINFO("%s: switching pool to %s mode",
2081 dm_device_name(pool->pool_md), new_mode);
2082}
2083
2084static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2085{
2086 struct pool_c *pt = pool->ti->private;
2087 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2088 enum pool_mode old_mode = get_pool_mode(pool);
2089 unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2090
2091 /*
2092 * Never allow the pool to transition to PM_WRITE mode if user
2093 * intervention is required to verify metadata and data consistency.
2094 */
2095 if (new_mode == PM_WRITE && needs_check) {
2096 DMERR("%s: unable to switch pool to write mode until repaired.",
2097 dm_device_name(pool->pool_md));
2098 if (old_mode != new_mode)
2099 new_mode = old_mode;
2100 else
2101 new_mode = PM_READ_ONLY;
2102 }
2103 /*
2104 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2105 * not going to recover without a thin_repair. So we never let the
2106 * pool move out of the old mode.
2107 */
2108 if (old_mode == PM_FAIL)
2109 new_mode = old_mode;
2110
2111 switch (new_mode) {
2112 case PM_FAIL:
2113 if (old_mode != new_mode)
2114 notify_of_pool_mode_change(pool, "failure");
2115 dm_pool_metadata_read_only(pool->pmd);
2116 pool->process_bio = process_bio_fail;
2117 pool->process_discard = process_bio_fail;
2118 pool->process_cell = process_cell_fail;
2119 pool->process_discard_cell = process_cell_fail;
2120 pool->process_prepared_mapping = process_prepared_mapping_fail;
2121 pool->process_prepared_discard = process_prepared_discard_fail;
2122
2123 error_retry_list(pool);
2124 break;
2125
2126 case PM_READ_ONLY:
2127 if (old_mode != new_mode)
2128 notify_of_pool_mode_change(pool, "read-only");
2129 dm_pool_metadata_read_only(pool->pmd);
2130 pool->process_bio = process_bio_read_only;
2131 pool->process_discard = process_bio_success;
2132 pool->process_cell = process_cell_read_only;
2133 pool->process_discard_cell = process_cell_success;
2134 pool->process_prepared_mapping = process_prepared_mapping_fail;
2135 pool->process_prepared_discard = process_prepared_discard_passdown;
2136
2137 error_retry_list(pool);
2138 break;
2139
2140 case PM_OUT_OF_DATA_SPACE:
2141 /*
2142 * Ideally we'd never hit this state; the low water mark
2143 * would trigger userland to extend the pool before we
2144 * completely run out of data space. However, many small
2145 * IOs to unprovisioned space can consume data space at an
2146 * alarming rate. Adjust your low water mark if you're
2147 * frequently seeing this mode.
2148 */
2149 if (old_mode != new_mode)
2150 notify_of_pool_mode_change(pool, "out-of-data-space");
2151 pool->process_bio = process_bio_read_only;
2152 pool->process_discard = process_discard_bio;
2153 pool->process_cell = process_cell_read_only;
2154 pool->process_discard_cell = process_discard_cell;
2155 pool->process_prepared_mapping = process_prepared_mapping;
2156 pool->process_prepared_discard = process_prepared_discard_passdown;
2157
2158 if (!pool->pf.error_if_no_space && no_space_timeout)
2159 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2160 break;
2161
2162 case PM_WRITE:
2163 if (old_mode != new_mode)
2164 notify_of_pool_mode_change(pool, "write");
2165 dm_pool_metadata_read_write(pool->pmd);
2166 pool->process_bio = process_bio;
2167 pool->process_discard = process_discard_bio;
2168 pool->process_cell = process_cell;
2169 pool->process_discard_cell = process_discard_cell;
2170 pool->process_prepared_mapping = process_prepared_mapping;
2171 pool->process_prepared_discard = process_prepared_discard;
2172 break;
2173 }
2174
2175 pool->pf.mode = new_mode;
2176 /*
2177 * The pool mode may have changed, sync it so bind_control_target()
2178 * doesn't cause an unexpected mode transition on resume.
2179 */
2180 pt->adjusted_pf.mode = new_mode;
2181}
2182
2183static void abort_transaction(struct pool *pool)
2184{
2185 const char *dev_name = dm_device_name(pool->pool_md);
2186
2187 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2188 if (dm_pool_abort_metadata(pool->pmd)) {
2189 DMERR("%s: failed to abort metadata transaction", dev_name);
2190 set_pool_mode(pool, PM_FAIL);
2191 }
2192
2193 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2194 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2195 set_pool_mode(pool, PM_FAIL);
2196 }
2197}
2198
2199static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2200{
2201 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2202 dm_device_name(pool->pool_md), op, r);
2203
2204 abort_transaction(pool);
2205 set_pool_mode(pool, PM_READ_ONLY);
2206}
2207
2208/*----------------------------------------------------------------*/
2209
2210/*
2211 * Mapping functions.
2212 */
2213
2214/*
2215 * Called only while mapping a thin bio to hand it over to the workqueue.
2216 */
2217static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2218{
2219 unsigned long flags;
2220 struct pool *pool = tc->pool;
2221
2222 spin_lock_irqsave(&tc->lock, flags);
2223 bio_list_add(&tc->deferred_bio_list, bio);
2224 spin_unlock_irqrestore(&tc->lock, flags);
2225
2226 wake_worker(pool);
2227}
2228
2229static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2230{
2231 struct pool *pool = tc->pool;
2232
2233 throttle_lock(&pool->throttle);
2234 thin_defer_bio(tc, bio);
2235 throttle_unlock(&pool->throttle);
2236}
2237
2238static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2239{
2240 unsigned long flags;
2241 struct pool *pool = tc->pool;
2242
2243 throttle_lock(&pool->throttle);
2244 spin_lock_irqsave(&tc->lock, flags);
2245 list_add_tail(&cell->user_list, &tc->deferred_cells);
2246 spin_unlock_irqrestore(&tc->lock, flags);
2247 throttle_unlock(&pool->throttle);
2248
2249 wake_worker(pool);
2250}
2251
2252static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2253{
2254 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2255
2256 h->tc = tc;
2257 h->shared_read_entry = NULL;
2258 h->all_io_entry = NULL;
2259 h->overwrite_mapping = NULL;
2260}
2261
2262/*
2263 * Non-blocking function called from the thin target's map function.
2264 */
2265static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2266{
2267 int r;
2268 struct thin_c *tc = ti->private;
2269 dm_block_t block = get_bio_block(tc, bio);
2270 struct dm_thin_device *td = tc->td;
2271 struct dm_thin_lookup_result result;
2272 struct dm_bio_prison_cell *virt_cell, *data_cell;
2273 struct dm_cell_key key;
2274
2275 thin_hook_bio(tc, bio);
2276
2277 if (tc->requeue_mode) {
2278 bio_endio(bio, DM_ENDIO_REQUEUE);
2279 return DM_MAPIO_SUBMITTED;
2280 }
2281
2282 if (get_pool_mode(tc->pool) == PM_FAIL) {
2283 bio_io_error(bio);
2284 return DM_MAPIO_SUBMITTED;
2285 }
2286
2287 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2288 thin_defer_bio_with_throttle(tc, bio);
2289 return DM_MAPIO_SUBMITTED;
2290 }
2291
2292 /*
2293 * We must hold the virtual cell before doing the lookup, otherwise
2294 * there's a race with discard.
2295 */
2296 build_virtual_key(tc->td, block, &key);
2297 if (bio_detain(tc->pool, &key, bio, &virt_cell))
2298 return DM_MAPIO_SUBMITTED;
2299
2300 r = dm_thin_find_block(td, block, 0, &result);
2301
2302 /*
2303 * Note that we defer readahead too.
2304 */
2305 switch (r) {
2306 case 0:
2307 if (unlikely(result.shared)) {
2308 /*
2309 * We have a race condition here between the
2310 * result.shared value returned by the lookup and
2311 * snapshot creation, which may cause new
2312 * sharing.
2313 *
2314 * To avoid this always quiesce the origin before
2315 * taking the snap. You want to do this anyway to
2316 * ensure a consistent application view
2317 * (i.e. lockfs).
2318 *
2319 * More distant ancestors are irrelevant. The
2320 * shared flag will be set in their case.
2321 */
2322 thin_defer_cell(tc, virt_cell);
2323 return DM_MAPIO_SUBMITTED;
2324 }
2325
2326 build_data_key(tc->td, result.block, &key);
2327 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2328 cell_defer_no_holder(tc, virt_cell);
2329 return DM_MAPIO_SUBMITTED;
2330 }
2331
2332 inc_all_io_entry(tc->pool, bio);
2333 cell_defer_no_holder(tc, data_cell);
2334 cell_defer_no_holder(tc, virt_cell);
2335
2336 remap(tc, bio, result.block);
2337 return DM_MAPIO_REMAPPED;
2338
2339 case -ENODATA:
2340 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
2341 /*
2342 * This block isn't provisioned, and we have no way
2343 * of doing so.
2344 */
2345 handle_unserviceable_bio(tc->pool, bio);
2346 cell_defer_no_holder(tc, virt_cell);
2347 return DM_MAPIO_SUBMITTED;
2348 }
2349 /* fall through */
2350
2351 case -EWOULDBLOCK:
2352 thin_defer_cell(tc, virt_cell);
2353 return DM_MAPIO_SUBMITTED;
2354
2355 default:
2356 /*
2357 * Must always call bio_io_error on failure.
2358 * dm_thin_find_block can fail with -EINVAL if the
2359 * pool is switched to fail-io mode.
2360 */
2361 bio_io_error(bio);
2362 cell_defer_no_holder(tc, virt_cell);
2363 return DM_MAPIO_SUBMITTED;
2364 }
2365}
2366
2367static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2368{
2369 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2370 struct request_queue *q;
2371
2372 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2373 return 1;
2374
2375 q = bdev_get_queue(pt->data_dev->bdev);
2376 return bdi_congested(&q->backing_dev_info, bdi_bits);
2377}
2378
2379static void requeue_bios(struct pool *pool)
2380{
2381 unsigned long flags;
2382 struct thin_c *tc;
2383
2384 rcu_read_lock();
2385 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2386 spin_lock_irqsave(&tc->lock, flags);
2387 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2388 bio_list_init(&tc->retry_on_resume_list);
2389 spin_unlock_irqrestore(&tc->lock, flags);
2390 }
2391 rcu_read_unlock();
2392}
2393
2394/*----------------------------------------------------------------
2395 * Binding of control targets to a pool object
2396 *--------------------------------------------------------------*/
2397static bool data_dev_supports_discard(struct pool_c *pt)
2398{
2399 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2400
2401 return q && blk_queue_discard(q);
2402}
2403
2404static bool is_factor(sector_t block_size, uint32_t n)
2405{
2406 return !sector_div(block_size, n);
2407}
2408
2409/*
2410 * If discard_passdown was enabled verify that the data device
2411 * supports discards. Disable discard_passdown if not.
2412 */
2413static void disable_passdown_if_not_supported(struct pool_c *pt)
2414{
2415 struct pool *pool = pt->pool;
2416 struct block_device *data_bdev = pt->data_dev->bdev;
2417 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2418 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
2419 const char *reason = NULL;
2420 char buf[BDEVNAME_SIZE];
2421
2422 if (!pt->adjusted_pf.discard_passdown)
2423 return;
2424
2425 if (!data_dev_supports_discard(pt))
2426 reason = "discard unsupported";
2427
2428 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2429 reason = "max discard sectors smaller than a block";
2430
2431 else if (data_limits->discard_granularity > block_size)
2432 reason = "discard granularity larger than a block";
2433
2434 else if (!is_factor(block_size, data_limits->discard_granularity))
2435 reason = "discard granularity not a factor of block size";
2436
2437 if (reason) {
2438 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2439 pt->adjusted_pf.discard_passdown = false;
2440 }
2441}
2442
2443static int bind_control_target(struct pool *pool, struct dm_target *ti)
2444{
2445 struct pool_c *pt = ti->private;
2446
2447 /*
2448 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2449 */
2450 enum pool_mode old_mode = get_pool_mode(pool);
2451 enum pool_mode new_mode = pt->adjusted_pf.mode;
2452
2453 /*
2454 * Don't change the pool's mode until set_pool_mode() below.
2455 * Otherwise the pool's process_* function pointers may
2456 * not match the desired pool mode.
2457 */
2458 pt->adjusted_pf.mode = old_mode;
2459
2460 pool->ti = ti;
2461 pool->pf = pt->adjusted_pf;
2462 pool->low_water_blocks = pt->low_water_blocks;
2463
2464 set_pool_mode(pool, new_mode);
2465
2466 return 0;
2467}
2468
2469static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2470{
2471 if (pool->ti == ti)
2472 pool->ti = NULL;
2473}
2474
2475/*----------------------------------------------------------------
2476 * Pool creation
2477 *--------------------------------------------------------------*/
2478/* Initialize pool features. */
2479static void pool_features_init(struct pool_features *pf)
2480{
2481 pf->mode = PM_WRITE;
2482 pf->zero_new_blocks = true;
2483 pf->discard_enabled = true;
2484 pf->discard_passdown = true;
2485 pf->error_if_no_space = false;
2486}
2487
2488static void __pool_destroy(struct pool *pool)
2489{
2490 __pool_table_remove(pool);
2491
2492 if (dm_pool_metadata_close(pool->pmd) < 0)
2493 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2494
2495 dm_bio_prison_destroy(pool->prison);
2496 dm_kcopyd_client_destroy(pool->copier);
2497
2498 if (pool->wq)
2499 destroy_workqueue(pool->wq);
2500
2501 if (pool->next_mapping)
2502 mempool_free(pool->next_mapping, pool->mapping_pool);
2503 mempool_destroy(pool->mapping_pool);
2504 dm_deferred_set_destroy(pool->shared_read_ds);
2505 dm_deferred_set_destroy(pool->all_io_ds);
2506 kfree(pool);
2507}
2508
2509static struct kmem_cache *_new_mapping_cache;
2510
2511static struct pool *pool_create(struct mapped_device *pool_md,
2512 struct block_device *metadata_dev,
2513 unsigned long block_size,
2514 int read_only, char **error)
2515{
2516 int r;
2517 void *err_p;
2518 struct pool *pool;
2519 struct dm_pool_metadata *pmd;
2520 bool format_device = read_only ? false : true;
2521
2522 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2523 if (IS_ERR(pmd)) {
2524 *error = "Error creating metadata object";
2525 return (struct pool *)pmd;
2526 }
2527
2528 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2529 if (!pool) {
2530 *error = "Error allocating memory for pool";
2531 err_p = ERR_PTR(-ENOMEM);
2532 goto bad_pool;
2533 }
2534
2535 pool->pmd = pmd;
2536 pool->sectors_per_block = block_size;
2537 if (block_size & (block_size - 1))
2538 pool->sectors_per_block_shift = -1;
2539 else
2540 pool->sectors_per_block_shift = __ffs(block_size);
2541 pool->low_water_blocks = 0;
2542 pool_features_init(&pool->pf);
2543 pool->prison = dm_bio_prison_create();
2544 if (!pool->prison) {
2545 *error = "Error creating pool's bio prison";
2546 err_p = ERR_PTR(-ENOMEM);
2547 goto bad_prison;
2548 }
2549
2550 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2551 if (IS_ERR(pool->copier)) {
2552 r = PTR_ERR(pool->copier);
2553 *error = "Error creating pool's kcopyd client";
2554 err_p = ERR_PTR(r);
2555 goto bad_kcopyd_client;
2556 }
2557
2558 /*
2559 * Create singlethreaded workqueue that will service all devices
2560 * that use this metadata.
2561 */
2562 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2563 if (!pool->wq) {
2564 *error = "Error creating pool's workqueue";
2565 err_p = ERR_PTR(-ENOMEM);
2566 goto bad_wq;
2567 }
2568
2569 throttle_init(&pool->throttle);
2570 INIT_WORK(&pool->worker, do_worker);
2571 INIT_DELAYED_WORK(&pool->waker, do_waker);
2572 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2573 spin_lock_init(&pool->lock);
2574 bio_list_init(&pool->deferred_flush_bios);
2575 INIT_LIST_HEAD(&pool->prepared_mappings);
2576 INIT_LIST_HEAD(&pool->prepared_discards);
2577 INIT_LIST_HEAD(&pool->active_thins);
2578 pool->low_water_triggered = false;
2579 pool->suspended = true;
2580
2581 pool->shared_read_ds = dm_deferred_set_create();
2582 if (!pool->shared_read_ds) {
2583 *error = "Error creating pool's shared read deferred set";
2584 err_p = ERR_PTR(-ENOMEM);
2585 goto bad_shared_read_ds;
2586 }
2587
2588 pool->all_io_ds = dm_deferred_set_create();
2589 if (!pool->all_io_ds) {
2590 *error = "Error creating pool's all io deferred set";
2591 err_p = ERR_PTR(-ENOMEM);
2592 goto bad_all_io_ds;
2593 }
2594
2595 pool->next_mapping = NULL;
2596 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2597 _new_mapping_cache);
2598 if (!pool->mapping_pool) {
2599 *error = "Error creating pool's mapping mempool";
2600 err_p = ERR_PTR(-ENOMEM);
2601 goto bad_mapping_pool;
2602 }
2603
2604 pool->ref_count = 1;
2605 pool->last_commit_jiffies = jiffies;
2606 pool->pool_md = pool_md;
2607 pool->md_dev = metadata_dev;
2608 __pool_table_insert(pool);
2609
2610 return pool;
2611
2612bad_mapping_pool:
2613 dm_deferred_set_destroy(pool->all_io_ds);
2614bad_all_io_ds:
2615 dm_deferred_set_destroy(pool->shared_read_ds);
2616bad_shared_read_ds:
2617 destroy_workqueue(pool->wq);
2618bad_wq:
2619 dm_kcopyd_client_destroy(pool->copier);
2620bad_kcopyd_client:
2621 dm_bio_prison_destroy(pool->prison);
2622bad_prison:
2623 kfree(pool);
2624bad_pool:
2625 if (dm_pool_metadata_close(pmd))
2626 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2627
2628 return err_p;
2629}
2630
2631static void __pool_inc(struct pool *pool)
2632{
2633 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2634 pool->ref_count++;
2635}
2636
2637static void __pool_dec(struct pool *pool)
2638{
2639 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2640 BUG_ON(!pool->ref_count);
2641 if (!--pool->ref_count)
2642 __pool_destroy(pool);
2643}
2644
2645static struct pool *__pool_find(struct mapped_device *pool_md,
2646 struct block_device *metadata_dev,
2647 unsigned long block_size, int read_only,
2648 char **error, int *created)
2649{
2650 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2651
2652 if (pool) {
2653 if (pool->pool_md != pool_md) {
2654 *error = "metadata device already in use by a pool";
2655 return ERR_PTR(-EBUSY);
2656 }
2657 __pool_inc(pool);
2658
2659 } else {
2660 pool = __pool_table_lookup(pool_md);
2661 if (pool) {
2662 if (pool->md_dev != metadata_dev) {
2663 *error = "different pool cannot replace a pool";
2664 return ERR_PTR(-EINVAL);
2665 }
2666 __pool_inc(pool);
2667
2668 } else {
2669 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2670 *created = 1;
2671 }
2672 }
2673
2674 return pool;
2675}
2676
2677/*----------------------------------------------------------------
2678 * Pool target methods
2679 *--------------------------------------------------------------*/
2680static void pool_dtr(struct dm_target *ti)
2681{
2682 struct pool_c *pt = ti->private;
2683
2684 mutex_lock(&dm_thin_pool_table.mutex);
2685
2686 unbind_control_target(pt->pool, ti);
2687 __pool_dec(pt->pool);
2688 dm_put_device(ti, pt->metadata_dev);
2689 dm_put_device(ti, pt->data_dev);
2690 kfree(pt);
2691
2692 mutex_unlock(&dm_thin_pool_table.mutex);
2693}
2694
2695static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2696 struct dm_target *ti)
2697{
2698 int r;
2699 unsigned argc;
2700 const char *arg_name;
2701
2702 static struct dm_arg _args[] = {
2703 {0, 4, "Invalid number of pool feature arguments"},
2704 };
2705
2706 /*
2707 * No feature arguments supplied.
2708 */
2709 if (!as->argc)
2710 return 0;
2711
2712 r = dm_read_arg_group(_args, as, &argc, &ti->error);
2713 if (r)
2714 return -EINVAL;
2715
2716 while (argc && !r) {
2717 arg_name = dm_shift_arg(as);
2718 argc--;
2719
2720 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2721 pf->zero_new_blocks = false;
2722
2723 else if (!strcasecmp(arg_name, "ignore_discard"))
2724 pf->discard_enabled = false;
2725
2726 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2727 pf->discard_passdown = false;
2728
2729 else if (!strcasecmp(arg_name, "read_only"))
2730 pf->mode = PM_READ_ONLY;
2731
2732 else if (!strcasecmp(arg_name, "error_if_no_space"))
2733 pf->error_if_no_space = true;
2734
2735 else {
2736 ti->error = "Unrecognised pool feature requested";
2737 r = -EINVAL;
2738 break;
2739 }
2740 }
2741
2742 return r;
2743}
2744
2745static void metadata_low_callback(void *context)
2746{
2747 struct pool *pool = context;
2748
2749 DMWARN("%s: reached low water mark for metadata device: sending event.",
2750 dm_device_name(pool->pool_md));
2751
2752 dm_table_event(pool->ti->table);
2753}
2754
2755static sector_t get_dev_size(struct block_device *bdev)
2756{
2757 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2758}
2759
2760static void warn_if_metadata_device_too_big(struct block_device *bdev)
2761{
2762 sector_t metadata_dev_size = get_dev_size(bdev);
2763 char buffer[BDEVNAME_SIZE];
2764
2765 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2766 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2767 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2768}
2769
2770static sector_t get_metadata_dev_size(struct block_device *bdev)
2771{
2772 sector_t metadata_dev_size = get_dev_size(bdev);
2773
2774 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2775 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2776
2777 return metadata_dev_size;
2778}
2779
2780static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2781{
2782 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2783
2784 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2785
2786 return metadata_dev_size;
2787}
2788
2789/*
2790 * When a metadata threshold is crossed a dm event is triggered, and
2791 * userland should respond by growing the metadata device. We could let
2792 * userland set the threshold, like we do with the data threshold, but I'm
2793 * not sure they know enough to do this well.
2794 */
2795static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2796{
2797 /*
2798 * 4M is ample for all ops with the possible exception of thin
2799 * device deletion which is harmless if it fails (just retry the
2800 * delete after you've grown the device).
2801 */
2802 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2803 return min((dm_block_t)1024ULL /* 4M */, quarter);
2804}
2805
2806/*
2807 * thin-pool <metadata dev> <data dev>
2808 * <data block size (sectors)>
2809 * <low water mark (blocks)>
2810 * [<#feature args> [<arg>]*]
2811 *
2812 * Optional feature arguments are:
2813 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2814 * ignore_discard: disable discard
2815 * no_discard_passdown: don't pass discards down to the data device
2816 * read_only: Don't allow any changes to be made to the pool metadata.
2817 * error_if_no_space: error IOs, instead of queueing, if no space.
2818 */
2819static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2820{
2821 int r, pool_created = 0;
2822 struct pool_c *pt;
2823 struct pool *pool;
2824 struct pool_features pf;
2825 struct dm_arg_set as;
2826 struct dm_dev *data_dev;
2827 unsigned long block_size;
2828 dm_block_t low_water_blocks;
2829 struct dm_dev *metadata_dev;
2830 fmode_t metadata_mode;
2831
2832 /*
2833 * FIXME Remove validation from scope of lock.
2834 */
2835 mutex_lock(&dm_thin_pool_table.mutex);
2836
2837 if (argc < 4) {
2838 ti->error = "Invalid argument count";
2839 r = -EINVAL;
2840 goto out_unlock;
2841 }
2842
2843 as.argc = argc;
2844 as.argv = argv;
2845
2846 /*
2847 * Set default pool features.
2848 */
2849 pool_features_init(&pf);
2850
2851 dm_consume_args(&as, 4);
2852 r = parse_pool_features(&as, &pf, ti);
2853 if (r)
2854 goto out_unlock;
2855
2856 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2857 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2858 if (r) {
2859 ti->error = "Error opening metadata block device";
2860 goto out_unlock;
2861 }
2862 warn_if_metadata_device_too_big(metadata_dev->bdev);
2863
2864 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2865 if (r) {
2866 ti->error = "Error getting data device";
2867 goto out_metadata;
2868 }
2869
2870 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2871 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2872 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2873 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2874 ti->error = "Invalid block size";
2875 r = -EINVAL;
2876 goto out;
2877 }
2878
2879 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2880 ti->error = "Invalid low water mark";
2881 r = -EINVAL;
2882 goto out;
2883 }
2884
2885 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2886 if (!pt) {
2887 r = -ENOMEM;
2888 goto out;
2889 }
2890
2891 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2892 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2893 if (IS_ERR(pool)) {
2894 r = PTR_ERR(pool);
2895 goto out_free_pt;
2896 }
2897
2898 /*
2899 * 'pool_created' reflects whether this is the first table load.
2900 * Top level discard support is not allowed to be changed after
2901 * initial load. This would require a pool reload to trigger thin
2902 * device changes.
2903 */
2904 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2905 ti->error = "Discard support cannot be disabled once enabled";
2906 r = -EINVAL;
2907 goto out_flags_changed;
2908 }
2909
2910 pt->pool = pool;
2911 pt->ti = ti;
2912 pt->metadata_dev = metadata_dev;
2913 pt->data_dev = data_dev;
2914 pt->low_water_blocks = low_water_blocks;
2915 pt->adjusted_pf = pt->requested_pf = pf;
2916 ti->num_flush_bios = 1;
2917
2918 /*
2919 * Only need to enable discards if the pool should pass
2920 * them down to the data device. The thin device's discard
2921 * processing will cause mappings to be removed from the btree.
2922 */
2923 ti->discard_zeroes_data_unsupported = true;
2924 if (pf.discard_enabled && pf.discard_passdown) {
2925 ti->num_discard_bios = 1;
2926
2927 /*
2928 * Setting 'discards_supported' circumvents the normal
2929 * stacking of discard limits (this keeps the pool and
2930 * thin devices' discard limits consistent).
2931 */
2932 ti->discards_supported = true;
2933 }
2934 ti->private = pt;
2935
2936 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2937 calc_metadata_threshold(pt),
2938 metadata_low_callback,
2939 pool);
2940 if (r)
2941 goto out_free_pt;
2942
2943 pt->callbacks.congested_fn = pool_is_congested;
2944 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2945
2946 mutex_unlock(&dm_thin_pool_table.mutex);
2947
2948 return 0;
2949
2950out_flags_changed:
2951 __pool_dec(pool);
2952out_free_pt:
2953 kfree(pt);
2954out:
2955 dm_put_device(ti, data_dev);
2956out_metadata:
2957 dm_put_device(ti, metadata_dev);
2958out_unlock:
2959 mutex_unlock(&dm_thin_pool_table.mutex);
2960
2961 return r;
2962}
2963
2964static int pool_map(struct dm_target *ti, struct bio *bio)
2965{
2966 int r;
2967 struct pool_c *pt = ti->private;
2968 struct pool *pool = pt->pool;
2969 unsigned long flags;
2970
2971 /*
2972 * As this is a singleton target, ti->begin is always zero.
2973 */
2974 spin_lock_irqsave(&pool->lock, flags);
2975 bio->bi_bdev = pt->data_dev->bdev;
2976 r = DM_MAPIO_REMAPPED;
2977 spin_unlock_irqrestore(&pool->lock, flags);
2978
2979 return r;
2980}
2981
2982static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2983{
2984 int r;
2985 struct pool_c *pt = ti->private;
2986 struct pool *pool = pt->pool;
2987 sector_t data_size = ti->len;
2988 dm_block_t sb_data_size;
2989
2990 *need_commit = false;
2991
2992 (void) sector_div(data_size, pool->sectors_per_block);
2993
2994 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2995 if (r) {
2996 DMERR("%s: failed to retrieve data device size",
2997 dm_device_name(pool->pool_md));
2998 return r;
2999 }
3000
3001 if (data_size < sb_data_size) {
3002 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3003 dm_device_name(pool->pool_md),
3004 (unsigned long long)data_size, sb_data_size);
3005 return -EINVAL;
3006
3007 } else if (data_size > sb_data_size) {
3008 if (dm_pool_metadata_needs_check(pool->pmd)) {
3009 DMERR("%s: unable to grow the data device until repaired.",
3010 dm_device_name(pool->pool_md));
3011 return 0;
3012 }
3013
3014 if (sb_data_size)
3015 DMINFO("%s: growing the data device from %llu to %llu blocks",
3016 dm_device_name(pool->pool_md),
3017 sb_data_size, (unsigned long long)data_size);
3018 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3019 if (r) {
3020 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3021 return r;
3022 }
3023
3024 *need_commit = true;
3025 }
3026
3027 return 0;
3028}
3029
3030static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3031{
3032 int r;
3033 struct pool_c *pt = ti->private;
3034 struct pool *pool = pt->pool;
3035 dm_block_t metadata_dev_size, sb_metadata_dev_size;
3036
3037 *need_commit = false;
3038
3039 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3040
3041 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3042 if (r) {
3043 DMERR("%s: failed to retrieve metadata device size",
3044 dm_device_name(pool->pool_md));
3045 return r;
3046 }
3047
3048 if (metadata_dev_size < sb_metadata_dev_size) {
3049 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3050 dm_device_name(pool->pool_md),
3051 metadata_dev_size, sb_metadata_dev_size);
3052 return -EINVAL;
3053
3054 } else if (metadata_dev_size > sb_metadata_dev_size) {
3055 if (dm_pool_metadata_needs_check(pool->pmd)) {
3056 DMERR("%s: unable to grow the metadata device until repaired.",
3057 dm_device_name(pool->pool_md));
3058 return 0;
3059 }
3060
3061 warn_if_metadata_device_too_big(pool->md_dev);
3062 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3063 dm_device_name(pool->pool_md),
3064 sb_metadata_dev_size, metadata_dev_size);
3065 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3066 if (r) {
3067 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3068 return r;
3069 }
3070
3071 *need_commit = true;
3072 }
3073
3074 return 0;
3075}
3076
3077/*
3078 * Retrieves the number of blocks of the data device from
3079 * the superblock and compares it to the actual device size,
3080 * thus resizing the data device in case it has grown.
3081 *
3082 * This both copes with opening preallocated data devices in the ctr
3083 * being followed by a resume
3084 * -and-
3085 * calling the resume method individually after userspace has
3086 * grown the data device in reaction to a table event.
3087 */
3088static int pool_preresume(struct dm_target *ti)
3089{
3090 int r;
3091 bool need_commit1, need_commit2;
3092 struct pool_c *pt = ti->private;
3093 struct pool *pool = pt->pool;
3094
3095 /*
3096 * Take control of the pool object.
3097 */
3098 r = bind_control_target(pool, ti);
3099 if (r)
3100 return r;
3101
3102 r = maybe_resize_data_dev(ti, &need_commit1);
3103 if (r)
3104 return r;
3105
3106 r = maybe_resize_metadata_dev(ti, &need_commit2);
3107 if (r)
3108 return r;
3109
3110 if (need_commit1 || need_commit2)
3111 (void) commit(pool);
3112
3113 return 0;
3114}
3115
3116static void pool_resume(struct dm_target *ti)
3117{
3118 struct pool_c *pt = ti->private;
3119 struct pool *pool = pt->pool;
3120 unsigned long flags;
3121
3122 spin_lock_irqsave(&pool->lock, flags);
3123 pool->low_water_triggered = false;
3124 pool->suspended = false;
3125 spin_unlock_irqrestore(&pool->lock, flags);
3126
3127 requeue_bios(pool);
3128
3129 do_waker(&pool->waker.work);
3130}
3131
3132static void pool_presuspend(struct dm_target *ti)
3133{
3134 struct pool_c *pt = ti->private;
3135 struct pool *pool = pt->pool;
3136 unsigned long flags;
3137
3138 spin_lock_irqsave(&pool->lock, flags);
3139 pool->suspended = true;
3140 spin_unlock_irqrestore(&pool->lock, flags);
3141}
3142
3143static void pool_presuspend_undo(struct dm_target *ti)
3144{
3145 struct pool_c *pt = ti->private;
3146 struct pool *pool = pt->pool;
3147 unsigned long flags;
3148
3149 spin_lock_irqsave(&pool->lock, flags);
3150 pool->suspended = false;
3151 spin_unlock_irqrestore(&pool->lock, flags);
3152}
3153
3154static void pool_postsuspend(struct dm_target *ti)
3155{
3156 struct pool_c *pt = ti->private;
3157 struct pool *pool = pt->pool;
3158
3159 cancel_delayed_work(&pool->waker);
3160 cancel_delayed_work(&pool->no_space_timeout);
3161 flush_workqueue(pool->wq);
3162 (void) commit(pool);
3163}
3164
3165static int check_arg_count(unsigned argc, unsigned args_required)
3166{
3167 if (argc != args_required) {
3168 DMWARN("Message received with %u arguments instead of %u.",
3169 argc, args_required);
3170 return -EINVAL;
3171 }
3172
3173 return 0;
3174}
3175
3176static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3177{
3178 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3179 *dev_id <= MAX_DEV_ID)
3180 return 0;
3181
3182 if (warning)
3183 DMWARN("Message received with invalid device id: %s", arg);
3184
3185 return -EINVAL;
3186}
3187
3188static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3189{
3190 dm_thin_id dev_id;
3191 int r;
3192
3193 r = check_arg_count(argc, 2);
3194 if (r)
3195 return r;
3196
3197 r = read_dev_id(argv[1], &dev_id, 1);
3198 if (r)
3199 return r;
3200
3201 r = dm_pool_create_thin(pool->pmd, dev_id);
3202 if (r) {
3203 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3204 argv[1]);
3205 return r;
3206 }
3207
3208 return 0;
3209}
3210
3211static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3212{
3213 dm_thin_id dev_id;
3214 dm_thin_id origin_dev_id;
3215 int r;
3216
3217 r = check_arg_count(argc, 3);
3218 if (r)
3219 return r;
3220
3221 r = read_dev_id(argv[1], &dev_id, 1);
3222 if (r)
3223 return r;
3224
3225 r = read_dev_id(argv[2], &origin_dev_id, 1);
3226 if (r)
3227 return r;
3228
3229 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3230 if (r) {
3231 DMWARN("Creation of new snapshot %s of device %s failed.",
3232 argv[1], argv[2]);
3233 return r;
3234 }
3235
3236 return 0;
3237}
3238
3239static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3240{
3241 dm_thin_id dev_id;
3242 int r;
3243
3244 r = check_arg_count(argc, 2);
3245 if (r)
3246 return r;
3247
3248 r = read_dev_id(argv[1], &dev_id, 1);
3249 if (r)
3250 return r;
3251
3252 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3253 if (r)
3254 DMWARN("Deletion of thin device %s failed.", argv[1]);
3255
3256 return r;
3257}
3258
3259static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3260{
3261 dm_thin_id old_id, new_id;
3262 int r;
3263
3264 r = check_arg_count(argc, 3);
3265 if (r)
3266 return r;
3267
3268 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3269 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3270 return -EINVAL;
3271 }
3272
3273 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3274 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3275 return -EINVAL;
3276 }
3277
3278 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3279 if (r) {
3280 DMWARN("Failed to change transaction id from %s to %s.",
3281 argv[1], argv[2]);
3282 return r;
3283 }
3284
3285 return 0;
3286}
3287
3288static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3289{
3290 int r;
3291
3292 r = check_arg_count(argc, 1);
3293 if (r)
3294 return r;
3295
3296 (void) commit(pool);
3297
3298 r = dm_pool_reserve_metadata_snap(pool->pmd);
3299 if (r)
3300 DMWARN("reserve_metadata_snap message failed.");
3301
3302 return r;
3303}
3304
3305static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3306{
3307 int r;
3308
3309 r = check_arg_count(argc, 1);
3310 if (r)
3311 return r;
3312
3313 r = dm_pool_release_metadata_snap(pool->pmd);
3314 if (r)
3315 DMWARN("release_metadata_snap message failed.");
3316
3317 return r;
3318}
3319
3320/*
3321 * Messages supported:
3322 * create_thin <dev_id>
3323 * create_snap <dev_id> <origin_id>
3324 * delete <dev_id>
3325 * set_transaction_id <current_trans_id> <new_trans_id>
3326 * reserve_metadata_snap
3327 * release_metadata_snap
3328 */
3329static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3330{
3331 int r = -EINVAL;
3332 struct pool_c *pt = ti->private;
3333 struct pool *pool = pt->pool;
3334
3335 if (!strcasecmp(argv[0], "create_thin"))
3336 r = process_create_thin_mesg(argc, argv, pool);
3337
3338 else if (!strcasecmp(argv[0], "create_snap"))
3339 r = process_create_snap_mesg(argc, argv, pool);
3340
3341 else if (!strcasecmp(argv[0], "delete"))
3342 r = process_delete_mesg(argc, argv, pool);
3343
3344 else if (!strcasecmp(argv[0], "set_transaction_id"))
3345 r = process_set_transaction_id_mesg(argc, argv, pool);
3346
3347 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3348 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3349
3350 else if (!strcasecmp(argv[0], "release_metadata_snap"))
3351 r = process_release_metadata_snap_mesg(argc, argv, pool);
3352
3353 else
3354 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3355
3356 if (!r)
3357 (void) commit(pool);
3358
3359 return r;
3360}
3361
3362static void emit_flags(struct pool_features *pf, char *result,
3363 unsigned sz, unsigned maxlen)
3364{
3365 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3366 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3367 pf->error_if_no_space;
3368 DMEMIT("%u ", count);
3369
3370 if (!pf->zero_new_blocks)
3371 DMEMIT("skip_block_zeroing ");
3372
3373 if (!pf->discard_enabled)
3374 DMEMIT("ignore_discard ");
3375
3376 if (!pf->discard_passdown)
3377 DMEMIT("no_discard_passdown ");
3378
3379 if (pf->mode == PM_READ_ONLY)
3380 DMEMIT("read_only ");
3381
3382 if (pf->error_if_no_space)
3383 DMEMIT("error_if_no_space ");
3384}
3385
3386/*
3387 * Status line is:
3388 * <transaction id> <used metadata sectors>/<total metadata sectors>
3389 * <used data sectors>/<total data sectors> <held metadata root>
3390 */
3391static void pool_status(struct dm_target *ti, status_type_t type,
3392 unsigned status_flags, char *result, unsigned maxlen)
3393{
3394 int r;
3395 unsigned sz = 0;
3396 uint64_t transaction_id;
3397 dm_block_t nr_free_blocks_data;
3398 dm_block_t nr_free_blocks_metadata;
3399 dm_block_t nr_blocks_data;
3400 dm_block_t nr_blocks_metadata;
3401 dm_block_t held_root;
3402 char buf[BDEVNAME_SIZE];
3403 char buf2[BDEVNAME_SIZE];
3404 struct pool_c *pt = ti->private;
3405 struct pool *pool = pt->pool;
3406
3407 switch (type) {
3408 case STATUSTYPE_INFO:
3409 if (get_pool_mode(pool) == PM_FAIL) {
3410 DMEMIT("Fail");
3411 break;
3412 }
3413
3414 /* Commit to ensure statistics aren't out-of-date */
3415 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3416 (void) commit(pool);
3417
3418 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3419 if (r) {
3420 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3421 dm_device_name(pool->pool_md), r);
3422 goto err;
3423 }
3424
3425 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3426 if (r) {
3427 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3428 dm_device_name(pool->pool_md), r);
3429 goto err;
3430 }
3431
3432 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3433 if (r) {
3434 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3435 dm_device_name(pool->pool_md), r);
3436 goto err;
3437 }
3438
3439 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3440 if (r) {
3441 DMERR("%s: dm_pool_get_free_block_count returned %d",
3442 dm_device_name(pool->pool_md), r);
3443 goto err;
3444 }
3445
3446 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3447 if (r) {
3448 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3449 dm_device_name(pool->pool_md), r);
3450 goto err;
3451 }
3452
3453 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3454 if (r) {
3455 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3456 dm_device_name(pool->pool_md), r);
3457 goto err;
3458 }
3459
3460 DMEMIT("%llu %llu/%llu %llu/%llu ",
3461 (unsigned long long)transaction_id,
3462 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3463 (unsigned long long)nr_blocks_metadata,
3464 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3465 (unsigned long long)nr_blocks_data);
3466
3467 if (held_root)
3468 DMEMIT("%llu ", held_root);
3469 else
3470 DMEMIT("- ");
3471
3472 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3473 DMEMIT("out_of_data_space ");
3474 else if (pool->pf.mode == PM_READ_ONLY)
3475 DMEMIT("ro ");
3476 else
3477 DMEMIT("rw ");
3478
3479 if (!pool->pf.discard_enabled)
3480 DMEMIT("ignore_discard ");
3481 else if (pool->pf.discard_passdown)
3482 DMEMIT("discard_passdown ");
3483 else
3484 DMEMIT("no_discard_passdown ");
3485
3486 if (pool->pf.error_if_no_space)
3487 DMEMIT("error_if_no_space ");
3488 else
3489 DMEMIT("queue_if_no_space ");
3490
3491 break;
3492
3493 case STATUSTYPE_TABLE:
3494 DMEMIT("%s %s %lu %llu ",
3495 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3496 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3497 (unsigned long)pool->sectors_per_block,
3498 (unsigned long long)pt->low_water_blocks);
3499 emit_flags(&pt->requested_pf, result, sz, maxlen);
3500 break;
3501 }
3502 return;
3503
3504err:
3505 DMEMIT("Error");
3506}
3507
3508static int pool_iterate_devices(struct dm_target *ti,
3509 iterate_devices_callout_fn fn, void *data)
3510{
3511 struct pool_c *pt = ti->private;
3512
3513 return fn(ti, pt->data_dev, 0, ti->len, data);
3514}
3515
3516static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3517 struct bio_vec *biovec, int max_size)
3518{
3519 struct pool_c *pt = ti->private;
3520 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3521
3522 if (!q->merge_bvec_fn)
3523 return max_size;
3524
3525 bvm->bi_bdev = pt->data_dev->bdev;
3526
3527 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3528}
3529
3530static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3531{
3532 struct pool *pool = pt->pool;
3533 struct queue_limits *data_limits;
3534
3535 limits->max_discard_sectors = pool->sectors_per_block;
3536
3537 /*
3538 * discard_granularity is just a hint, and not enforced.
3539 */
3540 if (pt->adjusted_pf.discard_passdown) {
3541 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3542 limits->discard_granularity = max(data_limits->discard_granularity,
3543 pool->sectors_per_block << SECTOR_SHIFT);
3544 } else
3545 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3546}
3547
3548static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3549{
3550 struct pool_c *pt = ti->private;
3551 struct pool *pool = pt->pool;
3552 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3553
3554 /*
3555 * Adjust max_sectors_kb to highest possible power-of-2
3556 * factor of pool->sectors_per_block.
3557 */
3558 if (limits->max_hw_sectors & (limits->max_hw_sectors - 1))
3559 limits->max_sectors = rounddown_pow_of_two(limits->max_hw_sectors);
3560 else
3561 limits->max_sectors = limits->max_hw_sectors;
3562
3563 if (limits->max_sectors < pool->sectors_per_block) {
3564 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3565 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3566 limits->max_sectors--;
3567 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3568 }
3569 } else if (block_size_is_power_of_two(pool)) {
3570 /* max_sectors_kb is >= power-of-2 thinp blocksize */
3571 while (!is_factor(limits->max_sectors, pool->sectors_per_block)) {
3572 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3573 limits->max_sectors--;
3574 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3575 }
3576 }
3577
3578 /*
3579 * If the system-determined stacked limits are compatible with the
3580 * pool's blocksize (io_opt is a factor) do not override them.
3581 */
3582 if (io_opt_sectors < pool->sectors_per_block ||
3583 !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3584 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3585 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3586 else
3587 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3588 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3589 }
3590
3591 /*
3592 * pt->adjusted_pf is a staging area for the actual features to use.
3593 * They get transferred to the live pool in bind_control_target()
3594 * called from pool_preresume().
3595 */
3596 if (!pt->adjusted_pf.discard_enabled) {
3597 /*
3598 * Must explicitly disallow stacking discard limits otherwise the
3599 * block layer will stack them if pool's data device has support.
3600 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3601 * user to see that, so make sure to set all discard limits to 0.
3602 */
3603 limits->discard_granularity = 0;
3604 return;
3605 }
3606
3607 disable_passdown_if_not_supported(pt);
3608
3609 set_discard_limits(pt, limits);
3610}
3611
3612static struct target_type pool_target = {
3613 .name = "thin-pool",
3614 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3615 DM_TARGET_IMMUTABLE,
3616 .version = {1, 14, 0},
3617 .module = THIS_MODULE,
3618 .ctr = pool_ctr,
3619 .dtr = pool_dtr,
3620 .map = pool_map,
3621 .presuspend = pool_presuspend,
3622 .presuspend_undo = pool_presuspend_undo,
3623 .postsuspend = pool_postsuspend,
3624 .preresume = pool_preresume,
3625 .resume = pool_resume,
3626 .message = pool_message,
3627 .status = pool_status,
3628 .merge = pool_merge,
3629 .iterate_devices = pool_iterate_devices,
3630 .io_hints = pool_io_hints,
3631};
3632
3633/*----------------------------------------------------------------
3634 * Thin target methods
3635 *--------------------------------------------------------------*/
3636static void thin_get(struct thin_c *tc)
3637{
3638 atomic_inc(&tc->refcount);
3639}
3640
3641static void thin_put(struct thin_c *tc)
3642{
3643 if (atomic_dec_and_test(&tc->refcount))
3644 complete(&tc->can_destroy);
3645}
3646
3647static void thin_dtr(struct dm_target *ti)
3648{
3649 struct thin_c *tc = ti->private;
3650 unsigned long flags;
3651
3652 spin_lock_irqsave(&tc->pool->lock, flags);
3653 list_del_rcu(&tc->list);
3654 spin_unlock_irqrestore(&tc->pool->lock, flags);
3655 synchronize_rcu();
3656
3657 thin_put(tc);
3658 wait_for_completion(&tc->can_destroy);
3659
3660 mutex_lock(&dm_thin_pool_table.mutex);
3661
3662 __pool_dec(tc->pool);
3663 dm_pool_close_thin_device(tc->td);
3664 dm_put_device(ti, tc->pool_dev);
3665 if (tc->origin_dev)
3666 dm_put_device(ti, tc->origin_dev);
3667 kfree(tc);
3668
3669 mutex_unlock(&dm_thin_pool_table.mutex);
3670}
3671
3672/*
3673 * Thin target parameters:
3674 *
3675 * <pool_dev> <dev_id> [origin_dev]
3676 *
3677 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3678 * dev_id: the internal device identifier
3679 * origin_dev: a device external to the pool that should act as the origin
3680 *
3681 * If the pool device has discards disabled, they get disabled for the thin
3682 * device as well.
3683 */
3684static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3685{
3686 int r;
3687 struct thin_c *tc;
3688 struct dm_dev *pool_dev, *origin_dev;
3689 struct mapped_device *pool_md;
3690 unsigned long flags;
3691
3692 mutex_lock(&dm_thin_pool_table.mutex);
3693
3694 if (argc != 2 && argc != 3) {
3695 ti->error = "Invalid argument count";
3696 r = -EINVAL;
3697 goto out_unlock;
3698 }
3699
3700 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3701 if (!tc) {
3702 ti->error = "Out of memory";
3703 r = -ENOMEM;
3704 goto out_unlock;
3705 }
3706 spin_lock_init(&tc->lock);
3707 INIT_LIST_HEAD(&tc->deferred_cells);
3708 bio_list_init(&tc->deferred_bio_list);
3709 bio_list_init(&tc->retry_on_resume_list);
3710 tc->sort_bio_list = RB_ROOT;
3711
3712 if (argc == 3) {
3713 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3714 if (r) {
3715 ti->error = "Error opening origin device";
3716 goto bad_origin_dev;
3717 }
3718 tc->origin_dev = origin_dev;
3719 }
3720
3721 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3722 if (r) {
3723 ti->error = "Error opening pool device";
3724 goto bad_pool_dev;
3725 }
3726 tc->pool_dev = pool_dev;
3727
3728 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3729 ti->error = "Invalid device id";
3730 r = -EINVAL;
3731 goto bad_common;
3732 }
3733
3734 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3735 if (!pool_md) {
3736 ti->error = "Couldn't get pool mapped device";
3737 r = -EINVAL;
3738 goto bad_common;
3739 }
3740
3741 tc->pool = __pool_table_lookup(pool_md);
3742 if (!tc->pool) {
3743 ti->error = "Couldn't find pool object";
3744 r = -EINVAL;
3745 goto bad_pool_lookup;
3746 }
3747 __pool_inc(tc->pool);
3748
3749 if (get_pool_mode(tc->pool) == PM_FAIL) {
3750 ti->error = "Couldn't open thin device, Pool is in fail mode";
3751 r = -EINVAL;
3752 goto bad_pool;
3753 }
3754
3755 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3756 if (r) {
3757 ti->error = "Couldn't open thin internal device";
3758 goto bad_pool;
3759 }
3760
3761 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3762 if (r)
3763 goto bad;
3764
3765 ti->num_flush_bios = 1;
3766 ti->flush_supported = true;
3767 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3768
3769 /* In case the pool supports discards, pass them on. */
3770 ti->discard_zeroes_data_unsupported = true;
3771 if (tc->pool->pf.discard_enabled) {
3772 ti->discards_supported = true;
3773 ti->num_discard_bios = 1;
3774 /* Discard bios must be split on a block boundary */
3775 ti->split_discard_bios = true;
3776 }
3777
3778 mutex_unlock(&dm_thin_pool_table.mutex);
3779
3780 spin_lock_irqsave(&tc->pool->lock, flags);
3781 if (tc->pool->suspended) {
3782 spin_unlock_irqrestore(&tc->pool->lock, flags);
3783 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
3784 ti->error = "Unable to activate thin device while pool is suspended";
3785 r = -EINVAL;
3786 goto bad;
3787 }
3788 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3789 spin_unlock_irqrestore(&tc->pool->lock, flags);
3790 /*
3791 * This synchronize_rcu() call is needed here otherwise we risk a
3792 * wake_worker() call finding no bios to process (because the newly
3793 * added tc isn't yet visible). So this reduces latency since we
3794 * aren't then dependent on the periodic commit to wake_worker().
3795 */
3796 synchronize_rcu();
3797
3798 dm_put(pool_md);
3799
3800 atomic_set(&tc->refcount, 1);
3801 init_completion(&tc->can_destroy);
3802
3803 return 0;
3804
3805bad:
3806 dm_pool_close_thin_device(tc->td);
3807bad_pool:
3808 __pool_dec(tc->pool);
3809bad_pool_lookup:
3810 dm_put(pool_md);
3811bad_common:
3812 dm_put_device(ti, tc->pool_dev);
3813bad_pool_dev:
3814 if (tc->origin_dev)
3815 dm_put_device(ti, tc->origin_dev);
3816bad_origin_dev:
3817 kfree(tc);
3818out_unlock:
3819 mutex_unlock(&dm_thin_pool_table.mutex);
3820
3821 return r;
3822}
3823
3824static int thin_map(struct dm_target *ti, struct bio *bio)
3825{
3826 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3827
3828 return thin_bio_map(ti, bio);
3829}
3830
3831static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3832{
3833 unsigned long flags;
3834 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3835 struct list_head work;
3836 struct dm_thin_new_mapping *m, *tmp;
3837 struct pool *pool = h->tc->pool;
3838
3839 if (h->shared_read_entry) {
3840 INIT_LIST_HEAD(&work);
3841 dm_deferred_entry_dec(h->shared_read_entry, &work);
3842
3843 spin_lock_irqsave(&pool->lock, flags);
3844 list_for_each_entry_safe(m, tmp, &work, list) {
3845 list_del(&m->list);
3846 __complete_mapping_preparation(m);
3847 }
3848 spin_unlock_irqrestore(&pool->lock, flags);
3849 }
3850
3851 if (h->all_io_entry) {
3852 INIT_LIST_HEAD(&work);
3853 dm_deferred_entry_dec(h->all_io_entry, &work);
3854 if (!list_empty(&work)) {
3855 spin_lock_irqsave(&pool->lock, flags);
3856 list_for_each_entry_safe(m, tmp, &work, list)
3857 list_add_tail(&m->list, &pool->prepared_discards);
3858 spin_unlock_irqrestore(&pool->lock, flags);
3859 wake_worker(pool);
3860 }
3861 }
3862
3863 return 0;
3864}
3865
3866static void thin_presuspend(struct dm_target *ti)
3867{
3868 struct thin_c *tc = ti->private;
3869
3870 if (dm_noflush_suspending(ti))
3871 noflush_work(tc, do_noflush_start);
3872}
3873
3874static void thin_postsuspend(struct dm_target *ti)
3875{
3876 struct thin_c *tc = ti->private;
3877
3878 /*
3879 * The dm_noflush_suspending flag has been cleared by now, so
3880 * unfortunately we must always run this.
3881 */
3882 noflush_work(tc, do_noflush_stop);
3883}
3884
3885static int thin_preresume(struct dm_target *ti)
3886{
3887 struct thin_c *tc = ti->private;
3888
3889 if (tc->origin_dev)
3890 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
3891
3892 return 0;
3893}
3894
3895/*
3896 * <nr mapped sectors> <highest mapped sector>
3897 */
3898static void thin_status(struct dm_target *ti, status_type_t type,
3899 unsigned status_flags, char *result, unsigned maxlen)
3900{
3901 int r;
3902 ssize_t sz = 0;
3903 dm_block_t mapped, highest;
3904 char buf[BDEVNAME_SIZE];
3905 struct thin_c *tc = ti->private;
3906
3907 if (get_pool_mode(tc->pool) == PM_FAIL) {
3908 DMEMIT("Fail");
3909 return;
3910 }
3911
3912 if (!tc->td)
3913 DMEMIT("-");
3914 else {
3915 switch (type) {
3916 case STATUSTYPE_INFO:
3917 r = dm_thin_get_mapped_count(tc->td, &mapped);
3918 if (r) {
3919 DMERR("dm_thin_get_mapped_count returned %d", r);
3920 goto err;
3921 }
3922
3923 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3924 if (r < 0) {
3925 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3926 goto err;
3927 }
3928
3929 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3930 if (r)
3931 DMEMIT("%llu", ((highest + 1) *
3932 tc->pool->sectors_per_block) - 1);
3933 else
3934 DMEMIT("-");
3935 break;
3936
3937 case STATUSTYPE_TABLE:
3938 DMEMIT("%s %lu",
3939 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3940 (unsigned long) tc->dev_id);
3941 if (tc->origin_dev)
3942 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3943 break;
3944 }
3945 }
3946
3947 return;
3948
3949err:
3950 DMEMIT("Error");
3951}
3952
3953static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3954 struct bio_vec *biovec, int max_size)
3955{
3956 struct thin_c *tc = ti->private;
3957 struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev);
3958
3959 if (!q->merge_bvec_fn)
3960 return max_size;
3961
3962 bvm->bi_bdev = tc->pool_dev->bdev;
3963 bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector);
3964
3965 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3966}
3967
3968static int thin_iterate_devices(struct dm_target *ti,
3969 iterate_devices_callout_fn fn, void *data)
3970{
3971 sector_t blocks;
3972 struct thin_c *tc = ti->private;
3973 struct pool *pool = tc->pool;
3974
3975 /*
3976 * We can't call dm_pool_get_data_dev_size() since that blocks. So
3977 * we follow a more convoluted path through to the pool's target.
3978 */
3979 if (!pool->ti)
3980 return 0; /* nothing is bound */
3981
3982 blocks = pool->ti->len;
3983 (void) sector_div(blocks, pool->sectors_per_block);
3984 if (blocks)
3985 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3986
3987 return 0;
3988}
3989
3990static struct target_type thin_target = {
3991 .name = "thin",
3992 .version = {1, 14, 0},
3993 .module = THIS_MODULE,
3994 .ctr = thin_ctr,
3995 .dtr = thin_dtr,
3996 .map = thin_map,
3997 .end_io = thin_endio,
3998 .preresume = thin_preresume,
3999 .presuspend = thin_presuspend,
4000 .postsuspend = thin_postsuspend,
4001 .status = thin_status,
4002 .merge = thin_merge,
4003 .iterate_devices = thin_iterate_devices,
4004};
4005
4006/*----------------------------------------------------------------*/
4007
4008static int __init dm_thin_init(void)
4009{
4010 int r;
4011
4012 pool_table_init();
4013
4014 r = dm_register_target(&thin_target);
4015 if (r)
4016 return r;
4017
4018 r = dm_register_target(&pool_target);
4019 if (r)
4020 goto bad_pool_target;
4021
4022 r = -ENOMEM;
4023
4024 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4025 if (!_new_mapping_cache)
4026 goto bad_new_mapping_cache;
4027
4028 return 0;
4029
4030bad_new_mapping_cache:
4031 dm_unregister_target(&pool_target);
4032bad_pool_target:
4033 dm_unregister_target(&thin_target);
4034
4035 return r;
4036}
4037
4038static void dm_thin_exit(void)
4039{
4040 dm_unregister_target(&thin_target);
4041 dm_unregister_target(&pool_target);
4042
4043 kmem_cache_destroy(_new_mapping_cache);
4044}
4045
4046module_init(dm_thin_init);
4047module_exit(dm_thin_exit);
4048
4049module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4050MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4051
4052MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4053MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4054MODULE_LICENSE("GPL");