[PATCH] RPC: extract socket logic common to both client and server
[linux-2.6-block.git] / net / sunrpc / xdr.c
CommitLineData
1da177e4
LT
1/*
2 * linux/net/sunrpc/xdr.c
3 *
4 * Generic XDR support.
5 *
6 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
7 */
8
9#include <linux/types.h>
10#include <linux/socket.h>
11#include <linux/string.h>
12#include <linux/kernel.h>
13#include <linux/pagemap.h>
14#include <linux/errno.h>
15#include <linux/in.h>
16#include <linux/net.h>
17#include <net/sock.h>
18#include <linux/sunrpc/xdr.h>
19#include <linux/sunrpc/msg_prot.h>
20
21/*
22 * XDR functions for basic NFS types
23 */
24u32 *
25xdr_encode_netobj(u32 *p, const struct xdr_netobj *obj)
26{
27 unsigned int quadlen = XDR_QUADLEN(obj->len);
28
29 p[quadlen] = 0; /* zero trailing bytes */
30 *p++ = htonl(obj->len);
31 memcpy(p, obj->data, obj->len);
32 return p + XDR_QUADLEN(obj->len);
33}
34
35u32 *
36xdr_decode_netobj(u32 *p, struct xdr_netobj *obj)
37{
38 unsigned int len;
39
40 if ((len = ntohl(*p++)) > XDR_MAX_NETOBJ)
41 return NULL;
42 obj->len = len;
43 obj->data = (u8 *) p;
44 return p + XDR_QUADLEN(len);
45}
46
47/**
48 * xdr_encode_opaque_fixed - Encode fixed length opaque data
4dc3b16b
PP
49 * @p: pointer to current position in XDR buffer.
50 * @ptr: pointer to data to encode (or NULL)
51 * @nbytes: size of data.
1da177e4
LT
52 *
53 * Copy the array of data of length nbytes at ptr to the XDR buffer
54 * at position p, then align to the next 32-bit boundary by padding
55 * with zero bytes (see RFC1832).
56 * Note: if ptr is NULL, only the padding is performed.
57 *
58 * Returns the updated current XDR buffer position
59 *
60 */
61u32 *xdr_encode_opaque_fixed(u32 *p, const void *ptr, unsigned int nbytes)
62{
63 if (likely(nbytes != 0)) {
64 unsigned int quadlen = XDR_QUADLEN(nbytes);
65 unsigned int padding = (quadlen << 2) - nbytes;
66
67 if (ptr != NULL)
68 memcpy(p, ptr, nbytes);
69 if (padding != 0)
70 memset((char *)p + nbytes, 0, padding);
71 p += quadlen;
72 }
73 return p;
74}
75EXPORT_SYMBOL(xdr_encode_opaque_fixed);
76
77/**
78 * xdr_encode_opaque - Encode variable length opaque data
4dc3b16b
PP
79 * @p: pointer to current position in XDR buffer.
80 * @ptr: pointer to data to encode (or NULL)
81 * @nbytes: size of data.
1da177e4
LT
82 *
83 * Returns the updated current XDR buffer position
84 */
85u32 *xdr_encode_opaque(u32 *p, const void *ptr, unsigned int nbytes)
86{
87 *p++ = htonl(nbytes);
88 return xdr_encode_opaque_fixed(p, ptr, nbytes);
89}
90EXPORT_SYMBOL(xdr_encode_opaque);
91
92u32 *
93xdr_encode_string(u32 *p, const char *string)
94{
95 return xdr_encode_array(p, string, strlen(string));
96}
97
98u32 *
99xdr_decode_string(u32 *p, char **sp, int *lenp, int maxlen)
100{
101 unsigned int len;
102 char *string;
103
104 if ((len = ntohl(*p++)) > maxlen)
105 return NULL;
106 if (lenp)
107 *lenp = len;
108 if ((len % 4) != 0) {
109 string = (char *) p;
110 } else {
111 string = (char *) (p - 1);
112 memmove(string, p, len);
113 }
114 string[len] = '\0';
115 *sp = string;
116 return p + XDR_QUADLEN(len);
117}
118
119u32 *
120xdr_decode_string_inplace(u32 *p, char **sp, int *lenp, int maxlen)
121{
122 unsigned int len;
123
124 if ((len = ntohl(*p++)) > maxlen)
125 return NULL;
126 *lenp = len;
127 *sp = (char *) p;
128 return p + XDR_QUADLEN(len);
129}
130
131void
132xdr_encode_pages(struct xdr_buf *xdr, struct page **pages, unsigned int base,
133 unsigned int len)
134{
135 struct kvec *tail = xdr->tail;
136 u32 *p;
137
138 xdr->pages = pages;
139 xdr->page_base = base;
140 xdr->page_len = len;
141
142 p = (u32 *)xdr->head[0].iov_base + XDR_QUADLEN(xdr->head[0].iov_len);
143 tail->iov_base = p;
144 tail->iov_len = 0;
145
146 if (len & 3) {
147 unsigned int pad = 4 - (len & 3);
148
149 *p = 0;
150 tail->iov_base = (char *)p + (len & 3);
151 tail->iov_len = pad;
152 len += pad;
153 }
154 xdr->buflen += len;
155 xdr->len += len;
156}
157
158void
159xdr_inline_pages(struct xdr_buf *xdr, unsigned int offset,
160 struct page **pages, unsigned int base, unsigned int len)
161{
162 struct kvec *head = xdr->head;
163 struct kvec *tail = xdr->tail;
164 char *buf = (char *)head->iov_base;
165 unsigned int buflen = head->iov_len;
166
167 head->iov_len = offset;
168
169 xdr->pages = pages;
170 xdr->page_base = base;
171 xdr->page_len = len;
172
173 tail->iov_base = buf + offset;
174 tail->iov_len = buflen - offset;
175
176 xdr->buflen += len;
177}
178
1da177e4
LT
179
180int
181xdr_sendpages(struct socket *sock, struct sockaddr *addr, int addrlen,
182 struct xdr_buf *xdr, unsigned int base, int msgflags)
183{
184 struct page **ppage = xdr->pages;
185 unsigned int len, pglen = xdr->page_len;
186 int err, ret = 0;
187 ssize_t (*sendpage)(struct socket *, struct page *, int, size_t, int);
188
189 len = xdr->head[0].iov_len;
190 if (base < len || (addr != NULL && base == 0)) {
191 struct kvec iov = {
192 .iov_base = xdr->head[0].iov_base + base,
193 .iov_len = len - base,
194 };
195 struct msghdr msg = {
196 .msg_name = addr,
197 .msg_namelen = addrlen,
198 .msg_flags = msgflags,
199 };
200 if (xdr->len > len)
201 msg.msg_flags |= MSG_MORE;
202
203 if (iov.iov_len != 0)
204 err = kernel_sendmsg(sock, &msg, &iov, 1, iov.iov_len);
205 else
206 err = kernel_sendmsg(sock, &msg, NULL, 0, 0);
207 if (ret == 0)
208 ret = err;
209 else if (err > 0)
210 ret += err;
211 if (err != iov.iov_len)
212 goto out;
213 base = 0;
214 } else
215 base -= len;
216
217 if (pglen == 0)
218 goto copy_tail;
219 if (base >= pglen) {
220 base -= pglen;
221 goto copy_tail;
222 }
223 if (base || xdr->page_base) {
224 pglen -= base;
225 base += xdr->page_base;
226 ppage += base >> PAGE_CACHE_SHIFT;
227 base &= ~PAGE_CACHE_MASK;
228 }
229
230 sendpage = sock->ops->sendpage ? : sock_no_sendpage;
231 do {
232 int flags = msgflags;
233
234 len = PAGE_CACHE_SIZE;
235 if (base)
236 len -= base;
237 if (pglen < len)
238 len = pglen;
239
240 if (pglen != len || xdr->tail[0].iov_len != 0)
241 flags |= MSG_MORE;
242
243 /* Hmm... We might be dealing with highmem pages */
244 if (PageHighMem(*ppage))
245 sendpage = sock_no_sendpage;
246 err = sendpage(sock, *ppage, base, len, flags);
247 if (ret == 0)
248 ret = err;
249 else if (err > 0)
250 ret += err;
251 if (err != len)
252 goto out;
253 base = 0;
254 ppage++;
255 } while ((pglen -= len) != 0);
256copy_tail:
257 len = xdr->tail[0].iov_len;
258 if (base < len) {
259 struct kvec iov = {
260 .iov_base = xdr->tail[0].iov_base + base,
261 .iov_len = len - base,
262 };
263 struct msghdr msg = {
264 .msg_flags = msgflags,
265 };
266 err = kernel_sendmsg(sock, &msg, &iov, 1, iov.iov_len);
267 if (ret == 0)
268 ret = err;
269 else if (err > 0)
270 ret += err;
271 }
272out:
273 return ret;
274}
275
276
277/*
278 * Helper routines for doing 'memmove' like operations on a struct xdr_buf
279 *
280 * _shift_data_right_pages
281 * @pages: vector of pages containing both the source and dest memory area.
282 * @pgto_base: page vector address of destination
283 * @pgfrom_base: page vector address of source
284 * @len: number of bytes to copy
285 *
286 * Note: the addresses pgto_base and pgfrom_base are both calculated in
287 * the same way:
288 * if a memory area starts at byte 'base' in page 'pages[i]',
289 * then its address is given as (i << PAGE_CACHE_SHIFT) + base
290 * Also note: pgfrom_base must be < pgto_base, but the memory areas
291 * they point to may overlap.
292 */
293static void
294_shift_data_right_pages(struct page **pages, size_t pgto_base,
295 size_t pgfrom_base, size_t len)
296{
297 struct page **pgfrom, **pgto;
298 char *vfrom, *vto;
299 size_t copy;
300
301 BUG_ON(pgto_base <= pgfrom_base);
302
303 pgto_base += len;
304 pgfrom_base += len;
305
306 pgto = pages + (pgto_base >> PAGE_CACHE_SHIFT);
307 pgfrom = pages + (pgfrom_base >> PAGE_CACHE_SHIFT);
308
309 pgto_base &= ~PAGE_CACHE_MASK;
310 pgfrom_base &= ~PAGE_CACHE_MASK;
311
312 do {
313 /* Are any pointers crossing a page boundary? */
314 if (pgto_base == 0) {
315 flush_dcache_page(*pgto);
316 pgto_base = PAGE_CACHE_SIZE;
317 pgto--;
318 }
319 if (pgfrom_base == 0) {
320 pgfrom_base = PAGE_CACHE_SIZE;
321 pgfrom--;
322 }
323
324 copy = len;
325 if (copy > pgto_base)
326 copy = pgto_base;
327 if (copy > pgfrom_base)
328 copy = pgfrom_base;
329 pgto_base -= copy;
330 pgfrom_base -= copy;
331
332 vto = kmap_atomic(*pgto, KM_USER0);
333 vfrom = kmap_atomic(*pgfrom, KM_USER1);
334 memmove(vto + pgto_base, vfrom + pgfrom_base, copy);
335 kunmap_atomic(vfrom, KM_USER1);
336 kunmap_atomic(vto, KM_USER0);
337
338 } while ((len -= copy) != 0);
339 flush_dcache_page(*pgto);
340}
341
342/*
343 * _copy_to_pages
344 * @pages: array of pages
345 * @pgbase: page vector address of destination
346 * @p: pointer to source data
347 * @len: length
348 *
349 * Copies data from an arbitrary memory location into an array of pages
350 * The copy is assumed to be non-overlapping.
351 */
352static void
353_copy_to_pages(struct page **pages, size_t pgbase, const char *p, size_t len)
354{
355 struct page **pgto;
356 char *vto;
357 size_t copy;
358
359 pgto = pages + (pgbase >> PAGE_CACHE_SHIFT);
360 pgbase &= ~PAGE_CACHE_MASK;
361
362 do {
363 copy = PAGE_CACHE_SIZE - pgbase;
364 if (copy > len)
365 copy = len;
366
367 vto = kmap_atomic(*pgto, KM_USER0);
368 memcpy(vto + pgbase, p, copy);
369 kunmap_atomic(vto, KM_USER0);
370
371 pgbase += copy;
372 if (pgbase == PAGE_CACHE_SIZE) {
373 flush_dcache_page(*pgto);
374 pgbase = 0;
375 pgto++;
376 }
377 p += copy;
378
379 } while ((len -= copy) != 0);
380 flush_dcache_page(*pgto);
381}
382
383/*
384 * _copy_from_pages
385 * @p: pointer to destination
386 * @pages: array of pages
387 * @pgbase: offset of source data
388 * @len: length
389 *
390 * Copies data into an arbitrary memory location from an array of pages
391 * The copy is assumed to be non-overlapping.
392 */
393static void
394_copy_from_pages(char *p, struct page **pages, size_t pgbase, size_t len)
395{
396 struct page **pgfrom;
397 char *vfrom;
398 size_t copy;
399
400 pgfrom = pages + (pgbase >> PAGE_CACHE_SHIFT);
401 pgbase &= ~PAGE_CACHE_MASK;
402
403 do {
404 copy = PAGE_CACHE_SIZE - pgbase;
405 if (copy > len)
406 copy = len;
407
408 vfrom = kmap_atomic(*pgfrom, KM_USER0);
409 memcpy(p, vfrom + pgbase, copy);
410 kunmap_atomic(vfrom, KM_USER0);
411
412 pgbase += copy;
413 if (pgbase == PAGE_CACHE_SIZE) {
414 pgbase = 0;
415 pgfrom++;
416 }
417 p += copy;
418
419 } while ((len -= copy) != 0);
420}
421
422/*
423 * xdr_shrink_bufhead
424 * @buf: xdr_buf
425 * @len: bytes to remove from buf->head[0]
426 *
427 * Shrinks XDR buffer's header kvec buf->head[0] by
428 * 'len' bytes. The extra data is not lost, but is instead
429 * moved into the inlined pages and/or the tail.
430 */
431static void
432xdr_shrink_bufhead(struct xdr_buf *buf, size_t len)
433{
434 struct kvec *head, *tail;
435 size_t copy, offs;
436 unsigned int pglen = buf->page_len;
437
438 tail = buf->tail;
439 head = buf->head;
440 BUG_ON (len > head->iov_len);
441
442 /* Shift the tail first */
443 if (tail->iov_len != 0) {
444 if (tail->iov_len > len) {
445 copy = tail->iov_len - len;
446 memmove((char *)tail->iov_base + len,
447 tail->iov_base, copy);
448 }
449 /* Copy from the inlined pages into the tail */
450 copy = len;
451 if (copy > pglen)
452 copy = pglen;
453 offs = len - copy;
454 if (offs >= tail->iov_len)
455 copy = 0;
456 else if (copy > tail->iov_len - offs)
457 copy = tail->iov_len - offs;
458 if (copy != 0)
459 _copy_from_pages((char *)tail->iov_base + offs,
460 buf->pages,
461 buf->page_base + pglen + offs - len,
462 copy);
463 /* Do we also need to copy data from the head into the tail ? */
464 if (len > pglen) {
465 offs = copy = len - pglen;
466 if (copy > tail->iov_len)
467 copy = tail->iov_len;
468 memcpy(tail->iov_base,
469 (char *)head->iov_base +
470 head->iov_len - offs,
471 copy);
472 }
473 }
474 /* Now handle pages */
475 if (pglen != 0) {
476 if (pglen > len)
477 _shift_data_right_pages(buf->pages,
478 buf->page_base + len,
479 buf->page_base,
480 pglen - len);
481 copy = len;
482 if (len > pglen)
483 copy = pglen;
484 _copy_to_pages(buf->pages, buf->page_base,
485 (char *)head->iov_base + head->iov_len - len,
486 copy);
487 }
488 head->iov_len -= len;
489 buf->buflen -= len;
490 /* Have we truncated the message? */
491 if (buf->len > buf->buflen)
492 buf->len = buf->buflen;
493}
494
495/*
496 * xdr_shrink_pagelen
497 * @buf: xdr_buf
498 * @len: bytes to remove from buf->pages
499 *
500 * Shrinks XDR buffer's page array buf->pages by
501 * 'len' bytes. The extra data is not lost, but is instead
502 * moved into the tail.
503 */
504static void
505xdr_shrink_pagelen(struct xdr_buf *buf, size_t len)
506{
507 struct kvec *tail;
508 size_t copy;
509 char *p;
510 unsigned int pglen = buf->page_len;
511
512 tail = buf->tail;
513 BUG_ON (len > pglen);
514
515 /* Shift the tail first */
516 if (tail->iov_len != 0) {
517 p = (char *)tail->iov_base + len;
518 if (tail->iov_len > len) {
519 copy = tail->iov_len - len;
520 memmove(p, tail->iov_base, copy);
521 } else
522 buf->buflen -= len;
523 /* Copy from the inlined pages into the tail */
524 copy = len;
525 if (copy > tail->iov_len)
526 copy = tail->iov_len;
527 _copy_from_pages((char *)tail->iov_base,
528 buf->pages, buf->page_base + pglen - len,
529 copy);
530 }
531 buf->page_len -= len;
532 buf->buflen -= len;
533 /* Have we truncated the message? */
534 if (buf->len > buf->buflen)
535 buf->len = buf->buflen;
536}
537
538void
539xdr_shift_buf(struct xdr_buf *buf, size_t len)
540{
541 xdr_shrink_bufhead(buf, len);
542}
543
544/**
545 * xdr_init_encode - Initialize a struct xdr_stream for sending data.
546 * @xdr: pointer to xdr_stream struct
547 * @buf: pointer to XDR buffer in which to encode data
548 * @p: current pointer inside XDR buffer
549 *
550 * Note: at the moment the RPC client only passes the length of our
551 * scratch buffer in the xdr_buf's header kvec. Previously this
552 * meant we needed to call xdr_adjust_iovec() after encoding the
553 * data. With the new scheme, the xdr_stream manages the details
554 * of the buffer length, and takes care of adjusting the kvec
555 * length for us.
556 */
557void xdr_init_encode(struct xdr_stream *xdr, struct xdr_buf *buf, uint32_t *p)
558{
559 struct kvec *iov = buf->head;
334ccfd5 560 int scratch_len = buf->buflen - buf->page_len - buf->tail[0].iov_len;
1da177e4 561
334ccfd5 562 BUG_ON(scratch_len < 0);
1da177e4
LT
563 xdr->buf = buf;
564 xdr->iov = iov;
334ccfd5
TM
565 xdr->p = (uint32_t *)((char *)iov->iov_base + iov->iov_len);
566 xdr->end = (uint32_t *)((char *)iov->iov_base + scratch_len);
567 BUG_ON(iov->iov_len > scratch_len);
568
569 if (p != xdr->p && p != NULL) {
570 size_t len;
571
572 BUG_ON(p < xdr->p || p > xdr->end);
573 len = (char *)p - (char *)xdr->p;
574 xdr->p = p;
575 buf->len += len;
576 iov->iov_len += len;
577 }
1da177e4
LT
578}
579EXPORT_SYMBOL(xdr_init_encode);
580
581/**
582 * xdr_reserve_space - Reserve buffer space for sending
583 * @xdr: pointer to xdr_stream
584 * @nbytes: number of bytes to reserve
585 *
586 * Checks that we have enough buffer space to encode 'nbytes' more
587 * bytes of data. If so, update the total xdr_buf length, and
588 * adjust the length of the current kvec.
589 */
590uint32_t * xdr_reserve_space(struct xdr_stream *xdr, size_t nbytes)
591{
592 uint32_t *p = xdr->p;
593 uint32_t *q;
594
595 /* align nbytes on the next 32-bit boundary */
596 nbytes += 3;
597 nbytes &= ~3;
598 q = p + (nbytes >> 2);
599 if (unlikely(q > xdr->end || q < p))
600 return NULL;
601 xdr->p = q;
602 xdr->iov->iov_len += nbytes;
603 xdr->buf->len += nbytes;
604 return p;
605}
606EXPORT_SYMBOL(xdr_reserve_space);
607
608/**
609 * xdr_write_pages - Insert a list of pages into an XDR buffer for sending
610 * @xdr: pointer to xdr_stream
611 * @pages: list of pages
612 * @base: offset of first byte
613 * @len: length of data in bytes
614 *
615 */
616void xdr_write_pages(struct xdr_stream *xdr, struct page **pages, unsigned int base,
617 unsigned int len)
618{
619 struct xdr_buf *buf = xdr->buf;
620 struct kvec *iov = buf->tail;
621 buf->pages = pages;
622 buf->page_base = base;
623 buf->page_len = len;
624
625 iov->iov_base = (char *)xdr->p;
626 iov->iov_len = 0;
627 xdr->iov = iov;
628
629 if (len & 3) {
630 unsigned int pad = 4 - (len & 3);
631
632 BUG_ON(xdr->p >= xdr->end);
633 iov->iov_base = (char *)xdr->p + (len & 3);
634 iov->iov_len += pad;
635 len += pad;
636 *xdr->p++ = 0;
637 }
638 buf->buflen += len;
639 buf->len += len;
640}
641EXPORT_SYMBOL(xdr_write_pages);
642
643/**
644 * xdr_init_decode - Initialize an xdr_stream for decoding data.
645 * @xdr: pointer to xdr_stream struct
646 * @buf: pointer to XDR buffer from which to decode data
647 * @p: current pointer inside XDR buffer
648 */
649void xdr_init_decode(struct xdr_stream *xdr, struct xdr_buf *buf, uint32_t *p)
650{
651 struct kvec *iov = buf->head;
652 unsigned int len = iov->iov_len;
653
654 if (len > buf->len)
655 len = buf->len;
656 xdr->buf = buf;
657 xdr->iov = iov;
658 xdr->p = p;
659 xdr->end = (uint32_t *)((char *)iov->iov_base + len);
660}
661EXPORT_SYMBOL(xdr_init_decode);
662
663/**
664 * xdr_inline_decode - Retrieve non-page XDR data to decode
665 * @xdr: pointer to xdr_stream struct
666 * @nbytes: number of bytes of data to decode
667 *
668 * Check if the input buffer is long enough to enable us to decode
669 * 'nbytes' more bytes of data starting at the current position.
670 * If so return the current pointer, then update the current
671 * pointer position.
672 */
673uint32_t * xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes)
674{
675 uint32_t *p = xdr->p;
676 uint32_t *q = p + XDR_QUADLEN(nbytes);
677
678 if (unlikely(q > xdr->end || q < p))
679 return NULL;
680 xdr->p = q;
681 return p;
682}
683EXPORT_SYMBOL(xdr_inline_decode);
684
685/**
686 * xdr_read_pages - Ensure page-based XDR data to decode is aligned at current pointer position
687 * @xdr: pointer to xdr_stream struct
688 * @len: number of bytes of page data
689 *
690 * Moves data beyond the current pointer position from the XDR head[] buffer
691 * into the page list. Any data that lies beyond current position + "len"
692 * bytes is moved into the XDR tail[]. The current pointer is then
693 * repositioned at the beginning of the XDR tail.
694 */
695void xdr_read_pages(struct xdr_stream *xdr, unsigned int len)
696{
697 struct xdr_buf *buf = xdr->buf;
698 struct kvec *iov;
699 ssize_t shift;
700 unsigned int end;
701 int padding;
702
703 /* Realign pages to current pointer position */
704 iov = buf->head;
705 shift = iov->iov_len + (char *)iov->iov_base - (char *)xdr->p;
706 if (shift > 0)
707 xdr_shrink_bufhead(buf, shift);
708
709 /* Truncate page data and move it into the tail */
710 if (buf->page_len > len)
711 xdr_shrink_pagelen(buf, buf->page_len - len);
712 padding = (XDR_QUADLEN(len) << 2) - len;
713 xdr->iov = iov = buf->tail;
714 /* Compute remaining message length. */
715 end = iov->iov_len;
716 shift = buf->buflen - buf->len;
717 if (shift < end)
718 end -= shift;
719 else if (shift > 0)
720 end = 0;
721 /*
722 * Position current pointer at beginning of tail, and
723 * set remaining message length.
724 */
725 xdr->p = (uint32_t *)((char *)iov->iov_base + padding);
726 xdr->end = (uint32_t *)((char *)iov->iov_base + end);
727}
728EXPORT_SYMBOL(xdr_read_pages);
729
730static struct kvec empty_iov = {.iov_base = NULL, .iov_len = 0};
731
732void
733xdr_buf_from_iov(struct kvec *iov, struct xdr_buf *buf)
734{
735 buf->head[0] = *iov;
736 buf->tail[0] = empty_iov;
737 buf->page_len = 0;
738 buf->buflen = buf->len = iov->iov_len;
739}
740
741/* Sets subiov to the intersection of iov with the buffer of length len
742 * starting base bytes after iov. Indicates empty intersection by setting
743 * length of subiov to zero. Decrements len by length of subiov, sets base
744 * to zero (or decrements it by length of iov if subiov is empty). */
745static void
746iov_subsegment(struct kvec *iov, struct kvec *subiov, int *base, int *len)
747{
748 if (*base > iov->iov_len) {
749 subiov->iov_base = NULL;
750 subiov->iov_len = 0;
751 *base -= iov->iov_len;
752 } else {
753 subiov->iov_base = iov->iov_base + *base;
754 subiov->iov_len = min(*len, (int)iov->iov_len - *base);
755 *base = 0;
756 }
757 *len -= subiov->iov_len;
758}
759
760/* Sets subbuf to the portion of buf of length len beginning base bytes
761 * from the start of buf. Returns -1 if base of length are out of bounds. */
762int
763xdr_buf_subsegment(struct xdr_buf *buf, struct xdr_buf *subbuf,
764 int base, int len)
765{
766 int i;
767
768 subbuf->buflen = subbuf->len = len;
769 iov_subsegment(buf->head, subbuf->head, &base, &len);
770
771 if (base < buf->page_len) {
772 i = (base + buf->page_base) >> PAGE_CACHE_SHIFT;
773 subbuf->pages = &buf->pages[i];
774 subbuf->page_base = (base + buf->page_base) & ~PAGE_CACHE_MASK;
775 subbuf->page_len = min((int)buf->page_len - base, len);
776 len -= subbuf->page_len;
777 base = 0;
778 } else {
779 base -= buf->page_len;
780 subbuf->page_len = 0;
781 }
782
783 iov_subsegment(buf->tail, subbuf->tail, &base, &len);
784 if (base || len)
785 return -1;
786 return 0;
787}
788
789/* obj is assumed to point to allocated memory of size at least len: */
790int
791read_bytes_from_xdr_buf(struct xdr_buf *buf, int base, void *obj, int len)
792{
793 struct xdr_buf subbuf;
794 int this_len;
795 int status;
796
797 status = xdr_buf_subsegment(buf, &subbuf, base, len);
798 if (status)
799 goto out;
800 this_len = min(len, (int)subbuf.head[0].iov_len);
801 memcpy(obj, subbuf.head[0].iov_base, this_len);
802 len -= this_len;
803 obj += this_len;
804 this_len = min(len, (int)subbuf.page_len);
805 if (this_len)
806 _copy_from_pages(obj, subbuf.pages, subbuf.page_base, this_len);
807 len -= this_len;
808 obj += this_len;
809 this_len = min(len, (int)subbuf.tail[0].iov_len);
810 memcpy(obj, subbuf.tail[0].iov_base, this_len);
811out:
812 return status;
813}
814
bd8100e7
AG
815/* obj is assumed to point to allocated memory of size at least len: */
816int
817write_bytes_to_xdr_buf(struct xdr_buf *buf, int base, void *obj, int len)
818{
819 struct xdr_buf subbuf;
820 int this_len;
821 int status;
822
823 status = xdr_buf_subsegment(buf, &subbuf, base, len);
824 if (status)
825 goto out;
826 this_len = min(len, (int)subbuf.head[0].iov_len);
827 memcpy(subbuf.head[0].iov_base, obj, this_len);
828 len -= this_len;
829 obj += this_len;
830 this_len = min(len, (int)subbuf.page_len);
831 if (this_len)
832 _copy_to_pages(subbuf.pages, subbuf.page_base, obj, this_len);
833 len -= this_len;
834 obj += this_len;
835 this_len = min(len, (int)subbuf.tail[0].iov_len);
836 memcpy(subbuf.tail[0].iov_base, obj, this_len);
837out:
838 return status;
839}
840
841int
842xdr_decode_word(struct xdr_buf *buf, int base, u32 *obj)
1da177e4
LT
843{
844 u32 raw;
845 int status;
846
847 status = read_bytes_from_xdr_buf(buf, base, &raw, sizeof(*obj));
848 if (status)
849 return status;
850 *obj = ntohl(raw);
851 return 0;
852}
853
bd8100e7
AG
854int
855xdr_encode_word(struct xdr_buf *buf, int base, u32 obj)
856{
857 u32 raw = htonl(obj);
858
859 return write_bytes_to_xdr_buf(buf, base, &raw, sizeof(obj));
860}
861
1da177e4
LT
862/* If the netobj starting offset bytes from the start of xdr_buf is contained
863 * entirely in the head or the tail, set object to point to it; otherwise
864 * try to find space for it at the end of the tail, copy it there, and
865 * set obj to point to it. */
866int
867xdr_buf_read_netobj(struct xdr_buf *buf, struct xdr_netobj *obj, int offset)
868{
869 u32 tail_offset = buf->head[0].iov_len + buf->page_len;
870 u32 obj_end_offset;
871
bd8100e7 872 if (xdr_decode_word(buf, offset, &obj->len))
1da177e4
LT
873 goto out;
874 obj_end_offset = offset + 4 + obj->len;
875
876 if (obj_end_offset <= buf->head[0].iov_len) {
877 /* The obj is contained entirely in the head: */
878 obj->data = buf->head[0].iov_base + offset + 4;
879 } else if (offset + 4 >= tail_offset) {
880 if (obj_end_offset - tail_offset
881 > buf->tail[0].iov_len)
882 goto out;
883 /* The obj is contained entirely in the tail: */
884 obj->data = buf->tail[0].iov_base
885 + offset - tail_offset + 4;
886 } else {
887 /* use end of tail as storage for obj:
888 * (We don't copy to the beginning because then we'd have
889 * to worry about doing a potentially overlapping copy.
890 * This assumes the object is at most half the length of the
891 * tail.) */
892 if (obj->len > buf->tail[0].iov_len)
893 goto out;
894 obj->data = buf->tail[0].iov_base + buf->tail[0].iov_len -
895 obj->len;
896 if (read_bytes_from_xdr_buf(buf, offset + 4,
897 obj->data, obj->len))
898 goto out;
899
900 }
901 return 0;
902out:
903 return -1;
904}
bd8100e7
AG
905
906/* Returns 0 on success, or else a negative error code. */
907static int
908xdr_xcode_array2(struct xdr_buf *buf, unsigned int base,
909 struct xdr_array2_desc *desc, int encode)
910{
911 char *elem = NULL, *c;
912 unsigned int copied = 0, todo, avail_here;
913 struct page **ppages = NULL;
914 int err;
915
916 if (encode) {
917 if (xdr_encode_word(buf, base, desc->array_len) != 0)
918 return -EINVAL;
919 } else {
920 if (xdr_decode_word(buf, base, &desc->array_len) != 0 ||
58fcb8df 921 desc->array_len > desc->array_maxlen ||
bd8100e7
AG
922 (unsigned long) base + 4 + desc->array_len *
923 desc->elem_size > buf->len)
924 return -EINVAL;
925 }
926 base += 4;
927
928 if (!desc->xcode)
929 return 0;
930
931 todo = desc->array_len * desc->elem_size;
932
933 /* process head */
934 if (todo && base < buf->head->iov_len) {
935 c = buf->head->iov_base + base;
936 avail_here = min_t(unsigned int, todo,
937 buf->head->iov_len - base);
938 todo -= avail_here;
939
940 while (avail_here >= desc->elem_size) {
941 err = desc->xcode(desc, c);
942 if (err)
943 goto out;
944 c += desc->elem_size;
945 avail_here -= desc->elem_size;
946 }
947 if (avail_here) {
948 if (!elem) {
949 elem = kmalloc(desc->elem_size, GFP_KERNEL);
950 err = -ENOMEM;
951 if (!elem)
952 goto out;
953 }
954 if (encode) {
955 err = desc->xcode(desc, elem);
956 if (err)
957 goto out;
958 memcpy(c, elem, avail_here);
959 } else
960 memcpy(elem, c, avail_here);
961 copied = avail_here;
962 }
963 base = buf->head->iov_len; /* align to start of pages */
964 }
965
966 /* process pages array */
967 base -= buf->head->iov_len;
968 if (todo && base < buf->page_len) {
969 unsigned int avail_page;
970
971 avail_here = min(todo, buf->page_len - base);
972 todo -= avail_here;
973
974 base += buf->page_base;
975 ppages = buf->pages + (base >> PAGE_CACHE_SHIFT);
976 base &= ~PAGE_CACHE_MASK;
977 avail_page = min_t(unsigned int, PAGE_CACHE_SIZE - base,
978 avail_here);
979 c = kmap(*ppages) + base;
980
981 while (avail_here) {
982 avail_here -= avail_page;
983 if (copied || avail_page < desc->elem_size) {
984 unsigned int l = min(avail_page,
985 desc->elem_size - copied);
986 if (!elem) {
987 elem = kmalloc(desc->elem_size,
988 GFP_KERNEL);
989 err = -ENOMEM;
990 if (!elem)
991 goto out;
992 }
993 if (encode) {
994 if (!copied) {
995 err = desc->xcode(desc, elem);
996 if (err)
997 goto out;
998 }
999 memcpy(c, elem + copied, l);
1000 copied += l;
1001 if (copied == desc->elem_size)
1002 copied = 0;
1003 } else {
1004 memcpy(elem + copied, c, l);
1005 copied += l;
1006 if (copied == desc->elem_size) {
1007 err = desc->xcode(desc, elem);
1008 if (err)
1009 goto out;
1010 copied = 0;
1011 }
1012 }
1013 avail_page -= l;
1014 c += l;
1015 }
1016 while (avail_page >= desc->elem_size) {
1017 err = desc->xcode(desc, c);
1018 if (err)
1019 goto out;
1020 c += desc->elem_size;
1021 avail_page -= desc->elem_size;
1022 }
1023 if (avail_page) {
1024 unsigned int l = min(avail_page,
1025 desc->elem_size - copied);
1026 if (!elem) {
1027 elem = kmalloc(desc->elem_size,
1028 GFP_KERNEL);
1029 err = -ENOMEM;
1030 if (!elem)
1031 goto out;
1032 }
1033 if (encode) {
1034 if (!copied) {
1035 err = desc->xcode(desc, elem);
1036 if (err)
1037 goto out;
1038 }
1039 memcpy(c, elem + copied, l);
1040 copied += l;
1041 if (copied == desc->elem_size)
1042 copied = 0;
1043 } else {
1044 memcpy(elem + copied, c, l);
1045 copied += l;
1046 if (copied == desc->elem_size) {
1047 err = desc->xcode(desc, elem);
1048 if (err)
1049 goto out;
1050 copied = 0;
1051 }
1052 }
1053 }
1054 if (avail_here) {
1055 kunmap(*ppages);
1056 ppages++;
1057 c = kmap(*ppages);
1058 }
1059
1060 avail_page = min(avail_here,
1061 (unsigned int) PAGE_CACHE_SIZE);
1062 }
1063 base = buf->page_len; /* align to start of tail */
1064 }
1065
1066 /* process tail */
1067 base -= buf->page_len;
1068 if (todo) {
1069 c = buf->tail->iov_base + base;
1070 if (copied) {
1071 unsigned int l = desc->elem_size - copied;
1072
1073 if (encode)
1074 memcpy(c, elem + copied, l);
1075 else {
1076 memcpy(elem + copied, c, l);
1077 err = desc->xcode(desc, elem);
1078 if (err)
1079 goto out;
1080 }
1081 todo -= l;
1082 c += l;
1083 }
1084 while (todo) {
1085 err = desc->xcode(desc, c);
1086 if (err)
1087 goto out;
1088 c += desc->elem_size;
1089 todo -= desc->elem_size;
1090 }
1091 }
1092 err = 0;
1093
1094out:
1095 if (elem)
1096 kfree(elem);
1097 if (ppages)
1098 kunmap(*ppages);
1099 return err;
1100}
1101
1102int
1103xdr_decode_array2(struct xdr_buf *buf, unsigned int base,
1104 struct xdr_array2_desc *desc)
1105{
1106 if (base >= buf->len)
1107 return -EINVAL;
1108
1109 return xdr_xcode_array2(buf, base, desc, 0);
1110}
1111
1112int
1113xdr_encode_array2(struct xdr_buf *buf, unsigned int base,
1114 struct xdr_array2_desc *desc)
1115{
1116 if ((unsigned long) base + 4 + desc->array_len * desc->elem_size >
1117 buf->head->iov_len + buf->page_len + buf->tail->iov_len)
1118 return -EINVAL;
1119
1120 return xdr_xcode_array2(buf, base, desc, 1);
1121}