libceph: introduce and switch to reopen_session()
[linux-2.6-block.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
afd46503
JP
64#define pr_fmt(fmt) "TCP: " fmt
65
1da177e4 66#include <linux/mm.h>
5a0e3ad6 67#include <linux/slab.h>
1da177e4
LT
68#include <linux/module.h>
69#include <linux/sysctl.h>
a0bffffc 70#include <linux/kernel.h>
ad971f61 71#include <linux/prefetch.h>
5ffc02a1 72#include <net/dst.h>
1da177e4
LT
73#include <net/tcp.h>
74#include <net/inet_common.h>
75#include <linux/ipsec.h>
76#include <asm/unaligned.h>
e1c8a607 77#include <linux/errqueue.h>
1da177e4 78
ab32ea5d
BH
79int sysctl_tcp_timestamps __read_mostly = 1;
80int sysctl_tcp_window_scaling __read_mostly = 1;
81int sysctl_tcp_sack __read_mostly = 1;
82int sysctl_tcp_fack __read_mostly = 1;
dca145ff 83int sysctl_tcp_max_reordering __read_mostly = 300;
ab32ea5d
BH
84int sysctl_tcp_dsack __read_mostly = 1;
85int sysctl_tcp_app_win __read_mostly = 31;
b49960a0 86int sysctl_tcp_adv_win_scale __read_mostly = 1;
4bc2f18b 87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
1da177e4 88
282f23c6
ED
89/* rfc5961 challenge ack rate limiting */
90int sysctl_tcp_challenge_ack_limit = 100;
91
ab32ea5d
BH
92int sysctl_tcp_stdurg __read_mostly;
93int sysctl_tcp_rfc1337 __read_mostly;
94int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 95int sysctl_tcp_frto __read_mostly = 2;
f6722583 96int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
1da177e4 97
7e380175
AP
98int sysctl_tcp_thin_dupack __read_mostly;
99
ab32ea5d 100int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
6ba8a3b1 101int sysctl_tcp_early_retrans __read_mostly = 3;
032ee423 102int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
1da177e4 103
1da177e4
LT
104#define FLAG_DATA 0x01 /* Incoming frame contained data. */
105#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
106#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
107#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
108#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
109#define FLAG_DATA_SACKED 0x20 /* New SACK. */
110#define FLAG_ECE 0x40 /* ECE in this ACK */
291a00d1 111#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
1da177e4 112#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 113#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 114#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 115#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
cadbd031 116#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 117#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
1da177e4
LT
118
119#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
120#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
121#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
122#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
123
1da177e4 124#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 125#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 126
e662ca40
YC
127#define REXMIT_NONE 0 /* no loss recovery to do */
128#define REXMIT_LOST 1 /* retransmit packets marked lost */
129#define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
130
e905a9ed 131/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 132 * real world.
e905a9ed 133 */
056834d9 134static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 135{
463c84b9 136 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 137 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 138 unsigned int len;
1da177e4 139
e905a9ed 140 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
141
142 /* skb->len may jitter because of SACKs, even if peer
143 * sends good full-sized frames.
144 */
056834d9 145 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9
ACM
146 if (len >= icsk->icsk_ack.rcv_mss) {
147 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
148 } else {
149 /* Otherwise, we make more careful check taking into account,
150 * that SACKs block is variable.
151 *
152 * "len" is invariant segment length, including TCP header.
153 */
9c70220b 154 len += skb->data - skb_transport_header(skb);
bee7ca9e 155 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
156 /* If PSH is not set, packet should be
157 * full sized, provided peer TCP is not badly broken.
158 * This observation (if it is correct 8)) allows
159 * to handle super-low mtu links fairly.
160 */
161 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 162 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
163 /* Subtract also invariant (if peer is RFC compliant),
164 * tcp header plus fixed timestamp option length.
165 * Resulting "len" is MSS free of SACK jitter.
166 */
463c84b9
ACM
167 len -= tcp_sk(sk)->tcp_header_len;
168 icsk->icsk_ack.last_seg_size = len;
1da177e4 169 if (len == lss) {
463c84b9 170 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
171 return;
172 }
173 }
1ef9696c
AK
174 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
175 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 176 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
177 }
178}
179
463c84b9 180static void tcp_incr_quickack(struct sock *sk)
1da177e4 181{
463c84b9 182 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 183 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 184
056834d9
IJ
185 if (quickacks == 0)
186 quickacks = 2;
463c84b9
ACM
187 if (quickacks > icsk->icsk_ack.quick)
188 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
189}
190
1b9f4092 191static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 192{
463c84b9
ACM
193 struct inet_connection_sock *icsk = inet_csk(sk);
194 tcp_incr_quickack(sk);
195 icsk->icsk_ack.pingpong = 0;
196 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
197}
198
199/* Send ACKs quickly, if "quick" count is not exhausted
200 * and the session is not interactive.
201 */
202
2251ae46 203static bool tcp_in_quickack_mode(struct sock *sk)
1da177e4 204{
463c84b9 205 const struct inet_connection_sock *icsk = inet_csk(sk);
2251ae46 206 const struct dst_entry *dst = __sk_dst_get(sk);
a2a385d6 207
2251ae46
JM
208 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
209 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
1da177e4
LT
210}
211
735d3831 212static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
bdf1ee5d 213{
056834d9 214 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
215 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
216}
217
735d3831 218static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
219{
220 if (tcp_hdr(skb)->cwr)
221 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
222}
223
735d3831 224static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
bdf1ee5d
IJ
225{
226 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
227}
228
735d3831 229static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 230{
b82d1bb4 231 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 232 case INET_ECN_NOT_ECT:
bdf1ee5d 233 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
234 * and we already seen ECT on a previous segment,
235 * it is probably a retransmit.
236 */
237 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 238 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
239 break;
240 case INET_ECN_CE:
9890092e
FW
241 if (tcp_ca_needs_ecn((struct sock *)tp))
242 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
243
aae06bf5
ED
244 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
245 /* Better not delay acks, sender can have a very low cwnd */
246 tcp_enter_quickack_mode((struct sock *)tp);
247 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
248 }
9890092e
FW
249 tp->ecn_flags |= TCP_ECN_SEEN;
250 break;
7a269ffa 251 default:
9890092e
FW
252 if (tcp_ca_needs_ecn((struct sock *)tp))
253 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
7a269ffa 254 tp->ecn_flags |= TCP_ECN_SEEN;
9890092e 255 break;
bdf1ee5d
IJ
256 }
257}
258
735d3831
FW
259static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
260{
261 if (tp->ecn_flags & TCP_ECN_OK)
262 __tcp_ecn_check_ce(tp, skb);
263}
264
265static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 266{
056834d9 267 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
268 tp->ecn_flags &= ~TCP_ECN_OK;
269}
270
735d3831 271static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 272{
056834d9 273 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
274 tp->ecn_flags &= ~TCP_ECN_OK;
275}
276
735d3831 277static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 278{
056834d9 279 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
280 return true;
281 return false;
bdf1ee5d
IJ
282}
283
1da177e4
LT
284/* Buffer size and advertised window tuning.
285 *
286 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
287 */
288
6ae70532 289static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 290{
6ae70532
ED
291 const struct tcp_sock *tp = tcp_sk(sk);
292 int sndmem, per_mss;
293 u32 nr_segs;
294
295 /* Worst case is non GSO/TSO : each frame consumes one skb
296 * and skb->head is kmalloced using power of two area of memory
297 */
298 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
299 MAX_TCP_HEADER +
300 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
301
302 per_mss = roundup_pow_of_two(per_mss) +
303 SKB_DATA_ALIGN(sizeof(struct sk_buff));
304
305 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
306 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
307
308 /* Fast Recovery (RFC 5681 3.2) :
309 * Cubic needs 1.7 factor, rounded to 2 to include
310 * extra cushion (application might react slowly to POLLOUT)
311 */
312 sndmem = 2 * nr_segs * per_mss;
1da177e4 313
06a59ecb
ED
314 if (sk->sk_sndbuf < sndmem)
315 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
1da177e4
LT
316}
317
318/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
319 *
320 * All tcp_full_space() is split to two parts: "network" buffer, allocated
321 * forward and advertised in receiver window (tp->rcv_wnd) and
322 * "application buffer", required to isolate scheduling/application
323 * latencies from network.
324 * window_clamp is maximal advertised window. It can be less than
325 * tcp_full_space(), in this case tcp_full_space() - window_clamp
326 * is reserved for "application" buffer. The less window_clamp is
327 * the smoother our behaviour from viewpoint of network, but the lower
328 * throughput and the higher sensitivity of the connection to losses. 8)
329 *
330 * rcv_ssthresh is more strict window_clamp used at "slow start"
331 * phase to predict further behaviour of this connection.
332 * It is used for two goals:
333 * - to enforce header prediction at sender, even when application
334 * requires some significant "application buffer". It is check #1.
335 * - to prevent pruning of receive queue because of misprediction
336 * of receiver window. Check #2.
337 *
338 * The scheme does not work when sender sends good segments opening
caa20d9a 339 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
340 * in common situations. Otherwise, we have to rely on queue collapsing.
341 */
342
343/* Slow part of check#2. */
9e412ba7 344static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 345{
9e412ba7 346 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 347 /* Optimize this! */
dfd4f0ae
ED
348 int truesize = tcp_win_from_space(skb->truesize) >> 1;
349 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
350
351 while (tp->rcv_ssthresh <= window) {
352 if (truesize <= skb->len)
463c84b9 353 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
354
355 truesize >>= 1;
356 window >>= 1;
357 }
358 return 0;
359}
360
cf533ea5 361static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 362{
9e412ba7
IJ
363 struct tcp_sock *tp = tcp_sk(sk);
364
1da177e4
LT
365 /* Check #1 */
366 if (tp->rcv_ssthresh < tp->window_clamp &&
367 (int)tp->rcv_ssthresh < tcp_space(sk) &&
b8da51eb 368 !tcp_under_memory_pressure(sk)) {
1da177e4
LT
369 int incr;
370
371 /* Check #2. Increase window, if skb with such overhead
372 * will fit to rcvbuf in future.
373 */
374 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 375 incr = 2 * tp->advmss;
1da177e4 376 else
9e412ba7 377 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
378
379 if (incr) {
4d846f02 380 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
381 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
382 tp->window_clamp);
463c84b9 383 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
384 }
385 }
386}
387
388/* 3. Tuning rcvbuf, when connection enters established state. */
1da177e4
LT
389static void tcp_fixup_rcvbuf(struct sock *sk)
390{
e9266a02 391 u32 mss = tcp_sk(sk)->advmss;
e9266a02 392 int rcvmem;
1da177e4 393
85f16525
YC
394 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
395 tcp_default_init_rwnd(mss);
e9266a02 396
b0983d3c
ED
397 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
398 * Allow enough cushion so that sender is not limited by our window
399 */
400 if (sysctl_tcp_moderate_rcvbuf)
401 rcvmem <<= 2;
402
e9266a02
ED
403 if (sk->sk_rcvbuf < rcvmem)
404 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
1da177e4
LT
405}
406
caa20d9a 407/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
408 * established state.
409 */
10467163 410void tcp_init_buffer_space(struct sock *sk)
1da177e4
LT
411{
412 struct tcp_sock *tp = tcp_sk(sk);
413 int maxwin;
414
415 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
416 tcp_fixup_rcvbuf(sk);
417 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 418 tcp_sndbuf_expand(sk);
1da177e4
LT
419
420 tp->rcvq_space.space = tp->rcv_wnd;
b0983d3c
ED
421 tp->rcvq_space.time = tcp_time_stamp;
422 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
423
424 maxwin = tcp_full_space(sk);
425
426 if (tp->window_clamp >= maxwin) {
427 tp->window_clamp = maxwin;
428
429 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
430 tp->window_clamp = max(maxwin -
431 (maxwin >> sysctl_tcp_app_win),
432 4 * tp->advmss);
433 }
434
435 /* Force reservation of one segment. */
436 if (sysctl_tcp_app_win &&
437 tp->window_clamp > 2 * tp->advmss &&
438 tp->window_clamp + tp->advmss > maxwin)
439 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
440
441 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
442 tp->snd_cwnd_stamp = tcp_time_stamp;
443}
444
1da177e4 445/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 446static void tcp_clamp_window(struct sock *sk)
1da177e4 447{
9e412ba7 448 struct tcp_sock *tp = tcp_sk(sk);
6687e988 449 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 450
6687e988 451 icsk->icsk_ack.quick = 0;
1da177e4 452
326f36e9
JH
453 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
454 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
b8da51eb 455 !tcp_under_memory_pressure(sk) &&
180d8cd9 456 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9
JH
457 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
458 sysctl_tcp_rmem[2]);
1da177e4 459 }
326f36e9 460 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 461 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
462}
463
40efc6fa
SH
464/* Initialize RCV_MSS value.
465 * RCV_MSS is an our guess about MSS used by the peer.
466 * We haven't any direct information about the MSS.
467 * It's better to underestimate the RCV_MSS rather than overestimate.
468 * Overestimations make us ACKing less frequently than needed.
469 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
470 */
471void tcp_initialize_rcv_mss(struct sock *sk)
472{
cf533ea5 473 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
474 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
475
056834d9 476 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 477 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
478 hint = max(hint, TCP_MIN_MSS);
479
480 inet_csk(sk)->icsk_ack.rcv_mss = hint;
481}
4bc2f18b 482EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 483
1da177e4
LT
484/* Receiver "autotuning" code.
485 *
486 * The algorithm for RTT estimation w/o timestamps is based on
487 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 488 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
489 *
490 * More detail on this code can be found at
631dd1a8 491 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
492 * though this reference is out of date. A new paper
493 * is pending.
494 */
495static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
496{
497 u32 new_sample = tp->rcv_rtt_est.rtt;
498 long m = sample;
499
500 if (m == 0)
501 m = 1;
502
503 if (new_sample != 0) {
504 /* If we sample in larger samples in the non-timestamp
505 * case, we could grossly overestimate the RTT especially
506 * with chatty applications or bulk transfer apps which
507 * are stalled on filesystem I/O.
508 *
509 * Also, since we are only going for a minimum in the
31f34269 510 * non-timestamp case, we do not smooth things out
caa20d9a 511 * else with timestamps disabled convergence takes too
1da177e4
LT
512 * long.
513 */
514 if (!win_dep) {
515 m -= (new_sample >> 3);
516 new_sample += m;
18a223e0
NC
517 } else {
518 m <<= 3;
519 if (m < new_sample)
520 new_sample = m;
521 }
1da177e4 522 } else {
caa20d9a 523 /* No previous measure. */
1da177e4
LT
524 new_sample = m << 3;
525 }
526
527 if (tp->rcv_rtt_est.rtt != new_sample)
528 tp->rcv_rtt_est.rtt = new_sample;
529}
530
531static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
532{
533 if (tp->rcv_rtt_est.time == 0)
534 goto new_measure;
535 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
536 return;
651913ce 537 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
1da177e4
LT
538
539new_measure:
540 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
541 tp->rcv_rtt_est.time = tcp_time_stamp;
542}
543
056834d9
IJ
544static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
545 const struct sk_buff *skb)
1da177e4 546{
463c84b9 547 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
548 if (tp->rx_opt.rcv_tsecr &&
549 (TCP_SKB_CB(skb)->end_seq -
463c84b9 550 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
551 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
552}
553
554/*
555 * This function should be called every time data is copied to user space.
556 * It calculates the appropriate TCP receive buffer space.
557 */
558void tcp_rcv_space_adjust(struct sock *sk)
559{
560 struct tcp_sock *tp = tcp_sk(sk);
561 int time;
b0983d3c 562 int copied;
e905a9ed 563
1da177e4 564 time = tcp_time_stamp - tp->rcvq_space.time;
056834d9 565 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
1da177e4 566 return;
e905a9ed 567
b0983d3c
ED
568 /* Number of bytes copied to user in last RTT */
569 copied = tp->copied_seq - tp->rcvq_space.seq;
570 if (copied <= tp->rcvq_space.space)
571 goto new_measure;
572
573 /* A bit of theory :
574 * copied = bytes received in previous RTT, our base window
575 * To cope with packet losses, we need a 2x factor
576 * To cope with slow start, and sender growing its cwin by 100 %
577 * every RTT, we need a 4x factor, because the ACK we are sending
578 * now is for the next RTT, not the current one :
579 * <prev RTT . ><current RTT .. ><next RTT .... >
580 */
581
582 if (sysctl_tcp_moderate_rcvbuf &&
583 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
584 int rcvwin, rcvmem, rcvbuf;
1da177e4 585
b0983d3c
ED
586 /* minimal window to cope with packet losses, assuming
587 * steady state. Add some cushion because of small variations.
588 */
589 rcvwin = (copied << 1) + 16 * tp->advmss;
1da177e4 590
b0983d3c
ED
591 /* If rate increased by 25%,
592 * assume slow start, rcvwin = 3 * copied
593 * If rate increased by 50%,
594 * assume sender can use 2x growth, rcvwin = 4 * copied
595 */
596 if (copied >=
597 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
598 if (copied >=
599 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
600 rcvwin <<= 1;
601 else
602 rcvwin += (rcvwin >> 1);
603 }
1da177e4 604
b0983d3c
ED
605 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
606 while (tcp_win_from_space(rcvmem) < tp->advmss)
607 rcvmem += 128;
1da177e4 608
b0983d3c
ED
609 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
610 if (rcvbuf > sk->sk_rcvbuf) {
611 sk->sk_rcvbuf = rcvbuf;
1da177e4 612
b0983d3c
ED
613 /* Make the window clamp follow along. */
614 tp->window_clamp = rcvwin;
1da177e4
LT
615 }
616 }
b0983d3c 617 tp->rcvq_space.space = copied;
e905a9ed 618
1da177e4
LT
619new_measure:
620 tp->rcvq_space.seq = tp->copied_seq;
621 tp->rcvq_space.time = tcp_time_stamp;
622}
623
624/* There is something which you must keep in mind when you analyze the
625 * behavior of the tp->ato delayed ack timeout interval. When a
626 * connection starts up, we want to ack as quickly as possible. The
627 * problem is that "good" TCP's do slow start at the beginning of data
628 * transmission. The means that until we send the first few ACK's the
629 * sender will sit on his end and only queue most of his data, because
630 * he can only send snd_cwnd unacked packets at any given time. For
631 * each ACK we send, he increments snd_cwnd and transmits more of his
632 * queue. -DaveM
633 */
9e412ba7 634static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 635{
9e412ba7 636 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 637 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
638 u32 now;
639
463c84b9 640 inet_csk_schedule_ack(sk);
1da177e4 641
463c84b9 642 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
643
644 tcp_rcv_rtt_measure(tp);
e905a9ed 645
1da177e4
LT
646 now = tcp_time_stamp;
647
463c84b9 648 if (!icsk->icsk_ack.ato) {
1da177e4
LT
649 /* The _first_ data packet received, initialize
650 * delayed ACK engine.
651 */
463c84b9
ACM
652 tcp_incr_quickack(sk);
653 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 654 } else {
463c84b9 655 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 656
056834d9 657 if (m <= TCP_ATO_MIN / 2) {
1da177e4 658 /* The fastest case is the first. */
463c84b9
ACM
659 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
660 } else if (m < icsk->icsk_ack.ato) {
661 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
662 if (icsk->icsk_ack.ato > icsk->icsk_rto)
663 icsk->icsk_ack.ato = icsk->icsk_rto;
664 } else if (m > icsk->icsk_rto) {
caa20d9a 665 /* Too long gap. Apparently sender failed to
1da177e4
LT
666 * restart window, so that we send ACKs quickly.
667 */
463c84b9 668 tcp_incr_quickack(sk);
3ab224be 669 sk_mem_reclaim(sk);
1da177e4
LT
670 }
671 }
463c84b9 672 icsk->icsk_ack.lrcvtime = now;
1da177e4 673
735d3831 674 tcp_ecn_check_ce(tp, skb);
1da177e4
LT
675
676 if (skb->len >= 128)
9e412ba7 677 tcp_grow_window(sk, skb);
1da177e4
LT
678}
679
1da177e4
LT
680/* Called to compute a smoothed rtt estimate. The data fed to this
681 * routine either comes from timestamps, or from segments that were
682 * known _not_ to have been retransmitted [see Karn/Partridge
683 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
684 * piece by Van Jacobson.
685 * NOTE: the next three routines used to be one big routine.
686 * To save cycles in the RFC 1323 implementation it was better to break
687 * it up into three procedures. -- erics
688 */
740b0f18 689static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1da177e4 690{
6687e988 691 struct tcp_sock *tp = tcp_sk(sk);
740b0f18
ED
692 long m = mrtt_us; /* RTT */
693 u32 srtt = tp->srtt_us;
1da177e4 694
1da177e4
LT
695 /* The following amusing code comes from Jacobson's
696 * article in SIGCOMM '88. Note that rtt and mdev
697 * are scaled versions of rtt and mean deviation.
e905a9ed 698 * This is designed to be as fast as possible
1da177e4
LT
699 * m stands for "measurement".
700 *
701 * On a 1990 paper the rto value is changed to:
702 * RTO = rtt + 4 * mdev
703 *
704 * Funny. This algorithm seems to be very broken.
705 * These formulae increase RTO, when it should be decreased, increase
31f34269 706 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
707 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
708 * does not matter how to _calculate_ it. Seems, it was trap
709 * that VJ failed to avoid. 8)
710 */
4a5ab4e2
ED
711 if (srtt != 0) {
712 m -= (srtt >> 3); /* m is now error in rtt est */
713 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
714 if (m < 0) {
715 m = -m; /* m is now abs(error) */
740b0f18 716 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4
LT
717 /* This is similar to one of Eifel findings.
718 * Eifel blocks mdev updates when rtt decreases.
719 * This solution is a bit different: we use finer gain
720 * for mdev in this case (alpha*beta).
721 * Like Eifel it also prevents growth of rto,
722 * but also it limits too fast rto decreases,
723 * happening in pure Eifel.
724 */
725 if (m > 0)
726 m >>= 3;
727 } else {
740b0f18 728 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4 729 }
740b0f18
ED
730 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
731 if (tp->mdev_us > tp->mdev_max_us) {
732 tp->mdev_max_us = tp->mdev_us;
733 if (tp->mdev_max_us > tp->rttvar_us)
734 tp->rttvar_us = tp->mdev_max_us;
1da177e4
LT
735 }
736 if (after(tp->snd_una, tp->rtt_seq)) {
740b0f18
ED
737 if (tp->mdev_max_us < tp->rttvar_us)
738 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1da177e4 739 tp->rtt_seq = tp->snd_nxt;
740b0f18 740 tp->mdev_max_us = tcp_rto_min_us(sk);
1da177e4
LT
741 }
742 } else {
743 /* no previous measure. */
4a5ab4e2 744 srtt = m << 3; /* take the measured time to be rtt */
740b0f18
ED
745 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
746 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
747 tp->mdev_max_us = tp->rttvar_us;
1da177e4
LT
748 tp->rtt_seq = tp->snd_nxt;
749 }
740b0f18 750 tp->srtt_us = max(1U, srtt);
1da177e4
LT
751}
752
95bd09eb
ED
753/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
754 * Note: TCP stack does not yet implement pacing.
755 * FQ packet scheduler can be used to implement cheap but effective
756 * TCP pacing, to smooth the burst on large writes when packets
757 * in flight is significantly lower than cwnd (or rwin)
758 */
43e122b0
ED
759int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
760int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
761
95bd09eb
ED
762static void tcp_update_pacing_rate(struct sock *sk)
763{
764 const struct tcp_sock *tp = tcp_sk(sk);
765 u64 rate;
766
767 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
43e122b0
ED
768 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
769
770 /* current rate is (cwnd * mss) / srtt
771 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
772 * In Congestion Avoidance phase, set it to 120 % the current rate.
773 *
774 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
775 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
776 * end of slow start and should slow down.
777 */
778 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
779 rate *= sysctl_tcp_pacing_ss_ratio;
780 else
781 rate *= sysctl_tcp_pacing_ca_ratio;
95bd09eb
ED
782
783 rate *= max(tp->snd_cwnd, tp->packets_out);
784
740b0f18
ED
785 if (likely(tp->srtt_us))
786 do_div(rate, tp->srtt_us);
95bd09eb 787
ba537427
ED
788 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
789 * without any lock. We want to make sure compiler wont store
790 * intermediate values in this location.
791 */
792 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
793 sk->sk_max_pacing_rate);
95bd09eb
ED
794}
795
1da177e4
LT
796/* Calculate rto without backoff. This is the second half of Van Jacobson's
797 * routine referred to above.
798 */
f7e56a76 799static void tcp_set_rto(struct sock *sk)
1da177e4 800{
463c84b9 801 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
802 /* Old crap is replaced with new one. 8)
803 *
804 * More seriously:
805 * 1. If rtt variance happened to be less 50msec, it is hallucination.
806 * It cannot be less due to utterly erratic ACK generation made
807 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
808 * to do with delayed acks, because at cwnd>2 true delack timeout
809 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 810 * ACKs in some circumstances.
1da177e4 811 */
f1ecd5d9 812 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
813
814 /* 2. Fixups made earlier cannot be right.
815 * If we do not estimate RTO correctly without them,
816 * all the algo is pure shit and should be replaced
caa20d9a 817 * with correct one. It is exactly, which we pretend to do.
1da177e4 818 */
1da177e4 819
ee6aac59
IJ
820 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
821 * guarantees that rto is higher.
822 */
f1ecd5d9 823 tcp_bound_rto(sk);
1da177e4
LT
824}
825
cf533ea5 826__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
827{
828 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
829
22b71c8f 830 if (!cwnd)
442b9635 831 cwnd = TCP_INIT_CWND;
1da177e4
LT
832 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
833}
834
e60402d0
IJ
835/*
836 * Packet counting of FACK is based on in-order assumptions, therefore TCP
837 * disables it when reordering is detected
838 */
4aabd8ef 839void tcp_disable_fack(struct tcp_sock *tp)
e60402d0 840{
85cc391c
IJ
841 /* RFC3517 uses different metric in lost marker => reset on change */
842 if (tcp_is_fack(tp))
843 tp->lost_skb_hint = NULL;
ab56222a 844 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
e60402d0
IJ
845}
846
564262c1 847/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
848static void tcp_dsack_seen(struct tcp_sock *tp)
849{
ab56222a 850 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
e60402d0
IJ
851}
852
6687e988
ACM
853static void tcp_update_reordering(struct sock *sk, const int metric,
854 const int ts)
1da177e4 855{
6687e988 856 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 857 if (metric > tp->reordering) {
40b215e5
PE
858 int mib_idx;
859
dca145ff 860 tp->reordering = min(sysctl_tcp_max_reordering, metric);
1da177e4
LT
861
862 /* This exciting event is worth to be remembered. 8) */
863 if (ts)
40b215e5 864 mib_idx = LINUX_MIB_TCPTSREORDER;
e60402d0 865 else if (tcp_is_reno(tp))
40b215e5 866 mib_idx = LINUX_MIB_TCPRENOREORDER;
e60402d0 867 else if (tcp_is_fack(tp))
40b215e5 868 mib_idx = LINUX_MIB_TCPFACKREORDER;
1da177e4 869 else
40b215e5
PE
870 mib_idx = LINUX_MIB_TCPSACKREORDER;
871
de0744af 872 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1da177e4 873#if FASTRETRANS_DEBUG > 1
91df42be
JP
874 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
875 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
876 tp->reordering,
877 tp->fackets_out,
878 tp->sacked_out,
879 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 880#endif
e60402d0 881 tcp_disable_fack(tp);
1da177e4 882 }
eed530b6
YC
883
884 if (metric > 0)
885 tcp_disable_early_retrans(tp);
4f41b1c5 886 tp->rack.reord = 1;
1da177e4
LT
887}
888
006f582c 889/* This must be called before lost_out is incremented */
c8c213f2
IJ
890static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
891{
51456b29 892 if (!tp->retransmit_skb_hint ||
c8c213f2
IJ
893 before(TCP_SKB_CB(skb)->seq,
894 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c
IJ
895 tp->retransmit_skb_hint = skb;
896
897 if (!tp->lost_out ||
898 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
899 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
c8c213f2
IJ
900}
901
41ea36e3
IJ
902static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
903{
904 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
905 tcp_verify_retransmit_hint(tp, skb);
906
907 tp->lost_out += tcp_skb_pcount(skb);
908 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
909 }
910}
911
4f41b1c5 912void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
006f582c
IJ
913{
914 tcp_verify_retransmit_hint(tp, skb);
915
916 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
917 tp->lost_out += tcp_skb_pcount(skb);
918 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
919 }
920}
921
1da177e4
LT
922/* This procedure tags the retransmission queue when SACKs arrive.
923 *
924 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
925 * Packets in queue with these bits set are counted in variables
926 * sacked_out, retrans_out and lost_out, correspondingly.
927 *
928 * Valid combinations are:
929 * Tag InFlight Description
930 * 0 1 - orig segment is in flight.
931 * S 0 - nothing flies, orig reached receiver.
932 * L 0 - nothing flies, orig lost by net.
933 * R 2 - both orig and retransmit are in flight.
934 * L|R 1 - orig is lost, retransmit is in flight.
935 * S|R 1 - orig reached receiver, retrans is still in flight.
936 * (L|S|R is logically valid, it could occur when L|R is sacked,
937 * but it is equivalent to plain S and code short-curcuits it to S.
938 * L|S is logically invalid, it would mean -1 packet in flight 8))
939 *
940 * These 6 states form finite state machine, controlled by the following events:
941 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
942 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 943 * 3. Loss detection event of two flavors:
1da177e4
LT
944 * A. Scoreboard estimator decided the packet is lost.
945 * A'. Reno "three dupacks" marks head of queue lost.
974c1236
YC
946 * A''. Its FACK modification, head until snd.fack is lost.
947 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
948 * segment was retransmitted.
949 * 4. D-SACK added new rule: D-SACK changes any tag to S.
950 *
951 * It is pleasant to note, that state diagram turns out to be commutative,
952 * so that we are allowed not to be bothered by order of our actions,
953 * when multiple events arrive simultaneously. (see the function below).
954 *
955 * Reordering detection.
956 * --------------------
957 * Reordering metric is maximal distance, which a packet can be displaced
958 * in packet stream. With SACKs we can estimate it:
959 *
960 * 1. SACK fills old hole and the corresponding segment was not
961 * ever retransmitted -> reordering. Alas, we cannot use it
962 * when segment was retransmitted.
963 * 2. The last flaw is solved with D-SACK. D-SACK arrives
964 * for retransmitted and already SACKed segment -> reordering..
965 * Both of these heuristics are not used in Loss state, when we cannot
966 * account for retransmits accurately.
5b3c9882
IJ
967 *
968 * SACK block validation.
969 * ----------------------
970 *
971 * SACK block range validation checks that the received SACK block fits to
972 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
973 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
974 * it means that the receiver is rather inconsistent with itself reporting
975 * SACK reneging when it should advance SND.UNA. Such SACK block this is
976 * perfectly valid, however, in light of RFC2018 which explicitly states
977 * that "SACK block MUST reflect the newest segment. Even if the newest
978 * segment is going to be discarded ...", not that it looks very clever
979 * in case of head skb. Due to potentional receiver driven attacks, we
980 * choose to avoid immediate execution of a walk in write queue due to
981 * reneging and defer head skb's loss recovery to standard loss recovery
982 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
983 *
984 * Implements also blockage to start_seq wrap-around. Problem lies in the
985 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
986 * there's no guarantee that it will be before snd_nxt (n). The problem
987 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
988 * wrap (s_w):
989 *
990 * <- outs wnd -> <- wrapzone ->
991 * u e n u_w e_w s n_w
992 * | | | | | | |
993 * |<------------+------+----- TCP seqno space --------------+---------->|
994 * ...-- <2^31 ->| |<--------...
995 * ...---- >2^31 ------>| |<--------...
996 *
997 * Current code wouldn't be vulnerable but it's better still to discard such
998 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
999 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1000 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1001 * equal to the ideal case (infinite seqno space without wrap caused issues).
1002 *
1003 * With D-SACK the lower bound is extended to cover sequence space below
1004 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1005 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1006 * for the normal SACK blocks, explained above). But there all simplicity
1007 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1008 * fully below undo_marker they do not affect behavior in anyway and can
1009 * therefore be safely ignored. In rare cases (which are more or less
1010 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1011 * fragmentation and packet reordering past skb's retransmission. To consider
1012 * them correctly, the acceptable range must be extended even more though
1013 * the exact amount is rather hard to quantify. However, tp->max_window can
1014 * be used as an exaggerated estimate.
1da177e4 1015 */
a2a385d6
ED
1016static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1017 u32 start_seq, u32 end_seq)
5b3c9882
IJ
1018{
1019 /* Too far in future, or reversed (interpretation is ambiguous) */
1020 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 1021 return false;
5b3c9882
IJ
1022
1023 /* Nasty start_seq wrap-around check (see comments above) */
1024 if (!before(start_seq, tp->snd_nxt))
a2a385d6 1025 return false;
5b3c9882 1026
564262c1 1027 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1028 * start_seq == snd_una is non-sensical (see comments above)
1029 */
1030 if (after(start_seq, tp->snd_una))
a2a385d6 1031 return true;
5b3c9882
IJ
1032
1033 if (!is_dsack || !tp->undo_marker)
a2a385d6 1034 return false;
5b3c9882
IJ
1035
1036 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1037 if (after(end_seq, tp->snd_una))
a2a385d6 1038 return false;
5b3c9882
IJ
1039
1040 if (!before(start_seq, tp->undo_marker))
a2a385d6 1041 return true;
5b3c9882
IJ
1042
1043 /* Too old */
1044 if (!after(end_seq, tp->undo_marker))
a2a385d6 1045 return false;
5b3c9882
IJ
1046
1047 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1048 * start_seq < undo_marker and end_seq >= undo_marker.
1049 */
1050 return !before(start_seq, end_seq - tp->max_window);
1051}
1052
a2a385d6
ED
1053static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1054 struct tcp_sack_block_wire *sp, int num_sacks,
1055 u32 prior_snd_una)
d06e021d 1056{
1ed83465 1057 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1058 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1059 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1060 bool dup_sack = false;
d06e021d
DM
1061
1062 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1063 dup_sack = true;
e60402d0 1064 tcp_dsack_seen(tp);
de0744af 1065 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1066 } else if (num_sacks > 1) {
d3e2ce3b
HH
1067 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1068 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1069
1070 if (!after(end_seq_0, end_seq_1) &&
1071 !before(start_seq_0, start_seq_1)) {
a2a385d6 1072 dup_sack = true;
e60402d0 1073 tcp_dsack_seen(tp);
de0744af
PE
1074 NET_INC_STATS_BH(sock_net(sk),
1075 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1076 }
1077 }
1078
1079 /* D-SACK for already forgotten data... Do dumb counting. */
6e08d5e3 1080 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1081 !after(end_seq_0, prior_snd_una) &&
1082 after(end_seq_0, tp->undo_marker))
1083 tp->undo_retrans--;
1084
1085 return dup_sack;
1086}
1087
a1197f5a 1088struct tcp_sacktag_state {
740b0f18
ED
1089 int reord;
1090 int fack_count;
31231a8a
KKJ
1091 /* Timestamps for earliest and latest never-retransmitted segment
1092 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1093 * but congestion control should still get an accurate delay signal.
1094 */
1095 struct skb_mstamp first_sackt;
1096 struct skb_mstamp last_sackt;
740b0f18 1097 int flag;
a1197f5a
IJ
1098};
1099
d1935942
IJ
1100/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1101 * the incoming SACK may not exactly match but we can find smaller MSS
1102 * aligned portion of it that matches. Therefore we might need to fragment
1103 * which may fail and creates some hassle (caller must handle error case
1104 * returns).
832d11c5
IJ
1105 *
1106 * FIXME: this could be merged to shift decision code
d1935942 1107 */
0f79efdc 1108static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1109 u32 start_seq, u32 end_seq)
d1935942 1110{
a2a385d6
ED
1111 int err;
1112 bool in_sack;
d1935942 1113 unsigned int pkt_len;
adb92db8 1114 unsigned int mss;
d1935942
IJ
1115
1116 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1117 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1118
1119 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1120 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1121 mss = tcp_skb_mss(skb);
d1935942
IJ
1122 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1123
adb92db8 1124 if (!in_sack) {
d1935942 1125 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1126 if (pkt_len < mss)
1127 pkt_len = mss;
1128 } else {
d1935942 1129 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1130 if (pkt_len < mss)
1131 return -EINVAL;
1132 }
1133
1134 /* Round if necessary so that SACKs cover only full MSSes
1135 * and/or the remaining small portion (if present)
1136 */
1137 if (pkt_len > mss) {
1138 unsigned int new_len = (pkt_len / mss) * mss;
1139 if (!in_sack && new_len < pkt_len) {
1140 new_len += mss;
2cd0d743 1141 if (new_len >= skb->len)
adb92db8
IJ
1142 return 0;
1143 }
1144 pkt_len = new_len;
1145 }
6cc55e09 1146 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
d1935942
IJ
1147 if (err < 0)
1148 return err;
1149 }
1150
1151 return in_sack;
1152}
1153
cc9a672e
NC
1154/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1155static u8 tcp_sacktag_one(struct sock *sk,
1156 struct tcp_sacktag_state *state, u8 sacked,
1157 u32 start_seq, u32 end_seq,
740b0f18
ED
1158 int dup_sack, int pcount,
1159 const struct skb_mstamp *xmit_time)
9e10c47c 1160{
6859d494 1161 struct tcp_sock *tp = tcp_sk(sk);
a1197f5a 1162 int fack_count = state->fack_count;
9e10c47c
IJ
1163
1164 /* Account D-SACK for retransmitted packet. */
1165 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6e08d5e3 1166 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1167 after(end_seq, tp->undo_marker))
9e10c47c 1168 tp->undo_retrans--;
ede9f3b1 1169 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1170 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1171 }
1172
1173 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1174 if (!after(end_seq, tp->snd_una))
a1197f5a 1175 return sacked;
9e10c47c
IJ
1176
1177 if (!(sacked & TCPCB_SACKED_ACKED)) {
659a8ad5
YC
1178 tcp_rack_advance(tp, xmit_time, sacked);
1179
9e10c47c
IJ
1180 if (sacked & TCPCB_SACKED_RETRANS) {
1181 /* If the segment is not tagged as lost,
1182 * we do not clear RETRANS, believing
1183 * that retransmission is still in flight.
1184 */
1185 if (sacked & TCPCB_LOST) {
a1197f5a 1186 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1187 tp->lost_out -= pcount;
1188 tp->retrans_out -= pcount;
9e10c47c
IJ
1189 }
1190 } else {
1191 if (!(sacked & TCPCB_RETRANS)) {
1192 /* New sack for not retransmitted frame,
1193 * which was in hole. It is reordering.
1194 */
cc9a672e 1195 if (before(start_seq,
9e10c47c 1196 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1197 state->reord = min(fack_count,
1198 state->reord);
e33099f9
YC
1199 if (!after(end_seq, tp->high_seq))
1200 state->flag |= FLAG_ORIG_SACK_ACKED;
31231a8a
KKJ
1201 if (state->first_sackt.v64 == 0)
1202 state->first_sackt = *xmit_time;
1203 state->last_sackt = *xmit_time;
9e10c47c
IJ
1204 }
1205
1206 if (sacked & TCPCB_LOST) {
a1197f5a 1207 sacked &= ~TCPCB_LOST;
f58b22fd 1208 tp->lost_out -= pcount;
9e10c47c
IJ
1209 }
1210 }
1211
a1197f5a
IJ
1212 sacked |= TCPCB_SACKED_ACKED;
1213 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1214 tp->sacked_out += pcount;
ddf1af6f 1215 tp->delivered += pcount; /* Out-of-order packets delivered */
9e10c47c 1216
f58b22fd 1217 fack_count += pcount;
9e10c47c
IJ
1218
1219 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
00db4124 1220 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
cc9a672e 1221 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1222 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1223
1224 if (fack_count > tp->fackets_out)
1225 tp->fackets_out = fack_count;
9e10c47c
IJ
1226 }
1227
1228 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1229 * frames and clear it. undo_retrans is decreased above, L|R frames
1230 * are accounted above as well.
1231 */
a1197f5a
IJ
1232 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1233 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1234 tp->retrans_out -= pcount;
9e10c47c
IJ
1235 }
1236
a1197f5a 1237 return sacked;
9e10c47c
IJ
1238}
1239
daef52ba
NC
1240/* Shift newly-SACKed bytes from this skb to the immediately previous
1241 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1242 */
a2a385d6
ED
1243static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1244 struct tcp_sacktag_state *state,
1245 unsigned int pcount, int shifted, int mss,
1246 bool dup_sack)
832d11c5
IJ
1247{
1248 struct tcp_sock *tp = tcp_sk(sk);
50133161 1249 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
daef52ba
NC
1250 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1251 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1252
1253 BUG_ON(!pcount);
1254
4c90d3b3
NC
1255 /* Adjust counters and hints for the newly sacked sequence
1256 * range but discard the return value since prev is already
1257 * marked. We must tag the range first because the seq
1258 * advancement below implicitly advances
1259 * tcp_highest_sack_seq() when skb is highest_sack.
1260 */
1261 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42 1262 start_seq, end_seq, dup_sack, pcount,
740b0f18 1263 &skb->skb_mstamp);
4c90d3b3
NC
1264
1265 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1266 tp->lost_cnt_hint += pcount;
1267
832d11c5
IJ
1268 TCP_SKB_CB(prev)->end_seq += shifted;
1269 TCP_SKB_CB(skb)->seq += shifted;
1270
cd7d8498
ED
1271 tcp_skb_pcount_add(prev, pcount);
1272 BUG_ON(tcp_skb_pcount(skb) < pcount);
1273 tcp_skb_pcount_add(skb, -pcount);
832d11c5
IJ
1274
1275 /* When we're adding to gso_segs == 1, gso_size will be zero,
1276 * in theory this shouldn't be necessary but as long as DSACK
1277 * code can come after this skb later on it's better to keep
1278 * setting gso_size to something.
1279 */
f69ad292
ED
1280 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1281 TCP_SKB_CB(prev)->tcp_gso_size = mss;
832d11c5
IJ
1282
1283 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
51466a75 1284 if (tcp_skb_pcount(skb) <= 1)
f69ad292 1285 TCP_SKB_CB(skb)->tcp_gso_size = 0;
832d11c5 1286
832d11c5
IJ
1287 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1288 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1289
832d11c5
IJ
1290 if (skb->len > 0) {
1291 BUG_ON(!tcp_skb_pcount(skb));
111cc8b9 1292 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1293 return false;
832d11c5
IJ
1294 }
1295
1296 /* Whole SKB was eaten :-) */
1297
92ee76b6
IJ
1298 if (skb == tp->retransmit_skb_hint)
1299 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1300 if (skb == tp->lost_skb_hint) {
1301 tp->lost_skb_hint = prev;
1302 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1303 }
1304
5e8a402f
ED
1305 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1306 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1307 TCP_SKB_CB(prev)->end_seq++;
1308
832d11c5
IJ
1309 if (skb == tcp_highest_sack(sk))
1310 tcp_advance_highest_sack(sk, skb);
1311
1312 tcp_unlink_write_queue(skb, sk);
1313 sk_wmem_free_skb(sk, skb);
1314
111cc8b9
IJ
1315 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1316
a2a385d6 1317 return true;
832d11c5
IJ
1318}
1319
1320/* I wish gso_size would have a bit more sane initialization than
1321 * something-or-zero which complicates things
1322 */
cf533ea5 1323static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1324{
775ffabf 1325 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1326}
1327
1328/* Shifting pages past head area doesn't work */
cf533ea5 1329static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1330{
1331 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1332}
1333
1334/* Try collapsing SACK blocks spanning across multiple skbs to a single
1335 * skb.
1336 */
1337static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1338 struct tcp_sacktag_state *state,
832d11c5 1339 u32 start_seq, u32 end_seq,
a2a385d6 1340 bool dup_sack)
832d11c5
IJ
1341{
1342 struct tcp_sock *tp = tcp_sk(sk);
1343 struct sk_buff *prev;
1344 int mss;
1345 int pcount = 0;
1346 int len;
1347 int in_sack;
1348
1349 if (!sk_can_gso(sk))
1350 goto fallback;
1351
1352 /* Normally R but no L won't result in plain S */
1353 if (!dup_sack &&
9969ca5f 1354 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1355 goto fallback;
1356 if (!skb_can_shift(skb))
1357 goto fallback;
1358 /* This frame is about to be dropped (was ACKed). */
1359 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1360 goto fallback;
1361
1362 /* Can only happen with delayed DSACK + discard craziness */
1363 if (unlikely(skb == tcp_write_queue_head(sk)))
1364 goto fallback;
1365 prev = tcp_write_queue_prev(sk, skb);
1366
1367 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1368 goto fallback;
1369
1370 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1371 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1372
1373 if (in_sack) {
1374 len = skb->len;
1375 pcount = tcp_skb_pcount(skb);
775ffabf 1376 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1377
1378 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1379 * drop this restriction as unnecessary
1380 */
775ffabf 1381 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1382 goto fallback;
1383 } else {
1384 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1385 goto noop;
1386 /* CHECKME: This is non-MSS split case only?, this will
1387 * cause skipped skbs due to advancing loop btw, original
1388 * has that feature too
1389 */
1390 if (tcp_skb_pcount(skb) <= 1)
1391 goto noop;
1392
1393 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1394 if (!in_sack) {
1395 /* TODO: head merge to next could be attempted here
1396 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1397 * though it might not be worth of the additional hassle
1398 *
1399 * ...we can probably just fallback to what was done
1400 * previously. We could try merging non-SACKed ones
1401 * as well but it probably isn't going to buy off
1402 * because later SACKs might again split them, and
1403 * it would make skb timestamp tracking considerably
1404 * harder problem.
1405 */
1406 goto fallback;
1407 }
1408
1409 len = end_seq - TCP_SKB_CB(skb)->seq;
1410 BUG_ON(len < 0);
1411 BUG_ON(len > skb->len);
1412
1413 /* MSS boundaries should be honoured or else pcount will
1414 * severely break even though it makes things bit trickier.
1415 * Optimize common case to avoid most of the divides
1416 */
1417 mss = tcp_skb_mss(skb);
1418
1419 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1420 * drop this restriction as unnecessary
1421 */
775ffabf 1422 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1423 goto fallback;
1424
1425 if (len == mss) {
1426 pcount = 1;
1427 } else if (len < mss) {
1428 goto noop;
1429 } else {
1430 pcount = len / mss;
1431 len = pcount * mss;
1432 }
1433 }
1434
4648dc97
NC
1435 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1436 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1437 goto fallback;
1438
832d11c5
IJ
1439 if (!skb_shift(prev, skb, len))
1440 goto fallback;
9ec06ff5 1441 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1442 goto out;
1443
1444 /* Hole filled allows collapsing with the next as well, this is very
1445 * useful when hole on every nth skb pattern happens
1446 */
1447 if (prev == tcp_write_queue_tail(sk))
1448 goto out;
1449 skb = tcp_write_queue_next(sk, prev);
1450
f0bc52f3
IJ
1451 if (!skb_can_shift(skb) ||
1452 (skb == tcp_send_head(sk)) ||
1453 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1454 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1455 goto out;
1456
1457 len = skb->len;
1458 if (skb_shift(prev, skb, len)) {
1459 pcount += tcp_skb_pcount(skb);
9ec06ff5 1460 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1461 }
1462
1463out:
a1197f5a 1464 state->fack_count += pcount;
832d11c5
IJ
1465 return prev;
1466
1467noop:
1468 return skb;
1469
1470fallback:
111cc8b9 1471 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1472 return NULL;
1473}
1474
68f8353b
IJ
1475static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1476 struct tcp_sack_block *next_dup,
a1197f5a 1477 struct tcp_sacktag_state *state,
68f8353b 1478 u32 start_seq, u32 end_seq,
a2a385d6 1479 bool dup_sack_in)
68f8353b 1480{
832d11c5
IJ
1481 struct tcp_sock *tp = tcp_sk(sk);
1482 struct sk_buff *tmp;
1483
68f8353b
IJ
1484 tcp_for_write_queue_from(skb, sk) {
1485 int in_sack = 0;
a2a385d6 1486 bool dup_sack = dup_sack_in;
68f8353b
IJ
1487
1488 if (skb == tcp_send_head(sk))
1489 break;
1490
1491 /* queue is in-order => we can short-circuit the walk early */
1492 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1493 break;
1494
00db4124 1495 if (next_dup &&
68f8353b
IJ
1496 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1497 in_sack = tcp_match_skb_to_sack(sk, skb,
1498 next_dup->start_seq,
1499 next_dup->end_seq);
1500 if (in_sack > 0)
a2a385d6 1501 dup_sack = true;
68f8353b
IJ
1502 }
1503
832d11c5
IJ
1504 /* skb reference here is a bit tricky to get right, since
1505 * shifting can eat and free both this skb and the next,
1506 * so not even _safe variant of the loop is enough.
1507 */
1508 if (in_sack <= 0) {
a1197f5a
IJ
1509 tmp = tcp_shift_skb_data(sk, skb, state,
1510 start_seq, end_seq, dup_sack);
00db4124 1511 if (tmp) {
832d11c5
IJ
1512 if (tmp != skb) {
1513 skb = tmp;
1514 continue;
1515 }
1516
1517 in_sack = 0;
1518 } else {
1519 in_sack = tcp_match_skb_to_sack(sk, skb,
1520 start_seq,
1521 end_seq);
1522 }
1523 }
1524
68f8353b
IJ
1525 if (unlikely(in_sack < 0))
1526 break;
1527
832d11c5 1528 if (in_sack) {
cc9a672e
NC
1529 TCP_SKB_CB(skb)->sacked =
1530 tcp_sacktag_one(sk,
1531 state,
1532 TCP_SKB_CB(skb)->sacked,
1533 TCP_SKB_CB(skb)->seq,
1534 TCP_SKB_CB(skb)->end_seq,
1535 dup_sack,
59c9af42 1536 tcp_skb_pcount(skb),
740b0f18 1537 &skb->skb_mstamp);
68f8353b 1538
832d11c5
IJ
1539 if (!before(TCP_SKB_CB(skb)->seq,
1540 tcp_highest_sack_seq(tp)))
1541 tcp_advance_highest_sack(sk, skb);
1542 }
1543
a1197f5a 1544 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1545 }
1546 return skb;
1547}
1548
1549/* Avoid all extra work that is being done by sacktag while walking in
1550 * a normal way
1551 */
1552static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1553 struct tcp_sacktag_state *state,
1554 u32 skip_to_seq)
68f8353b
IJ
1555{
1556 tcp_for_write_queue_from(skb, sk) {
1557 if (skb == tcp_send_head(sk))
1558 break;
1559
e8bae275 1560 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1561 break;
d152a7d8 1562
a1197f5a 1563 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1564 }
1565 return skb;
1566}
1567
1568static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1569 struct sock *sk,
1570 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1571 struct tcp_sacktag_state *state,
1572 u32 skip_to_seq)
68f8353b 1573{
51456b29 1574 if (!next_dup)
68f8353b
IJ
1575 return skb;
1576
1577 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1578 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1579 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1580 next_dup->start_seq, next_dup->end_seq,
1581 1);
68f8353b
IJ
1582 }
1583
1584 return skb;
1585}
1586
cf533ea5 1587static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1588{
1589 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1590}
1591
1da177e4 1592static int
cf533ea5 1593tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
196da974 1594 u32 prior_snd_una, struct tcp_sacktag_state *state)
1da177e4
LT
1595{
1596 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1597 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1598 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1599 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1600 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b
IJ
1601 struct tcp_sack_block *cache;
1602 struct sk_buff *skb;
4389dded 1603 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1604 int used_sacks;
a2a385d6 1605 bool found_dup_sack = false;
68f8353b 1606 int i, j;
fda03fbb 1607 int first_sack_index;
1da177e4 1608
196da974
KKJ
1609 state->flag = 0;
1610 state->reord = tp->packets_out;
a1197f5a 1611
d738cd8f 1612 if (!tp->sacked_out) {
de83c058
IJ
1613 if (WARN_ON(tp->fackets_out))
1614 tp->fackets_out = 0;
6859d494 1615 tcp_highest_sack_reset(sk);
d738cd8f 1616 }
1da177e4 1617
1ed83465 1618 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d
DM
1619 num_sacks, prior_snd_una);
1620 if (found_dup_sack)
196da974 1621 state->flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1622
1623 /* Eliminate too old ACKs, but take into
1624 * account more or less fresh ones, they can
1625 * contain valid SACK info.
1626 */
1627 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1628 return 0;
1629