mlx5: remove health handler plugin
[linux-2.6-block.git] / net / vmw_vsock / af_vsock.c
CommitLineData
d021c344
AK
1/*
2 * VMware vSockets Driver
3 *
4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation version 2 and no later version.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 */
15
16/* Implementation notes:
17 *
18 * - There are two kinds of sockets: those created by user action (such as
19 * calling socket(2)) and those created by incoming connection request packets.
20 *
21 * - There are two "global" tables, one for bound sockets (sockets that have
22 * specified an address that they are responsible for) and one for connected
23 * sockets (sockets that have established a connection with another socket).
24 * These tables are "global" in that all sockets on the system are placed
25 * within them. - Note, though, that the bound table contains an extra entry
26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27 * that list. The bound table is used solely for lookup of sockets when packets
28 * are received and that's not necessary for SOCK_DGRAM sockets since we create
29 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
30 * sockets out of the bound hash buckets will reduce the chance of collisions
31 * when looking for SOCK_STREAM sockets and prevents us from having to check the
32 * socket type in the hash table lookups.
33 *
34 * - Sockets created by user action will either be "client" sockets that
35 * initiate a connection or "server" sockets that listen for connections; we do
36 * not support simultaneous connects (two "client" sockets connecting).
37 *
38 * - "Server" sockets are referred to as listener sockets throughout this
39 * implementation because they are in the SS_LISTEN state. When a connection
40 * request is received (the second kind of socket mentioned above), we create a
41 * new socket and refer to it as a pending socket. These pending sockets are
42 * placed on the pending connection list of the listener socket. When future
43 * packets are received for the address the listener socket is bound to, we
44 * check if the source of the packet is from one that has an existing pending
45 * connection. If it does, we process the packet for the pending socket. When
46 * that socket reaches the connected state, it is removed from the listener
47 * socket's pending list and enqueued in the listener socket's accept queue.
48 * Callers of accept(2) will accept connected sockets from the listener socket's
49 * accept queue. If the socket cannot be accepted for some reason then it is
50 * marked rejected. Once the connection is accepted, it is owned by the user
51 * process and the responsibility for cleanup falls with that user process.
52 *
53 * - It is possible that these pending sockets will never reach the connected
54 * state; in fact, we may never receive another packet after the connection
55 * request. Because of this, we must schedule a cleanup function to run in the
56 * future, after some amount of time passes where a connection should have been
57 * established. This function ensures that the socket is off all lists so it
58 * cannot be retrieved, then drops all references to the socket so it is cleaned
59 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
60 * function will also cleanup rejected sockets, those that reach the connected
61 * state but leave it before they have been accepted.
62 *
63 * - Sockets created by user action will be cleaned up when the user process
64 * calls close(2), causing our release implementation to be called. Our release
65 * implementation will perform some cleanup then drop the last reference so our
66 * sk_destruct implementation is invoked. Our sk_destruct implementation will
67 * perform additional cleanup that's common for both types of sockets.
68 *
69 * - A socket's reference count is what ensures that the structure won't be
70 * freed. Each entry in a list (such as the "global" bound and connected tables
71 * and the listener socket's pending list and connected queue) ensures a
72 * reference. When we defer work until process context and pass a socket as our
73 * argument, we must ensure the reference count is increased to ensure the
74 * socket isn't freed before the function is run; the deferred function will
75 * then drop the reference.
76 */
77
78#include <linux/types.h>
d021c344
AK
79#include <linux/bitops.h>
80#include <linux/cred.h>
81#include <linux/init.h>
82#include <linux/io.h>
83#include <linux/kernel.h>
84#include <linux/kmod.h>
85#include <linux/list.h>
86#include <linux/miscdevice.h>
87#include <linux/module.h>
88#include <linux/mutex.h>
89#include <linux/net.h>
90#include <linux/poll.h>
91#include <linux/skbuff.h>
92#include <linux/smp.h>
93#include <linux/socket.h>
94#include <linux/stddef.h>
95#include <linux/unistd.h>
96#include <linux/wait.h>
97#include <linux/workqueue.h>
98#include <net/sock.h>
99
100#include "af_vsock.h"
d021c344
AK
101
102static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
103static void vsock_sk_destruct(struct sock *sk);
104static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
105
106/* Protocol family. */
107static struct proto vsock_proto = {
108 .name = "AF_VSOCK",
109 .owner = THIS_MODULE,
110 .obj_size = sizeof(struct vsock_sock),
111};
112
113/* The default peer timeout indicates how long we will wait for a peer response
114 * to a control message.
115 */
116#define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
117
118#define SS_LISTEN 255
119
120static const struct vsock_transport *transport;
121static DEFINE_MUTEX(vsock_register_mutex);
122
123/**** EXPORTS ****/
124
125/* Get the ID of the local context. This is transport dependent. */
126
127int vm_sockets_get_local_cid(void)
128{
129 return transport->get_local_cid();
130}
131EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
132
133/**** UTILS ****/
134
135/* Each bound VSocket is stored in the bind hash table and each connected
136 * VSocket is stored in the connected hash table.
137 *
138 * Unbound sockets are all put on the same list attached to the end of the hash
139 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
140 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
141 * represents the list that addr hashes to).
142 *
143 * Specifically, we initialize the vsock_bind_table array to a size of
144 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
145 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
146 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
a49dd9dc 147 * mods with VSOCK_HASH_SIZE to ensure this.
d021c344
AK
148 */
149#define VSOCK_HASH_SIZE 251
150#define MAX_PORT_RETRIES 24
151
a49dd9dc 152#define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
d021c344
AK
153#define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
154#define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
155
156/* XXX This can probably be implemented in a better way. */
157#define VSOCK_CONN_HASH(src, dst) \
a49dd9dc 158 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
d021c344
AK
159#define vsock_connected_sockets(src, dst) \
160 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
161#define vsock_connected_sockets_vsk(vsk) \
162 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
163
164static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
165static struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
166static DEFINE_SPINLOCK(vsock_table_lock);
167
b3a6dfe8
AH
168/* Autobind this socket to the local address if necessary. */
169static int vsock_auto_bind(struct vsock_sock *vsk)
170{
171 struct sock *sk = sk_vsock(vsk);
172 struct sockaddr_vm local_addr;
173
174 if (vsock_addr_bound(&vsk->local_addr))
175 return 0;
176 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
177 return __vsock_bind(sk, &local_addr);
178}
179
22ee3b57 180static void vsock_init_tables(void)
d021c344
AK
181{
182 int i;
183
184 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
185 INIT_LIST_HEAD(&vsock_bind_table[i]);
186
187 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
188 INIT_LIST_HEAD(&vsock_connected_table[i]);
189}
190
191static void __vsock_insert_bound(struct list_head *list,
192 struct vsock_sock *vsk)
193{
194 sock_hold(&vsk->sk);
195 list_add(&vsk->bound_table, list);
196}
197
198static void __vsock_insert_connected(struct list_head *list,
199 struct vsock_sock *vsk)
200{
201 sock_hold(&vsk->sk);
202 list_add(&vsk->connected_table, list);
203}
204
205static void __vsock_remove_bound(struct vsock_sock *vsk)
206{
207 list_del_init(&vsk->bound_table);
208 sock_put(&vsk->sk);
209}
210
211static void __vsock_remove_connected(struct vsock_sock *vsk)
212{
213 list_del_init(&vsk->connected_table);
214 sock_put(&vsk->sk);
215}
216
217static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
218{
219 struct vsock_sock *vsk;
220
221 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
990454b5 222 if (addr->svm_port == vsk->local_addr.svm_port)
d021c344
AK
223 return sk_vsock(vsk);
224
225 return NULL;
226}
227
228static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
229 struct sockaddr_vm *dst)
230{
231 struct vsock_sock *vsk;
232
233 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
234 connected_table) {
990454b5
RG
235 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
236 dst->svm_port == vsk->local_addr.svm_port) {
d021c344
AK
237 return sk_vsock(vsk);
238 }
239 }
240
241 return NULL;
242}
243
244static bool __vsock_in_bound_table(struct vsock_sock *vsk)
245{
246 return !list_empty(&vsk->bound_table);
247}
248
249static bool __vsock_in_connected_table(struct vsock_sock *vsk)
250{
251 return !list_empty(&vsk->connected_table);
252}
253
254static void vsock_insert_unbound(struct vsock_sock *vsk)
255{
256 spin_lock_bh(&vsock_table_lock);
257 __vsock_insert_bound(vsock_unbound_sockets, vsk);
258 spin_unlock_bh(&vsock_table_lock);
259}
260
261void vsock_insert_connected(struct vsock_sock *vsk)
262{
263 struct list_head *list = vsock_connected_sockets(
264 &vsk->remote_addr, &vsk->local_addr);
265
266 spin_lock_bh(&vsock_table_lock);
267 __vsock_insert_connected(list, vsk);
268 spin_unlock_bh(&vsock_table_lock);
269}
270EXPORT_SYMBOL_GPL(vsock_insert_connected);
271
272void vsock_remove_bound(struct vsock_sock *vsk)
273{
274 spin_lock_bh(&vsock_table_lock);
275 __vsock_remove_bound(vsk);
276 spin_unlock_bh(&vsock_table_lock);
277}
278EXPORT_SYMBOL_GPL(vsock_remove_bound);
279
280void vsock_remove_connected(struct vsock_sock *vsk)
281{
282 spin_lock_bh(&vsock_table_lock);
283 __vsock_remove_connected(vsk);
284 spin_unlock_bh(&vsock_table_lock);
285}
286EXPORT_SYMBOL_GPL(vsock_remove_connected);
287
288struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
289{
290 struct sock *sk;
291
292 spin_lock_bh(&vsock_table_lock);
293 sk = __vsock_find_bound_socket(addr);
294 if (sk)
295 sock_hold(sk);
296
297 spin_unlock_bh(&vsock_table_lock);
298
299 return sk;
300}
301EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
302
303struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
304 struct sockaddr_vm *dst)
305{
306 struct sock *sk;
307
308 spin_lock_bh(&vsock_table_lock);
309 sk = __vsock_find_connected_socket(src, dst);
310 if (sk)
311 sock_hold(sk);
312
313 spin_unlock_bh(&vsock_table_lock);
314
315 return sk;
316}
317EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
318
319static bool vsock_in_bound_table(struct vsock_sock *vsk)
320{
321 bool ret;
322
323 spin_lock_bh(&vsock_table_lock);
324 ret = __vsock_in_bound_table(vsk);
325 spin_unlock_bh(&vsock_table_lock);
326
327 return ret;
328}
329
330static bool vsock_in_connected_table(struct vsock_sock *vsk)
331{
332 bool ret;
333
334 spin_lock_bh(&vsock_table_lock);
335 ret = __vsock_in_connected_table(vsk);
336 spin_unlock_bh(&vsock_table_lock);
337
338 return ret;
339}
340
341void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
342{
343 int i;
344
345 spin_lock_bh(&vsock_table_lock);
346
347 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
348 struct vsock_sock *vsk;
349 list_for_each_entry(vsk, &vsock_connected_table[i],
350 connected_table);
351 fn(sk_vsock(vsk));
352 }
353
354 spin_unlock_bh(&vsock_table_lock);
355}
356EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
357
358void vsock_add_pending(struct sock *listener, struct sock *pending)
359{
360 struct vsock_sock *vlistener;
361 struct vsock_sock *vpending;
362
363 vlistener = vsock_sk(listener);
364 vpending = vsock_sk(pending);
365
366 sock_hold(pending);
367 sock_hold(listener);
368 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
369}
370EXPORT_SYMBOL_GPL(vsock_add_pending);
371
372void vsock_remove_pending(struct sock *listener, struct sock *pending)
373{
374 struct vsock_sock *vpending = vsock_sk(pending);
375
376 list_del_init(&vpending->pending_links);
377 sock_put(listener);
378 sock_put(pending);
379}
380EXPORT_SYMBOL_GPL(vsock_remove_pending);
381
382void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
383{
384 struct vsock_sock *vlistener;
385 struct vsock_sock *vconnected;
386
387 vlistener = vsock_sk(listener);
388 vconnected = vsock_sk(connected);
389
390 sock_hold(connected);
391 sock_hold(listener);
392 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
393}
394EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
395
396static struct sock *vsock_dequeue_accept(struct sock *listener)
397{
398 struct vsock_sock *vlistener;
399 struct vsock_sock *vconnected;
400
401 vlistener = vsock_sk(listener);
402
403 if (list_empty(&vlistener->accept_queue))
404 return NULL;
405
406 vconnected = list_entry(vlistener->accept_queue.next,
407 struct vsock_sock, accept_queue);
408
409 list_del_init(&vconnected->accept_queue);
410 sock_put(listener);
411 /* The caller will need a reference on the connected socket so we let
412 * it call sock_put().
413 */
414
415 return sk_vsock(vconnected);
416}
417
418static bool vsock_is_accept_queue_empty(struct sock *sk)
419{
420 struct vsock_sock *vsk = vsock_sk(sk);
421 return list_empty(&vsk->accept_queue);
422}
423
424static bool vsock_is_pending(struct sock *sk)
425{
426 struct vsock_sock *vsk = vsock_sk(sk);
427 return !list_empty(&vsk->pending_links);
428}
429
430static int vsock_send_shutdown(struct sock *sk, int mode)
431{
432 return transport->shutdown(vsock_sk(sk), mode);
433}
434
435void vsock_pending_work(struct work_struct *work)
436{
437 struct sock *sk;
438 struct sock *listener;
439 struct vsock_sock *vsk;
440 bool cleanup;
441
442 vsk = container_of(work, struct vsock_sock, dwork.work);
443 sk = sk_vsock(vsk);
444 listener = vsk->listener;
445 cleanup = true;
446
447 lock_sock(listener);
448 lock_sock(sk);
449
450 if (vsock_is_pending(sk)) {
451 vsock_remove_pending(listener, sk);
452 } else if (!vsk->rejected) {
453 /* We are not on the pending list and accept() did not reject
454 * us, so we must have been accepted by our user process. We
455 * just need to drop our references to the sockets and be on
456 * our way.
457 */
458 cleanup = false;
459 goto out;
460 }
461
462 listener->sk_ack_backlog--;
463
464 /* We need to remove ourself from the global connected sockets list so
465 * incoming packets can't find this socket, and to reduce the reference
466 * count.
467 */
468 if (vsock_in_connected_table(vsk))
469 vsock_remove_connected(vsk);
470
471 sk->sk_state = SS_FREE;
472
473out:
474 release_sock(sk);
475 release_sock(listener);
476 if (cleanup)
477 sock_put(sk);
478
479 sock_put(sk);
480 sock_put(listener);
481}
482EXPORT_SYMBOL_GPL(vsock_pending_work);
483
484/**** SOCKET OPERATIONS ****/
485
486static int __vsock_bind_stream(struct vsock_sock *vsk,
487 struct sockaddr_vm *addr)
488{
489 static u32 port = LAST_RESERVED_PORT + 1;
490 struct sockaddr_vm new_addr;
491
492 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
493
494 if (addr->svm_port == VMADDR_PORT_ANY) {
495 bool found = false;
496 unsigned int i;
497
498 for (i = 0; i < MAX_PORT_RETRIES; i++) {
499 if (port <= LAST_RESERVED_PORT)
500 port = LAST_RESERVED_PORT + 1;
501
502 new_addr.svm_port = port++;
503
504 if (!__vsock_find_bound_socket(&new_addr)) {
505 found = true;
506 break;
507 }
508 }
509
510 if (!found)
511 return -EADDRNOTAVAIL;
512 } else {
513 /* If port is in reserved range, ensure caller
514 * has necessary privileges.
515 */
516 if (addr->svm_port <= LAST_RESERVED_PORT &&
517 !capable(CAP_NET_BIND_SERVICE)) {
518 return -EACCES;
519 }
520
521 if (__vsock_find_bound_socket(&new_addr))
522 return -EADDRINUSE;
523 }
524
525 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
526
527 /* Remove stream sockets from the unbound list and add them to the hash
528 * table for easy lookup by its address. The unbound list is simply an
529 * extra entry at the end of the hash table, a trick used by AF_UNIX.
530 */
531 __vsock_remove_bound(vsk);
532 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
533
534 return 0;
535}
536
537static int __vsock_bind_dgram(struct vsock_sock *vsk,
538 struct sockaddr_vm *addr)
539{
540 return transport->dgram_bind(vsk, addr);
541}
542
543static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
544{
545 struct vsock_sock *vsk = vsock_sk(sk);
546 u32 cid;
547 int retval;
548
549 /* First ensure this socket isn't already bound. */
550 if (vsock_addr_bound(&vsk->local_addr))
551 return -EINVAL;
552
553 /* Now bind to the provided address or select appropriate values if
554 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
555 * like AF_INET prevents binding to a non-local IP address (in most
556 * cases), we only allow binding to the local CID.
557 */
558 cid = transport->get_local_cid();
559 if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
560 return -EADDRNOTAVAIL;
561
562 switch (sk->sk_socket->type) {
563 case SOCK_STREAM:
564 spin_lock_bh(&vsock_table_lock);
565 retval = __vsock_bind_stream(vsk, addr);
566 spin_unlock_bh(&vsock_table_lock);
567 break;
568
569 case SOCK_DGRAM:
570 retval = __vsock_bind_dgram(vsk, addr);
571 break;
572
573 default:
574 retval = -EINVAL;
575 break;
576 }
577
578 return retval;
579}
580
581struct sock *__vsock_create(struct net *net,
582 struct socket *sock,
583 struct sock *parent,
584 gfp_t priority,
585 unsigned short type)
586{
587 struct sock *sk;
588 struct vsock_sock *psk;
589 struct vsock_sock *vsk;
590
591 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto);
592 if (!sk)
593 return NULL;
594
595 sock_init_data(sock, sk);
596
597 /* sk->sk_type is normally set in sock_init_data, but only if sock is
598 * non-NULL. We make sure that our sockets always have a type by
599 * setting it here if needed.
600 */
601 if (!sock)
602 sk->sk_type = type;
603
604 vsk = vsock_sk(sk);
605 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
606 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
607
608 sk->sk_destruct = vsock_sk_destruct;
609 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
610 sk->sk_state = 0;
611 sock_reset_flag(sk, SOCK_DONE);
612
613 INIT_LIST_HEAD(&vsk->bound_table);
614 INIT_LIST_HEAD(&vsk->connected_table);
615 vsk->listener = NULL;
616 INIT_LIST_HEAD(&vsk->pending_links);
617 INIT_LIST_HEAD(&vsk->accept_queue);
618 vsk->rejected = false;
619 vsk->sent_request = false;
620 vsk->ignore_connecting_rst = false;
621 vsk->peer_shutdown = 0;
622
623 psk = parent ? vsock_sk(parent) : NULL;
624 if (parent) {
625 vsk->trusted = psk->trusted;
626 vsk->owner = get_cred(psk->owner);
627 vsk->connect_timeout = psk->connect_timeout;
628 } else {
629 vsk->trusted = capable(CAP_NET_ADMIN);
630 vsk->owner = get_current_cred();
631 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
632 }
633
634 if (transport->init(vsk, psk) < 0) {
635 sk_free(sk);
636 return NULL;
637 }
638
639 if (sock)
640 vsock_insert_unbound(vsk);
641
642 return sk;
643}
644EXPORT_SYMBOL_GPL(__vsock_create);
645
646static void __vsock_release(struct sock *sk)
647{
648 if (sk) {
649 struct sk_buff *skb;
650 struct sock *pending;
651 struct vsock_sock *vsk;
652
653 vsk = vsock_sk(sk);
654 pending = NULL; /* Compiler warning. */
655
656 if (vsock_in_bound_table(vsk))
657 vsock_remove_bound(vsk);
658
659 if (vsock_in_connected_table(vsk))
660 vsock_remove_connected(vsk);
661
662 transport->release(vsk);
663
664 lock_sock(sk);
665 sock_orphan(sk);
666 sk->sk_shutdown = SHUTDOWN_MASK;
667
668 while ((skb = skb_dequeue(&sk->sk_receive_queue)))
669 kfree_skb(skb);
670
671 /* Clean up any sockets that never were accepted. */
672 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
673 __vsock_release(pending);
674 sock_put(pending);
675 }
676
677 release_sock(sk);
678 sock_put(sk);
679 }
680}
681
682static void vsock_sk_destruct(struct sock *sk)
683{
684 struct vsock_sock *vsk = vsock_sk(sk);
685
686 transport->destruct(vsk);
687
688 /* When clearing these addresses, there's no need to set the family and
689 * possibly register the address family with the kernel.
690 */
691 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
692 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
693
694 put_cred(vsk->owner);
695}
696
697static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
698{
699 int err;
700
701 err = sock_queue_rcv_skb(sk, skb);
702 if (err)
703 kfree_skb(skb);
704
705 return err;
706}
707
708s64 vsock_stream_has_data(struct vsock_sock *vsk)
709{
710 return transport->stream_has_data(vsk);
711}
712EXPORT_SYMBOL_GPL(vsock_stream_has_data);
713
714s64 vsock_stream_has_space(struct vsock_sock *vsk)
715{
716 return transport->stream_has_space(vsk);
717}
718EXPORT_SYMBOL_GPL(vsock_stream_has_space);
719
720static int vsock_release(struct socket *sock)
721{
722 __vsock_release(sock->sk);
723 sock->sk = NULL;
724 sock->state = SS_FREE;
725
726 return 0;
727}
728
729static int
730vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
731{
732 int err;
733 struct sock *sk;
734 struct sockaddr_vm *vm_addr;
735
736 sk = sock->sk;
737
738 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
739 return -EINVAL;
740
741 lock_sock(sk);
742 err = __vsock_bind(sk, vm_addr);
743 release_sock(sk);
744
745 return err;
746}
747
748static int vsock_getname(struct socket *sock,
749 struct sockaddr *addr, int *addr_len, int peer)
750{
751 int err;
752 struct sock *sk;
753 struct vsock_sock *vsk;
754 struct sockaddr_vm *vm_addr;
755
756 sk = sock->sk;
757 vsk = vsock_sk(sk);
758 err = 0;
759
760 lock_sock(sk);
761
762 if (peer) {
763 if (sock->state != SS_CONNECTED) {
764 err = -ENOTCONN;
765 goto out;
766 }
767 vm_addr = &vsk->remote_addr;
768 } else {
769 vm_addr = &vsk->local_addr;
770 }
771
772 if (!vm_addr) {
773 err = -EINVAL;
774 goto out;
775 }
776
777 /* sys_getsockname() and sys_getpeername() pass us a
778 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
779 * that macro is defined in socket.c instead of .h, so we hardcode its
780 * value here.
781 */
782 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
783 memcpy(addr, vm_addr, sizeof(*vm_addr));
784 *addr_len = sizeof(*vm_addr);
785
786out:
787 release_sock(sk);
788 return err;
789}
790
791static int vsock_shutdown(struct socket *sock, int mode)
792{
793 int err;
794 struct sock *sk;
795
796 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
797 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
798 * here like the other address families do. Note also that the
799 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
800 * which is what we want.
801 */
802 mode++;
803
804 if ((mode & ~SHUTDOWN_MASK) || !mode)
805 return -EINVAL;
806
807 /* If this is a STREAM socket and it is not connected then bail out
808 * immediately. If it is a DGRAM socket then we must first kick the
809 * socket so that it wakes up from any sleeping calls, for example
810 * recv(), and then afterwards return the error.
811 */
812
813 sk = sock->sk;
814 if (sock->state == SS_UNCONNECTED) {
815 err = -ENOTCONN;
816 if (sk->sk_type == SOCK_STREAM)
817 return err;
818 } else {
819 sock->state = SS_DISCONNECTING;
820 err = 0;
821 }
822
823 /* Receive and send shutdowns are treated alike. */
824 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
825 if (mode) {
826 lock_sock(sk);
827 sk->sk_shutdown |= mode;
828 sk->sk_state_change(sk);
829 release_sock(sk);
830
831 if (sk->sk_type == SOCK_STREAM) {
832 sock_reset_flag(sk, SOCK_DONE);
833 vsock_send_shutdown(sk, mode);
834 }
835 }
836
837 return err;
838}
839
840static unsigned int vsock_poll(struct file *file, struct socket *sock,
841 poll_table *wait)
842{
843 struct sock *sk;
844 unsigned int mask;
845 struct vsock_sock *vsk;
846
847 sk = sock->sk;
848 vsk = vsock_sk(sk);
849
850 poll_wait(file, sk_sleep(sk), wait);
851 mask = 0;
852
853 if (sk->sk_err)
854 /* Signify that there has been an error on this socket. */
855 mask |= POLLERR;
856
857 /* INET sockets treat local write shutdown and peer write shutdown as a
858 * case of POLLHUP set.
859 */
860 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
861 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
862 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
863 mask |= POLLHUP;
864 }
865
866 if (sk->sk_shutdown & RCV_SHUTDOWN ||
867 vsk->peer_shutdown & SEND_SHUTDOWN) {
868 mask |= POLLRDHUP;
869 }
870
871 if (sock->type == SOCK_DGRAM) {
872 /* For datagram sockets we can read if there is something in
873 * the queue and write as long as the socket isn't shutdown for
874 * sending.
875 */
876 if (!skb_queue_empty(&sk->sk_receive_queue) ||
877 (sk->sk_shutdown & RCV_SHUTDOWN)) {
878 mask |= POLLIN | POLLRDNORM;
879 }
880
881 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
882 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
883
884 } else if (sock->type == SOCK_STREAM) {
885 lock_sock(sk);
886
887 /* Listening sockets that have connections in their accept
888 * queue can be read.
889 */
890 if (sk->sk_state == SS_LISTEN
891 && !vsock_is_accept_queue_empty(sk))
892 mask |= POLLIN | POLLRDNORM;
893
894 /* If there is something in the queue then we can read. */
895 if (transport->stream_is_active(vsk) &&
896 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
897 bool data_ready_now = false;
898 int ret = transport->notify_poll_in(
899 vsk, 1, &data_ready_now);
900 if (ret < 0) {
901 mask |= POLLERR;
902 } else {
903 if (data_ready_now)
904 mask |= POLLIN | POLLRDNORM;
905
906 }
907 }
908
909 /* Sockets whose connections have been closed, reset, or
910 * terminated should also be considered read, and we check the
911 * shutdown flag for that.
912 */
913 if (sk->sk_shutdown & RCV_SHUTDOWN ||
914 vsk->peer_shutdown & SEND_SHUTDOWN) {
915 mask |= POLLIN | POLLRDNORM;
916 }
917
918 /* Connected sockets that can produce data can be written. */
919 if (sk->sk_state == SS_CONNECTED) {
920 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
921 bool space_avail_now = false;
922 int ret = transport->notify_poll_out(
923 vsk, 1, &space_avail_now);
924 if (ret < 0) {
925 mask |= POLLERR;
926 } else {
927 if (space_avail_now)
928 /* Remove POLLWRBAND since INET
929 * sockets are not setting it.
930 */
931 mask |= POLLOUT | POLLWRNORM;
932
933 }
934 }
935 }
936
937 /* Simulate INET socket poll behaviors, which sets
938 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
939 * but local send is not shutdown.
940 */
941 if (sk->sk_state == SS_UNCONNECTED) {
942 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
943 mask |= POLLOUT | POLLWRNORM;
944
945 }
946
947 release_sock(sk);
948 }
949
950 return mask;
951}
952
953static int vsock_dgram_sendmsg(struct kiocb *kiocb, struct socket *sock,
954 struct msghdr *msg, size_t len)
955{
956 int err;
957 struct sock *sk;
958 struct vsock_sock *vsk;
959 struct sockaddr_vm *remote_addr;
960
961 if (msg->msg_flags & MSG_OOB)
962 return -EOPNOTSUPP;
963
964 /* For now, MSG_DONTWAIT is always assumed... */
965 err = 0;
966 sk = sock->sk;
967 vsk = vsock_sk(sk);
968
969 lock_sock(sk);
970
b3a6dfe8
AH
971 err = vsock_auto_bind(vsk);
972 if (err)
973 goto out;
d021c344 974
d021c344
AK
975
976 /* If the provided message contains an address, use that. Otherwise
977 * fall back on the socket's remote handle (if it has been connected).
978 */
979 if (msg->msg_name &&
980 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
981 &remote_addr) == 0) {
982 /* Ensure this address is of the right type and is a valid
983 * destination.
984 */
985
986 if (remote_addr->svm_cid == VMADDR_CID_ANY)
987 remote_addr->svm_cid = transport->get_local_cid();
988
989 if (!vsock_addr_bound(remote_addr)) {
990 err = -EINVAL;
991 goto out;
992 }
993 } else if (sock->state == SS_CONNECTED) {
994 remote_addr = &vsk->remote_addr;
995
996 if (remote_addr->svm_cid == VMADDR_CID_ANY)
997 remote_addr->svm_cid = transport->get_local_cid();
998
999 /* XXX Should connect() or this function ensure remote_addr is
1000 * bound?
1001 */
1002 if (!vsock_addr_bound(&vsk->remote_addr)) {
1003 err = -EINVAL;
1004 goto out;
1005 }
1006 } else {
1007 err = -EINVAL;
1008 goto out;
1009 }
1010
1011 if (!transport->dgram_allow(remote_addr->svm_cid,
1012 remote_addr->svm_port)) {
1013 err = -EINVAL;
1014 goto out;
1015 }
1016
1017 err = transport->dgram_enqueue(vsk, remote_addr, msg->msg_iov, len);
1018
1019out:
1020 release_sock(sk);
1021 return err;
1022}
1023
1024static int vsock_dgram_connect(struct socket *sock,
1025 struct sockaddr *addr, int addr_len, int flags)
1026{
1027 int err;
1028 struct sock *sk;
1029 struct vsock_sock *vsk;
1030 struct sockaddr_vm *remote_addr;
1031
1032 sk = sock->sk;
1033 vsk = vsock_sk(sk);
1034
1035 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1036 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1037 lock_sock(sk);
1038 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1039 VMADDR_PORT_ANY);
1040 sock->state = SS_UNCONNECTED;
1041 release_sock(sk);
1042 return 0;
1043 } else if (err != 0)
1044 return -EINVAL;
1045
1046 lock_sock(sk);
1047
b3a6dfe8
AH
1048 err = vsock_auto_bind(vsk);
1049 if (err)
1050 goto out;
d021c344
AK
1051
1052 if (!transport->dgram_allow(remote_addr->svm_cid,
1053 remote_addr->svm_port)) {
1054 err = -EINVAL;
1055 goto out;
1056 }
1057
1058 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1059 sock->state = SS_CONNECTED;
1060
1061out:
1062 release_sock(sk);
1063 return err;
1064}
1065
1066static int vsock_dgram_recvmsg(struct kiocb *kiocb, struct socket *sock,
1067 struct msghdr *msg, size_t len, int flags)
1068{
1069 return transport->dgram_dequeue(kiocb, vsock_sk(sock->sk), msg, len,
1070 flags);
1071}
1072
1073static const struct proto_ops vsock_dgram_ops = {
1074 .family = PF_VSOCK,
1075 .owner = THIS_MODULE,
1076 .release = vsock_release,
1077 .bind = vsock_bind,
1078 .connect = vsock_dgram_connect,
1079 .socketpair = sock_no_socketpair,
1080 .accept = sock_no_accept,
1081 .getname = vsock_getname,
1082 .poll = vsock_poll,
1083 .ioctl = sock_no_ioctl,
1084 .listen = sock_no_listen,
1085 .shutdown = vsock_shutdown,
1086 .setsockopt = sock_no_setsockopt,
1087 .getsockopt = sock_no_getsockopt,
1088 .sendmsg = vsock_dgram_sendmsg,
1089 .recvmsg = vsock_dgram_recvmsg,
1090 .mmap = sock_no_mmap,
1091 .sendpage = sock_no_sendpage,
1092};
1093
1094static void vsock_connect_timeout(struct work_struct *work)
1095{
1096 struct sock *sk;
1097 struct vsock_sock *vsk;
1098
1099 vsk = container_of(work, struct vsock_sock, dwork.work);
1100 sk = sk_vsock(vsk);
1101
1102 lock_sock(sk);
1103 if (sk->sk_state == SS_CONNECTING &&
1104 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1105 sk->sk_state = SS_UNCONNECTED;
1106 sk->sk_err = ETIMEDOUT;
1107 sk->sk_error_report(sk);
1108 }
1109 release_sock(sk);
1110
1111 sock_put(sk);
1112}
1113
1114static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1115 int addr_len, int flags)
1116{
1117 int err;
1118 struct sock *sk;
1119 struct vsock_sock *vsk;
1120 struct sockaddr_vm *remote_addr;
1121 long timeout;
1122 DEFINE_WAIT(wait);
1123
1124 err = 0;
1125 sk = sock->sk;
1126 vsk = vsock_sk(sk);
1127
1128 lock_sock(sk);
1129
1130 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1131 switch (sock->state) {
1132 case SS_CONNECTED:
1133 err = -EISCONN;
1134 goto out;
1135 case SS_DISCONNECTING:
1136 err = -EINVAL;
1137 goto out;
1138 case SS_CONNECTING:
1139 /* This continues on so we can move sock into the SS_CONNECTED
1140 * state once the connection has completed (at which point err
1141 * will be set to zero also). Otherwise, we will either wait
1142 * for the connection or return -EALREADY should this be a
1143 * non-blocking call.
1144 */
1145 err = -EALREADY;
1146 break;
1147 default:
1148 if ((sk->sk_state == SS_LISTEN) ||
1149 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1150 err = -EINVAL;
1151 goto out;
1152 }
1153
1154 /* The hypervisor and well-known contexts do not have socket
1155 * endpoints.
1156 */
1157 if (!transport->stream_allow(remote_addr->svm_cid,
1158 remote_addr->svm_port)) {
1159 err = -ENETUNREACH;
1160 goto out;
1161 }
1162
1163 /* Set the remote address that we are connecting to. */
1164 memcpy(&vsk->remote_addr, remote_addr,
1165 sizeof(vsk->remote_addr));
1166
b3a6dfe8
AH
1167 err = vsock_auto_bind(vsk);
1168 if (err)
1169 goto out;
d021c344
AK
1170
1171 sk->sk_state = SS_CONNECTING;
1172
1173 err = transport->connect(vsk);
1174 if (err < 0)
1175 goto out;
1176
1177 /* Mark sock as connecting and set the error code to in
1178 * progress in case this is a non-blocking connect.
1179 */
1180 sock->state = SS_CONNECTING;
1181 err = -EINPROGRESS;
1182 }
1183
1184 /* The receive path will handle all communication until we are able to
1185 * enter the connected state. Here we wait for the connection to be
1186 * completed or a notification of an error.
1187 */
1188 timeout = vsk->connect_timeout;
1189 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1190
1191 while (sk->sk_state != SS_CONNECTED && sk->sk_err == 0) {
1192 if (flags & O_NONBLOCK) {
1193 /* If we're not going to block, we schedule a timeout
1194 * function to generate a timeout on the connection
1195 * attempt, in case the peer doesn't respond in a
1196 * timely manner. We hold on to the socket until the
1197 * timeout fires.
1198 */
1199 sock_hold(sk);
1200 INIT_DELAYED_WORK(&vsk->dwork,
1201 vsock_connect_timeout);
1202 schedule_delayed_work(&vsk->dwork, timeout);
1203
1204 /* Skip ahead to preserve error code set above. */
1205 goto out_wait;
1206 }
1207
1208 release_sock(sk);
1209 timeout = schedule_timeout(timeout);
1210 lock_sock(sk);
1211
1212 if (signal_pending(current)) {
1213 err = sock_intr_errno(timeout);
1214 goto out_wait_error;
1215 } else if (timeout == 0) {
1216 err = -ETIMEDOUT;
1217 goto out_wait_error;
1218 }
1219
1220 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1221 }
1222
1223 if (sk->sk_err) {
1224 err = -sk->sk_err;
1225 goto out_wait_error;
1226 } else
1227 err = 0;
1228
1229out_wait:
1230 finish_wait(sk_sleep(sk), &wait);
1231out:
1232 release_sock(sk);
1233 return err;
1234
1235out_wait_error:
1236 sk->sk_state = SS_UNCONNECTED;
1237 sock->state = SS_UNCONNECTED;
1238 goto out_wait;
1239}
1240
1241static int vsock_accept(struct socket *sock, struct socket *newsock, int flags)
1242{
1243 struct sock *listener;
1244 int err;
1245 struct sock *connected;
1246 struct vsock_sock *vconnected;
1247 long timeout;
1248 DEFINE_WAIT(wait);
1249
1250 err = 0;
1251 listener = sock->sk;
1252
1253 lock_sock(listener);
1254
1255 if (sock->type != SOCK_STREAM) {
1256 err = -EOPNOTSUPP;
1257 goto out;
1258 }
1259
1260 if (listener->sk_state != SS_LISTEN) {
1261 err = -EINVAL;
1262 goto out;
1263 }
1264
1265 /* Wait for children sockets to appear; these are the new sockets
1266 * created upon connection establishment.
1267 */
1268 timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1269 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1270
1271 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1272 listener->sk_err == 0) {
1273 release_sock(listener);
1274 timeout = schedule_timeout(timeout);
1275 lock_sock(listener);
1276
1277 if (signal_pending(current)) {
1278 err = sock_intr_errno(timeout);
1279 goto out_wait;
1280 } else if (timeout == 0) {
1281 err = -EAGAIN;
1282 goto out_wait;
1283 }
1284
1285 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1286 }
1287
1288 if (listener->sk_err)
1289 err = -listener->sk_err;
1290
1291 if (connected) {
1292 listener->sk_ack_backlog--;
1293
1294 lock_sock(connected);
1295 vconnected = vsock_sk(connected);
1296
1297 /* If the listener socket has received an error, then we should
1298 * reject this socket and return. Note that we simply mark the
1299 * socket rejected, drop our reference, and let the cleanup
1300 * function handle the cleanup; the fact that we found it in
1301 * the listener's accept queue guarantees that the cleanup
1302 * function hasn't run yet.
1303 */
1304 if (err) {
1305 vconnected->rejected = true;
1306 release_sock(connected);
1307 sock_put(connected);
1308 goto out_wait;
1309 }
1310
1311 newsock->state = SS_CONNECTED;
1312 sock_graft(connected, newsock);
1313 release_sock(connected);
1314 sock_put(connected);
1315 }
1316
1317out_wait:
1318 finish_wait(sk_sleep(listener), &wait);
1319out:
1320 release_sock(listener);
1321 return err;
1322}
1323
1324static int vsock_listen(struct socket *sock, int backlog)
1325{
1326 int err;
1327 struct sock *sk;
1328 struct vsock_sock *vsk;
1329
1330 sk = sock->sk;
1331
1332 lock_sock(sk);
1333
1334 if (sock->type != SOCK_STREAM) {
1335 err = -EOPNOTSUPP;
1336 goto out;
1337 }
1338
1339 if (sock->state != SS_UNCONNECTED) {
1340 err = -EINVAL;
1341 goto out;
1342 }
1343
1344 vsk = vsock_sk(sk);
1345
1346 if (!vsock_addr_bound(&vsk->local_addr)) {
1347 err = -EINVAL;
1348 goto out;
1349 }
1350
1351 sk->sk_max_ack_backlog = backlog;
1352 sk->sk_state = SS_LISTEN;
1353
1354 err = 0;
1355
1356out:
1357 release_sock(sk);
1358 return err;
1359}
1360
1361static int vsock_stream_setsockopt(struct socket *sock,
1362 int level,
1363 int optname,
1364 char __user *optval,
1365 unsigned int optlen)
1366{
1367 int err;
1368 struct sock *sk;
1369 struct vsock_sock *vsk;
1370 u64 val;
1371
1372 if (level != AF_VSOCK)
1373 return -ENOPROTOOPT;
1374
1375#define COPY_IN(_v) \
1376 do { \
1377 if (optlen < sizeof(_v)) { \
1378 err = -EINVAL; \
1379 goto exit; \
1380 } \
1381 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \
1382 err = -EFAULT; \
1383 goto exit; \
1384 } \
1385 } while (0)
1386
1387 err = 0;
1388 sk = sock->sk;
1389 vsk = vsock_sk(sk);
1390
1391 lock_sock(sk);
1392
1393 switch (optname) {
1394 case SO_VM_SOCKETS_BUFFER_SIZE:
1395 COPY_IN(val);
1396 transport->set_buffer_size(vsk, val);
1397 break;
1398
1399 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1400 COPY_IN(val);
1401 transport->set_max_buffer_size(vsk, val);
1402 break;
1403
1404 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1405 COPY_IN(val);
1406 transport->set_min_buffer_size(vsk, val);
1407 break;
1408
1409 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1410 struct timeval tv;
1411 COPY_IN(tv);
1412 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1413 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1414 vsk->connect_timeout = tv.tv_sec * HZ +
1415 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1416 if (vsk->connect_timeout == 0)
1417 vsk->connect_timeout =
1418 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1419
1420 } else {
1421 err = -ERANGE;
1422 }
1423 break;
1424 }
1425
1426 default:
1427 err = -ENOPROTOOPT;
1428 break;
1429 }
1430
1431#undef COPY_IN
1432
1433exit:
1434 release_sock(sk);
1435 return err;
1436}
1437
1438static int vsock_stream_getsockopt(struct socket *sock,
1439 int level, int optname,
1440 char __user *optval,
1441 int __user *optlen)
1442{
1443 int err;
1444 int len;
1445 struct sock *sk;
1446 struct vsock_sock *vsk;
1447 u64 val;
1448
1449 if (level != AF_VSOCK)
1450 return -ENOPROTOOPT;
1451
1452 err = get_user(len, optlen);
1453 if (err != 0)
1454 return err;
1455
1456#define COPY_OUT(_v) \
1457 do { \
1458 if (len < sizeof(_v)) \
1459 return -EINVAL; \
1460 \
1461 len = sizeof(_v); \
1462 if (copy_to_user(optval, &_v, len) != 0) \
1463 return -EFAULT; \
1464 \
1465 } while (0)
1466
1467 err = 0;
1468 sk = sock->sk;
1469 vsk = vsock_sk(sk);
1470
1471 switch (optname) {
1472 case SO_VM_SOCKETS_BUFFER_SIZE:
1473 val = transport->get_buffer_size(vsk);
1474 COPY_OUT(val);
1475 break;
1476
1477 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1478 val = transport->get_max_buffer_size(vsk);
1479 COPY_OUT(val);
1480 break;
1481
1482 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1483 val = transport->get_min_buffer_size(vsk);
1484 COPY_OUT(val);
1485 break;
1486
1487 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1488 struct timeval tv;
1489 tv.tv_sec = vsk->connect_timeout / HZ;
1490 tv.tv_usec =
1491 (vsk->connect_timeout -
1492 tv.tv_sec * HZ) * (1000000 / HZ);
1493 COPY_OUT(tv);
1494 break;
1495 }
1496 default:
1497 return -ENOPROTOOPT;
1498 }
1499
1500 err = put_user(len, optlen);
1501 if (err != 0)
1502 return -EFAULT;
1503
1504#undef COPY_OUT
1505
1506 return 0;
1507}
1508
1509static int vsock_stream_sendmsg(struct kiocb *kiocb, struct socket *sock,
1510 struct msghdr *msg, size_t len)
1511{
1512 struct sock *sk;
1513 struct vsock_sock *vsk;
1514 ssize_t total_written;
1515 long timeout;
1516 int err;
1517 struct vsock_transport_send_notify_data send_data;
1518
1519 DEFINE_WAIT(wait);
1520
1521 sk = sock->sk;
1522 vsk = vsock_sk(sk);
1523 total_written = 0;
1524 err = 0;
1525
1526 if (msg->msg_flags & MSG_OOB)
1527 return -EOPNOTSUPP;
1528
1529 lock_sock(sk);
1530
1531 /* Callers should not provide a destination with stream sockets. */
1532 if (msg->msg_namelen) {
1533 err = sk->sk_state == SS_CONNECTED ? -EISCONN : -EOPNOTSUPP;
1534 goto out;
1535 }
1536
1537 /* Send data only if both sides are not shutdown in the direction. */
1538 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1539 vsk->peer_shutdown & RCV_SHUTDOWN) {
1540 err = -EPIPE;
1541 goto out;
1542 }
1543
1544 if (sk->sk_state != SS_CONNECTED ||
1545 !vsock_addr_bound(&vsk->local_addr)) {
1546 err = -ENOTCONN;
1547 goto out;
1548 }
1549
1550 if (!vsock_addr_bound(&vsk->remote_addr)) {
1551 err = -EDESTADDRREQ;
1552 goto out;
1553 }
1554
1555 /* Wait for room in the produce queue to enqueue our user's data. */
1556 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1557
1558 err = transport->notify_send_init(vsk, &send_data);
1559 if (err < 0)
1560 goto out;
1561
1562 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1563
1564 while (total_written < len) {
1565 ssize_t written;
1566
1567 while (vsock_stream_has_space(vsk) == 0 &&
1568 sk->sk_err == 0 &&
1569 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1570 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1571
1572 /* Don't wait for non-blocking sockets. */
1573 if (timeout == 0) {
1574 err = -EAGAIN;
1575 goto out_wait;
1576 }
1577
1578 err = transport->notify_send_pre_block(vsk, &send_data);
1579 if (err < 0)
1580 goto out_wait;
1581
1582 release_sock(sk);
1583 timeout = schedule_timeout(timeout);
1584 lock_sock(sk);
1585 if (signal_pending(current)) {
1586 err = sock_intr_errno(timeout);
1587 goto out_wait;
1588 } else if (timeout == 0) {
1589 err = -EAGAIN;
1590 goto out_wait;
1591 }
1592
1593 prepare_to_wait(sk_sleep(sk), &wait,
1594 TASK_INTERRUPTIBLE);
1595 }
1596
1597 /* These checks occur both as part of and after the loop
1598 * conditional since we need to check before and after
1599 * sleeping.
1600 */
1601 if (sk->sk_err) {
1602 err = -sk->sk_err;
1603 goto out_wait;
1604 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1605 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1606 err = -EPIPE;
1607 goto out_wait;
1608 }
1609
1610 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1611 if (err < 0)
1612 goto out_wait;
1613
1614 /* Note that enqueue will only write as many bytes as are free
1615 * in the produce queue, so we don't need to ensure len is
1616 * smaller than the queue size. It is the caller's
1617 * responsibility to check how many bytes we were able to send.
1618 */
1619
1620 written = transport->stream_enqueue(
1621 vsk, msg->msg_iov,
1622 len - total_written);
1623 if (written < 0) {
1624 err = -ENOMEM;
1625 goto out_wait;
1626 }
1627
1628 total_written += written;
1629
1630 err = transport->notify_send_post_enqueue(
1631 vsk, written, &send_data);
1632 if (err < 0)
1633 goto out_wait;
1634
1635 }
1636
1637out_wait:
1638 if (total_written > 0)
1639 err = total_written;
1640 finish_wait(sk_sleep(sk), &wait);
1641out:
1642 release_sock(sk);
1643 return err;
1644}
1645
1646
1647static int
1648vsock_stream_recvmsg(struct kiocb *kiocb,
1649 struct socket *sock,
1650 struct msghdr *msg, size_t len, int flags)
1651{
1652 struct sock *sk;
1653 struct vsock_sock *vsk;
1654 int err;
1655 size_t target;
1656 ssize_t copied;
1657 long timeout;
1658 struct vsock_transport_recv_notify_data recv_data;
1659
1660 DEFINE_WAIT(wait);
1661
1662 sk = sock->sk;
1663 vsk = vsock_sk(sk);
1664 err = 0;
1665
d5e0d0f6
MK
1666 msg->msg_namelen = 0;
1667
d021c344
AK
1668 lock_sock(sk);
1669
1670 if (sk->sk_state != SS_CONNECTED) {
1671 /* Recvmsg is supposed to return 0 if a peer performs an
1672 * orderly shutdown. Differentiate between that case and when a
1673 * peer has not connected or a local shutdown occured with the
1674 * SOCK_DONE flag.
1675 */
1676 if (sock_flag(sk, SOCK_DONE))
1677 err = 0;
1678 else
1679 err = -ENOTCONN;
1680
1681 goto out;
1682 }
1683
1684 if (flags & MSG_OOB) {
1685 err = -EOPNOTSUPP;
1686 goto out;
1687 }
1688
1689 /* We don't check peer_shutdown flag here since peer may actually shut
1690 * down, but there can be data in the queue that a local socket can
1691 * receive.
1692 */
1693 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1694 err = 0;
1695 goto out;
1696 }
1697
1698 /* It is valid on Linux to pass in a zero-length receive buffer. This
1699 * is not an error. We may as well bail out now.
1700 */
1701 if (!len) {
1702 err = 0;
1703 goto out;
1704 }
1705
1706 /* We must not copy less than target bytes into the user's buffer
1707 * before returning successfully, so we wait for the consume queue to
1708 * have that much data to consume before dequeueing. Note that this
1709 * makes it impossible to handle cases where target is greater than the
1710 * queue size.
1711 */
1712 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1713 if (target >= transport->stream_rcvhiwat(vsk)) {
1714 err = -ENOMEM;
1715 goto out;
1716 }
1717 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1718 copied = 0;
1719
1720 err = transport->notify_recv_init(vsk, target, &recv_data);
1721 if (err < 0)
1722 goto out;
1723
1724 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1725
1726 while (1) {
1727 s64 ready = vsock_stream_has_data(vsk);
1728
1729 if (ready < 0) {
1730 /* Invalid queue pair content. XXX This should be
1731 * changed to a connection reset in a later change.
1732 */
1733
1734 err = -ENOMEM;
1735 goto out_wait;
1736 } else if (ready > 0) {
1737 ssize_t read;
1738
1739 err = transport->notify_recv_pre_dequeue(
1740 vsk, target, &recv_data);
1741 if (err < 0)
1742 break;
1743
1744 read = transport->stream_dequeue(
1745 vsk, msg->msg_iov,
1746 len - copied, flags);
1747 if (read < 0) {
1748 err = -ENOMEM;
1749 break;
1750 }
1751
1752 copied += read;
1753
1754 err = transport->notify_recv_post_dequeue(
1755 vsk, target, read,
1756 !(flags & MSG_PEEK), &recv_data);
1757 if (err < 0)
1758 goto out_wait;
1759
1760 if (read >= target || flags & MSG_PEEK)
1761 break;
1762
1763 target -= read;
1764 } else {
1765 if (sk->sk_err != 0 || (sk->sk_shutdown & RCV_SHUTDOWN)
1766 || (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1767 break;
1768 }
1769 /* Don't wait for non-blocking sockets. */
1770 if (timeout == 0) {
1771 err = -EAGAIN;
1772 break;
1773 }
1774
1775 err = transport->notify_recv_pre_block(
1776 vsk, target, &recv_data);
1777 if (err < 0)
1778 break;
1779
1780 release_sock(sk);
1781 timeout = schedule_timeout(timeout);
1782 lock_sock(sk);
1783
1784 if (signal_pending(current)) {
1785 err = sock_intr_errno(timeout);
1786 break;
1787 } else if (timeout == 0) {
1788 err = -EAGAIN;
1789 break;
1790 }
1791
1792 prepare_to_wait(sk_sleep(sk), &wait,
1793 TASK_INTERRUPTIBLE);
1794 }
1795 }
1796
1797 if (sk->sk_err)
1798 err = -sk->sk_err;
1799 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1800 err = 0;
1801
1802 if (copied > 0) {
1803 /* We only do these additional bookkeeping/notification steps
1804 * if we actually copied something out of the queue pair
1805 * instead of just peeking ahead.
1806 */
1807
1808 if (!(flags & MSG_PEEK)) {
1809 /* If the other side has shutdown for sending and there
1810 * is nothing more to read, then modify the socket
1811 * state.
1812 */
1813 if (vsk->peer_shutdown & SEND_SHUTDOWN) {
1814 if (vsock_stream_has_data(vsk) <= 0) {
1815 sk->sk_state = SS_UNCONNECTED;
1816 sock_set_flag(sk, SOCK_DONE);
1817 sk->sk_state_change(sk);
1818 }
1819 }
1820 }
1821 err = copied;
1822 }
1823
1824out_wait:
1825 finish_wait(sk_sleep(sk), &wait);
1826out:
1827 release_sock(sk);
1828 return err;
1829}
1830
1831static const struct proto_ops vsock_stream_ops = {
1832 .family = PF_VSOCK,
1833 .owner = THIS_MODULE,
1834 .release = vsock_release,
1835 .bind = vsock_bind,
1836 .connect = vsock_stream_connect,
1837 .socketpair = sock_no_socketpair,
1838 .accept = vsock_accept,
1839 .getname = vsock_getname,
1840 .poll = vsock_poll,
1841 .ioctl = sock_no_ioctl,
1842 .listen = vsock_listen,
1843 .shutdown = vsock_shutdown,
1844 .setsockopt = vsock_stream_setsockopt,
1845 .getsockopt = vsock_stream_getsockopt,
1846 .sendmsg = vsock_stream_sendmsg,
1847 .recvmsg = vsock_stream_recvmsg,
1848 .mmap = sock_no_mmap,
1849 .sendpage = sock_no_sendpage,
1850};
1851
1852static int vsock_create(struct net *net, struct socket *sock,
1853 int protocol, int kern)
1854{
1855 if (!sock)
1856 return -EINVAL;
1857
6cf1c5fc 1858 if (protocol && protocol != PF_VSOCK)
d021c344
AK
1859 return -EPROTONOSUPPORT;
1860
1861 switch (sock->type) {
1862 case SOCK_DGRAM:
1863 sock->ops = &vsock_dgram_ops;
1864 break;
1865 case SOCK_STREAM:
1866 sock->ops = &vsock_stream_ops;
1867 break;
1868 default:
1869 return -ESOCKTNOSUPPORT;
1870 }
1871
1872 sock->state = SS_UNCONNECTED;
1873
1874 return __vsock_create(net, sock, NULL, GFP_KERNEL, 0) ? 0 : -ENOMEM;
1875}
1876
1877static const struct net_proto_family vsock_family_ops = {
1878 .family = AF_VSOCK,
1879 .create = vsock_create,
1880 .owner = THIS_MODULE,
1881};
1882
1883static long vsock_dev_do_ioctl(struct file *filp,
1884 unsigned int cmd, void __user *ptr)
1885{
1886 u32 __user *p = ptr;
1887 int retval = 0;
1888
1889 switch (cmd) {
1890 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1891 if (put_user(transport->get_local_cid(), p) != 0)
1892 retval = -EFAULT;
1893 break;
1894
1895 default:
1896 pr_err("Unknown ioctl %d\n", cmd);
1897 retval = -EINVAL;
1898 }
1899
1900 return retval;
1901}
1902
1903static long vsock_dev_ioctl(struct file *filp,
1904 unsigned int cmd, unsigned long arg)
1905{
1906 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1907}
1908
1909#ifdef CONFIG_COMPAT
1910static long vsock_dev_compat_ioctl(struct file *filp,
1911 unsigned int cmd, unsigned long arg)
1912{
1913 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1914}
1915#endif
1916
1917static const struct file_operations vsock_device_ops = {
1918 .owner = THIS_MODULE,
1919 .unlocked_ioctl = vsock_dev_ioctl,
1920#ifdef CONFIG_COMPAT
1921 .compat_ioctl = vsock_dev_compat_ioctl,
1922#endif
1923 .open = nonseekable_open,
1924};
1925
1926static struct miscdevice vsock_device = {
1927 .name = "vsock",
d021c344
AK
1928 .fops = &vsock_device_ops,
1929};
1930
1931static int __vsock_core_init(void)
1932{
1933 int err;
1934
1935 vsock_init_tables();
1936
6ad0b2f7 1937 vsock_device.minor = MISC_DYNAMIC_MINOR;
d021c344
AK
1938 err = misc_register(&vsock_device);
1939 if (err) {
1940 pr_err("Failed to register misc device\n");
1941 return -ENOENT;
1942 }
1943
1944 err = proto_register(&vsock_proto, 1); /* we want our slab */
1945 if (err) {
1946 pr_err("Cannot register vsock protocol\n");
1947 goto err_misc_deregister;
1948 }
1949
1950 err = sock_register(&vsock_family_ops);
1951 if (err) {
1952 pr_err("could not register af_vsock (%d) address family: %d\n",
1953 AF_VSOCK, err);
1954 goto err_unregister_proto;
1955 }
1956
1957 return 0;
1958
1959err_unregister_proto:
1960 proto_unregister(&vsock_proto);
1961err_misc_deregister:
1962 misc_deregister(&vsock_device);
1963 return err;
1964}
1965
1966int vsock_core_init(const struct vsock_transport *t)
1967{
1968 int retval = mutex_lock_interruptible(&vsock_register_mutex);
1969 if (retval)
1970 return retval;
1971
1972 if (transport) {
1973 retval = -EBUSY;
1974 goto out;
1975 }
1976
1977 transport = t;
1978 retval = __vsock_core_init();
1979 if (retval)
1980 transport = NULL;
1981
1982out:
1983 mutex_unlock(&vsock_register_mutex);
1984 return retval;
1985}
1986EXPORT_SYMBOL_GPL(vsock_core_init);
1987
1988void vsock_core_exit(void)
1989{
1990 mutex_lock(&vsock_register_mutex);
1991
1992 misc_deregister(&vsock_device);
1993 sock_unregister(AF_VSOCK);
1994 proto_unregister(&vsock_proto);
1995
1996 /* We do not want the assignment below re-ordered. */
1997 mb();
1998 transport = NULL;
1999
2000 mutex_unlock(&vsock_register_mutex);
2001}
2002EXPORT_SYMBOL_GPL(vsock_core_exit);
2003
2004MODULE_AUTHOR("VMware, Inc.");
2005MODULE_DESCRIPTION("VMware Virtual Socket Family");
7ccd7de6 2006MODULE_VERSION("1.0.0.0-k");
d021c344 2007MODULE_LICENSE("GPL v2");