Merge branches 'acpi-resources', 'acpi-battery', 'acpi-doc' and 'acpi-pnp'
[linux-2.6-block.git] / drivers / dma / dmaengine.c
... / ...
CommitLineData
1/*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in the
15 * file called COPYING.
16 */
17
18/*
19 * This code implements the DMA subsystem. It provides a HW-neutral interface
20 * for other kernel code to use asynchronous memory copy capabilities,
21 * if present, and allows different HW DMA drivers to register as providing
22 * this capability.
23 *
24 * Due to the fact we are accelerating what is already a relatively fast
25 * operation, the code goes to great lengths to avoid additional overhead,
26 * such as locking.
27 *
28 * LOCKING:
29 *
30 * The subsystem keeps a global list of dma_device structs it is protected by a
31 * mutex, dma_list_mutex.
32 *
33 * A subsystem can get access to a channel by calling dmaengine_get() followed
34 * by dma_find_channel(), or if it has need for an exclusive channel it can call
35 * dma_request_channel(). Once a channel is allocated a reference is taken
36 * against its corresponding driver to disable removal.
37 *
38 * Each device has a channels list, which runs unlocked but is never modified
39 * once the device is registered, it's just setup by the driver.
40 *
41 * See Documentation/dmaengine.txt for more details
42 */
43
44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46#include <linux/dma-mapping.h>
47#include <linux/init.h>
48#include <linux/module.h>
49#include <linux/mm.h>
50#include <linux/device.h>
51#include <linux/dmaengine.h>
52#include <linux/hardirq.h>
53#include <linux/spinlock.h>
54#include <linux/percpu.h>
55#include <linux/rcupdate.h>
56#include <linux/mutex.h>
57#include <linux/jiffies.h>
58#include <linux/rculist.h>
59#include <linux/idr.h>
60#include <linux/slab.h>
61#include <linux/acpi.h>
62#include <linux/acpi_dma.h>
63#include <linux/of_dma.h>
64#include <linux/mempool.h>
65
66static DEFINE_MUTEX(dma_list_mutex);
67static DEFINE_IDR(dma_idr);
68static LIST_HEAD(dma_device_list);
69static long dmaengine_ref_count;
70
71/* --- sysfs implementation --- */
72
73/**
74 * dev_to_dma_chan - convert a device pointer to the its sysfs container object
75 * @dev - device node
76 *
77 * Must be called under dma_list_mutex
78 */
79static struct dma_chan *dev_to_dma_chan(struct device *dev)
80{
81 struct dma_chan_dev *chan_dev;
82
83 chan_dev = container_of(dev, typeof(*chan_dev), device);
84 return chan_dev->chan;
85}
86
87static ssize_t memcpy_count_show(struct device *dev,
88 struct device_attribute *attr, char *buf)
89{
90 struct dma_chan *chan;
91 unsigned long count = 0;
92 int i;
93 int err;
94
95 mutex_lock(&dma_list_mutex);
96 chan = dev_to_dma_chan(dev);
97 if (chan) {
98 for_each_possible_cpu(i)
99 count += per_cpu_ptr(chan->local, i)->memcpy_count;
100 err = sprintf(buf, "%lu\n", count);
101 } else
102 err = -ENODEV;
103 mutex_unlock(&dma_list_mutex);
104
105 return err;
106}
107static DEVICE_ATTR_RO(memcpy_count);
108
109static ssize_t bytes_transferred_show(struct device *dev,
110 struct device_attribute *attr, char *buf)
111{
112 struct dma_chan *chan;
113 unsigned long count = 0;
114 int i;
115 int err;
116
117 mutex_lock(&dma_list_mutex);
118 chan = dev_to_dma_chan(dev);
119 if (chan) {
120 for_each_possible_cpu(i)
121 count += per_cpu_ptr(chan->local, i)->bytes_transferred;
122 err = sprintf(buf, "%lu\n", count);
123 } else
124 err = -ENODEV;
125 mutex_unlock(&dma_list_mutex);
126
127 return err;
128}
129static DEVICE_ATTR_RO(bytes_transferred);
130
131static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
132 char *buf)
133{
134 struct dma_chan *chan;
135 int err;
136
137 mutex_lock(&dma_list_mutex);
138 chan = dev_to_dma_chan(dev);
139 if (chan)
140 err = sprintf(buf, "%d\n", chan->client_count);
141 else
142 err = -ENODEV;
143 mutex_unlock(&dma_list_mutex);
144
145 return err;
146}
147static DEVICE_ATTR_RO(in_use);
148
149static struct attribute *dma_dev_attrs[] = {
150 &dev_attr_memcpy_count.attr,
151 &dev_attr_bytes_transferred.attr,
152 &dev_attr_in_use.attr,
153 NULL,
154};
155ATTRIBUTE_GROUPS(dma_dev);
156
157static void chan_dev_release(struct device *dev)
158{
159 struct dma_chan_dev *chan_dev;
160
161 chan_dev = container_of(dev, typeof(*chan_dev), device);
162 if (atomic_dec_and_test(chan_dev->idr_ref)) {
163 mutex_lock(&dma_list_mutex);
164 idr_remove(&dma_idr, chan_dev->dev_id);
165 mutex_unlock(&dma_list_mutex);
166 kfree(chan_dev->idr_ref);
167 }
168 kfree(chan_dev);
169}
170
171static struct class dma_devclass = {
172 .name = "dma",
173 .dev_groups = dma_dev_groups,
174 .dev_release = chan_dev_release,
175};
176
177/* --- client and device registration --- */
178
179#define dma_device_satisfies_mask(device, mask) \
180 __dma_device_satisfies_mask((device), &(mask))
181static int
182__dma_device_satisfies_mask(struct dma_device *device,
183 const dma_cap_mask_t *want)
184{
185 dma_cap_mask_t has;
186
187 bitmap_and(has.bits, want->bits, device->cap_mask.bits,
188 DMA_TX_TYPE_END);
189 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
190}
191
192static struct module *dma_chan_to_owner(struct dma_chan *chan)
193{
194 return chan->device->dev->driver->owner;
195}
196
197/**
198 * balance_ref_count - catch up the channel reference count
199 * @chan - channel to balance ->client_count versus dmaengine_ref_count
200 *
201 * balance_ref_count must be called under dma_list_mutex
202 */
203static void balance_ref_count(struct dma_chan *chan)
204{
205 struct module *owner = dma_chan_to_owner(chan);
206
207 while (chan->client_count < dmaengine_ref_count) {
208 __module_get(owner);
209 chan->client_count++;
210 }
211}
212
213/**
214 * dma_chan_get - try to grab a dma channel's parent driver module
215 * @chan - channel to grab
216 *
217 * Must be called under dma_list_mutex
218 */
219static int dma_chan_get(struct dma_chan *chan)
220{
221 struct module *owner = dma_chan_to_owner(chan);
222 int ret;
223
224 /* The channel is already in use, update client count */
225 if (chan->client_count) {
226 __module_get(owner);
227 goto out;
228 }
229
230 if (!try_module_get(owner))
231 return -ENODEV;
232
233 /* allocate upon first client reference */
234 if (chan->device->device_alloc_chan_resources) {
235 ret = chan->device->device_alloc_chan_resources(chan);
236 if (ret < 0)
237 goto err_out;
238 }
239
240 if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
241 balance_ref_count(chan);
242
243out:
244 chan->client_count++;
245 return 0;
246
247err_out:
248 module_put(owner);
249 return ret;
250}
251
252/**
253 * dma_chan_put - drop a reference to a dma channel's parent driver module
254 * @chan - channel to release
255 *
256 * Must be called under dma_list_mutex
257 */
258static void dma_chan_put(struct dma_chan *chan)
259{
260 /* This channel is not in use, bail out */
261 if (!chan->client_count)
262 return;
263
264 chan->client_count--;
265 module_put(dma_chan_to_owner(chan));
266
267 /* This channel is not in use anymore, free it */
268 if (!chan->client_count && chan->device->device_free_chan_resources)
269 chan->device->device_free_chan_resources(chan);
270}
271
272enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
273{
274 enum dma_status status;
275 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
276
277 dma_async_issue_pending(chan);
278 do {
279 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
280 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
281 pr_err("%s: timeout!\n", __func__);
282 return DMA_ERROR;
283 }
284 if (status != DMA_IN_PROGRESS)
285 break;
286 cpu_relax();
287 } while (1);
288
289 return status;
290}
291EXPORT_SYMBOL(dma_sync_wait);
292
293/**
294 * dma_cap_mask_all - enable iteration over all operation types
295 */
296static dma_cap_mask_t dma_cap_mask_all;
297
298/**
299 * dma_chan_tbl_ent - tracks channel allocations per core/operation
300 * @chan - associated channel for this entry
301 */
302struct dma_chan_tbl_ent {
303 struct dma_chan *chan;
304};
305
306/**
307 * channel_table - percpu lookup table for memory-to-memory offload providers
308 */
309static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
310
311static int __init dma_channel_table_init(void)
312{
313 enum dma_transaction_type cap;
314 int err = 0;
315
316 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
317
318 /* 'interrupt', 'private', and 'slave' are channel capabilities,
319 * but are not associated with an operation so they do not need
320 * an entry in the channel_table
321 */
322 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
323 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
324 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
325
326 for_each_dma_cap_mask(cap, dma_cap_mask_all) {
327 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
328 if (!channel_table[cap]) {
329 err = -ENOMEM;
330 break;
331 }
332 }
333
334 if (err) {
335 pr_err("initialization failure\n");
336 for_each_dma_cap_mask(cap, dma_cap_mask_all)
337 free_percpu(channel_table[cap]);
338 }
339
340 return err;
341}
342arch_initcall(dma_channel_table_init);
343
344/**
345 * dma_find_channel - find a channel to carry out the operation
346 * @tx_type: transaction type
347 */
348struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
349{
350 return this_cpu_read(channel_table[tx_type]->chan);
351}
352EXPORT_SYMBOL(dma_find_channel);
353
354/**
355 * dma_issue_pending_all - flush all pending operations across all channels
356 */
357void dma_issue_pending_all(void)
358{
359 struct dma_device *device;
360 struct dma_chan *chan;
361
362 rcu_read_lock();
363 list_for_each_entry_rcu(device, &dma_device_list, global_node) {
364 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
365 continue;
366 list_for_each_entry(chan, &device->channels, device_node)
367 if (chan->client_count)
368 device->device_issue_pending(chan);
369 }
370 rcu_read_unlock();
371}
372EXPORT_SYMBOL(dma_issue_pending_all);
373
374/**
375 * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu
376 */
377static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
378{
379 int node = dev_to_node(chan->device->dev);
380 return node == -1 || cpumask_test_cpu(cpu, cpumask_of_node(node));
381}
382
383/**
384 * min_chan - returns the channel with min count and in the same numa-node as the cpu
385 * @cap: capability to match
386 * @cpu: cpu index which the channel should be close to
387 *
388 * If some channels are close to the given cpu, the one with the lowest
389 * reference count is returned. Otherwise, cpu is ignored and only the
390 * reference count is taken into account.
391 * Must be called under dma_list_mutex.
392 */
393static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
394{
395 struct dma_device *device;
396 struct dma_chan *chan;
397 struct dma_chan *min = NULL;
398 struct dma_chan *localmin = NULL;
399
400 list_for_each_entry(device, &dma_device_list, global_node) {
401 if (!dma_has_cap(cap, device->cap_mask) ||
402 dma_has_cap(DMA_PRIVATE, device->cap_mask))
403 continue;
404 list_for_each_entry(chan, &device->channels, device_node) {
405 if (!chan->client_count)
406 continue;
407 if (!min || chan->table_count < min->table_count)
408 min = chan;
409
410 if (dma_chan_is_local(chan, cpu))
411 if (!localmin ||
412 chan->table_count < localmin->table_count)
413 localmin = chan;
414 }
415 }
416
417 chan = localmin ? localmin : min;
418
419 if (chan)
420 chan->table_count++;
421
422 return chan;
423}
424
425/**
426 * dma_channel_rebalance - redistribute the available channels
427 *
428 * Optimize for cpu isolation (each cpu gets a dedicated channel for an
429 * operation type) in the SMP case, and operation isolation (avoid
430 * multi-tasking channels) in the non-SMP case. Must be called under
431 * dma_list_mutex.
432 */
433static void dma_channel_rebalance(void)
434{
435 struct dma_chan *chan;
436 struct dma_device *device;
437 int cpu;
438 int cap;
439
440 /* undo the last distribution */
441 for_each_dma_cap_mask(cap, dma_cap_mask_all)
442 for_each_possible_cpu(cpu)
443 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
444
445 list_for_each_entry(device, &dma_device_list, global_node) {
446 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
447 continue;
448 list_for_each_entry(chan, &device->channels, device_node)
449 chan->table_count = 0;
450 }
451
452 /* don't populate the channel_table if no clients are available */
453 if (!dmaengine_ref_count)
454 return;
455
456 /* redistribute available channels */
457 for_each_dma_cap_mask(cap, dma_cap_mask_all)
458 for_each_online_cpu(cpu) {
459 chan = min_chan(cap, cpu);
460 per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
461 }
462}
463
464int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
465{
466 struct dma_device *device;
467
468 if (!chan || !caps)
469 return -EINVAL;
470
471 device = chan->device;
472
473 /* check if the channel supports slave transactions */
474 if (!test_bit(DMA_SLAVE, device->cap_mask.bits))
475 return -ENXIO;
476
477 /*
478 * Check whether it reports it uses the generic slave
479 * capabilities, if not, that means it doesn't support any
480 * kind of slave capabilities reporting.
481 */
482 if (!device->directions)
483 return -ENXIO;
484
485 caps->src_addr_widths = device->src_addr_widths;
486 caps->dst_addr_widths = device->dst_addr_widths;
487 caps->directions = device->directions;
488 caps->residue_granularity = device->residue_granularity;
489
490 caps->cmd_pause = !!device->device_pause;
491 caps->cmd_terminate = !!device->device_terminate_all;
492
493 return 0;
494}
495EXPORT_SYMBOL_GPL(dma_get_slave_caps);
496
497static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
498 struct dma_device *dev,
499 dma_filter_fn fn, void *fn_param)
500{
501 struct dma_chan *chan;
502
503 if (!__dma_device_satisfies_mask(dev, mask)) {
504 pr_debug("%s: wrong capabilities\n", __func__);
505 return NULL;
506 }
507 /* devices with multiple channels need special handling as we need to
508 * ensure that all channels are either private or public.
509 */
510 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
511 list_for_each_entry(chan, &dev->channels, device_node) {
512 /* some channels are already publicly allocated */
513 if (chan->client_count)
514 return NULL;
515 }
516
517 list_for_each_entry(chan, &dev->channels, device_node) {
518 if (chan->client_count) {
519 pr_debug("%s: %s busy\n",
520 __func__, dma_chan_name(chan));
521 continue;
522 }
523 if (fn && !fn(chan, fn_param)) {
524 pr_debug("%s: %s filter said false\n",
525 __func__, dma_chan_name(chan));
526 continue;
527 }
528 return chan;
529 }
530
531 return NULL;
532}
533
534/**
535 * dma_request_slave_channel - try to get specific channel exclusively
536 * @chan: target channel
537 */
538struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
539{
540 int err = -EBUSY;
541
542 /* lock against __dma_request_channel */
543 mutex_lock(&dma_list_mutex);
544
545 if (chan->client_count == 0) {
546 err = dma_chan_get(chan);
547 if (err)
548 pr_debug("%s: failed to get %s: (%d)\n",
549 __func__, dma_chan_name(chan), err);
550 } else
551 chan = NULL;
552
553 mutex_unlock(&dma_list_mutex);
554
555
556 return chan;
557}
558EXPORT_SYMBOL_GPL(dma_get_slave_channel);
559
560struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
561{
562 dma_cap_mask_t mask;
563 struct dma_chan *chan;
564 int err;
565
566 dma_cap_zero(mask);
567 dma_cap_set(DMA_SLAVE, mask);
568
569 /* lock against __dma_request_channel */
570 mutex_lock(&dma_list_mutex);
571
572 chan = private_candidate(&mask, device, NULL, NULL);
573 if (chan) {
574 dma_cap_set(DMA_PRIVATE, device->cap_mask);
575 device->privatecnt++;
576 err = dma_chan_get(chan);
577 if (err) {
578 pr_debug("%s: failed to get %s: (%d)\n",
579 __func__, dma_chan_name(chan), err);
580 chan = NULL;
581 if (--device->privatecnt == 0)
582 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
583 }
584 }
585
586 mutex_unlock(&dma_list_mutex);
587
588 return chan;
589}
590EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
591
592/**
593 * __dma_request_channel - try to allocate an exclusive channel
594 * @mask: capabilities that the channel must satisfy
595 * @fn: optional callback to disposition available channels
596 * @fn_param: opaque parameter to pass to dma_filter_fn
597 *
598 * Returns pointer to appropriate DMA channel on success or NULL.
599 */
600struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
601 dma_filter_fn fn, void *fn_param)
602{
603 struct dma_device *device, *_d;
604 struct dma_chan *chan = NULL;
605 int err;
606
607 /* Find a channel */
608 mutex_lock(&dma_list_mutex);
609 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
610 chan = private_candidate(mask, device, fn, fn_param);
611 if (chan) {
612 /* Found a suitable channel, try to grab, prep, and
613 * return it. We first set DMA_PRIVATE to disable
614 * balance_ref_count as this channel will not be
615 * published in the general-purpose allocator
616 */
617 dma_cap_set(DMA_PRIVATE, device->cap_mask);
618 device->privatecnt++;
619 err = dma_chan_get(chan);
620
621 if (err == -ENODEV) {
622 pr_debug("%s: %s module removed\n",
623 __func__, dma_chan_name(chan));
624 list_del_rcu(&device->global_node);
625 } else if (err)
626 pr_debug("%s: failed to get %s: (%d)\n",
627 __func__, dma_chan_name(chan), err);
628 else
629 break;
630 if (--device->privatecnt == 0)
631 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
632 chan = NULL;
633 }
634 }
635 mutex_unlock(&dma_list_mutex);
636
637 pr_debug("%s: %s (%s)\n",
638 __func__,
639 chan ? "success" : "fail",
640 chan ? dma_chan_name(chan) : NULL);
641
642 return chan;
643}
644EXPORT_SYMBOL_GPL(__dma_request_channel);
645
646/**
647 * dma_request_slave_channel - try to allocate an exclusive slave channel
648 * @dev: pointer to client device structure
649 * @name: slave channel name
650 *
651 * Returns pointer to appropriate DMA channel on success or an error pointer.
652 */
653struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
654 const char *name)
655{
656 /* If device-tree is present get slave info from here */
657 if (dev->of_node)
658 return of_dma_request_slave_channel(dev->of_node, name);
659
660 /* If device was enumerated by ACPI get slave info from here */
661 if (ACPI_HANDLE(dev))
662 return acpi_dma_request_slave_chan_by_name(dev, name);
663
664 return ERR_PTR(-ENODEV);
665}
666EXPORT_SYMBOL_GPL(dma_request_slave_channel_reason);
667
668/**
669 * dma_request_slave_channel - try to allocate an exclusive slave channel
670 * @dev: pointer to client device structure
671 * @name: slave channel name
672 *
673 * Returns pointer to appropriate DMA channel on success or NULL.
674 */
675struct dma_chan *dma_request_slave_channel(struct device *dev,
676 const char *name)
677{
678 struct dma_chan *ch = dma_request_slave_channel_reason(dev, name);
679 if (IS_ERR(ch))
680 return NULL;
681 return ch;
682}
683EXPORT_SYMBOL_GPL(dma_request_slave_channel);
684
685void dma_release_channel(struct dma_chan *chan)
686{
687 mutex_lock(&dma_list_mutex);
688 WARN_ONCE(chan->client_count != 1,
689 "chan reference count %d != 1\n", chan->client_count);
690 dma_chan_put(chan);
691 /* drop PRIVATE cap enabled by __dma_request_channel() */
692 if (--chan->device->privatecnt == 0)
693 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
694 mutex_unlock(&dma_list_mutex);
695}
696EXPORT_SYMBOL_GPL(dma_release_channel);
697
698/**
699 * dmaengine_get - register interest in dma_channels
700 */
701void dmaengine_get(void)
702{
703 struct dma_device *device, *_d;
704 struct dma_chan *chan;
705 int err;
706
707 mutex_lock(&dma_list_mutex);
708 dmaengine_ref_count++;
709
710 /* try to grab channels */
711 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
712 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
713 continue;
714 list_for_each_entry(chan, &device->channels, device_node) {
715 err = dma_chan_get(chan);
716 if (err == -ENODEV) {
717 /* module removed before we could use it */
718 list_del_rcu(&device->global_node);
719 break;
720 } else if (err)
721 pr_debug("%s: failed to get %s: (%d)\n",
722 __func__, dma_chan_name(chan), err);
723 }
724 }
725
726 /* if this is the first reference and there were channels
727 * waiting we need to rebalance to get those channels
728 * incorporated into the channel table
729 */
730 if (dmaengine_ref_count == 1)
731 dma_channel_rebalance();
732 mutex_unlock(&dma_list_mutex);
733}
734EXPORT_SYMBOL(dmaengine_get);
735
736/**
737 * dmaengine_put - let dma drivers be removed when ref_count == 0
738 */
739void dmaengine_put(void)
740{
741 struct dma_device *device;
742 struct dma_chan *chan;
743
744 mutex_lock(&dma_list_mutex);
745 dmaengine_ref_count--;
746 BUG_ON(dmaengine_ref_count < 0);
747 /* drop channel references */
748 list_for_each_entry(device, &dma_device_list, global_node) {
749 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
750 continue;
751 list_for_each_entry(chan, &device->channels, device_node)
752 dma_chan_put(chan);
753 }
754 mutex_unlock(&dma_list_mutex);
755}
756EXPORT_SYMBOL(dmaengine_put);
757
758static bool device_has_all_tx_types(struct dma_device *device)
759{
760 /* A device that satisfies this test has channels that will never cause
761 * an async_tx channel switch event as all possible operation types can
762 * be handled.
763 */
764 #ifdef CONFIG_ASYNC_TX_DMA
765 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
766 return false;
767 #endif
768
769 #if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE)
770 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
771 return false;
772 #endif
773
774 #if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE)
775 if (!dma_has_cap(DMA_XOR, device->cap_mask))
776 return false;
777
778 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
779 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
780 return false;
781 #endif
782 #endif
783
784 #if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE)
785 if (!dma_has_cap(DMA_PQ, device->cap_mask))
786 return false;
787
788 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
789 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
790 return false;
791 #endif
792 #endif
793
794 return true;
795}
796
797static int get_dma_id(struct dma_device *device)
798{
799 int rc;
800
801 mutex_lock(&dma_list_mutex);
802
803 rc = idr_alloc(&dma_idr, NULL, 0, 0, GFP_KERNEL);
804 if (rc >= 0)
805 device->dev_id = rc;
806
807 mutex_unlock(&dma_list_mutex);
808 return rc < 0 ? rc : 0;
809}
810
811/**
812 * dma_async_device_register - registers DMA devices found
813 * @device: &dma_device
814 */
815int dma_async_device_register(struct dma_device *device)
816{
817 int chancnt = 0, rc;
818 struct dma_chan* chan;
819 atomic_t *idr_ref;
820
821 if (!device)
822 return -ENODEV;
823
824 /* validate device routines */
825 BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
826 !device->device_prep_dma_memcpy);
827 BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
828 !device->device_prep_dma_xor);
829 BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) &&
830 !device->device_prep_dma_xor_val);
831 BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) &&
832 !device->device_prep_dma_pq);
833 BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) &&
834 !device->device_prep_dma_pq_val);
835 BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
836 !device->device_prep_dma_interrupt);
837 BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) &&
838 !device->device_prep_dma_sg);
839 BUG_ON(dma_has_cap(DMA_CYCLIC, device->cap_mask) &&
840 !device->device_prep_dma_cyclic);
841 BUG_ON(dma_has_cap(DMA_INTERLEAVE, device->cap_mask) &&
842 !device->device_prep_interleaved_dma);
843
844 BUG_ON(!device->device_tx_status);
845 BUG_ON(!device->device_issue_pending);
846 BUG_ON(!device->dev);
847
848 /* note: this only matters in the
849 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
850 */
851 if (device_has_all_tx_types(device))
852 dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
853
854 idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
855 if (!idr_ref)
856 return -ENOMEM;
857 rc = get_dma_id(device);
858 if (rc != 0) {
859 kfree(idr_ref);
860 return rc;
861 }
862
863 atomic_set(idr_ref, 0);
864
865 /* represent channels in sysfs. Probably want devs too */
866 list_for_each_entry(chan, &device->channels, device_node) {
867 rc = -ENOMEM;
868 chan->local = alloc_percpu(typeof(*chan->local));
869 if (chan->local == NULL)
870 goto err_out;
871 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
872 if (chan->dev == NULL) {
873 free_percpu(chan->local);
874 chan->local = NULL;
875 goto err_out;
876 }
877
878 chan->chan_id = chancnt++;
879 chan->dev->device.class = &dma_devclass;
880 chan->dev->device.parent = device->dev;
881 chan->dev->chan = chan;
882 chan->dev->idr_ref = idr_ref;
883 chan->dev->dev_id = device->dev_id;
884 atomic_inc(idr_ref);
885 dev_set_name(&chan->dev->device, "dma%dchan%d",
886 device->dev_id, chan->chan_id);
887
888 rc = device_register(&chan->dev->device);
889 if (rc) {
890 free_percpu(chan->local);
891 chan->local = NULL;
892 kfree(chan->dev);
893 atomic_dec(idr_ref);
894 goto err_out;
895 }
896 chan->client_count = 0;
897 }
898 device->chancnt = chancnt;
899
900 mutex_lock(&dma_list_mutex);
901 /* take references on public channels */
902 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
903 list_for_each_entry(chan, &device->channels, device_node) {
904 /* if clients are already waiting for channels we need
905 * to take references on their behalf
906 */
907 if (dma_chan_get(chan) == -ENODEV) {
908 /* note we can only get here for the first
909 * channel as the remaining channels are
910 * guaranteed to get a reference
911 */
912 rc = -ENODEV;
913 mutex_unlock(&dma_list_mutex);
914 goto err_out;
915 }
916 }
917 list_add_tail_rcu(&device->global_node, &dma_device_list);
918 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
919 device->privatecnt++; /* Always private */
920 dma_channel_rebalance();
921 mutex_unlock(&dma_list_mutex);
922
923 return 0;
924
925err_out:
926 /* if we never registered a channel just release the idr */
927 if (atomic_read(idr_ref) == 0) {
928 mutex_lock(&dma_list_mutex);
929 idr_remove(&dma_idr, device->dev_id);
930 mutex_unlock(&dma_list_mutex);
931 kfree(idr_ref);
932 return rc;
933 }
934
935 list_for_each_entry(chan, &device->channels, device_node) {
936 if (chan->local == NULL)
937 continue;
938 mutex_lock(&dma_list_mutex);
939 chan->dev->chan = NULL;
940 mutex_unlock(&dma_list_mutex);
941 device_unregister(&chan->dev->device);
942 free_percpu(chan->local);
943 }
944 return rc;
945}
946EXPORT_SYMBOL(dma_async_device_register);
947
948/**
949 * dma_async_device_unregister - unregister a DMA device
950 * @device: &dma_device
951 *
952 * This routine is called by dma driver exit routines, dmaengine holds module
953 * references to prevent it being called while channels are in use.
954 */
955void dma_async_device_unregister(struct dma_device *device)
956{
957 struct dma_chan *chan;
958
959 mutex_lock(&dma_list_mutex);
960 list_del_rcu(&device->global_node);
961 dma_channel_rebalance();
962 mutex_unlock(&dma_list_mutex);
963
964 list_for_each_entry(chan, &device->channels, device_node) {
965 WARN_ONCE(chan->client_count,
966 "%s called while %d clients hold a reference\n",
967 __func__, chan->client_count);
968 mutex_lock(&dma_list_mutex);
969 chan->dev->chan = NULL;
970 mutex_unlock(&dma_list_mutex);
971 device_unregister(&chan->dev->device);
972 free_percpu(chan->local);
973 }
974}
975EXPORT_SYMBOL(dma_async_device_unregister);
976
977struct dmaengine_unmap_pool {
978 struct kmem_cache *cache;
979 const char *name;
980 mempool_t *pool;
981 size_t size;
982};
983
984#define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
985static struct dmaengine_unmap_pool unmap_pool[] = {
986 __UNMAP_POOL(2),
987 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
988 __UNMAP_POOL(16),
989 __UNMAP_POOL(128),
990 __UNMAP_POOL(256),
991 #endif
992};
993
994static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
995{
996 int order = get_count_order(nr);
997
998 switch (order) {
999 case 0 ... 1:
1000 return &unmap_pool[0];
1001 case 2 ... 4:
1002 return &unmap_pool[1];
1003 case 5 ... 7:
1004 return &unmap_pool[2];
1005 case 8:
1006 return &unmap_pool[3];
1007 default:
1008 BUG();
1009 return NULL;
1010 }
1011}
1012
1013static void dmaengine_unmap(struct kref *kref)
1014{
1015 struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1016 struct device *dev = unmap->dev;
1017 int cnt, i;
1018
1019 cnt = unmap->to_cnt;
1020 for (i = 0; i < cnt; i++)
1021 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1022 DMA_TO_DEVICE);
1023 cnt += unmap->from_cnt;
1024 for (; i < cnt; i++)
1025 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1026 DMA_FROM_DEVICE);
1027 cnt += unmap->bidi_cnt;
1028 for (; i < cnt; i++) {
1029 if (unmap->addr[i] == 0)
1030 continue;
1031 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1032 DMA_BIDIRECTIONAL);
1033 }
1034 cnt = unmap->map_cnt;
1035 mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1036}
1037
1038void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1039{
1040 if (unmap)
1041 kref_put(&unmap->kref, dmaengine_unmap);
1042}
1043EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1044
1045static void dmaengine_destroy_unmap_pool(void)
1046{
1047 int i;
1048
1049 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1050 struct dmaengine_unmap_pool *p = &unmap_pool[i];
1051
1052 if (p->pool)
1053 mempool_destroy(p->pool);
1054 p->pool = NULL;
1055 if (p->cache)
1056 kmem_cache_destroy(p->cache);
1057 p->cache = NULL;
1058 }
1059}
1060
1061static int __init dmaengine_init_unmap_pool(void)
1062{
1063 int i;
1064
1065 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1066 struct dmaengine_unmap_pool *p = &unmap_pool[i];
1067 size_t size;
1068
1069 size = sizeof(struct dmaengine_unmap_data) +
1070 sizeof(dma_addr_t) * p->size;
1071
1072 p->cache = kmem_cache_create(p->name, size, 0,
1073 SLAB_HWCACHE_ALIGN, NULL);
1074 if (!p->cache)
1075 break;
1076 p->pool = mempool_create_slab_pool(1, p->cache);
1077 if (!p->pool)
1078 break;
1079 }
1080
1081 if (i == ARRAY_SIZE(unmap_pool))
1082 return 0;
1083
1084 dmaengine_destroy_unmap_pool();
1085 return -ENOMEM;
1086}
1087
1088struct dmaengine_unmap_data *
1089dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1090{
1091 struct dmaengine_unmap_data *unmap;
1092
1093 unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1094 if (!unmap)
1095 return NULL;
1096
1097 memset(unmap, 0, sizeof(*unmap));
1098 kref_init(&unmap->kref);
1099 unmap->dev = dev;
1100 unmap->map_cnt = nr;
1101
1102 return unmap;
1103}
1104EXPORT_SYMBOL(dmaengine_get_unmap_data);
1105
1106void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1107 struct dma_chan *chan)
1108{
1109 tx->chan = chan;
1110 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1111 spin_lock_init(&tx->lock);
1112 #endif
1113}
1114EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1115
1116/* dma_wait_for_async_tx - spin wait for a transaction to complete
1117 * @tx: in-flight transaction to wait on
1118 */
1119enum dma_status
1120dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1121{
1122 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1123
1124 if (!tx)
1125 return DMA_COMPLETE;
1126
1127 while (tx->cookie == -EBUSY) {
1128 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1129 pr_err("%s timeout waiting for descriptor submission\n",
1130 __func__);
1131 return DMA_ERROR;
1132 }
1133 cpu_relax();
1134 }
1135 return dma_sync_wait(tx->chan, tx->cookie);
1136}
1137EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1138
1139/* dma_run_dependencies - helper routine for dma drivers to process
1140 * (start) dependent operations on their target channel
1141 * @tx: transaction with dependencies
1142 */
1143void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1144{
1145 struct dma_async_tx_descriptor *dep = txd_next(tx);
1146 struct dma_async_tx_descriptor *dep_next;
1147 struct dma_chan *chan;
1148
1149 if (!dep)
1150 return;
1151
1152 /* we'll submit tx->next now, so clear the link */
1153 txd_clear_next(tx);
1154 chan = dep->chan;
1155
1156 /* keep submitting up until a channel switch is detected
1157 * in that case we will be called again as a result of
1158 * processing the interrupt from async_tx_channel_switch
1159 */
1160 for (; dep; dep = dep_next) {
1161 txd_lock(dep);
1162 txd_clear_parent(dep);
1163 dep_next = txd_next(dep);
1164 if (dep_next && dep_next->chan == chan)
1165 txd_clear_next(dep); /* ->next will be submitted */
1166 else
1167 dep_next = NULL; /* submit current dep and terminate */
1168 txd_unlock(dep);
1169
1170 dep->tx_submit(dep);
1171 }
1172
1173 chan->device->device_issue_pending(chan);
1174}
1175EXPORT_SYMBOL_GPL(dma_run_dependencies);
1176
1177static int __init dma_bus_init(void)
1178{
1179 int err = dmaengine_init_unmap_pool();
1180
1181 if (err)
1182 return err;
1183 return class_register(&dma_devclass);
1184}
1185arch_initcall(dma_bus_init);
1186
1187