ASoC: fsl_spdif: Add stream names for DPCM usage
[linux-2.6-block.git] / sound / soc / fsl / fsl_ssi.c
CommitLineData
17467f23
TT
1/*
2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
3 *
4 * Author: Timur Tabi <timur@freescale.com>
5 *
f0fba2ad
LG
6 * Copyright 2007-2010 Freescale Semiconductor, Inc.
7 *
8 * This file is licensed under the terms of the GNU General Public License
9 * version 2. This program is licensed "as is" without any warranty of any
10 * kind, whether express or implied.
de623ece
MP
11 *
12 *
13 * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
14 *
15 * The i.MX SSI core has some nasty limitations in AC97 mode. While most
16 * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
17 * one FIFO which combines all valid receive slots. We cannot even select
18 * which slots we want to receive. The WM9712 with which this driver
19 * was developed with always sends GPIO status data in slot 12 which
20 * we receive in our (PCM-) data stream. The only chance we have is to
21 * manually skip this data in the FIQ handler. With sampling rates different
22 * from 48000Hz not every frame has valid receive data, so the ratio
23 * between pcm data and GPIO status data changes. Our FIQ handler is not
24 * able to handle this, hence this driver only works with 48000Hz sampling
25 * rate.
26 * Reading and writing AC97 registers is another challenge. The core
27 * provides us status bits when the read register is updated with *another*
28 * value. When we read the same register two times (and the register still
29 * contains the same value) these status bits are not set. We work
30 * around this by not polling these bits but only wait a fixed delay.
17467f23
TT
31 */
32
33#include <linux/init.h>
dfa1a107 34#include <linux/io.h>
17467f23
TT
35#include <linux/module.h>
36#include <linux/interrupt.h>
95cd98f9 37#include <linux/clk.h>
17467f23
TT
38#include <linux/device.h>
39#include <linux/delay.h>
5a0e3ad6 40#include <linux/slab.h>
aafa85e7 41#include <linux/spinlock.h>
9c72a04c 42#include <linux/of.h>
dfa1a107
SG
43#include <linux/of_address.h>
44#include <linux/of_irq.h>
f0fba2ad 45#include <linux/of_platform.h>
17467f23 46
17467f23
TT
47#include <sound/core.h>
48#include <sound/pcm.h>
49#include <sound/pcm_params.h>
50#include <sound/initval.h>
51#include <sound/soc.h>
a8909c9b 52#include <sound/dmaengine_pcm.h>
17467f23 53
17467f23 54#include "fsl_ssi.h"
09ce1111 55#include "imx-pcm.h"
17467f23
TT
56
57/**
58 * FSLSSI_I2S_RATES: sample rates supported by the I2S
59 *
60 * This driver currently only supports the SSI running in I2S slave mode,
61 * which means the codec determines the sample rate. Therefore, we tell
62 * ALSA that we support all rates and let the codec driver decide what rates
63 * are really supported.
64 */
24710c97 65#define FSLSSI_I2S_RATES SNDRV_PCM_RATE_CONTINUOUS
17467f23
TT
66
67/**
68 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
69 *
70 * This driver currently only supports the SSI running in I2S slave mode.
71 *
72 * The SSI has a limitation in that the samples must be in the same byte
73 * order as the host CPU. This is because when multiple bytes are written
74 * to the STX register, the bytes and bits must be written in the same
75 * order. The STX is a shift register, so all the bits need to be aligned
76 * (bit-endianness must match byte-endianness). Processors typically write
77 * the bits within a byte in the same order that the bytes of a word are
78 * written in. So if the host CPU is big-endian, then only big-endian
79 * samples will be written to STX properly.
80 */
81#ifdef __BIG_ENDIAN
82#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
83 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
84 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
85#else
86#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
87 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
88 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
89#endif
90
9368acc4
MP
91#define FSLSSI_SIER_DBG_RX_FLAGS (CCSR_SSI_SIER_RFF0_EN | \
92 CCSR_SSI_SIER_RLS_EN | CCSR_SSI_SIER_RFS_EN | \
93 CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_RFRC_EN)
94#define FSLSSI_SIER_DBG_TX_FLAGS (CCSR_SSI_SIER_TFE0_EN | \
95 CCSR_SSI_SIER_TLS_EN | CCSR_SSI_SIER_TFS_EN | \
96 CCSR_SSI_SIER_TUE0_EN | CCSR_SSI_SIER_TFRC_EN)
c1953bfe
MP
97
98enum fsl_ssi_type {
99 FSL_SSI_MCP8610,
100 FSL_SSI_MX21,
0888efd1 101 FSL_SSI_MX35,
c1953bfe
MP
102 FSL_SSI_MX51,
103};
104
4e6ec0d9
MP
105struct fsl_ssi_reg_val {
106 u32 sier;
107 u32 srcr;
108 u32 stcr;
109 u32 scr;
110};
111
112struct fsl_ssi_rxtx_reg_val {
113 struct fsl_ssi_reg_val rx;
114 struct fsl_ssi_reg_val tx;
115};
43248122
MP
116static const struct regmap_config fsl_ssi_regconfig = {
117 .max_register = CCSR_SSI_SACCDIS,
118 .reg_bits = 32,
119 .val_bits = 32,
120 .reg_stride = 4,
121 .val_format_endian = REGMAP_ENDIAN_NATIVE,
122};
d5a908b2 123
fcdbadef
SH
124struct fsl_ssi_soc_data {
125 bool imx;
126 bool offline_config;
127 u32 sisr_write_mask;
128};
129
17467f23
TT
130/**
131 * fsl_ssi_private: per-SSI private data
132 *
43248122 133 * @reg: Pointer to the regmap registers
17467f23 134 * @irq: IRQ of this SSI
737a6b41
MP
135 * @cpu_dai_drv: CPU DAI driver for this device
136 *
137 * @dai_fmt: DAI configuration this device is currently used with
138 * @i2s_mode: i2s and network mode configuration of the device. Is used to
139 * switch between normal and i2s/network mode
140 * mode depending on the number of channels
141 * @use_dma: DMA is used or FIQ with stream filter
142 * @use_dual_fifo: DMA with support for both FIFOs used
143 * @fifo_deph: Depth of the SSI FIFOs
144 * @rxtx_reg_val: Specific register settings for receive/transmit configuration
145 *
146 * @clk: SSI clock
147 * @baudclk: SSI baud clock for master mode
148 * @baudclk_streams: Active streams that are using baudclk
149 * @bitclk_freq: bitclock frequency set by .set_dai_sysclk
150 *
151 * @dma_params_tx: DMA transmit parameters
152 * @dma_params_rx: DMA receive parameters
153 * @ssi_phys: physical address of the SSI registers
154 *
155 * @fiq_params: FIQ stream filtering parameters
156 *
157 * @pdev: Pointer to pdev used for deprecated fsl-ssi sound card
158 *
159 * @dbg_stats: Debugging statistics
160 *
161 * @soc: SoC specifc data
17467f23
TT
162 */
163struct fsl_ssi_private {
43248122 164 struct regmap *regs;
17467f23 165 unsigned int irq;
f0fba2ad 166 struct snd_soc_dai_driver cpu_dai_drv;
17467f23 167
737a6b41
MP
168 unsigned int dai_fmt;
169 u8 i2s_mode;
de623ece 170 bool use_dma;
0da9e55e 171 bool use_dual_fifo;
737a6b41
MP
172 unsigned int fifo_depth;
173 struct fsl_ssi_rxtx_reg_val rxtx_reg_val;
174
95cd98f9 175 struct clk *clk;
737a6b41 176 struct clk *baudclk;
d429d8e3 177 unsigned int baudclk_streams;
8dd51e23 178 unsigned int bitclk_freq;
737a6b41
MP
179
180 /* DMA params */
a8909c9b
LPC
181 struct snd_dmaengine_dai_dma_data dma_params_tx;
182 struct snd_dmaengine_dai_dma_data dma_params_rx;
737a6b41
MP
183 dma_addr_t ssi_phys;
184
185 /* params for non-dma FIQ stream filtered mode */
de623ece 186 struct imx_pcm_fiq_params fiq_params;
737a6b41
MP
187
188 /* Used when using fsl-ssi as sound-card. This is only used by ppc and
189 * should be replaced with simple-sound-card. */
190 struct platform_device *pdev;
09ce1111 191
f138e621 192 struct fsl_ssi_dbg dbg_stats;
17467f23 193
fcdbadef 194 const struct fsl_ssi_soc_data *soc;
c1953bfe 195};
171d683d
MP
196
197/*
198 * imx51 and later SoCs have a slightly different IP that allows the
199 * SSI configuration while the SSI unit is running.
200 *
201 * More important, it is necessary on those SoCs to configure the
202 * sperate TX/RX DMA bits just before starting the stream
203 * (fsl_ssi_trigger). The SDMA unit has to be configured before fsl_ssi
204 * sends any DMA requests to the SDMA unit, otherwise it is not defined
205 * how the SDMA unit handles the DMA request.
206 *
207 * SDMA units are present on devices starting at imx35 but the imx35
208 * reference manual states that the DMA bits should not be changed
209 * while the SSI unit is running (SSIEN). So we support the necessary
210 * online configuration of fsl-ssi starting at imx51.
211 */
171d683d 212
fcdbadef
SH
213static struct fsl_ssi_soc_data fsl_ssi_mpc8610 = {
214 .imx = false,
215 .offline_config = true,
216 .sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
217 CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
218 CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
219};
220
221static struct fsl_ssi_soc_data fsl_ssi_imx21 = {
222 .imx = true,
223 .offline_config = true,
224 .sisr_write_mask = 0,
225};
226
227static struct fsl_ssi_soc_data fsl_ssi_imx35 = {
228 .imx = true,
229 .offline_config = true,
230 .sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
231 CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
232 CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
233};
234
235static struct fsl_ssi_soc_data fsl_ssi_imx51 = {
236 .imx = true,
237 .offline_config = false,
238 .sisr_write_mask = CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
239 CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
240};
241
242static const struct of_device_id fsl_ssi_ids[] = {
243 { .compatible = "fsl,mpc8610-ssi", .data = &fsl_ssi_mpc8610 },
244 { .compatible = "fsl,imx51-ssi", .data = &fsl_ssi_imx51 },
245 { .compatible = "fsl,imx35-ssi", .data = &fsl_ssi_imx35 },
246 { .compatible = "fsl,imx21-ssi", .data = &fsl_ssi_imx21 },
247 {}
248};
249MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
250
251static bool fsl_ssi_is_ac97(struct fsl_ssi_private *ssi_private)
252{
253 return !!(ssi_private->dai_fmt & SND_SOC_DAIFMT_AC97);
171d683d
MP
254}
255
8dd51e23
SH
256static bool fsl_ssi_is_i2s_master(struct fsl_ssi_private *ssi_private)
257{
258 return (ssi_private->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
259 SND_SOC_DAIFMT_CBS_CFS;
260}
261
17467f23
TT
262/**
263 * fsl_ssi_isr: SSI interrupt handler
264 *
265 * Although it's possible to use the interrupt handler to send and receive
266 * data to/from the SSI, we use the DMA instead. Programming is more
267 * complicated, but the performance is much better.
268 *
269 * This interrupt handler is used only to gather statistics.
270 *
271 * @irq: IRQ of the SSI device
272 * @dev_id: pointer to the ssi_private structure for this SSI device
273 */
274static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
275{
276 struct fsl_ssi_private *ssi_private = dev_id;
43248122 277 struct regmap *regs = ssi_private->regs;
17467f23 278 __be32 sisr;
0888efd1 279 __be32 sisr2;
17467f23
TT
280
281 /* We got an interrupt, so read the status register to see what we
282 were interrupted for. We mask it with the Interrupt Enable register
283 so that we only check for events that we're interested in.
284 */
43248122 285 regmap_read(regs, CCSR_SSI_SISR, &sisr);
17467f23 286
fcdbadef 287 sisr2 = sisr & ssi_private->soc->sisr_write_mask;
17467f23
TT
288 /* Clear the bits that we set */
289 if (sisr2)
43248122 290 regmap_write(regs, CCSR_SSI_SISR, sisr2);
17467f23 291
f138e621 292 fsl_ssi_dbg_isr(&ssi_private->dbg_stats, sisr);
9368acc4 293
f138e621 294 return IRQ_HANDLED;
9368acc4
MP
295}
296
4e6ec0d9
MP
297/*
298 * Enable/Disable all rx/tx config flags at once.
299 */
300static void fsl_ssi_rxtx_config(struct fsl_ssi_private *ssi_private,
301 bool enable)
302{
43248122 303 struct regmap *regs = ssi_private->regs;
4e6ec0d9
MP
304 struct fsl_ssi_rxtx_reg_val *vals = &ssi_private->rxtx_reg_val;
305
306 if (enable) {
43248122
MP
307 regmap_update_bits(regs, CCSR_SSI_SIER,
308 vals->rx.sier | vals->tx.sier,
309 vals->rx.sier | vals->tx.sier);
310 regmap_update_bits(regs, CCSR_SSI_SRCR,
311 vals->rx.srcr | vals->tx.srcr,
312 vals->rx.srcr | vals->tx.srcr);
313 regmap_update_bits(regs, CCSR_SSI_STCR,
314 vals->rx.stcr | vals->tx.stcr,
315 vals->rx.stcr | vals->tx.stcr);
4e6ec0d9 316 } else {
43248122
MP
317 regmap_update_bits(regs, CCSR_SSI_SRCR,
318 vals->rx.srcr | vals->tx.srcr, 0);
319 regmap_update_bits(regs, CCSR_SSI_STCR,
320 vals->rx.stcr | vals->tx.stcr, 0);
321 regmap_update_bits(regs, CCSR_SSI_SIER,
322 vals->rx.sier | vals->tx.sier, 0);
4e6ec0d9
MP
323 }
324}
325
65c961cc
MP
326/*
327 * Calculate the bits that have to be disabled for the current stream that is
328 * getting disabled. This keeps the bits enabled that are necessary for the
329 * second stream to work if 'stream_active' is true.
330 *
331 * Detailed calculation:
332 * These are the values that need to be active after disabling. For non-active
333 * second stream, this is 0:
334 * vals_stream * !!stream_active
335 *
336 * The following computes the overall differences between the setup for the
337 * to-disable stream and the active stream, a simple XOR:
338 * vals_disable ^ (vals_stream * !!(stream_active))
339 *
340 * The full expression adds a mask on all values we care about
341 */
342#define fsl_ssi_disable_val(vals_disable, vals_stream, stream_active) \
343 ((vals_disable) & \
344 ((vals_disable) ^ ((vals_stream) * (u32)!!(stream_active))))
345
4e6ec0d9
MP
346/*
347 * Enable/Disable a ssi configuration. You have to pass either
348 * ssi_private->rxtx_reg_val.rx or tx as vals parameter.
349 */
350static void fsl_ssi_config(struct fsl_ssi_private *ssi_private, bool enable,
351 struct fsl_ssi_reg_val *vals)
352{
43248122 353 struct regmap *regs = ssi_private->regs;
4e6ec0d9 354 struct fsl_ssi_reg_val *avals;
43248122
MP
355 int nr_active_streams;
356 u32 scr_val;
65c961cc
MP
357 int keep_active;
358
43248122
MP
359 regmap_read(regs, CCSR_SSI_SCR, &scr_val);
360
361 nr_active_streams = !!(scr_val & CCSR_SSI_SCR_TE) +
362 !!(scr_val & CCSR_SSI_SCR_RE);
363
65c961cc
MP
364 if (nr_active_streams - 1 > 0)
365 keep_active = 1;
366 else
367 keep_active = 0;
4e6ec0d9
MP
368
369 /* Find the other direction values rx or tx which we do not want to
370 * modify */
371 if (&ssi_private->rxtx_reg_val.rx == vals)
372 avals = &ssi_private->rxtx_reg_val.tx;
373 else
374 avals = &ssi_private->rxtx_reg_val.rx;
375
376 /* If vals should be disabled, start with disabling the unit */
377 if (!enable) {
65c961cc
MP
378 u32 scr = fsl_ssi_disable_val(vals->scr, avals->scr,
379 keep_active);
43248122 380 regmap_update_bits(regs, CCSR_SSI_SCR, scr, 0);
4e6ec0d9
MP
381 }
382
383 /*
384 * We are running on a SoC which does not support online SSI
385 * reconfiguration, so we have to enable all necessary flags at once
386 * even if we do not use them later (capture and playback configuration)
387 */
fcdbadef 388 if (ssi_private->soc->offline_config) {
4e6ec0d9 389 if ((enable && !nr_active_streams) ||
65c961cc 390 (!enable && !keep_active))
4e6ec0d9
MP
391 fsl_ssi_rxtx_config(ssi_private, enable);
392
393 goto config_done;
394 }
395
396 /*
397 * Configure single direction units while the SSI unit is running
398 * (online configuration)
399 */
400 if (enable) {
43248122
MP
401 regmap_update_bits(regs, CCSR_SSI_SIER, vals->sier, vals->sier);
402 regmap_update_bits(regs, CCSR_SSI_SRCR, vals->srcr, vals->srcr);
403 regmap_update_bits(regs, CCSR_SSI_STCR, vals->stcr, vals->stcr);
4e6ec0d9
MP
404 } else {
405 u32 sier;
406 u32 srcr;
407 u32 stcr;
408
409 /*
410 * Disabling the necessary flags for one of rx/tx while the
411 * other stream is active is a little bit more difficult. We
412 * have to disable only those flags that differ between both
413 * streams (rx XOR tx) and that are set in the stream that is
414 * disabled now. Otherwise we could alter flags of the other
415 * stream
416 */
417
418 /* These assignments are simply vals without bits set in avals*/
65c961cc
MP
419 sier = fsl_ssi_disable_val(vals->sier, avals->sier,
420 keep_active);
421 srcr = fsl_ssi_disable_val(vals->srcr, avals->srcr,
422 keep_active);
423 stcr = fsl_ssi_disable_val(vals->stcr, avals->stcr,
424 keep_active);
4e6ec0d9 425
43248122
MP
426 regmap_update_bits(regs, CCSR_SSI_SRCR, srcr, 0);
427 regmap_update_bits(regs, CCSR_SSI_STCR, stcr, 0);
428 regmap_update_bits(regs, CCSR_SSI_SIER, sier, 0);
4e6ec0d9
MP
429 }
430
431config_done:
432 /* Enabling of subunits is done after configuration */
433 if (enable)
43248122 434 regmap_update_bits(regs, CCSR_SSI_SCR, vals->scr, vals->scr);
4e6ec0d9
MP
435}
436
437
438static void fsl_ssi_rx_config(struct fsl_ssi_private *ssi_private, bool enable)
439{
440 fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.rx);
441}
442
443static void fsl_ssi_tx_config(struct fsl_ssi_private *ssi_private, bool enable)
444{
445 fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.tx);
446}
447
6de83879
MP
448/*
449 * Setup rx/tx register values used to enable/disable the streams. These will
450 * be used later in fsl_ssi_config to setup the streams without the need to
451 * check for all different SSI modes.
452 */
453static void fsl_ssi_setup_reg_vals(struct fsl_ssi_private *ssi_private)
454{
455 struct fsl_ssi_rxtx_reg_val *reg = &ssi_private->rxtx_reg_val;
456
457 reg->rx.sier = CCSR_SSI_SIER_RFF0_EN;
458 reg->rx.srcr = CCSR_SSI_SRCR_RFEN0;
459 reg->rx.scr = 0;
460 reg->tx.sier = CCSR_SSI_SIER_TFE0_EN;
461 reg->tx.stcr = CCSR_SSI_STCR_TFEN0;
462 reg->tx.scr = 0;
463
171d683d 464 if (!fsl_ssi_is_ac97(ssi_private)) {
6de83879
MP
465 reg->rx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE;
466 reg->rx.sier |= CCSR_SSI_SIER_RFF0_EN;
467 reg->tx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE;
468 reg->tx.sier |= CCSR_SSI_SIER_TFE0_EN;
469 }
470
471 if (ssi_private->use_dma) {
472 reg->rx.sier |= CCSR_SSI_SIER_RDMAE;
473 reg->tx.sier |= CCSR_SSI_SIER_TDMAE;
474 } else {
475 reg->rx.sier |= CCSR_SSI_SIER_RIE;
476 reg->tx.sier |= CCSR_SSI_SIER_TIE;
477 }
478
479 reg->rx.sier |= FSLSSI_SIER_DBG_RX_FLAGS;
480 reg->tx.sier |= FSLSSI_SIER_DBG_TX_FLAGS;
481}
482
d8764646
MP
483static void fsl_ssi_setup_ac97(struct fsl_ssi_private *ssi_private)
484{
43248122 485 struct regmap *regs = ssi_private->regs;
d8764646
MP
486
487 /*
488 * Setup the clock control register
489 */
43248122
MP
490 regmap_write(regs, CCSR_SSI_STCCR,
491 CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
492 regmap_write(regs, CCSR_SSI_SRCCR,
493 CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
d8764646
MP
494
495 /*
496 * Enable AC97 mode and startup the SSI
497 */
43248122
MP
498 regmap_write(regs, CCSR_SSI_SACNT,
499 CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV);
500 regmap_write(regs, CCSR_SSI_SACCDIS, 0xff);
501 regmap_write(regs, CCSR_SSI_SACCEN, 0x300);
d8764646
MP
502
503 /*
504 * Enable SSI, Transmit and Receive. AC97 has to communicate with the
505 * codec before a stream is started.
506 */
43248122
MP
507 regmap_update_bits(regs, CCSR_SSI_SCR,
508 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE,
509 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE);
d8764646 510
43248122 511 regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_WAIT(3));
d8764646
MP
512}
513
17467f23
TT
514/**
515 * fsl_ssi_startup: create a new substream
516 *
517 * This is the first function called when a stream is opened.
518 *
519 * If this is the first stream open, then grab the IRQ and program most of
520 * the SSI registers.
521 */
dee89c4d
MB
522static int fsl_ssi_startup(struct snd_pcm_substream *substream,
523 struct snd_soc_dai *dai)
17467f23
TT
524{
525 struct snd_soc_pcm_runtime *rtd = substream->private_data;
5e538eca
TT
526 struct fsl_ssi_private *ssi_private =
527 snd_soc_dai_get_drvdata(rtd->cpu_dai);
17467f23 528
0da9e55e
NC
529 /* When using dual fifo mode, it is safer to ensure an even period
530 * size. If appearing to an odd number while DMA always starts its
531 * task from fifo0, fifo1 would be neglected at the end of each
532 * period. But SSI would still access fifo1 with an invalid data.
533 */
534 if (ssi_private->use_dual_fifo)
535 snd_pcm_hw_constraint_step(substream->runtime, 0,
536 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
537
17467f23
TT
538 return 0;
539}
540
ee9daad4 541/**
8dd51e23 542 * fsl_ssi_set_bclk - configure Digital Audio Interface bit clock
ee9daad4
SH
543 *
544 * Note: This function can be only called when using SSI as DAI master
545 *
546 * Quick instruction for parameters:
547 * freq: Output BCLK frequency = samplerate * 32 (fixed) * channels
548 * dir: SND_SOC_CLOCK_OUT -> TxBCLK, SND_SOC_CLOCK_IN -> RxBCLK.
549 */
8dd51e23
SH
550static int fsl_ssi_set_bclk(struct snd_pcm_substream *substream,
551 struct snd_soc_dai *cpu_dai,
552 struct snd_pcm_hw_params *hw_params)
ee9daad4
SH
553{
554 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
43248122 555 struct regmap *regs = ssi_private->regs;
ee9daad4
SH
556 int synchronous = ssi_private->cpu_dai_drv.symmetric_rates, ret;
557 u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
d8ced479 558 unsigned long clkrate, baudrate, tmprate;
ee9daad4 559 u64 sub, savesub = 100000;
8dd51e23 560 unsigned int freq;
d429d8e3 561 bool baudclk_is_used;
8dd51e23
SH
562
563 /* Prefer the explicitly set bitclock frequency */
564 if (ssi_private->bitclk_freq)
565 freq = ssi_private->bitclk_freq;
566 else
567 freq = params_channels(hw_params) * 32 * params_rate(hw_params);
ee9daad4
SH
568
569 /* Don't apply it to any non-baudclk circumstance */
570 if (IS_ERR(ssi_private->baudclk))
571 return -EINVAL;
572
d429d8e3
MP
573 baudclk_is_used = ssi_private->baudclk_streams & ~(BIT(substream->stream));
574
ee9daad4
SH
575 /* It should be already enough to divide clock by setting pm alone */
576 psr = 0;
577 div2 = 0;
578
579 factor = (div2 + 1) * (7 * psr + 1) * 2;
580
581 for (i = 0; i < 255; i++) {
582 /* The bclk rate must be smaller than 1/5 sysclk rate */
583 if (factor * (i + 1) < 5)
584 continue;
585
586 tmprate = freq * factor * (i + 2);
d429d8e3
MP
587
588 if (baudclk_is_used)
589 clkrate = clk_get_rate(ssi_private->baudclk);
590 else
591 clkrate = clk_round_rate(ssi_private->baudclk, tmprate);
ee9daad4
SH
592
593 do_div(clkrate, factor);
594 afreq = (u32)clkrate / (i + 1);
595
596 if (freq == afreq)
597 sub = 0;
598 else if (freq / afreq == 1)
599 sub = freq - afreq;
600 else if (afreq / freq == 1)
601 sub = afreq - freq;
602 else
603 continue;
604
605 /* Calculate the fraction */
606 sub *= 100000;
607 do_div(sub, freq);
608
609 if (sub < savesub) {
610 baudrate = tmprate;
611 savesub = sub;
612 pm = i;
613 }
614
615 /* We are lucky */
616 if (savesub == 0)
617 break;
618 }
619
620 /* No proper pm found if it is still remaining the initial value */
621 if (pm == 999) {
622 dev_err(cpu_dai->dev, "failed to handle the required sysclk\n");
623 return -EINVAL;
624 }
625
626 stccr = CCSR_SSI_SxCCR_PM(pm + 1) | (div2 ? CCSR_SSI_SxCCR_DIV2 : 0) |
627 (psr ? CCSR_SSI_SxCCR_PSR : 0);
628 mask = CCSR_SSI_SxCCR_PM_MASK | CCSR_SSI_SxCCR_DIV2 |
629 CCSR_SSI_SxCCR_PSR;
630
8dd51e23 631 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK || synchronous)
43248122 632 regmap_update_bits(regs, CCSR_SSI_STCCR, mask, stccr);
ee9daad4 633 else
43248122 634 regmap_update_bits(regs, CCSR_SSI_SRCCR, mask, stccr);
ee9daad4 635
d429d8e3 636 if (!baudclk_is_used) {
ee9daad4
SH
637 ret = clk_set_rate(ssi_private->baudclk, baudrate);
638 if (ret) {
ee9daad4
SH
639 dev_err(cpu_dai->dev, "failed to set baudclk rate\n");
640 return -EINVAL;
641 }
ee9daad4 642 }
ee9daad4
SH
643
644 return 0;
645}
646
8dd51e23
SH
647static int fsl_ssi_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
648 int clk_id, unsigned int freq, int dir)
649{
650 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
651
652 ssi_private->bitclk_freq = freq;
653
654 return 0;
655}
656
17467f23 657/**
85ef2375 658 * fsl_ssi_hw_params - program the sample size
17467f23
TT
659 *
660 * Most of the SSI registers have been programmed in the startup function,
661 * but the word length must be programmed here. Unfortunately, programming
662 * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
663 * cause a problem with supporting simultaneous playback and capture. If
664 * the SSI is already playing a stream, then that stream may be temporarily
665 * stopped when you start capture.
666 *
667 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
668 * clock master.
669 */
85ef2375
TT
670static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
671 struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
17467f23 672{
f0fba2ad 673 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
43248122 674 struct regmap *regs = ssi_private->regs;
2924a998 675 unsigned int channels = params_channels(hw_params);
5e538eca
TT
676 unsigned int sample_size =
677 snd_pcm_format_width(params_format(hw_params));
678 u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
8dd51e23 679 int ret;
43248122
MP
680 u32 scr_val;
681 int enabled;
682
683 regmap_read(regs, CCSR_SSI_SCR, &scr_val);
684 enabled = scr_val & CCSR_SSI_SCR_SSIEN;
17467f23 685
5e538eca
TT
686 /*
687 * If we're in synchronous mode, and the SSI is already enabled,
688 * then STCCR is already set properly.
689 */
690 if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
691 return 0;
17467f23 692
8dd51e23
SH
693 if (fsl_ssi_is_i2s_master(ssi_private)) {
694 ret = fsl_ssi_set_bclk(substream, cpu_dai, hw_params);
695 if (ret)
696 return ret;
d429d8e3
MP
697
698 /* Do not enable the clock if it is already enabled */
699 if (!(ssi_private->baudclk_streams & BIT(substream->stream))) {
700 ret = clk_prepare_enable(ssi_private->baudclk);
701 if (ret)
702 return ret;
703
704 ssi_private->baudclk_streams |= BIT(substream->stream);
705 }
8dd51e23
SH
706 }
707
5e538eca
TT
708 /*
709 * FIXME: The documentation says that SxCCR[WL] should not be
710 * modified while the SSI is enabled. The only time this can
711 * happen is if we're trying to do simultaneous playback and
712 * capture in asynchronous mode. Unfortunately, I have been enable
713 * to get that to work at all on the P1022DS. Therefore, we don't
714 * bother to disable/enable the SSI when setting SxCCR[WL], because
715 * the SSI will stop anyway. Maybe one day, this will get fixed.
716 */
17467f23 717
5e538eca
TT
718 /* In synchronous mode, the SSI uses STCCR for capture */
719 if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
720 ssi_private->cpu_dai_drv.symmetric_rates)
43248122
MP
721 regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_WL_MASK,
722 wl);
5e538eca 723 else
43248122
MP
724 regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_WL_MASK,
725 wl);
17467f23 726
171d683d 727 if (!fsl_ssi_is_ac97(ssi_private))
43248122 728 regmap_update_bits(regs, CCSR_SSI_SCR,
2924a998
NC
729 CCSR_SSI_SCR_NET | CCSR_SSI_SCR_I2S_MODE_MASK,
730 channels == 1 ? 0 : ssi_private->i2s_mode);
731
17467f23
TT
732 return 0;
733}
734
d429d8e3
MP
735static int fsl_ssi_hw_free(struct snd_pcm_substream *substream,
736 struct snd_soc_dai *cpu_dai)
737{
738 struct snd_soc_pcm_runtime *rtd = substream->private_data;
739 struct fsl_ssi_private *ssi_private =
740 snd_soc_dai_get_drvdata(rtd->cpu_dai);
741
742 if (fsl_ssi_is_i2s_master(ssi_private) &&
743 ssi_private->baudclk_streams & BIT(substream->stream)) {
744 clk_disable_unprepare(ssi_private->baudclk);
745 ssi_private->baudclk_streams &= ~BIT(substream->stream);
746 }
747
748 return 0;
749}
750
85e59af2
MP
751static int _fsl_ssi_set_dai_fmt(struct fsl_ssi_private *ssi_private,
752 unsigned int fmt)
aafa85e7 753{
43248122 754 struct regmap *regs = ssi_private->regs;
aafa85e7 755 u32 strcr = 0, stcr, srcr, scr, mask;
2b0db996
MP
756 u8 wm;
757
171d683d
MP
758 ssi_private->dai_fmt = fmt;
759
d429d8e3
MP
760 if (fsl_ssi_is_i2s_master(ssi_private) && IS_ERR(ssi_private->baudclk)) {
761 dev_err(&ssi_private->pdev->dev, "baudclk is missing which is necessary for master mode\n");
762 return -EINVAL;
763 }
764
2b0db996 765 fsl_ssi_setup_reg_vals(ssi_private);
aafa85e7 766
43248122
MP
767 regmap_read(regs, CCSR_SSI_SCR, &scr);
768 scr &= ~(CCSR_SSI_SCR_SYN | CCSR_SSI_SCR_I2S_MODE_MASK);
50489479 769 scr |= CCSR_SSI_SCR_SYNC_TX_FS;
aafa85e7
NC
770
771 mask = CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR |
772 CCSR_SSI_STCR_TSCKP | CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TFSL |
773 CCSR_SSI_STCR_TEFS;
43248122
MP
774 regmap_read(regs, CCSR_SSI_STCR, &stcr);
775 regmap_read(regs, CCSR_SSI_SRCR, &srcr);
776 stcr &= ~mask;
777 srcr &= ~mask;
aafa85e7 778
07a28dbe 779 ssi_private->i2s_mode = CCSR_SSI_SCR_NET;
aafa85e7
NC
780 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
781 case SND_SOC_DAIFMT_I2S:
782 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
783 case SND_SOC_DAIFMT_CBS_CFS:
07a28dbe 784 ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_MASTER;
43248122
MP
785 regmap_update_bits(regs, CCSR_SSI_STCCR,
786 CCSR_SSI_SxCCR_DC_MASK,
787 CCSR_SSI_SxCCR_DC(2));
788 regmap_update_bits(regs, CCSR_SSI_SRCCR,
789 CCSR_SSI_SxCCR_DC_MASK,
790 CCSR_SSI_SxCCR_DC(2));
aafa85e7
NC
791 break;
792 case SND_SOC_DAIFMT_CBM_CFM:
07a28dbe 793 ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_SLAVE;
aafa85e7
NC
794 break;
795 default:
796 return -EINVAL;
797 }
aafa85e7
NC
798
799 /* Data on rising edge of bclk, frame low, 1clk before data */
800 strcr |= CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TSCKP |
801 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
802 break;
803 case SND_SOC_DAIFMT_LEFT_J:
804 /* Data on rising edge of bclk, frame high */
805 strcr |= CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TSCKP;
806 break;
807 case SND_SOC_DAIFMT_DSP_A:
808 /* Data on rising edge of bclk, frame high, 1clk before data */
809 strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
810 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
811 break;
812 case SND_SOC_DAIFMT_DSP_B:
813 /* Data on rising edge of bclk, frame high */
814 strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
815 CCSR_SSI_STCR_TXBIT0;
816 break;
2b0db996 817 case SND_SOC_DAIFMT_AC97:
07a28dbe 818 ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_NORMAL;
2b0db996 819 break;
aafa85e7
NC
820 default:
821 return -EINVAL;
822 }
2b0db996 823 scr |= ssi_private->i2s_mode;
aafa85e7
NC
824
825 /* DAI clock inversion */
826 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
827 case SND_SOC_DAIFMT_NB_NF:
828 /* Nothing to do for both normal cases */
829 break;
830 case SND_SOC_DAIFMT_IB_NF:
831 /* Invert bit clock */
832 strcr ^= CCSR_SSI_STCR_TSCKP;
833 break;
834 case SND_SOC_DAIFMT_NB_IF:
835 /* Invert frame clock */
836 strcr ^= CCSR_SSI_STCR_TFSI;
837 break;
838 case SND_SOC_DAIFMT_IB_IF:
839 /* Invert both clocks */
840 strcr ^= CCSR_SSI_STCR_TSCKP;
841 strcr ^= CCSR_SSI_STCR_TFSI;
842 break;
843 default:
844 return -EINVAL;
845 }
846
847 /* DAI clock master masks */
848 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
849 case SND_SOC_DAIFMT_CBS_CFS:
850 strcr |= CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR;
851 scr |= CCSR_SSI_SCR_SYS_CLK_EN;
852 break;
853 case SND_SOC_DAIFMT_CBM_CFM:
854 scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
855 break;
856 default:
857 return -EINVAL;
858 }
859
860 stcr |= strcr;
861 srcr |= strcr;
862
863 if (ssi_private->cpu_dai_drv.symmetric_rates) {
864 /* Need to clear RXDIR when using SYNC mode */
865 srcr &= ~CCSR_SSI_SRCR_RXDIR;
866 scr |= CCSR_SSI_SCR_SYN;
867 }
868
43248122
MP
869 regmap_write(regs, CCSR_SSI_STCR, stcr);
870 regmap_write(regs, CCSR_SSI_SRCR, srcr);
871 regmap_write(regs, CCSR_SSI_SCR, scr);
aafa85e7 872
2b0db996
MP
873 /*
874 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We don't
875 * use FIFO 1. We program the transmit water to signal a DMA transfer
876 * if there are only two (or fewer) elements left in the FIFO. Two
877 * elements equals one frame (left channel, right channel). This value,
878 * however, depends on the depth of the transmit buffer.
879 *
880 * We set the watermark on the same level as the DMA burstsize. For
881 * fiq it is probably better to use the biggest possible watermark
882 * size.
883 */
884 if (ssi_private->use_dma)
885 wm = ssi_private->fifo_depth - 2;
886 else
887 wm = ssi_private->fifo_depth;
888
43248122
MP
889 regmap_write(regs, CCSR_SSI_SFCSR,
890 CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) |
891 CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm));
2b0db996
MP
892
893 if (ssi_private->use_dual_fifo) {
43248122 894 regmap_update_bits(regs, CCSR_SSI_SRCR, CCSR_SSI_SRCR_RFEN1,
2b0db996 895 CCSR_SSI_SRCR_RFEN1);
43248122 896 regmap_update_bits(regs, CCSR_SSI_STCR, CCSR_SSI_STCR_TFEN1,
2b0db996 897 CCSR_SSI_STCR_TFEN1);
43248122 898 regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_TCH_EN,
2b0db996
MP
899 CCSR_SSI_SCR_TCH_EN);
900 }
901
902 if (fmt & SND_SOC_DAIFMT_AC97)
903 fsl_ssi_setup_ac97(ssi_private);
904
aafa85e7 905 return 0;
85e59af2
MP
906
907}
908
909/**
910 * fsl_ssi_set_dai_fmt - configure Digital Audio Interface Format.
911 */
912static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
913{
914 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
915
916 return _fsl_ssi_set_dai_fmt(ssi_private, fmt);
aafa85e7
NC
917}
918
aafa85e7
NC
919/**
920 * fsl_ssi_set_dai_tdm_slot - set TDM slot number
921 *
922 * Note: This function can be only called when using SSI as DAI master
923 */
924static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
925 u32 rx_mask, int slots, int slot_width)
926{
927 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
43248122 928 struct regmap *regs = ssi_private->regs;
aafa85e7
NC
929 u32 val;
930
931 /* The slot number should be >= 2 if using Network mode or I2S mode */
43248122
MP
932 regmap_read(regs, CCSR_SSI_SCR, &val);
933 val &= CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_NET;
aafa85e7
NC
934 if (val && slots < 2) {
935 dev_err(cpu_dai->dev, "slot number should be >= 2 in I2S or NET\n");
936 return -EINVAL;
937 }
938
43248122 939 regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_DC_MASK,
aafa85e7 940 CCSR_SSI_SxCCR_DC(slots));
43248122 941 regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_DC_MASK,
aafa85e7
NC
942 CCSR_SSI_SxCCR_DC(slots));
943
944 /* The register SxMSKs needs SSI to provide essential clock due to
945 * hardware design. So we here temporarily enable SSI to set them.
946 */
43248122
MP
947 regmap_read(regs, CCSR_SSI_SCR, &val);
948 val &= CCSR_SSI_SCR_SSIEN;
949 regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN,
950 CCSR_SSI_SCR_SSIEN);
aafa85e7 951
43248122
MP
952 regmap_write(regs, CCSR_SSI_STMSK, tx_mask);
953 regmap_write(regs, CCSR_SSI_SRMSK, rx_mask);
aafa85e7 954
43248122 955 regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN, val);
aafa85e7
NC
956
957 return 0;
958}
959
17467f23
TT
960/**
961 * fsl_ssi_trigger: start and stop the DMA transfer.
962 *
963 * This function is called by ALSA to start, stop, pause, and resume the DMA
964 * transfer of data.
965 *
966 * The DMA channel is in external master start and pause mode, which
967 * means the SSI completely controls the flow of data.
968 */
dee89c4d
MB
969static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
970 struct snd_soc_dai *dai)
17467f23
TT
971{
972 struct snd_soc_pcm_runtime *rtd = substream->private_data;
f0fba2ad 973 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
43248122 974 struct regmap *regs = ssi_private->regs;
9b443e3d 975
17467f23
TT
976 switch (cmd) {
977 case SNDRV_PCM_TRIGGER_START:
b20e53a8 978 case SNDRV_PCM_TRIGGER_RESUME:
17467f23 979 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
a4d11fe5 980 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
6de83879 981 fsl_ssi_tx_config(ssi_private, true);
a4d11fe5 982 else
6de83879 983 fsl_ssi_rx_config(ssi_private, true);
17467f23
TT
984 break;
985
986 case SNDRV_PCM_TRIGGER_STOP:
b20e53a8 987 case SNDRV_PCM_TRIGGER_SUSPEND:
17467f23
TT
988 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
989 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
6de83879 990 fsl_ssi_tx_config(ssi_private, false);
17467f23 991 else
6de83879 992 fsl_ssi_rx_config(ssi_private, false);
17467f23
TT
993 break;
994
995 default:
996 return -EINVAL;
997 }
998
171d683d 999 if (fsl_ssi_is_ac97(ssi_private)) {
a5a7ee7c 1000 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
43248122 1001 regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_TX_CLR);
a5a7ee7c 1002 else
43248122 1003 regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_RX_CLR);
a5a7ee7c 1004 }
9b443e3d 1005
17467f23
TT
1006 return 0;
1007}
1008
fc8ba7f9
LPC
1009static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
1010{
1011 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);
1012
fcdbadef 1013 if (ssi_private->soc->imx && ssi_private->use_dma) {
fc8ba7f9
LPC
1014 dai->playback_dma_data = &ssi_private->dma_params_tx;
1015 dai->capture_dma_data = &ssi_private->dma_params_rx;
1016 }
1017
1018 return 0;
1019}
1020
85e7652d 1021static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
6335d055
EM
1022 .startup = fsl_ssi_startup,
1023 .hw_params = fsl_ssi_hw_params,
d429d8e3 1024 .hw_free = fsl_ssi_hw_free,
aafa85e7
NC
1025 .set_fmt = fsl_ssi_set_dai_fmt,
1026 .set_sysclk = fsl_ssi_set_dai_sysclk,
1027 .set_tdm_slot = fsl_ssi_set_dai_tdm_slot,
6335d055 1028 .trigger = fsl_ssi_trigger,
6335d055
EM
1029};
1030
f0fba2ad
LG
1031/* Template for the CPU dai driver structure */
1032static struct snd_soc_dai_driver fsl_ssi_dai_template = {
fc8ba7f9 1033 .probe = fsl_ssi_dai_probe,
17467f23 1034 .playback = {
2924a998 1035 .channels_min = 1,
17467f23
TT
1036 .channels_max = 2,
1037 .rates = FSLSSI_I2S_RATES,
1038 .formats = FSLSSI_I2S_FORMATS,
1039 },
1040 .capture = {
2924a998 1041 .channels_min = 1,
17467f23
TT
1042 .channels_max = 2,
1043 .rates = FSLSSI_I2S_RATES,
1044 .formats = FSLSSI_I2S_FORMATS,
1045 },
6335d055 1046 .ops = &fsl_ssi_dai_ops,
17467f23
TT
1047};
1048
3580aa10
KM
1049static const struct snd_soc_component_driver fsl_ssi_component = {
1050 .name = "fsl-ssi",
1051};
1052
cd7f0295
MP
1053static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
1054 .ac97_control = 1,
1055 .playback = {
1056 .stream_name = "AC97 Playback",
1057 .channels_min = 2,
1058 .channels_max = 2,
1059 .rates = SNDRV_PCM_RATE_8000_48000,
1060 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1061 },
1062 .capture = {
1063 .stream_name = "AC97 Capture",
1064 .channels_min = 2,
1065 .channels_max = 2,
1066 .rates = SNDRV_PCM_RATE_48000,
1067 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1068 },
a5a7ee7c 1069 .ops = &fsl_ssi_dai_ops,
cd7f0295
MP
1070};
1071
1072
1073static struct fsl_ssi_private *fsl_ac97_data;
1074
a851a2bb 1075static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
cd7f0295
MP
1076 unsigned short val)
1077{
43248122 1078 struct regmap *regs = fsl_ac97_data->regs;
cd7f0295
MP
1079 unsigned int lreg;
1080 unsigned int lval;
1081
1082 if (reg > 0x7f)
1083 return;
1084
1085
1086 lreg = reg << 12;
43248122 1087 regmap_write(regs, CCSR_SSI_SACADD, lreg);
cd7f0295
MP
1088
1089 lval = val << 4;
43248122 1090 regmap_write(regs, CCSR_SSI_SACDAT, lval);
cd7f0295 1091
43248122 1092 regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
cd7f0295
MP
1093 CCSR_SSI_SACNT_WR);
1094 udelay(100);
1095}
1096
a851a2bb 1097static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
cd7f0295
MP
1098 unsigned short reg)
1099{
43248122 1100 struct regmap *regs = fsl_ac97_data->regs;
cd7f0295
MP
1101
1102 unsigned short val = -1;
43248122 1103 u32 reg_val;
cd7f0295
MP
1104 unsigned int lreg;
1105
1106 lreg = (reg & 0x7f) << 12;
43248122
MP
1107 regmap_write(regs, CCSR_SSI_SACADD, lreg);
1108 regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
cd7f0295
MP
1109 CCSR_SSI_SACNT_RD);
1110
1111 udelay(100);
1112
43248122
MP
1113 regmap_read(regs, CCSR_SSI_SACDAT, &reg_val);
1114 val = (reg_val >> 4) & 0xffff;
cd7f0295
MP
1115
1116 return val;
1117}
1118
1119static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
1120 .read = fsl_ssi_ac97_read,
1121 .write = fsl_ssi_ac97_write,
1122};
1123
17467f23 1124/**
f0fba2ad 1125 * Make every character in a string lower-case
17467f23 1126 */
f0fba2ad
LG
1127static void make_lowercase(char *s)
1128{
1129 char *p = s;
1130 char c;
1131
1132 while ((c = *p)) {
1133 if ((c >= 'A') && (c <= 'Z'))
1134 *p = c + ('a' - 'A');
1135 p++;
1136 }
1137}
1138
49da09e2 1139static int fsl_ssi_imx_probe(struct platform_device *pdev,
4d9b7926 1140 struct fsl_ssi_private *ssi_private, void __iomem *iomem)
49da09e2
MP
1141{
1142 struct device_node *np = pdev->dev.of_node;
ed0f1604 1143 u32 dmas[4];
49da09e2
MP
1144 int ret;
1145
1146 ssi_private->clk = devm_clk_get(&pdev->dev, NULL);
1147 if (IS_ERR(ssi_private->clk)) {
1148 ret = PTR_ERR(ssi_private->clk);
1149 dev_err(&pdev->dev, "could not get clock: %d\n", ret);
1150 return ret;
1151 }
1152
1153 ret = clk_prepare_enable(ssi_private->clk);
1154 if (ret) {
1155 dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret);
1156 return ret;
1157 }
1158
1159 /* For those SLAVE implementations, we ingore non-baudclk cases
1160 * and, instead, abandon MASTER mode that needs baud clock.
1161 */
1162 ssi_private->baudclk = devm_clk_get(&pdev->dev, "baud");
1163 if (IS_ERR(ssi_private->baudclk))
1164 dev_dbg(&pdev->dev, "could not get baud clock: %ld\n",
1165 PTR_ERR(ssi_private->baudclk));
49da09e2
MP
1166
1167 /*
1168 * We have burstsize be "fifo_depth - 2" to match the SSI
1169 * watermark setting in fsl_ssi_startup().
1170 */
1171 ssi_private->dma_params_tx.maxburst = ssi_private->fifo_depth - 2;
1172 ssi_private->dma_params_rx.maxburst = ssi_private->fifo_depth - 2;
43248122
MP
1173 ssi_private->dma_params_tx.addr = ssi_private->ssi_phys + CCSR_SSI_STX0;
1174 ssi_private->dma_params_rx.addr = ssi_private->ssi_phys + CCSR_SSI_SRX0;
49da09e2 1175
ed0f1604
MP
1176 ret = !of_property_read_u32_array(np, "dmas", dmas, 4);
1177 if (ssi_private->use_dma && !ret && dmas[2] == IMX_DMATYPE_SSI_DUAL) {
49da09e2
MP
1178 ssi_private->use_dual_fifo = true;
1179 /* When using dual fifo mode, we need to keep watermark
1180 * as even numbers due to dma script limitation.
1181 */
1182 ssi_private->dma_params_tx.maxburst &= ~0x1;
1183 ssi_private->dma_params_rx.maxburst &= ~0x1;
1184 }
1185
4d9b7926
MP
1186 if (!ssi_private->use_dma) {
1187
1188 /*
1189 * Some boards use an incompatible codec. To get it
1190 * working, we are using imx-fiq-pcm-audio, that
1191 * can handle those codecs. DMA is not possible in this
1192 * situation.
1193 */
1194
1195 ssi_private->fiq_params.irq = ssi_private->irq;
1196 ssi_private->fiq_params.base = iomem;
1197 ssi_private->fiq_params.dma_params_rx =
1198 &ssi_private->dma_params_rx;
1199 ssi_private->fiq_params.dma_params_tx =
1200 &ssi_private->dma_params_tx;
1201
1202 ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params);
1203 if (ret)
1204 goto error_pcm;
1205 } else {
1206 ret = imx_pcm_dma_init(pdev);
1207 if (ret)
1208 goto error_pcm;
1209 }
1210
49da09e2 1211 return 0;
4d9b7926
MP
1212
1213error_pcm:
4d9b7926
MP
1214 clk_disable_unprepare(ssi_private->clk);
1215
1216 return ret;
49da09e2
MP
1217}
1218
1219static void fsl_ssi_imx_clean(struct platform_device *pdev,
1220 struct fsl_ssi_private *ssi_private)
1221{
4d9b7926
MP
1222 if (!ssi_private->use_dma)
1223 imx_pcm_fiq_exit(pdev);
49da09e2
MP
1224 clk_disable_unprepare(ssi_private->clk);
1225}
1226
a0a3d518 1227static int fsl_ssi_probe(struct platform_device *pdev)
17467f23 1228{
17467f23
TT
1229 struct fsl_ssi_private *ssi_private;
1230 int ret = 0;
38fec727 1231 struct device_node *np = pdev->dev.of_node;
c1953bfe 1232 const struct of_device_id *of_id;
f0fba2ad 1233 const char *p, *sprop;
8e9d8690 1234 const uint32_t *iprop;
f0fba2ad 1235 struct resource res;
43248122 1236 void __iomem *iomem;
f0fba2ad 1237 char name[64];
17467f23 1238
ff71334a
TT
1239 /* SSIs that are not connected on the board should have a
1240 * status = "disabled"
1241 * property in their device tree nodes.
f0fba2ad 1242 */
ff71334a 1243 if (!of_device_is_available(np))
f0fba2ad
LG
1244 return -ENODEV;
1245
c1953bfe 1246 of_id = of_match_device(fsl_ssi_ids, &pdev->dev);
fcdbadef 1247 if (!of_id || !of_id->data)
c1953bfe 1248 return -EINVAL;
c1953bfe 1249
2a1d102d
MP
1250 ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private),
1251 GFP_KERNEL);
17467f23 1252 if (!ssi_private) {
38fec727 1253 dev_err(&pdev->dev, "could not allocate DAI object\n");
f0fba2ad 1254 return -ENOMEM;
17467f23 1255 }
17467f23 1256
fcdbadef
SH
1257 ssi_private->soc = of_id->data;
1258
85e59af2
MP
1259 sprop = of_get_property(np, "fsl,mode", NULL);
1260 if (sprop) {
1261 if (!strcmp(sprop, "ac97-slave"))
1262 ssi_private->dai_fmt = SND_SOC_DAIFMT_AC97;
1263 else if (!strcmp(sprop, "i2s-slave"))
1264 ssi_private->dai_fmt = SND_SOC_DAIFMT_I2S |
1265 SND_SOC_DAIFMT_CBM_CFM;
1266 }
1267
de623ece
MP
1268 ssi_private->use_dma = !of_property_read_bool(np,
1269 "fsl,fiq-stream-filter");
1270
85e59af2 1271 if (fsl_ssi_is_ac97(ssi_private)) {
cd7f0295
MP
1272 memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_ac97_dai,
1273 sizeof(fsl_ssi_ac97_dai));
1274
1275 fsl_ac97_data = ssi_private;
cd7f0295
MP
1276
1277 snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
1278 } else {
1279 /* Initialize this copy of the CPU DAI driver structure */
1280 memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
1281 sizeof(fsl_ssi_dai_template));
1282 }
2a1d102d 1283 ssi_private->cpu_dai_drv.name = dev_name(&pdev->dev);
f0fba2ad
LG
1284
1285 /* Get the addresses and IRQ */
1286 ret = of_address_to_resource(np, 0, &res);
1287 if (ret) {
38fec727 1288 dev_err(&pdev->dev, "could not determine device resources\n");
b0a4747a 1289 return ret;
f0fba2ad 1290 }
43248122
MP
1291 ssi_private->ssi_phys = res.start;
1292
1293 iomem = devm_ioremap(&pdev->dev, res.start, resource_size(&res));
1294 if (!iomem) {
147dfe90 1295 dev_err(&pdev->dev, "could not map device resources\n");
b0a4747a 1296 return -ENOMEM;
147dfe90 1297 }
43248122
MP
1298
1299 ssi_private->regs = devm_regmap_init_mmio(&pdev->dev, iomem,
1300 &fsl_ssi_regconfig);
1301 if (IS_ERR(ssi_private->regs)) {
1302 dev_err(&pdev->dev, "Failed to init register map\n");
1303 return PTR_ERR(ssi_private->regs);
1304 }
1fab6caf 1305
f0fba2ad 1306 ssi_private->irq = irq_of_parse_and_map(np, 0);
d60336e2 1307 if (!ssi_private->irq) {
1fab6caf 1308 dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
b0a4747a 1309 return -ENXIO;
1fab6caf
TT
1310 }
1311
f0fba2ad 1312 /* Are the RX and the TX clocks locked? */
07a9483a 1313 if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) {
f0fba2ad 1314 ssi_private->cpu_dai_drv.symmetric_rates = 1;
07a9483a
NC
1315 ssi_private->cpu_dai_drv.symmetric_channels = 1;
1316 ssi_private->cpu_dai_drv.symmetric_samplebits = 1;
1317 }
17467f23 1318
8e9d8690
TT
1319 /* Determine the FIFO depth. */
1320 iprop = of_get_property(np, "fsl,fifo-depth", NULL);
1321 if (iprop)
147dfe90 1322 ssi_private->fifo_depth = be32_to_cpup(iprop);
8e9d8690
TT
1323 else
1324 /* Older 8610 DTs didn't have the fifo-depth property */
1325 ssi_private->fifo_depth = 8;
1326
4d9b7926
MP
1327 dev_set_drvdata(&pdev->dev, ssi_private);
1328
fcdbadef 1329 if (ssi_private->soc->imx) {
43248122 1330 ret = fsl_ssi_imx_probe(pdev, ssi_private, iomem);
49da09e2 1331 if (ret)
b0a4747a 1332 goto error_irqmap;
0888efd1
MP
1333 }
1334
4d9b7926
MP
1335 ret = snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
1336 &ssi_private->cpu_dai_drv, 1);
1337 if (ret) {
1338 dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1339 goto error_asoc_register;
1340 }
1341
0888efd1 1342 if (ssi_private->use_dma) {
f0377086 1343 ret = devm_request_irq(&pdev->dev, ssi_private->irq,
171d683d 1344 fsl_ssi_isr, 0, dev_name(&pdev->dev),
f0377086
MG
1345 ssi_private);
1346 if (ret < 0) {
1347 dev_err(&pdev->dev, "could not claim irq %u\n",
1348 ssi_private->irq);
49da09e2 1349 goto error_irq;
f0377086 1350 }
09ce1111
SG
1351 }
1352
f138e621 1353 ret = fsl_ssi_debugfs_create(&ssi_private->dbg_stats, &pdev->dev);
9368acc4 1354 if (ret)
4d9b7926 1355 goto error_asoc_register;
09ce1111
SG
1356
1357 /*
1358 * If codec-handle property is missing from SSI node, we assume
1359 * that the machine driver uses new binding which does not require
1360 * SSI driver to trigger machine driver's probe.
1361 */
171d683d 1362 if (!of_get_property(np, "codec-handle", NULL))
09ce1111 1363 goto done;
09ce1111 1364
f0fba2ad 1365 /* Trigger the machine driver's probe function. The platform driver
2b81ec69 1366 * name of the machine driver is taken from /compatible property of the
f0fba2ad
LG
1367 * device tree. We also pass the address of the CPU DAI driver
1368 * structure.
1369 */
2b81ec69
SG
1370 sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
1371 /* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
f0fba2ad
LG
1372 p = strrchr(sprop, ',');
1373 if (p)
1374 sprop = p + 1;
1375 snprintf(name, sizeof(name), "snd-soc-%s", sprop);
1376 make_lowercase(name);
1377
1378 ssi_private->pdev =
38fec727 1379 platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
f0fba2ad
LG
1380 if (IS_ERR(ssi_private->pdev)) {
1381 ret = PTR_ERR(ssi_private->pdev);
38fec727 1382 dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
4d9b7926 1383 goto error_sound_card;
3f4b783c 1384 }
17467f23 1385
09ce1111 1386done:
85e59af2
MP
1387 if (ssi_private->dai_fmt)
1388 _fsl_ssi_set_dai_fmt(ssi_private, ssi_private->dai_fmt);
1389
f0fba2ad 1390 return 0;
87a0632b 1391
4d9b7926 1392error_sound_card:
f138e621 1393 fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
9368acc4 1394
4d9b7926 1395error_irq:
3580aa10 1396 snd_soc_unregister_component(&pdev->dev);
1fab6caf 1397
4d9b7926 1398error_asoc_register:
fcdbadef 1399 if (ssi_private->soc->imx)
49da09e2 1400 fsl_ssi_imx_clean(pdev, ssi_private);
1fab6caf
TT
1401
1402error_irqmap:
4d9b7926 1403 if (ssi_private->use_dma)
2841be9a 1404 irq_dispose_mapping(ssi_private->irq);
1fab6caf 1405
87a0632b 1406 return ret;
17467f23 1407}
17467f23 1408
38fec727 1409static int fsl_ssi_remove(struct platform_device *pdev)
17467f23 1410{
38fec727 1411 struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
17467f23 1412
f138e621 1413 fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
9368acc4 1414
171d683d 1415 if (ssi_private->pdev)
09ce1111 1416 platform_device_unregister(ssi_private->pdev);
3580aa10 1417 snd_soc_unregister_component(&pdev->dev);
49da09e2 1418
fcdbadef 1419 if (ssi_private->soc->imx)
49da09e2
MP
1420 fsl_ssi_imx_clean(pdev, ssi_private);
1421
4d9b7926 1422 if (ssi_private->use_dma)
2841be9a 1423 irq_dispose_mapping(ssi_private->irq);
f0fba2ad
LG
1424
1425 return 0;
17467f23 1426}
f0fba2ad 1427
f07eb223 1428static struct platform_driver fsl_ssi_driver = {
f0fba2ad
LG
1429 .driver = {
1430 .name = "fsl-ssi-dai",
1431 .owner = THIS_MODULE,
1432 .of_match_table = fsl_ssi_ids,
1433 },
1434 .probe = fsl_ssi_probe,
1435 .remove = fsl_ssi_remove,
1436};
17467f23 1437
ba0a7e02 1438module_platform_driver(fsl_ssi_driver);
a454dad1 1439
f3142807 1440MODULE_ALIAS("platform:fsl-ssi-dai");
17467f23
TT
1441MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
1442MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
f0fba2ad 1443MODULE_LICENSE("GPL v2");