[IrDA] af_irda: Silence kernel message in irda_recvmsg_stream
[linux-2.6-block.git] / net / irda / af_irda.c
CommitLineData
1da177e4
LT
1/*********************************************************************
2 *
3 * Filename: af_irda.c
4 * Version: 0.9
5 * Description: IrDA sockets implementation
6 * Status: Stable
7 * Author: Dag Brattli <dagb@cs.uit.no>
8 * Created at: Sun May 31 10:12:43 1998
9 * Modified at: Sat Dec 25 21:10:23 1999
10 * Modified by: Dag Brattli <dag@brattli.net>
11 * Sources: af_netroom.c, af_ax25.c, af_rose.c, af_x25.c etc.
12 *
13 * Copyright (c) 1999 Dag Brattli <dagb@cs.uit.no>
14 * Copyright (c) 1999-2003 Jean Tourrilhes <jt@hpl.hp.com>
15 * All Rights Reserved.
16 *
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License as
19 * published by the Free Software Foundation; either version 2 of
20 * the License, or (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 *
27 * You should have received a copy of the GNU General Public License
28 * along with this program; if not, write to the Free Software
29 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
30 * MA 02111-1307 USA
31 *
32 * Linux-IrDA now supports four different types of IrDA sockets:
33 *
34 * o SOCK_STREAM: TinyTP connections with SAR disabled. The
35 * max SDU size is 0 for conn. of this type
36 * o SOCK_SEQPACKET: TinyTP connections with SAR enabled. TTP may
37 * fragment the messages, but will preserve
38 * the message boundaries
39 * o SOCK_DGRAM: IRDAPROTO_UNITDATA: TinyTP connections with Unitdata
40 * (unreliable) transfers
41 * IRDAPROTO_ULTRA: Connectionless and unreliable data
42 *
43 ********************************************************************/
44
4fc268d2 45#include <linux/capability.h>
1da177e4
LT
46#include <linux/module.h>
47#include <linux/types.h>
48#include <linux/socket.h>
49#include <linux/sockios.h>
50#include <linux/init.h>
51#include <linux/net.h>
52#include <linux/irda.h>
53#include <linux/poll.h>
54
55#include <asm/ioctls.h> /* TIOCOUTQ, TIOCINQ */
56#include <asm/uaccess.h>
57
58#include <net/sock.h>
c752f073 59#include <net/tcp_states.h>
1da177e4
LT
60
61#include <net/irda/af_irda.h>
62
63static int irda_create(struct socket *sock, int protocol);
64
90ddc4f0
ED
65static const struct proto_ops irda_stream_ops;
66static const struct proto_ops irda_seqpacket_ops;
67static const struct proto_ops irda_dgram_ops;
1da177e4
LT
68
69#ifdef CONFIG_IRDA_ULTRA
90ddc4f0 70static const struct proto_ops irda_ultra_ops;
1da177e4
LT
71#define ULTRA_MAX_DATA 382
72#endif /* CONFIG_IRDA_ULTRA */
73
74#define IRDA_MAX_HEADER (TTP_MAX_HEADER)
75
76/*
77 * Function irda_data_indication (instance, sap, skb)
78 *
79 * Received some data from TinyTP. Just queue it on the receive queue
80 *
81 */
82static int irda_data_indication(void *instance, void *sap, struct sk_buff *skb)
83{
84 struct irda_sock *self;
85 struct sock *sk;
86 int err;
87
88 IRDA_DEBUG(3, "%s()\n", __FUNCTION__);
89
90 self = instance;
91 sk = instance;
92 IRDA_ASSERT(sk != NULL, return -1;);
93
94 err = sock_queue_rcv_skb(sk, skb);
95 if (err) {
96 IRDA_DEBUG(1, "%s(), error: no more mem!\n", __FUNCTION__);
97 self->rx_flow = FLOW_STOP;
98
99 /* When we return error, TTP will need to requeue the skb */
100 return err;
101 }
102
103 return 0;
104}
105
106/*
107 * Function irda_disconnect_indication (instance, sap, reason, skb)
108 *
109 * Connection has been closed. Check reason to find out why
110 *
111 */
112static void irda_disconnect_indication(void *instance, void *sap,
113 LM_REASON reason, struct sk_buff *skb)
114{
115 struct irda_sock *self;
116 struct sock *sk;
117
118 self = instance;
119
120 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
121
122 /* Don't care about it, but let's not leak it */
123 if(skb)
124 dev_kfree_skb(skb);
125
126 sk = instance;
127 if (sk == NULL) {
128 IRDA_DEBUG(0, "%s(%p) : BUG : sk is NULL\n",
129 __FUNCTION__, self);
130 return;
131 }
132
133 /* Prevent race conditions with irda_release() and irda_shutdown() */
6e66aa15 134 bh_lock_sock(sk);
1da177e4
LT
135 if (!sock_flag(sk, SOCK_DEAD) && sk->sk_state != TCP_CLOSE) {
136 sk->sk_state = TCP_CLOSE;
1da177e4
LT
137 sk->sk_shutdown |= SEND_SHUTDOWN;
138
139 sk->sk_state_change(sk);
1da177e4
LT
140
141 /* Close our TSAP.
142 * If we leave it open, IrLMP put it back into the list of
143 * unconnected LSAPs. The problem is that any incoming request
144 * can then be matched to this socket (and it will be, because
145 * it is at the head of the list). This would prevent any
146 * listening socket waiting on the same TSAP to get those
147 * requests. Some apps forget to close sockets, or hang to it
148 * a bit too long, so we may stay in this dead state long
149 * enough to be noticed...
150 * Note : all socket function do check sk->sk_state, so we are
151 * safe...
152 * Jean II
153 */
154 if (self->tsap) {
155 irttp_close_tsap(self->tsap);
156 self->tsap = NULL;
157 }
6819bc2e 158 }
6e66aa15 159 bh_unlock_sock(sk);
1da177e4
LT
160
161 /* Note : once we are there, there is not much you want to do
162 * with the socket anymore, apart from closing it.
163 * For example, bind() and connect() won't reset sk->sk_err,
164 * sk->sk_shutdown and sk->sk_flags to valid values...
165 * Jean II
166 */
167}
168
169/*
170 * Function irda_connect_confirm (instance, sap, qos, max_sdu_size, skb)
171 *
172 * Connections has been confirmed by the remote device
173 *
174 */
175static void irda_connect_confirm(void *instance, void *sap,
176 struct qos_info *qos,
177 __u32 max_sdu_size, __u8 max_header_size,
178 struct sk_buff *skb)
179{
180 struct irda_sock *self;
181 struct sock *sk;
182
183 self = instance;
184
185 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
186
187 sk = instance;
188 if (sk == NULL) {
189 dev_kfree_skb(skb);
190 return;
191 }
192
193 dev_kfree_skb(skb);
194 // Should be ??? skb_queue_tail(&sk->sk_receive_queue, skb);
195
196 /* How much header space do we need to reserve */
197 self->max_header_size = max_header_size;
198
199 /* IrTTP max SDU size in transmit direction */
200 self->max_sdu_size_tx = max_sdu_size;
201
202 /* Find out what the largest chunk of data that we can transmit is */
203 switch (sk->sk_type) {
204 case SOCK_STREAM:
205 if (max_sdu_size != 0) {
206 IRDA_ERROR("%s: max_sdu_size must be 0\n",
207 __FUNCTION__);
208 return;
209 }
210 self->max_data_size = irttp_get_max_seg_size(self->tsap);
211 break;
212 case SOCK_SEQPACKET:
213 if (max_sdu_size == 0) {
214 IRDA_ERROR("%s: max_sdu_size cannot be 0\n",
215 __FUNCTION__);
216 return;
217 }
218 self->max_data_size = max_sdu_size;
219 break;
220 default:
221 self->max_data_size = irttp_get_max_seg_size(self->tsap);
3ff50b79 222 }
1da177e4
LT
223
224 IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __FUNCTION__,
225 self->max_data_size);
226
227 memcpy(&self->qos_tx, qos, sizeof(struct qos_info));
228
229 /* We are now connected! */
230 sk->sk_state = TCP_ESTABLISHED;
231 sk->sk_state_change(sk);
232}
233
234/*
235 * Function irda_connect_indication(instance, sap, qos, max_sdu_size, userdata)
236 *
237 * Incoming connection
238 *
239 */
240static void irda_connect_indication(void *instance, void *sap,
241 struct qos_info *qos, __u32 max_sdu_size,
242 __u8 max_header_size, struct sk_buff *skb)
243{
244 struct irda_sock *self;
245 struct sock *sk;
246
247 self = instance;
248
249 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
250
251 sk = instance;
252 if (sk == NULL) {
253 dev_kfree_skb(skb);
254 return;
255 }
256
257 /* How much header space do we need to reserve */
258 self->max_header_size = max_header_size;
259
260 /* IrTTP max SDU size in transmit direction */
261 self->max_sdu_size_tx = max_sdu_size;
262
263 /* Find out what the largest chunk of data that we can transmit is */
264 switch (sk->sk_type) {
265 case SOCK_STREAM:
266 if (max_sdu_size != 0) {
267 IRDA_ERROR("%s: max_sdu_size must be 0\n",
268 __FUNCTION__);
269 kfree_skb(skb);
270 return;
271 }
272 self->max_data_size = irttp_get_max_seg_size(self->tsap);
273 break;
274 case SOCK_SEQPACKET:
275 if (max_sdu_size == 0) {
276 IRDA_ERROR("%s: max_sdu_size cannot be 0\n",
277 __FUNCTION__);
278 kfree_skb(skb);
279 return;
280 }
281 self->max_data_size = max_sdu_size;
282 break;
283 default:
284 self->max_data_size = irttp_get_max_seg_size(self->tsap);
3ff50b79 285 }
1da177e4
LT
286
287 IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __FUNCTION__,
288 self->max_data_size);
289
290 memcpy(&self->qos_tx, qos, sizeof(struct qos_info));
291
292 skb_queue_tail(&sk->sk_receive_queue, skb);
293 sk->sk_state_change(sk);
294}
295
296/*
297 * Function irda_connect_response (handle)
298 *
299 * Accept incoming connection
300 *
301 */
302static void irda_connect_response(struct irda_sock *self)
303{
304 struct sk_buff *skb;
305
306 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
307
308 IRDA_ASSERT(self != NULL, return;);
309
1b0fee7d
SO
310 skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
311 GFP_ATOMIC);
1da177e4
LT
312 if (skb == NULL) {
313 IRDA_DEBUG(0, "%s() Unable to allocate sk_buff!\n",
314 __FUNCTION__);
315 return;
316 }
317
318 /* Reserve space for MUX_CONTROL and LAP header */
319 skb_reserve(skb, IRDA_MAX_HEADER);
320
321 irttp_connect_response(self->tsap, self->max_sdu_size_rx, skb);
322}
323
324/*
325 * Function irda_flow_indication (instance, sap, flow)
326 *
327 * Used by TinyTP to tell us if it can accept more data or not
328 *
329 */
330static void irda_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
331{
332 struct irda_sock *self;
333 struct sock *sk;
334
335 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
336
337 self = instance;
338 sk = instance;
339 IRDA_ASSERT(sk != NULL, return;);
340
341 switch (flow) {
342 case FLOW_STOP:
343 IRDA_DEBUG(1, "%s(), IrTTP wants us to slow down\n",
344 __FUNCTION__);
345 self->tx_flow = flow;
346 break;
347 case FLOW_START:
348 self->tx_flow = flow;
349 IRDA_DEBUG(1, "%s(), IrTTP wants us to start again\n",
350 __FUNCTION__);
351 wake_up_interruptible(sk->sk_sleep);
352 break;
353 default:
354 IRDA_DEBUG(0, "%s(), Unknown flow command!\n", __FUNCTION__);
355 /* Unknown flow command, better stop */
356 self->tx_flow = flow;
357 break;
358 }
359}
360
361/*
362 * Function irda_getvalue_confirm (obj_id, value, priv)
363 *
364 * Got answer from remote LM-IAS, just pass object to requester...
365 *
366 * Note : duplicate from above, but we need our own version that
367 * doesn't touch the dtsap_sel and save the full value structure...
368 */
369static void irda_getvalue_confirm(int result, __u16 obj_id,
370 struct ias_value *value, void *priv)
371{
372 struct irda_sock *self;
373
374 self = (struct irda_sock *) priv;
375 if (!self) {
376 IRDA_WARNING("%s: lost myself!\n", __FUNCTION__);
377 return;
378 }
379
380 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
381
382 /* We probably don't need to make any more queries */
383 iriap_close(self->iriap);
384 self->iriap = NULL;
385
386 /* Check if request succeeded */
387 if (result != IAS_SUCCESS) {
388 IRDA_DEBUG(1, "%s(), IAS query failed! (%d)\n", __FUNCTION__,
389 result);
390
391 self->errno = result; /* We really need it later */
392
393 /* Wake up any processes waiting for result */
394 wake_up_interruptible(&self->query_wait);
395
396 return;
397 }
398
399 /* Pass the object to the caller (so the caller must delete it) */
400 self->ias_result = value;
401 self->errno = 0;
402
403 /* Wake up any processes waiting for result */
404 wake_up_interruptible(&self->query_wait);
405}
406
407/*
408 * Function irda_selective_discovery_indication (discovery)
409 *
410 * Got a selective discovery indication from IrLMP.
411 *
412 * IrLMP is telling us that this node is new and matching our hint bit
413 * filter. Wake up any process waiting for answer...
414 */
415static void irda_selective_discovery_indication(discinfo_t *discovery,
416 DISCOVERY_MODE mode,
417 void *priv)
418{
419 struct irda_sock *self;
420
421 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
422
423 self = (struct irda_sock *) priv;
424 if (!self) {
425 IRDA_WARNING("%s: lost myself!\n", __FUNCTION__);
426 return;
427 }
428
429 /* Pass parameter to the caller */
430 self->cachedaddr = discovery->daddr;
431
432 /* Wake up process if its waiting for device to be discovered */
433 wake_up_interruptible(&self->query_wait);
434}
435
436/*
437 * Function irda_discovery_timeout (priv)
438 *
439 * Timeout in the selective discovery process
440 *
441 * We were waiting for a node to be discovered, but nothing has come up
442 * so far. Wake up the user and tell him that we failed...
443 */
444static void irda_discovery_timeout(u_long priv)
445{
446 struct irda_sock *self;
447
448 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
449
450 self = (struct irda_sock *) priv;
451 IRDA_ASSERT(self != NULL, return;);
452
453 /* Nothing for the caller */
454 self->cachelog = NULL;
455 self->cachedaddr = 0;
456 self->errno = -ETIME;
457
458 /* Wake up process if its still waiting... */
459 wake_up_interruptible(&self->query_wait);
460}
461
462/*
463 * Function irda_open_tsap (self)
464 *
465 * Open local Transport Service Access Point (TSAP)
466 *
467 */
468static int irda_open_tsap(struct irda_sock *self, __u8 tsap_sel, char *name)
469{
470 notify_t notify;
471
472 if (self->tsap) {
473 IRDA_WARNING("%s: busy!\n", __FUNCTION__);
474 return -EBUSY;
475 }
476
477 /* Initialize callbacks to be used by the IrDA stack */
478 irda_notify_init(&notify);
479 notify.connect_confirm = irda_connect_confirm;
480 notify.connect_indication = irda_connect_indication;
481 notify.disconnect_indication = irda_disconnect_indication;
482 notify.data_indication = irda_data_indication;
483 notify.udata_indication = irda_data_indication;
484 notify.flow_indication = irda_flow_indication;
485 notify.instance = self;
486 strncpy(notify.name, name, NOTIFY_MAX_NAME);
487
488 self->tsap = irttp_open_tsap(tsap_sel, DEFAULT_INITIAL_CREDIT,
489 &notify);
490 if (self->tsap == NULL) {
491 IRDA_DEBUG(0, "%s(), Unable to allocate TSAP!\n",
492 __FUNCTION__);
493 return -ENOMEM;
494 }
495 /* Remember which TSAP selector we actually got */
496 self->stsap_sel = self->tsap->stsap_sel;
497
498 return 0;
499}
500
501/*
502 * Function irda_open_lsap (self)
503 *
504 * Open local Link Service Access Point (LSAP). Used for opening Ultra
505 * sockets
506 */
507#ifdef CONFIG_IRDA_ULTRA
508static int irda_open_lsap(struct irda_sock *self, int pid)
509{
510 notify_t notify;
511
512 if (self->lsap) {
513 IRDA_WARNING("%s(), busy!\n", __FUNCTION__);
514 return -EBUSY;
515 }
516
517 /* Initialize callbacks to be used by the IrDA stack */
518 irda_notify_init(&notify);
519 notify.udata_indication = irda_data_indication;
520 notify.instance = self;
521 strncpy(notify.name, "Ultra", NOTIFY_MAX_NAME);
522
523 self->lsap = irlmp_open_lsap(LSAP_CONNLESS, &notify, pid);
524 if (self->lsap == NULL) {
525 IRDA_DEBUG( 0, "%s(), Unable to allocate LSAP!\n", __FUNCTION__);
526 return -ENOMEM;
527 }
528
529 return 0;
530}
531#endif /* CONFIG_IRDA_ULTRA */
532
533/*
534 * Function irda_find_lsap_sel (self, name)
535 *
536 * Try to lookup LSAP selector in remote LM-IAS
537 *
538 * Basically, we start a IAP query, and then go to sleep. When the query
539 * return, irda_getvalue_confirm will wake us up, and we can examine the
540 * result of the query...
541 * Note that in some case, the query fail even before we go to sleep,
542 * creating some races...
543 */
544static int irda_find_lsap_sel(struct irda_sock *self, char *name)
545{
546 IRDA_DEBUG(2, "%s(%p, %s)\n", __FUNCTION__, self, name);
547
548 IRDA_ASSERT(self != NULL, return -1;);
549
550 if (self->iriap) {
551 IRDA_WARNING("%s(): busy with a previous query\n",
552 __FUNCTION__);
553 return -EBUSY;
554 }
555
556 self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self,
557 irda_getvalue_confirm);
558 if(self->iriap == NULL)
559 return -ENOMEM;
560
561 /* Treat unexpected wakeup as disconnect */
562 self->errno = -EHOSTUNREACH;
563
564 /* Query remote LM-IAS */
565 iriap_getvaluebyclass_request(self->iriap, self->saddr, self->daddr,
566 name, "IrDA:TinyTP:LsapSel");
567
568 /* Wait for answer, if not yet finished (or failed) */
569 if (wait_event_interruptible(self->query_wait, (self->iriap==NULL)))
570 /* Treat signals as disconnect */
571 return -EHOSTUNREACH;
572
573 /* Check what happened */
574 if (self->errno)
575 {
576 /* Requested object/attribute doesn't exist */
577 if((self->errno == IAS_CLASS_UNKNOWN) ||
578 (self->errno == IAS_ATTRIB_UNKNOWN))
579 return (-EADDRNOTAVAIL);
580 else
581 return (-EHOSTUNREACH);
582 }
583
584 /* Get the remote TSAP selector */
585 switch (self->ias_result->type) {
586 case IAS_INTEGER:
587 IRDA_DEBUG(4, "%s() int=%d\n",
588 __FUNCTION__, self->ias_result->t.integer);
589
590 if (self->ias_result->t.integer != -1)
591 self->dtsap_sel = self->ias_result->t.integer;
592 else
593 self->dtsap_sel = 0;
594 break;
595 default:
596 self->dtsap_sel = 0;
597 IRDA_DEBUG(0, "%s(), bad type!\n", __FUNCTION__);
598 break;
599 }
600 if (self->ias_result)
601 irias_delete_value(self->ias_result);
602
603 if (self->dtsap_sel)
604 return 0;
605
606 return -EADDRNOTAVAIL;
607}
608
609/*
610 * Function irda_discover_daddr_and_lsap_sel (self, name)
611 *
612 * This try to find a device with the requested service.
613 *
614 * It basically look into the discovery log. For each address in the list,
615 * it queries the LM-IAS of the device to find if this device offer
616 * the requested service.
617 * If there is more than one node supporting the service, we complain
618 * to the user (it should move devices around).
619 * The, we set both the destination address and the lsap selector to point
620 * on the service on the unique device we have found.
621 *
622 * Note : this function fails if there is more than one device in range,
623 * because IrLMP doesn't disconnect the LAP when the last LSAP is closed.
624 * Moreover, we would need to wait the LAP disconnection...
625 */
626static int irda_discover_daddr_and_lsap_sel(struct irda_sock *self, char *name)
627{
628 discinfo_t *discoveries; /* Copy of the discovery log */
629 int number; /* Number of nodes in the log */
630 int i;
631 int err = -ENETUNREACH;
632 __u32 daddr = DEV_ADDR_ANY; /* Address we found the service on */
633 __u8 dtsap_sel = 0x0; /* TSAP associated with it */
634
635 IRDA_DEBUG(2, "%s(), name=%s\n", __FUNCTION__, name);
636
637 IRDA_ASSERT(self != NULL, return -1;);
638
639 /* Ask lmp for the current discovery log
640 * Note : we have to use irlmp_get_discoveries(), as opposed
641 * to play with the cachelog directly, because while we are
642 * making our ias query, le log might change... */
643 discoveries = irlmp_get_discoveries(&number, self->mask.word,
644 self->nslots);
645 /* Check if the we got some results */
646 if (discoveries == NULL)
647 return -ENETUNREACH; /* No nodes discovered */
648
649 /*
650 * Now, check all discovered devices (if any), and connect
651 * client only about the services that the client is
652 * interested in...
653 */
654 for(i = 0; i < number; i++) {
655 /* Try the address in the log */
656 self->daddr = discoveries[i].daddr;
657 self->saddr = 0x0;
658 IRDA_DEBUG(1, "%s(), trying daddr = %08x\n",
659 __FUNCTION__, self->daddr);
660
661 /* Query remote LM-IAS for this service */
662 err = irda_find_lsap_sel(self, name);
663 switch (err) {
664 case 0:
665 /* We found the requested service */
666 if(daddr != DEV_ADDR_ANY) {
667 IRDA_DEBUG(1, "%s(), discovered service ''%s'' in two different devices !!!\n",
668 __FUNCTION__, name);
669 self->daddr = DEV_ADDR_ANY;
670 kfree(discoveries);
671 return(-ENOTUNIQ);
672 }
673 /* First time we found that one, save it ! */
674 daddr = self->daddr;
675 dtsap_sel = self->dtsap_sel;
676 break;
677 case -EADDRNOTAVAIL:
678 /* Requested service simply doesn't exist on this node */
679 break;
680 default:
681 /* Something bad did happen :-( */
682 IRDA_DEBUG(0, "%s(), unexpected IAS query failure\n", __FUNCTION__);
683 self->daddr = DEV_ADDR_ANY;
684 kfree(discoveries);
685 return(-EHOSTUNREACH);
686 break;
687 }
688 }
689 /* Cleanup our copy of the discovery log */
690 kfree(discoveries);
691
692 /* Check out what we found */
693 if(daddr == DEV_ADDR_ANY) {
694 IRDA_DEBUG(1, "%s(), cannot discover service ''%s'' in any device !!!\n",
695 __FUNCTION__, name);
696 self->daddr = DEV_ADDR_ANY;
697 return(-EADDRNOTAVAIL);
698 }
699
700 /* Revert back to discovered device & service */
701 self->daddr = daddr;
702 self->saddr = 0x0;
703 self->dtsap_sel = dtsap_sel;
704
705 IRDA_DEBUG(1, "%s(), discovered requested service ''%s'' at address %08x\n",
706 __FUNCTION__, name, self->daddr);
707
708 return 0;
709}
710
711/*
712 * Function irda_getname (sock, uaddr, uaddr_len, peer)
713 *
714 * Return the our own, or peers socket address (sockaddr_irda)
715 *
716 */
717static int irda_getname(struct socket *sock, struct sockaddr *uaddr,
718 int *uaddr_len, int peer)
719{
720 struct sockaddr_irda saddr;
721 struct sock *sk = sock->sk;
722 struct irda_sock *self = irda_sk(sk);
723
724 if (peer) {
725 if (sk->sk_state != TCP_ESTABLISHED)
726 return -ENOTCONN;
727
728 saddr.sir_family = AF_IRDA;
729 saddr.sir_lsap_sel = self->dtsap_sel;
730 saddr.sir_addr = self->daddr;
731 } else {
732 saddr.sir_family = AF_IRDA;
733 saddr.sir_lsap_sel = self->stsap_sel;
734 saddr.sir_addr = self->saddr;
735 }
736
737 IRDA_DEBUG(1, "%s(), tsap_sel = %#x\n", __FUNCTION__, saddr.sir_lsap_sel);
738 IRDA_DEBUG(1, "%s(), addr = %08x\n", __FUNCTION__, saddr.sir_addr);
739
740 /* uaddr_len come to us uninitialised */
741 *uaddr_len = sizeof (struct sockaddr_irda);
742 memcpy(uaddr, &saddr, *uaddr_len);
743
744 return 0;
745}
746
747/*
748 * Function irda_listen (sock, backlog)
749 *
750 * Just move to the listen state
751 *
752 */
753static int irda_listen(struct socket *sock, int backlog)
754{
755 struct sock *sk = sock->sk;
756
757 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
758
759 if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) &&
760 (sk->sk_type != SOCK_DGRAM))
761 return -EOPNOTSUPP;
762
763 if (sk->sk_state != TCP_LISTEN) {
764 sk->sk_max_ack_backlog = backlog;
765 sk->sk_state = TCP_LISTEN;
766
767 return 0;
768 }
769
770 return -EOPNOTSUPP;
771}
772
773/*
774 * Function irda_bind (sock, uaddr, addr_len)
775 *
776 * Used by servers to register their well known TSAP
777 *
778 */
779static int irda_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
780{
781 struct sock *sk = sock->sk;
782 struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr;
783 struct irda_sock *self = irda_sk(sk);
784 int err;
785
786 IRDA_ASSERT(self != NULL, return -1;);
787
788 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
789
790 if (addr_len != sizeof(struct sockaddr_irda))
791 return -EINVAL;
792
793#ifdef CONFIG_IRDA_ULTRA
794 /* Special care for Ultra sockets */
795 if ((sk->sk_type == SOCK_DGRAM) &&
796 (sk->sk_protocol == IRDAPROTO_ULTRA)) {
797 self->pid = addr->sir_lsap_sel;
798 if (self->pid & 0x80) {
799 IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __FUNCTION__);
800 return -EOPNOTSUPP;
801 }
802 err = irda_open_lsap(self, self->pid);
803 if (err < 0)
804 return err;
805
806 /* Pretend we are connected */
807 sock->state = SS_CONNECTED;
808 sk->sk_state = TCP_ESTABLISHED;
809
810 return 0;
811 }
812#endif /* CONFIG_IRDA_ULTRA */
813
814 err = irda_open_tsap(self, addr->sir_lsap_sel, addr->sir_name);
815 if (err < 0)
816 return err;
817
818 /* Register with LM-IAS */
819 self->ias_obj = irias_new_object(addr->sir_name, jiffies);
820 irias_add_integer_attrib(self->ias_obj, "IrDA:TinyTP:LsapSel",
821 self->stsap_sel, IAS_KERNEL_ATTR);
822 irias_insert_object(self->ias_obj);
823
824 return 0;
825}
826
827/*
828 * Function irda_accept (sock, newsock, flags)
829 *
830 * Wait for incoming connection
831 *
832 */
833static int irda_accept(struct socket *sock, struct socket *newsock, int flags)
834{
835 struct sock *sk = sock->sk;
836 struct irda_sock *new, *self = irda_sk(sk);
837 struct sock *newsk;
838 struct sk_buff *skb;
839 int err;
840
841 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
842
843 IRDA_ASSERT(self != NULL, return -1;);
844
845 err = irda_create(newsock, sk->sk_protocol);
846 if (err)
847 return err;
848
849 if (sock->state != SS_UNCONNECTED)
850 return -EINVAL;
851
852 if ((sk = sock->sk) == NULL)
853 return -EINVAL;
854
855 if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) &&
856 (sk->sk_type != SOCK_DGRAM))
857 return -EOPNOTSUPP;
858
859 if (sk->sk_state != TCP_LISTEN)
860 return -EINVAL;
861
862 /*
863 * The read queue this time is holding sockets ready to use
864 * hooked into the SABM we saved
865 */
866
867 /*
868 * We can perform the accept only if there is incoming data
869 * on the listening socket.
870 * So, we will block the caller until we receive any data.
871 * If the caller was waiting on select() or poll() before
872 * calling us, the data is waiting for us ;-)
873 * Jean II
874 */
875 skb = skb_dequeue(&sk->sk_receive_queue);
876 if (skb == NULL) {
877 int ret = 0;
878 DECLARE_WAITQUEUE(waitq, current);
879
880 /* Non blocking operation */
881 if (flags & O_NONBLOCK)
882 return -EWOULDBLOCK;
883
884 /* The following code is a cut'n'paste of the
885 * wait_event_interruptible() macro.
886 * We don't us the macro because the condition has
887 * side effects : we want to make sure that only one
888 * skb get dequeued - Jean II */
889 add_wait_queue(sk->sk_sleep, &waitq);
890 for (;;) {
891 set_current_state(TASK_INTERRUPTIBLE);
892 skb = skb_dequeue(&sk->sk_receive_queue);
893 if (skb != NULL)
894 break;
895 if (!signal_pending(current)) {
896 schedule();
897 continue;
898 }
899 ret = -ERESTARTSYS;
900 break;
901 }
902 current->state = TASK_RUNNING;
903 remove_wait_queue(sk->sk_sleep, &waitq);
904 if(ret)
905 return -ERESTARTSYS;
906 }
907
908 newsk = newsock->sk;
909 newsk->sk_state = TCP_ESTABLISHED;
910
911 new = irda_sk(newsk);
912 IRDA_ASSERT(new != NULL, return -1;);
913
914 /* Now attach up the new socket */
915 new->tsap = irttp_dup(self->tsap, new);
916 if (!new->tsap) {
917 IRDA_DEBUG(0, "%s(), dup failed!\n", __FUNCTION__);
918 kfree_skb(skb);
919 return -1;
920 }
921
922 new->stsap_sel = new->tsap->stsap_sel;
923 new->dtsap_sel = new->tsap->dtsap_sel;
924 new->saddr = irttp_get_saddr(new->tsap);
925 new->daddr = irttp_get_daddr(new->tsap);
926
927 new->max_sdu_size_tx = self->max_sdu_size_tx;
928 new->max_sdu_size_rx = self->max_sdu_size_rx;
929 new->max_data_size = self->max_data_size;
930 new->max_header_size = self->max_header_size;
931
932 memcpy(&new->qos_tx, &self->qos_tx, sizeof(struct qos_info));
933
934 /* Clean up the original one to keep it in listen state */
935 irttp_listen(self->tsap);
936
937 /* Wow ! What is that ? Jean II */
938 skb->sk = NULL;
939 skb->destructor = NULL;
940 kfree_skb(skb);
941 sk->sk_ack_backlog--;
942
943 newsock->state = SS_CONNECTED;
944
945 irda_connect_response(new);
946
947 return 0;
948}
949
950/*
951 * Function irda_connect (sock, uaddr, addr_len, flags)
952 *
953 * Connect to a IrDA device
954 *
955 * The main difference with a "standard" connect is that with IrDA we need
956 * to resolve the service name into a TSAP selector (in TCP, port number
957 * doesn't have to be resolved).
958 * Because of this service name resoltion, we can offer "auto-connect",
959 * where we connect to a service without specifying a destination address.
960 *
961 * Note : by consulting "errno", the user space caller may learn the cause
962 * of the failure. Most of them are visible in the function, others may come
963 * from subroutines called and are listed here :
964 * o EBUSY : already processing a connect
965 * o EHOSTUNREACH : bad addr->sir_addr argument
966 * o EADDRNOTAVAIL : bad addr->sir_name argument
967 * o ENOTUNIQ : more than one node has addr->sir_name (auto-connect)
968 * o ENETUNREACH : no node found on the network (auto-connect)
969 */
970static int irda_connect(struct socket *sock, struct sockaddr *uaddr,
971 int addr_len, int flags)
972{
973 struct sock *sk = sock->sk;
974 struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr;
975 struct irda_sock *self = irda_sk(sk);
976 int err;
977
978 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
979
980 /* Don't allow connect for Ultra sockets */
981 if ((sk->sk_type == SOCK_DGRAM) && (sk->sk_protocol == IRDAPROTO_ULTRA))
982 return -ESOCKTNOSUPPORT;
983
984 if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
985 sock->state = SS_CONNECTED;
986 return 0; /* Connect completed during a ERESTARTSYS event */
987 }
988
989 if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
990 sock->state = SS_UNCONNECTED;
991 return -ECONNREFUSED;
992 }
993
994 if (sk->sk_state == TCP_ESTABLISHED)
995 return -EISCONN; /* No reconnect on a seqpacket socket */
996
997 sk->sk_state = TCP_CLOSE;
998 sock->state = SS_UNCONNECTED;
999
1000 if (addr_len != sizeof(struct sockaddr_irda))
1001 return -EINVAL;
1002
1003 /* Check if user supplied any destination device address */
1004 if ((!addr->sir_addr) || (addr->sir_addr == DEV_ADDR_ANY)) {
1005 /* Try to find one suitable */
1006 err = irda_discover_daddr_and_lsap_sel(self, addr->sir_name);
1007 if (err) {
1008 IRDA_DEBUG(0, "%s(), auto-connect failed!\n", __FUNCTION__);
1009 return err;
1010 }
1011 } else {
1012 /* Use the one provided by the user */
1013 self->daddr = addr->sir_addr;
1014 IRDA_DEBUG(1, "%s(), daddr = %08x\n", __FUNCTION__, self->daddr);
1015
1016 /* If we don't have a valid service name, we assume the
1017 * user want to connect on a specific LSAP. Prevent
1018 * the use of invalid LSAPs (IrLMP 1.1 p10). Jean II */
1019 if((addr->sir_name[0] != '\0') ||
1020 (addr->sir_lsap_sel >= 0x70)) {
1021 /* Query remote LM-IAS using service name */
1022 err = irda_find_lsap_sel(self, addr->sir_name);
1023 if (err) {
1024 IRDA_DEBUG(0, "%s(), connect failed!\n", __FUNCTION__);
1025 return err;
1026 }
1027 } else {
1028 /* Directly connect to the remote LSAP
1029 * specified by the sir_lsap field.
1030 * Please use with caution, in IrDA LSAPs are
1031 * dynamic and there is no "well-known" LSAP. */
1032 self->dtsap_sel = addr->sir_lsap_sel;
1033 }
1034 }
1035
1036 /* Check if we have opened a local TSAP */
1037 if (!self->tsap)
1038 irda_open_tsap(self, LSAP_ANY, addr->sir_name);
1039
1040 /* Move to connecting socket, start sending Connect Requests */
1041 sock->state = SS_CONNECTING;
1042 sk->sk_state = TCP_SYN_SENT;
1043
1044 /* Connect to remote device */
1045 err = irttp_connect_request(self->tsap, self->dtsap_sel,
1046 self->saddr, self->daddr, NULL,
1047 self->max_sdu_size_rx, NULL);
1048 if (err) {
1049 IRDA_DEBUG(0, "%s(), connect failed!\n", __FUNCTION__);
1050 return err;
1051 }
1052
1053 /* Now the loop */
1054 if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK))
1055 return -EINPROGRESS;
1056
1057 if (wait_event_interruptible(*(sk->sk_sleep),
1058 (sk->sk_state != TCP_SYN_SENT)))
1059 return -ERESTARTSYS;
1060
1061 if (sk->sk_state != TCP_ESTABLISHED) {
1062 sock->state = SS_UNCONNECTED;
6e66aa15
OK
1063 err = sock_error(sk);
1064 return err? err : -ECONNRESET;
1da177e4
LT
1065 }
1066
1067 sock->state = SS_CONNECTED;
1068
1069 /* At this point, IrLMP has assigned our source address */
1070 self->saddr = irttp_get_saddr(self->tsap);
1071
1072 return 0;
1073}
1074
1075static struct proto irda_proto = {
1076 .name = "IRDA",
1077 .owner = THIS_MODULE,
1078 .obj_size = sizeof(struct irda_sock),
1079};
1080
1081/*
1082 * Function irda_create (sock, protocol)
1083 *
1084 * Create IrDA socket
1085 *
1086 */
1087static int irda_create(struct socket *sock, int protocol)
1088{
1089 struct sock *sk;
1090 struct irda_sock *self;
1091
1092 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
1093
1094 /* Check for valid socket type */
1095 switch (sock->type) {
1096 case SOCK_STREAM: /* For TTP connections with SAR disabled */
1097 case SOCK_SEQPACKET: /* For TTP connections with SAR enabled */
1098 case SOCK_DGRAM: /* For TTP Unitdata or LMP Ultra transfers */
1099 break;
1100 default:
1101 return -ESOCKTNOSUPPORT;
1102 }
1103
1104 /* Allocate networking socket */
1105 sk = sk_alloc(PF_IRDA, GFP_ATOMIC, &irda_proto, 1);
1106 if (sk == NULL)
1107 return -ENOMEM;
1108
1109 self = irda_sk(sk);
1110 IRDA_DEBUG(2, "%s() : self is %p\n", __FUNCTION__, self);
1111
1112 init_waitqueue_head(&self->query_wait);
1113
1114 /* Initialise networking socket struct */
1115 sock_init_data(sock, sk); /* Note : set sk->sk_refcnt to 1 */
1116 sk->sk_family = PF_IRDA;
1117 sk->sk_protocol = protocol;
1118
1119 switch (sock->type) {
1120 case SOCK_STREAM:
1121 sock->ops = &irda_stream_ops;
1122 self->max_sdu_size_rx = TTP_SAR_DISABLE;
1123 break;
1124 case SOCK_SEQPACKET:
1125 sock->ops = &irda_seqpacket_ops;
1126 self->max_sdu_size_rx = TTP_SAR_UNBOUND;
1127 break;
1128 case SOCK_DGRAM:
1129 switch (protocol) {
1130#ifdef CONFIG_IRDA_ULTRA
1131 case IRDAPROTO_ULTRA:
1132 sock->ops = &irda_ultra_ops;
1133 /* Initialise now, because we may send on unbound
1134 * sockets. Jean II */
1135 self->max_data_size = ULTRA_MAX_DATA - LMP_PID_HEADER;
1136 self->max_header_size = IRDA_MAX_HEADER + LMP_PID_HEADER;
1137 break;
1138#endif /* CONFIG_IRDA_ULTRA */
1139 case IRDAPROTO_UNITDATA:
1140 sock->ops = &irda_dgram_ops;
1141 /* We let Unitdata conn. be like seqpack conn. */
1142 self->max_sdu_size_rx = TTP_SAR_UNBOUND;
1143 break;
1144 default:
1145 IRDA_ERROR("%s: protocol not supported!\n",
1146 __FUNCTION__);
1147 return -ESOCKTNOSUPPORT;
1148 }
1149 break;
1150 default:
1151 return -ESOCKTNOSUPPORT;
1152 }
1153
1154 /* Register as a client with IrLMP */
1155 self->ckey = irlmp_register_client(0, NULL, NULL, NULL);
1156 self->mask.word = 0xffff;
1157 self->rx_flow = self->tx_flow = FLOW_START;
1158 self->nslots = DISCOVERY_DEFAULT_SLOTS;
1159 self->daddr = DEV_ADDR_ANY; /* Until we get connected */
1160 self->saddr = 0x0; /* so IrLMP assign us any link */
1161 return 0;
1162}
1163
1164/*
1165 * Function irda_destroy_socket (self)
1166 *
1167 * Destroy socket
1168 *
1169 */
1170static void irda_destroy_socket(struct irda_sock *self)
1171{
1172 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
1173
1174 IRDA_ASSERT(self != NULL, return;);
1175
1176 /* Unregister with IrLMP */
1177 irlmp_unregister_client(self->ckey);
1178 irlmp_unregister_service(self->skey);
1179
1180 /* Unregister with LM-IAS */
1181 if (self->ias_obj) {
1182 irias_delete_object(self->ias_obj);
1183 self->ias_obj = NULL;
1184 }
1185
1186 if (self->iriap) {
1187 iriap_close(self->iriap);
1188 self->iriap = NULL;
1189 }
1190
1191 if (self->tsap) {
1192 irttp_disconnect_request(self->tsap, NULL, P_NORMAL);
1193 irttp_close_tsap(self->tsap);
1194 self->tsap = NULL;
1195 }
1196#ifdef CONFIG_IRDA_ULTRA
1197 if (self->lsap) {
1198 irlmp_close_lsap(self->lsap);
1199 self->lsap = NULL;
1200 }
1201#endif /* CONFIG_IRDA_ULTRA */
1202}
1203
1204/*
1205 * Function irda_release (sock)
1206 */
1207static int irda_release(struct socket *sock)
1208{
1209 struct sock *sk = sock->sk;
1210
1211 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
1212
6819bc2e 1213 if (sk == NULL)
1da177e4
LT
1214 return 0;
1215
da349f1c 1216 lock_sock(sk);
1da177e4
LT
1217 sk->sk_state = TCP_CLOSE;
1218 sk->sk_shutdown |= SEND_SHUTDOWN;
1219 sk->sk_state_change(sk);
1220
1221 /* Destroy IrDA socket */
1222 irda_destroy_socket(irda_sk(sk));
1223
1224 sock_orphan(sk);
1225 sock->sk = NULL;
da349f1c 1226 release_sock(sk);
1da177e4
LT
1227
1228 /* Purge queues (see sock_init_data()) */
1229 skb_queue_purge(&sk->sk_receive_queue);
1230
1231 /* Destroy networking socket if we are the last reference on it,
1232 * i.e. if(sk->sk_refcnt == 0) -> sk_free(sk) */
1233 sock_put(sk);
1234
1235 /* Notes on socket locking and deallocation... - Jean II
1236 * In theory we should put pairs of sock_hold() / sock_put() to
1237 * prevent the socket to be destroyed whenever there is an
1238 * outstanding request or outstanding incoming packet or event.
1239 *
1240 * 1) This may include IAS request, both in connect and getsockopt.
1241 * Unfortunately, the situation is a bit more messy than it looks,
1242 * because we close iriap and kfree(self) above.
1243 *
1244 * 2) This may include selective discovery in getsockopt.
1245 * Same stuff as above, irlmp registration and self are gone.
1246 *
1247 * Probably 1 and 2 may not matter, because it's all triggered
1248 * by a process and the socket layer already prevent the
1249 * socket to go away while a process is holding it, through
1250 * sockfd_put() and fput()...
1251 *
1252 * 3) This may include deferred TSAP closure. In particular,
1253 * we may receive a late irda_disconnect_indication()
1254 * Fortunately, (tsap_cb *)->close_pend should protect us
1255 * from that.
1256 *
1257 * I did some testing on SMP, and it looks solid. And the socket
1258 * memory leak is now gone... - Jean II
1259 */
1260
6819bc2e 1261 return 0;
1da177e4
LT
1262}
1263
1264/*
1265 * Function irda_sendmsg (iocb, sock, msg, len)
1266 *
1267 * Send message down to TinyTP. This function is used for both STREAM and
1268 * SEQPACK services. This is possible since it forces the client to
1269 * fragment the message if necessary
1270 */
1271static int irda_sendmsg(struct kiocb *iocb, struct socket *sock,
1272 struct msghdr *msg, size_t len)
1273{
1274 struct sock *sk = sock->sk;
1275 struct irda_sock *self;
1276 struct sk_buff *skb;
1da177e4
LT
1277 int err;
1278
1279 IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len);
1280
1281 /* Note : socket.c set MSG_EOR on SEQPACKET sockets */
1282 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT))
1283 return -EINVAL;
1284
1285 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1286 send_sig(SIGPIPE, current, 0);
1287 return -EPIPE;
1288 }
1289
1290 if (sk->sk_state != TCP_ESTABLISHED)
1291 return -ENOTCONN;
1292
1293 self = irda_sk(sk);
1294 IRDA_ASSERT(self != NULL, return -1;);
1295
1296 /* Check if IrTTP is wants us to slow down */
1297
1298 if (wait_event_interruptible(*(sk->sk_sleep),
1299 (self->tx_flow != FLOW_STOP || sk->sk_state != TCP_ESTABLISHED)))
1300 return -ERESTARTSYS;
1301
1302 /* Check if we are still connected */
1303 if (sk->sk_state != TCP_ESTABLISHED)
1304 return -ENOTCONN;
1305
7f927fcc 1306 /* Check that we don't send out too big frames */
1da177e4
LT
1307 if (len > self->max_data_size) {
1308 IRDA_DEBUG(2, "%s(), Chopping frame from %zd to %d bytes!\n",
1309 __FUNCTION__, len, self->max_data_size);
1310 len = self->max_data_size;
1311 }
1312
6819bc2e 1313 skb = sock_alloc_send_skb(sk, len + self->max_header_size + 16,
1da177e4
LT
1314 msg->msg_flags & MSG_DONTWAIT, &err);
1315 if (!skb)
1316 return -ENOBUFS;
1317
1318 skb_reserve(skb, self->max_header_size + 16);
eeeb0374
ACM
1319 skb_reset_transport_header(skb);
1320 skb_put(skb, len);
1321 err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len);
1da177e4
LT
1322 if (err) {
1323 kfree_skb(skb);
1324 return err;
1325 }
1326
1327 /*
1328 * Just send the message to TinyTP, and let it deal with possible
1329 * errors. No need to duplicate all that here
1330 */
1331 err = irttp_data_request(self->tsap, skb);
1332 if (err) {
1333 IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err);
1334 return err;
1335 }
1336 /* Tell client how much data we actually sent */
1337 return len;
1338}
1339
1340/*
1341 * Function irda_recvmsg_dgram (iocb, sock, msg, size, flags)
1342 *
1343 * Try to receive message and copy it to user. The frame is discarded
1344 * after being read, regardless of how much the user actually read
1345 */
1346static int irda_recvmsg_dgram(struct kiocb *iocb, struct socket *sock,
1347 struct msghdr *msg, size_t size, int flags)
1348{
1349 struct sock *sk = sock->sk;
1350 struct irda_sock *self = irda_sk(sk);
1351 struct sk_buff *skb;
1352 size_t copied;
1353 int err;
1354
1355 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
1356
1357 IRDA_ASSERT(self != NULL, return -1;);
6e66aa15
OK
1358
1359 if ((err = sock_error(sk)) < 0)
1360 return err;
1da177e4
LT
1361
1362 skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT,
1363 flags & MSG_DONTWAIT, &err);
1364 if (!skb)
1365 return err;
1366
badff6d0
ACM
1367 skb_reset_transport_header(skb);
1368 copied = skb->len;
1da177e4
LT
1369
1370 if (copied > size) {
1371 IRDA_DEBUG(2, "%s(), Received truncated frame (%zd < %zd)!\n",
1372 __FUNCTION__, copied, size);
1373 copied = size;
1374 msg->msg_flags |= MSG_TRUNC;
1375 }
1376 skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1377
1378 skb_free_datagram(sk, skb);
1379
1380 /*
1381 * Check if we have previously stopped IrTTP and we know
1382 * have more free space in our rx_queue. If so tell IrTTP
1383 * to start delivering frames again before our rx_queue gets
1384 * empty
1385 */
1386 if (self->rx_flow == FLOW_STOP) {
1387 if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) {
1388 IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __FUNCTION__);
1389 self->rx_flow = FLOW_START;
1390 irttp_flow_request(self->tsap, FLOW_START);
1391 }
1392 }
1393
1394 return copied;
1395}
1396
1397/*
1398 * Function irda_recvmsg_stream (iocb, sock, msg, size, flags)
1399 */
1400static int irda_recvmsg_stream(struct kiocb *iocb, struct socket *sock,
1401 struct msghdr *msg, size_t size, int flags)
1402{
1403 struct sock *sk = sock->sk;
1404 struct irda_sock *self = irda_sk(sk);
1405 int noblock = flags & MSG_DONTWAIT;
1406 size_t copied = 0;
6e66aa15 1407 int target, err;
305f2aa1 1408 long timeo;
1da177e4
LT
1409
1410 IRDA_DEBUG(3, "%s()\n", __FUNCTION__);
1411
1412 IRDA_ASSERT(self != NULL, return -1;);
6e66aa15
OK
1413
1414 if ((err = sock_error(sk)) < 0)
1415 return err;
1da177e4
LT
1416
1417 if (sock->flags & __SO_ACCEPTCON)
1418 return(-EINVAL);
1419
1420 if (flags & MSG_OOB)
1421 return -EOPNOTSUPP;
1422
305f2aa1
OK
1423 target = sock_rcvlowat(sk, flags & MSG_WAITALL, size);
1424 timeo = sock_rcvtimeo(sk, noblock);
1da177e4
LT
1425
1426 msg->msg_namelen = 0;
1427
1428 do {
1429 int chunk;
1430 struct sk_buff *skb = skb_dequeue(&sk->sk_receive_queue);
1431
305f2aa1
OK
1432 if (skb == NULL) {
1433 DEFINE_WAIT(wait);
1da177e4
LT
1434 int ret = 0;
1435
1436 if (copied >= target)
1437 break;
1438
305f2aa1 1439 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1da177e4
LT
1440
1441 /*
1442 * POSIX 1003.1g mandates this order.
1443 */
c1cbe4b7
BL
1444 ret = sock_error(sk);
1445 if (ret)
bfb6709d 1446 ;
1da177e4
LT
1447 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1448 ;
1449 else if (noblock)
1450 ret = -EAGAIN;
1451 else if (signal_pending(current))
305f2aa1
OK
1452 ret = sock_intr_errno(timeo);
1453 else if (sk->sk_state != TCP_ESTABLISHED)
1454 ret = -ENOTCONN;
1da177e4
LT
1455 else if (skb_peek(&sk->sk_receive_queue) == NULL)
1456 /* Wait process until data arrives */
1457 schedule();
1458
305f2aa1 1459 finish_wait(sk->sk_sleep, &wait);
1da177e4 1460
305f2aa1
OK
1461 if (ret)
1462 return ret;
1da177e4
LT
1463 if (sk->sk_shutdown & RCV_SHUTDOWN)
1464 break;
1465
1466 continue;
1467 }
1468
1469 chunk = min_t(unsigned int, skb->len, size);
1470 if (memcpy_toiovec(msg->msg_iov, skb->data, chunk)) {
1471 skb_queue_head(&sk->sk_receive_queue, skb);
1472 if (copied == 0)
1473 copied = -EFAULT;
1474 break;
1475 }
1476 copied += chunk;
1477 size -= chunk;
1478
1479 /* Mark read part of skb as used */
1480 if (!(flags & MSG_PEEK)) {
1481 skb_pull(skb, chunk);
1482
1483 /* put the skb back if we didn't use it up.. */
1484 if (skb->len) {
1485 IRDA_DEBUG(1, "%s(), back on q!\n",
1486 __FUNCTION__);
1487 skb_queue_head(&sk->sk_receive_queue, skb);
1488 break;
1489 }
1490
1491 kfree_skb(skb);
1492 } else {
1493 IRDA_DEBUG(0, "%s() questionable!?\n", __FUNCTION__);
1494
1495 /* put message back and return */
1496 skb_queue_head(&sk->sk_receive_queue, skb);
1497 break;
1498 }
1499 } while (size);
1500
1501 /*
1502 * Check if we have previously stopped IrTTP and we know
1503 * have more free space in our rx_queue. If so tell IrTTP
1504 * to start delivering frames again before our rx_queue gets
1505 * empty
1506 */
1507 if (self->rx_flow == FLOW_STOP) {
1508 if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) {
1509 IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __FUNCTION__);
1510 self->rx_flow = FLOW_START;
1511 irttp_flow_request(self->tsap, FLOW_START);
1512 }
1513 }
1514
1515 return copied;
1516}
1517
1518/*
1519 * Function irda_sendmsg_dgram (iocb, sock, msg, len)
1520 *
1521 * Send message down to TinyTP for the unreliable sequenced
1522 * packet service...
1523 *
1524 */
1525static int irda_sendmsg_dgram(struct kiocb *iocb, struct socket *sock,
1526 struct msghdr *msg, size_t len)
1527{
1528 struct sock *sk = sock->sk;
1529 struct irda_sock *self;
1530 struct sk_buff *skb;
1da177e4
LT
1531 int err;
1532
1533 IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len);
1534
1535 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT))
1536 return -EINVAL;
1537
1538 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1539 send_sig(SIGPIPE, current, 0);
1540 return -EPIPE;
1541 }
1542
1543 if (sk->sk_state != TCP_ESTABLISHED)
1544 return -ENOTCONN;
1545
1546 self = irda_sk(sk);
1547 IRDA_ASSERT(self != NULL, return -1;);
1548
1549 /*
7f927fcc 1550 * Check that we don't send out too big frames. This is an unreliable
1da177e4
LT
1551 * service, so we have no fragmentation and no coalescence
1552 */
1553 if (len > self->max_data_size) {
1554 IRDA_DEBUG(0, "%s(), Warning to much data! "
1555 "Chopping frame from %zd to %d bytes!\n",
1556 __FUNCTION__, len, self->max_data_size);
1557 len = self->max_data_size;
1558 }
1559
1560 skb = sock_alloc_send_skb(sk, len + self->max_header_size,
1561 msg->msg_flags & MSG_DONTWAIT, &err);
1562 if (!skb)
1563 return -ENOBUFS;
1564
1565 skb_reserve(skb, self->max_header_size);
eeeb0374 1566 skb_reset_transport_header(skb);
1da177e4
LT
1567
1568 IRDA_DEBUG(4, "%s(), appending user data\n", __FUNCTION__);
eeeb0374
ACM
1569 skb_put(skb, len);
1570 err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len);
1da177e4
LT
1571 if (err) {
1572 kfree_skb(skb);
1573 return err;
1574 }
1575
1576 /*
1577 * Just send the message to TinyTP, and let it deal with possible
1578 * errors. No need to duplicate all that here
1579 */
1580 err = irttp_udata_request(self->tsap, skb);
1581 if (err) {
1582 IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err);
1583 return err;
1584 }
1585 return len;
1586}
1587
1588/*
1589 * Function irda_sendmsg_ultra (iocb, sock, msg, len)
1590 *
1591 * Send message down to IrLMP for the unreliable Ultra
1592 * packet service...
1593 */
1594#ifdef CONFIG_IRDA_ULTRA
1595static int irda_sendmsg_ultra(struct kiocb *iocb, struct socket *sock,
1596 struct msghdr *msg, size_t len)
1597{
1598 struct sock *sk = sock->sk;
1599 struct irda_sock *self;
1600 __u8 pid = 0;
1601 int bound = 0;
1602 struct sk_buff *skb;
1da177e4
LT
1603 int err;
1604
1605 IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len);
1606
1607 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT))
1608 return -EINVAL;
1609
1610 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1611 send_sig(SIGPIPE, current, 0);
1612 return -EPIPE;
1613 }
1614
1615 self = irda_sk(sk);
1616 IRDA_ASSERT(self != NULL, return -1;);
1617
1618 /* Check if an address was specified with sendto. Jean II */
1619 if (msg->msg_name) {
1620 struct sockaddr_irda *addr = (struct sockaddr_irda *) msg->msg_name;
1621 /* Check address, extract pid. Jean II */
1622 if (msg->msg_namelen < sizeof(*addr))
1623 return -EINVAL;
1624 if (addr->sir_family != AF_IRDA)
1625 return -EINVAL;
1626
1627 pid = addr->sir_lsap_sel;
1628 if (pid & 0x80) {
1629 IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __FUNCTION__);
1630 return -EOPNOTSUPP;
1631 }
1632 } else {
1633 /* Check that the socket is properly bound to an Ultra
1634 * port. Jean II */
1635 if ((self->lsap == NULL) ||
1636 (sk->sk_state != TCP_ESTABLISHED)) {
1637 IRDA_DEBUG(0, "%s(), socket not bound to Ultra PID.\n",
1638 __FUNCTION__);
1639 return -ENOTCONN;
1640 }
1641 /* Use PID from socket */
1642 bound = 1;
1643 }
1644
1645 /*
7f927fcc 1646 * Check that we don't send out too big frames. This is an unreliable
1da177e4
LT
1647 * service, so we have no fragmentation and no coalescence
1648 */
1649 if (len > self->max_data_size) {
1650 IRDA_DEBUG(0, "%s(), Warning to much data! "
1651 "Chopping frame from %zd to %d bytes!\n",
1652 __FUNCTION__, len, self->max_data_size);
1653 len = self->max_data_size;
1654 }
1655
1656 skb = sock_alloc_send_skb(sk, len + self->max_header_size,
1657 msg->msg_flags & MSG_DONTWAIT, &err);
1658 if (!skb)
1659 return -ENOBUFS;
1660
1661 skb_reserve(skb, self->max_header_size);
eeeb0374 1662 skb_reset_transport_header(skb);
1da177e4
LT
1663
1664 IRDA_DEBUG(4, "%s(), appending user data\n", __FUNCTION__);
eeeb0374
ACM
1665 skb_put(skb, len);
1666 err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len);
1da177e4
LT
1667 if (err) {
1668 kfree_skb(skb);
1669 return err;
1670 }
1671
1672 err = irlmp_connless_data_request((bound ? self->lsap : NULL),
1673 skb, pid);
1674 if (err) {
1675 IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err);
1676 return err;
1677 }
1678 return len;
1679}
1680#endif /* CONFIG_IRDA_ULTRA */
1681
1682/*
1683 * Function irda_shutdown (sk, how)
1684 */
1685static int irda_shutdown(struct socket *sock, int how)
1686{
1687 struct sock *sk = sock->sk;
1688 struct irda_sock *self = irda_sk(sk);
1689
1690 IRDA_ASSERT(self != NULL, return -1;);
1691
1692 IRDA_DEBUG(1, "%s(%p)\n", __FUNCTION__, self);
1693
1694 sk->sk_state = TCP_CLOSE;
1695 sk->sk_shutdown |= SEND_SHUTDOWN;
1696 sk->sk_state_change(sk);
1697
1698 if (self->iriap) {
1699 iriap_close(self->iriap);
1700 self->iriap = NULL;
1701 }
1702
1703 if (self->tsap) {
1704 irttp_disconnect_request(self->tsap, NULL, P_NORMAL);
1705 irttp_close_tsap(self->tsap);
1706 self->tsap = NULL;
1707 }
1708
1709 /* A few cleanup so the socket look as good as new... */
1710 self->rx_flow = self->tx_flow = FLOW_START; /* needed ??? */
1711 self->daddr = DEV_ADDR_ANY; /* Until we get re-connected */
1712 self->saddr = 0x0; /* so IrLMP assign us any link */
1713
6819bc2e 1714 return 0;
1da177e4
LT
1715}
1716
1717/*
1718 * Function irda_poll (file, sock, wait)
1719 */
1720static unsigned int irda_poll(struct file * file, struct socket *sock,
1721 poll_table *wait)
1722{
1723 struct sock *sk = sock->sk;
1724 struct irda_sock *self = irda_sk(sk);
1725 unsigned int mask;
1726
1727 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
1728
1729 poll_wait(file, sk->sk_sleep, wait);
1730 mask = 0;
1731
1732 /* Exceptional events? */
1733 if (sk->sk_err)
1734 mask |= POLLERR;
1735 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1736 IRDA_DEBUG(0, "%s(), POLLHUP\n", __FUNCTION__);
1737 mask |= POLLHUP;
1738 }
1739
1740 /* Readable? */
1741 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1742 IRDA_DEBUG(4, "Socket is readable\n");
1743 mask |= POLLIN | POLLRDNORM;
1744 }
1745
1746 /* Connection-based need to check for termination and startup */
1747 switch (sk->sk_type) {
1748 case SOCK_STREAM:
1749 if (sk->sk_state == TCP_CLOSE) {
1750 IRDA_DEBUG(0, "%s(), POLLHUP\n", __FUNCTION__);
1751 mask |= POLLHUP;
1752 }
1753
1754 if (sk->sk_state == TCP_ESTABLISHED) {
1755 if ((self->tx_flow == FLOW_START) &&
1756 sock_writeable(sk))
1757 {
1758 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1759 }
1760 }
1761 break;
1762 case SOCK_SEQPACKET:
1763 if ((self->tx_flow == FLOW_START) &&
1764 sock_writeable(sk))
1765 {
1766 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1767 }
1768 break;
1769 case SOCK_DGRAM:
1770 if (sock_writeable(sk))
1771 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1772 break;
1773 default:
1774 break;
1775 }
1776 return mask;
1777}
1778
1779/*
1780 * Function irda_ioctl (sock, cmd, arg)
1781 */
1782static int irda_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1783{
1784 struct sock *sk = sock->sk;
1785
1786 IRDA_DEBUG(4, "%s(), cmd=%#x\n", __FUNCTION__, cmd);
1787
1788 switch (cmd) {
1789 case TIOCOUTQ: {
1790 long amount;
1791 amount = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1792 if (amount < 0)
1793 amount = 0;
1794 if (put_user(amount, (unsigned int __user *)arg))
1795 return -EFAULT;
1796 return 0;
1797 }
1798
1799 case TIOCINQ: {
1800 struct sk_buff *skb;
1801 long amount = 0L;
1802 /* These two are safe on a single CPU system as only user tasks fiddle here */
1803 if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
1804 amount = skb->len;
1805 if (put_user(amount, (unsigned int __user *)arg))
1806 return -EFAULT;
1807 return 0;
1808 }
1809
1810 case SIOCGSTAMP:
1811 if (sk != NULL)
1812 return sock_get_timestamp(sk, (struct timeval __user *)arg);
1813 return -EINVAL;
1814
1815 case SIOCGIFADDR:
1816 case SIOCSIFADDR:
1817 case SIOCGIFDSTADDR:
1818 case SIOCSIFDSTADDR:
1819 case SIOCGIFBRDADDR:
1820 case SIOCSIFBRDADDR:
1821 case SIOCGIFNETMASK:
1822 case SIOCSIFNETMASK:
1823 case SIOCGIFMETRIC:
1824 case SIOCSIFMETRIC:
1825 return -EINVAL;
1826 default:
1827 IRDA_DEBUG(1, "%s(), doing device ioctl!\n", __FUNCTION__);
b5e5fa5e 1828 return -ENOIOCTLCMD;
1da177e4
LT
1829 }
1830
1831 /*NOTREACHED*/
1832 return 0;
1833}
1834
f6c90b71
PV
1835#ifdef CONFIG_COMPAT
1836/*
1837 * Function irda_ioctl (sock, cmd, arg)
1838 */
1839static int irda_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1840{
1841 /*
1842 * All IRDA's ioctl are standard ones.
1843 */
1844 return -ENOIOCTLCMD;
1845}
1846#endif
1847
1da177e4
LT
1848/*
1849 * Function irda_setsockopt (sock, level, optname, optval, optlen)
1850 *
1851 * Set some options for the socket
1852 *
1853 */
1854static int irda_setsockopt(struct socket *sock, int level, int optname,
1855 char __user *optval, int optlen)
1856{
1857 struct sock *sk = sock->sk;
1858 struct irda_sock *self = irda_sk(sk);
1859 struct irda_ias_set *ias_opt;
1860 struct ias_object *ias_obj;
1861 struct ias_attrib * ias_attr; /* Attribute in IAS object */
1862 int opt;
1863
1864 IRDA_ASSERT(self != NULL, return -1;);
1865
1866 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
1867
1868 if (level != SOL_IRLMP)
1869 return -ENOPROTOOPT;
1870
1871 switch (optname) {
1872 case IRLMP_IAS_SET:
1873 /* The user want to add an attribute to an existing IAS object
1874 * (in the IAS database) or to create a new object with this
1875 * attribute.
1876 * We first query IAS to know if the object exist, and then
1877 * create the right attribute...
1878 */
1879
1880 if (optlen != sizeof(struct irda_ias_set))
1881 return -EINVAL;
1882
1883 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
1884 if (ias_opt == NULL)
1885 return -ENOMEM;
1886
1887 /* Copy query to the driver. */
1888 if (copy_from_user(ias_opt, optval, optlen)) {
1889 kfree(ias_opt);
1890 return -EFAULT;
1891 }
1892
1893 /* Find the object we target.
1894 * If the user gives us an empty string, we use the object
1895 * associated with this socket. This will workaround
1896 * duplicated class name - Jean II */
1897 if(ias_opt->irda_class_name[0] == '\0') {
1898 if(self->ias_obj == NULL) {
1899 kfree(ias_opt);
1900 return -EINVAL;
1901 }
1902 ias_obj = self->ias_obj;
1903 } else
1904 ias_obj = irias_find_object(ias_opt->irda_class_name);
1905
1906 /* Only ROOT can mess with the global IAS database.
1907 * Users can only add attributes to the object associated
1908 * with the socket they own - Jean II */
1909 if((!capable(CAP_NET_ADMIN)) &&
1910 ((ias_obj == NULL) || (ias_obj != self->ias_obj))) {
1911 kfree(ias_opt);
1912 return -EPERM;
1913 }
1914
1915 /* If the object doesn't exist, create it */
1916 if(ias_obj == (struct ias_object *) NULL) {
1917 /* Create a new object */
1918 ias_obj = irias_new_object(ias_opt->irda_class_name,
1919 jiffies);
1920 }
1921
1922 /* Do we have the attribute already ? */
1923 if(irias_find_attrib(ias_obj, ias_opt->irda_attrib_name)) {
1924 kfree(ias_opt);
1925 return -EINVAL;
1926 }
1927
1928 /* Look at the type */
1929 switch(ias_opt->irda_attrib_type) {
1930 case IAS_INTEGER:
1931 /* Add an integer attribute */
1932 irias_add_integer_attrib(
1933 ias_obj,
1934 ias_opt->irda_attrib_name,
1935 ias_opt->attribute.irda_attrib_int,
1936 IAS_USER_ATTR);
1937 break;
1938 case IAS_OCT_SEQ:
1939 /* Check length */
1940 if(ias_opt->attribute.irda_attrib_octet_seq.len >
1941 IAS_MAX_OCTET_STRING) {
1942 kfree(ias_opt);
1943 return -EINVAL;
1944 }
1945 /* Add an octet sequence attribute */
1946 irias_add_octseq_attrib(
1947 ias_obj,
1948 ias_opt->irda_attrib_name,
1949 ias_opt->attribute.irda_attrib_octet_seq.octet_seq,
1950 ias_opt->attribute.irda_attrib_octet_seq.len,
1951 IAS_USER_ATTR);
1952 break;
1953 case IAS_STRING:
1954 /* Should check charset & co */
1955 /* Check length */
1956 /* The length is encoded in a __u8, and
1957 * IAS_MAX_STRING == 256, so there is no way
1958 * userspace can pass us a string too large.
1959 * Jean II */
1960 /* NULL terminate the string (avoid troubles) */
1961 ias_opt->attribute.irda_attrib_string.string[ias_opt->attribute.irda_attrib_string.len] = '\0';
1962 /* Add a string attribute */
1963 irias_add_string_attrib(
1964 ias_obj,
1965 ias_opt->irda_attrib_name,
1966 ias_opt->attribute.irda_attrib_string.string,
1967 IAS_USER_ATTR);
1968 break;
1969 default :
1970 kfree(ias_opt);
1971 return -EINVAL;
1972 }
1973 irias_insert_object(ias_obj);
1974 kfree(ias_opt);
1975 break;
1976 case IRLMP_IAS_DEL:
1977 /* The user want to delete an object from our local IAS
1978 * database. We just need to query the IAS, check is the
1979 * object is not owned by the kernel and delete it.
1980 */
1981
1982 if (optlen != sizeof(struct irda_ias_set))
1983 return -EINVAL;
1984
1985 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
1986 if (ias_opt == NULL)
1987 return -ENOMEM;
1988
1989 /* Copy query to the driver. */
1990 if (copy_from_user(ias_opt, optval, optlen)) {
1991 kfree(ias_opt);
1992 return -EFAULT;
1993 }
1994
1995 /* Find the object we target.
1996 * If the user gives us an empty string, we use the object
1997 * associated with this socket. This will workaround
1998 * duplicated class name - Jean II */
1999 if(ias_opt->irda_class_name[0] == '\0')
2000 ias_obj = self->ias_obj;
2001 else
2002 ias_obj = irias_find_object(ias_opt->irda_class_name);
2003 if(ias_obj == (struct ias_object *) NULL) {
2004 kfree(ias_opt);
2005 return -EINVAL;
2006 }
2007
2008 /* Only ROOT can mess with the global IAS database.
2009 * Users can only del attributes from the object associated
2010 * with the socket they own - Jean II */
2011 if((!capable(CAP_NET_ADMIN)) &&
2012 ((ias_obj == NULL) || (ias_obj != self->ias_obj))) {
2013 kfree(ias_opt);
2014 return -EPERM;
2015 }
2016
2017 /* Find the attribute (in the object) we target */
2018 ias_attr = irias_find_attrib(ias_obj,
2019 ias_opt->irda_attrib_name);
2020 if(ias_attr == (struct ias_attrib *) NULL) {
2021 kfree(ias_opt);
2022 return -EINVAL;
2023 }
2024
2025 /* Check is the user space own the object */
2026 if(ias_attr->value->owner != IAS_USER_ATTR) {
2027 IRDA_DEBUG(1, "%s(), attempting to delete a kernel attribute\n", __FUNCTION__);
2028 kfree(ias_opt);
2029 return -EPERM;
2030 }
2031
2032 /* Remove the attribute (and maybe the object) */
2033 irias_delete_attrib(ias_obj, ias_attr, 1);
2034 kfree(ias_opt);
2035 break;
2036 case IRLMP_MAX_SDU_SIZE:
2037 if (optlen < sizeof(int))
2038 return -EINVAL;
2039
2040 if (get_user(opt, (int __user *)optval))
2041 return -EFAULT;
2042
2043 /* Only possible for a seqpacket service (TTP with SAR) */
2044 if (sk->sk_type != SOCK_SEQPACKET) {
2045 IRDA_DEBUG(2, "%s(), setting max_sdu_size = %d\n",
2046 __FUNCTION__, opt);
2047 self->max_sdu_size_rx = opt;
2048 } else {
2049 IRDA_WARNING("%s: not allowed to set MAXSDUSIZE for this socket type!\n",
2050 __FUNCTION__);
2051 return -ENOPROTOOPT;
2052 }
2053 break;
2054 case IRLMP_HINTS_SET:
2055 if (optlen < sizeof(int))
2056 return -EINVAL;
2057
2058 /* The input is really a (__u8 hints[2]), easier as an int */
2059 if (get_user(opt, (int __user *)optval))
2060 return -EFAULT;
2061
2062 /* Unregister any old registration */
2063 if (self->skey)
2064 irlmp_unregister_service(self->skey);
2065
2066 self->skey = irlmp_register_service((__u16) opt);
2067 break;
2068 case IRLMP_HINT_MASK_SET:
2069 /* As opposed to the previous case which set the hint bits
2070 * that we advertise, this one set the filter we use when
2071 * making a discovery (nodes which don't match any hint
2072 * bit in the mask are not reported).
2073 */
2074 if (optlen < sizeof(int))
2075 return -EINVAL;
2076
2077 /* The input is really a (__u8 hints[2]), easier as an int */
2078 if (get_user(opt, (int __user *)optval))
2079 return -EFAULT;
2080
2081 /* Set the new hint mask */
2082 self->mask.word = (__u16) opt;
2083 /* Mask out extension bits */
2084 self->mask.word &= 0x7f7f;
2085 /* Check if no bits */
2086 if(!self->mask.word)
2087 self->mask.word = 0xFFFF;
2088
2089 break;
2090 default:
2091 return -ENOPROTOOPT;
2092 }
2093 return 0;
2094}
2095
2096/*
2097 * Function irda_extract_ias_value(ias_opt, ias_value)
2098 *
2099 * Translate internal IAS value structure to the user space representation
2100 *
2101 * The external representation of IAS values, as we exchange them with
2102 * user space program is quite different from the internal representation,
2103 * as stored in the IAS database (because we need a flat structure for
2104 * crossing kernel boundary).
2105 * This function transform the former in the latter. We also check
2106 * that the value type is valid.
2107 */
2108static int irda_extract_ias_value(struct irda_ias_set *ias_opt,
2109 struct ias_value *ias_value)
2110{
2111 /* Look at the type */
2112 switch (ias_value->type) {
2113 case IAS_INTEGER:
2114 /* Copy the integer */
2115 ias_opt->attribute.irda_attrib_int = ias_value->t.integer;
2116 break;
2117 case IAS_OCT_SEQ:
2118 /* Set length */
2119 ias_opt->attribute.irda_attrib_octet_seq.len = ias_value->len;
2120 /* Copy over */
2121 memcpy(ias_opt->attribute.irda_attrib_octet_seq.octet_seq,
2122 ias_value->t.oct_seq, ias_value->len);
2123 break;
2124 case IAS_STRING:
2125 /* Set length */
2126 ias_opt->attribute.irda_attrib_string.len = ias_value->len;
2127 ias_opt->attribute.irda_attrib_string.charset = ias_value->charset;
2128 /* Copy over */
2129 memcpy(ias_opt->attribute.irda_attrib_string.string,
2130 ias_value->t.string, ias_value->len);
2131 /* NULL terminate the string (avoid troubles) */
2132 ias_opt->attribute.irda_attrib_string.string[ias_value->len] = '\0';
2133 break;
2134 case IAS_MISSING:
2135 default :
2136 return -EINVAL;
2137 }
2138
2139 /* Copy type over */
2140 ias_opt->irda_attrib_type = ias_value->type;
2141
2142 return 0;
2143}
2144
2145/*
2146 * Function irda_getsockopt (sock, level, optname, optval, optlen)
2147 */
2148static int irda_getsockopt(struct socket *sock, int level, int optname,
2149 char __user *optval, int __user *optlen)
2150{
2151 struct sock *sk = sock->sk;
2152 struct irda_sock *self = irda_sk(sk);
2153 struct irda_device_list list;
2154 struct irda_device_info *discoveries;
2155 struct irda_ias_set * ias_opt; /* IAS get/query params */
2156 struct ias_object * ias_obj; /* Object in IAS */
2157 struct ias_attrib * ias_attr; /* Attribute in IAS object */
2158 int daddr = DEV_ADDR_ANY; /* Dest address for IAS queries */
2159 int val = 0;
2160 int len = 0;
2161 int err;
2162 int offset, total;
2163
2164 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
2165
2166 if (level != SOL_IRLMP)
2167 return -ENOPROTOOPT;
2168
2169 if (get_user(len, optlen))
2170 return -EFAULT;
2171
2172 if(len < 0)
2173 return -EINVAL;
2174
2175 switch (optname) {
2176 case IRLMP_ENUMDEVICES:
2177 /* Ask lmp for the current discovery log */
2178 discoveries = irlmp_get_discoveries(&list.len, self->mask.word,
2179 self->nslots);
2180 /* Check if the we got some results */
2181 if (discoveries == NULL)
2182 return -EAGAIN; /* Didn't find any devices */
2183 err = 0;
2184
2185 /* Write total list length back to client */
2186 if (copy_to_user(optval, &list,
2187 sizeof(struct irda_device_list) -
2188 sizeof(struct irda_device_info)))
2189 err = -EFAULT;
2190
2191 /* Offset to first device entry */
2192 offset = sizeof(struct irda_device_list) -
2193 sizeof(struct irda_device_info);
2194
2195 /* Copy the list itself - watch for overflow */
2196 if(list.len > 2048)
2197 {
2198 err = -EINVAL;
2199 goto bed;
2200 }
2201 total = offset + (list.len * sizeof(struct irda_device_info));
2202 if (total > len)
2203 total = len;
2204 if (copy_to_user(optval+offset, discoveries, total - offset))
2205 err = -EFAULT;
2206
2207 /* Write total number of bytes used back to client */
2208 if (put_user(total, optlen))
2209 err = -EFAULT;
2210bed:
2211 /* Free up our buffer */
2212 kfree(discoveries);
2213 if (err)
2214 return err;
2215 break;
2216 case IRLMP_MAX_SDU_SIZE:
2217 val = self->max_data_size;
2218 len = sizeof(int);
2219 if (put_user(len, optlen))
2220 return -EFAULT;
2221
2222 if (copy_to_user(optval, &val, len))
2223 return -EFAULT;
2224 break;
2225 case IRLMP_IAS_GET:
2226 /* The user want an object from our local IAS database.
2227 * We just need to query the IAS and return the value
2228 * that we found */
2229
2230 /* Check that the user has allocated the right space for us */
2231 if (len != sizeof(struct irda_ias_set))
2232 return -EINVAL;
2233
2234 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
2235 if (ias_opt == NULL)
2236 return -ENOMEM;
2237
2238 /* Copy query to the driver. */
2239 if (copy_from_user(ias_opt, optval, len)) {
2240 kfree(ias_opt);
2241 return -EFAULT;
2242 }
2243
2244 /* Find the object we target.
2245 * If the user gives us an empty string, we use the object
2246 * associated with this socket. This will workaround
2247 * duplicated class name - Jean II */
2248 if(ias_opt->irda_class_name[0] == '\0')
2249 ias_obj = self->ias_obj;
2250 else
2251 ias_obj = irias_find_object(ias_opt->irda_class_name);
2252 if(ias_obj == (struct ias_object *) NULL) {
2253 kfree(ias_opt);
2254 return -EINVAL;
2255 }
2256
2257 /* Find the attribute (in the object) we target */
2258 ias_attr = irias_find_attrib(ias_obj,
2259 ias_opt->irda_attrib_name);
2260 if(ias_attr == (struct ias_attrib *) NULL) {
2261 kfree(ias_opt);
2262 return -EINVAL;
2263 }
2264
2265 /* Translate from internal to user structure */
2266 err = irda_extract_ias_value(ias_opt, ias_attr->value);
2267 if(err) {
2268 kfree(ias_opt);
2269 return err;
2270 }
2271
2272 /* Copy reply to the user */
2273 if (copy_to_user(optval, ias_opt,
2274 sizeof(struct irda_ias_set))) {
2275 kfree(ias_opt);
2276 return -EFAULT;
2277 }
2278 /* Note : don't need to put optlen, we checked it */
2279 kfree(ias_opt);
2280 break;
2281 case IRLMP_IAS_QUERY:
2282 /* The user want an object from a remote IAS database.
2283 * We need to use IAP to query the remote database and
2284 * then wait for the answer to come back. */
2285
2286 /* Check that the user has allocated the right space for us */
2287 if (len != sizeof(struct irda_ias_set))
2288 return -EINVAL;
2289
2290 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
2291 if (ias_opt == NULL)
2292 return -ENOMEM;
2293
2294 /* Copy query to the driver. */
2295 if (copy_from_user(ias_opt, optval, len)) {
2296 kfree(ias_opt);
2297 return -EFAULT;
2298 }
2299
2300 /* At this point, there are two cases...
2301 * 1) the socket is connected - that's the easy case, we
2302 * just query the device we are connected to...
2303 * 2) the socket is not connected - the user doesn't want
2304 * to connect and/or may not have a valid service name
2305 * (so can't create a fake connection). In this case,
2306 * we assume that the user pass us a valid destination
2307 * address in the requesting structure...
2308 */
2309 if(self->daddr != DEV_ADDR_ANY) {
2310 /* We are connected - reuse known daddr */
2311 daddr = self->daddr;
2312 } else {
2313 /* We are not connected, we must specify a valid
2314 * destination address */
2315 daddr = ias_opt->daddr;
2316 if((!daddr) || (daddr == DEV_ADDR_ANY)) {
2317 kfree(ias_opt);
2318 return -EINVAL;
2319 }
2320 }
2321
2322 /* Check that we can proceed with IAP */
2323 if (self->iriap) {
2324 IRDA_WARNING("%s: busy with a previous query\n",
2325 __FUNCTION__);
2326 kfree(ias_opt);
2327 return -EBUSY;
2328 }
2329
2330 self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self,
2331 irda_getvalue_confirm);
2332
2333 if (self->iriap == NULL) {
2334 kfree(ias_opt);
2335 return -ENOMEM;
2336 }
2337
2338 /* Treat unexpected wakeup as disconnect */
2339 self->errno = -EHOSTUNREACH;
2340
2341 /* Query remote LM-IAS */
2342 iriap_getvaluebyclass_request(self->iriap,
2343 self->saddr, daddr,
2344 ias_opt->irda_class_name,
2345 ias_opt->irda_attrib_name);
2346
2347 /* Wait for answer, if not yet finished (or failed) */
2348 if (wait_event_interruptible(self->query_wait,
2349 (self->iriap == NULL))) {
2350 /* pending request uses copy of ias_opt-content
2351 * we can free it regardless! */
2352 kfree(ias_opt);
2353 /* Treat signals as disconnect */
2354 return -EHOSTUNREACH;
2355 }
2356
2357 /* Check what happened */
2358 if (self->errno)
2359 {
2360 kfree(ias_opt);
2361 /* Requested object/attribute doesn't exist */
2362 if((self->errno == IAS_CLASS_UNKNOWN) ||
2363 (self->errno == IAS_ATTRIB_UNKNOWN))
2364 return (-EADDRNOTAVAIL);
2365 else
2366 return (-EHOSTUNREACH);
2367 }
2368
2369 /* Translate from internal to user structure */
2370 err = irda_extract_ias_value(ias_opt, self->ias_result);
2371 if (self->ias_result)
2372 irias_delete_value(self->ias_result);
2373 if (err) {
2374 kfree(ias_opt);
2375 return err;
2376 }
2377
2378 /* Copy reply to the user */
2379 if (copy_to_user(optval, ias_opt,
2380 sizeof(struct irda_ias_set))) {
2381 kfree(ias_opt);
2382 return -EFAULT;
2383 }
2384 /* Note : don't need to put optlen, we checked it */
2385 kfree(ias_opt);
2386 break;
2387 case IRLMP_WAITDEVICE:
2388 /* This function is just another way of seeing life ;-)
2389 * IRLMP_ENUMDEVICES assumes that you have a static network,
2390 * and that you just want to pick one of the devices present.
2391 * On the other hand, in here we assume that no device is
2392 * present and that at some point in the future a device will
2393 * come into range. When this device arrive, we just wake
2394 * up the caller, so that he has time to connect to it before
2395 * the device goes away...
2396 * Note : once the node has been discovered for more than a
2397 * few second, it won't trigger this function, unless it
2398 * goes away and come back changes its hint bits (so we
2399 * might call it IRLMP_WAITNEWDEVICE).
2400 */
2401
2402 /* Check that the user is passing us an int */
2403 if (len != sizeof(int))
2404 return -EINVAL;
2405 /* Get timeout in ms (max time we block the caller) */
2406 if (get_user(val, (int __user *)optval))
2407 return -EFAULT;
2408
2409 /* Tell IrLMP we want to be notified */
2410 irlmp_update_client(self->ckey, self->mask.word,
2411 irda_selective_discovery_indication,
2412 NULL, (void *) self);
2413
2414 /* Do some discovery (and also return cached results) */
2415 irlmp_discovery_request(self->nslots);
2416
2417 /* Wait until a node is discovered */
2418 if (!self->cachedaddr) {
2419 int ret = 0;
2420
2421 IRDA_DEBUG(1, "%s(), nothing discovered yet, going to sleep...\n", __FUNCTION__);
2422
2423 /* Set watchdog timer to expire in <val> ms. */
2424 self->errno = 0;
2425 init_timer(&self->watchdog);
2426 self->watchdog.function = irda_discovery_timeout;
2427 self->watchdog.data = (unsigned long) self;
2428 self->watchdog.expires = jiffies + (val * HZ/1000);
2429 add_timer(&(self->watchdog));
2430
2431 /* Wait for IR-LMP to call us back */
2432 __wait_event_interruptible(self->query_wait,
2433 (self->cachedaddr != 0 || self->errno == -ETIME),
2434 ret);
2435
2436 /* If watchdog is still activated, kill it! */
2437 if(timer_pending(&(self->watchdog)))
2438 del_timer(&(self->watchdog));
2439
2440 IRDA_DEBUG(1, "%s(), ...waking up !\n", __FUNCTION__);
2441
2442 if (ret != 0)
2443 return ret;
2444 }
2445 else
2446 IRDA_DEBUG(1, "%s(), found immediately !\n",
2447 __FUNCTION__);
2448
2449 /* Tell IrLMP that we have been notified */
2450 irlmp_update_client(self->ckey, self->mask.word,
2451 NULL, NULL, NULL);
2452
2453 /* Check if the we got some results */
2454 if (!self->cachedaddr)
2455 return -EAGAIN; /* Didn't find any devices */
2456 daddr = self->cachedaddr;
2457 /* Cleanup */
2458 self->cachedaddr = 0;
2459
2460 /* We return the daddr of the device that trigger the
2461 * wakeup. As irlmp pass us only the new devices, we
2462 * are sure that it's not an old device.
2463 * If the user want more details, he should query
2464 * the whole discovery log and pick one device...
2465 */
2466 if (put_user(daddr, (int __user *)optval))
2467 return -EFAULT;
2468
2469 break;
2470 default:
2471 return -ENOPROTOOPT;
2472 }
2473
2474 return 0;
2475}
2476
2477static struct net_proto_family irda_family_ops = {
2478 .family = PF_IRDA,
2479 .create = irda_create,
2480 .owner = THIS_MODULE,
2481};
2482
90ddc4f0 2483static const struct proto_ops SOCKOPS_WRAPPED(irda_stream_ops) = {
1da177e4
LT
2484 .family = PF_IRDA,
2485 .owner = THIS_MODULE,
2486 .release = irda_release,
2487 .bind = irda_bind,
2488 .connect = irda_connect,
2489 .socketpair = sock_no_socketpair,
2490 .accept = irda_accept,
2491 .getname = irda_getname,
2492 .poll = irda_poll,
2493 .ioctl = irda_ioctl,
f6c90b71
PV
2494#ifdef CONFIG_COMPAT
2495 .compat_ioctl = irda_compat_ioctl,
2496#endif
1da177e4
LT
2497 .listen = irda_listen,
2498 .shutdown = irda_shutdown,
2499 .setsockopt = irda_setsockopt,
2500 .getsockopt = irda_getsockopt,
2501 .sendmsg = irda_sendmsg,
2502 .recvmsg = irda_recvmsg_stream,
2503 .mmap = sock_no_mmap,
2504 .sendpage = sock_no_sendpage,
2505};
2506
90ddc4f0 2507static const struct proto_ops SOCKOPS_WRAPPED(irda_seqpacket_ops) = {
1da177e4
LT
2508 .family = PF_IRDA,
2509 .owner = THIS_MODULE,
2510 .release = irda_release,
2511 .bind = irda_bind,
2512 .connect = irda_connect,
2513 .socketpair = sock_no_socketpair,
2514 .accept = irda_accept,
2515 .getname = irda_getname,
2516 .poll = datagram_poll,
2517 .ioctl = irda_ioctl,
f6c90b71
PV
2518#ifdef CONFIG_COMPAT
2519 .compat_ioctl = irda_compat_ioctl,
2520#endif
1da177e4
LT
2521 .listen = irda_listen,
2522 .shutdown = irda_shutdown,
2523 .setsockopt = irda_setsockopt,
2524 .getsockopt = irda_getsockopt,
2525 .sendmsg = irda_sendmsg,
2526 .recvmsg = irda_recvmsg_dgram,
2527 .mmap = sock_no_mmap,
2528 .sendpage = sock_no_sendpage,
2529};
2530
90ddc4f0 2531static const struct proto_ops SOCKOPS_WRAPPED(irda_dgram_ops) = {
1da177e4
LT
2532 .family = PF_IRDA,
2533 .owner = THIS_MODULE,
2534 .release = irda_release,
2535 .bind = irda_bind,
2536 .connect = irda_connect,
2537 .socketpair = sock_no_socketpair,
2538 .accept = irda_accept,
2539 .getname = irda_getname,
2540 .poll = datagram_poll,
2541 .ioctl = irda_ioctl,
f6c90b71
PV
2542#ifdef CONFIG_COMPAT
2543 .compat_ioctl = irda_compat_ioctl,
2544#endif
1da177e4
LT
2545 .listen = irda_listen,
2546 .shutdown = irda_shutdown,
2547 .setsockopt = irda_setsockopt,
2548 .getsockopt = irda_getsockopt,
2549 .sendmsg = irda_sendmsg_dgram,
2550 .recvmsg = irda_recvmsg_dgram,
2551 .mmap = sock_no_mmap,
2552 .sendpage = sock_no_sendpage,
2553};
2554
2555#ifdef CONFIG_IRDA_ULTRA
90ddc4f0 2556static const struct proto_ops SOCKOPS_WRAPPED(irda_ultra_ops) = {
1da177e4
LT
2557 .family = PF_IRDA,
2558 .owner = THIS_MODULE,
2559 .release = irda_release,
2560 .bind = irda_bind,
2561 .connect = sock_no_connect,
2562 .socketpair = sock_no_socketpair,
2563 .accept = sock_no_accept,
2564 .getname = irda_getname,
2565 .poll = datagram_poll,
2566 .ioctl = irda_ioctl,
f6c90b71
PV
2567#ifdef CONFIG_COMPAT
2568 .compat_ioctl = irda_compat_ioctl,
2569#endif
1da177e4
LT
2570 .listen = sock_no_listen,
2571 .shutdown = irda_shutdown,
2572 .setsockopt = irda_setsockopt,
2573 .getsockopt = irda_getsockopt,
2574 .sendmsg = irda_sendmsg_ultra,
2575 .recvmsg = irda_recvmsg_dgram,
2576 .mmap = sock_no_mmap,
2577 .sendpage = sock_no_sendpage,
2578};
2579#endif /* CONFIG_IRDA_ULTRA */
2580
2581#include <linux/smp_lock.h>
2582SOCKOPS_WRAP(irda_stream, PF_IRDA);
2583SOCKOPS_WRAP(irda_seqpacket, PF_IRDA);
2584SOCKOPS_WRAP(irda_dgram, PF_IRDA);
2585#ifdef CONFIG_IRDA_ULTRA
2586SOCKOPS_WRAP(irda_ultra, PF_IRDA);
2587#endif /* CONFIG_IRDA_ULTRA */
2588
2589/*
2590 * Function irsock_init (pro)
2591 *
2592 * Initialize IrDA protocol
2593 *
2594 */
2595int __init irsock_init(void)
2596{
2597 int rc = proto_register(&irda_proto, 0);
2598
2599 if (rc == 0)
2600 rc = sock_register(&irda_family_ops);
2601
2602 return rc;
2603}
2604
2605/*
2606 * Function irsock_cleanup (void)
2607 *
2608 * Remove IrDA protocol
2609 *
2610 */
2611void __exit irsock_cleanup(void)
2612{
2613 sock_unregister(PF_IRDA);
2614 proto_unregister(&irda_proto);
2615}