Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* Common capabilities, needed by capability.o and root_plug.o |
2 | * | |
3 | * This program is free software; you can redistribute it and/or modify | |
4 | * it under the terms of the GNU General Public License as published by | |
5 | * the Free Software Foundation; either version 2 of the License, or | |
6 | * (at your option) any later version. | |
7 | * | |
8 | */ | |
9 | ||
c59ede7b | 10 | #include <linux/capability.h> |
1da177e4 LT |
11 | #include <linux/module.h> |
12 | #include <linux/init.h> | |
13 | #include <linux/kernel.h> | |
14 | #include <linux/security.h> | |
15 | #include <linux/file.h> | |
16 | #include <linux/mm.h> | |
17 | #include <linux/mman.h> | |
18 | #include <linux/pagemap.h> | |
19 | #include <linux/swap.h> | |
1da177e4 LT |
20 | #include <linux/skbuff.h> |
21 | #include <linux/netlink.h> | |
22 | #include <linux/ptrace.h> | |
23 | #include <linux/xattr.h> | |
24 | #include <linux/hugetlb.h> | |
b5376771 | 25 | #include <linux/mount.h> |
b460cbc5 | 26 | #include <linux/sched.h> |
1da177e4 | 27 | |
72c2d582 AM |
28 | #ifdef CONFIG_SECURITY_FILE_CAPABILITIES |
29 | /* | |
30 | * Because of the reduced scope of CAP_SETPCAP when filesystem | |
31 | * capabilities are in effect, it is safe to allow this capability to | |
32 | * be available in the default configuration. | |
33 | */ | |
34 | # define CAP_INIT_BSET CAP_FULL_SET | |
35 | #else /* ie. ndef CONFIG_SECURITY_FILE_CAPABILITIES */ | |
36 | # define CAP_INIT_BSET CAP_INIT_EFF_SET | |
37 | #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */ | |
38 | ||
39 | kernel_cap_t cap_bset = CAP_INIT_BSET; /* systemwide capability bound */ | |
40 | EXPORT_SYMBOL(cap_bset); | |
41 | ||
42 | /* Global security state */ | |
43 | ||
44 | unsigned securebits = SECUREBITS_DEFAULT; /* systemwide security settings */ | |
45 | EXPORT_SYMBOL(securebits); | |
46 | ||
1da177e4 LT |
47 | int cap_netlink_send(struct sock *sk, struct sk_buff *skb) |
48 | { | |
49 | NETLINK_CB(skb).eff_cap = current->cap_effective; | |
50 | return 0; | |
51 | } | |
52 | ||
c7bdb545 | 53 | int cap_netlink_recv(struct sk_buff *skb, int cap) |
1da177e4 | 54 | { |
c7bdb545 | 55 | if (!cap_raised(NETLINK_CB(skb).eff_cap, cap)) |
1da177e4 LT |
56 | return -EPERM; |
57 | return 0; | |
58 | } | |
59 | ||
60 | EXPORT_SYMBOL(cap_netlink_recv); | |
61 | ||
a6dbb1ef AM |
62 | /* |
63 | * NOTE WELL: cap_capable() cannot be used like the kernel's capable() | |
64 | * function. That is, it has the reverse semantics: cap_capable() | |
65 | * returns 0 when a task has a capability, but the kernel's capable() | |
66 | * returns 1 for this case. | |
67 | */ | |
1da177e4 LT |
68 | int cap_capable (struct task_struct *tsk, int cap) |
69 | { | |
70 | /* Derived from include/linux/sched.h:capable. */ | |
71 | if (cap_raised(tsk->cap_effective, cap)) | |
72 | return 0; | |
73 | return -EPERM; | |
74 | } | |
75 | ||
76 | int cap_settime(struct timespec *ts, struct timezone *tz) | |
77 | { | |
78 | if (!capable(CAP_SYS_TIME)) | |
79 | return -EPERM; | |
80 | return 0; | |
81 | } | |
82 | ||
83 | int cap_ptrace (struct task_struct *parent, struct task_struct *child) | |
84 | { | |
85 | /* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */ | |
d4eb82c7 CW |
86 | if (!cap_issubset(child->cap_permitted, parent->cap_permitted) && |
87 | !__capable(parent, CAP_SYS_PTRACE)) | |
1da177e4 LT |
88 | return -EPERM; |
89 | return 0; | |
90 | } | |
91 | ||
92 | int cap_capget (struct task_struct *target, kernel_cap_t *effective, | |
93 | kernel_cap_t *inheritable, kernel_cap_t *permitted) | |
94 | { | |
95 | /* Derived from kernel/capability.c:sys_capget. */ | |
96 | *effective = cap_t (target->cap_effective); | |
97 | *inheritable = cap_t (target->cap_inheritable); | |
98 | *permitted = cap_t (target->cap_permitted); | |
99 | return 0; | |
100 | } | |
101 | ||
72c2d582 AM |
102 | #ifdef CONFIG_SECURITY_FILE_CAPABILITIES |
103 | ||
104 | static inline int cap_block_setpcap(struct task_struct *target) | |
105 | { | |
106 | /* | |
107 | * No support for remote process capability manipulation with | |
108 | * filesystem capability support. | |
109 | */ | |
110 | return (target != current); | |
111 | } | |
112 | ||
113 | static inline int cap_inh_is_capped(void) | |
114 | { | |
115 | /* | |
a6dbb1ef AM |
116 | * Return 1 if changes to the inheritable set are limited |
117 | * to the old permitted set. That is, if the current task | |
118 | * does *not* possess the CAP_SETPCAP capability. | |
72c2d582 | 119 | */ |
a6dbb1ef | 120 | return (cap_capable(current, CAP_SETPCAP) != 0); |
72c2d582 AM |
121 | } |
122 | ||
123 | #else /* ie., ndef CONFIG_SECURITY_FILE_CAPABILITIES */ | |
124 | ||
125 | static inline int cap_block_setpcap(struct task_struct *t) { return 0; } | |
126 | static inline int cap_inh_is_capped(void) { return 1; } | |
127 | ||
128 | #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */ | |
129 | ||
1da177e4 LT |
130 | int cap_capset_check (struct task_struct *target, kernel_cap_t *effective, |
131 | kernel_cap_t *inheritable, kernel_cap_t *permitted) | |
132 | { | |
72c2d582 AM |
133 | if (cap_block_setpcap(target)) { |
134 | return -EPERM; | |
135 | } | |
136 | if (cap_inh_is_capped() | |
137 | && !cap_issubset(*inheritable, | |
138 | cap_combine(target->cap_inheritable, | |
139 | current->cap_permitted))) { | |
140 | /* incapable of using this inheritable set */ | |
1da177e4 LT |
141 | return -EPERM; |
142 | } | |
143 | ||
144 | /* verify restrictions on target's new Permitted set */ | |
145 | if (!cap_issubset (*permitted, | |
146 | cap_combine (target->cap_permitted, | |
147 | current->cap_permitted))) { | |
148 | return -EPERM; | |
149 | } | |
150 | ||
151 | /* verify the _new_Effective_ is a subset of the _new_Permitted_ */ | |
152 | if (!cap_issubset (*effective, *permitted)) { | |
153 | return -EPERM; | |
154 | } | |
155 | ||
156 | return 0; | |
157 | } | |
158 | ||
159 | void cap_capset_set (struct task_struct *target, kernel_cap_t *effective, | |
160 | kernel_cap_t *inheritable, kernel_cap_t *permitted) | |
161 | { | |
162 | target->cap_effective = *effective; | |
163 | target->cap_inheritable = *inheritable; | |
164 | target->cap_permitted = *permitted; | |
165 | } | |
166 | ||
b5376771 SH |
167 | static inline void bprm_clear_caps(struct linux_binprm *bprm) |
168 | { | |
169 | cap_clear(bprm->cap_inheritable); | |
170 | cap_clear(bprm->cap_permitted); | |
171 | bprm->cap_effective = false; | |
172 | } | |
173 | ||
174 | #ifdef CONFIG_SECURITY_FILE_CAPABILITIES | |
175 | ||
176 | int cap_inode_need_killpriv(struct dentry *dentry) | |
177 | { | |
178 | struct inode *inode = dentry->d_inode; | |
179 | int error; | |
180 | ||
181 | if (!inode->i_op || !inode->i_op->getxattr) | |
182 | return 0; | |
183 | ||
184 | error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0); | |
185 | if (error <= 0) | |
186 | return 0; | |
187 | return 1; | |
188 | } | |
189 | ||
190 | int cap_inode_killpriv(struct dentry *dentry) | |
191 | { | |
192 | struct inode *inode = dentry->d_inode; | |
193 | ||
194 | if (!inode->i_op || !inode->i_op->removexattr) | |
195 | return 0; | |
196 | ||
197 | return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS); | |
198 | } | |
199 | ||
8f6936f4 | 200 | static inline int cap_from_disk(__le32 *caps, struct linux_binprm *bprm, |
b5376771 SH |
201 | int size) |
202 | { | |
203 | __u32 magic_etc; | |
204 | ||
205 | if (size != XATTR_CAPS_SZ) | |
206 | return -EINVAL; | |
207 | ||
8f6936f4 | 208 | magic_etc = le32_to_cpu(caps[0]); |
b5376771 SH |
209 | |
210 | switch ((magic_etc & VFS_CAP_REVISION_MASK)) { | |
211 | case VFS_CAP_REVISION: | |
212 | if (magic_etc & VFS_CAP_FLAGS_EFFECTIVE) | |
213 | bprm->cap_effective = true; | |
214 | else | |
215 | bprm->cap_effective = false; | |
8f6936f4 AM |
216 | bprm->cap_permitted = to_cap_t(le32_to_cpu(caps[1])); |
217 | bprm->cap_inheritable = to_cap_t(le32_to_cpu(caps[2])); | |
b5376771 SH |
218 | return 0; |
219 | default: | |
220 | return -EINVAL; | |
221 | } | |
222 | } | |
223 | ||
224 | /* Locate any VFS capabilities: */ | |
225 | static int get_file_caps(struct linux_binprm *bprm) | |
226 | { | |
227 | struct dentry *dentry; | |
228 | int rc = 0; | |
8f6936f4 | 229 | __le32 v1caps[XATTR_CAPS_SZ]; |
b5376771 SH |
230 | struct inode *inode; |
231 | ||
232 | if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID) { | |
233 | bprm_clear_caps(bprm); | |
234 | return 0; | |
235 | } | |
236 | ||
237 | dentry = dget(bprm->file->f_dentry); | |
238 | inode = dentry->d_inode; | |
239 | if (!inode->i_op || !inode->i_op->getxattr) | |
240 | goto out; | |
241 | ||
8f6936f4 AM |
242 | rc = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, &v1caps, |
243 | XATTR_CAPS_SZ); | |
b5376771 SH |
244 | if (rc == -ENODATA || rc == -EOPNOTSUPP) { |
245 | /* no data, that's ok */ | |
246 | rc = 0; | |
247 | goto out; | |
248 | } | |
249 | if (rc < 0) | |
250 | goto out; | |
251 | ||
8f6936f4 | 252 | rc = cap_from_disk(v1caps, bprm, rc); |
b5376771 SH |
253 | if (rc) |
254 | printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n", | |
255 | __FUNCTION__, rc, bprm->filename); | |
256 | ||
257 | out: | |
258 | dput(dentry); | |
259 | if (rc) | |
260 | bprm_clear_caps(bprm); | |
261 | ||
262 | return rc; | |
263 | } | |
264 | ||
265 | #else | |
266 | int cap_inode_need_killpriv(struct dentry *dentry) | |
267 | { | |
268 | return 0; | |
269 | } | |
270 | ||
271 | int cap_inode_killpriv(struct dentry *dentry) | |
272 | { | |
273 | return 0; | |
274 | } | |
275 | ||
276 | static inline int get_file_caps(struct linux_binprm *bprm) | |
277 | { | |
278 | bprm_clear_caps(bprm); | |
279 | return 0; | |
280 | } | |
281 | #endif | |
282 | ||
1da177e4 LT |
283 | int cap_bprm_set_security (struct linux_binprm *bprm) |
284 | { | |
b5376771 | 285 | int ret; |
1da177e4 | 286 | |
b5376771 SH |
287 | ret = get_file_caps(bprm); |
288 | if (ret) | |
289 | printk(KERN_NOTICE "%s: get_file_caps returned %d for %s\n", | |
290 | __FUNCTION__, ret, bprm->filename); | |
1da177e4 LT |
291 | |
292 | /* To support inheritance of root-permissions and suid-root | |
293 | * executables under compatibility mode, we raise all three | |
294 | * capability sets for the file. | |
295 | * | |
296 | * If only the real uid is 0, we only raise the inheritable | |
297 | * and permitted sets of the executable file. | |
298 | */ | |
299 | ||
300 | if (!issecure (SECURE_NOROOT)) { | |
301 | if (bprm->e_uid == 0 || current->uid == 0) { | |
302 | cap_set_full (bprm->cap_inheritable); | |
303 | cap_set_full (bprm->cap_permitted); | |
304 | } | |
305 | if (bprm->e_uid == 0) | |
b5376771 | 306 | bprm->cap_effective = true; |
1da177e4 | 307 | } |
b5376771 SH |
308 | |
309 | return ret; | |
1da177e4 LT |
310 | } |
311 | ||
312 | void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe) | |
313 | { | |
314 | /* Derived from fs/exec.c:compute_creds. */ | |
315 | kernel_cap_t new_permitted, working; | |
316 | ||
317 | new_permitted = cap_intersect (bprm->cap_permitted, cap_bset); | |
318 | working = cap_intersect (bprm->cap_inheritable, | |
319 | current->cap_inheritable); | |
320 | new_permitted = cap_combine (new_permitted, working); | |
321 | ||
322 | if (bprm->e_uid != current->uid || bprm->e_gid != current->gid || | |
323 | !cap_issubset (new_permitted, current->cap_permitted)) { | |
6c5d5238 | 324 | set_dumpable(current->mm, suid_dumpable); |
b5376771 | 325 | current->pdeath_signal = 0; |
1da177e4 LT |
326 | |
327 | if (unsafe & ~LSM_UNSAFE_PTRACE_CAP) { | |
328 | if (!capable(CAP_SETUID)) { | |
329 | bprm->e_uid = current->uid; | |
330 | bprm->e_gid = current->gid; | |
331 | } | |
332 | if (!capable (CAP_SETPCAP)) { | |
333 | new_permitted = cap_intersect (new_permitted, | |
334 | current->cap_permitted); | |
335 | } | |
336 | } | |
337 | } | |
338 | ||
339 | current->suid = current->euid = current->fsuid = bprm->e_uid; | |
340 | current->sgid = current->egid = current->fsgid = bprm->e_gid; | |
341 | ||
342 | /* For init, we want to retain the capabilities set | |
343 | * in the init_task struct. Thus we skip the usual | |
344 | * capability rules */ | |
b460cbc5 | 345 | if (!is_global_init(current)) { |
1da177e4 | 346 | current->cap_permitted = new_permitted; |
b5376771 SH |
347 | current->cap_effective = bprm->cap_effective ? |
348 | new_permitted : 0; | |
1da177e4 LT |
349 | } |
350 | ||
351 | /* AUD: Audit candidate if current->cap_effective is set */ | |
352 | ||
353 | current->keep_capabilities = 0; | |
354 | } | |
355 | ||
356 | int cap_bprm_secureexec (struct linux_binprm *bprm) | |
357 | { | |
b5376771 SH |
358 | if (current->uid != 0) { |
359 | if (bprm->cap_effective) | |
360 | return 1; | |
361 | if (!cap_isclear(bprm->cap_permitted)) | |
362 | return 1; | |
363 | if (!cap_isclear(bprm->cap_inheritable)) | |
364 | return 1; | |
365 | } | |
366 | ||
1da177e4 LT |
367 | return (current->euid != current->uid || |
368 | current->egid != current->gid); | |
369 | } | |
370 | ||
371 | int cap_inode_setxattr(struct dentry *dentry, char *name, void *value, | |
372 | size_t size, int flags) | |
373 | { | |
b5376771 SH |
374 | if (!strcmp(name, XATTR_NAME_CAPS)) { |
375 | if (!capable(CAP_SETFCAP)) | |
376 | return -EPERM; | |
377 | return 0; | |
378 | } else if (!strncmp(name, XATTR_SECURITY_PREFIX, | |
1da177e4 LT |
379 | sizeof(XATTR_SECURITY_PREFIX) - 1) && |
380 | !capable(CAP_SYS_ADMIN)) | |
381 | return -EPERM; | |
382 | return 0; | |
383 | } | |
384 | ||
385 | int cap_inode_removexattr(struct dentry *dentry, char *name) | |
386 | { | |
b5376771 SH |
387 | if (!strcmp(name, XATTR_NAME_CAPS)) { |
388 | if (!capable(CAP_SETFCAP)) | |
389 | return -EPERM; | |
390 | return 0; | |
391 | } else if (!strncmp(name, XATTR_SECURITY_PREFIX, | |
1da177e4 LT |
392 | sizeof(XATTR_SECURITY_PREFIX) - 1) && |
393 | !capable(CAP_SYS_ADMIN)) | |
394 | return -EPERM; | |
395 | return 0; | |
396 | } | |
397 | ||
398 | /* moved from kernel/sys.c. */ | |
399 | /* | |
400 | * cap_emulate_setxuid() fixes the effective / permitted capabilities of | |
401 | * a process after a call to setuid, setreuid, or setresuid. | |
402 | * | |
403 | * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of | |
404 | * {r,e,s}uid != 0, the permitted and effective capabilities are | |
405 | * cleared. | |
406 | * | |
407 | * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective | |
408 | * capabilities of the process are cleared. | |
409 | * | |
410 | * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective | |
411 | * capabilities are set to the permitted capabilities. | |
412 | * | |
413 | * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should | |
414 | * never happen. | |
415 | * | |
416 | * -astor | |
417 | * | |
418 | * cevans - New behaviour, Oct '99 | |
419 | * A process may, via prctl(), elect to keep its capabilities when it | |
420 | * calls setuid() and switches away from uid==0. Both permitted and | |
421 | * effective sets will be retained. | |
422 | * Without this change, it was impossible for a daemon to drop only some | |
423 | * of its privilege. The call to setuid(!=0) would drop all privileges! | |
424 | * Keeping uid 0 is not an option because uid 0 owns too many vital | |
425 | * files.. | |
426 | * Thanks to Olaf Kirch and Peter Benie for spotting this. | |
427 | */ | |
428 | static inline void cap_emulate_setxuid (int old_ruid, int old_euid, | |
429 | int old_suid) | |
430 | { | |
431 | if ((old_ruid == 0 || old_euid == 0 || old_suid == 0) && | |
432 | (current->uid != 0 && current->euid != 0 && current->suid != 0) && | |
433 | !current->keep_capabilities) { | |
434 | cap_clear (current->cap_permitted); | |
435 | cap_clear (current->cap_effective); | |
436 | } | |
437 | if (old_euid == 0 && current->euid != 0) { | |
438 | cap_clear (current->cap_effective); | |
439 | } | |
440 | if (old_euid != 0 && current->euid == 0) { | |
441 | current->cap_effective = current->cap_permitted; | |
442 | } | |
443 | } | |
444 | ||
445 | int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, | |
446 | int flags) | |
447 | { | |
448 | switch (flags) { | |
449 | case LSM_SETID_RE: | |
450 | case LSM_SETID_ID: | |
451 | case LSM_SETID_RES: | |
452 | /* Copied from kernel/sys.c:setreuid/setuid/setresuid. */ | |
453 | if (!issecure (SECURE_NO_SETUID_FIXUP)) { | |
454 | cap_emulate_setxuid (old_ruid, old_euid, old_suid); | |
455 | } | |
456 | break; | |
457 | case LSM_SETID_FS: | |
458 | { | |
459 | uid_t old_fsuid = old_ruid; | |
460 | ||
461 | /* Copied from kernel/sys.c:setfsuid. */ | |
462 | ||
463 | /* | |
464 | * FIXME - is fsuser used for all CAP_FS_MASK capabilities? | |
465 | * if not, we might be a bit too harsh here. | |
466 | */ | |
467 | ||
468 | if (!issecure (SECURE_NO_SETUID_FIXUP)) { | |
469 | if (old_fsuid == 0 && current->fsuid != 0) { | |
470 | cap_t (current->cap_effective) &= | |
471 | ~CAP_FS_MASK; | |
472 | } | |
473 | if (old_fsuid != 0 && current->fsuid == 0) { | |
474 | cap_t (current->cap_effective) |= | |
475 | (cap_t (current->cap_permitted) & | |
476 | CAP_FS_MASK); | |
477 | } | |
478 | } | |
479 | break; | |
480 | } | |
481 | default: | |
482 | return -EINVAL; | |
483 | } | |
484 | ||
485 | return 0; | |
486 | } | |
487 | ||
b5376771 SH |
488 | #ifdef CONFIG_SECURITY_FILE_CAPABILITIES |
489 | /* | |
490 | * Rationale: code calling task_setscheduler, task_setioprio, and | |
491 | * task_setnice, assumes that | |
492 | * . if capable(cap_sys_nice), then those actions should be allowed | |
493 | * . if not capable(cap_sys_nice), but acting on your own processes, | |
494 | * then those actions should be allowed | |
495 | * This is insufficient now since you can call code without suid, but | |
496 | * yet with increased caps. | |
497 | * So we check for increased caps on the target process. | |
498 | */ | |
499 | static inline int cap_safe_nice(struct task_struct *p) | |
500 | { | |
501 | if (!cap_issubset(p->cap_permitted, current->cap_permitted) && | |
502 | !__capable(current, CAP_SYS_NICE)) | |
503 | return -EPERM; | |
504 | return 0; | |
505 | } | |
506 | ||
507 | int cap_task_setscheduler (struct task_struct *p, int policy, | |
508 | struct sched_param *lp) | |
509 | { | |
510 | return cap_safe_nice(p); | |
511 | } | |
512 | ||
513 | int cap_task_setioprio (struct task_struct *p, int ioprio) | |
514 | { | |
515 | return cap_safe_nice(p); | |
516 | } | |
517 | ||
518 | int cap_task_setnice (struct task_struct *p, int nice) | |
519 | { | |
520 | return cap_safe_nice(p); | |
521 | } | |
522 | ||
523 | int cap_task_kill(struct task_struct *p, struct siginfo *info, | |
524 | int sig, u32 secid) | |
525 | { | |
526 | if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info))) | |
527 | return 0; | |
528 | ||
8ec2328f SH |
529 | /* |
530 | * Running a setuid root program raises your capabilities. | |
531 | * Killing your own setuid root processes was previously | |
532 | * allowed. | |
533 | * We must preserve legacy signal behavior in this case. | |
534 | */ | |
535 | if (p->euid == 0 && p->uid == current->uid) | |
536 | return 0; | |
537 | ||
91ad997a SH |
538 | /* sigcont is permitted within same session */ |
539 | if (sig == SIGCONT && (task_session_nr(current) == task_session_nr(p))) | |
540 | return 0; | |
541 | ||
b5376771 SH |
542 | if (secid) |
543 | /* | |
544 | * Signal sent as a particular user. | |
545 | * Capabilities are ignored. May be wrong, but it's the | |
546 | * only thing we can do at the moment. | |
547 | * Used only by usb drivers? | |
548 | */ | |
549 | return 0; | |
550 | if (cap_issubset(p->cap_permitted, current->cap_permitted)) | |
551 | return 0; | |
552 | if (capable(CAP_KILL)) | |
553 | return 0; | |
554 | ||
555 | return -EPERM; | |
556 | } | |
557 | #else | |
558 | int cap_task_setscheduler (struct task_struct *p, int policy, | |
559 | struct sched_param *lp) | |
560 | { | |
561 | return 0; | |
562 | } | |
563 | int cap_task_setioprio (struct task_struct *p, int ioprio) | |
564 | { | |
565 | return 0; | |
566 | } | |
567 | int cap_task_setnice (struct task_struct *p, int nice) | |
568 | { | |
569 | return 0; | |
570 | } | |
571 | int cap_task_kill(struct task_struct *p, struct siginfo *info, | |
572 | int sig, u32 secid) | |
573 | { | |
574 | return 0; | |
575 | } | |
576 | #endif | |
577 | ||
1da177e4 LT |
578 | void cap_task_reparent_to_init (struct task_struct *p) |
579 | { | |
580 | p->cap_effective = CAP_INIT_EFF_SET; | |
581 | p->cap_inheritable = CAP_INIT_INH_SET; | |
582 | p->cap_permitted = CAP_FULL_SET; | |
583 | p->keep_capabilities = 0; | |
584 | return; | |
585 | } | |
586 | ||
587 | int cap_syslog (int type) | |
588 | { | |
589 | if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN)) | |
590 | return -EPERM; | |
591 | return 0; | |
592 | } | |
593 | ||
34b4e4aa | 594 | int cap_vm_enough_memory(struct mm_struct *mm, long pages) |
1da177e4 LT |
595 | { |
596 | int cap_sys_admin = 0; | |
597 | ||
598 | if (cap_capable(current, CAP_SYS_ADMIN) == 0) | |
599 | cap_sys_admin = 1; | |
34b4e4aa | 600 | return __vm_enough_memory(mm, pages, cap_sys_admin); |
1da177e4 LT |
601 | } |
602 |