Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[linux-2.6-block.git] / net / sched / sch_hfsc.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2003 Patrick McHardy, <kaber@trash.net>
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * 2003-10-17 - Ported from altq
10 */
11/*
12 * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
13 *
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation is hereby granted (including for commercial or
16 * for-profit use), provided that both the copyright notice and this
17 * permission notice appear in all copies of the software, derivative
18 * works, or modified versions, and any portions thereof.
19 *
20 * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
21 * WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS
22 * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
23 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
25 * DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
28 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
30 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
32 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
33 * DAMAGE.
34 *
35 * Carnegie Mellon encourages (but does not require) users of this
36 * software to return any improvements or extensions that they make,
37 * and to grant Carnegie Mellon the rights to redistribute these
38 * changes without encumbrance.
39 */
40/*
41 * H-FSC is described in Proceedings of SIGCOMM'97,
42 * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
43 * Real-Time and Priority Service"
44 * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
45 *
46 * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
47 * when a class has an upperlimit, the fit-time is computed from the
48 * upperlimit service curve. the link-sharing scheduler does not schedule
49 * a class whose fit-time exceeds the current time.
50 */
51
52#include <linux/kernel.h>
1da177e4
LT
53#include <linux/module.h>
54#include <linux/types.h>
55#include <linux/errno.h>
1da177e4
LT
56#include <linux/compiler.h>
57#include <linux/spinlock.h>
58#include <linux/skbuff.h>
59#include <linux/string.h>
60#include <linux/slab.h>
1da177e4
LT
61#include <linux/list.h>
62#include <linux/rbtree.h>
63#include <linux/init.h>
1da177e4
LT
64#include <linux/rtnetlink.h>
65#include <linux/pkt_sched.h>
dc5fc579 66#include <net/netlink.h>
1da177e4
LT
67#include <net/pkt_sched.h>
68#include <net/pkt_cls.h>
1da177e4
LT
69#include <asm/div64.h>
70
1da177e4
LT
71/*
72 * kernel internal service curve representation:
73 * coordinates are given by 64 bit unsigned integers.
74 * x-axis: unit is clock count.
75 * y-axis: unit is byte.
76 *
77 * The service curve parameters are converted to the internal
78 * representation. The slope values are scaled to avoid overflow.
79 * the inverse slope values as well as the y-projection of the 1st
fd589a8f 80 * segment are kept in order to avoid 64-bit divide operations
1da177e4
LT
81 * that are expensive on 32-bit architectures.
82 */
83
cc7ec456 84struct internal_sc {
1da177e4
LT
85 u64 sm1; /* scaled slope of the 1st segment */
86 u64 ism1; /* scaled inverse-slope of the 1st segment */
87 u64 dx; /* the x-projection of the 1st segment */
88 u64 dy; /* the y-projection of the 1st segment */
89 u64 sm2; /* scaled slope of the 2nd segment */
90 u64 ism2; /* scaled inverse-slope of the 2nd segment */
91};
92
93/* runtime service curve */
cc7ec456 94struct runtime_sc {
1da177e4
LT
95 u64 x; /* current starting position on x-axis */
96 u64 y; /* current starting position on y-axis */
97 u64 sm1; /* scaled slope of the 1st segment */
98 u64 ism1; /* scaled inverse-slope of the 1st segment */
99 u64 dx; /* the x-projection of the 1st segment */
100 u64 dy; /* the y-projection of the 1st segment */
101 u64 sm2; /* scaled slope of the 2nd segment */
102 u64 ism2; /* scaled inverse-slope of the 2nd segment */
103};
104
cc7ec456 105enum hfsc_class_flags {
1da177e4
LT
106 HFSC_RSC = 0x1,
107 HFSC_FSC = 0x2,
108 HFSC_USC = 0x4
109};
110
cc7ec456 111struct hfsc_class {
be0d39d5 112 struct Qdisc_class_common cl_common;
1da177e4
LT
113 unsigned int refcnt; /* usage count */
114
c1a8f1f1 115 struct gnet_stats_basic_packed bstats;
1da177e4 116 struct gnet_stats_queue qstats;
45203a3b 117 struct gnet_stats_rate_est64 rate_est;
1da177e4 118 unsigned int level; /* class level in hierarchy */
25d8c0d5 119 struct tcf_proto __rcu *filter_list; /* filter list */
1da177e4
LT
120 unsigned int filter_cnt; /* filter count */
121
122 struct hfsc_sched *sched; /* scheduler data */
123 struct hfsc_class *cl_parent; /* parent class */
124 struct list_head siblings; /* sibling classes */
125 struct list_head children; /* child classes */
126 struct Qdisc *qdisc; /* leaf qdisc */
127
128 struct rb_node el_node; /* qdisc's eligible tree member */
129 struct rb_root vt_tree; /* active children sorted by cl_vt */
130 struct rb_node vt_node; /* parent's vt_tree member */
131 struct rb_root cf_tree; /* active children sorted by cl_f */
132 struct rb_node cf_node; /* parent's cf_heap member */
1da177e4
LT
133 struct list_head dlist; /* drop list member */
134
135 u64 cl_total; /* total work in bytes */
136 u64 cl_cumul; /* cumulative work in bytes done by
137 real-time criteria */
138
cc7ec456
ED
139 u64 cl_d; /* deadline*/
140 u64 cl_e; /* eligible time */
1da177e4
LT
141 u64 cl_vt; /* virtual time */
142 u64 cl_f; /* time when this class will fit for
143 link-sharing, max(myf, cfmin) */
144 u64 cl_myf; /* my fit-time (calculated from this
145 class's own upperlimit curve) */
146 u64 cl_myfadj; /* my fit-time adjustment (to cancel
147 history dependence) */
148 u64 cl_cfmin; /* earliest children's fit-time (used
149 with cl_myf to obtain cl_f) */
150 u64 cl_cvtmin; /* minimal virtual time among the
151 children fit for link-sharing
152 (monotonic within a period) */
153 u64 cl_vtadj; /* intra-period cumulative vt
154 adjustment */
155 u64 cl_vtoff; /* inter-period cumulative vt offset */
156 u64 cl_cvtmax; /* max child's vt in the last period */
157 u64 cl_cvtoff; /* cumulative cvtmax of all periods */
9a94b351 158 u64 cl_pcvtoff; /* parent's cvtoff at initialization
1da177e4
LT
159 time */
160
161 struct internal_sc cl_rsc; /* internal real-time service curve */
162 struct internal_sc cl_fsc; /* internal fair service curve */
163 struct internal_sc cl_usc; /* internal upperlimit service curve */
164 struct runtime_sc cl_deadline; /* deadline curve */
165 struct runtime_sc cl_eligible; /* eligible curve */
166 struct runtime_sc cl_virtual; /* virtual curve */
167 struct runtime_sc cl_ulimit; /* upperlimit curve */
168
169 unsigned long cl_flags; /* which curves are valid */
170 unsigned long cl_vtperiod; /* vt period sequence number */
171 unsigned long cl_parentperiod;/* parent's vt period sequence number*/
172 unsigned long cl_nactive; /* number of active children */
173};
174
cc7ec456 175struct hfsc_sched {
1da177e4
LT
176 u16 defcls; /* default class id */
177 struct hfsc_class root; /* root class */
be0d39d5 178 struct Qdisc_class_hash clhash; /* class hash */
1da177e4
LT
179 struct rb_root eligible; /* eligible tree */
180 struct list_head droplist; /* active leaf class list (for
181 dropping) */
ed2b229a 182 struct qdisc_watchdog watchdog; /* watchdog timer */
1da177e4
LT
183};
184
1da177e4
LT
185#define HT_INFINITY 0xffffffffffffffffULL /* infinite time value */
186
187
188/*
189 * eligible tree holds backlogged classes being sorted by their eligible times.
190 * there is one eligible tree per hfsc instance.
191 */
192
193static void
194eltree_insert(struct hfsc_class *cl)
195{
196 struct rb_node **p = &cl->sched->eligible.rb_node;
197 struct rb_node *parent = NULL;
198 struct hfsc_class *cl1;
199
200 while (*p != NULL) {
201 parent = *p;
202 cl1 = rb_entry(parent, struct hfsc_class, el_node);
203 if (cl->cl_e >= cl1->cl_e)
204 p = &parent->rb_right;
205 else
206 p = &parent->rb_left;
207 }
208 rb_link_node(&cl->el_node, parent, p);
209 rb_insert_color(&cl->el_node, &cl->sched->eligible);
210}
211
212static inline void
213eltree_remove(struct hfsc_class *cl)
214{
215 rb_erase(&cl->el_node, &cl->sched->eligible);
216}
217
218static inline void
219eltree_update(struct hfsc_class *cl)
220{
221 eltree_remove(cl);
222 eltree_insert(cl);
223}
224
225/* find the class with the minimum deadline among the eligible classes */
226static inline struct hfsc_class *
227eltree_get_mindl(struct hfsc_sched *q, u64 cur_time)
228{
229 struct hfsc_class *p, *cl = NULL;
230 struct rb_node *n;
231
232 for (n = rb_first(&q->eligible); n != NULL; n = rb_next(n)) {
233 p = rb_entry(n, struct hfsc_class, el_node);
234 if (p->cl_e > cur_time)
235 break;
236 if (cl == NULL || p->cl_d < cl->cl_d)
237 cl = p;
238 }
239 return cl;
240}
241
242/* find the class with minimum eligible time among the eligible classes */
243static inline struct hfsc_class *
244eltree_get_minel(struct hfsc_sched *q)
245{
246 struct rb_node *n;
10297b99 247
1da177e4
LT
248 n = rb_first(&q->eligible);
249 if (n == NULL)
250 return NULL;
251 return rb_entry(n, struct hfsc_class, el_node);
252}
253
254/*
255 * vttree holds holds backlogged child classes being sorted by their virtual
256 * time. each intermediate class has one vttree.
257 */
258static void
259vttree_insert(struct hfsc_class *cl)
260{
261 struct rb_node **p = &cl->cl_parent->vt_tree.rb_node;
262 struct rb_node *parent = NULL;
263 struct hfsc_class *cl1;
264
265 while (*p != NULL) {
266 parent = *p;
267 cl1 = rb_entry(parent, struct hfsc_class, vt_node);
268 if (cl->cl_vt >= cl1->cl_vt)
269 p = &parent->rb_right;
270 else
271 p = &parent->rb_left;
272 }
273 rb_link_node(&cl->vt_node, parent, p);
274 rb_insert_color(&cl->vt_node, &cl->cl_parent->vt_tree);
275}
276
277static inline void
278vttree_remove(struct hfsc_class *cl)
279{
280 rb_erase(&cl->vt_node, &cl->cl_parent->vt_tree);
281}
282
283static inline void
284vttree_update(struct hfsc_class *cl)
285{
286 vttree_remove(cl);
287 vttree_insert(cl);
288}
289
290static inline struct hfsc_class *
291vttree_firstfit(struct hfsc_class *cl, u64 cur_time)
292{
293 struct hfsc_class *p;
294 struct rb_node *n;
295
296 for (n = rb_first(&cl->vt_tree); n != NULL; n = rb_next(n)) {
297 p = rb_entry(n, struct hfsc_class, vt_node);
298 if (p->cl_f <= cur_time)
299 return p;
300 }
301 return NULL;
302}
303
304/*
305 * get the leaf class with the minimum vt in the hierarchy
306 */
307static struct hfsc_class *
308vttree_get_minvt(struct hfsc_class *cl, u64 cur_time)
309{
310 /* if root-class's cfmin is bigger than cur_time nothing to do */
311 if (cl->cl_cfmin > cur_time)
312 return NULL;
313
314 while (cl->level > 0) {
315 cl = vttree_firstfit(cl, cur_time);
316 if (cl == NULL)
317 return NULL;
318 /*
319 * update parent's cl_cvtmin.
320 */
321 if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
322 cl->cl_parent->cl_cvtmin = cl->cl_vt;
323 }
324 return cl;
325}
326
327static void
328cftree_insert(struct hfsc_class *cl)
329{
330 struct rb_node **p = &cl->cl_parent->cf_tree.rb_node;
331 struct rb_node *parent = NULL;
332 struct hfsc_class *cl1;
333
334 while (*p != NULL) {
335 parent = *p;
336 cl1 = rb_entry(parent, struct hfsc_class, cf_node);
337 if (cl->cl_f >= cl1->cl_f)
338 p = &parent->rb_right;
339 else
340 p = &parent->rb_left;
341 }
342 rb_link_node(&cl->cf_node, parent, p);
343 rb_insert_color(&cl->cf_node, &cl->cl_parent->cf_tree);
344}
345
346static inline void
347cftree_remove(struct hfsc_class *cl)
348{
349 rb_erase(&cl->cf_node, &cl->cl_parent->cf_tree);
350}
351
352static inline void
353cftree_update(struct hfsc_class *cl)
354{
355 cftree_remove(cl);
356 cftree_insert(cl);
357}
358
359/*
360 * service curve support functions
361 *
362 * external service curve parameters
363 * m: bps
364 * d: us
365 * internal service curve parameters
366 * sm: (bytes/psched_us) << SM_SHIFT
367 * ism: (psched_us/byte) << ISM_SHIFT
368 * dx: psched_us
369 *
728bf098 370 * The clock source resolution with ktime and PSCHED_SHIFT 10 is 1.024us.
1da177e4
LT
371 *
372 * sm and ism are scaled in order to keep effective digits.
373 * SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective
374 * digits in decimal using the following table.
375 *
1da177e4
LT
376 * bits/sec 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps
377 * ------------+-------------------------------------------------------
641b9e0e 378 * bytes/1.024us 12.8e-3 128e-3 1280e-3 12800e-3 128000e-3
1da177e4 379 *
641b9e0e 380 * 1.024us/byte 78.125 7.8125 0.78125 0.078125 0.0078125
728bf098
JP
381 *
382 * So, for PSCHED_SHIFT 10 we need: SM_SHIFT 20, ISM_SHIFT 18.
1da177e4 383 */
728bf098
JP
384#define SM_SHIFT (30 - PSCHED_SHIFT)
385#define ISM_SHIFT (8 + PSCHED_SHIFT)
1da177e4
LT
386
387#define SM_MASK ((1ULL << SM_SHIFT) - 1)
388#define ISM_MASK ((1ULL << ISM_SHIFT) - 1)
389
390static inline u64
391seg_x2y(u64 x, u64 sm)
392{
393 u64 y;
394
395 /*
396 * compute
397 * y = x * sm >> SM_SHIFT
398 * but divide it for the upper and lower bits to avoid overflow
399 */
400 y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
401 return y;
402}
403
404static inline u64
405seg_y2x(u64 y, u64 ism)
406{
407 u64 x;
408
409 if (y == 0)
410 x = 0;
411 else if (ism == HT_INFINITY)
412 x = HT_INFINITY;
413 else {
414 x = (y >> ISM_SHIFT) * ism
415 + (((y & ISM_MASK) * ism) >> ISM_SHIFT);
416 }
417 return x;
418}
419
420/* Convert m (bps) into sm (bytes/psched us) */
421static u64
422m2sm(u32 m)
423{
424 u64 sm;
425
426 sm = ((u64)m << SM_SHIFT);
00c04af9
PM
427 sm += PSCHED_TICKS_PER_SEC - 1;
428 do_div(sm, PSCHED_TICKS_PER_SEC);
1da177e4
LT
429 return sm;
430}
431
432/* convert m (bps) into ism (psched us/byte) */
433static u64
434m2ism(u32 m)
435{
436 u64 ism;
437
438 if (m == 0)
439 ism = HT_INFINITY;
440 else {
00c04af9 441 ism = ((u64)PSCHED_TICKS_PER_SEC << ISM_SHIFT);
1da177e4
LT
442 ism += m - 1;
443 do_div(ism, m);
444 }
445 return ism;
446}
447
448/* convert d (us) into dx (psched us) */
449static u64
450d2dx(u32 d)
451{
452 u64 dx;
453
00c04af9 454 dx = ((u64)d * PSCHED_TICKS_PER_SEC);
538e43a4
PM
455 dx += USEC_PER_SEC - 1;
456 do_div(dx, USEC_PER_SEC);
1da177e4
LT
457 return dx;
458}
459
460/* convert sm (bytes/psched us) into m (bps) */
461static u32
462sm2m(u64 sm)
463{
464 u64 m;
465
00c04af9 466 m = (sm * PSCHED_TICKS_PER_SEC) >> SM_SHIFT;
1da177e4
LT
467 return (u32)m;
468}
469
470/* convert dx (psched us) into d (us) */
471static u32
472dx2d(u64 dx)
473{
474 u64 d;
475
538e43a4 476 d = dx * USEC_PER_SEC;
00c04af9 477 do_div(d, PSCHED_TICKS_PER_SEC);
1da177e4
LT
478 return (u32)d;
479}
480
481static void
482sc2isc(struct tc_service_curve *sc, struct internal_sc *isc)
483{
484 isc->sm1 = m2sm(sc->m1);
485 isc->ism1 = m2ism(sc->m1);
486 isc->dx = d2dx(sc->d);
487 isc->dy = seg_x2y(isc->dx, isc->sm1);
488 isc->sm2 = m2sm(sc->m2);
489 isc->ism2 = m2ism(sc->m2);
490}
491
492/*
493 * initialize the runtime service curve with the given internal
494 * service curve starting at (x, y).
495 */
496static void
497rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
498{
499 rtsc->x = x;
500 rtsc->y = y;
501 rtsc->sm1 = isc->sm1;
502 rtsc->ism1 = isc->ism1;
503 rtsc->dx = isc->dx;
504 rtsc->dy = isc->dy;
505 rtsc->sm2 = isc->sm2;
506 rtsc->ism2 = isc->ism2;
507}
508
509/*
510 * calculate the y-projection of the runtime service curve by the
511 * given x-projection value
512 */
513static u64
514rtsc_y2x(struct runtime_sc *rtsc, u64 y)
515{
516 u64 x;
517
518 if (y < rtsc->y)
519 x = rtsc->x;
520 else if (y <= rtsc->y + rtsc->dy) {
521 /* x belongs to the 1st segment */
522 if (rtsc->dy == 0)
523 x = rtsc->x + rtsc->dx;
524 else
525 x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
526 } else {
527 /* x belongs to the 2nd segment */
528 x = rtsc->x + rtsc->dx
529 + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
530 }
531 return x;
532}
533
534static u64
535rtsc_x2y(struct runtime_sc *rtsc, u64 x)
536{
537 u64 y;
538
539 if (x <= rtsc->x)
540 y = rtsc->y;
541 else if (x <= rtsc->x + rtsc->dx)
542 /* y belongs to the 1st segment */
543 y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
544 else
545 /* y belongs to the 2nd segment */
546 y = rtsc->y + rtsc->dy
547 + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
548 return y;
549}
550
551/*
552 * update the runtime service curve by taking the minimum of the current
553 * runtime service curve and the service curve starting at (x, y).
554 */
555static void
556rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
557{
558 u64 y1, y2, dx, dy;
559 u32 dsm;
560
561 if (isc->sm1 <= isc->sm2) {
562 /* service curve is convex */
563 y1 = rtsc_x2y(rtsc, x);
564 if (y1 < y)
565 /* the current rtsc is smaller */
566 return;
567 rtsc->x = x;
568 rtsc->y = y;
569 return;
570 }
571
572 /*
573 * service curve is concave
574 * compute the two y values of the current rtsc
575 * y1: at x
576 * y2: at (x + dx)
577 */
578 y1 = rtsc_x2y(rtsc, x);
579 if (y1 <= y) {
580 /* rtsc is below isc, no change to rtsc */
581 return;
582 }
583
584 y2 = rtsc_x2y(rtsc, x + isc->dx);
585 if (y2 >= y + isc->dy) {
586 /* rtsc is above isc, replace rtsc by isc */
587 rtsc->x = x;
588 rtsc->y = y;
589 rtsc->dx = isc->dx;
590 rtsc->dy = isc->dy;
591 return;
592 }
593
594 /*
595 * the two curves intersect
596 * compute the offsets (dx, dy) using the reverse
597 * function of seg_x2y()
598 * seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
599 */
600 dx = (y1 - y) << SM_SHIFT;
601 dsm = isc->sm1 - isc->sm2;
602 do_div(dx, dsm);
603 /*
604 * check if (x, y1) belongs to the 1st segment of rtsc.
605 * if so, add the offset.
606 */
607 if (rtsc->x + rtsc->dx > x)
608 dx += rtsc->x + rtsc->dx - x;
609 dy = seg_x2y(dx, isc->sm1);
610
611 rtsc->x = x;
612 rtsc->y = y;
613 rtsc->dx = dx;
614 rtsc->dy = dy;
1da177e4
LT
615}
616
617static void
618init_ed(struct hfsc_class *cl, unsigned int next_len)
619{
3bebcda2 620 u64 cur_time = psched_get_time();
1da177e4
LT
621
622 /* update the deadline curve */
623 rtsc_min(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
624
625 /*
626 * update the eligible curve.
627 * for concave, it is equal to the deadline curve.
628 * for convex, it is a linear curve with slope m2.
629 */
630 cl->cl_eligible = cl->cl_deadline;
631 if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
632 cl->cl_eligible.dx = 0;
633 cl->cl_eligible.dy = 0;
634 }
635
636 /* compute e and d */
637 cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
638 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
639
640 eltree_insert(cl);
641}
642
643static void
644update_ed(struct hfsc_class *cl, unsigned int next_len)
645{
646 cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
647 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
648
649 eltree_update(cl);
650}
651
652static inline void
653update_d(struct hfsc_class *cl, unsigned int next_len)
654{
655 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
656}
657
658static inline void
659update_cfmin(struct hfsc_class *cl)
660{
661 struct rb_node *n = rb_first(&cl->cf_tree);
662 struct hfsc_class *p;
663
664 if (n == NULL) {
665 cl->cl_cfmin = 0;
666 return;
667 }
668 p = rb_entry(n, struct hfsc_class, cf_node);
669 cl->cl_cfmin = p->cl_f;
670}
671
672static void
673init_vf(struct hfsc_class *cl, unsigned int len)
674{
675 struct hfsc_class *max_cl;
676 struct rb_node *n;
677 u64 vt, f, cur_time;
678 int go_active;
679
680 cur_time = 0;
681 go_active = 1;
682 for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
683 if (go_active && cl->cl_nactive++ == 0)
684 go_active = 1;
685 else
686 go_active = 0;
687
688 if (go_active) {
689 n = rb_last(&cl->cl_parent->vt_tree);
690 if (n != NULL) {
cc7ec456 691 max_cl = rb_entry(n, struct hfsc_class, vt_node);
1da177e4
LT
692 /*
693 * set vt to the average of the min and max
694 * classes. if the parent's period didn't
695 * change, don't decrease vt of the class.
696 */
697 vt = max_cl->cl_vt;
698 if (cl->cl_parent->cl_cvtmin != 0)
699 vt = (cl->cl_parent->cl_cvtmin + vt)/2;
700
701 if (cl->cl_parent->cl_vtperiod !=
702 cl->cl_parentperiod || vt > cl->cl_vt)
703 cl->cl_vt = vt;
704 } else {
705 /*
706 * first child for a new parent backlog period.
707 * add parent's cvtmax to cvtoff to make a new
708 * vt (vtoff + vt) larger than the vt in the
709 * last period for all children.
710 */
711 vt = cl->cl_parent->cl_cvtmax;
712 cl->cl_parent->cl_cvtoff += vt;
713 cl->cl_parent->cl_cvtmax = 0;
714 cl->cl_parent->cl_cvtmin = 0;
715 cl->cl_vt = 0;
716 }
717
718 cl->cl_vtoff = cl->cl_parent->cl_cvtoff -
719 cl->cl_pcvtoff;
720
721 /* update the virtual curve */
722 vt = cl->cl_vt + cl->cl_vtoff;
723 rtsc_min(&cl->cl_virtual, &cl->cl_fsc, vt,
10297b99 724 cl->cl_total);
1da177e4
LT
725 if (cl->cl_virtual.x == vt) {
726 cl->cl_virtual.x -= cl->cl_vtoff;
727 cl->cl_vtoff = 0;
728 }
729 cl->cl_vtadj = 0;
730
731 cl->cl_vtperiod++; /* increment vt period */
732 cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
733 if (cl->cl_parent->cl_nactive == 0)
734 cl->cl_parentperiod++;
735 cl->cl_f = 0;
736
737 vttree_insert(cl);
738 cftree_insert(cl);
739
740 if (cl->cl_flags & HFSC_USC) {
741 /* class has upper limit curve */
742 if (cur_time == 0)
3bebcda2 743 cur_time = psched_get_time();
1da177e4
LT
744
745 /* update the ulimit curve */
746 rtsc_min(&cl->cl_ulimit, &cl->cl_usc, cur_time,
10297b99 747 cl->cl_total);
1da177e4
LT
748 /* compute myf */
749 cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
10297b99 750 cl->cl_total);
1da177e4
LT
751 cl->cl_myfadj = 0;
752 }
753 }
754
755 f = max(cl->cl_myf, cl->cl_cfmin);
756 if (f != cl->cl_f) {
757 cl->cl_f = f;
758 cftree_update(cl);
1da177e4 759 }
3b2eb613 760 update_cfmin(cl->cl_parent);
1da177e4
LT
761 }
762}
763
764static void
765update_vf(struct hfsc_class *cl, unsigned int len, u64 cur_time)
766{
767 u64 f; /* , myf_bound, delta; */
768 int go_passive = 0;
769
770 if (cl->qdisc->q.qlen == 0 && cl->cl_flags & HFSC_FSC)
771 go_passive = 1;
772
773 for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
774 cl->cl_total += len;
775
776 if (!(cl->cl_flags & HFSC_FSC) || cl->cl_nactive == 0)
777 continue;
778
779 if (go_passive && --cl->cl_nactive == 0)
780 go_passive = 1;
781 else
782 go_passive = 0;
783
784 if (go_passive) {
785 /* no more active child, going passive */
786
787 /* update cvtmax of the parent class */
788 if (cl->cl_vt > cl->cl_parent->cl_cvtmax)
789 cl->cl_parent->cl_cvtmax = cl->cl_vt;
790
791 /* remove this class from the vt tree */
792 vttree_remove(cl);
793
794 cftree_remove(cl);
795 update_cfmin(cl->cl_parent);
796
797 continue;
798 }
799
800 /*
801 * update vt and f
802 */
803 cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total)
10297b99 804 - cl->cl_vtoff + cl->cl_vtadj;
1da177e4
LT
805
806 /*
807 * if vt of the class is smaller than cvtmin,
808 * the class was skipped in the past due to non-fit.
809 * if so, we need to adjust vtadj.
810 */
811 if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
812 cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
813 cl->cl_vt = cl->cl_parent->cl_cvtmin;
814 }
815
816 /* update the vt tree */
817 vttree_update(cl);
818
819 if (cl->cl_flags & HFSC_USC) {
820 cl->cl_myf = cl->cl_myfadj + rtsc_y2x(&cl->cl_ulimit,
10297b99 821 cl->cl_total);
1da177e4
LT
822#if 0
823 /*
824 * This code causes classes to stay way under their
825 * limit when multiple classes are used at gigabit
826 * speed. needs investigation. -kaber
827 */
828 /*
829 * if myf lags behind by more than one clock tick
830 * from the current time, adjust myfadj to prevent
831 * a rate-limited class from going greedy.
832 * in a steady state under rate-limiting, myf
833 * fluctuates within one clock tick.
834 */
835 myf_bound = cur_time - PSCHED_JIFFIE2US(1);
836 if (cl->cl_myf < myf_bound) {
837 delta = cur_time - cl->cl_myf;
838 cl->cl_myfadj += delta;
839 cl->cl_myf += delta;
840 }
841#endif
842 }
843
844 f = max(cl->cl_myf, cl->cl_cfmin);
845 if (f != cl->cl_f) {
846 cl->cl_f = f;
847 cftree_update(cl);
848 update_cfmin(cl->cl_parent);
849 }
850 }
851}
852
853static void
854set_active(struct hfsc_class *cl, unsigned int len)
855{
856 if (cl->cl_flags & HFSC_RSC)
857 init_ed(cl, len);
858 if (cl->cl_flags & HFSC_FSC)
859 init_vf(cl, len);
860
861 list_add_tail(&cl->dlist, &cl->sched->droplist);
862}
863
864static void
865set_passive(struct hfsc_class *cl)
866{
867 if (cl->cl_flags & HFSC_RSC)
868 eltree_remove(cl);
869
870 list_del(&cl->dlist);
871
872 /*
873 * vttree is now handled in update_vf() so that update_vf(cl, 0, 0)
874 * needs to be called explicitly to remove a class from vttree.
875 */
876}
877
1da177e4
LT
878static unsigned int
879qdisc_peek_len(struct Qdisc *sch)
880{
881 struct sk_buff *skb;
882 unsigned int len;
883
03c05f0d 884 skb = sch->ops->peek(sch);
1da177e4 885 if (skb == NULL) {
b00355db 886 qdisc_warn_nonwc("qdisc_peek_len", sch);
1da177e4
LT
887 return 0;
888 }
0abf77e5 889 len = qdisc_pkt_len(skb);
03c05f0d 890
1da177e4
LT
891 return len;
892}
893
894static void
895hfsc_purge_queue(struct Qdisc *sch, struct hfsc_class *cl)
896{
897 unsigned int len = cl->qdisc->q.qlen;
2ccccf5f 898 unsigned int backlog = cl->qdisc->qstats.backlog;
1da177e4
LT
899
900 qdisc_reset(cl->qdisc);
2ccccf5f 901 qdisc_tree_reduce_backlog(cl->qdisc, len, backlog);
1da177e4
LT
902}
903
904static void
905hfsc_adjust_levels(struct hfsc_class *cl)
906{
907 struct hfsc_class *p;
908 unsigned int level;
909
910 do {
911 level = 0;
912 list_for_each_entry(p, &cl->children, siblings) {
210525d6
PM
913 if (p->level >= level)
914 level = p->level + 1;
1da177e4 915 }
210525d6 916 cl->level = level;
1da177e4
LT
917 } while ((cl = cl->cl_parent) != NULL);
918}
919
1da177e4
LT
920static inline struct hfsc_class *
921hfsc_find_class(u32 classid, struct Qdisc *sch)
922{
923 struct hfsc_sched *q = qdisc_priv(sch);
be0d39d5 924 struct Qdisc_class_common *clc;
1da177e4 925
be0d39d5
PM
926 clc = qdisc_class_find(&q->clhash, classid);
927 if (clc == NULL)
928 return NULL;
929 return container_of(clc, struct hfsc_class, cl_common);
1da177e4
LT
930}
931
932static void
933hfsc_change_rsc(struct hfsc_class *cl, struct tc_service_curve *rsc,
10297b99 934 u64 cur_time)
1da177e4
LT
935{
936 sc2isc(rsc, &cl->cl_rsc);
937 rtsc_init(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
938 cl->cl_eligible = cl->cl_deadline;
939 if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
940 cl->cl_eligible.dx = 0;
941 cl->cl_eligible.dy = 0;
942 }
943 cl->cl_flags |= HFSC_RSC;
944}
945
946static void
947hfsc_change_fsc(struct hfsc_class *cl, struct tc_service_curve *fsc)
948{
949 sc2isc(fsc, &cl->cl_fsc);
950 rtsc_init(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total);
951 cl->cl_flags |= HFSC_FSC;
952}
953
954static void
955hfsc_change_usc(struct hfsc_class *cl, struct tc_service_curve *usc,
10297b99 956 u64 cur_time)
1da177e4
LT
957{
958 sc2isc(usc, &cl->cl_usc);
959 rtsc_init(&cl->cl_ulimit, &cl->cl_usc, cur_time, cl->cl_total);
960 cl->cl_flags |= HFSC_USC;
961}
962
27a3421e
PM
963static const struct nla_policy hfsc_policy[TCA_HFSC_MAX + 1] = {
964 [TCA_HFSC_RSC] = { .len = sizeof(struct tc_service_curve) },
965 [TCA_HFSC_FSC] = { .len = sizeof(struct tc_service_curve) },
966 [TCA_HFSC_USC] = { .len = sizeof(struct tc_service_curve) },
967};
968
1da177e4
LT
969static int
970hfsc_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
1e90474c 971 struct nlattr **tca, unsigned long *arg)
1da177e4
LT
972{
973 struct hfsc_sched *q = qdisc_priv(sch);
974 struct hfsc_class *cl = (struct hfsc_class *)*arg;
975 struct hfsc_class *parent = NULL;
1e90474c
PM
976 struct nlattr *opt = tca[TCA_OPTIONS];
977 struct nlattr *tb[TCA_HFSC_MAX + 1];
1da177e4
LT
978 struct tc_service_curve *rsc = NULL, *fsc = NULL, *usc = NULL;
979 u64 cur_time;
cee63723 980 int err;
1da177e4 981
cee63723 982 if (opt == NULL)
1da177e4
LT
983 return -EINVAL;
984
27a3421e 985 err = nla_parse_nested(tb, TCA_HFSC_MAX, opt, hfsc_policy);
cee63723
PM
986 if (err < 0)
987 return err;
988
1e90474c 989 if (tb[TCA_HFSC_RSC]) {
1e90474c 990 rsc = nla_data(tb[TCA_HFSC_RSC]);
1da177e4
LT
991 if (rsc->m1 == 0 && rsc->m2 == 0)
992 rsc = NULL;
993 }
994
1e90474c 995 if (tb[TCA_HFSC_FSC]) {
1e90474c 996 fsc = nla_data(tb[TCA_HFSC_FSC]);
1da177e4
LT
997 if (fsc->m1 == 0 && fsc->m2 == 0)
998 fsc = NULL;
999 }
1000
1e90474c 1001 if (tb[TCA_HFSC_USC]) {
1e90474c 1002 usc = nla_data(tb[TCA_HFSC_USC]);
1da177e4
LT
1003 if (usc->m1 == 0 && usc->m2 == 0)
1004 usc = NULL;
1005 }
1006
1007 if (cl != NULL) {
1008 if (parentid) {
be0d39d5
PM
1009 if (cl->cl_parent &&
1010 cl->cl_parent->cl_common.classid != parentid)
1da177e4
LT
1011 return -EINVAL;
1012 if (cl->cl_parent == NULL && parentid != TC_H_ROOT)
1013 return -EINVAL;
1014 }
3bebcda2 1015 cur_time = psched_get_time();
1da177e4 1016
71bcb09a 1017 if (tca[TCA_RATE]) {
22e0f8b9
JF
1018 spinlock_t *lock = qdisc_root_sleeping_lock(sch);
1019
1020 err = gen_replace_estimator(&cl->bstats, NULL,
1021 &cl->rate_est,
1022 lock,
1023 tca[TCA_RATE]);
71bcb09a
SH
1024 if (err)
1025 return err;
1026 }
1027
1da177e4
LT
1028 sch_tree_lock(sch);
1029 if (rsc != NULL)
1030 hfsc_change_rsc(cl, rsc, cur_time);
1031 if (fsc != NULL)
1032 hfsc_change_fsc(cl, fsc);
1033 if (usc != NULL)
1034 hfsc_change_usc(cl, usc, cur_time);
1035
1036 if (cl->qdisc->q.qlen != 0) {
1037 if (cl->cl_flags & HFSC_RSC)
1038 update_ed(cl, qdisc_peek_len(cl->qdisc));
1039 if (cl->cl_flags & HFSC_FSC)
1040 update_vf(cl, 0, cur_time);
1041 }
1042 sch_tree_unlock(sch);
1043
1da177e4
LT
1044 return 0;
1045 }
1046
1047 if (parentid == TC_H_ROOT)
1048 return -EEXIST;
1049
1050 parent = &q->root;
1051 if (parentid) {
1052 parent = hfsc_find_class(parentid, sch);
1053 if (parent == NULL)
1054 return -ENOENT;
1055 }
1056
1057 if (classid == 0 || TC_H_MAJ(classid ^ sch->handle) != 0)
1058 return -EINVAL;
1059 if (hfsc_find_class(classid, sch))
1060 return -EEXIST;
1061
1062 if (rsc == NULL && fsc == NULL)
1063 return -EINVAL;
1064
0da974f4 1065 cl = kzalloc(sizeof(struct hfsc_class), GFP_KERNEL);
1da177e4
LT
1066 if (cl == NULL)
1067 return -ENOBUFS;
1da177e4 1068
71bcb09a 1069 if (tca[TCA_RATE]) {
22e0f8b9 1070 err = gen_new_estimator(&cl->bstats, NULL, &cl->rate_est,
71bcb09a
SH
1071 qdisc_root_sleeping_lock(sch),
1072 tca[TCA_RATE]);
1073 if (err) {
1074 kfree(cl);
1075 return err;
1076 }
1077 }
1078
1da177e4
LT
1079 if (rsc != NULL)
1080 hfsc_change_rsc(cl, rsc, 0);
1081 if (fsc != NULL)
1082 hfsc_change_fsc(cl, fsc);
1083 if (usc != NULL)
1084 hfsc_change_usc(cl, usc, 0);
1085
be0d39d5 1086 cl->cl_common.classid = classid;
1da177e4 1087 cl->refcnt = 1;
1da177e4
LT
1088 cl->sched = q;
1089 cl->cl_parent = parent;
3511c913 1090 cl->qdisc = qdisc_create_dflt(sch->dev_queue,
bb949fbd 1091 &pfifo_qdisc_ops, classid);
1da177e4
LT
1092 if (cl->qdisc == NULL)
1093 cl->qdisc = &noop_qdisc;
1da177e4
LT
1094 INIT_LIST_HEAD(&cl->children);
1095 cl->vt_tree = RB_ROOT;
1096 cl->cf_tree = RB_ROOT;
1097
1098 sch_tree_lock(sch);
be0d39d5 1099 qdisc_class_hash_insert(&q->clhash, &cl->cl_common);
1da177e4
LT
1100 list_add_tail(&cl->siblings, &parent->children);
1101 if (parent->level == 0)
1102 hfsc_purge_queue(sch, parent);
1103 hfsc_adjust_levels(parent);
1104 cl->cl_pcvtoff = parent->cl_cvtoff;
1105 sch_tree_unlock(sch);
1106
be0d39d5
PM
1107 qdisc_class_hash_grow(sch, &q->clhash);
1108
1da177e4
LT
1109 *arg = (unsigned long)cl;
1110 return 0;
1111}
1112
1da177e4
LT
1113static void
1114hfsc_destroy_class(struct Qdisc *sch, struct hfsc_class *cl)
1115{
1116 struct hfsc_sched *q = qdisc_priv(sch);
1117
ff31ab56 1118 tcf_destroy_chain(&cl->filter_list);
1da177e4 1119 qdisc_destroy(cl->qdisc);
1da177e4 1120 gen_kill_estimator(&cl->bstats, &cl->rate_est);
1da177e4
LT
1121 if (cl != &q->root)
1122 kfree(cl);
1123}
1124
1125static int
1126hfsc_delete_class(struct Qdisc *sch, unsigned long arg)
1127{
1128 struct hfsc_sched *q = qdisc_priv(sch);
1129 struct hfsc_class *cl = (struct hfsc_class *)arg;
1130
1131 if (cl->level > 0 || cl->filter_cnt > 0 || cl == &q->root)
1132 return -EBUSY;
1133
1134 sch_tree_lock(sch);
1135
1da177e4
LT
1136 list_del(&cl->siblings);
1137 hfsc_adjust_levels(cl->cl_parent);
c38c83cb 1138
1da177e4 1139 hfsc_purge_queue(sch, cl);
be0d39d5 1140 qdisc_class_hash_remove(&q->clhash, &cl->cl_common);
c38c83cb 1141
7cd0a638
JP
1142 BUG_ON(--cl->refcnt == 0);
1143 /*
1144 * This shouldn't happen: we "hold" one cops->get() when called
1145 * from tc_ctl_tclass; the destroy method is done from cops->put().
1146 */
1da177e4
LT
1147
1148 sch_tree_unlock(sch);
1149 return 0;
1150}
1151
1152static struct hfsc_class *
1153hfsc_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr)
1154{
1155 struct hfsc_sched *q = qdisc_priv(sch);
a2f79227 1156 struct hfsc_class *head, *cl;
1da177e4
LT
1157 struct tcf_result res;
1158 struct tcf_proto *tcf;
1159 int result;
1160
1161 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0 &&
1162 (cl = hfsc_find_class(skb->priority, sch)) != NULL)
1163 if (cl->level == 0)
1164 return cl;
1165
c27f339a 1166 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
a2f79227 1167 head = &q->root;
25d8c0d5 1168 tcf = rcu_dereference_bh(q->root.filter_list);
3b3ae880 1169 while (tcf && (result = tc_classify(skb, tcf, &res, false)) >= 0) {
1da177e4
LT
1170#ifdef CONFIG_NET_CLS_ACT
1171 switch (result) {
1172 case TC_ACT_QUEUED:
10297b99 1173 case TC_ACT_STOLEN:
378a2f09 1174 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
10297b99 1175 case TC_ACT_SHOT:
1da177e4
LT
1176 return NULL;
1177 }
1da177e4 1178#endif
cc7ec456
ED
1179 cl = (struct hfsc_class *)res.class;
1180 if (!cl) {
1181 cl = hfsc_find_class(res.classid, sch);
1182 if (!cl)
1da177e4 1183 break; /* filter selected invalid classid */
a2f79227
PM
1184 if (cl->level >= head->level)
1185 break; /* filter may only point downwards */
1da177e4
LT
1186 }
1187
1188 if (cl->level == 0)
1189 return cl; /* hit leaf class */
1190
1191 /* apply inner filter chain */
25d8c0d5 1192 tcf = rcu_dereference_bh(cl->filter_list);
a2f79227 1193 head = cl;
1da177e4
LT
1194 }
1195
1196 /* classification failed, try default class */
1197 cl = hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch->handle), q->defcls), sch);
1198 if (cl == NULL || cl->level > 0)
1199 return NULL;
1200
1201 return cl;
1202}
1203
1204static int
1205hfsc_graft_class(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
10297b99 1206 struct Qdisc **old)
1da177e4
LT
1207{
1208 struct hfsc_class *cl = (struct hfsc_class *)arg;
1209
1da177e4
LT
1210 if (cl->level > 0)
1211 return -EINVAL;
1212 if (new == NULL) {
3511c913 1213 new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
be0d39d5 1214 cl->cl_common.classid);
1da177e4
LT
1215 if (new == NULL)
1216 new = &noop_qdisc;
1217 }
1218
86a7996c 1219 *old = qdisc_replace(sch, new, &cl->qdisc);
1da177e4
LT
1220 return 0;
1221}
1222
1223static struct Qdisc *
1224hfsc_class_leaf(struct Qdisc *sch, unsigned long arg)
1225{
1226 struct hfsc_class *cl = (struct hfsc_class *)arg;
1227
5b9a9ccf 1228 if (cl->level == 0)
1da177e4
LT
1229 return cl->qdisc;
1230
1231 return NULL;
1232}
1233
f973b913
PM
1234static void
1235hfsc_qlen_notify(struct Qdisc *sch, unsigned long arg)
1236{
1237 struct hfsc_class *cl = (struct hfsc_class *)arg;
1238
1239 if (cl->qdisc->q.qlen == 0) {
1240 update_vf(cl, 0, 0);
1241 set_passive(cl);
1242 }
1243}
1244
1da177e4
LT
1245static unsigned long
1246hfsc_get_class(struct Qdisc *sch, u32 classid)
1247{
1248 struct hfsc_class *cl = hfsc_find_class(classid, sch);
1249
1250 if (cl != NULL)
1251 cl->refcnt++;
1252
1253 return (unsigned long)cl;
1254}
1255
1256static void
1257hfsc_put_class(struct Qdisc *sch, unsigned long arg)
1258{
1259 struct hfsc_class *cl = (struct hfsc_class *)arg;
1260
1261 if (--cl->refcnt == 0)
1262 hfsc_destroy_class(sch, cl);
1263}
1264
1265static unsigned long
1266hfsc_bind_tcf(struct Qdisc *sch, unsigned long parent, u32 classid)
1267{
1268 struct hfsc_class *p = (struct hfsc_class *)parent;
1269 struct hfsc_class *cl = hfsc_find_class(classid, sch);
1270
1271 if (cl != NULL) {
1272 if (p != NULL && p->level <= cl->level)
1273 return 0;
1274 cl->filter_cnt++;
1275 }
1276
1277 return (unsigned long)cl;
1278}
1279
1280static void
1281hfsc_unbind_tcf(struct Qdisc *sch, unsigned long arg)
1282{
1283 struct hfsc_class *cl = (struct hfsc_class *)arg;
1284
1285 cl->filter_cnt--;
1286}
1287
25d8c0d5 1288static struct tcf_proto __rcu **
1da177e4
LT
1289hfsc_tcf_chain(struct Qdisc *sch, unsigned long arg)
1290{
1291 struct hfsc_sched *q = qdisc_priv(sch);
1292 struct hfsc_class *cl = (struct hfsc_class *)arg;
1293
1294 if (cl == NULL)
1295 cl = &q->root;
1296
1297 return &cl->filter_list;
1298}
1299
1300static int
1301hfsc_dump_sc(struct sk_buff *skb, int attr, struct internal_sc *sc)
1302{
1303 struct tc_service_curve tsc;
1304
1305 tsc.m1 = sm2m(sc->sm1);
1306 tsc.d = dx2d(sc->dx);
1307 tsc.m2 = sm2m(sc->sm2);
1b34ec43
DM
1308 if (nla_put(skb, attr, sizeof(tsc), &tsc))
1309 goto nla_put_failure;
1da177e4
LT
1310
1311 return skb->len;
1312
1e90474c 1313 nla_put_failure:
1da177e4
LT
1314 return -1;
1315}
1316
cc7ec456 1317static int
1da177e4
LT
1318hfsc_dump_curves(struct sk_buff *skb, struct hfsc_class *cl)
1319{
1320 if ((cl->cl_flags & HFSC_RSC) &&
1321 (hfsc_dump_sc(skb, TCA_HFSC_RSC, &cl->cl_rsc) < 0))
1e90474c 1322 goto nla_put_failure;
1da177e4
LT
1323
1324 if ((cl->cl_flags & HFSC_FSC) &&
1325 (hfsc_dump_sc(skb, TCA_HFSC_FSC, &cl->cl_fsc) < 0))
1e90474c 1326 goto nla_put_failure;
1da177e4
LT
1327
1328 if ((cl->cl_flags & HFSC_USC) &&
1329 (hfsc_dump_sc(skb, TCA_HFSC_USC, &cl->cl_usc) < 0))
1e90474c 1330 goto nla_put_failure;
1da177e4
LT
1331
1332 return skb->len;
1333
1e90474c 1334 nla_put_failure:
1da177e4
LT
1335 return -1;
1336}
1337
1338static int
1339hfsc_dump_class(struct Qdisc *sch, unsigned long arg, struct sk_buff *skb,
10297b99 1340 struct tcmsg *tcm)
1da177e4
LT
1341{
1342 struct hfsc_class *cl = (struct hfsc_class *)arg;
4b3550ef 1343 struct nlattr *nest;
1da177e4 1344
be0d39d5
PM
1345 tcm->tcm_parent = cl->cl_parent ? cl->cl_parent->cl_common.classid :
1346 TC_H_ROOT;
1347 tcm->tcm_handle = cl->cl_common.classid;
1da177e4
LT
1348 if (cl->level == 0)
1349 tcm->tcm_info = cl->qdisc->handle;
1350
4b3550ef
PM
1351 nest = nla_nest_start(skb, TCA_OPTIONS);
1352 if (nest == NULL)
1353 goto nla_put_failure;
1da177e4 1354 if (hfsc_dump_curves(skb, cl) < 0)
1e90474c 1355 goto nla_put_failure;
d59b7d80 1356 return nla_nest_end(skb, nest);
1da177e4 1357
1e90474c 1358 nla_put_failure:
4b3550ef 1359 nla_nest_cancel(skb, nest);
bc3ed28c 1360 return -EMSGSIZE;
1da177e4
LT
1361}
1362
1363static int
1364hfsc_dump_class_stats(struct Qdisc *sch, unsigned long arg,
1365 struct gnet_dump *d)
1366{
1367 struct hfsc_class *cl = (struct hfsc_class *)arg;
1368 struct tc_hfsc_stats xstats;
1369
f5a59b73 1370 cl->qstats.backlog = cl->qdisc->qstats.backlog;
1da177e4
LT
1371 xstats.level = cl->level;
1372 xstats.period = cl->cl_vtperiod;
1373 xstats.work = cl->cl_total;
1374 xstats.rtwork = cl->cl_cumul;
1375
22e0f8b9 1376 if (gnet_stats_copy_basic(d, NULL, &cl->bstats) < 0 ||
d250a5f9 1377 gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
b0ab6f92 1378 gnet_stats_copy_queue(d, NULL, &cl->qstats, cl->qdisc->q.qlen) < 0)
1da177e4
LT
1379 return -1;
1380
1381 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
1382}
1383
1384
1385
1386static void
1387hfsc_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1388{
1389 struct hfsc_sched *q = qdisc_priv(sch);
1390 struct hfsc_class *cl;
1391 unsigned int i;
1392
1393 if (arg->stop)
1394 return;
1395
be0d39d5 1396 for (i = 0; i < q->clhash.hashsize; i++) {
b67bfe0d 1397 hlist_for_each_entry(cl, &q->clhash.hash[i],
be0d39d5 1398 cl_common.hnode) {
1da177e4
LT
1399 if (arg->count < arg->skip) {
1400 arg->count++;
1401 continue;
1402 }
1403 if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
1404 arg->stop = 1;
1405 return;
1406 }
1407 arg->count++;
1408 }
1409 }
1410}
1411
1412static void
ed2b229a 1413hfsc_schedule_watchdog(struct Qdisc *sch)
1da177e4
LT
1414{
1415 struct hfsc_sched *q = qdisc_priv(sch);
1416 struct hfsc_class *cl;
1417 u64 next_time = 0;
1da177e4 1418
cc7ec456
ED
1419 cl = eltree_get_minel(q);
1420 if (cl)
1da177e4
LT
1421 next_time = cl->cl_e;
1422 if (q->root.cl_cfmin != 0) {
1423 if (next_time == 0 || next_time > q->root.cl_cfmin)
1424 next_time = q->root.cl_cfmin;
1425 }
3d50f231 1426 WARN_ON(next_time == 0);
ed2b229a 1427 qdisc_watchdog_schedule(&q->watchdog, next_time);
1da177e4
LT
1428}
1429
1430static int
1e90474c 1431hfsc_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1da177e4
LT
1432{
1433 struct hfsc_sched *q = qdisc_priv(sch);
1434 struct tc_hfsc_qopt *qopt;
be0d39d5 1435 int err;
1da177e4 1436
1e90474c 1437 if (opt == NULL || nla_len(opt) < sizeof(*qopt))
1da177e4 1438 return -EINVAL;
1e90474c 1439 qopt = nla_data(opt);
1da177e4 1440
1da177e4 1441 q->defcls = qopt->defcls;
be0d39d5
PM
1442 err = qdisc_class_hash_init(&q->clhash);
1443 if (err < 0)
1444 return err;
1da177e4
LT
1445 q->eligible = RB_ROOT;
1446 INIT_LIST_HEAD(&q->droplist);
1da177e4 1447
be0d39d5 1448 q->root.cl_common.classid = sch->handle;
1da177e4 1449 q->root.refcnt = 1;
1da177e4 1450 q->root.sched = q;
3511c913 1451 q->root.qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
9f9afec4 1452 sch->handle);
1da177e4
LT
1453 if (q->root.qdisc == NULL)
1454 q->root.qdisc = &noop_qdisc;
1da177e4
LT
1455 INIT_LIST_HEAD(&q->root.children);
1456 q->root.vt_tree = RB_ROOT;
1457 q->root.cf_tree = RB_ROOT;
1458
be0d39d5
PM
1459 qdisc_class_hash_insert(&q->clhash, &q->root.cl_common);
1460 qdisc_class_hash_grow(sch, &q->clhash);
1da177e4 1461
ed2b229a 1462 qdisc_watchdog_init(&q->watchdog, sch);
1da177e4
LT
1463
1464 return 0;
1465}
1466
1467static int
1e90474c 1468hfsc_change_qdisc(struct Qdisc *sch, struct nlattr *opt)
1da177e4
LT
1469{
1470 struct hfsc_sched *q = qdisc_priv(sch);
1471 struct tc_hfsc_qopt *qopt;
1472
1e90474c 1473 if (opt == NULL || nla_len(opt) < sizeof(*qopt))
1da177e4 1474 return -EINVAL;
1e90474c 1475 qopt = nla_data(opt);
1da177e4
LT
1476
1477 sch_tree_lock(sch);
1478 q->defcls = qopt->defcls;
1479 sch_tree_unlock(sch);
1480
1481 return 0;
1482}
1483
1484static void
1485hfsc_reset_class(struct hfsc_class *cl)
1486{
1487 cl->cl_total = 0;
1488 cl->cl_cumul = 0;
1489 cl->cl_d = 0;
1490 cl->cl_e = 0;
1491 cl->cl_vt = 0;
1492 cl->cl_vtadj = 0;
1493 cl->cl_vtoff = 0;
1494 cl->cl_cvtmin = 0;
1495 cl->cl_cvtmax = 0;
1496 cl->cl_cvtoff = 0;
1497 cl->cl_pcvtoff = 0;
1498 cl->cl_vtperiod = 0;
1499 cl->cl_parentperiod = 0;
1500 cl->cl_f = 0;
1501 cl->cl_myf = 0;
1502 cl->cl_myfadj = 0;
1503 cl->cl_cfmin = 0;
1504 cl->cl_nactive = 0;
1505
1506 cl->vt_tree = RB_ROOT;
1507 cl->cf_tree = RB_ROOT;
1508 qdisc_reset(cl->qdisc);
1509
1510 if (cl->cl_flags & HFSC_RSC)
1511 rtsc_init(&cl->cl_deadline, &cl->cl_rsc, 0, 0);
1512 if (cl->cl_flags & HFSC_FSC)
1513 rtsc_init(&cl->cl_virtual, &cl->cl_fsc, 0, 0);
1514 if (cl->cl_flags & HFSC_USC)
1515 rtsc_init(&cl->cl_ulimit, &cl->cl_usc, 0, 0);
1516}
1517
1518static void
1519hfsc_reset_qdisc(struct Qdisc *sch)
1520{
1521 struct hfsc_sched *q = qdisc_priv(sch);
1522 struct hfsc_class *cl;
1523 unsigned int i;
1524
be0d39d5 1525 for (i = 0; i < q->clhash.hashsize; i++) {
b67bfe0d 1526 hlist_for_each_entry(cl, &q->clhash.hash[i], cl_common.hnode)
1da177e4
LT
1527 hfsc_reset_class(cl);
1528 }
1da177e4
LT
1529 q->eligible = RB_ROOT;
1530 INIT_LIST_HEAD(&q->droplist);
ed2b229a 1531 qdisc_watchdog_cancel(&q->watchdog);
1da177e4
LT
1532 sch->q.qlen = 0;
1533}
1534
1535static void
1536hfsc_destroy_qdisc(struct Qdisc *sch)
1537{
1538 struct hfsc_sched *q = qdisc_priv(sch);
b67bfe0d 1539 struct hlist_node *next;
be0d39d5 1540 struct hfsc_class *cl;
1da177e4
LT
1541 unsigned int i;
1542
be0d39d5 1543 for (i = 0; i < q->clhash.hashsize; i++) {
b67bfe0d 1544 hlist_for_each_entry(cl, &q->clhash.hash[i], cl_common.hnode)
a4aebb83
PM
1545 tcf_destroy_chain(&cl->filter_list);
1546 }
be0d39d5 1547 for (i = 0; i < q->clhash.hashsize; i++) {
b67bfe0d 1548 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
be0d39d5 1549 cl_common.hnode)
1da177e4
LT
1550 hfsc_destroy_class(sch, cl);
1551 }
be0d39d5 1552 qdisc_class_hash_destroy(&q->clhash);
ed2b229a 1553 qdisc_watchdog_cancel(&q->watchdog);
1da177e4
LT
1554}
1555
1556static int
1557hfsc_dump_qdisc(struct Qdisc *sch, struct sk_buff *skb)
1558{
1559 struct hfsc_sched *q = qdisc_priv(sch);
27a884dc 1560 unsigned char *b = skb_tail_pointer(skb);
1da177e4 1561 struct tc_hfsc_qopt qopt;
f5a59b73 1562 struct hfsc_class *cl;
f5a59b73
ED
1563 unsigned int i;
1564
1565 sch->qstats.backlog = 0;
1566 for (i = 0; i < q->clhash.hashsize; i++) {
b67bfe0d 1567 hlist_for_each_entry(cl, &q->clhash.hash[i], cl_common.hnode)
f5a59b73
ED
1568 sch->qstats.backlog += cl->qdisc->qstats.backlog;
1569 }
1da177e4
LT
1570
1571 qopt.defcls = q->defcls;
1b34ec43
DM
1572 if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1573 goto nla_put_failure;
1da177e4
LT
1574 return skb->len;
1575
1e90474c 1576 nla_put_failure:
dc5fc579 1577 nlmsg_trim(skb, b);
1da177e4
LT
1578 return -1;
1579}
1580
1581static int
1582hfsc_enqueue(struct sk_buff *skb, struct Qdisc *sch)
1583{
1584 struct hfsc_class *cl;
dc0a0011 1585 int uninitialized_var(err);
1da177e4
LT
1586
1587 cl = hfsc_classify(skb, sch, &err);
1588 if (cl == NULL) {
c27f339a 1589 if (err & __NET_XMIT_BYPASS)
25331d6c 1590 qdisc_qstats_drop(sch);
1da177e4
LT
1591 kfree_skb(skb);
1592 return err;
1593 }
1594
5f86173b 1595 err = qdisc_enqueue(skb, cl->qdisc);
1da177e4 1596 if (unlikely(err != NET_XMIT_SUCCESS)) {
378a2f09
JP
1597 if (net_xmit_drop_count(err)) {
1598 cl->qstats.drops++;
25331d6c 1599 qdisc_qstats_drop(sch);
378a2f09 1600 }
1da177e4
LT
1601 return err;
1602 }
1603
1604 if (cl->qdisc->q.qlen == 1)
0abf77e5 1605 set_active(cl, qdisc_pkt_len(skb));
1da177e4 1606
1da177e4
LT
1607 sch->q.qlen++;
1608
1609 return NET_XMIT_SUCCESS;
1610}
1611
1612static struct sk_buff *
1613hfsc_dequeue(struct Qdisc *sch)
1614{
1615 struct hfsc_sched *q = qdisc_priv(sch);
1616 struct hfsc_class *cl;
1617 struct sk_buff *skb;
1618 u64 cur_time;
1619 unsigned int next_len;
1620 int realtime = 0;
1621
1622 if (sch->q.qlen == 0)
1623 return NULL;
1da177e4 1624
3bebcda2 1625 cur_time = psched_get_time();
1da177e4
LT
1626
1627 /*
1628 * if there are eligible classes, use real-time criteria.
1629 * find the class with the minimum deadline among
1630 * the eligible classes.
1631 */
cc7ec456
ED
1632 cl = eltree_get_mindl(q, cur_time);
1633 if (cl) {
1da177e4
LT
1634 realtime = 1;
1635 } else {
1636 /*
1637 * use link-sharing criteria
1638 * get the class with the minimum vt in the hierarchy
1639 */
1640 cl = vttree_get_minvt(&q->root, cur_time);
1641 if (cl == NULL) {
25331d6c 1642 qdisc_qstats_overlimit(sch);
ed2b229a 1643 hfsc_schedule_watchdog(sch);
1da177e4
LT
1644 return NULL;
1645 }
1646 }
1647
77be155c 1648 skb = qdisc_dequeue_peeked(cl->qdisc);
1da177e4 1649 if (skb == NULL) {
b00355db 1650 qdisc_warn_nonwc("HFSC", cl->qdisc);
1da177e4
LT
1651 return NULL;
1652 }
1653
2dd875ff 1654 bstats_update(&cl->bstats, skb);
0abf77e5 1655 update_vf(cl, qdisc_pkt_len(skb), cur_time);
1da177e4 1656 if (realtime)
0abf77e5 1657 cl->cl_cumul += qdisc_pkt_len(skb);
1da177e4
LT
1658
1659 if (cl->qdisc->q.qlen != 0) {
1660 if (cl->cl_flags & HFSC_RSC) {
1661 /* update ed */
1662 next_len = qdisc_peek_len(cl->qdisc);
1663 if (realtime)
1664 update_ed(cl, next_len);
1665 else
1666 update_d(cl, next_len);
1667 }
1668 } else {
1669 /* the class becomes passive */
1670 set_passive(cl);
1671 }
1672
fd245a4a 1673 qdisc_unthrottled(sch);
9190b3b3 1674 qdisc_bstats_update(sch, skb);
1da177e4
LT
1675 sch->q.qlen--;
1676
1677 return skb;
1678}
1679
1da177e4
LT
1680static unsigned int
1681hfsc_drop(struct Qdisc *sch)
1682{
1683 struct hfsc_sched *q = qdisc_priv(sch);
1684 struct hfsc_class *cl;
1685 unsigned int len;
1686
1687 list_for_each_entry(cl, &q->droplist, dlist) {
1688 if (cl->qdisc->ops->drop != NULL &&
1689 (len = cl->qdisc->ops->drop(cl->qdisc)) > 0) {
1690 if (cl->qdisc->q.qlen == 0) {
1691 update_vf(cl, 0, 0);
1692 set_passive(cl);
1693 } else {
1694 list_move_tail(&cl->dlist, &q->droplist);
1695 }
1696 cl->qstats.drops++;
25331d6c 1697 qdisc_qstats_drop(sch);
1da177e4
LT
1698 sch->q.qlen--;
1699 return len;
1700 }
1701 }
1702 return 0;
1703}
1704
20fea08b 1705static const struct Qdisc_class_ops hfsc_class_ops = {
1da177e4
LT
1706 .change = hfsc_change_class,
1707 .delete = hfsc_delete_class,
1708 .graft = hfsc_graft_class,
1709 .leaf = hfsc_class_leaf,
f973b913 1710 .qlen_notify = hfsc_qlen_notify,
1da177e4
LT
1711 .get = hfsc_get_class,
1712 .put = hfsc_put_class,
1713 .bind_tcf = hfsc_bind_tcf,
1714 .unbind_tcf = hfsc_unbind_tcf,
1715 .tcf_chain = hfsc_tcf_chain,
1716 .dump = hfsc_dump_class,
1717 .dump_stats = hfsc_dump_class_stats,
1718 .walk = hfsc_walk
1719};
1720
20fea08b 1721static struct Qdisc_ops hfsc_qdisc_ops __read_mostly = {
1da177e4
LT
1722 .id = "hfsc",
1723 .init = hfsc_init_qdisc,
1724 .change = hfsc_change_qdisc,
1725 .reset = hfsc_reset_qdisc,
1726 .destroy = hfsc_destroy_qdisc,
1727 .dump = hfsc_dump_qdisc,
1728 .enqueue = hfsc_enqueue,
1729 .dequeue = hfsc_dequeue,
77be155c 1730 .peek = qdisc_peek_dequeued,
1da177e4
LT
1731 .drop = hfsc_drop,
1732 .cl_ops = &hfsc_class_ops,
1733 .priv_size = sizeof(struct hfsc_sched),
1734 .owner = THIS_MODULE
1735};
1736
1737static int __init
1738hfsc_init(void)
1739{
1740 return register_qdisc(&hfsc_qdisc_ops);
1741}
1742
1743static void __exit
1744hfsc_cleanup(void)
1745{
1746 unregister_qdisc(&hfsc_qdisc_ops);
1747}
1748
1749MODULE_LICENSE("GPL");
1750module_init(hfsc_init);
1751module_exit(hfsc_cleanup);