net-timestamp: no-payload option
[linux-2.6-block.git] / net / core / skbuff.c
CommitLineData
1da177e4
LT
1/*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
113aa838 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
1da177e4
LT
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
1da177e4
LT
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35/*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
e005d193
JP
39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
1da177e4
LT
41#include <linux/module.h>
42#include <linux/types.h>
43#include <linux/kernel.h>
fe55f6d5 44#include <linux/kmemcheck.h>
1da177e4
LT
45#include <linux/mm.h>
46#include <linux/interrupt.h>
47#include <linux/in.h>
48#include <linux/inet.h>
49#include <linux/slab.h>
de960aa9
FW
50#include <linux/tcp.h>
51#include <linux/udp.h>
1da177e4
LT
52#include <linux/netdevice.h>
53#ifdef CONFIG_NET_CLS_ACT
54#include <net/pkt_sched.h>
55#endif
56#include <linux/string.h>
57#include <linux/skbuff.h>
9c55e01c 58#include <linux/splice.h>
1da177e4
LT
59#include <linux/cache.h>
60#include <linux/rtnetlink.h>
61#include <linux/init.h>
716ea3a7 62#include <linux/scatterlist.h>
ac45f602 63#include <linux/errqueue.h>
268bb0ce 64#include <linux/prefetch.h>
0d5501c1 65#include <linux/if_vlan.h>
1da177e4
LT
66
67#include <net/protocol.h>
68#include <net/dst.h>
69#include <net/sock.h>
70#include <net/checksum.h>
ed1f50c3 71#include <net/ip6_checksum.h>
1da177e4
LT
72#include <net/xfrm.h>
73
74#include <asm/uaccess.h>
ad8d75ff 75#include <trace/events/skb.h>
51c56b00 76#include <linux/highmem.h>
a1f8e7f7 77
d7e8883c 78struct kmem_cache *skbuff_head_cache __read_mostly;
e18b890b 79static struct kmem_cache *skbuff_fclone_cache __read_mostly;
1da177e4 80
1da177e4 81/**
f05de73b
JS
82 * skb_panic - private function for out-of-line support
83 * @skb: buffer
84 * @sz: size
85 * @addr: address
99d5851e 86 * @msg: skb_over_panic or skb_under_panic
1da177e4 87 *
f05de73b
JS
88 * Out-of-line support for skb_put() and skb_push().
89 * Called via the wrapper skb_over_panic() or skb_under_panic().
90 * Keep out of line to prevent kernel bloat.
91 * __builtin_return_address is not used because it is not always reliable.
1da177e4 92 */
f05de73b 93static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
99d5851e 94 const char msg[])
1da177e4 95{
e005d193 96 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
99d5851e 97 msg, addr, skb->len, sz, skb->head, skb->data,
e005d193
JP
98 (unsigned long)skb->tail, (unsigned long)skb->end,
99 skb->dev ? skb->dev->name : "<NULL>");
1da177e4
LT
100 BUG();
101}
102
f05de73b 103static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
1da177e4 104{
f05de73b 105 skb_panic(skb, sz, addr, __func__);
1da177e4
LT
106}
107
f05de73b
JS
108static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
109{
110 skb_panic(skb, sz, addr, __func__);
111}
c93bdd0e
MG
112
113/*
114 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
115 * the caller if emergency pfmemalloc reserves are being used. If it is and
116 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
117 * may be used. Otherwise, the packet data may be discarded until enough
118 * memory is free
119 */
120#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
121 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
61c5e88a 122
123static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
124 unsigned long ip, bool *pfmemalloc)
c93bdd0e
MG
125{
126 void *obj;
127 bool ret_pfmemalloc = false;
128
129 /*
130 * Try a regular allocation, when that fails and we're not entitled
131 * to the reserves, fail.
132 */
133 obj = kmalloc_node_track_caller(size,
134 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
135 node);
136 if (obj || !(gfp_pfmemalloc_allowed(flags)))
137 goto out;
138
139 /* Try again but now we are using pfmemalloc reserves */
140 ret_pfmemalloc = true;
141 obj = kmalloc_node_track_caller(size, flags, node);
142
143out:
144 if (pfmemalloc)
145 *pfmemalloc = ret_pfmemalloc;
146
147 return obj;
148}
149
1da177e4
LT
150/* Allocate a new skbuff. We do this ourselves so we can fill in a few
151 * 'private' fields and also do memory statistics to find all the
152 * [BEEP] leaks.
153 *
154 */
155
0ebd0ac5
PM
156struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
157{
158 struct sk_buff *skb;
159
160 /* Get the HEAD */
161 skb = kmem_cache_alloc_node(skbuff_head_cache,
162 gfp_mask & ~__GFP_DMA, node);
163 if (!skb)
164 goto out;
165
166 /*
167 * Only clear those fields we need to clear, not those that we will
168 * actually initialise below. Hence, don't put any more fields after
169 * the tail pointer in struct sk_buff!
170 */
171 memset(skb, 0, offsetof(struct sk_buff, tail));
5e71d9d7 172 skb->head = NULL;
0ebd0ac5
PM
173 skb->truesize = sizeof(struct sk_buff);
174 atomic_set(&skb->users, 1);
175
35d04610 176 skb->mac_header = (typeof(skb->mac_header))~0U;
0ebd0ac5
PM
177out:
178 return skb;
179}
180
1da177e4 181/**
d179cd12 182 * __alloc_skb - allocate a network buffer
1da177e4
LT
183 * @size: size to allocate
184 * @gfp_mask: allocation mask
c93bdd0e
MG
185 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
186 * instead of head cache and allocate a cloned (child) skb.
187 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
188 * allocations in case the data is required for writeback
b30973f8 189 * @node: numa node to allocate memory on
1da177e4
LT
190 *
191 * Allocate a new &sk_buff. The returned buffer has no headroom and a
94b6042c
BH
192 * tail room of at least size bytes. The object has a reference count
193 * of one. The return is the buffer. On a failure the return is %NULL.
1da177e4
LT
194 *
195 * Buffers may only be allocated from interrupts using a @gfp_mask of
196 * %GFP_ATOMIC.
197 */
dd0fc66f 198struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
c93bdd0e 199 int flags, int node)
1da177e4 200{
e18b890b 201 struct kmem_cache *cache;
4947d3ef 202 struct skb_shared_info *shinfo;
1da177e4
LT
203 struct sk_buff *skb;
204 u8 *data;
c93bdd0e 205 bool pfmemalloc;
1da177e4 206
c93bdd0e
MG
207 cache = (flags & SKB_ALLOC_FCLONE)
208 ? skbuff_fclone_cache : skbuff_head_cache;
209
210 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
211 gfp_mask |= __GFP_MEMALLOC;
8798b3fb 212
1da177e4 213 /* Get the HEAD */
b30973f8 214 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
1da177e4
LT
215 if (!skb)
216 goto out;
ec7d2f2c 217 prefetchw(skb);
1da177e4 218
87fb4b7b
ED
219 /* We do our best to align skb_shared_info on a separate cache
220 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
221 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
222 * Both skb->head and skb_shared_info are cache line aligned.
223 */
bc417e30 224 size = SKB_DATA_ALIGN(size);
87fb4b7b 225 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
c93bdd0e 226 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
1da177e4
LT
227 if (!data)
228 goto nodata;
87fb4b7b
ED
229 /* kmalloc(size) might give us more room than requested.
230 * Put skb_shared_info exactly at the end of allocated zone,
231 * to allow max possible filling before reallocation.
232 */
233 size = SKB_WITH_OVERHEAD(ksize(data));
ec7d2f2c 234 prefetchw(data + size);
1da177e4 235
ca0605a7 236 /*
c8005785
JB
237 * Only clear those fields we need to clear, not those that we will
238 * actually initialise below. Hence, don't put any more fields after
239 * the tail pointer in struct sk_buff!
ca0605a7
ACM
240 */
241 memset(skb, 0, offsetof(struct sk_buff, tail));
87fb4b7b
ED
242 /* Account for allocated memory : skb + skb->head */
243 skb->truesize = SKB_TRUESIZE(size);
c93bdd0e 244 skb->pfmemalloc = pfmemalloc;
1da177e4
LT
245 atomic_set(&skb->users, 1);
246 skb->head = data;
247 skb->data = data;
27a884dc 248 skb_reset_tail_pointer(skb);
4305b541 249 skb->end = skb->tail + size;
35d04610
CW
250 skb->mac_header = (typeof(skb->mac_header))~0U;
251 skb->transport_header = (typeof(skb->transport_header))~0U;
19633e12 252
4947d3ef
BL
253 /* make sure we initialize shinfo sequentially */
254 shinfo = skb_shinfo(skb);
ec7d2f2c 255 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
4947d3ef 256 atomic_set(&shinfo->dataref, 1);
c2aa3665 257 kmemcheck_annotate_variable(shinfo->destructor_arg);
4947d3ef 258
c93bdd0e 259 if (flags & SKB_ALLOC_FCLONE) {
d0bf4a9e 260 struct sk_buff_fclones *fclones;
1da177e4 261
d0bf4a9e
ED
262 fclones = container_of(skb, struct sk_buff_fclones, skb1);
263
264 kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
d179cd12 265 skb->fclone = SKB_FCLONE_ORIG;
d0bf4a9e 266 atomic_set(&fclones->fclone_ref, 1);
d179cd12 267
6ffe75eb 268 fclones->skb2.fclone = SKB_FCLONE_CLONE;
d0bf4a9e 269 fclones->skb2.pfmemalloc = pfmemalloc;
d179cd12 270 }
1da177e4
LT
271out:
272 return skb;
273nodata:
8798b3fb 274 kmem_cache_free(cache, skb);
1da177e4
LT
275 skb = NULL;
276 goto out;
1da177e4 277}
b4ac530f 278EXPORT_SYMBOL(__alloc_skb);
1da177e4 279
b2b5ce9d
ED
280/**
281 * build_skb - build a network buffer
282 * @data: data buffer provided by caller
d3836f21 283 * @frag_size: size of fragment, or 0 if head was kmalloced
b2b5ce9d
ED
284 *
285 * Allocate a new &sk_buff. Caller provides space holding head and
deceb4c0
FF
286 * skb_shared_info. @data must have been allocated by kmalloc() only if
287 * @frag_size is 0, otherwise data should come from the page allocator.
b2b5ce9d
ED
288 * The return is the new skb buffer.
289 * On a failure the return is %NULL, and @data is not freed.
290 * Notes :
291 * Before IO, driver allocates only data buffer where NIC put incoming frame
292 * Driver should add room at head (NET_SKB_PAD) and
293 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
294 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
295 * before giving packet to stack.
296 * RX rings only contains data buffers, not full skbs.
297 */
d3836f21 298struct sk_buff *build_skb(void *data, unsigned int frag_size)
b2b5ce9d
ED
299{
300 struct skb_shared_info *shinfo;
301 struct sk_buff *skb;
d3836f21 302 unsigned int size = frag_size ? : ksize(data);
b2b5ce9d
ED
303
304 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
305 if (!skb)
306 return NULL;
307
d3836f21 308 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
b2b5ce9d
ED
309
310 memset(skb, 0, offsetof(struct sk_buff, tail));
311 skb->truesize = SKB_TRUESIZE(size);
d3836f21 312 skb->head_frag = frag_size != 0;
b2b5ce9d
ED
313 atomic_set(&skb->users, 1);
314 skb->head = data;
315 skb->data = data;
316 skb_reset_tail_pointer(skb);
317 skb->end = skb->tail + size;
35d04610
CW
318 skb->mac_header = (typeof(skb->mac_header))~0U;
319 skb->transport_header = (typeof(skb->transport_header))~0U;
b2b5ce9d
ED
320
321 /* make sure we initialize shinfo sequentially */
322 shinfo = skb_shinfo(skb);
323 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
324 atomic_set(&shinfo->dataref, 1);
325 kmemcheck_annotate_variable(shinfo->destructor_arg);
326
327 return skb;
328}
329EXPORT_SYMBOL(build_skb);
330
a1c7fff7 331struct netdev_alloc_cache {
69b08f62
ED
332 struct page_frag frag;
333 /* we maintain a pagecount bias, so that we dont dirty cache line
334 * containing page->_count every time we allocate a fragment.
335 */
336 unsigned int pagecnt_bias;
a1c7fff7
ED
337};
338static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
ffde7328 339static DEFINE_PER_CPU(struct netdev_alloc_cache, napi_alloc_cache);
a1c7fff7 340
ffde7328
AD
341static struct page *__page_frag_refill(struct netdev_alloc_cache *nc,
342 gfp_t gfp_mask)
6f532612 343{
ffde7328
AD
344 const unsigned int order = NETDEV_FRAG_PAGE_MAX_ORDER;
345 struct page *page = NULL;
346 gfp_t gfp = gfp_mask;
347
348 if (order) {
349 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY;
350 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
351 nc->frag.size = PAGE_SIZE << (page ? order : 0);
352 }
6f532612 353
ffde7328
AD
354 if (unlikely(!page))
355 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
356
357 nc->frag.page = page;
358
359 return page;
360}
361
362static void *__alloc_page_frag(struct netdev_alloc_cache __percpu *cache,
363 unsigned int fragsz, gfp_t gfp_mask)
364{
365 struct netdev_alloc_cache *nc = this_cpu_ptr(cache);
366 struct page *page = nc->frag.page;
367 unsigned int size;
368 int offset;
369
370 if (unlikely(!page)) {
6f532612 371refill:
ffde7328
AD
372 page = __page_frag_refill(nc, gfp_mask);
373 if (!page)
374 return NULL;
375
376 /* if size can vary use frag.size else just use PAGE_SIZE */
377 size = NETDEV_FRAG_PAGE_MAX_ORDER ? nc->frag.size : PAGE_SIZE;
378
4c450583
ED
379 /* Even if we own the page, we do not use atomic_set().
380 * This would break get_page_unless_zero() users.
381 */
ffde7328
AD
382 atomic_add(size - 1, &page->_count);
383
384 /* reset page count bias and offset to start of new frag */
385 nc->pagecnt_bias = size;
386 nc->frag.offset = size;
6f532612 387 }
540eb7bf 388
ffde7328
AD
389 offset = nc->frag.offset - fragsz;
390 if (unlikely(offset < 0)) {
391 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
392 goto refill;
393
394 /* if size can vary use frag.size else just use PAGE_SIZE */
395 size = NETDEV_FRAG_PAGE_MAX_ORDER ? nc->frag.size : PAGE_SIZE;
396
397 /* OK, page count is 0, we can safely set it */
398 atomic_set(&page->_count, size);
399
400 /* reset page count bias and offset to start of new frag */
401 nc->pagecnt_bias = size;
402 offset = size - fragsz;
6f532612 403 }
540eb7bf 404
540eb7bf 405 nc->pagecnt_bias--;
ffde7328
AD
406 nc->frag.offset = offset;
407
408 return page_address(page) + offset;
409}
410
411static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
412{
413 unsigned long flags;
414 void *data;
415
416 local_irq_save(flags);
417 data = __alloc_page_frag(&netdev_alloc_cache, fragsz, gfp_mask);
6f532612
ED
418 local_irq_restore(flags);
419 return data;
420}
c93bdd0e
MG
421
422/**
423 * netdev_alloc_frag - allocate a page fragment
424 * @fragsz: fragment size
425 *
426 * Allocates a frag from a page for receive buffer.
427 * Uses GFP_ATOMIC allocations.
428 */
429void *netdev_alloc_frag(unsigned int fragsz)
430{
431 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
432}
6f532612
ED
433EXPORT_SYMBOL(netdev_alloc_frag);
434
ffde7328
AD
435static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
436{
437 return __alloc_page_frag(&napi_alloc_cache, fragsz, gfp_mask);
438}
439
440void *napi_alloc_frag(unsigned int fragsz)
441{
442 return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
443}
444EXPORT_SYMBOL(napi_alloc_frag);
445
8af27456 446/**
fd11a83d 447 * __alloc_rx_skb - allocate an skbuff for rx
8af27456
CH
448 * @length: length to allocate
449 * @gfp_mask: get_free_pages mask, passed to alloc_skb
fd11a83d
AD
450 * @flags: If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
451 * allocations in case we have to fallback to __alloc_skb()
452 * If SKB_ALLOC_NAPI is set, page fragment will be allocated
453 * from napi_cache instead of netdev_cache.
8af27456
CH
454 *
455 * Allocate a new &sk_buff and assign it a usage count of one. The
456 * buffer has unspecified headroom built in. Users should allocate
457 * the headroom they think they need without accounting for the
458 * built in space. The built in space is used for optimisations.
459 *
460 * %NULL is returned if there is no free memory.
461 */
fd11a83d
AD
462static struct sk_buff *__alloc_rx_skb(unsigned int length, gfp_t gfp_mask,
463 int flags)
8af27456 464{
6f532612 465 struct sk_buff *skb = NULL;
fd11a83d 466 unsigned int fragsz = SKB_DATA_ALIGN(length) +
a1c7fff7
ED
467 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
468
310e158c 469 if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
c93bdd0e
MG
470 void *data;
471
472 if (sk_memalloc_socks())
473 gfp_mask |= __GFP_MEMALLOC;
474
fd11a83d
AD
475 data = (flags & SKB_ALLOC_NAPI) ?
476 __napi_alloc_frag(fragsz, gfp_mask) :
477 __netdev_alloc_frag(fragsz, gfp_mask);
a1c7fff7 478
6f532612
ED
479 if (likely(data)) {
480 skb = build_skb(data, fragsz);
481 if (unlikely(!skb))
482 put_page(virt_to_head_page(data));
a1c7fff7 483 }
a1c7fff7 484 } else {
fd11a83d 485 skb = __alloc_skb(length, gfp_mask,
c93bdd0e 486 SKB_ALLOC_RX, NUMA_NO_NODE);
a1c7fff7 487 }
fd11a83d
AD
488 return skb;
489}
490
491/**
492 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
493 * @dev: network device to receive on
494 * @length: length to allocate
495 * @gfp_mask: get_free_pages mask, passed to alloc_skb
496 *
497 * Allocate a new &sk_buff and assign it a usage count of one. The
498 * buffer has NET_SKB_PAD headroom built in. Users should allocate
499 * the headroom they think they need without accounting for the
500 * built in space. The built in space is used for optimisations.
501 *
502 * %NULL is returned if there is no free memory.
503 */
504struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
505 unsigned int length, gfp_t gfp_mask)
506{
507 struct sk_buff *skb;
508
509 length += NET_SKB_PAD;
510 skb = __alloc_rx_skb(length, gfp_mask, 0);
511
7b2e497a 512 if (likely(skb)) {
8af27456 513 skb_reserve(skb, NET_SKB_PAD);
7b2e497a
CH
514 skb->dev = dev;
515 }
fd11a83d 516
8af27456
CH
517 return skb;
518}
b4ac530f 519EXPORT_SYMBOL(__netdev_alloc_skb);
1da177e4 520
fd11a83d
AD
521/**
522 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
523 * @napi: napi instance this buffer was allocated for
524 * @length: length to allocate
525 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
526 *
527 * Allocate a new sk_buff for use in NAPI receive. This buffer will
528 * attempt to allocate the head from a special reserved region used
529 * only for NAPI Rx allocation. By doing this we can save several
530 * CPU cycles by avoiding having to disable and re-enable IRQs.
531 *
532 * %NULL is returned if there is no free memory.
533 */
534struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
535 unsigned int length, gfp_t gfp_mask)
536{
537 struct sk_buff *skb;
538
539 length += NET_SKB_PAD + NET_IP_ALIGN;
540 skb = __alloc_rx_skb(length, gfp_mask, SKB_ALLOC_NAPI);
541
542 if (likely(skb)) {
543 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
544 skb->dev = napi->dev;
545 }
546
547 return skb;
548}
549EXPORT_SYMBOL(__napi_alloc_skb);
550
654bed16 551void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
50269e19 552 int size, unsigned int truesize)
654bed16
PZ
553{
554 skb_fill_page_desc(skb, i, page, off, size);
555 skb->len += size;
556 skb->data_len += size;
50269e19 557 skb->truesize += truesize;
654bed16
PZ
558}
559EXPORT_SYMBOL(skb_add_rx_frag);
560
f8e617e1
JW
561void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
562 unsigned int truesize)
563{
564 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
565
566 skb_frag_size_add(frag, size);
567 skb->len += size;
568 skb->data_len += size;
569 skb->truesize += truesize;
570}
571EXPORT_SYMBOL(skb_coalesce_rx_frag);
572
27b437c8 573static void skb_drop_list(struct sk_buff **listp)
1da177e4 574{
bd8a7036 575 kfree_skb_list(*listp);
27b437c8 576 *listp = NULL;
1da177e4
LT
577}
578
27b437c8
HX
579static inline void skb_drop_fraglist(struct sk_buff *skb)
580{
581 skb_drop_list(&skb_shinfo(skb)->frag_list);
582}
583
1da177e4
LT
584static void skb_clone_fraglist(struct sk_buff *skb)
585{
586 struct sk_buff *list;
587
fbb398a8 588 skb_walk_frags(skb, list)
1da177e4
LT
589 skb_get(list);
590}
591
d3836f21
ED
592static void skb_free_head(struct sk_buff *skb)
593{
594 if (skb->head_frag)
595 put_page(virt_to_head_page(skb->head));
596 else
597 kfree(skb->head);
598}
599
5bba1712 600static void skb_release_data(struct sk_buff *skb)
1da177e4 601{
ff04a771
ED
602 struct skb_shared_info *shinfo = skb_shinfo(skb);
603 int i;
1da177e4 604
ff04a771
ED
605 if (skb->cloned &&
606 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
607 &shinfo->dataref))
608 return;
a6686f2f 609
ff04a771
ED
610 for (i = 0; i < shinfo->nr_frags; i++)
611 __skb_frag_unref(&shinfo->frags[i]);
a6686f2f 612
ff04a771
ED
613 /*
614 * If skb buf is from userspace, we need to notify the caller
615 * the lower device DMA has done;
616 */
617 if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
618 struct ubuf_info *uarg;
1da177e4 619
ff04a771
ED
620 uarg = shinfo->destructor_arg;
621 if (uarg->callback)
622 uarg->callback(uarg, true);
1da177e4 623 }
ff04a771
ED
624
625 if (shinfo->frag_list)
626 kfree_skb_list(shinfo->frag_list);
627
628 skb_free_head(skb);
1da177e4
LT
629}
630
631/*
632 * Free an skbuff by memory without cleaning the state.
633 */
2d4baff8 634static void kfree_skbmem(struct sk_buff *skb)
1da177e4 635{
d0bf4a9e 636 struct sk_buff_fclones *fclones;
d179cd12 637
d179cd12
DM
638 switch (skb->fclone) {
639 case SKB_FCLONE_UNAVAILABLE:
640 kmem_cache_free(skbuff_head_cache, skb);
6ffe75eb 641 return;
d179cd12
DM
642
643 case SKB_FCLONE_ORIG:
d0bf4a9e 644 fclones = container_of(skb, struct sk_buff_fclones, skb1);
d179cd12 645
6ffe75eb
ED
646 /* We usually free the clone (TX completion) before original skb
647 * This test would have no chance to be true for the clone,
648 * while here, branch prediction will be good.
d179cd12 649 */
6ffe75eb
ED
650 if (atomic_read(&fclones->fclone_ref) == 1)
651 goto fastpath;
652 break;
e7820e39 653
6ffe75eb
ED
654 default: /* SKB_FCLONE_CLONE */
655 fclones = container_of(skb, struct sk_buff_fclones, skb2);
d179cd12 656 break;
3ff50b79 657 }
6ffe75eb
ED
658 if (!atomic_dec_and_test(&fclones->fclone_ref))
659 return;
660fastpath:
661 kmem_cache_free(skbuff_fclone_cache, fclones);
1da177e4
LT
662}
663
04a4bb55 664static void skb_release_head_state(struct sk_buff *skb)
1da177e4 665{
adf30907 666 skb_dst_drop(skb);
1da177e4
LT
667#ifdef CONFIG_XFRM
668 secpath_put(skb->sp);
669#endif
9c2b3328
SH
670 if (skb->destructor) {
671 WARN_ON(in_irq());
1da177e4
LT
672 skb->destructor(skb);
673 }
a3bf7ae9 674#if IS_ENABLED(CONFIG_NF_CONNTRACK)
5f79e0f9 675 nf_conntrack_put(skb->nfct);
2fc72c7b 676#endif
1109a90c 677#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4
LT
678 nf_bridge_put(skb->nf_bridge);
679#endif
04a4bb55
LB
680}
681
682/* Free everything but the sk_buff shell. */
683static void skb_release_all(struct sk_buff *skb)
684{
685 skb_release_head_state(skb);
5e71d9d7 686 if (likely(skb->head))
0ebd0ac5 687 skb_release_data(skb);
2d4baff8
HX
688}
689
690/**
691 * __kfree_skb - private function
692 * @skb: buffer
693 *
694 * Free an sk_buff. Release anything attached to the buffer.
695 * Clean the state. This is an internal helper function. Users should
696 * always call kfree_skb
697 */
1da177e4 698
2d4baff8
HX
699void __kfree_skb(struct sk_buff *skb)
700{
701 skb_release_all(skb);
1da177e4
LT
702 kfree_skbmem(skb);
703}
b4ac530f 704EXPORT_SYMBOL(__kfree_skb);
1da177e4 705