[NET]: Kill Documentation/networking/TODO
[linux-2.6-block.git] / net / irda / af_irda.c
CommitLineData
1da177e4
LT
1/*********************************************************************
2 *
3 * Filename: af_irda.c
4 * Version: 0.9
5 * Description: IrDA sockets implementation
6 * Status: Stable
7 * Author: Dag Brattli <dagb@cs.uit.no>
8 * Created at: Sun May 31 10:12:43 1998
9 * Modified at: Sat Dec 25 21:10:23 1999
10 * Modified by: Dag Brattli <dag@brattli.net>
11 * Sources: af_netroom.c, af_ax25.c, af_rose.c, af_x25.c etc.
12 *
13 * Copyright (c) 1999 Dag Brattli <dagb@cs.uit.no>
14 * Copyright (c) 1999-2003 Jean Tourrilhes <jt@hpl.hp.com>
15 * All Rights Reserved.
16 *
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License as
19 * published by the Free Software Foundation; either version 2 of
20 * the License, or (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 *
27 * You should have received a copy of the GNU General Public License
28 * along with this program; if not, write to the Free Software
29 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
30 * MA 02111-1307 USA
31 *
32 * Linux-IrDA now supports four different types of IrDA sockets:
33 *
34 * o SOCK_STREAM: TinyTP connections with SAR disabled. The
35 * max SDU size is 0 for conn. of this type
36 * o SOCK_SEQPACKET: TinyTP connections with SAR enabled. TTP may
37 * fragment the messages, but will preserve
38 * the message boundaries
39 * o SOCK_DGRAM: IRDAPROTO_UNITDATA: TinyTP connections with Unitdata
40 * (unreliable) transfers
41 * IRDAPROTO_ULTRA: Connectionless and unreliable data
42 *
43 ********************************************************************/
44
45#include <linux/config.h>
4fc268d2 46#include <linux/capability.h>
1da177e4
LT
47#include <linux/module.h>
48#include <linux/types.h>
49#include <linux/socket.h>
50#include <linux/sockios.h>
51#include <linux/init.h>
52#include <linux/net.h>
53#include <linux/irda.h>
54#include <linux/poll.h>
55
56#include <asm/ioctls.h> /* TIOCOUTQ, TIOCINQ */
57#include <asm/uaccess.h>
58
59#include <net/sock.h>
c752f073 60#include <net/tcp_states.h>
1da177e4
LT
61
62#include <net/irda/af_irda.h>
63
64static int irda_create(struct socket *sock, int protocol);
65
90ddc4f0
ED
66static const struct proto_ops irda_stream_ops;
67static const struct proto_ops irda_seqpacket_ops;
68static const struct proto_ops irda_dgram_ops;
1da177e4
LT
69
70#ifdef CONFIG_IRDA_ULTRA
90ddc4f0 71static const struct proto_ops irda_ultra_ops;
1da177e4
LT
72#define ULTRA_MAX_DATA 382
73#endif /* CONFIG_IRDA_ULTRA */
74
75#define IRDA_MAX_HEADER (TTP_MAX_HEADER)
76
77/*
78 * Function irda_data_indication (instance, sap, skb)
79 *
80 * Received some data from TinyTP. Just queue it on the receive queue
81 *
82 */
83static int irda_data_indication(void *instance, void *sap, struct sk_buff *skb)
84{
85 struct irda_sock *self;
86 struct sock *sk;
87 int err;
88
89 IRDA_DEBUG(3, "%s()\n", __FUNCTION__);
90
91 self = instance;
92 sk = instance;
93 IRDA_ASSERT(sk != NULL, return -1;);
94
95 err = sock_queue_rcv_skb(sk, skb);
96 if (err) {
97 IRDA_DEBUG(1, "%s(), error: no more mem!\n", __FUNCTION__);
98 self->rx_flow = FLOW_STOP;
99
100 /* When we return error, TTP will need to requeue the skb */
101 return err;
102 }
103
104 return 0;
105}
106
107/*
108 * Function irda_disconnect_indication (instance, sap, reason, skb)
109 *
110 * Connection has been closed. Check reason to find out why
111 *
112 */
113static void irda_disconnect_indication(void *instance, void *sap,
114 LM_REASON reason, struct sk_buff *skb)
115{
116 struct irda_sock *self;
117 struct sock *sk;
118
119 self = instance;
120
121 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
122
123 /* Don't care about it, but let's not leak it */
124 if(skb)
125 dev_kfree_skb(skb);
126
127 sk = instance;
128 if (sk == NULL) {
129 IRDA_DEBUG(0, "%s(%p) : BUG : sk is NULL\n",
130 __FUNCTION__, self);
131 return;
132 }
133
134 /* Prevent race conditions with irda_release() and irda_shutdown() */
135 if (!sock_flag(sk, SOCK_DEAD) && sk->sk_state != TCP_CLOSE) {
136 sk->sk_state = TCP_CLOSE;
137 sk->sk_err = ECONNRESET;
138 sk->sk_shutdown |= SEND_SHUTDOWN;
139
140 sk->sk_state_change(sk);
141 /* Uh-oh... Should use sock_orphan ? */
142 sock_set_flag(sk, SOCK_DEAD);
143
144 /* Close our TSAP.
145 * If we leave it open, IrLMP put it back into the list of
146 * unconnected LSAPs. The problem is that any incoming request
147 * can then be matched to this socket (and it will be, because
148 * it is at the head of the list). This would prevent any
149 * listening socket waiting on the same TSAP to get those
150 * requests. Some apps forget to close sockets, or hang to it
151 * a bit too long, so we may stay in this dead state long
152 * enough to be noticed...
153 * Note : all socket function do check sk->sk_state, so we are
154 * safe...
155 * Jean II
156 */
157 if (self->tsap) {
158 irttp_close_tsap(self->tsap);
159 self->tsap = NULL;
160 }
161 }
162
163 /* Note : once we are there, there is not much you want to do
164 * with the socket anymore, apart from closing it.
165 * For example, bind() and connect() won't reset sk->sk_err,
166 * sk->sk_shutdown and sk->sk_flags to valid values...
167 * Jean II
168 */
169}
170
171/*
172 * Function irda_connect_confirm (instance, sap, qos, max_sdu_size, skb)
173 *
174 * Connections has been confirmed by the remote device
175 *
176 */
177static void irda_connect_confirm(void *instance, void *sap,
178 struct qos_info *qos,
179 __u32 max_sdu_size, __u8 max_header_size,
180 struct sk_buff *skb)
181{
182 struct irda_sock *self;
183 struct sock *sk;
184
185 self = instance;
186
187 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
188
189 sk = instance;
190 if (sk == NULL) {
191 dev_kfree_skb(skb);
192 return;
193 }
194
195 dev_kfree_skb(skb);
196 // Should be ??? skb_queue_tail(&sk->sk_receive_queue, skb);
197
198 /* How much header space do we need to reserve */
199 self->max_header_size = max_header_size;
200
201 /* IrTTP max SDU size in transmit direction */
202 self->max_sdu_size_tx = max_sdu_size;
203
204 /* Find out what the largest chunk of data that we can transmit is */
205 switch (sk->sk_type) {
206 case SOCK_STREAM:
207 if (max_sdu_size != 0) {
208 IRDA_ERROR("%s: max_sdu_size must be 0\n",
209 __FUNCTION__);
210 return;
211 }
212 self->max_data_size = irttp_get_max_seg_size(self->tsap);
213 break;
214 case SOCK_SEQPACKET:
215 if (max_sdu_size == 0) {
216 IRDA_ERROR("%s: max_sdu_size cannot be 0\n",
217 __FUNCTION__);
218 return;
219 }
220 self->max_data_size = max_sdu_size;
221 break;
222 default:
223 self->max_data_size = irttp_get_max_seg_size(self->tsap);
224 };
225
226 IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __FUNCTION__,
227 self->max_data_size);
228
229 memcpy(&self->qos_tx, qos, sizeof(struct qos_info));
230
231 /* We are now connected! */
232 sk->sk_state = TCP_ESTABLISHED;
233 sk->sk_state_change(sk);
234}
235
236/*
237 * Function irda_connect_indication(instance, sap, qos, max_sdu_size, userdata)
238 *
239 * Incoming connection
240 *
241 */
242static void irda_connect_indication(void *instance, void *sap,
243 struct qos_info *qos, __u32 max_sdu_size,
244 __u8 max_header_size, struct sk_buff *skb)
245{
246 struct irda_sock *self;
247 struct sock *sk;
248
249 self = instance;
250
251 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
252
253 sk = instance;
254 if (sk == NULL) {
255 dev_kfree_skb(skb);
256 return;
257 }
258
259 /* How much header space do we need to reserve */
260 self->max_header_size = max_header_size;
261
262 /* IrTTP max SDU size in transmit direction */
263 self->max_sdu_size_tx = max_sdu_size;
264
265 /* Find out what the largest chunk of data that we can transmit is */
266 switch (sk->sk_type) {
267 case SOCK_STREAM:
268 if (max_sdu_size != 0) {
269 IRDA_ERROR("%s: max_sdu_size must be 0\n",
270 __FUNCTION__);
271 kfree_skb(skb);
272 return;
273 }
274 self->max_data_size = irttp_get_max_seg_size(self->tsap);
275 break;
276 case SOCK_SEQPACKET:
277 if (max_sdu_size == 0) {
278 IRDA_ERROR("%s: max_sdu_size cannot be 0\n",
279 __FUNCTION__);
280 kfree_skb(skb);
281 return;
282 }
283 self->max_data_size = max_sdu_size;
284 break;
285 default:
286 self->max_data_size = irttp_get_max_seg_size(self->tsap);
287 };
288
289 IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __FUNCTION__,
290 self->max_data_size);
291
292 memcpy(&self->qos_tx, qos, sizeof(struct qos_info));
293
294 skb_queue_tail(&sk->sk_receive_queue, skb);
295 sk->sk_state_change(sk);
296}
297
298/*
299 * Function irda_connect_response (handle)
300 *
301 * Accept incoming connection
302 *
303 */
304static void irda_connect_response(struct irda_sock *self)
305{
306 struct sk_buff *skb;
307
308 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
309
310 IRDA_ASSERT(self != NULL, return;);
311
312 skb = dev_alloc_skb(64);
313 if (skb == NULL) {
314 IRDA_DEBUG(0, "%s() Unable to allocate sk_buff!\n",
315 __FUNCTION__);
316 return;
317 }
318
319 /* Reserve space for MUX_CONTROL and LAP header */
320 skb_reserve(skb, IRDA_MAX_HEADER);
321
322 irttp_connect_response(self->tsap, self->max_sdu_size_rx, skb);
323}
324
325/*
326 * Function irda_flow_indication (instance, sap, flow)
327 *
328 * Used by TinyTP to tell us if it can accept more data or not
329 *
330 */
331static void irda_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
332{
333 struct irda_sock *self;
334 struct sock *sk;
335
336 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
337
338 self = instance;
339 sk = instance;
340 IRDA_ASSERT(sk != NULL, return;);
341
342 switch (flow) {
343 case FLOW_STOP:
344 IRDA_DEBUG(1, "%s(), IrTTP wants us to slow down\n",
345 __FUNCTION__);
346 self->tx_flow = flow;
347 break;
348 case FLOW_START:
349 self->tx_flow = flow;
350 IRDA_DEBUG(1, "%s(), IrTTP wants us to start again\n",
351 __FUNCTION__);
352 wake_up_interruptible(sk->sk_sleep);
353 break;
354 default:
355 IRDA_DEBUG(0, "%s(), Unknown flow command!\n", __FUNCTION__);
356 /* Unknown flow command, better stop */
357 self->tx_flow = flow;
358 break;
359 }
360}
361
362/*
363 * Function irda_getvalue_confirm (obj_id, value, priv)
364 *
365 * Got answer from remote LM-IAS, just pass object to requester...
366 *
367 * Note : duplicate from above, but we need our own version that
368 * doesn't touch the dtsap_sel and save the full value structure...
369 */
370static void irda_getvalue_confirm(int result, __u16 obj_id,
371 struct ias_value *value, void *priv)
372{
373 struct irda_sock *self;
374
375 self = (struct irda_sock *) priv;
376 if (!self) {
377 IRDA_WARNING("%s: lost myself!\n", __FUNCTION__);
378 return;
379 }
380
381 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
382
383 /* We probably don't need to make any more queries */
384 iriap_close(self->iriap);
385 self->iriap = NULL;
386
387 /* Check if request succeeded */
388 if (result != IAS_SUCCESS) {
389 IRDA_DEBUG(1, "%s(), IAS query failed! (%d)\n", __FUNCTION__,
390 result);
391
392 self->errno = result; /* We really need it later */
393
394 /* Wake up any processes waiting for result */
395 wake_up_interruptible(&self->query_wait);
396
397 return;
398 }
399
400 /* Pass the object to the caller (so the caller must delete it) */
401 self->ias_result = value;
402 self->errno = 0;
403
404 /* Wake up any processes waiting for result */
405 wake_up_interruptible(&self->query_wait);
406}
407
408/*
409 * Function irda_selective_discovery_indication (discovery)
410 *
411 * Got a selective discovery indication from IrLMP.
412 *
413 * IrLMP is telling us that this node is new and matching our hint bit
414 * filter. Wake up any process waiting for answer...
415 */
416static void irda_selective_discovery_indication(discinfo_t *discovery,
417 DISCOVERY_MODE mode,
418 void *priv)
419{
420 struct irda_sock *self;
421
422 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
423
424 self = (struct irda_sock *) priv;
425 if (!self) {
426 IRDA_WARNING("%s: lost myself!\n", __FUNCTION__);
427 return;
428 }
429
430 /* Pass parameter to the caller */
431 self->cachedaddr = discovery->daddr;
432
433 /* Wake up process if its waiting for device to be discovered */
434 wake_up_interruptible(&self->query_wait);
435}
436
437/*
438 * Function irda_discovery_timeout (priv)
439 *
440 * Timeout in the selective discovery process
441 *
442 * We were waiting for a node to be discovered, but nothing has come up
443 * so far. Wake up the user and tell him that we failed...
444 */
445static void irda_discovery_timeout(u_long priv)
446{
447 struct irda_sock *self;
448
449 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
450
451 self = (struct irda_sock *) priv;
452 IRDA_ASSERT(self != NULL, return;);
453
454 /* Nothing for the caller */
455 self->cachelog = NULL;
456 self->cachedaddr = 0;
457 self->errno = -ETIME;
458
459 /* Wake up process if its still waiting... */
460 wake_up_interruptible(&self->query_wait);
461}
462
463/*
464 * Function irda_open_tsap (self)
465 *
466 * Open local Transport Service Access Point (TSAP)
467 *
468 */
469static int irda_open_tsap(struct irda_sock *self, __u8 tsap_sel, char *name)
470{
471 notify_t notify;
472
473 if (self->tsap) {
474 IRDA_WARNING("%s: busy!\n", __FUNCTION__);
475 return -EBUSY;
476 }
477
478 /* Initialize callbacks to be used by the IrDA stack */
479 irda_notify_init(&notify);
480 notify.connect_confirm = irda_connect_confirm;
481 notify.connect_indication = irda_connect_indication;
482 notify.disconnect_indication = irda_disconnect_indication;
483 notify.data_indication = irda_data_indication;
484 notify.udata_indication = irda_data_indication;
485 notify.flow_indication = irda_flow_indication;
486 notify.instance = self;
487 strncpy(notify.name, name, NOTIFY_MAX_NAME);
488
489 self->tsap = irttp_open_tsap(tsap_sel, DEFAULT_INITIAL_CREDIT,
490 &notify);
491 if (self->tsap == NULL) {
492 IRDA_DEBUG(0, "%s(), Unable to allocate TSAP!\n",
493 __FUNCTION__);
494 return -ENOMEM;
495 }
496 /* Remember which TSAP selector we actually got */
497 self->stsap_sel = self->tsap->stsap_sel;
498
499 return 0;
500}
501
502/*
503 * Function irda_open_lsap (self)
504 *
505 * Open local Link Service Access Point (LSAP). Used for opening Ultra
506 * sockets
507 */
508#ifdef CONFIG_IRDA_ULTRA
509static int irda_open_lsap(struct irda_sock *self, int pid)
510{
511 notify_t notify;
512
513 if (self->lsap) {
514 IRDA_WARNING("%s(), busy!\n", __FUNCTION__);
515 return -EBUSY;
516 }
517
518 /* Initialize callbacks to be used by the IrDA stack */
519 irda_notify_init(&notify);
520 notify.udata_indication = irda_data_indication;
521 notify.instance = self;
522 strncpy(notify.name, "Ultra", NOTIFY_MAX_NAME);
523
524 self->lsap = irlmp_open_lsap(LSAP_CONNLESS, &notify, pid);
525 if (self->lsap == NULL) {
526 IRDA_DEBUG( 0, "%s(), Unable to allocate LSAP!\n", __FUNCTION__);
527 return -ENOMEM;
528 }
529
530 return 0;
531}
532#endif /* CONFIG_IRDA_ULTRA */
533
534/*
535 * Function irda_find_lsap_sel (self, name)
536 *
537 * Try to lookup LSAP selector in remote LM-IAS
538 *
539 * Basically, we start a IAP query, and then go to sleep. When the query
540 * return, irda_getvalue_confirm will wake us up, and we can examine the
541 * result of the query...
542 * Note that in some case, the query fail even before we go to sleep,
543 * creating some races...
544 */
545static int irda_find_lsap_sel(struct irda_sock *self, char *name)
546{
547 IRDA_DEBUG(2, "%s(%p, %s)\n", __FUNCTION__, self, name);
548
549 IRDA_ASSERT(self != NULL, return -1;);
550
551 if (self->iriap) {
552 IRDA_WARNING("%s(): busy with a previous query\n",
553 __FUNCTION__);
554 return -EBUSY;
555 }
556
557 self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self,
558 irda_getvalue_confirm);
559 if(self->iriap == NULL)
560 return -ENOMEM;
561
562 /* Treat unexpected wakeup as disconnect */
563 self->errno = -EHOSTUNREACH;
564
565 /* Query remote LM-IAS */
566 iriap_getvaluebyclass_request(self->iriap, self->saddr, self->daddr,
567 name, "IrDA:TinyTP:LsapSel");
568
569 /* Wait for answer, if not yet finished (or failed) */
570 if (wait_event_interruptible(self->query_wait, (self->iriap==NULL)))
571 /* Treat signals as disconnect */
572 return -EHOSTUNREACH;
573
574 /* Check what happened */
575 if (self->errno)
576 {
577 /* Requested object/attribute doesn't exist */
578 if((self->errno == IAS_CLASS_UNKNOWN) ||
579 (self->errno == IAS_ATTRIB_UNKNOWN))
580 return (-EADDRNOTAVAIL);
581 else
582 return (-EHOSTUNREACH);
583 }
584
585 /* Get the remote TSAP selector */
586 switch (self->ias_result->type) {
587 case IAS_INTEGER:
588 IRDA_DEBUG(4, "%s() int=%d\n",
589 __FUNCTION__, self->ias_result->t.integer);
590
591 if (self->ias_result->t.integer != -1)
592 self->dtsap_sel = self->ias_result->t.integer;
593 else
594 self->dtsap_sel = 0;
595 break;
596 default:
597 self->dtsap_sel = 0;
598 IRDA_DEBUG(0, "%s(), bad type!\n", __FUNCTION__);
599 break;
600 }
601 if (self->ias_result)
602 irias_delete_value(self->ias_result);
603
604 if (self->dtsap_sel)
605 return 0;
606
607 return -EADDRNOTAVAIL;
608}
609
610/*
611 * Function irda_discover_daddr_and_lsap_sel (self, name)
612 *
613 * This try to find a device with the requested service.
614 *
615 * It basically look into the discovery log. For each address in the list,
616 * it queries the LM-IAS of the device to find if this device offer
617 * the requested service.
618 * If there is more than one node supporting the service, we complain
619 * to the user (it should move devices around).
620 * The, we set both the destination address and the lsap selector to point
621 * on the service on the unique device we have found.
622 *
623 * Note : this function fails if there is more than one device in range,
624 * because IrLMP doesn't disconnect the LAP when the last LSAP is closed.
625 * Moreover, we would need to wait the LAP disconnection...
626 */
627static int irda_discover_daddr_and_lsap_sel(struct irda_sock *self, char *name)
628{
629 discinfo_t *discoveries; /* Copy of the discovery log */
630 int number; /* Number of nodes in the log */
631 int i;
632 int err = -ENETUNREACH;
633 __u32 daddr = DEV_ADDR_ANY; /* Address we found the service on */
634 __u8 dtsap_sel = 0x0; /* TSAP associated with it */
635
636 IRDA_DEBUG(2, "%s(), name=%s\n", __FUNCTION__, name);
637
638 IRDA_ASSERT(self != NULL, return -1;);
639
640 /* Ask lmp for the current discovery log
641 * Note : we have to use irlmp_get_discoveries(), as opposed
642 * to play with the cachelog directly, because while we are
643 * making our ias query, le log might change... */
644 discoveries = irlmp_get_discoveries(&number, self->mask.word,
645 self->nslots);
646 /* Check if the we got some results */
647 if (discoveries == NULL)
648 return -ENETUNREACH; /* No nodes discovered */
649
650 /*
651 * Now, check all discovered devices (if any), and connect
652 * client only about the services that the client is
653 * interested in...
654 */
655 for(i = 0; i < number; i++) {
656 /* Try the address in the log */
657 self->daddr = discoveries[i].daddr;
658 self->saddr = 0x0;
659 IRDA_DEBUG(1, "%s(), trying daddr = %08x\n",
660 __FUNCTION__, self->daddr);
661
662 /* Query remote LM-IAS for this service */
663 err = irda_find_lsap_sel(self, name);
664 switch (err) {
665 case 0:
666 /* We found the requested service */
667 if(daddr != DEV_ADDR_ANY) {
668 IRDA_DEBUG(1, "%s(), discovered service ''%s'' in two different devices !!!\n",
669 __FUNCTION__, name);
670 self->daddr = DEV_ADDR_ANY;
671 kfree(discoveries);
672 return(-ENOTUNIQ);
673 }
674 /* First time we found that one, save it ! */
675 daddr = self->daddr;
676 dtsap_sel = self->dtsap_sel;
677 break;
678 case -EADDRNOTAVAIL:
679 /* Requested service simply doesn't exist on this node */
680 break;
681 default:
682 /* Something bad did happen :-( */
683 IRDA_DEBUG(0, "%s(), unexpected IAS query failure\n", __FUNCTION__);
684 self->daddr = DEV_ADDR_ANY;
685 kfree(discoveries);
686 return(-EHOSTUNREACH);
687 break;
688 }
689 }
690 /* Cleanup our copy of the discovery log */
691 kfree(discoveries);
692
693 /* Check out what we found */
694 if(daddr == DEV_ADDR_ANY) {
695 IRDA_DEBUG(1, "%s(), cannot discover service ''%s'' in any device !!!\n",
696 __FUNCTION__, name);
697 self->daddr = DEV_ADDR_ANY;
698 return(-EADDRNOTAVAIL);
699 }
700
701 /* Revert back to discovered device & service */
702 self->daddr = daddr;
703 self->saddr = 0x0;
704 self->dtsap_sel = dtsap_sel;
705
706 IRDA_DEBUG(1, "%s(), discovered requested service ''%s'' at address %08x\n",
707 __FUNCTION__, name, self->daddr);
708
709 return 0;
710}
711
712/*
713 * Function irda_getname (sock, uaddr, uaddr_len, peer)
714 *
715 * Return the our own, or peers socket address (sockaddr_irda)
716 *
717 */
718static int irda_getname(struct socket *sock, struct sockaddr *uaddr,
719 int *uaddr_len, int peer)
720{
721 struct sockaddr_irda saddr;
722 struct sock *sk = sock->sk;
723 struct irda_sock *self = irda_sk(sk);
724
725 if (peer) {
726 if (sk->sk_state != TCP_ESTABLISHED)
727 return -ENOTCONN;
728
729 saddr.sir_family = AF_IRDA;
730 saddr.sir_lsap_sel = self->dtsap_sel;
731 saddr.sir_addr = self->daddr;
732 } else {
733 saddr.sir_family = AF_IRDA;
734 saddr.sir_lsap_sel = self->stsap_sel;
735 saddr.sir_addr = self->saddr;
736 }
737
738 IRDA_DEBUG(1, "%s(), tsap_sel = %#x\n", __FUNCTION__, saddr.sir_lsap_sel);
739 IRDA_DEBUG(1, "%s(), addr = %08x\n", __FUNCTION__, saddr.sir_addr);
740
741 /* uaddr_len come to us uninitialised */
742 *uaddr_len = sizeof (struct sockaddr_irda);
743 memcpy(uaddr, &saddr, *uaddr_len);
744
745 return 0;
746}
747
748/*
749 * Function irda_listen (sock, backlog)
750 *
751 * Just move to the listen state
752 *
753 */
754static int irda_listen(struct socket *sock, int backlog)
755{
756 struct sock *sk = sock->sk;
757
758 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
759
760 if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) &&
761 (sk->sk_type != SOCK_DGRAM))
762 return -EOPNOTSUPP;
763
764 if (sk->sk_state != TCP_LISTEN) {
765 sk->sk_max_ack_backlog = backlog;
766 sk->sk_state = TCP_LISTEN;
767
768 return 0;
769 }
770
771 return -EOPNOTSUPP;
772}
773
774/*
775 * Function irda_bind (sock, uaddr, addr_len)
776 *
777 * Used by servers to register their well known TSAP
778 *
779 */
780static int irda_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
781{
782 struct sock *sk = sock->sk;
783 struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr;
784 struct irda_sock *self = irda_sk(sk);
785 int err;
786
787 IRDA_ASSERT(self != NULL, return -1;);
788
789 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
790
791 if (addr_len != sizeof(struct sockaddr_irda))
792 return -EINVAL;
793
794#ifdef CONFIG_IRDA_ULTRA
795 /* Special care for Ultra sockets */
796 if ((sk->sk_type == SOCK_DGRAM) &&
797 (sk->sk_protocol == IRDAPROTO_ULTRA)) {
798 self->pid = addr->sir_lsap_sel;
799 if (self->pid & 0x80) {
800 IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __FUNCTION__);
801 return -EOPNOTSUPP;
802 }
803 err = irda_open_lsap(self, self->pid);
804 if (err < 0)
805 return err;
806
807 /* Pretend we are connected */
808 sock->state = SS_CONNECTED;
809 sk->sk_state = TCP_ESTABLISHED;
810
811 return 0;
812 }
813#endif /* CONFIG_IRDA_ULTRA */
814
815 err = irda_open_tsap(self, addr->sir_lsap_sel, addr->sir_name);
816 if (err < 0)
817 return err;
818
819 /* Register with LM-IAS */
820 self->ias_obj = irias_new_object(addr->sir_name, jiffies);
821 irias_add_integer_attrib(self->ias_obj, "IrDA:TinyTP:LsapSel",
822 self->stsap_sel, IAS_KERNEL_ATTR);
823 irias_insert_object(self->ias_obj);
824
825 return 0;
826}
827
828/*
829 * Function irda_accept (sock, newsock, flags)
830 *
831 * Wait for incoming connection
832 *
833 */
834static int irda_accept(struct socket *sock, struct socket *newsock, int flags)
835{
836 struct sock *sk = sock->sk;
837 struct irda_sock *new, *self = irda_sk(sk);
838 struct sock *newsk;
839 struct sk_buff *skb;
840 int err;
841
842 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
843
844 IRDA_ASSERT(self != NULL, return -1;);
845
846 err = irda_create(newsock, sk->sk_protocol);
847 if (err)
848 return err;
849
850 if (sock->state != SS_UNCONNECTED)
851 return -EINVAL;
852
853 if ((sk = sock->sk) == NULL)
854 return -EINVAL;
855
856 if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) &&
857 (sk->sk_type != SOCK_DGRAM))
858 return -EOPNOTSUPP;
859
860 if (sk->sk_state != TCP_LISTEN)
861 return -EINVAL;
862
863 /*
864 * The read queue this time is holding sockets ready to use
865 * hooked into the SABM we saved
866 */
867
868 /*
869 * We can perform the accept only if there is incoming data
870 * on the listening socket.
871 * So, we will block the caller until we receive any data.
872 * If the caller was waiting on select() or poll() before
873 * calling us, the data is waiting for us ;-)
874 * Jean II
875 */
876 skb = skb_dequeue(&sk->sk_receive_queue);
877 if (skb == NULL) {
878 int ret = 0;
879 DECLARE_WAITQUEUE(waitq, current);
880
881 /* Non blocking operation */
882 if (flags & O_NONBLOCK)
883 return -EWOULDBLOCK;
884
885 /* The following code is a cut'n'paste of the
886 * wait_event_interruptible() macro.
887 * We don't us the macro because the condition has
888 * side effects : we want to make sure that only one
889 * skb get dequeued - Jean II */
890 add_wait_queue(sk->sk_sleep, &waitq);
891 for (;;) {
892 set_current_state(TASK_INTERRUPTIBLE);
893 skb = skb_dequeue(&sk->sk_receive_queue);
894 if (skb != NULL)
895 break;
896 if (!signal_pending(current)) {
897 schedule();
898 continue;
899 }
900 ret = -ERESTARTSYS;
901 break;
902 }
903 current->state = TASK_RUNNING;
904 remove_wait_queue(sk->sk_sleep, &waitq);
905 if(ret)
906 return -ERESTARTSYS;
907 }
908
909 newsk = newsock->sk;
910 newsk->sk_state = TCP_ESTABLISHED;
911
912 new = irda_sk(newsk);
913 IRDA_ASSERT(new != NULL, return -1;);
914
915 /* Now attach up the new socket */
916 new->tsap = irttp_dup(self->tsap, new);
917 if (!new->tsap) {
918 IRDA_DEBUG(0, "%s(), dup failed!\n", __FUNCTION__);
919 kfree_skb(skb);
920 return -1;
921 }
922
923 new->stsap_sel = new->tsap->stsap_sel;
924 new->dtsap_sel = new->tsap->dtsap_sel;
925 new->saddr = irttp_get_saddr(new->tsap);
926 new->daddr = irttp_get_daddr(new->tsap);
927
928 new->max_sdu_size_tx = self->max_sdu_size_tx;
929 new->max_sdu_size_rx = self->max_sdu_size_rx;
930 new->max_data_size = self->max_data_size;
931 new->max_header_size = self->max_header_size;
932
933 memcpy(&new->qos_tx, &self->qos_tx, sizeof(struct qos_info));
934
935 /* Clean up the original one to keep it in listen state */
936 irttp_listen(self->tsap);
937
938 /* Wow ! What is that ? Jean II */
939 skb->sk = NULL;
940 skb->destructor = NULL;
941 kfree_skb(skb);
942 sk->sk_ack_backlog--;
943
944 newsock->state = SS_CONNECTED;
945
946 irda_connect_response(new);
947
948 return 0;
949}
950
951/*
952 * Function irda_connect (sock, uaddr, addr_len, flags)
953 *
954 * Connect to a IrDA device
955 *
956 * The main difference with a "standard" connect is that with IrDA we need
957 * to resolve the service name into a TSAP selector (in TCP, port number
958 * doesn't have to be resolved).
959 * Because of this service name resoltion, we can offer "auto-connect",
960 * where we connect to a service without specifying a destination address.
961 *
962 * Note : by consulting "errno", the user space caller may learn the cause
963 * of the failure. Most of them are visible in the function, others may come
964 * from subroutines called and are listed here :
965 * o EBUSY : already processing a connect
966 * o EHOSTUNREACH : bad addr->sir_addr argument
967 * o EADDRNOTAVAIL : bad addr->sir_name argument
968 * o ENOTUNIQ : more than one node has addr->sir_name (auto-connect)
969 * o ENETUNREACH : no node found on the network (auto-connect)
970 */
971static int irda_connect(struct socket *sock, struct sockaddr *uaddr,
972 int addr_len, int flags)
973{
974 struct sock *sk = sock->sk;
975 struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr;
976 struct irda_sock *self = irda_sk(sk);
977 int err;
978
979 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
980
981 /* Don't allow connect for Ultra sockets */
982 if ((sk->sk_type == SOCK_DGRAM) && (sk->sk_protocol == IRDAPROTO_ULTRA))
983 return -ESOCKTNOSUPPORT;
984
985 if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
986 sock->state = SS_CONNECTED;
987 return 0; /* Connect completed during a ERESTARTSYS event */
988 }
989
990 if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
991 sock->state = SS_UNCONNECTED;
992 return -ECONNREFUSED;
993 }
994
995 if (sk->sk_state == TCP_ESTABLISHED)
996 return -EISCONN; /* No reconnect on a seqpacket socket */
997
998 sk->sk_state = TCP_CLOSE;
999 sock->state = SS_UNCONNECTED;
1000
1001 if (addr_len != sizeof(struct sockaddr_irda))
1002 return -EINVAL;
1003
1004 /* Check if user supplied any destination device address */
1005 if ((!addr->sir_addr) || (addr->sir_addr == DEV_ADDR_ANY)) {
1006 /* Try to find one suitable */
1007 err = irda_discover_daddr_and_lsap_sel(self, addr->sir_name);
1008 if (err) {
1009 IRDA_DEBUG(0, "%s(), auto-connect failed!\n", __FUNCTION__);
1010 return err;
1011 }
1012 } else {
1013 /* Use the one provided by the user */
1014 self->daddr = addr->sir_addr;
1015 IRDA_DEBUG(1, "%s(), daddr = %08x\n", __FUNCTION__, self->daddr);
1016
1017 /* If we don't have a valid service name, we assume the
1018 * user want to connect on a specific LSAP. Prevent
1019 * the use of invalid LSAPs (IrLMP 1.1 p10). Jean II */
1020 if((addr->sir_name[0] != '\0') ||
1021 (addr->sir_lsap_sel >= 0x70)) {
1022 /* Query remote LM-IAS using service name */
1023 err = irda_find_lsap_sel(self, addr->sir_name);
1024 if (err) {
1025 IRDA_DEBUG(0, "%s(), connect failed!\n", __FUNCTION__);
1026 return err;
1027 }
1028 } else {
1029 /* Directly connect to the remote LSAP
1030 * specified by the sir_lsap field.
1031 * Please use with caution, in IrDA LSAPs are
1032 * dynamic and there is no "well-known" LSAP. */
1033 self->dtsap_sel = addr->sir_lsap_sel;
1034 }
1035 }
1036
1037 /* Check if we have opened a local TSAP */
1038 if (!self->tsap)
1039 irda_open_tsap(self, LSAP_ANY, addr->sir_name);
1040
1041 /* Move to connecting socket, start sending Connect Requests */
1042 sock->state = SS_CONNECTING;
1043 sk->sk_state = TCP_SYN_SENT;
1044
1045 /* Connect to remote device */
1046 err = irttp_connect_request(self->tsap, self->dtsap_sel,
1047 self->saddr, self->daddr, NULL,
1048 self->max_sdu_size_rx, NULL);
1049 if (err) {
1050 IRDA_DEBUG(0, "%s(), connect failed!\n", __FUNCTION__);
1051 return err;
1052 }
1053
1054 /* Now the loop */
1055 if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK))
1056 return -EINPROGRESS;
1057
1058 if (wait_event_interruptible(*(sk->sk_sleep),
1059 (sk->sk_state != TCP_SYN_SENT)))
1060 return -ERESTARTSYS;
1061
1062 if (sk->sk_state != TCP_ESTABLISHED) {
1063 sock->state = SS_UNCONNECTED;
1064 return sock_error(sk); /* Always set at this point */
1065 }
1066
1067 sock->state = SS_CONNECTED;
1068
1069 /* At this point, IrLMP has assigned our source address */
1070 self->saddr = irttp_get_saddr(self->tsap);
1071
1072 return 0;
1073}
1074
1075static struct proto irda_proto = {
1076 .name = "IRDA",
1077 .owner = THIS_MODULE,
1078 .obj_size = sizeof(struct irda_sock),
1079};
1080
1081/*
1082 * Function irda_create (sock, protocol)
1083 *
1084 * Create IrDA socket
1085 *
1086 */
1087static int irda_create(struct socket *sock, int protocol)
1088{
1089 struct sock *sk;
1090 struct irda_sock *self;
1091
1092 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
1093
1094 /* Check for valid socket type */
1095 switch (sock->type) {
1096 case SOCK_STREAM: /* For TTP connections with SAR disabled */
1097 case SOCK_SEQPACKET: /* For TTP connections with SAR enabled */
1098 case SOCK_DGRAM: /* For TTP Unitdata or LMP Ultra transfers */
1099 break;
1100 default:
1101 return -ESOCKTNOSUPPORT;
1102 }
1103
1104 /* Allocate networking socket */
1105 sk = sk_alloc(PF_IRDA, GFP_ATOMIC, &irda_proto, 1);
1106 if (sk == NULL)
1107 return -ENOMEM;
1108
1109 self = irda_sk(sk);
1110 IRDA_DEBUG(2, "%s() : self is %p\n", __FUNCTION__, self);
1111
1112 init_waitqueue_head(&self->query_wait);
1113
1114 /* Initialise networking socket struct */
1115 sock_init_data(sock, sk); /* Note : set sk->sk_refcnt to 1 */
1116 sk->sk_family = PF_IRDA;
1117 sk->sk_protocol = protocol;
1118
1119 switch (sock->type) {
1120 case SOCK_STREAM:
1121 sock->ops = &irda_stream_ops;
1122 self->max_sdu_size_rx = TTP_SAR_DISABLE;
1123 break;
1124 case SOCK_SEQPACKET:
1125 sock->ops = &irda_seqpacket_ops;
1126 self->max_sdu_size_rx = TTP_SAR_UNBOUND;
1127 break;
1128 case SOCK_DGRAM:
1129 switch (protocol) {
1130#ifdef CONFIG_IRDA_ULTRA
1131 case IRDAPROTO_ULTRA:
1132 sock->ops = &irda_ultra_ops;
1133 /* Initialise now, because we may send on unbound
1134 * sockets. Jean II */
1135 self->max_data_size = ULTRA_MAX_DATA - LMP_PID_HEADER;
1136 self->max_header_size = IRDA_MAX_HEADER + LMP_PID_HEADER;
1137 break;
1138#endif /* CONFIG_IRDA_ULTRA */
1139 case IRDAPROTO_UNITDATA:
1140 sock->ops = &irda_dgram_ops;
1141 /* We let Unitdata conn. be like seqpack conn. */
1142 self->max_sdu_size_rx = TTP_SAR_UNBOUND;
1143 break;
1144 default:
1145 IRDA_ERROR("%s: protocol not supported!\n",
1146 __FUNCTION__);
1147 return -ESOCKTNOSUPPORT;
1148 }
1149 break;
1150 default:
1151 return -ESOCKTNOSUPPORT;
1152 }
1153
1154 /* Register as a client with IrLMP */
1155 self->ckey = irlmp_register_client(0, NULL, NULL, NULL);
1156 self->mask.word = 0xffff;
1157 self->rx_flow = self->tx_flow = FLOW_START;
1158 self->nslots = DISCOVERY_DEFAULT_SLOTS;
1159 self->daddr = DEV_ADDR_ANY; /* Until we get connected */
1160 self->saddr = 0x0; /* so IrLMP assign us any link */
1161 return 0;
1162}
1163
1164/*
1165 * Function irda_destroy_socket (self)
1166 *
1167 * Destroy socket
1168 *
1169 */
1170static void irda_destroy_socket(struct irda_sock *self)
1171{
1172 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
1173
1174 IRDA_ASSERT(self != NULL, return;);
1175
1176 /* Unregister with IrLMP */
1177 irlmp_unregister_client(self->ckey);
1178 irlmp_unregister_service(self->skey);
1179
1180 /* Unregister with LM-IAS */
1181 if (self->ias_obj) {
1182 irias_delete_object(self->ias_obj);
1183 self->ias_obj = NULL;
1184 }
1185
1186 if (self->iriap) {
1187 iriap_close(self->iriap);
1188 self->iriap = NULL;
1189 }
1190
1191 if (self->tsap) {
1192 irttp_disconnect_request(self->tsap, NULL, P_NORMAL);
1193 irttp_close_tsap(self->tsap);
1194 self->tsap = NULL;
1195 }
1196#ifdef CONFIG_IRDA_ULTRA
1197 if (self->lsap) {
1198 irlmp_close_lsap(self->lsap);
1199 self->lsap = NULL;
1200 }
1201#endif /* CONFIG_IRDA_ULTRA */
1202}
1203
1204/*
1205 * Function irda_release (sock)
1206 */
1207static int irda_release(struct socket *sock)
1208{
1209 struct sock *sk = sock->sk;
1210
1211 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
1212
1213 if (sk == NULL)
1214 return 0;
1215
1216 sk->sk_state = TCP_CLOSE;
1217 sk->sk_shutdown |= SEND_SHUTDOWN;
1218 sk->sk_state_change(sk);
1219
1220 /* Destroy IrDA socket */
1221 irda_destroy_socket(irda_sk(sk));
1222
1223 sock_orphan(sk);
1224 sock->sk = NULL;
1225
1226 /* Purge queues (see sock_init_data()) */
1227 skb_queue_purge(&sk->sk_receive_queue);
1228
1229 /* Destroy networking socket if we are the last reference on it,
1230 * i.e. if(sk->sk_refcnt == 0) -> sk_free(sk) */
1231 sock_put(sk);
1232
1233 /* Notes on socket locking and deallocation... - Jean II
1234 * In theory we should put pairs of sock_hold() / sock_put() to
1235 * prevent the socket to be destroyed whenever there is an
1236 * outstanding request or outstanding incoming packet or event.
1237 *
1238 * 1) This may include IAS request, both in connect and getsockopt.
1239 * Unfortunately, the situation is a bit more messy than it looks,
1240 * because we close iriap and kfree(self) above.
1241 *
1242 * 2) This may include selective discovery in getsockopt.
1243 * Same stuff as above, irlmp registration and self are gone.
1244 *
1245 * Probably 1 and 2 may not matter, because it's all triggered
1246 * by a process and the socket layer already prevent the
1247 * socket to go away while a process is holding it, through
1248 * sockfd_put() and fput()...
1249 *
1250 * 3) This may include deferred TSAP closure. In particular,
1251 * we may receive a late irda_disconnect_indication()
1252 * Fortunately, (tsap_cb *)->close_pend should protect us
1253 * from that.
1254 *
1255 * I did some testing on SMP, and it looks solid. And the socket
1256 * memory leak is now gone... - Jean II
1257 */
1258
1259 return 0;
1260}
1261
1262/*
1263 * Function irda_sendmsg (iocb, sock, msg, len)
1264 *
1265 * Send message down to TinyTP. This function is used for both STREAM and
1266 * SEQPACK services. This is possible since it forces the client to
1267 * fragment the message if necessary
1268 */
1269static int irda_sendmsg(struct kiocb *iocb, struct socket *sock,
1270 struct msghdr *msg, size_t len)
1271{
1272 struct sock *sk = sock->sk;
1273 struct irda_sock *self;
1274 struct sk_buff *skb;
1275 unsigned char *asmptr;
1276 int err;
1277
1278 IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len);
1279
1280 /* Note : socket.c set MSG_EOR on SEQPACKET sockets */
1281 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT))
1282 return -EINVAL;
1283
1284 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1285 send_sig(SIGPIPE, current, 0);
1286 return -EPIPE;
1287 }
1288
1289 if (sk->sk_state != TCP_ESTABLISHED)
1290 return -ENOTCONN;
1291
1292 self = irda_sk(sk);
1293 IRDA_ASSERT(self != NULL, return -1;);
1294
1295 /* Check if IrTTP is wants us to slow down */
1296
1297 if (wait_event_interruptible(*(sk->sk_sleep),
1298 (self->tx_flow != FLOW_STOP || sk->sk_state != TCP_ESTABLISHED)))
1299 return -ERESTARTSYS;
1300
1301 /* Check if we are still connected */
1302 if (sk->sk_state != TCP_ESTABLISHED)
1303 return -ENOTCONN;
1304
7f927fcc 1305 /* Check that we don't send out too big frames */
1da177e4
LT
1306 if (len > self->max_data_size) {
1307 IRDA_DEBUG(2, "%s(), Chopping frame from %zd to %d bytes!\n",
1308 __FUNCTION__, len, self->max_data_size);
1309 len = self->max_data_size;
1310 }
1311
1312 skb = sock_alloc_send_skb(sk, len + self->max_header_size + 16,
1313 msg->msg_flags & MSG_DONTWAIT, &err);
1314 if (!skb)
1315 return -ENOBUFS;
1316
1317 skb_reserve(skb, self->max_header_size + 16);
1318
1319 asmptr = skb->h.raw = skb_put(skb, len);
1320 err = memcpy_fromiovec(asmptr, msg->msg_iov, len);
1321 if (err) {
1322 kfree_skb(skb);
1323 return err;
1324 }
1325
1326 /*
1327 * Just send the message to TinyTP, and let it deal with possible
1328 * errors. No need to duplicate all that here
1329 */
1330 err = irttp_data_request(self->tsap, skb);
1331 if (err) {
1332 IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err);
1333 return err;
1334 }
1335 /* Tell client how much data we actually sent */
1336 return len;
1337}
1338
1339/*
1340 * Function irda_recvmsg_dgram (iocb, sock, msg, size, flags)
1341 *
1342 * Try to receive message and copy it to user. The frame is discarded
1343 * after being read, regardless of how much the user actually read
1344 */
1345static int irda_recvmsg_dgram(struct kiocb *iocb, struct socket *sock,
1346 struct msghdr *msg, size_t size, int flags)
1347{
1348 struct sock *sk = sock->sk;
1349 struct irda_sock *self = irda_sk(sk);
1350 struct sk_buff *skb;
1351 size_t copied;
1352 int err;
1353
1354 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
1355
1356 IRDA_ASSERT(self != NULL, return -1;);
1357
1358 skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT,
1359 flags & MSG_DONTWAIT, &err);
1360 if (!skb)
1361 return err;
1362
1363 skb->h.raw = skb->data;
1364 copied = skb->len;
1365
1366 if (copied > size) {
1367 IRDA_DEBUG(2, "%s(), Received truncated frame (%zd < %zd)!\n",
1368 __FUNCTION__, copied, size);
1369 copied = size;
1370 msg->msg_flags |= MSG_TRUNC;
1371 }
1372 skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1373
1374 skb_free_datagram(sk, skb);
1375
1376 /*
1377 * Check if we have previously stopped IrTTP and we know
1378 * have more free space in our rx_queue. If so tell IrTTP
1379 * to start delivering frames again before our rx_queue gets
1380 * empty
1381 */
1382 if (self->rx_flow == FLOW_STOP) {
1383 if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) {
1384 IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __FUNCTION__);
1385 self->rx_flow = FLOW_START;
1386 irttp_flow_request(self->tsap, FLOW_START);
1387 }
1388 }
1389
1390 return copied;
1391}
1392
1393/*
1394 * Function irda_recvmsg_stream (iocb, sock, msg, size, flags)
1395 */
1396static int irda_recvmsg_stream(struct kiocb *iocb, struct socket *sock,
1397 struct msghdr *msg, size_t size, int flags)
1398{
1399 struct sock *sk = sock->sk;
1400 struct irda_sock *self = irda_sk(sk);
1401 int noblock = flags & MSG_DONTWAIT;
1402 size_t copied = 0;
1403 int target = 1;
1404 DECLARE_WAITQUEUE(waitq, current);
1405
1406 IRDA_DEBUG(3, "%s()\n", __FUNCTION__);
1407
1408 IRDA_ASSERT(self != NULL, return -1;);
1409
1410 if (sock->flags & __SO_ACCEPTCON)
1411 return(-EINVAL);
1412
1413 if (flags & MSG_OOB)
1414 return -EOPNOTSUPP;
1415
1416 if (flags & MSG_WAITALL)
1417 target = size;
1418
1419 msg->msg_namelen = 0;
1420
1421 do {
1422 int chunk;
1423 struct sk_buff *skb = skb_dequeue(&sk->sk_receive_queue);
1424
1425 if (skb==NULL) {
1426 int ret = 0;
1427
1428 if (copied >= target)
1429 break;
1430
1431 /* The following code is a cut'n'paste of the
1432 * wait_event_interruptible() macro.
1433 * We don't us the macro because the test condition
1434 * is messy. - Jean II */
1435 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1436 add_wait_queue(sk->sk_sleep, &waitq);
1437 set_current_state(TASK_INTERRUPTIBLE);
1438
1439 /*
1440 * POSIX 1003.1g mandates this order.
1441 */
c1cbe4b7
BL
1442 ret = sock_error(sk);
1443 if (ret)
1444 break;
1da177e4
LT
1445 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1446 ;
1447 else if (noblock)
1448 ret = -EAGAIN;
1449 else if (signal_pending(current))
1450 ret = -ERESTARTSYS;
1451 else if (skb_peek(&sk->sk_receive_queue) == NULL)
1452 /* Wait process until data arrives */
1453 schedule();
1454
1455 current->state = TASK_RUNNING;
1456 remove_wait_queue(sk->sk_sleep, &waitq);
1457 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1458
1459 if(ret)
1460 return(ret);
1461 if (sk->sk_shutdown & RCV_SHUTDOWN)
1462 break;
1463
1464 continue;
1465 }
1466
1467 chunk = min_t(unsigned int, skb->len, size);
1468 if (memcpy_toiovec(msg->msg_iov, skb->data, chunk)) {
1469 skb_queue_head(&sk->sk_receive_queue, skb);
1470 if (copied == 0)
1471 copied = -EFAULT;
1472 break;
1473 }
1474 copied += chunk;
1475 size -= chunk;
1476
1477 /* Mark read part of skb as used */
1478 if (!(flags & MSG_PEEK)) {
1479 skb_pull(skb, chunk);
1480
1481 /* put the skb back if we didn't use it up.. */
1482 if (skb->len) {
1483 IRDA_DEBUG(1, "%s(), back on q!\n",
1484 __FUNCTION__);
1485 skb_queue_head(&sk->sk_receive_queue, skb);
1486 break;
1487 }
1488
1489 kfree_skb(skb);
1490 } else {
1491 IRDA_DEBUG(0, "%s() questionable!?\n", __FUNCTION__);
1492
1493 /* put message back and return */
1494 skb_queue_head(&sk->sk_receive_queue, skb);
1495 break;
1496 }
1497 } while (size);
1498
1499 /*
1500 * Check if we have previously stopped IrTTP and we know
1501 * have more free space in our rx_queue. If so tell IrTTP
1502 * to start delivering frames again before our rx_queue gets
1503 * empty
1504 */
1505 if (self->rx_flow == FLOW_STOP) {
1506 if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) {
1507 IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __FUNCTION__);
1508 self->rx_flow = FLOW_START;
1509 irttp_flow_request(self->tsap, FLOW_START);
1510 }
1511 }
1512
1513 return copied;
1514}
1515
1516/*
1517 * Function irda_sendmsg_dgram (iocb, sock, msg, len)
1518 *
1519 * Send message down to TinyTP for the unreliable sequenced
1520 * packet service...
1521 *
1522 */
1523static int irda_sendmsg_dgram(struct kiocb *iocb, struct socket *sock,
1524 struct msghdr *msg, size_t len)
1525{
1526 struct sock *sk = sock->sk;
1527 struct irda_sock *self;
1528 struct sk_buff *skb;
1529 unsigned char *asmptr;
1530 int err;
1531
1532 IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len);
1533
1534 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT))
1535 return -EINVAL;
1536
1537 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1538 send_sig(SIGPIPE, current, 0);
1539 return -EPIPE;
1540 }
1541
1542 if (sk->sk_state != TCP_ESTABLISHED)
1543 return -ENOTCONN;
1544
1545 self = irda_sk(sk);
1546 IRDA_ASSERT(self != NULL, return -1;);
1547
1548 /*
7f927fcc 1549 * Check that we don't send out too big frames. This is an unreliable
1da177e4
LT
1550 * service, so we have no fragmentation and no coalescence
1551 */
1552 if (len > self->max_data_size) {
1553 IRDA_DEBUG(0, "%s(), Warning to much data! "
1554 "Chopping frame from %zd to %d bytes!\n",
1555 __FUNCTION__, len, self->max_data_size);
1556 len = self->max_data_size;
1557 }
1558
1559 skb = sock_alloc_send_skb(sk, len + self->max_header_size,
1560 msg->msg_flags & MSG_DONTWAIT, &err);
1561 if (!skb)
1562 return -ENOBUFS;
1563
1564 skb_reserve(skb, self->max_header_size);
1565
1566 IRDA_DEBUG(4, "%s(), appending user data\n", __FUNCTION__);
1567 asmptr = skb->h.raw = skb_put(skb, len);
1568 err = memcpy_fromiovec(asmptr, msg->msg_iov, len);
1569 if (err) {
1570 kfree_skb(skb);
1571 return err;
1572 }
1573
1574 /*
1575 * Just send the message to TinyTP, and let it deal with possible
1576 * errors. No need to duplicate all that here
1577 */
1578 err = irttp_udata_request(self->tsap, skb);
1579 if (err) {
1580 IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err);
1581 return err;
1582 }
1583 return len;
1584}
1585
1586/*
1587 * Function irda_sendmsg_ultra (iocb, sock, msg, len)
1588 *
1589 * Send message down to IrLMP for the unreliable Ultra
1590 * packet service...
1591 */
1592#ifdef CONFIG_IRDA_ULTRA
1593static int irda_sendmsg_ultra(struct kiocb *iocb, struct socket *sock,
1594 struct msghdr *msg, size_t len)
1595{
1596 struct sock *sk = sock->sk;
1597 struct irda_sock *self;
1598 __u8 pid = 0;
1599 int bound = 0;
1600 struct sk_buff *skb;
1601 unsigned char *asmptr;
1602 int err;
1603
1604 IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len);
1605
1606 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT))
1607 return -EINVAL;
1608
1609 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1610 send_sig(SIGPIPE, current, 0);
1611 return -EPIPE;
1612 }
1613
1614 self = irda_sk(sk);
1615 IRDA_ASSERT(self != NULL, return -1;);
1616
1617 /* Check if an address was specified with sendto. Jean II */
1618 if (msg->msg_name) {
1619 struct sockaddr_irda *addr = (struct sockaddr_irda *) msg->msg_name;
1620 /* Check address, extract pid. Jean II */
1621 if (msg->msg_namelen < sizeof(*addr))
1622 return -EINVAL;
1623 if (addr->sir_family != AF_IRDA)
1624 return -EINVAL;
1625
1626 pid = addr->sir_lsap_sel;
1627 if (pid & 0x80) {
1628 IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __FUNCTION__);
1629 return -EOPNOTSUPP;
1630 }
1631 } else {
1632 /* Check that the socket is properly bound to an Ultra
1633 * port. Jean II */
1634 if ((self->lsap == NULL) ||
1635 (sk->sk_state != TCP_ESTABLISHED)) {
1636 IRDA_DEBUG(0, "%s(), socket not bound to Ultra PID.\n",
1637 __FUNCTION__);
1638 return -ENOTCONN;
1639 }
1640 /* Use PID from socket */
1641 bound = 1;
1642 }
1643
1644 /*
7f927fcc 1645 * Check that we don't send out too big frames. This is an unreliable
1da177e4
LT
1646 * service, so we have no fragmentation and no coalescence
1647 */
1648 if (len > self->max_data_size) {
1649 IRDA_DEBUG(0, "%s(), Warning to much data! "
1650 "Chopping frame from %zd to %d bytes!\n",
1651 __FUNCTION__, len, self->max_data_size);
1652 len = self->max_data_size;
1653 }
1654
1655 skb = sock_alloc_send_skb(sk, len + self->max_header_size,
1656 msg->msg_flags & MSG_DONTWAIT, &err);
1657 if (!skb)
1658 return -ENOBUFS;
1659
1660 skb_reserve(skb, self->max_header_size);
1661
1662 IRDA_DEBUG(4, "%s(), appending user data\n", __FUNCTION__);
1663 asmptr = skb->h.raw = skb_put(skb, len);
1664 err = memcpy_fromiovec(asmptr, msg->msg_iov, len);
1665 if (err) {
1666 kfree_skb(skb);
1667 return err;
1668 }
1669
1670 err = irlmp_connless_data_request((bound ? self->lsap : NULL),
1671 skb, pid);
1672 if (err) {
1673 IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err);
1674 return err;
1675 }
1676 return len;
1677}
1678#endif /* CONFIG_IRDA_ULTRA */
1679
1680/*
1681 * Function irda_shutdown (sk, how)
1682 */
1683static int irda_shutdown(struct socket *sock, int how)
1684{
1685 struct sock *sk = sock->sk;
1686 struct irda_sock *self = irda_sk(sk);
1687
1688 IRDA_ASSERT(self != NULL, return -1;);
1689
1690 IRDA_DEBUG(1, "%s(%p)\n", __FUNCTION__, self);
1691
1692 sk->sk_state = TCP_CLOSE;
1693 sk->sk_shutdown |= SEND_SHUTDOWN;
1694 sk->sk_state_change(sk);
1695
1696 if (self->iriap) {
1697 iriap_close(self->iriap);
1698 self->iriap = NULL;
1699 }
1700
1701 if (self->tsap) {
1702 irttp_disconnect_request(self->tsap, NULL, P_NORMAL);
1703 irttp_close_tsap(self->tsap);
1704 self->tsap = NULL;
1705 }
1706
1707 /* A few cleanup so the socket look as good as new... */
1708 self->rx_flow = self->tx_flow = FLOW_START; /* needed ??? */
1709 self->daddr = DEV_ADDR_ANY; /* Until we get re-connected */
1710 self->saddr = 0x0; /* so IrLMP assign us any link */
1711
1712 return 0;
1713}
1714
1715/*
1716 * Function irda_poll (file, sock, wait)
1717 */
1718static unsigned int irda_poll(struct file * file, struct socket *sock,
1719 poll_table *wait)
1720{
1721 struct sock *sk = sock->sk;
1722 struct irda_sock *self = irda_sk(sk);
1723 unsigned int mask;
1724
1725 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
1726
1727 poll_wait(file, sk->sk_sleep, wait);
1728 mask = 0;
1729
1730 /* Exceptional events? */
1731 if (sk->sk_err)
1732 mask |= POLLERR;
1733 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1734 IRDA_DEBUG(0, "%s(), POLLHUP\n", __FUNCTION__);
1735 mask |= POLLHUP;
1736 }
1737
1738 /* Readable? */
1739 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1740 IRDA_DEBUG(4, "Socket is readable\n");
1741 mask |= POLLIN | POLLRDNORM;
1742 }
1743
1744 /* Connection-based need to check for termination and startup */
1745 switch (sk->sk_type) {
1746 case SOCK_STREAM:
1747 if (sk->sk_state == TCP_CLOSE) {
1748 IRDA_DEBUG(0, "%s(), POLLHUP\n", __FUNCTION__);
1749 mask |= POLLHUP;
1750 }
1751
1752 if (sk->sk_state == TCP_ESTABLISHED) {
1753 if ((self->tx_flow == FLOW_START) &&
1754 sock_writeable(sk))
1755 {
1756 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1757 }
1758 }
1759 break;
1760 case SOCK_SEQPACKET:
1761 if ((self->tx_flow == FLOW_START) &&
1762 sock_writeable(sk))
1763 {
1764 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1765 }
1766 break;
1767 case SOCK_DGRAM:
1768 if (sock_writeable(sk))
1769 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1770 break;
1771 default:
1772 break;
1773 }
1774 return mask;
1775}
1776
1777/*
1778 * Function irda_ioctl (sock, cmd, arg)
1779 */
1780static int irda_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1781{
1782 struct sock *sk = sock->sk;
1783
1784 IRDA_DEBUG(4, "%s(), cmd=%#x\n", __FUNCTION__, cmd);
1785
1786 switch (cmd) {
1787 case TIOCOUTQ: {
1788 long amount;
1789 amount = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1790 if (amount < 0)
1791 amount = 0;
1792 if (put_user(amount, (unsigned int __user *)arg))
1793 return -EFAULT;
1794 return 0;
1795 }
1796
1797 case TIOCINQ: {
1798 struct sk_buff *skb;
1799 long amount = 0L;
1800 /* These two are safe on a single CPU system as only user tasks fiddle here */
1801 if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
1802 amount = skb->len;
1803 if (put_user(amount, (unsigned int __user *)arg))
1804 return -EFAULT;
1805 return 0;
1806 }
1807
1808 case SIOCGSTAMP:
1809 if (sk != NULL)
1810 return sock_get_timestamp(sk, (struct timeval __user *)arg);
1811 return -EINVAL;
1812
1813 case SIOCGIFADDR:
1814 case SIOCSIFADDR:
1815 case SIOCGIFDSTADDR:
1816 case SIOCSIFDSTADDR:
1817 case SIOCGIFBRDADDR:
1818 case SIOCSIFBRDADDR:
1819 case SIOCGIFNETMASK:
1820 case SIOCSIFNETMASK:
1821 case SIOCGIFMETRIC:
1822 case SIOCSIFMETRIC:
1823 return -EINVAL;
1824 default:
1825 IRDA_DEBUG(1, "%s(), doing device ioctl!\n", __FUNCTION__);
b5e5fa5e 1826 return -ENOIOCTLCMD;
1da177e4
LT
1827 }
1828
1829 /*NOTREACHED*/
1830 return 0;
1831}
1832
1833/*
1834 * Function irda_setsockopt (sock, level, optname, optval, optlen)
1835 *
1836 * Set some options for the socket
1837 *
1838 */
1839static int irda_setsockopt(struct socket *sock, int level, int optname,
1840 char __user *optval, int optlen)
1841{
1842 struct sock *sk = sock->sk;
1843 struct irda_sock *self = irda_sk(sk);
1844 struct irda_ias_set *ias_opt;
1845 struct ias_object *ias_obj;
1846 struct ias_attrib * ias_attr; /* Attribute in IAS object */
1847 int opt;
1848
1849 IRDA_ASSERT(self != NULL, return -1;);
1850
1851 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
1852
1853 if (level != SOL_IRLMP)
1854 return -ENOPROTOOPT;
1855
1856 switch (optname) {
1857 case IRLMP_IAS_SET:
1858 /* The user want to add an attribute to an existing IAS object
1859 * (in the IAS database) or to create a new object with this
1860 * attribute.
1861 * We first query IAS to know if the object exist, and then
1862 * create the right attribute...
1863 */
1864
1865 if (optlen != sizeof(struct irda_ias_set))
1866 return -EINVAL;
1867
1868 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
1869 if (ias_opt == NULL)
1870 return -ENOMEM;
1871
1872 /* Copy query to the driver. */
1873 if (copy_from_user(ias_opt, optval, optlen)) {
1874 kfree(ias_opt);
1875 return -EFAULT;
1876 }
1877
1878 /* Find the object we target.
1879 * If the user gives us an empty string, we use the object
1880 * associated with this socket. This will workaround
1881 * duplicated class name - Jean II */
1882 if(ias_opt->irda_class_name[0] == '\0') {
1883 if(self->ias_obj == NULL) {
1884 kfree(ias_opt);
1885 return -EINVAL;
1886 }
1887 ias_obj = self->ias_obj;
1888 } else
1889 ias_obj = irias_find_object(ias_opt->irda_class_name);
1890
1891 /* Only ROOT can mess with the global IAS database.
1892 * Users can only add attributes to the object associated
1893 * with the socket they own - Jean II */
1894 if((!capable(CAP_NET_ADMIN)) &&
1895 ((ias_obj == NULL) || (ias_obj != self->ias_obj))) {
1896 kfree(ias_opt);
1897 return -EPERM;
1898 }
1899
1900 /* If the object doesn't exist, create it */
1901 if(ias_obj == (struct ias_object *) NULL) {
1902 /* Create a new object */
1903 ias_obj = irias_new_object(ias_opt->irda_class_name,
1904 jiffies);
1905 }
1906
1907 /* Do we have the attribute already ? */
1908 if(irias_find_attrib(ias_obj, ias_opt->irda_attrib_name)) {
1909 kfree(ias_opt);
1910 return -EINVAL;
1911 }
1912
1913 /* Look at the type */
1914 switch(ias_opt->irda_attrib_type) {
1915 case IAS_INTEGER:
1916 /* Add an integer attribute */
1917 irias_add_integer_attrib(
1918 ias_obj,
1919 ias_opt->irda_attrib_name,
1920 ias_opt->attribute.irda_attrib_int,
1921 IAS_USER_ATTR);
1922 break;
1923 case IAS_OCT_SEQ:
1924 /* Check length */
1925 if(ias_opt->attribute.irda_attrib_octet_seq.len >
1926 IAS_MAX_OCTET_STRING) {
1927 kfree(ias_opt);
1928 return -EINVAL;
1929 }
1930 /* Add an octet sequence attribute */
1931 irias_add_octseq_attrib(
1932 ias_obj,
1933 ias_opt->irda_attrib_name,
1934 ias_opt->attribute.irda_attrib_octet_seq.octet_seq,
1935 ias_opt->attribute.irda_attrib_octet_seq.len,
1936 IAS_USER_ATTR);
1937 break;
1938 case IAS_STRING:
1939 /* Should check charset & co */
1940 /* Check length */
1941 /* The length is encoded in a __u8, and
1942 * IAS_MAX_STRING == 256, so there is no way
1943 * userspace can pass us a string too large.
1944 * Jean II */
1945 /* NULL terminate the string (avoid troubles) */
1946 ias_opt->attribute.irda_attrib_string.string[ias_opt->attribute.irda_attrib_string.len] = '\0';
1947 /* Add a string attribute */
1948 irias_add_string_attrib(
1949 ias_obj,
1950 ias_opt->irda_attrib_name,
1951 ias_opt->attribute.irda_attrib_string.string,
1952 IAS_USER_ATTR);
1953 break;
1954 default :
1955 kfree(ias_opt);
1956 return -EINVAL;
1957 }
1958 irias_insert_object(ias_obj);
1959 kfree(ias_opt);
1960 break;
1961 case IRLMP_IAS_DEL:
1962 /* The user want to delete an object from our local IAS
1963 * database. We just need to query the IAS, check is the
1964 * object is not owned by the kernel and delete it.
1965 */
1966
1967 if (optlen != sizeof(struct irda_ias_set))
1968 return -EINVAL;
1969
1970 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
1971 if (ias_opt == NULL)
1972 return -ENOMEM;
1973
1974 /* Copy query to the driver. */
1975 if (copy_from_user(ias_opt, optval, optlen)) {
1976 kfree(ias_opt);
1977 return -EFAULT;
1978 }
1979
1980 /* Find the object we target.
1981 * If the user gives us an empty string, we use the object
1982 * associated with this socket. This will workaround
1983 * duplicated class name - Jean II */
1984 if(ias_opt->irda_class_name[0] == '\0')
1985 ias_obj = self->ias_obj;
1986 else
1987 ias_obj = irias_find_object(ias_opt->irda_class_name);
1988 if(ias_obj == (struct ias_object *) NULL) {
1989 kfree(ias_opt);
1990 return -EINVAL;
1991 }
1992
1993 /* Only ROOT can mess with the global IAS database.
1994 * Users can only del attributes from the object associated
1995 * with the socket they own - Jean II */
1996 if((!capable(CAP_NET_ADMIN)) &&
1997 ((ias_obj == NULL) || (ias_obj != self->ias_obj))) {
1998 kfree(ias_opt);
1999 return -EPERM;
2000 }
2001
2002 /* Find the attribute (in the object) we target */
2003 ias_attr = irias_find_attrib(ias_obj,
2004 ias_opt->irda_attrib_name);
2005 if(ias_attr == (struct ias_attrib *) NULL) {
2006 kfree(ias_opt);
2007 return -EINVAL;
2008 }
2009
2010 /* Check is the user space own the object */
2011 if(ias_attr->value->owner != IAS_USER_ATTR) {
2012 IRDA_DEBUG(1, "%s(), attempting to delete a kernel attribute\n", __FUNCTION__);
2013 kfree(ias_opt);
2014 return -EPERM;
2015 }
2016
2017 /* Remove the attribute (and maybe the object) */
2018 irias_delete_attrib(ias_obj, ias_attr, 1);
2019 kfree(ias_opt);
2020 break;
2021 case IRLMP_MAX_SDU_SIZE:
2022 if (optlen < sizeof(int))
2023 return -EINVAL;
2024
2025 if (get_user(opt, (int __user *)optval))
2026 return -EFAULT;
2027
2028 /* Only possible for a seqpacket service (TTP with SAR) */
2029 if (sk->sk_type != SOCK_SEQPACKET) {
2030 IRDA_DEBUG(2, "%s(), setting max_sdu_size = %d\n",
2031 __FUNCTION__, opt);
2032 self->max_sdu_size_rx = opt;
2033 } else {
2034 IRDA_WARNING("%s: not allowed to set MAXSDUSIZE for this socket type!\n",
2035 __FUNCTION__);
2036 return -ENOPROTOOPT;
2037 }
2038 break;
2039 case IRLMP_HINTS_SET:
2040 if (optlen < sizeof(int))
2041 return -EINVAL;
2042
2043 /* The input is really a (__u8 hints[2]), easier as an int */
2044 if (get_user(opt, (int __user *)optval))
2045 return -EFAULT;
2046
2047 /* Unregister any old registration */
2048 if (self->skey)
2049 irlmp_unregister_service(self->skey);
2050
2051 self->skey = irlmp_register_service((__u16) opt);
2052 break;
2053 case IRLMP_HINT_MASK_SET:
2054 /* As opposed to the previous case which set the hint bits
2055 * that we advertise, this one set the filter we use when
2056 * making a discovery (nodes which don't match any hint
2057 * bit in the mask are not reported).
2058 */
2059 if (optlen < sizeof(int))
2060 return -EINVAL;
2061
2062 /* The input is really a (__u8 hints[2]), easier as an int */
2063 if (get_user(opt, (int __user *)optval))
2064 return -EFAULT;
2065
2066 /* Set the new hint mask */
2067 self->mask.word = (__u16) opt;
2068 /* Mask out extension bits */
2069 self->mask.word &= 0x7f7f;
2070 /* Check if no bits */
2071 if(!self->mask.word)
2072 self->mask.word = 0xFFFF;
2073
2074 break;
2075 default:
2076 return -ENOPROTOOPT;
2077 }
2078 return 0;
2079}
2080
2081/*
2082 * Function irda_extract_ias_value(ias_opt, ias_value)
2083 *
2084 * Translate internal IAS value structure to the user space representation
2085 *
2086 * The external representation of IAS values, as we exchange them with
2087 * user space program is quite different from the internal representation,
2088 * as stored in the IAS database (because we need a flat structure for
2089 * crossing kernel boundary).
2090 * This function transform the former in the latter. We also check
2091 * that the value type is valid.
2092 */
2093static int irda_extract_ias_value(struct irda_ias_set *ias_opt,
2094 struct ias_value *ias_value)
2095{
2096 /* Look at the type */
2097 switch (ias_value->type) {
2098 case IAS_INTEGER:
2099 /* Copy the integer */
2100 ias_opt->attribute.irda_attrib_int = ias_value->t.integer;
2101 break;
2102 case IAS_OCT_SEQ:
2103 /* Set length */
2104 ias_opt->attribute.irda_attrib_octet_seq.len = ias_value->len;
2105 /* Copy over */
2106 memcpy(ias_opt->attribute.irda_attrib_octet_seq.octet_seq,
2107 ias_value->t.oct_seq, ias_value->len);
2108 break;
2109 case IAS_STRING:
2110 /* Set length */
2111 ias_opt->attribute.irda_attrib_string.len = ias_value->len;
2112 ias_opt->attribute.irda_attrib_string.charset = ias_value->charset;
2113 /* Copy over */
2114 memcpy(ias_opt->attribute.irda_attrib_string.string,
2115 ias_value->t.string, ias_value->len);
2116 /* NULL terminate the string (avoid troubles) */
2117 ias_opt->attribute.irda_attrib_string.string[ias_value->len] = '\0';
2118 break;
2119 case IAS_MISSING:
2120 default :
2121 return -EINVAL;
2122 }
2123
2124 /* Copy type over */
2125 ias_opt->irda_attrib_type = ias_value->type;
2126
2127 return 0;
2128}
2129
2130/*
2131 * Function irda_getsockopt (sock, level, optname, optval, optlen)
2132 */
2133static int irda_getsockopt(struct socket *sock, int level, int optname,
2134 char __user *optval, int __user *optlen)
2135{
2136 struct sock *sk = sock->sk;
2137 struct irda_sock *self = irda_sk(sk);
2138 struct irda_device_list list;
2139 struct irda_device_info *discoveries;
2140 struct irda_ias_set * ias_opt; /* IAS get/query params */
2141 struct ias_object * ias_obj; /* Object in IAS */
2142 struct ias_attrib * ias_attr; /* Attribute in IAS object */
2143 int daddr = DEV_ADDR_ANY; /* Dest address for IAS queries */
2144 int val = 0;
2145 int len = 0;
2146 int err;
2147 int offset, total;
2148
2149 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
2150
2151 if (level != SOL_IRLMP)
2152 return -ENOPROTOOPT;
2153
2154 if (get_user(len, optlen))
2155 return -EFAULT;
2156
2157 if(len < 0)
2158 return -EINVAL;
2159
2160 switch (optname) {
2161 case IRLMP_ENUMDEVICES:
2162 /* Ask lmp for the current discovery log */
2163 discoveries = irlmp_get_discoveries(&list.len, self->mask.word,
2164 self->nslots);
2165 /* Check if the we got some results */
2166 if (discoveries == NULL)
2167 return -EAGAIN; /* Didn't find any devices */
2168 err = 0;
2169
2170 /* Write total list length back to client */
2171 if (copy_to_user(optval, &list,
2172 sizeof(struct irda_device_list) -
2173 sizeof(struct irda_device_info)))
2174 err = -EFAULT;
2175
2176 /* Offset to first device entry */
2177 offset = sizeof(struct irda_device_list) -
2178 sizeof(struct irda_device_info);
2179
2180 /* Copy the list itself - watch for overflow */
2181 if(list.len > 2048)
2182 {
2183 err = -EINVAL;
2184 goto bed;
2185 }
2186 total = offset + (list.len * sizeof(struct irda_device_info));
2187 if (total > len)
2188 total = len;
2189 if (copy_to_user(optval+offset, discoveries, total - offset))
2190 err = -EFAULT;
2191
2192 /* Write total number of bytes used back to client */
2193 if (put_user(total, optlen))
2194 err = -EFAULT;
2195bed:
2196 /* Free up our buffer */
2197 kfree(discoveries);
2198 if (err)
2199 return err;
2200 break;
2201 case IRLMP_MAX_SDU_SIZE:
2202 val = self->max_data_size;
2203 len = sizeof(int);
2204 if (put_user(len, optlen))
2205 return -EFAULT;
2206
2207 if (copy_to_user(optval, &val, len))
2208 return -EFAULT;
2209 break;
2210 case IRLMP_IAS_GET:
2211 /* The user want an object from our local IAS database.
2212 * We just need to query the IAS and return the value
2213 * that we found */
2214
2215 /* Check that the user has allocated the right space for us */
2216 if (len != sizeof(struct irda_ias_set))
2217 return -EINVAL;
2218
2219 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
2220 if (ias_opt == NULL)
2221 return -ENOMEM;
2222
2223 /* Copy query to the driver. */
2224 if (copy_from_user(ias_opt, optval, len)) {
2225 kfree(ias_opt);
2226 return -EFAULT;
2227 }
2228
2229 /* Find the object we target.
2230 * If the user gives us an empty string, we use the object
2231 * associated with this socket. This will workaround
2232 * duplicated class name - Jean II */
2233 if(ias_opt->irda_class_name[0] == '\0')
2234 ias_obj = self->ias_obj;
2235 else
2236 ias_obj = irias_find_object(ias_opt->irda_class_name);
2237 if(ias_obj == (struct ias_object *) NULL) {
2238 kfree(ias_opt);
2239 return -EINVAL;
2240 }
2241
2242 /* Find the attribute (in the object) we target */
2243 ias_attr = irias_find_attrib(ias_obj,
2244 ias_opt->irda_attrib_name);
2245 if(ias_attr == (struct ias_attrib *) NULL) {
2246 kfree(ias_opt);
2247 return -EINVAL;
2248 }
2249
2250 /* Translate from internal to user structure */
2251 err = irda_extract_ias_value(ias_opt, ias_attr->value);
2252 if(err) {
2253 kfree(ias_opt);
2254 return err;
2255 }
2256
2257 /* Copy reply to the user */
2258 if (copy_to_user(optval, ias_opt,
2259 sizeof(struct irda_ias_set))) {
2260 kfree(ias_opt);
2261 return -EFAULT;
2262 }
2263 /* Note : don't need to put optlen, we checked it */
2264 kfree(ias_opt);
2265 break;
2266 case IRLMP_IAS_QUERY:
2267 /* The user want an object from a remote IAS database.
2268 * We need to use IAP to query the remote database and
2269 * then wait for the answer to come back. */
2270
2271 /* Check that the user has allocated the right space for us */
2272 if (len != sizeof(struct irda_ias_set))
2273 return -EINVAL;
2274
2275 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
2276 if (ias_opt == NULL)
2277 return -ENOMEM;
2278
2279 /* Copy query to the driver. */
2280 if (copy_from_user(ias_opt, optval, len)) {
2281 kfree(ias_opt);
2282 return -EFAULT;
2283 }
2284
2285 /* At this point, there are two cases...
2286 * 1) the socket is connected - that's the easy case, we
2287 * just query the device we are connected to...
2288 * 2) the socket is not connected - the user doesn't want
2289 * to connect and/or may not have a valid service name
2290 * (so can't create a fake connection). In this case,
2291 * we assume that the user pass us a valid destination
2292 * address in the requesting structure...
2293 */
2294 if(self->daddr != DEV_ADDR_ANY) {
2295 /* We are connected - reuse known daddr */
2296 daddr = self->daddr;
2297 } else {
2298 /* We are not connected, we must specify a valid
2299 * destination address */
2300 daddr = ias_opt->daddr;
2301 if((!daddr) || (daddr == DEV_ADDR_ANY)) {
2302 kfree(ias_opt);
2303 return -EINVAL;
2304 }
2305 }
2306
2307 /* Check that we can proceed with IAP */
2308 if (self->iriap) {
2309 IRDA_WARNING("%s: busy with a previous query\n",
2310 __FUNCTION__);
2311 kfree(ias_opt);
2312 return -EBUSY;
2313 }
2314
2315 self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self,
2316 irda_getvalue_confirm);
2317
2318 if (self->iriap == NULL) {
2319 kfree(ias_opt);
2320 return -ENOMEM;
2321 }
2322
2323 /* Treat unexpected wakeup as disconnect */
2324 self->errno = -EHOSTUNREACH;
2325
2326 /* Query remote LM-IAS */
2327 iriap_getvaluebyclass_request(self->iriap,
2328 self->saddr, daddr,
2329 ias_opt->irda_class_name,
2330 ias_opt->irda_attrib_name);
2331
2332 /* Wait for answer, if not yet finished (or failed) */
2333 if (wait_event_interruptible(self->query_wait,
2334 (self->iriap == NULL))) {
2335 /* pending request uses copy of ias_opt-content
2336 * we can free it regardless! */
2337 kfree(ias_opt);
2338 /* Treat signals as disconnect */
2339 return -EHOSTUNREACH;
2340 }
2341
2342 /* Check what happened */
2343 if (self->errno)
2344 {
2345 kfree(ias_opt);
2346 /* Requested object/attribute doesn't exist */
2347 if((self->errno == IAS_CLASS_UNKNOWN) ||
2348 (self->errno == IAS_ATTRIB_UNKNOWN))
2349 return (-EADDRNOTAVAIL);
2350 else
2351 return (-EHOSTUNREACH);
2352 }
2353
2354 /* Translate from internal to user structure */
2355 err = irda_extract_ias_value(ias_opt, self->ias_result);
2356 if (self->ias_result)
2357 irias_delete_value(self->ias_result);
2358 if (err) {
2359 kfree(ias_opt);
2360 return err;
2361 }
2362
2363 /* Copy reply to the user */
2364 if (copy_to_user(optval, ias_opt,
2365 sizeof(struct irda_ias_set))) {
2366 kfree(ias_opt);
2367 return -EFAULT;
2368 }
2369 /* Note : don't need to put optlen, we checked it */
2370 kfree(ias_opt);
2371 break;
2372 case IRLMP_WAITDEVICE:
2373 /* This function is just another way of seeing life ;-)
2374 * IRLMP_ENUMDEVICES assumes that you have a static network,
2375 * and that you just want to pick one of the devices present.
2376 * On the other hand, in here we assume that no device is
2377 * present and that at some point in the future a device will
2378 * come into range. When this device arrive, we just wake
2379 * up the caller, so that he has time to connect to it before
2380 * the device goes away...
2381 * Note : once the node has been discovered for more than a
2382 * few second, it won't trigger this function, unless it
2383 * goes away and come back changes its hint bits (so we
2384 * might call it IRLMP_WAITNEWDEVICE).
2385 */
2386
2387 /* Check that the user is passing us an int */
2388 if (len != sizeof(int))
2389 return -EINVAL;
2390 /* Get timeout in ms (max time we block the caller) */
2391 if (get_user(val, (int __user *)optval))
2392 return -EFAULT;
2393
2394 /* Tell IrLMP we want to be notified */
2395 irlmp_update_client(self->ckey, self->mask.word,
2396 irda_selective_discovery_indication,
2397 NULL, (void *) self);
2398
2399 /* Do some discovery (and also return cached results) */
2400 irlmp_discovery_request(self->nslots);
2401
2402 /* Wait until a node is discovered */
2403 if (!self->cachedaddr) {
2404 int ret = 0;
2405
2406 IRDA_DEBUG(1, "%s(), nothing discovered yet, going to sleep...\n", __FUNCTION__);
2407
2408 /* Set watchdog timer to expire in <val> ms. */
2409 self->errno = 0;
2410 init_timer(&self->watchdog);
2411 self->watchdog.function = irda_discovery_timeout;
2412 self->watchdog.data = (unsigned long) self;
2413 self->watchdog.expires = jiffies + (val * HZ/1000);
2414 add_timer(&(self->watchdog));
2415
2416 /* Wait for IR-LMP to call us back */
2417 __wait_event_interruptible(self->query_wait,
2418 (self->cachedaddr != 0 || self->errno == -ETIME),
2419 ret);
2420
2421 /* If watchdog is still activated, kill it! */
2422 if(timer_pending(&(self->watchdog)))
2423 del_timer(&(self->watchdog));
2424
2425 IRDA_DEBUG(1, "%s(), ...waking up !\n", __FUNCTION__);
2426
2427 if (ret != 0)
2428 return ret;
2429 }
2430 else
2431 IRDA_DEBUG(1, "%s(), found immediately !\n",
2432 __FUNCTION__);
2433
2434 /* Tell IrLMP that we have been notified */
2435 irlmp_update_client(self->ckey, self->mask.word,
2436 NULL, NULL, NULL);
2437
2438 /* Check if the we got some results */
2439 if (!self->cachedaddr)
2440 return -EAGAIN; /* Didn't find any devices */
2441 daddr = self->cachedaddr;
2442 /* Cleanup */
2443 self->cachedaddr = 0;
2444
2445 /* We return the daddr of the device that trigger the
2446 * wakeup. As irlmp pass us only the new devices, we
2447 * are sure that it's not an old device.
2448 * If the user want more details, he should query
2449 * the whole discovery log and pick one device...
2450 */
2451 if (put_user(daddr, (int __user *)optval))
2452 return -EFAULT;
2453
2454 break;
2455 default:
2456 return -ENOPROTOOPT;
2457 }
2458
2459 return 0;
2460}
2461
2462static struct net_proto_family irda_family_ops = {
2463 .family = PF_IRDA,
2464 .create = irda_create,
2465 .owner = THIS_MODULE,
2466};
2467
90ddc4f0 2468static const struct proto_ops SOCKOPS_WRAPPED(irda_stream_ops) = {
1da177e4
LT
2469 .family = PF_IRDA,
2470 .owner = THIS_MODULE,
2471 .release = irda_release,
2472 .bind = irda_bind,
2473 .connect = irda_connect,
2474 .socketpair = sock_no_socketpair,
2475 .accept = irda_accept,
2476 .getname = irda_getname,
2477 .poll = irda_poll,
2478 .ioctl = irda_ioctl,
2479 .listen = irda_listen,
2480 .shutdown = irda_shutdown,
2481 .setsockopt = irda_setsockopt,
2482 .getsockopt = irda_getsockopt,
2483 .sendmsg = irda_sendmsg,
2484 .recvmsg = irda_recvmsg_stream,
2485 .mmap = sock_no_mmap,
2486 .sendpage = sock_no_sendpage,
2487};
2488
90ddc4f0 2489static const struct proto_ops SOCKOPS_WRAPPED(irda_seqpacket_ops) = {
1da177e4
LT
2490 .family = PF_IRDA,
2491 .owner = THIS_MODULE,
2492 .release = irda_release,
2493 .bind = irda_bind,
2494 .connect = irda_connect,
2495 .socketpair = sock_no_socketpair,
2496 .accept = irda_accept,
2497 .getname = irda_getname,
2498 .poll = datagram_poll,
2499 .ioctl = irda_ioctl,
2500 .listen = irda_listen,
2501 .shutdown = irda_shutdown,
2502 .setsockopt = irda_setsockopt,
2503 .getsockopt = irda_getsockopt,
2504 .sendmsg = irda_sendmsg,
2505 .recvmsg = irda_recvmsg_dgram,
2506 .mmap = sock_no_mmap,
2507 .sendpage = sock_no_sendpage,
2508};
2509
90ddc4f0 2510static const struct proto_ops SOCKOPS_WRAPPED(irda_dgram_ops) = {
1da177e4
LT
2511 .family = PF_IRDA,
2512 .owner = THIS_MODULE,
2513 .release = irda_release,
2514 .bind = irda_bind,
2515 .connect = irda_connect,
2516 .socketpair = sock_no_socketpair,
2517 .accept = irda_accept,
2518 .getname = irda_getname,
2519 .poll = datagram_poll,
2520 .ioctl = irda_ioctl,
2521 .listen = irda_listen,
2522 .shutdown = irda_shutdown,
2523 .setsockopt = irda_setsockopt,
2524 .getsockopt = irda_getsockopt,
2525 .sendmsg = irda_sendmsg_dgram,
2526 .recvmsg = irda_recvmsg_dgram,
2527 .mmap = sock_no_mmap,
2528 .sendpage = sock_no_sendpage,
2529};
2530
2531#ifdef CONFIG_IRDA_ULTRA
90ddc4f0 2532static const struct proto_ops SOCKOPS_WRAPPED(irda_ultra_ops) = {
1da177e4
LT
2533 .family = PF_IRDA,
2534 .owner = THIS_MODULE,
2535 .release = irda_release,
2536 .bind = irda_bind,
2537 .connect = sock_no_connect,
2538 .socketpair = sock_no_socketpair,
2539 .accept = sock_no_accept,
2540 .getname = irda_getname,
2541 .poll = datagram_poll,
2542 .ioctl = irda_ioctl,
2543 .listen = sock_no_listen,
2544 .shutdown = irda_shutdown,
2545 .setsockopt = irda_setsockopt,
2546 .getsockopt = irda_getsockopt,
2547 .sendmsg = irda_sendmsg_ultra,
2548 .recvmsg = irda_recvmsg_dgram,
2549 .mmap = sock_no_mmap,
2550 .sendpage = sock_no_sendpage,
2551};
2552#endif /* CONFIG_IRDA_ULTRA */
2553
2554#include <linux/smp_lock.h>
2555SOCKOPS_WRAP(irda_stream, PF_IRDA);
2556SOCKOPS_WRAP(irda_seqpacket, PF_IRDA);
2557SOCKOPS_WRAP(irda_dgram, PF_IRDA);
2558#ifdef CONFIG_IRDA_ULTRA
2559SOCKOPS_WRAP(irda_ultra, PF_IRDA);
2560#endif /* CONFIG_IRDA_ULTRA */
2561
2562/*
2563 * Function irsock_init (pro)
2564 *
2565 * Initialize IrDA protocol
2566 *
2567 */
2568int __init irsock_init(void)
2569{
2570 int rc = proto_register(&irda_proto, 0);
2571
2572 if (rc == 0)
2573 rc = sock_register(&irda_family_ops);
2574
2575 return rc;
2576}
2577
2578/*
2579 * Function irsock_cleanup (void)
2580 *
2581 * Remove IrDA protocol
2582 *
2583 */
2584void __exit irsock_cleanup(void)
2585{
2586 sock_unregister(PF_IRDA);
2587 proto_unregister(&irda_proto);
2588}