[ALSA] rawmidi: adjust runtime->avail when changing output buffer size
[linux-2.6-block.git] / sound / pci / hda / hda_codec.c
CommitLineData
1da177e4
LT
1/*
2 * Universal Interface for Intel High Definition Audio Codec
3 *
4 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
5 *
6 *
7 * This driver is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This driver is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22#include <sound/driver.h>
23#include <linux/init.h>
24#include <linux/delay.h>
25#include <linux/slab.h>
26#include <linux/pci.h>
27#include <linux/moduleparam.h>
28#include <sound/core.h>
29#include "hda_codec.h"
30#include <sound/asoundef.h>
31#include <sound/initval.h>
32#include "hda_local.h"
33
34
35MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
36MODULE_DESCRIPTION("Universal interface for High Definition Audio Codec");
37MODULE_LICENSE("GPL");
38
39
40/*
41 * vendor / preset table
42 */
43
44struct hda_vendor_id {
45 unsigned int id;
46 const char *name;
47};
48
49/* codec vendor labels */
50static struct hda_vendor_id hda_vendor_ids[] = {
51 { 0x10ec, "Realtek" },
54b903ec 52 { 0x11d4, "Analog Devices" },
1da177e4
LT
53 { 0x13f6, "C-Media" },
54 { 0x434d, "C-Media" },
2f2f4251 55 { 0x8384, "SigmaTel" },
1da177e4
LT
56 {} /* terminator */
57};
58
59/* codec presets */
60#include "hda_patch.h"
61
62
63/**
64 * snd_hda_codec_read - send a command and get the response
65 * @codec: the HDA codec
66 * @nid: NID to send the command
67 * @direct: direct flag
68 * @verb: the verb to send
69 * @parm: the parameter for the verb
70 *
71 * Send a single command and read the corresponding response.
72 *
73 * Returns the obtained response value, or -1 for an error.
74 */
75unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid, int direct,
76 unsigned int verb, unsigned int parm)
77{
78 unsigned int res;
79 down(&codec->bus->cmd_mutex);
80 if (! codec->bus->ops.command(codec, nid, direct, verb, parm))
81 res = codec->bus->ops.get_response(codec);
82 else
83 res = (unsigned int)-1;
84 up(&codec->bus->cmd_mutex);
85 return res;
86}
87
88/**
89 * snd_hda_codec_write - send a single command without waiting for response
90 * @codec: the HDA codec
91 * @nid: NID to send the command
92 * @direct: direct flag
93 * @verb: the verb to send
94 * @parm: the parameter for the verb
95 *
96 * Send a single command without waiting for response.
97 *
98 * Returns 0 if successful, or a negative error code.
99 */
100int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
101 unsigned int verb, unsigned int parm)
102{
103 int err;
104 down(&codec->bus->cmd_mutex);
105 err = codec->bus->ops.command(codec, nid, direct, verb, parm);
106 up(&codec->bus->cmd_mutex);
107 return err;
108}
109
110/**
111 * snd_hda_sequence_write - sequence writes
112 * @codec: the HDA codec
113 * @seq: VERB array to send
114 *
115 * Send the commands sequentially from the given array.
116 * The array must be terminated with NID=0.
117 */
118void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
119{
120 for (; seq->nid; seq++)
121 snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
122}
123
124/**
125 * snd_hda_get_sub_nodes - get the range of sub nodes
126 * @codec: the HDA codec
127 * @nid: NID to parse
128 * @start_id: the pointer to store the start NID
129 *
130 * Parse the NID and store the start NID of its sub-nodes.
131 * Returns the number of sub-nodes.
132 */
133int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid, hda_nid_t *start_id)
134{
135 unsigned int parm;
136
137 parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
138 *start_id = (parm >> 16) & 0x7fff;
139 return (int)(parm & 0x7fff);
140}
141
142/**
143 * snd_hda_get_connections - get connection list
144 * @codec: the HDA codec
145 * @nid: NID to parse
146 * @conn_list: connection list array
147 * @max_conns: max. number of connections to store
148 *
149 * Parses the connection list of the given widget and stores the list
150 * of NIDs.
151 *
152 * Returns the number of connections, or a negative error code.
153 */
154int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
155 hda_nid_t *conn_list, int max_conns)
156{
157 unsigned int parm;
158 int i, j, conn_len, num_tupples, conns;
159 unsigned int shift, num_elems, mask;
160
161 snd_assert(conn_list && max_conns > 0, return -EINVAL);
162
163 parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
164 if (parm & AC_CLIST_LONG) {
165 /* long form */
166 shift = 16;
167 num_elems = 2;
168 } else {
169 /* short form */
170 shift = 8;
171 num_elems = 4;
172 }
173 conn_len = parm & AC_CLIST_LENGTH;
174 num_tupples = num_elems / 2;
175 mask = (1 << (shift-1)) - 1;
176
177 if (! conn_len)
178 return 0; /* no connection */
179
180 if (conn_len == 1) {
181 /* single connection */
182 parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, 0);
183 conn_list[0] = parm & mask;
184 return 1;
185 }
186
187 /* multi connection */
188 conns = 0;
189 for (i = 0; i < conn_len; i += num_elems) {
190 parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, i);
191 for (j = 0; j < num_tupples; j++) {
192 int range_val;
193 hda_nid_t val1, val2, n;
194 range_val = parm & (1 << (shift-1)); /* ranges */
195 val1 = parm & mask;
196 parm >>= shift;
197 val2 = parm & mask;
198 parm >>= shift;
199 if (range_val) {
200 /* ranges between val1 and val2 */
201 if (val1 > val2) {
202 snd_printk(KERN_WARNING "hda_codec: invalid dep_range_val %x:%x\n", val1, val2);
203 continue;
204 }
205 for (n = val1; n <= val2; n++) {
206 if (conns >= max_conns)
207 return -EINVAL;
208 conn_list[conns++] = n;
209 }
210 } else {
211 if (! val1)
212 break;
213 if (conns >= max_conns)
214 return -EINVAL;
215 conn_list[conns++] = val1;
216 if (! val2)
217 break;
218 if (conns >= max_conns)
219 return -EINVAL;
220 conn_list[conns++] = val2;
221 }
222 }
223 }
224 return conns;
225}
226
227
228/**
229 * snd_hda_queue_unsol_event - add an unsolicited event to queue
230 * @bus: the BUS
231 * @res: unsolicited event (lower 32bit of RIRB entry)
232 * @res_ex: codec addr and flags (upper 32bit or RIRB entry)
233 *
234 * Adds the given event to the queue. The events are processed in
235 * the workqueue asynchronously. Call this function in the interrupt
236 * hanlder when RIRB receives an unsolicited event.
237 *
238 * Returns 0 if successful, or a negative error code.
239 */
240int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
241{
242 struct hda_bus_unsolicited *unsol;
243 unsigned int wp;
244
245 if ((unsol = bus->unsol) == NULL)
246 return 0;
247
248 wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
249 unsol->wp = wp;
250
251 wp <<= 1;
252 unsol->queue[wp] = res;
253 unsol->queue[wp + 1] = res_ex;
254
255 queue_work(unsol->workq, &unsol->work);
256
257 return 0;
258}
259
260/*
261 * process queueud unsolicited events
262 */
263static void process_unsol_events(void *data)
264{
265 struct hda_bus *bus = data;
266 struct hda_bus_unsolicited *unsol = bus->unsol;
267 struct hda_codec *codec;
268 unsigned int rp, caddr, res;
269
270 while (unsol->rp != unsol->wp) {
271 rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
272 unsol->rp = rp;
273 rp <<= 1;
274 res = unsol->queue[rp];
275 caddr = unsol->queue[rp + 1];
276 if (! (caddr & (1 << 4))) /* no unsolicited event? */
277 continue;
278 codec = bus->caddr_tbl[caddr & 0x0f];
279 if (codec && codec->patch_ops.unsol_event)
280 codec->patch_ops.unsol_event(codec, res);
281 }
282}
283
284/*
285 * initialize unsolicited queue
286 */
287static int init_unsol_queue(struct hda_bus *bus)
288{
289 struct hda_bus_unsolicited *unsol;
290
9f146bb6
TI
291 if (bus->unsol) /* already initialized */
292 return 0;
293
e560d8d8 294 unsol = kzalloc(sizeof(*unsol), GFP_KERNEL);
1da177e4
LT
295 if (! unsol) {
296 snd_printk(KERN_ERR "hda_codec: can't allocate unsolicited queue\n");
297 return -ENOMEM;
298 }
299 unsol->workq = create_workqueue("hda_codec");
300 if (! unsol->workq) {
301 snd_printk(KERN_ERR "hda_codec: can't create workqueue\n");
302 kfree(unsol);
303 return -ENOMEM;
304 }
305 INIT_WORK(&unsol->work, process_unsol_events, bus);
306 bus->unsol = unsol;
307 return 0;
308}
309
310/*
311 * destructor
312 */
313static void snd_hda_codec_free(struct hda_codec *codec);
314
315static int snd_hda_bus_free(struct hda_bus *bus)
316{
317 struct list_head *p, *n;
318
319 if (! bus)
320 return 0;
321 if (bus->unsol) {
322 destroy_workqueue(bus->unsol->workq);
323 kfree(bus->unsol);
324 }
325 list_for_each_safe(p, n, &bus->codec_list) {
326 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
327 snd_hda_codec_free(codec);
328 }
329 if (bus->ops.private_free)
330 bus->ops.private_free(bus);
331 kfree(bus);
332 return 0;
333}
334
c8b6bf9b 335static int snd_hda_bus_dev_free(struct snd_device *device)
1da177e4
LT
336{
337 struct hda_bus *bus = device->device_data;
338 return snd_hda_bus_free(bus);
339}
340
341/**
342 * snd_hda_bus_new - create a HDA bus
343 * @card: the card entry
344 * @temp: the template for hda_bus information
345 * @busp: the pointer to store the created bus instance
346 *
347 * Returns 0 if successful, or a negative error code.
348 */
c8b6bf9b 349int snd_hda_bus_new(struct snd_card *card, const struct hda_bus_template *temp,
1da177e4
LT
350 struct hda_bus **busp)
351{
352 struct hda_bus *bus;
353 int err;
c8b6bf9b 354 static struct snd_device_ops dev_ops = {
1da177e4
LT
355 .dev_free = snd_hda_bus_dev_free,
356 };
357
358 snd_assert(temp, return -EINVAL);
359 snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL);
360
361 if (busp)
362 *busp = NULL;
363
e560d8d8 364 bus = kzalloc(sizeof(*bus), GFP_KERNEL);
1da177e4
LT
365 if (bus == NULL) {
366 snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
367 return -ENOMEM;
368 }
369
370 bus->card = card;
371 bus->private_data = temp->private_data;
372 bus->pci = temp->pci;
373 bus->modelname = temp->modelname;
374 bus->ops = temp->ops;
375
376 init_MUTEX(&bus->cmd_mutex);
377 INIT_LIST_HEAD(&bus->codec_list);
378
1da177e4
LT
379 if ((err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops)) < 0) {
380 snd_hda_bus_free(bus);
381 return err;
382 }
383 if (busp)
384 *busp = bus;
385 return 0;
386}
387
388
389/*
390 * find a matching codec preset
391 */
392static const struct hda_codec_preset *find_codec_preset(struct hda_codec *codec)
393{
394 const struct hda_codec_preset **tbl, *preset;
395
396 for (tbl = hda_preset_tables; *tbl; tbl++) {
397 for (preset = *tbl; preset->id; preset++) {
398 u32 mask = preset->mask;
399 if (! mask)
400 mask = ~0;
401 if (preset->id == (codec->vendor_id & mask))
402 return preset;
403 }
404 }
405 return NULL;
406}
407
408/*
409 * snd_hda_get_codec_name - store the codec name
410 */
411void snd_hda_get_codec_name(struct hda_codec *codec,
412 char *name, int namelen)
413{
414 const struct hda_vendor_id *c;
415 const char *vendor = NULL;
416 u16 vendor_id = codec->vendor_id >> 16;
417 char tmp[16];
418
419 for (c = hda_vendor_ids; c->id; c++) {
420 if (c->id == vendor_id) {
421 vendor = c->name;
422 break;
423 }
424 }
425 if (! vendor) {
426 sprintf(tmp, "Generic %04x", vendor_id);
427 vendor = tmp;
428 }
429 if (codec->preset && codec->preset->name)
430 snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
431 else
432 snprintf(name, namelen, "%s ID %x", vendor, codec->vendor_id & 0xffff);
433}
434
435/*
673b683a 436 * look for an AFG and MFG nodes
1da177e4 437 */
673b683a 438static void setup_fg_nodes(struct hda_codec *codec)
1da177e4
LT
439{
440 int i, total_nodes;
441 hda_nid_t nid;
442
443 total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
444 for (i = 0; i < total_nodes; i++, nid++) {
673b683a
SK
445 switch((snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE) & 0xff)) {
446 case AC_GRP_AUDIO_FUNCTION:
447 codec->afg = nid;
448 break;
449 case AC_GRP_MODEM_FUNCTION:
450 codec->mfg = nid;
451 break;
452 default:
453 break;
454 }
1da177e4 455 }
1da177e4
LT
456}
457
458/*
459 * codec destructor
460 */
461static void snd_hda_codec_free(struct hda_codec *codec)
462{
463 if (! codec)
464 return;
465 list_del(&codec->list);
466 codec->bus->caddr_tbl[codec->addr] = NULL;
467 if (codec->patch_ops.free)
468 codec->patch_ops.free(codec);
d031166f 469 kfree(codec->amp_info);
1da177e4
LT
470 kfree(codec);
471}
472
473static void init_amp_hash(struct hda_codec *codec);
474
475/**
476 * snd_hda_codec_new - create a HDA codec
477 * @bus: the bus to assign
478 * @codec_addr: the codec address
479 * @codecp: the pointer to store the generated codec
480 *
481 * Returns 0 if successful, or a negative error code.
482 */
483int snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
484 struct hda_codec **codecp)
485{
486 struct hda_codec *codec;
487 char component[13];
488 int err;
489
490 snd_assert(bus, return -EINVAL);
491 snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL);
492
493 if (bus->caddr_tbl[codec_addr]) {
494 snd_printk(KERN_ERR "hda_codec: address 0x%x is already occupied\n", codec_addr);
495 return -EBUSY;
496 }
497
e560d8d8 498 codec = kzalloc(sizeof(*codec), GFP_KERNEL);
1da177e4
LT
499 if (codec == NULL) {
500 snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
501 return -ENOMEM;
502 }
503
504 codec->bus = bus;
505 codec->addr = codec_addr;
506 init_MUTEX(&codec->spdif_mutex);
507 init_amp_hash(codec);
508
509 list_add_tail(&codec->list, &bus->codec_list);
510 bus->caddr_tbl[codec_addr] = codec;
511
512 codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_VENDOR_ID);
513 codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_SUBSYSTEM_ID);
514 codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_REV_ID);
515
673b683a
SK
516 setup_fg_nodes(codec);
517 if (! codec->afg && ! codec->mfg) {
518 snd_printdd("hda_codec: no AFG or MFG node found\n");
1da177e4
LT
519 snd_hda_codec_free(codec);
520 return -ENODEV;
521 }
522
86284e45
TI
523 if (! codec->subsystem_id) {
524 hda_nid_t nid = codec->afg ? codec->afg : codec->mfg;
525 codec->subsystem_id = snd_hda_codec_read(codec, nid, 0,
526 AC_VERB_GET_SUBSYSTEM_ID,
527 0);
528 }
529
1da177e4
LT
530 codec->preset = find_codec_preset(codec);
531 if (! *bus->card->mixername)
532 snd_hda_get_codec_name(codec, bus->card->mixername,
533 sizeof(bus->card->mixername));
534
535 if (codec->preset && codec->preset->patch)
536 err = codec->preset->patch(codec);
537 else
538 err = snd_hda_parse_generic_codec(codec);
539 if (err < 0) {
540 snd_hda_codec_free(codec);
541 return err;
542 }
543
9f146bb6
TI
544 if (codec->patch_ops.unsol_event)
545 init_unsol_queue(bus);
546
1da177e4
LT
547 snd_hda_codec_proc_new(codec);
548
549 sprintf(component, "HDA:%08x", codec->vendor_id);
550 snd_component_add(codec->bus->card, component);
551
552 if (codecp)
553 *codecp = codec;
554 return 0;
555}
556
557/**
558 * snd_hda_codec_setup_stream - set up the codec for streaming
559 * @codec: the CODEC to set up
560 * @nid: the NID to set up
561 * @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
562 * @channel_id: channel id to pass, zero based.
563 * @format: stream format.
564 */
565void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid, u32 stream_tag,
566 int channel_id, int format)
567{
d21b37ea
TI
568 if (! nid)
569 return;
570
1da177e4
LT
571 snd_printdd("hda_codec_setup_stream: NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
572 nid, stream_tag, channel_id, format);
573 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
574 (stream_tag << 4) | channel_id);
575 msleep(1);
576 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
577}
578
579
580/*
581 * amp access functions
582 */
583
4a19faee
TI
584/* FIXME: more better hash key? */
585#define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24))
1da177e4 586#define INFO_AMP_CAPS (1<<0)
4a19faee 587#define INFO_AMP_VOL(ch) (1 << (1 + (ch)))
1da177e4
LT
588
589/* initialize the hash table */
590static void init_amp_hash(struct hda_codec *codec)
591{
592 memset(codec->amp_hash, 0xff, sizeof(codec->amp_hash));
593 codec->num_amp_entries = 0;
d031166f
TI
594 codec->amp_info_size = 0;
595 codec->amp_info = NULL;
1da177e4
LT
596}
597
598/* query the hash. allocate an entry if not found. */
599static struct hda_amp_info *get_alloc_amp_hash(struct hda_codec *codec, u32 key)
600{
601 u16 idx = key % (u16)ARRAY_SIZE(codec->amp_hash);
602 u16 cur = codec->amp_hash[idx];
603 struct hda_amp_info *info;
604
605 while (cur != 0xffff) {
606 info = &codec->amp_info[cur];
607 if (info->key == key)
608 return info;
609 cur = info->next;
610 }
611
612 /* add a new hash entry */
d031166f
TI
613 if (codec->num_amp_entries >= codec->amp_info_size) {
614 /* reallocate the array */
615 int new_size = codec->amp_info_size + 64;
616 struct hda_amp_info *new_info = kcalloc(new_size, sizeof(struct hda_amp_info),
617 GFP_KERNEL);
618 if (! new_info) {
619 snd_printk(KERN_ERR "hda_codec: can't malloc amp_info\n");
620 return NULL;
621 }
622 if (codec->amp_info) {
623 memcpy(new_info, codec->amp_info,
624 codec->amp_info_size * sizeof(struct hda_amp_info));
625 kfree(codec->amp_info);
626 }
627 codec->amp_info_size = new_size;
628 codec->amp_info = new_info;
1da177e4
LT
629 }
630 cur = codec->num_amp_entries++;
631 info = &codec->amp_info[cur];
632 info->key = key;
633 info->status = 0; /* not initialized yet */
634 info->next = codec->amp_hash[idx];
635 codec->amp_hash[idx] = cur;
636
637 return info;
638}
639
640/*
641 * query AMP capabilities for the given widget and direction
642 */
643static u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
644{
645 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
646
647 if (! info)
648 return 0;
649 if (! (info->status & INFO_AMP_CAPS)) {
650 if (!(snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_AMP_OVRD))
651 nid = codec->afg;
652 info->amp_caps = snd_hda_param_read(codec, nid, direction == HDA_OUTPUT ?
653 AC_PAR_AMP_OUT_CAP : AC_PAR_AMP_IN_CAP);
654 info->status |= INFO_AMP_CAPS;
655 }
656 return info->amp_caps;
657}
658
659/*
660 * read the current volume to info
4a19faee 661 * if the cache exists, read the cache value.
1da177e4 662 */
4a19faee 663static unsigned int get_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
1da177e4
LT
664 hda_nid_t nid, int ch, int direction, int index)
665{
666 u32 val, parm;
667
4a19faee
TI
668 if (info->status & INFO_AMP_VOL(ch))
669 return info->vol[ch];
1da177e4
LT
670
671 parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
672 parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
673 parm |= index;
674 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_AMP_GAIN_MUTE, parm);
675 info->vol[ch] = val & 0xff;
4a19faee
TI
676 info->status |= INFO_AMP_VOL(ch);
677 return info->vol[ch];
1da177e4
LT
678}
679
680/*
4a19faee 681 * write the current volume in info to the h/w and update the cache
1da177e4 682 */
4a19faee 683static void put_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
1da177e4
LT
684 hda_nid_t nid, int ch, int direction, int index, int val)
685{
686 u32 parm;
687
688 parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
689 parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
690 parm |= index << AC_AMP_SET_INDEX_SHIFT;
691 parm |= val;
692 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
4a19faee 693 info->vol[ch] = val;
1da177e4
LT
694}
695
696/*
4a19faee 697 * read AMP value. The volume is between 0 to 0x7f, 0x80 = mute bit.
1da177e4 698 */
89c87bf8 699static int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int index)
1da177e4
LT
700{
701 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
702 if (! info)
703 return 0;
4a19faee 704 return get_vol_mute(codec, info, nid, ch, direction, index);
1da177e4
LT
705}
706
4a19faee
TI
707/*
708 * update the AMP value, mask = bit mask to set, val = the value
709 */
710static int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int idx, int mask, int val)
1da177e4
LT
711{
712 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
4a19faee 713
1da177e4
LT
714 if (! info)
715 return 0;
4a19faee
TI
716 val &= mask;
717 val |= get_vol_mute(codec, info, nid, ch, direction, idx) & ~mask;
1da177e4
LT
718 if (info->vol[ch] == val && ! codec->in_resume)
719 return 0;
4a19faee 720 put_vol_mute(codec, info, nid, ch, direction, idx, val);
1da177e4
LT
721 return 1;
722}
723
724
725/*
726 * AMP control callbacks
727 */
728/* retrieve parameters from private_value */
729#define get_amp_nid(kc) ((kc)->private_value & 0xffff)
730#define get_amp_channels(kc) (((kc)->private_value >> 16) & 0x3)
731#define get_amp_direction(kc) (((kc)->private_value >> 18) & 0x1)
732#define get_amp_index(kc) (((kc)->private_value >> 19) & 0xf)
733
734/* volume */
c8b6bf9b 735int snd_hda_mixer_amp_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1da177e4
LT
736{
737 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
738 u16 nid = get_amp_nid(kcontrol);
739 u8 chs = get_amp_channels(kcontrol);
740 int dir = get_amp_direction(kcontrol);
741 u32 caps;
742
743 caps = query_amp_caps(codec, nid, dir);
744 caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT; /* num steps */
745 if (! caps) {
746 printk(KERN_WARNING "hda_codec: num_steps = 0 for NID=0x%x\n", nid);
747 return -EINVAL;
748 }
749 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
750 uinfo->count = chs == 3 ? 2 : 1;
751 uinfo->value.integer.min = 0;
752 uinfo->value.integer.max = caps;
753 return 0;
754}
755
c8b6bf9b 756int snd_hda_mixer_amp_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1da177e4
LT
757{
758 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
759 hda_nid_t nid = get_amp_nid(kcontrol);
760 int chs = get_amp_channels(kcontrol);
761 int dir = get_amp_direction(kcontrol);
762 int idx = get_amp_index(kcontrol);
763 long *valp = ucontrol->value.integer.value;
764
765 if (chs & 1)
766 *valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x7f;
767 if (chs & 2)
768 *valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x7f;
769 return 0;
770}
771
c8b6bf9b 772int snd_hda_mixer_amp_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1da177e4
LT
773{
774 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
775 hda_nid_t nid = get_amp_nid(kcontrol);
776 int chs = get_amp_channels(kcontrol);
777 int dir = get_amp_direction(kcontrol);
778 int idx = get_amp_index(kcontrol);
1da177e4
LT
779 long *valp = ucontrol->value.integer.value;
780 int change = 0;
781
b9f5a89c 782 if (chs & 1) {
4a19faee
TI
783 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
784 0x7f, *valp);
b9f5a89c
NG
785 valp++;
786 }
4a19faee
TI
787 if (chs & 2)
788 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
b9f5a89c 789 0x7f, *valp);
1da177e4
LT
790 return change;
791}
792
793/* switch */
c8b6bf9b 794int snd_hda_mixer_amp_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1da177e4
LT
795{
796 int chs = get_amp_channels(kcontrol);
797
798 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
799 uinfo->count = chs == 3 ? 2 : 1;
800 uinfo->value.integer.min = 0;
801 uinfo->value.integer.max = 1;
802 return 0;
803}
804
c8b6bf9b 805int snd_hda_mixer_amp_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1da177e4
LT
806{
807 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
808 hda_nid_t nid = get_amp_nid(kcontrol);
809 int chs = get_amp_channels(kcontrol);
810 int dir = get_amp_direction(kcontrol);
811 int idx = get_amp_index(kcontrol);
812 long *valp = ucontrol->value.integer.value;
813
814 if (chs & 1)
815 *valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x80) ? 0 : 1;
816 if (chs & 2)
817 *valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x80) ? 0 : 1;
818 return 0;
819}
820
c8b6bf9b 821int snd_hda_mixer_amp_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1da177e4
LT
822{
823 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
824 hda_nid_t nid = get_amp_nid(kcontrol);
825 int chs = get_amp_channels(kcontrol);
826 int dir = get_amp_direction(kcontrol);
827 int idx = get_amp_index(kcontrol);
1da177e4
LT
828 long *valp = ucontrol->value.integer.value;
829 int change = 0;
830
b9f5a89c 831 if (chs & 1) {
4a19faee
TI
832 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
833 0x80, *valp ? 0 : 0x80);
b9f5a89c
NG
834 valp++;
835 }
4a19faee
TI
836 if (chs & 2)
837 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
b9f5a89c
NG
838 0x80, *valp ? 0 : 0x80);
839
1da177e4
LT
840 return change;
841}
842
985be54b
TI
843/*
844 * bound volume controls
845 *
846 * bind multiple volumes (# indices, from 0)
847 */
848
849#define AMP_VAL_IDX_SHIFT 19
850#define AMP_VAL_IDX_MASK (0x0f<<19)
851
c8b6bf9b 852int snd_hda_mixer_bind_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
985be54b
TI
853{
854 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
855 unsigned long pval;
856 int err;
857
858 down(&codec->spdif_mutex); /* reuse spdif_mutex */
859 pval = kcontrol->private_value;
860 kcontrol->private_value = pval & ~AMP_VAL_IDX_MASK; /* index 0 */
861 err = snd_hda_mixer_amp_switch_get(kcontrol, ucontrol);
862 kcontrol->private_value = pval;
863 up(&codec->spdif_mutex);
864 return err;
865}
866
c8b6bf9b 867int snd_hda_mixer_bind_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
985be54b
TI
868{
869 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
870 unsigned long pval;
871 int i, indices, err = 0, change = 0;
872
873 down(&codec->spdif_mutex); /* reuse spdif_mutex */
874 pval = kcontrol->private_value;
875 indices = (pval & AMP_VAL_IDX_MASK) >> AMP_VAL_IDX_SHIFT;
876 for (i = 0; i < indices; i++) {
877 kcontrol->private_value = (pval & ~AMP_VAL_IDX_MASK) | (i << AMP_VAL_IDX_SHIFT);
878 err = snd_hda_mixer_amp_switch_put(kcontrol, ucontrol);
879 if (err < 0)
880 break;
881 change |= err;
882 }
883 kcontrol->private_value = pval;
884 up(&codec->spdif_mutex);
885 return err < 0 ? err : change;
886}
887
1da177e4
LT
888/*
889 * SPDIF out controls
890 */
891
c8b6bf9b 892static int snd_hda_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1da177e4
LT
893{
894 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
895 uinfo->count = 1;
896 return 0;
897}
898
c8b6bf9b 899static int snd_hda_spdif_cmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1da177e4
LT
900{
901 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
902 IEC958_AES0_NONAUDIO |
903 IEC958_AES0_CON_EMPHASIS_5015 |
904 IEC958_AES0_CON_NOT_COPYRIGHT;
905 ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
906 IEC958_AES1_CON_ORIGINAL;
907 return 0;
908}
909
c8b6bf9b 910static int snd_hda_spdif_pmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1da177e4
LT
911{
912 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
913 IEC958_AES0_NONAUDIO |
914 IEC958_AES0_PRO_EMPHASIS_5015;
915 return 0;
916}
917
c8b6bf9b 918static int snd_hda_spdif_default_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1da177e4
LT
919{
920 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
921
922 ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
923 ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
924 ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
925 ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
926
927 return 0;
928}
929
930/* convert from SPDIF status bits to HDA SPDIF bits
931 * bit 0 (DigEn) is always set zero (to be filled later)
932 */
933static unsigned short convert_from_spdif_status(unsigned int sbits)
934{
935 unsigned short val = 0;
936
937 if (sbits & IEC958_AES0_PROFESSIONAL)
938 val |= 1 << 6;
939 if (sbits & IEC958_AES0_NONAUDIO)
940 val |= 1 << 5;
941 if (sbits & IEC958_AES0_PROFESSIONAL) {
942 if ((sbits & IEC958_AES0_PRO_EMPHASIS) == IEC958_AES0_PRO_EMPHASIS_5015)
943 val |= 1 << 3;
944 } else {
945 if ((sbits & IEC958_AES0_CON_EMPHASIS) == IEC958_AES0_CON_EMPHASIS_5015)
946 val |= 1 << 3;
947 if (! (sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
948 val |= 1 << 4;
949 if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
950 val |= 1 << 7;
951 val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
952 }
953 return val;
954}
955
956/* convert to SPDIF status bits from HDA SPDIF bits
957 */
958static unsigned int convert_to_spdif_status(unsigned short val)
959{
960 unsigned int sbits = 0;
961
962 if (val & (1 << 5))
963 sbits |= IEC958_AES0_NONAUDIO;
964 if (val & (1 << 6))
965 sbits |= IEC958_AES0_PROFESSIONAL;
966 if (sbits & IEC958_AES0_PROFESSIONAL) {
967 if (sbits & (1 << 3))
968 sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
969 } else {
970 if (val & (1 << 3))
971 sbits |= IEC958_AES0_CON_EMPHASIS_5015;
972 if (! (val & (1 << 4)))
973 sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
974 if (val & (1 << 7))
975 sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
976 sbits |= val & (0x7f << 8);
977 }
978 return sbits;
979}
980
c8b6bf9b 981static int snd_hda_spdif_default_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1da177e4
LT
982{
983 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
984 hda_nid_t nid = kcontrol->private_value;
985 unsigned short val;
986 int change;
987
988 down(&codec->spdif_mutex);
989 codec->spdif_status = ucontrol->value.iec958.status[0] |
990 ((unsigned int)ucontrol->value.iec958.status[1] << 8) |
991 ((unsigned int)ucontrol->value.iec958.status[2] << 16) |
992 ((unsigned int)ucontrol->value.iec958.status[3] << 24);
993 val = convert_from_spdif_status(codec->spdif_status);
994 val |= codec->spdif_ctls & 1;
995 change = codec->spdif_ctls != val;
996 codec->spdif_ctls = val;
997
998 if (change || codec->in_resume) {
999 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
1000 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_2, val >> 8);
1001 }
1002
1003 up(&codec->spdif_mutex);
1004 return change;
1005}
1006
c8b6bf9b 1007static int snd_hda_spdif_out_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1da177e4
LT
1008{
1009 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1010 uinfo->count = 1;
1011 uinfo->value.integer.min = 0;
1012 uinfo->value.integer.max = 1;
1013 return 0;
1014}
1015
c8b6bf9b 1016static int snd_hda_spdif_out_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1da177e4
LT
1017{
1018 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1019
1020 ucontrol->value.integer.value[0] = codec->spdif_ctls & 1;
1021 return 0;
1022}
1023
c8b6bf9b 1024static int snd_hda_spdif_out_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1da177e4
LT
1025{
1026 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1027 hda_nid_t nid = kcontrol->private_value;
1028 unsigned short val;
1029 int change;
1030
1031 down(&codec->spdif_mutex);
1032 val = codec->spdif_ctls & ~1;
1033 if (ucontrol->value.integer.value[0])
1034 val |= 1;
1035 change = codec->spdif_ctls != val;
1036 if (change || codec->in_resume) {
1037 codec->spdif_ctls = val;
1038 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
1039 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE,
1040 AC_AMP_SET_RIGHT | AC_AMP_SET_LEFT |
1041 AC_AMP_SET_OUTPUT | ((val & 1) ? 0 : 0x80));
1042 }
1043 up(&codec->spdif_mutex);
1044 return change;
1045}
1046
c8b6bf9b 1047static struct snd_kcontrol_new dig_mixes[] = {
1da177e4
LT
1048 {
1049 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1050 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1051 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1052 .info = snd_hda_spdif_mask_info,
1053 .get = snd_hda_spdif_cmask_get,
1054 },
1055 {
1056 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1057 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1058 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
1059 .info = snd_hda_spdif_mask_info,
1060 .get = snd_hda_spdif_pmask_get,
1061 },
1062 {
1063 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1064 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1065 .info = snd_hda_spdif_mask_info,
1066 .get = snd_hda_spdif_default_get,
1067 .put = snd_hda_spdif_default_put,
1068 },
1069 {
1070 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1071 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
1072 .info = snd_hda_spdif_out_switch_info,
1073 .get = snd_hda_spdif_out_switch_get,
1074 .put = snd_hda_spdif_out_switch_put,
1075 },
1076 { } /* end */
1077};
1078
1079/**
1080 * snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
1081 * @codec: the HDA codec
1082 * @nid: audio out widget NID
1083 *
1084 * Creates controls related with the SPDIF output.
1085 * Called from each patch supporting the SPDIF out.
1086 *
1087 * Returns 0 if successful, or a negative error code.
1088 */
1089int snd_hda_create_spdif_out_ctls(struct hda_codec *codec, hda_nid_t nid)
1090{
1091 int err;
c8b6bf9b
TI
1092 struct snd_kcontrol *kctl;
1093 struct snd_kcontrol_new *dig_mix;
1da177e4
LT
1094
1095 for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
1096 kctl = snd_ctl_new1(dig_mix, codec);
1097 kctl->private_value = nid;
1098 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1099 return err;
1100 }
1101 codec->spdif_ctls = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1102 codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
1103 return 0;
1104}
1105
1106/*
1107 * SPDIF input
1108 */
1109
1110#define snd_hda_spdif_in_switch_info snd_hda_spdif_out_switch_info
1111
c8b6bf9b 1112static int snd_hda_spdif_in_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1da177e4
LT
1113{
1114 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1115
1116 ucontrol->value.integer.value[0] = codec->spdif_in_enable;
1117 return 0;
1118}
1119
c8b6bf9b 1120static int snd_hda_spdif_in_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1da177e4
LT
1121{
1122 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1123 hda_nid_t nid = kcontrol->private_value;
1124 unsigned int val = !!ucontrol->value.integer.value[0];
1125 int change;
1126
1127 down(&codec->spdif_mutex);
1128 change = codec->spdif_in_enable != val;
1129 if (change || codec->in_resume) {
1130 codec->spdif_in_enable = val;
1131 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val);
1132 }
1133 up(&codec->spdif_mutex);
1134 return change;
1135}
1136
c8b6bf9b 1137static int snd_hda_spdif_in_status_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1da177e4
LT
1138{
1139 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1140 hda_nid_t nid = kcontrol->private_value;
1141 unsigned short val;
1142 unsigned int sbits;
1143
1144 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1145 sbits = convert_to_spdif_status(val);
1146 ucontrol->value.iec958.status[0] = sbits;
1147 ucontrol->value.iec958.status[1] = sbits >> 8;
1148 ucontrol->value.iec958.status[2] = sbits >> 16;
1149 ucontrol->value.iec958.status[3] = sbits >> 24;
1150 return 0;
1151}
1152
c8b6bf9b 1153static struct snd_kcontrol_new dig_in_ctls[] = {
1da177e4
LT
1154 {
1155 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1156 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
1157 .info = snd_hda_spdif_in_switch_info,
1158 .get = snd_hda_spdif_in_switch_get,
1159 .put = snd_hda_spdif_in_switch_put,
1160 },
1161 {
1162 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1163 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1164 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
1165 .info = snd_hda_spdif_mask_info,
1166 .get = snd_hda_spdif_in_status_get,
1167 },
1168 { } /* end */
1169};
1170
1171/**
1172 * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
1173 * @codec: the HDA codec
1174 * @nid: audio in widget NID
1175 *
1176 * Creates controls related with the SPDIF input.
1177 * Called from each patch supporting the SPDIF in.
1178 *
1179 * Returns 0 if successful, or a negative error code.
1180 */
1181int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid)
1182{
1183 int err;
c8b6bf9b
TI
1184 struct snd_kcontrol *kctl;
1185 struct snd_kcontrol_new *dig_mix;
1da177e4
LT
1186
1187 for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
1188 kctl = snd_ctl_new1(dig_mix, codec);
1189 kctl->private_value = nid;
1190 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1191 return err;
1192 }
1193 codec->spdif_in_enable = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0) & 1;
1194 return 0;
1195}
1196
1197
1198/**
1199 * snd_hda_build_controls - build mixer controls
1200 * @bus: the BUS
1201 *
1202 * Creates mixer controls for each codec included in the bus.
1203 *
1204 * Returns 0 if successful, otherwise a negative error code.
1205 */
1206int snd_hda_build_controls(struct hda_bus *bus)
1207{
1208 struct list_head *p;
1209
1210 /* build controls */
1211 list_for_each(p, &bus->codec_list) {
1212 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1213 int err;
1214 if (! codec->patch_ops.build_controls)
1215 continue;
1216 err = codec->patch_ops.build_controls(codec);
1217 if (err < 0)
1218 return err;
1219 }
1220
1221 /* initialize */
1222 list_for_each(p, &bus->codec_list) {
1223 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1224 int err;
1225 if (! codec->patch_ops.init)
1226 continue;
1227 err = codec->patch_ops.init(codec);
1228 if (err < 0)
1229 return err;
1230 }
1231 return 0;
1232}
1233
1234
1235/*
1236 * stream formats
1237 */
befdf316
TI
1238struct hda_rate_tbl {
1239 unsigned int hz;
1240 unsigned int alsa_bits;
1241 unsigned int hda_fmt;
1242};
1243
1244static struct hda_rate_tbl rate_bits[] = {
1da177e4 1245 /* rate in Hz, ALSA rate bitmask, HDA format value */
9d8f53f2
NG
1246
1247 /* autodetected value used in snd_hda_query_supported_pcm */
1da177e4
LT
1248 { 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
1249 { 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
1250 { 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
1251 { 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
1252 { 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
1253 { 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
1254 { 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
1255 { 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
1256 { 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
1257 { 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
1258 { 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
9d8f53f2
NG
1259
1260 /* not autodetected value */
1261 { 9600, SNDRV_PCM_RATE_KNOT, 0x0400 }, /* 1/5 x 48 */
befdf316
TI
1262
1263 { 0 } /* terminator */
1da177e4
LT
1264};
1265
1266/**
1267 * snd_hda_calc_stream_format - calculate format bitset
1268 * @rate: the sample rate
1269 * @channels: the number of channels
1270 * @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
1271 * @maxbps: the max. bps
1272 *
1273 * Calculate the format bitset from the given rate, channels and th PCM format.
1274 *
1275 * Return zero if invalid.
1276 */
1277unsigned int snd_hda_calc_stream_format(unsigned int rate,
1278 unsigned int channels,
1279 unsigned int format,
1280 unsigned int maxbps)
1281{
1282 int i;
1283 unsigned int val = 0;
1284
befdf316
TI
1285 for (i = 0; rate_bits[i].hz; i++)
1286 if (rate_bits[i].hz == rate) {
1287 val = rate_bits[i].hda_fmt;
1da177e4
LT
1288 break;
1289 }
befdf316 1290 if (! rate_bits[i].hz) {
1da177e4
LT
1291 snd_printdd("invalid rate %d\n", rate);
1292 return 0;
1293 }
1294
1295 if (channels == 0 || channels > 8) {
1296 snd_printdd("invalid channels %d\n", channels);
1297 return 0;
1298 }
1299 val |= channels - 1;
1300
1301 switch (snd_pcm_format_width(format)) {
1302 case 8: val |= 0x00; break;
1303 case 16: val |= 0x10; break;
1304 case 20:
1305 case 24:
1306 case 32:
1307 if (maxbps >= 32)
1308 val |= 0x40;
1309 else if (maxbps >= 24)
1310 val |= 0x30;
1311 else
1312 val |= 0x20;
1313 break;
1314 default:
1315 snd_printdd("invalid format width %d\n", snd_pcm_format_width(format));
1316 return 0;
1317 }
1318
1319 return val;
1320}
1321
1322/**
1323 * snd_hda_query_supported_pcm - query the supported PCM rates and formats
1324 * @codec: the HDA codec
1325 * @nid: NID to query
1326 * @ratesp: the pointer to store the detected rate bitflags
1327 * @formatsp: the pointer to store the detected formats
1328 * @bpsp: the pointer to store the detected format widths
1329 *
1330 * Queries the supported PCM rates and formats. The NULL @ratesp, @formatsp
1331 * or @bsps argument is ignored.
1332 *
1333 * Returns 0 if successful, otherwise a negative error code.
1334 */
1335int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
1336 u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
1337{
1338 int i;
1339 unsigned int val, streams;
1340
1341 val = 0;
1342 if (nid != codec->afg &&
1343 snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_FORMAT_OVRD) {
1344 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1345 if (val == -1)
1346 return -EIO;
1347 }
1348 if (! val)
1349 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1350
1351 if (ratesp) {
1352 u32 rates = 0;
befdf316 1353 for (i = 0; rate_bits[i].hz; i++) {
1da177e4 1354 if (val & (1 << i))
befdf316 1355 rates |= rate_bits[i].alsa_bits;
1da177e4
LT
1356 }
1357 *ratesp = rates;
1358 }
1359
1360 if (formatsp || bpsp) {
1361 u64 formats = 0;
1362 unsigned int bps;
1363 unsigned int wcaps;
1364
1365 wcaps = snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP);
1366 streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1367 if (streams == -1)
1368 return -EIO;
1369 if (! streams) {
1370 streams = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1371 if (streams == -1)
1372 return -EIO;
1373 }
1374
1375 bps = 0;
1376 if (streams & AC_SUPFMT_PCM) {
1377 if (val & AC_SUPPCM_BITS_8) {
1378 formats |= SNDRV_PCM_FMTBIT_U8;
1379 bps = 8;
1380 }
1381 if (val & AC_SUPPCM_BITS_16) {
1382 formats |= SNDRV_PCM_FMTBIT_S16_LE;
1383 bps = 16;
1384 }
1385 if (wcaps & AC_WCAP_DIGITAL) {
1386 if (val & AC_SUPPCM_BITS_32)
1387 formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
1388 if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
1389 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1390 if (val & AC_SUPPCM_BITS_24)
1391 bps = 24;
1392 else if (val & AC_SUPPCM_BITS_20)
1393 bps = 20;
1394 } else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|AC_SUPPCM_BITS_32)) {
1395 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1396 if (val & AC_SUPPCM_BITS_32)
1397 bps = 32;
1398 else if (val & AC_SUPPCM_BITS_20)
1399 bps = 20;
1400 else if (val & AC_SUPPCM_BITS_24)
1401 bps = 24;
1402 }
1403 }
1404 else if (streams == AC_SUPFMT_FLOAT32) { /* should be exclusive */
1405 formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
1406 bps = 32;
1407 } else if (streams == AC_SUPFMT_AC3) { /* should be exclusive */
1408 /* temporary hack: we have still no proper support
1409 * for the direct AC3 stream...
1410 */
1411 formats |= SNDRV_PCM_FMTBIT_U8;
1412 bps = 8;
1413 }
1414 if (formatsp)
1415 *formatsp = formats;
1416 if (bpsp)
1417 *bpsp = bps;
1418 }
1419
1420 return 0;
1421}
1422
1423/**
1424 * snd_hda_is_supported_format - check whether the given node supports the format val
1425 *
1426 * Returns 1 if supported, 0 if not.
1427 */
1428int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
1429 unsigned int format)
1430{
1431 int i;
1432 unsigned int val = 0, rate, stream;
1433
1434 if (nid != codec->afg &&
1435 snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_FORMAT_OVRD) {
1436 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1437 if (val == -1)
1438 return 0;
1439 }
1440 if (! val) {
1441 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1442 if (val == -1)
1443 return 0;
1444 }
1445
1446 rate = format & 0xff00;
befdf316
TI
1447 for (i = 0; rate_bits[i].hz; i++)
1448 if (rate_bits[i].hda_fmt == rate) {
1da177e4
LT
1449 if (val & (1 << i))
1450 break;
1451 return 0;
1452 }
befdf316 1453 if (! rate_bits[i].hz)
1da177e4
LT
1454 return 0;
1455
1456 stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1457 if (stream == -1)
1458 return 0;
1459 if (! stream && nid != codec->afg)
1460 stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1461 if (! stream || stream == -1)
1462 return 0;
1463
1464 if (stream & AC_SUPFMT_PCM) {
1465 switch (format & 0xf0) {
1466 case 0x00:
1467 if (! (val & AC_SUPPCM_BITS_8))
1468 return 0;
1469 break;
1470 case 0x10:
1471 if (! (val & AC_SUPPCM_BITS_16))
1472 return 0;
1473 break;
1474 case 0x20:
1475 if (! (val & AC_SUPPCM_BITS_20))
1476 return 0;
1477 break;
1478 case 0x30:
1479 if (! (val & AC_SUPPCM_BITS_24))
1480 return 0;
1481 break;
1482 case 0x40:
1483 if (! (val & AC_SUPPCM_BITS_32))
1484 return 0;
1485 break;
1486 default:
1487 return 0;
1488 }
1489 } else {
1490 /* FIXME: check for float32 and AC3? */
1491 }
1492
1493 return 1;
1494}
1495
1496/*
1497 * PCM stuff
1498 */
1499static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
1500 struct hda_codec *codec,
c8b6bf9b 1501 struct snd_pcm_substream *substream)
1da177e4
LT
1502{
1503 return 0;
1504}
1505
1506static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
1507 struct hda_codec *codec,
1508 unsigned int stream_tag,
1509 unsigned int format,
c8b6bf9b 1510 struct snd_pcm_substream *substream)
1da177e4
LT
1511{
1512 snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
1513 return 0;
1514}
1515
1516static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
1517 struct hda_codec *codec,
c8b6bf9b 1518 struct snd_pcm_substream *substream)
1da177e4
LT
1519{
1520 snd_hda_codec_setup_stream(codec, hinfo->nid, 0, 0, 0);
1521 return 0;
1522}
1523
1524static int set_pcm_default_values(struct hda_codec *codec, struct hda_pcm_stream *info)
1525{
1526 if (info->nid) {
1527 /* query support PCM information from the given NID */
1528 if (! info->rates || ! info->formats)
1529 snd_hda_query_supported_pcm(codec, info->nid,
1530 info->rates ? NULL : &info->rates,
1531 info->formats ? NULL : &info->formats,
1532 info->maxbps ? NULL : &info->maxbps);
1533 }
1534 if (info->ops.open == NULL)
1535 info->ops.open = hda_pcm_default_open_close;
1536 if (info->ops.close == NULL)
1537 info->ops.close = hda_pcm_default_open_close;
1538 if (info->ops.prepare == NULL) {
1539 snd_assert(info->nid, return -EINVAL);
1540 info->ops.prepare = hda_pcm_default_prepare;
1541 }
1da177e4
LT
1542 if (info->ops.cleanup == NULL) {
1543 snd_assert(info->nid, return -EINVAL);
1544 info->ops.cleanup = hda_pcm_default_cleanup;
1545 }
1546 return 0;
1547}
1548
1549/**
1550 * snd_hda_build_pcms - build PCM information
1551 * @bus: the BUS
1552 *
1553 * Create PCM information for each codec included in the bus.
1554 *
1555 * The build_pcms codec patch is requested to set up codec->num_pcms and
1556 * codec->pcm_info properly. The array is referred by the top-level driver
1557 * to create its PCM instances.
1558 * The allocated codec->pcm_info should be released in codec->patch_ops.free
1559 * callback.
1560 *
1561 * At least, substreams, channels_min and channels_max must be filled for
1562 * each stream. substreams = 0 indicates that the stream doesn't exist.
1563 * When rates and/or formats are zero, the supported values are queried
1564 * from the given nid. The nid is used also by the default ops.prepare
1565 * and ops.cleanup callbacks.
1566 *
1567 * The driver needs to call ops.open in its open callback. Similarly,
1568 * ops.close is supposed to be called in the close callback.
1569 * ops.prepare should be called in the prepare or hw_params callback
1570 * with the proper parameters for set up.
1571 * ops.cleanup should be called in hw_free for clean up of streams.
1572 *
1573 * This function returns 0 if successfull, or a negative error code.
1574 */
1575int snd_hda_build_pcms(struct hda_bus *bus)
1576{
1577 struct list_head *p;
1578
1579 list_for_each(p, &bus->codec_list) {
1580 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1581 unsigned int pcm, s;
1582 int err;
1583 if (! codec->patch_ops.build_pcms)
1584 continue;
1585 err = codec->patch_ops.build_pcms(codec);
1586 if (err < 0)
1587 return err;
1588 for (pcm = 0; pcm < codec->num_pcms; pcm++) {
1589 for (s = 0; s < 2; s++) {
1590 struct hda_pcm_stream *info;
1591 info = &codec->pcm_info[pcm].stream[s];
1592 if (! info->substreams)
1593 continue;
1594 err = set_pcm_default_values(codec, info);
1595 if (err < 0)
1596 return err;
1597 }
1598 }
1599 }
1600 return 0;
1601}
1602
1603
1604/**
1605 * snd_hda_check_board_config - compare the current codec with the config table
1606 * @codec: the HDA codec
1607 * @tbl: configuration table, terminated by null entries
1608 *
1609 * Compares the modelname or PCI subsystem id of the current codec with the
1610 * given configuration table. If a matching entry is found, returns its
1611 * config value (supposed to be 0 or positive).
1612 *
1613 * If no entries are matching, the function returns a negative value.
1614 */
e9edcee0 1615int snd_hda_check_board_config(struct hda_codec *codec, const struct hda_board_config *tbl)
1da177e4 1616{
e9edcee0 1617 const struct hda_board_config *c;
1da177e4
LT
1618
1619 if (codec->bus->modelname) {
7291548d 1620 for (c = tbl; c->modelname || c->pci_subvendor; c++) {
1da177e4
LT
1621 if (c->modelname &&
1622 ! strcmp(codec->bus->modelname, c->modelname)) {
1623 snd_printd(KERN_INFO "hda_codec: model '%s' is selected\n", c->modelname);
1624 return c->config;
1625 }
1626 }
1627 }
1628
1629 if (codec->bus->pci) {
1630 u16 subsystem_vendor, subsystem_device;
1631 pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_VENDOR_ID, &subsystem_vendor);
1632 pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_ID, &subsystem_device);
7291548d
TI
1633 for (c = tbl; c->modelname || c->pci_subvendor; c++) {
1634 if (c->pci_subvendor == subsystem_vendor &&
5ecd7022 1635 (! c->pci_subdevice /* all match */||
cb8e2f83
TI
1636 (c->pci_subdevice == subsystem_device))) {
1637 snd_printdd(KERN_INFO "hda_codec: PCI %x:%x, codec config %d is selected\n",
1638 subsystem_vendor, subsystem_device, c->config);
1da177e4 1639 return c->config;
cb8e2f83 1640 }
1da177e4
LT
1641 }
1642 }
1643 return -1;
1644}
1645
1646/**
1647 * snd_hda_add_new_ctls - create controls from the array
1648 * @codec: the HDA codec
c8b6bf9b 1649 * @knew: the array of struct snd_kcontrol_new
1da177e4
LT
1650 *
1651 * This helper function creates and add new controls in the given array.
1652 * The array must be terminated with an empty entry as terminator.
1653 *
1654 * Returns 0 if successful, or a negative error code.
1655 */
c8b6bf9b 1656int snd_hda_add_new_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
1da177e4
LT
1657{
1658 int err;
1659
1660 for (; knew->name; knew++) {
1661 err = snd_ctl_add(codec->bus->card, snd_ctl_new1(knew, codec));
1662 if (err < 0)
1663 return err;
1664 }
1665 return 0;
1666}
1667
1668
c8b6bf9b 1669/*
d2a6d7dc
TI
1670 * Channel mode helper
1671 */
c8b6bf9b 1672int snd_hda_ch_mode_info(struct hda_codec *codec, struct snd_ctl_elem_info *uinfo,
d2a6d7dc
TI
1673 const struct hda_channel_mode *chmode, int num_chmodes)
1674{
1675 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1676 uinfo->count = 1;
1677 uinfo->value.enumerated.items = num_chmodes;
1678 if (uinfo->value.enumerated.item >= num_chmodes)
1679 uinfo->value.enumerated.item = num_chmodes - 1;
1680 sprintf(uinfo->value.enumerated.name, "%dch",
1681 chmode[uinfo->value.enumerated.item].channels);
1682 return 0;
1683}
1684
c8b6bf9b 1685int snd_hda_ch_mode_get(struct hda_codec *codec, struct snd_ctl_elem_value *ucontrol,
d2a6d7dc
TI
1686 const struct hda_channel_mode *chmode, int num_chmodes,
1687 int max_channels)
1688{
1689 int i;
1690
1691 for (i = 0; i < num_chmodes; i++) {
1692 if (max_channels == chmode[i].channels) {
1693 ucontrol->value.enumerated.item[0] = i;
1694 break;
1695 }
1696 }
1697 return 0;
1698}
1699
c8b6bf9b 1700int snd_hda_ch_mode_put(struct hda_codec *codec, struct snd_ctl_elem_value *ucontrol,
d2a6d7dc
TI
1701 const struct hda_channel_mode *chmode, int num_chmodes,
1702 int *max_channelsp)
1703{
1704 unsigned int mode;
1705
1706 mode = ucontrol->value.enumerated.item[0];
1707 snd_assert(mode < num_chmodes, return -EINVAL);
1708 if (*max_channelsp && ! codec->in_resume)
1709 return 0;
1710 /* change the current channel setting */
1711 *max_channelsp = chmode[mode].channels;
1712 if (chmode[mode].sequence)
1713 snd_hda_sequence_write(codec, chmode[mode].sequence);
1714 return 1;
1715}
1716
1da177e4
LT
1717/*
1718 * input MUX helper
1719 */
c8b6bf9b 1720int snd_hda_input_mux_info(const struct hda_input_mux *imux, struct snd_ctl_elem_info *uinfo)
1da177e4
LT
1721{
1722 unsigned int index;
1723
1724 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1725 uinfo->count = 1;
1726 uinfo->value.enumerated.items = imux->num_items;
1727 index = uinfo->value.enumerated.item;
1728 if (index >= imux->num_items)
1729 index = imux->num_items - 1;
1730 strcpy(uinfo->value.enumerated.name, imux->items[index].label);
1731 return 0;
1732}
1733
1734int snd_hda_input_mux_put(struct hda_codec *codec, const struct hda_input_mux *imux,
c8b6bf9b 1735 struct snd_ctl_elem_value *ucontrol, hda_nid_t nid,
1da177e4
LT
1736 unsigned int *cur_val)
1737{
1738 unsigned int idx;
1739
1740 idx = ucontrol->value.enumerated.item[0];
1741 if (idx >= imux->num_items)
1742 idx = imux->num_items - 1;
1743 if (*cur_val == idx && ! codec->in_resume)
1744 return 0;
1745 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
1746 imux->items[idx].index);
1747 *cur_val = idx;
1748 return 1;
1749}
1750
1751
1752/*
1753 * Multi-channel / digital-out PCM helper functions
1754 */
1755
1756/*
1757 * open the digital out in the exclusive mode
1758 */
1759int snd_hda_multi_out_dig_open(struct hda_codec *codec, struct hda_multi_out *mout)
1760{
1761 down(&codec->spdif_mutex);
1762 if (mout->dig_out_used) {
1763 up(&codec->spdif_mutex);
1764 return -EBUSY; /* already being used */
1765 }
1766 mout->dig_out_used = HDA_DIG_EXCLUSIVE;
1767 up(&codec->spdif_mutex);
1768 return 0;
1769}
1770
1771/*
1772 * release the digital out
1773 */
1774int snd_hda_multi_out_dig_close(struct hda_codec *codec, struct hda_multi_out *mout)
1775{
1776 down(&codec->spdif_mutex);
1777 mout->dig_out_used = 0;
1778 up(&codec->spdif_mutex);
1779 return 0;
1780}
1781
1782/*
1783 * set up more restrictions for analog out
1784 */
1785int snd_hda_multi_out_analog_open(struct hda_codec *codec, struct hda_multi_out *mout,
c8b6bf9b 1786 struct snd_pcm_substream *substream)
1da177e4
LT
1787{
1788 substream->runtime->hw.channels_max = mout->max_channels;
1789 return snd_pcm_hw_constraint_step(substream->runtime, 0,
1790 SNDRV_PCM_HW_PARAM_CHANNELS, 2);
1791}
1792
1793/*
1794 * set up the i/o for analog out
1795 * when the digital out is available, copy the front out to digital out, too.
1796 */
1797int snd_hda_multi_out_analog_prepare(struct hda_codec *codec, struct hda_multi_out *mout,
1798 unsigned int stream_tag,
1799 unsigned int format,
c8b6bf9b 1800 struct snd_pcm_substream *substream)
1da177e4
LT
1801{
1802 hda_nid_t *nids = mout->dac_nids;
1803 int chs = substream->runtime->channels;
1804 int i;
1805
1806 down(&codec->spdif_mutex);
1807 if (mout->dig_out_nid && mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
1808 if (chs == 2 &&
1809 snd_hda_is_supported_format(codec, mout->dig_out_nid, format) &&
1810 ! (codec->spdif_status & IEC958_AES0_NONAUDIO)) {
1811 mout->dig_out_used = HDA_DIG_ANALOG_DUP;
1812 /* setup digital receiver */
1813 snd_hda_codec_setup_stream(codec, mout->dig_out_nid,
1814 stream_tag, 0, format);
1815 } else {
1816 mout->dig_out_used = 0;
1817 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1818 }
1819 }
1820 up(&codec->spdif_mutex);
1821
1822 /* front */
1823 snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag, 0, format);
1824 if (mout->hp_nid)
1825 /* headphone out will just decode front left/right (stereo) */
1826 snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag, 0, format);
1827 /* surrounds */
1828 for (i = 1; i < mout->num_dacs; i++) {
4b3acaf5 1829 if (chs >= (i + 1) * 2) /* independent out */
1da177e4
LT
1830 snd_hda_codec_setup_stream(codec, nids[i], stream_tag, i * 2,
1831 format);
4b3acaf5
TI
1832 else /* copy front */
1833 snd_hda_codec_setup_stream(codec, nids[i], stream_tag, 0,
1834 format);
1da177e4
LT
1835 }
1836 return 0;
1837}
1838
1839/*
1840 * clean up the setting for analog out
1841 */
1842int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec, struct hda_multi_out *mout)
1843{
1844 hda_nid_t *nids = mout->dac_nids;
1845 int i;
1846
1847 for (i = 0; i < mout->num_dacs; i++)
1848 snd_hda_codec_setup_stream(codec, nids[i], 0, 0, 0);
1849 if (mout->hp_nid)
1850 snd_hda_codec_setup_stream(codec, mout->hp_nid, 0, 0, 0);
1851 down(&codec->spdif_mutex);
1852 if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
1853 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1854 mout->dig_out_used = 0;
1855 }
1856 up(&codec->spdif_mutex);
1857 return 0;
1858}
1859
e9edcee0
TI
1860/*
1861 * Helper for automatic ping configuration
1862 */
1863/* parse all pin widgets and store the useful pin nids to cfg */
1864int snd_hda_parse_pin_def_config(struct hda_codec *codec, struct auto_pin_cfg *cfg)
1865{
1866 hda_nid_t nid, nid_start;
1867 int i, j, nodes;
1868 short seq, sequences[4], assoc_line_out;
1869
1870 memset(cfg, 0, sizeof(*cfg));
1871
1872 memset(sequences, 0, sizeof(sequences));
1873 assoc_line_out = 0;
1874
1875 nodes = snd_hda_get_sub_nodes(codec, codec->afg, &nid_start);
1876 for (nid = nid_start; nid < nodes + nid_start; nid++) {
1877 unsigned int wid_caps = snd_hda_param_read(codec, nid,
1878 AC_PAR_AUDIO_WIDGET_CAP);
1879 unsigned int wid_type = (wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT;
1880 unsigned int def_conf;
1881 short assoc, loc;
1882
1883 /* read all default configuration for pin complex */
1884 if (wid_type != AC_WID_PIN)
1885 continue;
1886 def_conf = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONFIG_DEFAULT, 0);
1887 if (get_defcfg_connect(def_conf) == AC_JACK_PORT_NONE)
1888 continue;
1889 loc = get_defcfg_location(def_conf);
1890 switch (get_defcfg_device(def_conf)) {
1891 case AC_JACK_LINE_OUT:
e9edcee0
TI
1892 seq = get_defcfg_sequence(def_conf);
1893 assoc = get_defcfg_association(def_conf);
1894 if (! assoc)
1895 continue;
1896 if (! assoc_line_out)
1897 assoc_line_out = assoc;
1898 else if (assoc_line_out != assoc)
1899 continue;
1900 if (cfg->line_outs >= ARRAY_SIZE(cfg->line_out_pins))
1901 continue;
1902 cfg->line_out_pins[cfg->line_outs] = nid;
1903 sequences[cfg->line_outs] = seq;
1904 cfg->line_outs++;
1905 break;
8d88bc3d
TI
1906 case AC_JACK_SPEAKER:
1907 cfg->speaker_pin = nid;
1908 break;
e9edcee0
TI
1909 case AC_JACK_HP_OUT:
1910 cfg->hp_pin = nid;
1911 break;
1912 case AC_JACK_MIC_IN:
1913 if (loc == AC_JACK_LOC_FRONT)
1914 cfg->input_pins[AUTO_PIN_FRONT_MIC] = nid;
1915 else
1916 cfg->input_pins[AUTO_PIN_MIC] = nid;
1917 break;
1918 case AC_JACK_LINE_IN:
1919 if (loc == AC_JACK_LOC_FRONT)
1920 cfg->input_pins[AUTO_PIN_FRONT_LINE] = nid;
1921 else
1922 cfg->input_pins[AUTO_PIN_LINE] = nid;
1923 break;
1924 case AC_JACK_CD:
1925 cfg->input_pins[AUTO_PIN_CD] = nid;
1926 break;
1927 case AC_JACK_AUX:
1928 cfg->input_pins[AUTO_PIN_AUX] = nid;
1929 break;
1930 case AC_JACK_SPDIF_OUT:
1931 cfg->dig_out_pin = nid;
1932 break;
1933 case AC_JACK_SPDIF_IN:
1934 cfg->dig_in_pin = nid;
1935 break;
1936 }
1937 }
1938
1939 /* sort by sequence */
1940 for (i = 0; i < cfg->line_outs; i++)
1941 for (j = i + 1; j < cfg->line_outs; j++)
1942 if (sequences[i] > sequences[j]) {
1943 seq = sequences[i];
1944 sequences[i] = sequences[j];
1945 sequences[j] = seq;
1946 nid = cfg->line_out_pins[i];
1947 cfg->line_out_pins[i] = cfg->line_out_pins[j];
1948 cfg->line_out_pins[j] = nid;
1949 }
1950
cb8e2f83
TI
1951 /* Reorder the surround channels
1952 * ALSA sequence is front/surr/clfe/side
1953 * HDA sequence is:
1954 * 4-ch: front/surr => OK as it is
1955 * 6-ch: front/clfe/surr
1956 * 8-ch: front/clfe/side/surr
1957 */
1958 switch (cfg->line_outs) {
1959 case 3:
e9edcee0
TI
1960 nid = cfg->line_out_pins[1];
1961 cfg->line_out_pins[1] = cfg->line_out_pins[2];
1962 cfg->line_out_pins[2] = nid;
cb8e2f83
TI
1963 break;
1964 case 4:
1965 nid = cfg->line_out_pins[1];
1966 cfg->line_out_pins[1] = cfg->line_out_pins[3];
1967 cfg->line_out_pins[3] = cfg->line_out_pins[2];
1968 cfg->line_out_pins[2] = nid;
1969 break;
e9edcee0
TI
1970 }
1971
1972 return 0;
1973}
1974
1da177e4
LT
1975#ifdef CONFIG_PM
1976/*
1977 * power management
1978 */
1979
1980/**
1981 * snd_hda_suspend - suspend the codecs
1982 * @bus: the HDA bus
1983 * @state: suspsend state
1984 *
1985 * Returns 0 if successful.
1986 */
1987int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
1988{
1989 struct list_head *p;
1990
1991 /* FIXME: should handle power widget capabilities */
1992 list_for_each(p, &bus->codec_list) {
1993 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1994 if (codec->patch_ops.suspend)
1995 codec->patch_ops.suspend(codec, state);
1996 }
1997 return 0;
1998}
1999
2000/**
2001 * snd_hda_resume - resume the codecs
2002 * @bus: the HDA bus
2003 * @state: resume state
2004 *
2005 * Returns 0 if successful.
2006 */
2007int snd_hda_resume(struct hda_bus *bus)
2008{
2009 struct list_head *p;
2010
2011 list_for_each(p, &bus->codec_list) {
2012 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
2013 if (codec->patch_ops.resume)
2014 codec->patch_ops.resume(codec);
2015 }
2016 return 0;
2017}
2018
2019/**
2020 * snd_hda_resume_ctls - resume controls in the new control list
2021 * @codec: the HDA codec
c8b6bf9b 2022 * @knew: the array of struct snd_kcontrol_new
1da177e4 2023 *
c8b6bf9b 2024 * This function resumes the mixer controls in the struct snd_kcontrol_new array,
1da177e4
LT
2025 * originally for snd_hda_add_new_ctls().
2026 * The array must be terminated with an empty entry as terminator.
2027 */
c8b6bf9b 2028int snd_hda_resume_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
1da177e4 2029{
c8b6bf9b 2030 struct snd_ctl_elem_value *val;
1da177e4
LT
2031
2032 val = kmalloc(sizeof(*val), GFP_KERNEL);
2033 if (! val)
2034 return -ENOMEM;
2035 codec->in_resume = 1;
2036 for (; knew->name; knew++) {
2037 int i, count;
2038 count = knew->count ? knew->count : 1;
2039 for (i = 0; i < count; i++) {
2040 memset(val, 0, sizeof(*val));
2041 val->id.iface = knew->iface;
2042 val->id.device = knew->device;
2043 val->id.subdevice = knew->subdevice;
2044 strcpy(val->id.name, knew->name);
2045 val->id.index = knew->index ? knew->index : i;
2046 /* Assume that get callback reads only from cache,
2047 * not accessing to the real hardware
2048 */
2049 if (snd_ctl_elem_read(codec->bus->card, val) < 0)
2050 continue;
2051 snd_ctl_elem_write(codec->bus->card, NULL, val);
2052 }
2053 }
2054 codec->in_resume = 0;
2055 kfree(val);
2056 return 0;
2057}
2058
2059/**
2060 * snd_hda_resume_spdif_out - resume the digital out
2061 * @codec: the HDA codec
2062 */
2063int snd_hda_resume_spdif_out(struct hda_codec *codec)
2064{
2065 return snd_hda_resume_ctls(codec, dig_mixes);
2066}
2067
2068/**
2069 * snd_hda_resume_spdif_in - resume the digital in
2070 * @codec: the HDA codec
2071 */
2072int snd_hda_resume_spdif_in(struct hda_codec *codec)
2073{
2074 return snd_hda_resume_ctls(codec, dig_in_ctls);
2075}
2076#endif
2077
2078/*
2079 * symbols exported for controller modules
2080 */
2081EXPORT_SYMBOL(snd_hda_codec_read);
2082EXPORT_SYMBOL(snd_hda_codec_write);
2083EXPORT_SYMBOL(snd_hda_sequence_write);
2084EXPORT_SYMBOL(snd_hda_get_sub_nodes);
2085EXPORT_SYMBOL(snd_hda_queue_unsol_event);
2086EXPORT_SYMBOL(snd_hda_bus_new);
2087EXPORT_SYMBOL(snd_hda_codec_new);
2088EXPORT_SYMBOL(snd_hda_codec_setup_stream);
2089EXPORT_SYMBOL(snd_hda_calc_stream_format);
2090EXPORT_SYMBOL(snd_hda_build_pcms);
2091EXPORT_SYMBOL(snd_hda_build_controls);
2092#ifdef CONFIG_PM
2093EXPORT_SYMBOL(snd_hda_suspend);
2094EXPORT_SYMBOL(snd_hda_resume);
2095#endif
2096
2097/*
2098 * INIT part
2099 */
2100
2101static int __init alsa_hda_init(void)
2102{
2103 return 0;
2104}
2105
2106static void __exit alsa_hda_exit(void)
2107{
2108}
2109
2110module_init(alsa_hda_init)
2111module_exit(alsa_hda_exit)