net: fix indirect calls helpers for ptype list hooks.
[linux-2.6-block.git] / net / core / dev.c
CommitLineData
1da177e4 1/*
722c9a0c 2 * NET3 Protocol independent device support routines.
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
1da177e4
LT
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
722c9a0c 49 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
72 * - netif_rx() feedback
73 */
74
7c0f6ba6 75#include <linux/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
f1083048 84#include <linux/sched/mm.h>
4a3e2f71 85#include <linux/mutex.h>
1da177e4
LT
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
0187bdfb 95#include <linux/ethtool.h>
1da177e4 96#include <linux/skbuff.h>
a7862b45 97#include <linux/bpf.h>
b5cdae32 98#include <linux/bpf_trace.h>
457c4cbc 99#include <net/net_namespace.h>
1da177e4 100#include <net/sock.h>
02d62e86 101#include <net/busy_poll.h>
1da177e4 102#include <linux/rtnetlink.h>
1da177e4 103#include <linux/stat.h>
1da177e4 104#include <net/dst.h>
fc4099f1 105#include <net/dst_metadata.h>
1da177e4 106#include <net/pkt_sched.h>
87d83093 107#include <net/pkt_cls.h>
1da177e4 108#include <net/checksum.h>
44540960 109#include <net/xfrm.h>
1da177e4
LT
110#include <linux/highmem.h>
111#include <linux/init.h>
1da177e4 112#include <linux/module.h>
1da177e4
LT
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
1da177e4 116#include <net/iw_handler.h>
1da177e4 117#include <asm/current.h>
5bdb9886 118#include <linux/audit.h>
db217334 119#include <linux/dmaengine.h>
f6a78bfc 120#include <linux/err.h>
c7fa9d18 121#include <linux/ctype.h>
723e98b7 122#include <linux/if_arp.h>
6de329e2 123#include <linux/if_vlan.h>
8f0f2223 124#include <linux/ip.h>
ad55dcaf 125#include <net/ip.h>
25cd9ba0 126#include <net/mpls.h>
8f0f2223
DM
127#include <linux/ipv6.h>
128#include <linux/in.h>
b6b2fed1
DM
129#include <linux/jhash.h>
130#include <linux/random.h>
9cbc1cb8 131#include <trace/events/napi.h>
cf66ba58 132#include <trace/events/net.h>
07dc22e7 133#include <trace/events/skb.h>
caeda9b9 134#include <linux/inetdevice.h>
c445477d 135#include <linux/cpu_rmap.h>
c5905afb 136#include <linux/static_key.h>
af12fa6e 137#include <linux/hashtable.h>
60877a32 138#include <linux/vmalloc.h>
529d0489 139#include <linux/if_macvlan.h>
e7fd2885 140#include <linux/errqueue.h>
3b47d303 141#include <linux/hrtimer.h>
e687ad60 142#include <linux/netfilter_ingress.h>
40e4e713 143#include <linux/crash_dump.h>
b72b5bf6 144#include <linux/sctp.h>
ae847f40 145#include <net/udp_tunnel.h>
6621dd29 146#include <linux/net_namespace.h>
aaa5d90b 147#include <linux/indirect_call_wrapper.h>
af3836df 148#include <net/devlink.h>
1da177e4 149
342709ef
PE
150#include "net-sysfs.h"
151
d565b0a1
HX
152#define MAX_GRO_SKBS 8
153
5d38a079
HX
154/* This should be increased if a protocol with a bigger head is added. */
155#define GRO_MAX_HEAD (MAX_HEADER + 128)
156
1da177e4 157static DEFINE_SPINLOCK(ptype_lock);
62532da9 158static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
159struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160struct list_head ptype_all __read_mostly; /* Taps */
62532da9 161static struct list_head offload_base __read_mostly;
1da177e4 162
ae78dbfa 163static int netif_rx_internal(struct sk_buff *skb);
54951194 164static int call_netdevice_notifiers_info(unsigned long val,
54951194 165 struct netdev_notifier_info *info);
26372605
PM
166static int call_netdevice_notifiers_extack(unsigned long val,
167 struct net_device *dev,
168 struct netlink_ext_ack *extack);
90b602f8 169static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 170
1da177e4 171/*
7562f876 172 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
173 * semaphore.
174 *
c6d14c84 175 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
176 *
177 * Writers must hold the rtnl semaphore while they loop through the
7562f876 178 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
179 * actual updates. This allows pure readers to access the list even
180 * while a writer is preparing to update it.
181 *
182 * To put it another way, dev_base_lock is held for writing only to
183 * protect against pure readers; the rtnl semaphore provides the
184 * protection against other writers.
185 *
186 * See, for example usages, register_netdevice() and
187 * unregister_netdevice(), which must be called with the rtnl
188 * semaphore held.
189 */
1da177e4 190DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
191EXPORT_SYMBOL(dev_base_lock);
192
6c557001
FW
193static DEFINE_MUTEX(ifalias_mutex);
194
af12fa6e
ET
195/* protects napi_hash addition/deletion and napi_gen_id */
196static DEFINE_SPINLOCK(napi_hash_lock);
197
52bd2d62 198static unsigned int napi_gen_id = NR_CPUS;
6180d9de 199static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 200
18afa4b0 201static seqcount_t devnet_rename_seq;
c91f6df2 202
4e985ada
TG
203static inline void dev_base_seq_inc(struct net *net)
204{
643aa9cb 205 while (++net->dev_base_seq == 0)
206 ;
4e985ada
TG
207}
208
881d966b 209static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 210{
8387ff25 211 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 212
08e9897d 213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
214}
215
881d966b 216static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 217{
7c28bd0b 218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
219}
220
e36fa2f7 221static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
222{
223#ifdef CONFIG_RPS
e36fa2f7 224 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
225#endif
226}
227
e36fa2f7 228static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
229{
230#ifdef CONFIG_RPS
e36fa2f7 231 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
232#endif
233}
234
ce286d32 235/* Device list insertion */
53759be9 236static void list_netdevice(struct net_device *dev)
ce286d32 237{
c346dca1 238 struct net *net = dev_net(dev);
ce286d32
EB
239
240 ASSERT_RTNL();
241
242 write_lock_bh(&dev_base_lock);
c6d14c84 243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
245 hlist_add_head_rcu(&dev->index_hlist,
246 dev_index_hash(net, dev->ifindex));
ce286d32 247 write_unlock_bh(&dev_base_lock);
4e985ada
TG
248
249 dev_base_seq_inc(net);
ce286d32
EB
250}
251
fb699dfd
ED
252/* Device list removal
253 * caller must respect a RCU grace period before freeing/reusing dev
254 */
ce286d32
EB
255static void unlist_netdevice(struct net_device *dev)
256{
257 ASSERT_RTNL();
258
259 /* Unlink dev from the device chain */
260 write_lock_bh(&dev_base_lock);
c6d14c84 261 list_del_rcu(&dev->dev_list);
72c9528b 262 hlist_del_rcu(&dev->name_hlist);
fb699dfd 263 hlist_del_rcu(&dev->index_hlist);
ce286d32 264 write_unlock_bh(&dev_base_lock);
4e985ada
TG
265
266 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
267}
268
1da177e4
LT
269/*
270 * Our notifier list
271 */
272
f07d5b94 273static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
274
275/*
276 * Device drivers call our routines to queue packets here. We empty the
277 * queue in the local softnet handler.
278 */
bea3348e 279
9958da05 280DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 281EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 282
cf508b12 283#ifdef CONFIG_LOCKDEP
723e98b7 284/*
c773e847 285 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
286 * according to dev->type
287 */
643aa9cb 288static const unsigned short netdev_lock_type[] = {
289 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
723e98b7
JP
290 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
291 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
292 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
293 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
294 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
295 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
296 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
297 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
298 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
299 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
300 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
301 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
302 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
303 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 304
643aa9cb 305static const char *const netdev_lock_name[] = {
306 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
307 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
308 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
309 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
310 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
311 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
312 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
313 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
314 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
315 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
316 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
317 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
318 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
319 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
320 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
321
322static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 323static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
324
325static inline unsigned short netdev_lock_pos(unsigned short dev_type)
326{
327 int i;
328
329 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
330 if (netdev_lock_type[i] == dev_type)
331 return i;
332 /* the last key is used by default */
333 return ARRAY_SIZE(netdev_lock_type) - 1;
334}
335
cf508b12
DM
336static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
337 unsigned short dev_type)
723e98b7
JP
338{
339 int i;
340
341 i = netdev_lock_pos(dev_type);
342 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
343 netdev_lock_name[i]);
344}
cf508b12
DM
345
346static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
347{
348 int i;
349
350 i = netdev_lock_pos(dev->type);
351 lockdep_set_class_and_name(&dev->addr_list_lock,
352 &netdev_addr_lock_key[i],
353 netdev_lock_name[i]);
354}
723e98b7 355#else
cf508b12
DM
356static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
357 unsigned short dev_type)
358{
359}
360static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
361{
362}
363#endif
1da177e4
LT
364
365/*******************************************************************************
eb13da1a 366 *
367 * Protocol management and registration routines
368 *
369 *******************************************************************************/
1da177e4 370
1da177e4 371
1da177e4
LT
372/*
373 * Add a protocol ID to the list. Now that the input handler is
374 * smarter we can dispense with all the messy stuff that used to be
375 * here.
376 *
377 * BEWARE!!! Protocol handlers, mangling input packets,
378 * MUST BE last in hash buckets and checking protocol handlers
379 * MUST start from promiscuous ptype_all chain in net_bh.
380 * It is true now, do not change it.
381 * Explanation follows: if protocol handler, mangling packet, will
382 * be the first on list, it is not able to sense, that packet
383 * is cloned and should be copied-on-write, so that it will
384 * change it and subsequent readers will get broken packet.
385 * --ANK (980803)
386 */
387
c07b68e8
ED
388static inline struct list_head *ptype_head(const struct packet_type *pt)
389{
390 if (pt->type == htons(ETH_P_ALL))
7866a621 391 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 392 else
7866a621
SN
393 return pt->dev ? &pt->dev->ptype_specific :
394 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
395}
396
1da177e4
LT
397/**
398 * dev_add_pack - add packet handler
399 * @pt: packet type declaration
400 *
401 * Add a protocol handler to the networking stack. The passed &packet_type
402 * is linked into kernel lists and may not be freed until it has been
403 * removed from the kernel lists.
404 *
4ec93edb 405 * This call does not sleep therefore it can not
1da177e4
LT
406 * guarantee all CPU's that are in middle of receiving packets
407 * will see the new packet type (until the next received packet).
408 */
409
410void dev_add_pack(struct packet_type *pt)
411{
c07b68e8 412 struct list_head *head = ptype_head(pt);
1da177e4 413
c07b68e8
ED
414 spin_lock(&ptype_lock);
415 list_add_rcu(&pt->list, head);
416 spin_unlock(&ptype_lock);
1da177e4 417}
d1b19dff 418EXPORT_SYMBOL(dev_add_pack);
1da177e4 419
1da177e4
LT
420/**
421 * __dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
4ec93edb 427 * returns.
1da177e4
LT
428 *
429 * The packet type might still be in use by receivers
430 * and must not be freed until after all the CPU's have gone
431 * through a quiescent state.
432 */
433void __dev_remove_pack(struct packet_type *pt)
434{
c07b68e8 435 struct list_head *head = ptype_head(pt);
1da177e4
LT
436 struct packet_type *pt1;
437
c07b68e8 438 spin_lock(&ptype_lock);
1da177e4
LT
439
440 list_for_each_entry(pt1, head, list) {
441 if (pt == pt1) {
442 list_del_rcu(&pt->list);
443 goto out;
444 }
445 }
446
7b6cd1ce 447 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 448out:
c07b68e8 449 spin_unlock(&ptype_lock);
1da177e4 450}
d1b19dff
ED
451EXPORT_SYMBOL(__dev_remove_pack);
452
1da177e4
LT
453/**
454 * dev_remove_pack - remove packet handler
455 * @pt: packet type declaration
456 *
457 * Remove a protocol handler that was previously added to the kernel
458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
459 * from the kernel lists and can be freed or reused once this function
460 * returns.
461 *
462 * This call sleeps to guarantee that no CPU is looking at the packet
463 * type after return.
464 */
465void dev_remove_pack(struct packet_type *pt)
466{
467 __dev_remove_pack(pt);
4ec93edb 468
1da177e4
LT
469 synchronize_net();
470}
d1b19dff 471EXPORT_SYMBOL(dev_remove_pack);
1da177e4 472
62532da9
VY
473
474/**
475 * dev_add_offload - register offload handlers
476 * @po: protocol offload declaration
477 *
478 * Add protocol offload handlers to the networking stack. The passed
479 * &proto_offload is linked into kernel lists and may not be freed until
480 * it has been removed from the kernel lists.
481 *
482 * This call does not sleep therefore it can not
483 * guarantee all CPU's that are in middle of receiving packets
484 * will see the new offload handlers (until the next received packet).
485 */
486void dev_add_offload(struct packet_offload *po)
487{
bdef7de4 488 struct packet_offload *elem;
62532da9
VY
489
490 spin_lock(&offload_lock);
bdef7de4
DM
491 list_for_each_entry(elem, &offload_base, list) {
492 if (po->priority < elem->priority)
493 break;
494 }
495 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
496 spin_unlock(&offload_lock);
497}
498EXPORT_SYMBOL(dev_add_offload);
499
500/**
501 * __dev_remove_offload - remove offload handler
502 * @po: packet offload declaration
503 *
504 * Remove a protocol offload handler that was previously added to the
505 * kernel offload handlers by dev_add_offload(). The passed &offload_type
506 * is removed from the kernel lists and can be freed or reused once this
507 * function returns.
508 *
509 * The packet type might still be in use by receivers
510 * and must not be freed until after all the CPU's have gone
511 * through a quiescent state.
512 */
1d143d9f 513static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
514{
515 struct list_head *head = &offload_base;
516 struct packet_offload *po1;
517
c53aa505 518 spin_lock(&offload_lock);
62532da9
VY
519
520 list_for_each_entry(po1, head, list) {
521 if (po == po1) {
522 list_del_rcu(&po->list);
523 goto out;
524 }
525 }
526
527 pr_warn("dev_remove_offload: %p not found\n", po);
528out:
c53aa505 529 spin_unlock(&offload_lock);
62532da9 530}
62532da9
VY
531
532/**
533 * dev_remove_offload - remove packet offload handler
534 * @po: packet offload declaration
535 *
536 * Remove a packet offload handler that was previously added to the kernel
537 * offload handlers by dev_add_offload(). The passed &offload_type is
538 * removed from the kernel lists and can be freed or reused once this
539 * function returns.
540 *
541 * This call sleeps to guarantee that no CPU is looking at the packet
542 * type after return.
543 */
544void dev_remove_offload(struct packet_offload *po)
545{
546 __dev_remove_offload(po);
547
548 synchronize_net();
549}
550EXPORT_SYMBOL(dev_remove_offload);
551
1da177e4 552/******************************************************************************
eb13da1a 553 *
554 * Device Boot-time Settings Routines
555 *
556 ******************************************************************************/
1da177e4
LT
557
558/* Boot time configuration table */
559static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
560
561/**
562 * netdev_boot_setup_add - add new setup entry
563 * @name: name of the device
564 * @map: configured settings for the device
565 *
566 * Adds new setup entry to the dev_boot_setup list. The function
567 * returns 0 on error and 1 on success. This is a generic routine to
568 * all netdevices.
569 */
570static int netdev_boot_setup_add(char *name, struct ifmap *map)
571{
572 struct netdev_boot_setup *s;
573 int i;
574
575 s = dev_boot_setup;
576 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
577 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
578 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 579 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
580 memcpy(&s[i].map, map, sizeof(s[i].map));
581 break;
582 }
583 }
584
585 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
586}
587
588/**
722c9a0c 589 * netdev_boot_setup_check - check boot time settings
590 * @dev: the netdevice
1da177e4 591 *
722c9a0c 592 * Check boot time settings for the device.
593 * The found settings are set for the device to be used
594 * later in the device probing.
595 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
596 */
597int netdev_boot_setup_check(struct net_device *dev)
598{
599 struct netdev_boot_setup *s = dev_boot_setup;
600 int i;
601
602 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
603 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 604 !strcmp(dev->name, s[i].name)) {
722c9a0c 605 dev->irq = s[i].map.irq;
606 dev->base_addr = s[i].map.base_addr;
607 dev->mem_start = s[i].map.mem_start;
608 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
609 return 1;
610 }
611 }
612 return 0;
613}
d1b19dff 614EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
615
616
617/**
722c9a0c 618 * netdev_boot_base - get address from boot time settings
619 * @prefix: prefix for network device
620 * @unit: id for network device
621 *
622 * Check boot time settings for the base address of device.
623 * The found settings are set for the device to be used
624 * later in the device probing.
625 * Returns 0 if no settings found.
1da177e4
LT
626 */
627unsigned long netdev_boot_base(const char *prefix, int unit)
628{
629 const struct netdev_boot_setup *s = dev_boot_setup;
630 char name[IFNAMSIZ];
631 int i;
632
633 sprintf(name, "%s%d", prefix, unit);
634
635 /*
636 * If device already registered then return base of 1
637 * to indicate not to probe for this interface
638 */
881d966b 639 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
640 return 1;
641
642 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
643 if (!strcmp(name, s[i].name))
644 return s[i].map.base_addr;
645 return 0;
646}
647
648/*
649 * Saves at boot time configured settings for any netdevice.
650 */
651int __init netdev_boot_setup(char *str)
652{
653 int ints[5];
654 struct ifmap map;
655
656 str = get_options(str, ARRAY_SIZE(ints), ints);
657 if (!str || !*str)
658 return 0;
659
660 /* Save settings */
661 memset(&map, 0, sizeof(map));
662 if (ints[0] > 0)
663 map.irq = ints[1];
664 if (ints[0] > 1)
665 map.base_addr = ints[2];
666 if (ints[0] > 2)
667 map.mem_start = ints[3];
668 if (ints[0] > 3)
669 map.mem_end = ints[4];
670
671 /* Add new entry to the list */
672 return netdev_boot_setup_add(str, &map);
673}
674
675__setup("netdev=", netdev_boot_setup);
676
677/*******************************************************************************
eb13da1a 678 *
679 * Device Interface Subroutines
680 *
681 *******************************************************************************/
1da177e4 682
a54acb3a
ND
683/**
684 * dev_get_iflink - get 'iflink' value of a interface
685 * @dev: targeted interface
686 *
687 * Indicates the ifindex the interface is linked to.
688 * Physical interfaces have the same 'ifindex' and 'iflink' values.
689 */
690
691int dev_get_iflink(const struct net_device *dev)
692{
693 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
694 return dev->netdev_ops->ndo_get_iflink(dev);
695
7a66bbc9 696 return dev->ifindex;
a54acb3a
ND
697}
698EXPORT_SYMBOL(dev_get_iflink);
699
fc4099f1
PS
700/**
701 * dev_fill_metadata_dst - Retrieve tunnel egress information.
702 * @dev: targeted interface
703 * @skb: The packet.
704 *
705 * For better visibility of tunnel traffic OVS needs to retrieve
706 * egress tunnel information for a packet. Following API allows
707 * user to get this info.
708 */
709int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
710{
711 struct ip_tunnel_info *info;
712
713 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
714 return -EINVAL;
715
716 info = skb_tunnel_info_unclone(skb);
717 if (!info)
718 return -ENOMEM;
719 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
720 return -EINVAL;
721
722 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
723}
724EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
725
1da177e4
LT
726/**
727 * __dev_get_by_name - find a device by its name
c4ea43c5 728 * @net: the applicable net namespace
1da177e4
LT
729 * @name: name to find
730 *
731 * Find an interface by name. Must be called under RTNL semaphore
732 * or @dev_base_lock. If the name is found a pointer to the device
733 * is returned. If the name is not found then %NULL is returned. The
734 * reference counters are not incremented so the caller must be
735 * careful with locks.
736 */
737
881d966b 738struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 739{
0bd8d536
ED
740 struct net_device *dev;
741 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 742
b67bfe0d 743 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
744 if (!strncmp(dev->name, name, IFNAMSIZ))
745 return dev;
0bd8d536 746
1da177e4
LT
747 return NULL;
748}
d1b19dff 749EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 750
72c9528b 751/**
722c9a0c 752 * dev_get_by_name_rcu - find a device by its name
753 * @net: the applicable net namespace
754 * @name: name to find
755 *
756 * Find an interface by name.
757 * If the name is found a pointer to the device is returned.
758 * If the name is not found then %NULL is returned.
759 * The reference counters are not incremented so the caller must be
760 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
761 */
762
763struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
764{
72c9528b
ED
765 struct net_device *dev;
766 struct hlist_head *head = dev_name_hash(net, name);
767
b67bfe0d 768 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
769 if (!strncmp(dev->name, name, IFNAMSIZ))
770 return dev;
771
772 return NULL;
773}
774EXPORT_SYMBOL(dev_get_by_name_rcu);
775
1da177e4
LT
776/**
777 * dev_get_by_name - find a device by its name
c4ea43c5 778 * @net: the applicable net namespace
1da177e4
LT
779 * @name: name to find
780 *
781 * Find an interface by name. This can be called from any
782 * context and does its own locking. The returned handle has
783 * the usage count incremented and the caller must use dev_put() to
784 * release it when it is no longer needed. %NULL is returned if no
785 * matching device is found.
786 */
787
881d966b 788struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
789{
790 struct net_device *dev;
791
72c9528b
ED
792 rcu_read_lock();
793 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
794 if (dev)
795 dev_hold(dev);
72c9528b 796 rcu_read_unlock();
1da177e4
LT
797 return dev;
798}
d1b19dff 799EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
800
801/**
802 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 803 * @net: the applicable net namespace
1da177e4
LT
804 * @ifindex: index of device
805 *
806 * Search for an interface by index. Returns %NULL if the device
807 * is not found or a pointer to the device. The device has not
808 * had its reference counter increased so the caller must be careful
809 * about locking. The caller must hold either the RTNL semaphore
810 * or @dev_base_lock.
811 */
812
881d966b 813struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 814{
0bd8d536
ED
815 struct net_device *dev;
816 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 817
b67bfe0d 818 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
819 if (dev->ifindex == ifindex)
820 return dev;
0bd8d536 821
1da177e4
LT
822 return NULL;
823}
d1b19dff 824EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 825
fb699dfd
ED
826/**
827 * dev_get_by_index_rcu - find a device by its ifindex
828 * @net: the applicable net namespace
829 * @ifindex: index of device
830 *
831 * Search for an interface by index. Returns %NULL if the device
832 * is not found or a pointer to the device. The device has not
833 * had its reference counter increased so the caller must be careful
834 * about locking. The caller must hold RCU lock.
835 */
836
837struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
838{
fb699dfd
ED
839 struct net_device *dev;
840 struct hlist_head *head = dev_index_hash(net, ifindex);
841
b67bfe0d 842 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
843 if (dev->ifindex == ifindex)
844 return dev;
845
846 return NULL;
847}
848EXPORT_SYMBOL(dev_get_by_index_rcu);
849
1da177e4
LT
850
851/**
852 * dev_get_by_index - find a device by its ifindex
c4ea43c5 853 * @net: the applicable net namespace
1da177e4
LT
854 * @ifindex: index of device
855 *
856 * Search for an interface by index. Returns NULL if the device
857 * is not found or a pointer to the device. The device returned has
858 * had a reference added and the pointer is safe until the user calls
859 * dev_put to indicate they have finished with it.
860 */
861
881d966b 862struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
863{
864 struct net_device *dev;
865
fb699dfd
ED
866 rcu_read_lock();
867 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
868 if (dev)
869 dev_hold(dev);
fb699dfd 870 rcu_read_unlock();
1da177e4
LT
871 return dev;
872}
d1b19dff 873EXPORT_SYMBOL(dev_get_by_index);
1da177e4 874
90b602f8
ML
875/**
876 * dev_get_by_napi_id - find a device by napi_id
877 * @napi_id: ID of the NAPI struct
878 *
879 * Search for an interface by NAPI ID. Returns %NULL if the device
880 * is not found or a pointer to the device. The device has not had
881 * its reference counter increased so the caller must be careful
882 * about locking. The caller must hold RCU lock.
883 */
884
885struct net_device *dev_get_by_napi_id(unsigned int napi_id)
886{
887 struct napi_struct *napi;
888
889 WARN_ON_ONCE(!rcu_read_lock_held());
890
891 if (napi_id < MIN_NAPI_ID)
892 return NULL;
893
894 napi = napi_by_id(napi_id);
895
896 return napi ? napi->dev : NULL;
897}
898EXPORT_SYMBOL(dev_get_by_napi_id);
899
5dbe7c17
NS
900/**
901 * netdev_get_name - get a netdevice name, knowing its ifindex.
902 * @net: network namespace
903 * @name: a pointer to the buffer where the name will be stored.
904 * @ifindex: the ifindex of the interface to get the name from.
905 *
906 * The use of raw_seqcount_begin() and cond_resched() before
907 * retrying is required as we want to give the writers a chance
908 * to complete when CONFIG_PREEMPT is not set.
909 */
910int netdev_get_name(struct net *net, char *name, int ifindex)
911{
912 struct net_device *dev;
913 unsigned int seq;
914
915retry:
916 seq = raw_seqcount_begin(&devnet_rename_seq);
917 rcu_read_lock();
918 dev = dev_get_by_index_rcu(net, ifindex);
919 if (!dev) {
920 rcu_read_unlock();
921 return -ENODEV;
922 }
923
924 strcpy(name, dev->name);
925 rcu_read_unlock();
926 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
927 cond_resched();
928 goto retry;
929 }
930
931 return 0;
932}
933
1da177e4 934/**
941666c2 935 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 936 * @net: the applicable net namespace
1da177e4
LT
937 * @type: media type of device
938 * @ha: hardware address
939 *
940 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
941 * is not found or a pointer to the device.
942 * The caller must hold RCU or RTNL.
941666c2 943 * The returned device has not had its ref count increased
1da177e4
LT
944 * and the caller must therefore be careful about locking
945 *
1da177e4
LT
946 */
947
941666c2
ED
948struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
949 const char *ha)
1da177e4
LT
950{
951 struct net_device *dev;
952
941666c2 953 for_each_netdev_rcu(net, dev)
1da177e4
LT
954 if (dev->type == type &&
955 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
956 return dev;
957
958 return NULL;
1da177e4 959}
941666c2 960EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 961
881d966b 962struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
963{
964 struct net_device *dev;
965
4e9cac2b 966 ASSERT_RTNL();
881d966b 967 for_each_netdev(net, dev)
4e9cac2b 968 if (dev->type == type)
7562f876
PE
969 return dev;
970
971 return NULL;
4e9cac2b 972}
4e9cac2b
PM
973EXPORT_SYMBOL(__dev_getfirstbyhwtype);
974
881d966b 975struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 976{
99fe3c39 977 struct net_device *dev, *ret = NULL;
4e9cac2b 978
99fe3c39
ED
979 rcu_read_lock();
980 for_each_netdev_rcu(net, dev)
981 if (dev->type == type) {
982 dev_hold(dev);
983 ret = dev;
984 break;
985 }
986 rcu_read_unlock();
987 return ret;
1da177e4 988}
1da177e4
LT
989EXPORT_SYMBOL(dev_getfirstbyhwtype);
990
991/**
6c555490 992 * __dev_get_by_flags - find any device with given flags
c4ea43c5 993 * @net: the applicable net namespace
1da177e4
LT
994 * @if_flags: IFF_* values
995 * @mask: bitmask of bits in if_flags to check
996 *
997 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 998 * is not found or a pointer to the device. Must be called inside
6c555490 999 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
1000 */
1001
6c555490
WC
1002struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1003 unsigned short mask)
1da177e4 1004{
7562f876 1005 struct net_device *dev, *ret;
1da177e4 1006
6c555490
WC
1007 ASSERT_RTNL();
1008
7562f876 1009 ret = NULL;
6c555490 1010 for_each_netdev(net, dev) {
1da177e4 1011 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1012 ret = dev;
1da177e4
LT
1013 break;
1014 }
1015 }
7562f876 1016 return ret;
1da177e4 1017}
6c555490 1018EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1019
1020/**
1021 * dev_valid_name - check if name is okay for network device
1022 * @name: name string
1023 *
1024 * Network device names need to be valid file names to
c7fa9d18
DM
1025 * to allow sysfs to work. We also disallow any kind of
1026 * whitespace.
1da177e4 1027 */
95f050bf 1028bool dev_valid_name(const char *name)
1da177e4 1029{
c7fa9d18 1030 if (*name == '\0')
95f050bf 1031 return false;
a9d48205 1032 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
95f050bf 1033 return false;
c7fa9d18 1034 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1035 return false;
c7fa9d18
DM
1036
1037 while (*name) {
a4176a93 1038 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1039 return false;
c7fa9d18
DM
1040 name++;
1041 }
95f050bf 1042 return true;
1da177e4 1043}
d1b19dff 1044EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1045
1046/**
b267b179
EB
1047 * __dev_alloc_name - allocate a name for a device
1048 * @net: network namespace to allocate the device name in
1da177e4 1049 * @name: name format string
b267b179 1050 * @buf: scratch buffer and result name string
1da177e4
LT
1051 *
1052 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1053 * id. It scans list of devices to build up a free map, then chooses
1054 * the first empty slot. The caller must hold the dev_base or rtnl lock
1055 * while allocating the name and adding the device in order to avoid
1056 * duplicates.
1057 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1058 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1059 */
1060
b267b179 1061static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1062{
1063 int i = 0;
1da177e4
LT
1064 const char *p;
1065 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1066 unsigned long *inuse;
1da177e4
LT
1067 struct net_device *d;
1068
93809105
RV
1069 if (!dev_valid_name(name))
1070 return -EINVAL;
1071
51f299dd 1072 p = strchr(name, '%');
1da177e4
LT
1073 if (p) {
1074 /*
1075 * Verify the string as this thing may have come from
1076 * the user. There must be either one "%d" and no other "%"
1077 * characters.
1078 */
1079 if (p[1] != 'd' || strchr(p + 2, '%'))
1080 return -EINVAL;
1081
1082 /* Use one page as a bit array of possible slots */
cfcabdcc 1083 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1084 if (!inuse)
1085 return -ENOMEM;
1086
881d966b 1087 for_each_netdev(net, d) {
1da177e4
LT
1088 if (!sscanf(d->name, name, &i))
1089 continue;
1090 if (i < 0 || i >= max_netdevices)
1091 continue;
1092
1093 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1094 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1095 if (!strncmp(buf, d->name, IFNAMSIZ))
1096 set_bit(i, inuse);
1097 }
1098
1099 i = find_first_zero_bit(inuse, max_netdevices);
1100 free_page((unsigned long) inuse);
1101 }
1102
6224abda 1103 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1104 if (!__dev_get_by_name(net, buf))
1da177e4 1105 return i;
1da177e4
LT
1106
1107 /* It is possible to run out of possible slots
1108 * when the name is long and there isn't enough space left
1109 * for the digits, or if all bits are used.
1110 */
029b6d14 1111 return -ENFILE;
1da177e4
LT
1112}
1113
2c88b855
RV
1114static int dev_alloc_name_ns(struct net *net,
1115 struct net_device *dev,
1116 const char *name)
1117{
1118 char buf[IFNAMSIZ];
1119 int ret;
1120
c46d7642 1121 BUG_ON(!net);
2c88b855
RV
1122 ret = __dev_alloc_name(net, name, buf);
1123 if (ret >= 0)
1124 strlcpy(dev->name, buf, IFNAMSIZ);
1125 return ret;
1da177e4
LT
1126}
1127
b267b179
EB
1128/**
1129 * dev_alloc_name - allocate a name for a device
1130 * @dev: device
1131 * @name: name format string
1132 *
1133 * Passed a format string - eg "lt%d" it will try and find a suitable
1134 * id. It scans list of devices to build up a free map, then chooses
1135 * the first empty slot. The caller must hold the dev_base or rtnl lock
1136 * while allocating the name and adding the device in order to avoid
1137 * duplicates.
1138 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1139 * Returns the number of the unit assigned or a negative errno code.
1140 */
1141
1142int dev_alloc_name(struct net_device *dev, const char *name)
1143{
c46d7642 1144 return dev_alloc_name_ns(dev_net(dev), dev, name);
b267b179 1145}
d1b19dff 1146EXPORT_SYMBOL(dev_alloc_name);
b267b179 1147
0ad646c8
CW
1148int dev_get_valid_name(struct net *net, struct net_device *dev,
1149 const char *name)
828de4f6 1150{
55a5ec9b
DM
1151 BUG_ON(!net);
1152
1153 if (!dev_valid_name(name))
1154 return -EINVAL;
1155
1156 if (strchr(name, '%'))
1157 return dev_alloc_name_ns(net, dev, name);
1158 else if (__dev_get_by_name(net, name))
1159 return -EEXIST;
1160 else if (dev->name != name)
1161 strlcpy(dev->name, name, IFNAMSIZ);
1162
1163 return 0;
d9031024 1164}
0ad646c8 1165EXPORT_SYMBOL(dev_get_valid_name);
1da177e4
LT
1166
1167/**
1168 * dev_change_name - change name of a device
1169 * @dev: device
1170 * @newname: name (or format string) must be at least IFNAMSIZ
1171 *
1172 * Change name of a device, can pass format strings "eth%d".
1173 * for wildcarding.
1174 */
cf04a4c7 1175int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1176{
238fa362 1177 unsigned char old_assign_type;
fcc5a03a 1178 char oldname[IFNAMSIZ];
1da177e4 1179 int err = 0;
fcc5a03a 1180 int ret;
881d966b 1181 struct net *net;
1da177e4
LT
1182
1183 ASSERT_RTNL();
c346dca1 1184 BUG_ON(!dev_net(dev));
1da177e4 1185
c346dca1 1186 net = dev_net(dev);
8065a779
SWL
1187
1188 /* Some auto-enslaved devices e.g. failover slaves are
1189 * special, as userspace might rename the device after
1190 * the interface had been brought up and running since
1191 * the point kernel initiated auto-enslavement. Allow
1192 * live name change even when these slave devices are
1193 * up and running.
1194 *
1195 * Typically, users of these auto-enslaving devices
1196 * don't actually care about slave name change, as
1197 * they are supposed to operate on master interface
1198 * directly.
1199 */
1200 if (dev->flags & IFF_UP &&
1201 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1da177e4
LT
1202 return -EBUSY;
1203
30e6c9fa 1204 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1205
1206 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1207 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1208 return 0;
c91f6df2 1209 }
c8d90dca 1210
fcc5a03a
HX
1211 memcpy(oldname, dev->name, IFNAMSIZ);
1212
828de4f6 1213 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1214 if (err < 0) {
30e6c9fa 1215 write_seqcount_end(&devnet_rename_seq);
d9031024 1216 return err;
c91f6df2 1217 }
1da177e4 1218
6fe82a39
VF
1219 if (oldname[0] && !strchr(oldname, '%'))
1220 netdev_info(dev, "renamed from %s\n", oldname);
1221
238fa362
TG
1222 old_assign_type = dev->name_assign_type;
1223 dev->name_assign_type = NET_NAME_RENAMED;
1224
fcc5a03a 1225rollback:
a1b3f594
EB
1226 ret = device_rename(&dev->dev, dev->name);
1227 if (ret) {
1228 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1229 dev->name_assign_type = old_assign_type;
30e6c9fa 1230 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1231 return ret;
dcc99773 1232 }
7f988eab 1233
30e6c9fa 1234 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1235
5bb025fa
VF
1236 netdev_adjacent_rename_links(dev, oldname);
1237
7f988eab 1238 write_lock_bh(&dev_base_lock);
372b2312 1239 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1240 write_unlock_bh(&dev_base_lock);
1241
1242 synchronize_rcu();
1243
1244 write_lock_bh(&dev_base_lock);
1245 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1246 write_unlock_bh(&dev_base_lock);
1247
056925ab 1248 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1249 ret = notifier_to_errno(ret);
1250
1251 if (ret) {
91e9c07b
ED
1252 /* err >= 0 after dev_alloc_name() or stores the first errno */
1253 if (err >= 0) {
fcc5a03a 1254 err = ret;
30e6c9fa 1255 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1256 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1257 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1258 dev->name_assign_type = old_assign_type;
1259 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1260 goto rollback;
91e9c07b 1261 } else {
7b6cd1ce 1262 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1263 dev->name, ret);
fcc5a03a
HX
1264 }
1265 }
1da177e4
LT
1266
1267 return err;
1268}
1269
0b815a1a
SH
1270/**
1271 * dev_set_alias - change ifalias of a device
1272 * @dev: device
1273 * @alias: name up to IFALIASZ
f0db275a 1274 * @len: limit of bytes to copy from info
0b815a1a
SH
1275 *
1276 * Set ifalias for a device,
1277 */
1278int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1279{
6c557001 1280 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1281
1282 if (len >= IFALIASZ)
1283 return -EINVAL;
1284
6c557001
FW
1285 if (len) {
1286 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1287 if (!new_alias)
1288 return -ENOMEM;
1289
1290 memcpy(new_alias->ifalias, alias, len);
1291 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1292 }
1293
6c557001
FW
1294 mutex_lock(&ifalias_mutex);
1295 rcu_swap_protected(dev->ifalias, new_alias,
1296 mutex_is_locked(&ifalias_mutex));
1297 mutex_unlock(&ifalias_mutex);
1298
1299 if (new_alias)
1300 kfree_rcu(new_alias, rcuhead);
0b815a1a 1301
0b815a1a
SH
1302 return len;
1303}
0fe554a4 1304EXPORT_SYMBOL(dev_set_alias);
0b815a1a 1305
6c557001
FW
1306/**
1307 * dev_get_alias - get ifalias of a device
1308 * @dev: device
20e88320 1309 * @name: buffer to store name of ifalias
6c557001
FW
1310 * @len: size of buffer
1311 *
1312 * get ifalias for a device. Caller must make sure dev cannot go
1313 * away, e.g. rcu read lock or own a reference count to device.
1314 */
1315int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1316{
1317 const struct dev_ifalias *alias;
1318 int ret = 0;
1319
1320 rcu_read_lock();
1321 alias = rcu_dereference(dev->ifalias);
1322 if (alias)
1323 ret = snprintf(name, len, "%s", alias->ifalias);
1324 rcu_read_unlock();
1325
1326 return ret;
1327}
0b815a1a 1328
d8a33ac4 1329/**
3041a069 1330 * netdev_features_change - device changes features
d8a33ac4
SH
1331 * @dev: device to cause notification
1332 *
1333 * Called to indicate a device has changed features.
1334 */
1335void netdev_features_change(struct net_device *dev)
1336{
056925ab 1337 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1338}
1339EXPORT_SYMBOL(netdev_features_change);
1340
1da177e4
LT
1341/**
1342 * netdev_state_change - device changes state
1343 * @dev: device to cause notification
1344 *
1345 * Called to indicate a device has changed state. This function calls
1346 * the notifier chains for netdev_chain and sends a NEWLINK message
1347 * to the routing socket.
1348 */
1349void netdev_state_change(struct net_device *dev)
1350{
1351 if (dev->flags & IFF_UP) {
51d0c047
DA
1352 struct netdev_notifier_change_info change_info = {
1353 .info.dev = dev,
1354 };
54951194 1355
51d0c047 1356 call_netdevice_notifiers_info(NETDEV_CHANGE,
54951194 1357 &change_info.info);
7f294054 1358 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1359 }
1360}
d1b19dff 1361EXPORT_SYMBOL(netdev_state_change);
1da177e4 1362
ee89bab1 1363/**
722c9a0c 1364 * netdev_notify_peers - notify network peers about existence of @dev
1365 * @dev: network device
ee89bab1
AW
1366 *
1367 * Generate traffic such that interested network peers are aware of
1368 * @dev, such as by generating a gratuitous ARP. This may be used when
1369 * a device wants to inform the rest of the network about some sort of
1370 * reconfiguration such as a failover event or virtual machine
1371 * migration.
1372 */
1373void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1374{
ee89bab1
AW
1375 rtnl_lock();
1376 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
37c343b4 1377 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
ee89bab1 1378 rtnl_unlock();
c1da4ac7 1379}
ee89bab1 1380EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1381
40c900aa 1382static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1da177e4 1383{
d314774c 1384 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1385 int ret;
1da177e4 1386
e46b66bc
BH
1387 ASSERT_RTNL();
1388
1da177e4
LT
1389 if (!netif_device_present(dev))
1390 return -ENODEV;
1391
ca99ca14
NH
1392 /* Block netpoll from trying to do any rx path servicing.
1393 * If we don't do this there is a chance ndo_poll_controller
1394 * or ndo_poll may be running while we open the device
1395 */
66b5552f 1396 netpoll_poll_disable(dev);
ca99ca14 1397
40c900aa 1398 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
3b8bcfd5
JB
1399 ret = notifier_to_errno(ret);
1400 if (ret)
1401 return ret;
1402
1da177e4 1403 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1404
d314774c
SH
1405 if (ops->ndo_validate_addr)
1406 ret = ops->ndo_validate_addr(dev);
bada339b 1407
d314774c
SH
1408 if (!ret && ops->ndo_open)
1409 ret = ops->ndo_open(dev);
1da177e4 1410
66b5552f 1411 netpoll_poll_enable(dev);
ca99ca14 1412
bada339b
JG
1413 if (ret)
1414 clear_bit(__LINK_STATE_START, &dev->state);
1415 else {
1da177e4 1416 dev->flags |= IFF_UP;
4417da66 1417 dev_set_rx_mode(dev);
1da177e4 1418 dev_activate(dev);
7bf23575 1419 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1420 }
bada339b 1421
1da177e4
LT
1422 return ret;
1423}
1424
1425/**
bd380811 1426 * dev_open - prepare an interface for use.
00f54e68
PM
1427 * @dev: device to open
1428 * @extack: netlink extended ack
1da177e4 1429 *
bd380811
PM
1430 * Takes a device from down to up state. The device's private open
1431 * function is invoked and then the multicast lists are loaded. Finally
1432 * the device is moved into the up state and a %NETDEV_UP message is
1433 * sent to the netdev notifier chain.
1434 *
1435 * Calling this function on an active interface is a nop. On a failure
1436 * a negative errno code is returned.
1da177e4 1437 */
00f54e68 1438int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
bd380811
PM
1439{
1440 int ret;
1441
bd380811
PM
1442 if (dev->flags & IFF_UP)
1443 return 0;
1444
40c900aa 1445 ret = __dev_open(dev, extack);
bd380811
PM
1446 if (ret < 0)
1447 return ret;
1448
7f294054 1449 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1450 call_netdevice_notifiers(NETDEV_UP, dev);
1451
1452 return ret;
1453}
1454EXPORT_SYMBOL(dev_open);
1455
7051b88a 1456static void __dev_close_many(struct list_head *head)
1da177e4 1457{
44345724 1458 struct net_device *dev;
e46b66bc 1459
bd380811 1460 ASSERT_RTNL();
9d5010db
DM
1461 might_sleep();
1462
5cde2829 1463 list_for_each_entry(dev, head, close_list) {
3f4df206 1464 /* Temporarily disable netpoll until the interface is down */
66b5552f 1465 netpoll_poll_disable(dev);
3f4df206 1466
44345724 1467 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1468
44345724 1469 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1470
44345724
OP
1471 /* Synchronize to scheduled poll. We cannot touch poll list, it
1472 * can be even on different cpu. So just clear netif_running().
1473 *
1474 * dev->stop() will invoke napi_disable() on all of it's
1475 * napi_struct instances on this device.
1476 */
4e857c58 1477 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1478 }
1da177e4 1479
44345724 1480 dev_deactivate_many(head);
d8b2a4d2 1481
5cde2829 1482 list_for_each_entry(dev, head, close_list) {
44345724 1483 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1484
44345724
OP
1485 /*
1486 * Call the device specific close. This cannot fail.
1487 * Only if device is UP
1488 *
1489 * We allow it to be called even after a DETACH hot-plug
1490 * event.
1491 */
1492 if (ops->ndo_stop)
1493 ops->ndo_stop(dev);
1494
44345724 1495 dev->flags &= ~IFF_UP;
66b5552f 1496 netpoll_poll_enable(dev);
44345724 1497 }
44345724
OP
1498}
1499
7051b88a 1500static void __dev_close(struct net_device *dev)
44345724
OP
1501{
1502 LIST_HEAD(single);
1503
5cde2829 1504 list_add(&dev->close_list, &single);
7051b88a 1505 __dev_close_many(&single);
f87e6f47 1506 list_del(&single);
44345724
OP
1507}
1508
7051b88a 1509void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1510{
1511 struct net_device *dev, *tmp;
1da177e4 1512
5cde2829
EB
1513 /* Remove the devices that don't need to be closed */
1514 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1515 if (!(dev->flags & IFF_UP))
5cde2829 1516 list_del_init(&dev->close_list);
44345724
OP
1517
1518 __dev_close_many(head);
1da177e4 1519
5cde2829 1520 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1521 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1522 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1523 if (unlink)
1524 list_del_init(&dev->close_list);
44345724 1525 }
bd380811 1526}
99c4a26a 1527EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1528
1529/**
1530 * dev_close - shutdown an interface.
1531 * @dev: device to shutdown
1532 *
1533 * This function moves an active device into down state. A
1534 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1535 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1536 * chain.
1537 */
7051b88a 1538void dev_close(struct net_device *dev)
bd380811 1539{
e14a5993
ED
1540 if (dev->flags & IFF_UP) {
1541 LIST_HEAD(single);
1da177e4 1542
5cde2829 1543 list_add(&dev->close_list, &single);
99c4a26a 1544 dev_close_many(&single, true);
e14a5993
ED
1545 list_del(&single);
1546 }
1da177e4 1547}
d1b19dff 1548EXPORT_SYMBOL(dev_close);
1da177e4
LT
1549
1550
0187bdfb
BH
1551/**
1552 * dev_disable_lro - disable Large Receive Offload on a device
1553 * @dev: device
1554 *
1555 * Disable Large Receive Offload (LRO) on a net device. Must be
1556 * called under RTNL. This is needed if received packets may be
1557 * forwarded to another interface.
1558 */
1559void dev_disable_lro(struct net_device *dev)
1560{
fbe168ba
MK
1561 struct net_device *lower_dev;
1562 struct list_head *iter;
529d0489 1563
bc5787c6
MM
1564 dev->wanted_features &= ~NETIF_F_LRO;
1565 netdev_update_features(dev);
27660515 1566
22d5969f
MM
1567 if (unlikely(dev->features & NETIF_F_LRO))
1568 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1569
1570 netdev_for_each_lower_dev(dev, lower_dev, iter)
1571 dev_disable_lro(lower_dev);
0187bdfb
BH
1572}
1573EXPORT_SYMBOL(dev_disable_lro);
1574
56f5aa77
MC
1575/**
1576 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1577 * @dev: device
1578 *
1579 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1580 * called under RTNL. This is needed if Generic XDP is installed on
1581 * the device.
1582 */
1583static void dev_disable_gro_hw(struct net_device *dev)
1584{
1585 dev->wanted_features &= ~NETIF_F_GRO_HW;
1586 netdev_update_features(dev);
1587
1588 if (unlikely(dev->features & NETIF_F_GRO_HW))
1589 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1590}
1591
ede2762d
KT
1592const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1593{
1594#define N(val) \
1595 case NETDEV_##val: \
1596 return "NETDEV_" __stringify(val);
1597 switch (cmd) {
1598 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1599 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1600 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1601 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1602 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1603 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1604 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
9daae9bd
GP
1605 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1606 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1570415f 1607 N(PRE_CHANGEADDR)
3f5ecd8a 1608 }
ede2762d
KT
1609#undef N
1610 return "UNKNOWN_NETDEV_EVENT";
1611}
1612EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1613
351638e7
JP
1614static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1615 struct net_device *dev)
1616{
51d0c047
DA
1617 struct netdev_notifier_info info = {
1618 .dev = dev,
1619 };
351638e7 1620
351638e7
JP
1621 return nb->notifier_call(nb, val, &info);
1622}
0187bdfb 1623
881d966b
EB
1624static int dev_boot_phase = 1;
1625
1da177e4 1626/**
722c9a0c 1627 * register_netdevice_notifier - register a network notifier block
1628 * @nb: notifier
1da177e4 1629 *
722c9a0c 1630 * Register a notifier to be called when network device events occur.
1631 * The notifier passed is linked into the kernel structures and must
1632 * not be reused until it has been unregistered. A negative errno code
1633 * is returned on a failure.
1da177e4 1634 *
722c9a0c 1635 * When registered all registration and up events are replayed
1636 * to the new notifier to allow device to have a race free
1637 * view of the network device list.
1da177e4
LT
1638 */
1639
1640int register_netdevice_notifier(struct notifier_block *nb)
1641{
1642 struct net_device *dev;
fcc5a03a 1643 struct net_device *last;
881d966b 1644 struct net *net;
1da177e4
LT
1645 int err;
1646
328fbe74
KT
1647 /* Close race with setup_net() and cleanup_net() */
1648 down_write(&pernet_ops_rwsem);
1da177e4 1649 rtnl_lock();
f07d5b94 1650 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1651 if (err)
1652 goto unlock;
881d966b
EB
1653 if (dev_boot_phase)
1654 goto unlock;
1655 for_each_net(net) {
1656 for_each_netdev(net, dev) {
351638e7 1657 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1658 err = notifier_to_errno(err);
1659 if (err)
1660 goto rollback;
1661
1662 if (!(dev->flags & IFF_UP))
1663 continue;
1da177e4 1664
351638e7 1665 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1666 }
1da177e4 1667 }
fcc5a03a
HX
1668
1669unlock:
1da177e4 1670 rtnl_unlock();
328fbe74 1671 up_write(&pernet_ops_rwsem);
1da177e4 1672 return err;
fcc5a03a
HX
1673
1674rollback:
1675 last = dev;
881d966b
EB
1676 for_each_net(net) {
1677 for_each_netdev(net, dev) {
1678 if (dev == last)
8f891489 1679 goto outroll;
fcc5a03a 1680
881d966b 1681 if (dev->flags & IFF_UP) {
351638e7
JP
1682 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1683 dev);
1684 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1685 }
351638e7 1686 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1687 }
fcc5a03a 1688 }
c67625a1 1689
8f891489 1690outroll:
c67625a1 1691 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1692 goto unlock;
1da177e4 1693}
d1b19dff 1694EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1695
1696/**
722c9a0c 1697 * unregister_netdevice_notifier - unregister a network notifier block
1698 * @nb: notifier
1da177e4 1699 *
722c9a0c 1700 * Unregister a notifier previously registered by
1701 * register_netdevice_notifier(). The notifier is unlinked into the
1702 * kernel structures and may then be reused. A negative errno code
1703 * is returned on a failure.
7d3d43da 1704 *
722c9a0c 1705 * After unregistering unregister and down device events are synthesized
1706 * for all devices on the device list to the removed notifier to remove
1707 * the need for special case cleanup code.
1da177e4
LT
1708 */
1709
1710int unregister_netdevice_notifier(struct notifier_block *nb)
1711{
7d3d43da
EB
1712 struct net_device *dev;
1713 struct net *net;
9f514950
HX
1714 int err;
1715
328fbe74
KT
1716 /* Close race with setup_net() and cleanup_net() */
1717 down_write(&pernet_ops_rwsem);
9f514950 1718 rtnl_lock();
f07d5b94 1719 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1720 if (err)
1721 goto unlock;
1722
1723 for_each_net(net) {
1724 for_each_netdev(net, dev) {
1725 if (dev->flags & IFF_UP) {
351638e7
JP
1726 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1727 dev);
1728 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1729 }
351638e7 1730 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1731 }
1732 }
1733unlock:
9f514950 1734 rtnl_unlock();
328fbe74 1735 up_write(&pernet_ops_rwsem);
9f514950 1736 return err;
1da177e4 1737}
d1b19dff 1738EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1739
351638e7
JP
1740/**
1741 * call_netdevice_notifiers_info - call all network notifier blocks
1742 * @val: value passed unmodified to notifier function
351638e7
JP
1743 * @info: notifier information data
1744 *
1745 * Call all network notifier blocks. Parameters and return value
1746 * are as for raw_notifier_call_chain().
1747 */
1748
1d143d9f 1749static int call_netdevice_notifiers_info(unsigned long val,
1d143d9f 1750 struct netdev_notifier_info *info)
351638e7
JP
1751{
1752 ASSERT_RTNL();
351638e7
JP
1753 return raw_notifier_call_chain(&netdev_chain, val, info);
1754}
351638e7 1755
26372605
PM
1756static int call_netdevice_notifiers_extack(unsigned long val,
1757 struct net_device *dev,
1758 struct netlink_ext_ack *extack)
1759{
1760 struct netdev_notifier_info info = {
1761 .dev = dev,
1762 .extack = extack,
1763 };
1764
1765 return call_netdevice_notifiers_info(val, &info);
1766}
1767
1da177e4
LT
1768/**
1769 * call_netdevice_notifiers - call all network notifier blocks
1770 * @val: value passed unmodified to notifier function
c4ea43c5 1771 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1772 *
1773 * Call all network notifier blocks. Parameters and return value
f07d5b94 1774 * are as for raw_notifier_call_chain().
1da177e4
LT
1775 */
1776
ad7379d4 1777int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1778{
26372605 1779 return call_netdevice_notifiers_extack(val, dev, NULL);
1da177e4 1780}
edf947f1 1781EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1782
af7d6cce
SD
1783/**
1784 * call_netdevice_notifiers_mtu - call all network notifier blocks
1785 * @val: value passed unmodified to notifier function
1786 * @dev: net_device pointer passed unmodified to notifier function
1787 * @arg: additional u32 argument passed to the notifier function
1788 *
1789 * Call all network notifier blocks. Parameters and return value
1790 * are as for raw_notifier_call_chain().
1791 */
1792static int call_netdevice_notifiers_mtu(unsigned long val,
1793 struct net_device *dev, u32 arg)
1794{
1795 struct netdev_notifier_info_ext info = {
1796 .info.dev = dev,
1797 .ext.mtu = arg,
1798 };
1799
1800 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1801
1802 return call_netdevice_notifiers_info(val, &info.info);
1803}
1804
1cf51900 1805#ifdef CONFIG_NET_INGRESS
aabf6772 1806static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
4577139b
DB
1807
1808void net_inc_ingress_queue(void)
1809{
aabf6772 1810 static_branch_inc(&ingress_needed_key);
4577139b
DB
1811}
1812EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1813
1814void net_dec_ingress_queue(void)
1815{
aabf6772 1816 static_branch_dec(&ingress_needed_key);
4577139b
DB
1817}
1818EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1819#endif
1820
1f211a1b 1821#ifdef CONFIG_NET_EGRESS
aabf6772 1822static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1f211a1b
DB
1823
1824void net_inc_egress_queue(void)
1825{
aabf6772 1826 static_branch_inc(&egress_needed_key);
1f211a1b
DB
1827}
1828EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1829
1830void net_dec_egress_queue(void)
1831{
aabf6772 1832 static_branch_dec(&egress_needed_key);
1f211a1b
DB
1833}
1834EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1835#endif
1836
39e83922 1837static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
e9666d10 1838#ifdef CONFIG_JUMP_LABEL
b90e5794 1839static atomic_t netstamp_needed_deferred;
13baa00a 1840static atomic_t netstamp_wanted;
5fa8bbda 1841static void netstamp_clear(struct work_struct *work)
1da177e4 1842{
b90e5794 1843 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 1844 int wanted;
b90e5794 1845
13baa00a
ED
1846 wanted = atomic_add_return(deferred, &netstamp_wanted);
1847 if (wanted > 0)
39e83922 1848 static_branch_enable(&netstamp_needed_key);
13baa00a 1849 else
39e83922 1850 static_branch_disable(&netstamp_needed_key);
5fa8bbda
ED
1851}
1852static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 1853#endif
5fa8bbda
ED
1854
1855void net_enable_timestamp(void)
1856{
e9666d10 1857#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
1858 int wanted;
1859
1860 while (1) {
1861 wanted = atomic_read(&netstamp_wanted);
1862 if (wanted <= 0)
1863 break;
1864 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1865 return;
1866 }
1867 atomic_inc(&netstamp_needed_deferred);
1868 schedule_work(&netstamp_work);
1869#else
39e83922 1870 static_branch_inc(&netstamp_needed_key);
13baa00a 1871#endif
1da177e4 1872}
d1b19dff 1873EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1874
1875void net_disable_timestamp(void)
1876{
e9666d10 1877#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
1878 int wanted;
1879
1880 while (1) {
1881 wanted = atomic_read(&netstamp_wanted);
1882 if (wanted <= 1)
1883 break;
1884 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1885 return;
1886 }
1887 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
1888 schedule_work(&netstamp_work);
1889#else
39e83922 1890 static_branch_dec(&netstamp_needed_key);
5fa8bbda 1891#endif
1da177e4 1892}
d1b19dff 1893EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1894
3b098e2d 1895static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1896{
2456e855 1897 skb->tstamp = 0;
39e83922 1898 if (static_branch_unlikely(&netstamp_needed_key))
a61bbcf2 1899 __net_timestamp(skb);
1da177e4
LT
1900}
1901
39e83922
DB
1902#define net_timestamp_check(COND, SKB) \
1903 if (static_branch_unlikely(&netstamp_needed_key)) { \
1904 if ((COND) && !(SKB)->tstamp) \
1905 __net_timestamp(SKB); \
1906 } \
3b098e2d 1907
f4b05d27 1908bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1909{
1910 unsigned int len;
1911
1912 if (!(dev->flags & IFF_UP))
1913 return false;
1914
1915 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1916 if (skb->len <= len)
1917 return true;
1918
1919 /* if TSO is enabled, we don't care about the length as the packet
1920 * could be forwarded without being segmented before
1921 */
1922 if (skb_is_gso(skb))
1923 return true;
1924
1925 return false;
1926}
1ee481fb 1927EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1928
a0265d28
HX
1929int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1930{
4e3264d2 1931 int ret = ____dev_forward_skb(dev, skb);
a0265d28 1932
4e3264d2
MKL
1933 if (likely(!ret)) {
1934 skb->protocol = eth_type_trans(skb, dev);
1935 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1936 }
a0265d28 1937
4e3264d2 1938 return ret;
a0265d28
HX
1939}
1940EXPORT_SYMBOL_GPL(__dev_forward_skb);
1941
44540960
AB
1942/**
1943 * dev_forward_skb - loopback an skb to another netif
1944 *
1945 * @dev: destination network device
1946 * @skb: buffer to forward
1947 *
1948 * return values:
1949 * NET_RX_SUCCESS (no congestion)
6ec82562 1950 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1951 *
1952 * dev_forward_skb can be used for injecting an skb from the
1953 * start_xmit function of one device into the receive queue
1954 * of another device.
1955 *
1956 * The receiving device may be in another namespace, so
1957 * we have to clear all information in the skb that could
1958 * impact namespace isolation.
1959 */
1960int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1961{
a0265d28 1962 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1963}
1964EXPORT_SYMBOL_GPL(dev_forward_skb);
1965
71d9dec2
CG
1966static inline int deliver_skb(struct sk_buff *skb,
1967 struct packet_type *pt_prev,
1968 struct net_device *orig_dev)
1969{
1f8b977a 1970 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 1971 return -ENOMEM;
63354797 1972 refcount_inc(&skb->users);
71d9dec2
CG
1973 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1974}
1975
7866a621
SN
1976static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1977 struct packet_type **pt,
fbcb2170
JP
1978 struct net_device *orig_dev,
1979 __be16 type,
7866a621
SN
1980 struct list_head *ptype_list)
1981{
1982 struct packet_type *ptype, *pt_prev = *pt;
1983
1984 list_for_each_entry_rcu(ptype, ptype_list, list) {
1985 if (ptype->type != type)
1986 continue;
1987 if (pt_prev)
fbcb2170 1988 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1989 pt_prev = ptype;
1990 }
1991 *pt = pt_prev;
1992}
1993
c0de08d0
EL
1994static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1995{
a3d744e9 1996 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1997 return false;
1998
1999 if (ptype->id_match)
2000 return ptype->id_match(ptype, skb->sk);
2001 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2002 return true;
2003
2004 return false;
2005}
2006
9f9a742d
MR
2007/**
2008 * dev_nit_active - return true if any network interface taps are in use
2009 *
2010 * @dev: network device to check for the presence of taps
2011 */
2012bool dev_nit_active(struct net_device *dev)
2013{
2014 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2015}
2016EXPORT_SYMBOL_GPL(dev_nit_active);
2017
1da177e4
LT
2018/*
2019 * Support routine. Sends outgoing frames to any network
2020 * taps currently in use.
2021 */
2022
74b20582 2023void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
2024{
2025 struct packet_type *ptype;
71d9dec2
CG
2026 struct sk_buff *skb2 = NULL;
2027 struct packet_type *pt_prev = NULL;
7866a621 2028 struct list_head *ptype_list = &ptype_all;
a61bbcf2 2029
1da177e4 2030 rcu_read_lock();
7866a621
SN
2031again:
2032 list_for_each_entry_rcu(ptype, ptype_list, list) {
fa788d98
VW
2033 if (ptype->ignore_outgoing)
2034 continue;
2035
1da177e4
LT
2036 /* Never send packets back to the socket
2037 * they originated from - MvS (miquels@drinkel.ow.org)
2038 */
7866a621
SN
2039 if (skb_loop_sk(ptype, skb))
2040 continue;
71d9dec2 2041
7866a621
SN
2042 if (pt_prev) {
2043 deliver_skb(skb2, pt_prev, skb->dev);
2044 pt_prev = ptype;
2045 continue;
2046 }
1da177e4 2047
7866a621
SN
2048 /* need to clone skb, done only once */
2049 skb2 = skb_clone(skb, GFP_ATOMIC);
2050 if (!skb2)
2051 goto out_unlock;
70978182 2052
7866a621 2053 net_timestamp_set(skb2);
1da177e4 2054
7866a621
SN
2055 /* skb->nh should be correctly
2056 * set by sender, so that the second statement is
2057 * just protection against buggy protocols.
2058 */
2059 skb_reset_mac_header(skb2);
2060
2061 if (skb_network_header(skb2) < skb2->data ||
2062 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2063 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2064 ntohs(skb2->protocol),
2065 dev->name);
2066 skb_reset_network_header(skb2);
1da177e4 2067 }
7866a621
SN
2068
2069 skb2->transport_header = skb2->network_header;
2070 skb2->pkt_type = PACKET_OUTGOING;
2071 pt_prev = ptype;
2072 }
2073
2074 if (ptype_list == &ptype_all) {
2075 ptype_list = &dev->ptype_all;
2076 goto again;
1da177e4 2077 }
7866a621 2078out_unlock:
581fe0ea
WB
2079 if (pt_prev) {
2080 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2081 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2082 else
2083 kfree_skb(skb2);
2084 }
1da177e4
LT
2085 rcu_read_unlock();
2086}
74b20582 2087EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 2088
2c53040f
BH
2089/**
2090 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
2091 * @dev: Network device
2092 * @txq: number of queues available
2093 *
2094 * If real_num_tx_queues is changed the tc mappings may no longer be
2095 * valid. To resolve this verify the tc mapping remains valid and if
2096 * not NULL the mapping. With no priorities mapping to this
2097 * offset/count pair it will no longer be used. In the worst case TC0
2098 * is invalid nothing can be done so disable priority mappings. If is
2099 * expected that drivers will fix this mapping if they can before
2100 * calling netif_set_real_num_tx_queues.
2101 */
bb134d22 2102static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
2103{
2104 int i;
2105 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2106
2107 /* If TC0 is invalidated disable TC mapping */
2108 if (tc->offset + tc->count > txq) {
7b6cd1ce 2109 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
2110 dev->num_tc = 0;
2111 return;
2112 }
2113
2114 /* Invalidated prio to tc mappings set to TC0 */
2115 for (i = 1; i < TC_BITMASK + 1; i++) {
2116 int q = netdev_get_prio_tc_map(dev, i);
2117
2118 tc = &dev->tc_to_txq[q];
2119 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
2120 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2121 i, q);
4f57c087
JF
2122 netdev_set_prio_tc_map(dev, i, 0);
2123 }
2124 }
2125}
2126
8d059b0f
AD
2127int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2128{
2129 if (dev->num_tc) {
2130 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2131 int i;
2132
ffcfe25b 2133 /* walk through the TCs and see if it falls into any of them */
8d059b0f
AD
2134 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2135 if ((txq - tc->offset) < tc->count)
2136 return i;
2137 }
2138
ffcfe25b 2139 /* didn't find it, just return -1 to indicate no match */
8d059b0f
AD
2140 return -1;
2141 }
2142
2143 return 0;
2144}
8a5f2166 2145EXPORT_SYMBOL(netdev_txq_to_tc);
8d059b0f 2146
537c00de 2147#ifdef CONFIG_XPS
04157469
AN
2148struct static_key xps_needed __read_mostly;
2149EXPORT_SYMBOL(xps_needed);
2150struct static_key xps_rxqs_needed __read_mostly;
2151EXPORT_SYMBOL(xps_rxqs_needed);
537c00de
AD
2152static DEFINE_MUTEX(xps_map_mutex);
2153#define xmap_dereference(P) \
2154 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2155
6234f874
AD
2156static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2157 int tci, u16 index)
537c00de 2158{
10cdc3f3
AD
2159 struct xps_map *map = NULL;
2160 int pos;
537c00de 2161
10cdc3f3 2162 if (dev_maps)
80d19669 2163 map = xmap_dereference(dev_maps->attr_map[tci]);
6234f874
AD
2164 if (!map)
2165 return false;
537c00de 2166
6234f874
AD
2167 for (pos = map->len; pos--;) {
2168 if (map->queues[pos] != index)
2169 continue;
2170
2171 if (map->len > 1) {
2172 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2173 break;
537c00de 2174 }
6234f874 2175
80d19669 2176 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
6234f874
AD
2177 kfree_rcu(map, rcu);
2178 return false;
537c00de
AD
2179 }
2180
6234f874 2181 return true;
10cdc3f3
AD
2182}
2183
6234f874
AD
2184static bool remove_xps_queue_cpu(struct net_device *dev,
2185 struct xps_dev_maps *dev_maps,
2186 int cpu, u16 offset, u16 count)
2187{
184c449f
AD
2188 int num_tc = dev->num_tc ? : 1;
2189 bool active = false;
2190 int tci;
6234f874 2191
184c449f
AD
2192 for (tci = cpu * num_tc; num_tc--; tci++) {
2193 int i, j;
2194
2195 for (i = count, j = offset; i--; j++) {
6358d49a 2196 if (!remove_xps_queue(dev_maps, tci, j))
184c449f
AD
2197 break;
2198 }
2199
2200 active |= i < 0;
6234f874
AD
2201 }
2202
184c449f 2203 return active;
6234f874
AD
2204}
2205
867d0ad4
SD
2206static void reset_xps_maps(struct net_device *dev,
2207 struct xps_dev_maps *dev_maps,
2208 bool is_rxqs_map)
2209{
2210 if (is_rxqs_map) {
2211 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2212 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2213 } else {
2214 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2215 }
2216 static_key_slow_dec_cpuslocked(&xps_needed);
2217 kfree_rcu(dev_maps, rcu);
2218}
2219
80d19669
AN
2220static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2221 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2222 u16 offset, u16 count, bool is_rxqs_map)
2223{
2224 bool active = false;
2225 int i, j;
2226
2227 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2228 j < nr_ids;)
2229 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2230 count);
867d0ad4
SD
2231 if (!active)
2232 reset_xps_maps(dev, dev_maps, is_rxqs_map);
80d19669 2233
f28c020f
SD
2234 if (!is_rxqs_map) {
2235 for (i = offset + (count - 1); count--; i--) {
2236 netdev_queue_numa_node_write(
2237 netdev_get_tx_queue(dev, i),
2238 NUMA_NO_NODE);
80d19669 2239 }
80d19669
AN
2240 }
2241}
2242
6234f874
AD
2243static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2244 u16 count)
10cdc3f3 2245{
80d19669 2246 const unsigned long *possible_mask = NULL;
10cdc3f3 2247 struct xps_dev_maps *dev_maps;
80d19669 2248 unsigned int nr_ids;
10cdc3f3 2249
04157469
AN
2250 if (!static_key_false(&xps_needed))
2251 return;
10cdc3f3 2252
4d99f660 2253 cpus_read_lock();
04157469 2254 mutex_lock(&xps_map_mutex);
10cdc3f3 2255
04157469
AN
2256 if (static_key_false(&xps_rxqs_needed)) {
2257 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2258 if (dev_maps) {
2259 nr_ids = dev->num_rx_queues;
2260 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2261 offset, count, true);
2262 }
537c00de
AD
2263 }
2264
80d19669
AN
2265 dev_maps = xmap_dereference(dev->xps_cpus_map);
2266 if (!dev_maps)
2267 goto out_no_maps;
2268
2269 if (num_possible_cpus() > 1)
2270 possible_mask = cpumask_bits(cpu_possible_mask);
2271 nr_ids = nr_cpu_ids;
2272 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2273 false);
024e9679 2274
537c00de
AD
2275out_no_maps:
2276 mutex_unlock(&xps_map_mutex);
4d99f660 2277 cpus_read_unlock();
537c00de
AD
2278}
2279
6234f874
AD
2280static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2281{
2282 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2283}
2284
80d19669
AN
2285static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2286 u16 index, bool is_rxqs_map)
01c5f864
AD
2287{
2288 struct xps_map *new_map;
2289 int alloc_len = XPS_MIN_MAP_ALLOC;
2290 int i, pos;
2291
2292 for (pos = 0; map && pos < map->len; pos++) {
2293 if (map->queues[pos] != index)
2294 continue;
2295 return map;
2296 }
2297
80d19669 2298 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
01c5f864
AD
2299 if (map) {
2300 if (pos < map->alloc_len)
2301 return map;
2302
2303 alloc_len = map->alloc_len * 2;
2304 }
2305
80d19669
AN
2306 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2307 * map
2308 */
2309 if (is_rxqs_map)
2310 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2311 else
2312 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2313 cpu_to_node(attr_index));
01c5f864
AD
2314 if (!new_map)
2315 return NULL;
2316
2317 for (i = 0; i < pos; i++)
2318 new_map->queues[i] = map->queues[i];
2319 new_map->alloc_len = alloc_len;
2320 new_map->len = pos;
2321
2322 return new_map;
2323}
2324
4d99f660 2325/* Must be called under cpus_read_lock */
80d19669
AN
2326int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2327 u16 index, bool is_rxqs_map)
537c00de 2328{
80d19669 2329 const unsigned long *online_mask = NULL, *possible_mask = NULL;
01c5f864 2330 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
80d19669 2331 int i, j, tci, numa_node_id = -2;
184c449f 2332 int maps_sz, num_tc = 1, tc = 0;
537c00de 2333 struct xps_map *map, *new_map;
01c5f864 2334 bool active = false;
80d19669 2335 unsigned int nr_ids;
537c00de 2336
184c449f 2337 if (dev->num_tc) {
ffcfe25b 2338 /* Do not allow XPS on subordinate device directly */
184c449f 2339 num_tc = dev->num_tc;
ffcfe25b
AD
2340 if (num_tc < 0)
2341 return -EINVAL;
2342
2343 /* If queue belongs to subordinate dev use its map */
2344 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2345
184c449f
AD
2346 tc = netdev_txq_to_tc(dev, index);
2347 if (tc < 0)
2348 return -EINVAL;
2349 }
2350
537c00de 2351 mutex_lock(&xps_map_mutex);
80d19669
AN
2352 if (is_rxqs_map) {
2353 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2354 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2355 nr_ids = dev->num_rx_queues;
2356 } else {
2357 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2358 if (num_possible_cpus() > 1) {
2359 online_mask = cpumask_bits(cpu_online_mask);
2360 possible_mask = cpumask_bits(cpu_possible_mask);
2361 }
2362 dev_maps = xmap_dereference(dev->xps_cpus_map);
2363 nr_ids = nr_cpu_ids;
2364 }
537c00de 2365
80d19669
AN
2366 if (maps_sz < L1_CACHE_BYTES)
2367 maps_sz = L1_CACHE_BYTES;
537c00de 2368
01c5f864 2369 /* allocate memory for queue storage */
80d19669
AN
2370 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2371 j < nr_ids;) {
01c5f864
AD
2372 if (!new_dev_maps)
2373 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2374 if (!new_dev_maps) {
2375 mutex_unlock(&xps_map_mutex);
01c5f864 2376 return -ENOMEM;
2bb60cb9 2377 }
01c5f864 2378
80d19669
AN
2379 tci = j * num_tc + tc;
2380 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
01c5f864
AD
2381 NULL;
2382
80d19669 2383 map = expand_xps_map(map, j, index, is_rxqs_map);
01c5f864
AD
2384 if (!map)
2385 goto error;
2386
80d19669 2387 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
01c5f864
AD
2388 }
2389
2390 if (!new_dev_maps)
2391 goto out_no_new_maps;
2392
867d0ad4
SD
2393 if (!dev_maps) {
2394 /* Increment static keys at most once per type */
2395 static_key_slow_inc_cpuslocked(&xps_needed);
2396 if (is_rxqs_map)
2397 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2398 }
04157469 2399
80d19669
AN
2400 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2401 j < nr_ids;) {
184c449f 2402 /* copy maps belonging to foreign traffic classes */
80d19669 2403 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
184c449f 2404 /* fill in the new device map from the old device map */
80d19669
AN
2405 map = xmap_dereference(dev_maps->attr_map[tci]);
2406 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f
AD
2407 }
2408
2409 /* We need to explicitly update tci as prevous loop
2410 * could break out early if dev_maps is NULL.
2411 */
80d19669 2412 tci = j * num_tc + tc;
184c449f 2413
80d19669
AN
2414 if (netif_attr_test_mask(j, mask, nr_ids) &&
2415 netif_attr_test_online(j, online_mask, nr_ids)) {
2416 /* add tx-queue to CPU/rx-queue maps */
01c5f864
AD
2417 int pos = 0;
2418
80d19669 2419 map = xmap_dereference(new_dev_maps->attr_map[tci]);
01c5f864
AD
2420 while ((pos < map->len) && (map->queues[pos] != index))
2421 pos++;
2422
2423 if (pos == map->len)
2424 map->queues[map->len++] = index;
537c00de 2425#ifdef CONFIG_NUMA
80d19669
AN
2426 if (!is_rxqs_map) {
2427 if (numa_node_id == -2)
2428 numa_node_id = cpu_to_node(j);
2429 else if (numa_node_id != cpu_to_node(j))
2430 numa_node_id = -1;
2431 }
537c00de 2432#endif
01c5f864
AD
2433 } else if (dev_maps) {
2434 /* fill in the new device map from the old device map */
80d19669
AN
2435 map = xmap_dereference(dev_maps->attr_map[tci]);
2436 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
537c00de 2437 }
01c5f864 2438
184c449f
AD
2439 /* copy maps belonging to foreign traffic classes */
2440 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2441 /* fill in the new device map from the old device map */
80d19669
AN
2442 map = xmap_dereference(dev_maps->attr_map[tci]);
2443 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f 2444 }
537c00de
AD
2445 }
2446
80d19669
AN
2447 if (is_rxqs_map)
2448 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2449 else
2450 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
01c5f864 2451
537c00de 2452 /* Cleanup old maps */
184c449f
AD
2453 if (!dev_maps)
2454 goto out_no_old_maps;
2455
80d19669
AN
2456 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2457 j < nr_ids;) {
2458 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2459 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2460 map = xmap_dereference(dev_maps->attr_map[tci]);
01c5f864
AD
2461 if (map && map != new_map)
2462 kfree_rcu(map, rcu);
2463 }
537c00de
AD
2464 }
2465
184c449f
AD
2466 kfree_rcu(dev_maps, rcu);
2467
2468out_no_old_maps:
01c5f864
AD
2469 dev_maps = new_dev_maps;
2470 active = true;
537c00de 2471
01c5f864 2472out_no_new_maps:
80d19669
AN
2473 if (!is_rxqs_map) {
2474 /* update Tx queue numa node */
2475 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2476 (numa_node_id >= 0) ?
2477 numa_node_id : NUMA_NO_NODE);
2478 }
537c00de 2479
01c5f864
AD
2480 if (!dev_maps)
2481 goto out_no_maps;
2482
80d19669
AN
2483 /* removes tx-queue from unused CPUs/rx-queues */
2484 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2485 j < nr_ids;) {
2486 for (i = tc, tci = j * num_tc; i--; tci++)
184c449f 2487 active |= remove_xps_queue(dev_maps, tci, index);
80d19669
AN
2488 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2489 !netif_attr_test_online(j, online_mask, nr_ids))
184c449f
AD
2490 active |= remove_xps_queue(dev_maps, tci, index);
2491 for (i = num_tc - tc, tci++; --i; tci++)
2492 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2493 }
2494
2495 /* free map if not active */
867d0ad4
SD
2496 if (!active)
2497 reset_xps_maps(dev, dev_maps, is_rxqs_map);
01c5f864
AD
2498
2499out_no_maps:
537c00de
AD
2500 mutex_unlock(&xps_map_mutex);
2501
2502 return 0;
2503error:
01c5f864 2504 /* remove any maps that we added */
80d19669
AN
2505 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2506 j < nr_ids;) {
2507 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2508 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
184c449f 2509 map = dev_maps ?
80d19669 2510 xmap_dereference(dev_maps->attr_map[tci]) :
184c449f
AD
2511 NULL;
2512 if (new_map && new_map != map)
2513 kfree(new_map);
2514 }
01c5f864
AD
2515 }
2516
537c00de
AD
2517 mutex_unlock(&xps_map_mutex);
2518
537c00de
AD
2519 kfree(new_dev_maps);
2520 return -ENOMEM;
2521}
4d99f660 2522EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
80d19669
AN
2523
2524int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2525 u16 index)
2526{
4d99f660
AV
2527 int ret;
2528
2529 cpus_read_lock();
2530 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2531 cpus_read_unlock();
2532
2533 return ret;
80d19669 2534}
537c00de
AD
2535EXPORT_SYMBOL(netif_set_xps_queue);
2536
2537#endif
ffcfe25b
AD
2538static void netdev_unbind_all_sb_channels(struct net_device *dev)
2539{
2540 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2541
2542 /* Unbind any subordinate channels */
2543 while (txq-- != &dev->_tx[0]) {
2544 if (txq->sb_dev)
2545 netdev_unbind_sb_channel(dev, txq->sb_dev);
2546 }
2547}
2548
9cf1f6a8
AD
2549void netdev_reset_tc(struct net_device *dev)
2550{
6234f874
AD
2551#ifdef CONFIG_XPS
2552 netif_reset_xps_queues_gt(dev, 0);
2553#endif
ffcfe25b
AD
2554 netdev_unbind_all_sb_channels(dev);
2555
2556 /* Reset TC configuration of device */
9cf1f6a8
AD
2557 dev->num_tc = 0;
2558 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2559 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2560}
2561EXPORT_SYMBOL(netdev_reset_tc);
2562
2563int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2564{
2565 if (tc >= dev->num_tc)
2566 return -EINVAL;
2567
6234f874
AD
2568#ifdef CONFIG_XPS
2569 netif_reset_xps_queues(dev, offset, count);
2570#endif
9cf1f6a8
AD
2571 dev->tc_to_txq[tc].count = count;
2572 dev->tc_to_txq[tc].offset = offset;
2573 return 0;
2574}
2575EXPORT_SYMBOL(netdev_set_tc_queue);
2576
2577int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2578{
2579 if (num_tc > TC_MAX_QUEUE)
2580 return -EINVAL;
2581
6234f874
AD
2582#ifdef CONFIG_XPS
2583 netif_reset_xps_queues_gt(dev, 0);
2584#endif
ffcfe25b
AD
2585 netdev_unbind_all_sb_channels(dev);
2586
9cf1f6a8
AD
2587 dev->num_tc = num_tc;
2588 return 0;
2589}
2590EXPORT_SYMBOL(netdev_set_num_tc);
2591
ffcfe25b
AD
2592void netdev_unbind_sb_channel(struct net_device *dev,
2593 struct net_device *sb_dev)
2594{
2595 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2596
2597#ifdef CONFIG_XPS
2598 netif_reset_xps_queues_gt(sb_dev, 0);
2599#endif
2600 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2601 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2602
2603 while (txq-- != &dev->_tx[0]) {
2604 if (txq->sb_dev == sb_dev)
2605 txq->sb_dev = NULL;
2606 }
2607}
2608EXPORT_SYMBOL(netdev_unbind_sb_channel);
2609
2610int netdev_bind_sb_channel_queue(struct net_device *dev,
2611 struct net_device *sb_dev,
2612 u8 tc, u16 count, u16 offset)
2613{
2614 /* Make certain the sb_dev and dev are already configured */
2615 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2616 return -EINVAL;
2617
2618 /* We cannot hand out queues we don't have */
2619 if ((offset + count) > dev->real_num_tx_queues)
2620 return -EINVAL;
2621
2622 /* Record the mapping */
2623 sb_dev->tc_to_txq[tc].count = count;
2624 sb_dev->tc_to_txq[tc].offset = offset;
2625
2626 /* Provide a way for Tx queue to find the tc_to_txq map or
2627 * XPS map for itself.
2628 */
2629 while (count--)
2630 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2631
2632 return 0;
2633}
2634EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2635
2636int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2637{
2638 /* Do not use a multiqueue device to represent a subordinate channel */
2639 if (netif_is_multiqueue(dev))
2640 return -ENODEV;
2641
2642 /* We allow channels 1 - 32767 to be used for subordinate channels.
2643 * Channel 0 is meant to be "native" mode and used only to represent
2644 * the main root device. We allow writing 0 to reset the device back
2645 * to normal mode after being used as a subordinate channel.
2646 */
2647 if (channel > S16_MAX)
2648 return -EINVAL;
2649
2650 dev->num_tc = -channel;
2651
2652 return 0;
2653}
2654EXPORT_SYMBOL(netdev_set_sb_channel);
2655
f0796d5c
JF
2656/*
2657 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3a053b1a 2658 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
f0796d5c 2659 */
e6484930 2660int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2661{
ac5b7019 2662 bool disabling;
1d24eb48
TH
2663 int rc;
2664
ac5b7019
JK
2665 disabling = txq < dev->real_num_tx_queues;
2666
e6484930
TH
2667 if (txq < 1 || txq > dev->num_tx_queues)
2668 return -EINVAL;
f0796d5c 2669
5c56580b
BH
2670 if (dev->reg_state == NETREG_REGISTERED ||
2671 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2672 ASSERT_RTNL();
2673
1d24eb48
TH
2674 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2675 txq);
bf264145
TH
2676 if (rc)
2677 return rc;
2678
4f57c087
JF
2679 if (dev->num_tc)
2680 netif_setup_tc(dev, txq);
2681
ac5b7019
JK
2682 dev->real_num_tx_queues = txq;
2683
2684 if (disabling) {
2685 synchronize_net();
e6484930 2686 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2687#ifdef CONFIG_XPS
2688 netif_reset_xps_queues_gt(dev, txq);
2689#endif
2690 }
ac5b7019
JK
2691 } else {
2692 dev->real_num_tx_queues = txq;
f0796d5c 2693 }
e6484930 2694
e6484930 2695 return 0;
f0796d5c
JF
2696}
2697EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2698
a953be53 2699#ifdef CONFIG_SYSFS
62fe0b40
BH
2700/**
2701 * netif_set_real_num_rx_queues - set actual number of RX queues used
2702 * @dev: Network device
2703 * @rxq: Actual number of RX queues
2704 *
2705 * This must be called either with the rtnl_lock held or before
2706 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2707 * negative error code. If called before registration, it always
2708 * succeeds.
62fe0b40
BH
2709 */
2710int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2711{
2712 int rc;
2713
bd25fa7b
TH
2714 if (rxq < 1 || rxq > dev->num_rx_queues)
2715 return -EINVAL;
2716
62fe0b40
BH
2717 if (dev->reg_state == NETREG_REGISTERED) {
2718 ASSERT_RTNL();
2719
62fe0b40
BH
2720 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2721 rxq);
2722 if (rc)
2723 return rc;
62fe0b40
BH
2724 }
2725
2726 dev->real_num_rx_queues = rxq;
2727 return 0;
2728}
2729EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2730#endif
2731
2c53040f
BH
2732/**
2733 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2734 *
2735 * This routine should set an upper limit on the number of RSS queues
2736 * used by default by multiqueue devices.
2737 */
a55b138b 2738int netif_get_num_default_rss_queues(void)
16917b87 2739{
40e4e713
HS
2740 return is_kdump_kernel() ?
2741 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2742}
2743EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2744
3bcb846c 2745static void __netif_reschedule(struct Qdisc *q)
56079431 2746{
def82a1d
JP
2747 struct softnet_data *sd;
2748 unsigned long flags;
56079431 2749
def82a1d 2750 local_irq_save(flags);
903ceff7 2751 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2752 q->next_sched = NULL;
2753 *sd->output_queue_tailp = q;
2754 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2755 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2756 local_irq_restore(flags);
2757}
2758
2759void __netif_schedule(struct Qdisc *q)
2760{
2761 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2762 __netif_reschedule(q);
56079431
DV
2763}
2764EXPORT_SYMBOL(__netif_schedule);
2765
e6247027
ED
2766struct dev_kfree_skb_cb {
2767 enum skb_free_reason reason;
2768};
2769
2770static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2771{
e6247027
ED
2772 return (struct dev_kfree_skb_cb *)skb->cb;
2773}
2774
46e5da40
JF
2775void netif_schedule_queue(struct netdev_queue *txq)
2776{
2777 rcu_read_lock();
2778 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2779 struct Qdisc *q = rcu_dereference(txq->qdisc);
2780
2781 __netif_schedule(q);
2782 }
2783 rcu_read_unlock();
2784}
2785EXPORT_SYMBOL(netif_schedule_queue);
2786
46e5da40
JF
2787void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2788{
2789 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2790 struct Qdisc *q;
2791
2792 rcu_read_lock();
2793 q = rcu_dereference(dev_queue->qdisc);
2794 __netif_schedule(q);
2795 rcu_read_unlock();
2796 }
2797}
2798EXPORT_SYMBOL(netif_tx_wake_queue);
2799
e6247027 2800void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2801{
e6247027 2802 unsigned long flags;
56079431 2803
9899886d
MJ
2804 if (unlikely(!skb))
2805 return;
2806
63354797 2807 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 2808 smp_rmb();
63354797
RE
2809 refcount_set(&skb->users, 0);
2810 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 2811 return;
bea3348e 2812 }
e6247027
ED
2813 get_kfree_skb_cb(skb)->reason = reason;
2814 local_irq_save(flags);
2815 skb->next = __this_cpu_read(softnet_data.completion_queue);
2816 __this_cpu_write(softnet_data.completion_queue, skb);
2817 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2818 local_irq_restore(flags);
56079431 2819}
e6247027 2820EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2821
e6247027 2822void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2823{
2824 if (in_irq() || irqs_disabled())
e6247027 2825 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2826 else
2827 dev_kfree_skb(skb);
2828}
e6247027 2829EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2830
2831
bea3348e
SH
2832/**
2833 * netif_device_detach - mark device as removed
2834 * @dev: network device
2835 *
2836 * Mark device as removed from system and therefore no longer available.
2837 */
56079431
DV
2838void netif_device_detach(struct net_device *dev)
2839{
2840 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2841 netif_running(dev)) {
d543103a 2842 netif_tx_stop_all_queues(dev);
56079431
DV
2843 }
2844}
2845EXPORT_SYMBOL(netif_device_detach);
2846
bea3348e
SH
2847/**
2848 * netif_device_attach - mark device as attached
2849 * @dev: network device
2850 *
2851 * Mark device as attached from system and restart if needed.
2852 */
56079431
DV
2853void netif_device_attach(struct net_device *dev)
2854{
2855 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2856 netif_running(dev)) {
d543103a 2857 netif_tx_wake_all_queues(dev);
4ec93edb 2858 __netdev_watchdog_up(dev);
56079431
DV
2859 }
2860}
2861EXPORT_SYMBOL(netif_device_attach);
2862
5605c762
JP
2863/*
2864 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2865 * to be used as a distribution range.
2866 */
eadec877
AD
2867static u16 skb_tx_hash(const struct net_device *dev,
2868 const struct net_device *sb_dev,
2869 struct sk_buff *skb)
5605c762
JP
2870{
2871 u32 hash;
2872 u16 qoffset = 0;
1b837d48 2873 u16 qcount = dev->real_num_tx_queues;
5605c762 2874
eadec877
AD
2875 if (dev->num_tc) {
2876 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2877
2878 qoffset = sb_dev->tc_to_txq[tc].offset;
2879 qcount = sb_dev->tc_to_txq[tc].count;
2880 }
2881
5605c762
JP
2882 if (skb_rx_queue_recorded(skb)) {
2883 hash = skb_get_rx_queue(skb);
1b837d48
AD
2884 while (unlikely(hash >= qcount))
2885 hash -= qcount;
eadec877 2886 return hash + qoffset;
5605c762
JP
2887 }
2888
2889 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2890}
5605c762 2891
36c92474
BH
2892static void skb_warn_bad_offload(const struct sk_buff *skb)
2893{
84d15ae5 2894 static const netdev_features_t null_features;
36c92474 2895 struct net_device *dev = skb->dev;
88ad4175 2896 const char *name = "";
36c92474 2897
c846ad9b
BG
2898 if (!net_ratelimit())
2899 return;
2900
88ad4175
BM
2901 if (dev) {
2902 if (dev->dev.parent)
2903 name = dev_driver_string(dev->dev.parent);
2904 else
2905 name = netdev_name(dev);
2906 }
36c92474
BH
2907 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2908 "gso_type=%d ip_summed=%d\n",
88ad4175 2909 name, dev ? &dev->features : &null_features,
65e9d2fa 2910 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2911 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2912 skb_shinfo(skb)->gso_type, skb->ip_summed);
2913}
2914
1da177e4
LT
2915/*
2916 * Invalidate hardware checksum when packet is to be mangled, and
2917 * complete checksum manually on outgoing path.
2918 */
84fa7933 2919int skb_checksum_help(struct sk_buff *skb)
1da177e4 2920{
d3bc23e7 2921 __wsum csum;
663ead3b 2922 int ret = 0, offset;
1da177e4 2923
84fa7933 2924 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2925 goto out_set_summed;
2926
2927 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2928 skb_warn_bad_offload(skb);
2929 return -EINVAL;
1da177e4
LT
2930 }
2931
cef401de
ED
2932 /* Before computing a checksum, we should make sure no frag could
2933 * be modified by an external entity : checksum could be wrong.
2934 */
2935 if (skb_has_shared_frag(skb)) {
2936 ret = __skb_linearize(skb);
2937 if (ret)
2938 goto out;
2939 }
2940
55508d60 2941 offset = skb_checksum_start_offset(skb);
a030847e
HX
2942 BUG_ON(offset >= skb_headlen(skb));
2943 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2944
2945 offset += skb->csum_offset;
2946 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2947
2948 if (skb_cloned(skb) &&
2949 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2950 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2951 if (ret)
2952 goto out;
2953 }
2954
4f2e4ad5 2955 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 2956out_set_summed:
1da177e4 2957 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2958out:
1da177e4
LT
2959 return ret;
2960}
d1b19dff 2961EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2962
b72b5bf6
DC
2963int skb_crc32c_csum_help(struct sk_buff *skb)
2964{
2965 __le32 crc32c_csum;
2966 int ret = 0, offset, start;
2967
2968 if (skb->ip_summed != CHECKSUM_PARTIAL)
2969 goto out;
2970
2971 if (unlikely(skb_is_gso(skb)))
2972 goto out;
2973
2974 /* Before computing a checksum, we should make sure no frag could
2975 * be modified by an external entity : checksum could be wrong.
2976 */
2977 if (unlikely(skb_has_shared_frag(skb))) {
2978 ret = __skb_linearize(skb);
2979 if (ret)
2980 goto out;
2981 }
2982 start = skb_checksum_start_offset(skb);
2983 offset = start + offsetof(struct sctphdr, checksum);
2984 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2985 ret = -EINVAL;
2986 goto out;
2987 }
2988 if (skb_cloned(skb) &&
2989 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2990 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2991 if (ret)
2992 goto out;
2993 }
2994 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2995 skb->len - start, ~(__u32)0,
2996 crc32c_csum_stub));
2997 *(__le32 *)(skb->data + offset) = crc32c_csum;
2998 skb->ip_summed = CHECKSUM_NONE;
dba00306 2999 skb->csum_not_inet = 0;
b72b5bf6
DC
3000out:
3001 return ret;
3002}
3003
53d6471c 3004__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 3005{
252e3346 3006 __be16 type = skb->protocol;
f6a78bfc 3007
19acc327
PS
3008 /* Tunnel gso handlers can set protocol to ethernet. */
3009 if (type == htons(ETH_P_TEB)) {
3010 struct ethhdr *eth;
3011
3012 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3013 return 0;
3014
1dfe82eb 3015 eth = (struct ethhdr *)skb->data;
19acc327
PS
3016 type = eth->h_proto;
3017 }
3018
d4bcef3f 3019 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
3020}
3021
3022/**
3023 * skb_mac_gso_segment - mac layer segmentation handler.
3024 * @skb: buffer to segment
3025 * @features: features for the output path (see dev->features)
3026 */
3027struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3028 netdev_features_t features)
3029{
3030 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3031 struct packet_offload *ptype;
53d6471c
VY
3032 int vlan_depth = skb->mac_len;
3033 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
3034
3035 if (unlikely(!type))
3036 return ERR_PTR(-EINVAL);
3037
53d6471c 3038 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
3039
3040 rcu_read_lock();
22061d80 3041 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 3042 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 3043 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
3044 break;
3045 }
3046 }
3047 rcu_read_unlock();
3048
98e399f8 3049 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 3050
f6a78bfc
HX
3051 return segs;
3052}
05e8ef4a
PS
3053EXPORT_SYMBOL(skb_mac_gso_segment);
3054
3055
3056/* openvswitch calls this on rx path, so we need a different check.
3057 */
3058static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3059{
3060 if (tx_path)
0c19f846
WB
3061 return skb->ip_summed != CHECKSUM_PARTIAL &&
3062 skb->ip_summed != CHECKSUM_UNNECESSARY;
6e7bc478
ED
3063
3064 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
3065}
3066
3067/**
3068 * __skb_gso_segment - Perform segmentation on skb.
3069 * @skb: buffer to segment
3070 * @features: features for the output path (see dev->features)
3071 * @tx_path: whether it is called in TX path
3072 *
3073 * This function segments the given skb and returns a list of segments.
3074 *
3075 * It may return NULL if the skb requires no segmentation. This is
3076 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
3077 *
3078 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
3079 */
3080struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3081 netdev_features_t features, bool tx_path)
3082{
b2504a5d
ED
3083 struct sk_buff *segs;
3084
05e8ef4a
PS
3085 if (unlikely(skb_needs_check(skb, tx_path))) {
3086 int err;
3087
b2504a5d 3088 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 3089 err = skb_cow_head(skb, 0);
3090 if (err < 0)
05e8ef4a
PS
3091 return ERR_PTR(err);
3092 }
3093
802ab55a
AD
3094 /* Only report GSO partial support if it will enable us to
3095 * support segmentation on this frame without needing additional
3096 * work.
3097 */
3098 if (features & NETIF_F_GSO_PARTIAL) {
3099 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3100 struct net_device *dev = skb->dev;
3101
3102 partial_features |= dev->features & dev->gso_partial_features;
3103 if (!skb_gso_ok(skb, features | partial_features))
3104 features &= ~NETIF_F_GSO_PARTIAL;
3105 }
3106
9207f9d4
KK
3107 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3108 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3109
68c33163 3110 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
3111 SKB_GSO_CB(skb)->encap_level = 0;
3112
05e8ef4a
PS
3113 skb_reset_mac_header(skb);
3114 skb_reset_mac_len(skb);
3115
b2504a5d
ED
3116 segs = skb_mac_gso_segment(skb, features);
3117
8d74e9f8 3118 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
b2504a5d
ED
3119 skb_warn_bad_offload(skb);
3120
3121 return segs;
05e8ef4a 3122}
12b0004d 3123EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 3124
fb286bb2
HX
3125/* Take action when hardware reception checksum errors are detected. */
3126#ifdef CONFIG_BUG
7fe50ac8 3127void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
fb286bb2
HX
3128{
3129 if (net_ratelimit()) {
7b6cd1ce 3130 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
7fe50ac8
CW
3131 if (dev)
3132 pr_err("dev features: %pNF\n", &dev->features);
3133 pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n",
3134 skb->len, skb->data_len, skb->pkt_type,
3135 skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type,
3136 skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum,
3137 skb->csum_complete_sw, skb->csum_valid, skb->csum_level);
fb286bb2
HX
3138 dump_stack();
3139 }
3140}
3141EXPORT_SYMBOL(netdev_rx_csum_fault);
3142#endif
3143
ab74cfeb 3144/* XXX: check that highmem exists at all on the given machine. */
c1e756bf 3145static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 3146{
3d3a8533 3147#ifdef CONFIG_HIGHMEM
1da177e4 3148 int i;
f4563a75 3149
5acbbd42 3150 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
3151 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3152 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 3153
ea2ab693 3154 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 3155 return 1;
ea2ab693 3156 }
5acbbd42 3157 }
3d3a8533 3158#endif
1da177e4
LT
3159 return 0;
3160}
1da177e4 3161
3b392ddb
SH
3162/* If MPLS offload request, verify we are testing hardware MPLS features
3163 * instead of standard features for the netdev.
3164 */
d0edc7bf 3165#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
3166static netdev_features_t net_mpls_features(struct sk_buff *skb,
3167 netdev_features_t features,
3168 __be16 type)
3169{
25cd9ba0 3170 if (eth_p_mpls(type))
3b392ddb
SH
3171 features &= skb->dev->mpls_features;
3172
3173 return features;
3174}
3175#else
3176static netdev_features_t net_mpls_features(struct sk_buff *skb,
3177 netdev_features_t features,
3178 __be16 type)
3179{
3180 return features;
3181}
3182#endif
3183
c8f44aff 3184static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 3185 netdev_features_t features)
f01a5236 3186{
53d6471c 3187 int tmp;
3b392ddb
SH
3188 __be16 type;
3189
3190 type = skb_network_protocol(skb, &tmp);
3191 features = net_mpls_features(skb, features, type);
53d6471c 3192
c0d680e5 3193 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 3194 !can_checksum_protocol(features, type)) {
996e8021 3195 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 3196 }
7be2c82c
ED
3197 if (illegal_highdma(skb->dev, skb))
3198 features &= ~NETIF_F_SG;
f01a5236
JG
3199
3200 return features;
3201}
3202
e38f3025
TM
3203netdev_features_t passthru_features_check(struct sk_buff *skb,
3204 struct net_device *dev,
3205 netdev_features_t features)
3206{
3207 return features;
3208}
3209EXPORT_SYMBOL(passthru_features_check);
3210
7ce23672 3211static netdev_features_t dflt_features_check(struct sk_buff *skb,
8cb65d00
TM
3212 struct net_device *dev,
3213 netdev_features_t features)
3214{
3215 return vlan_features_check(skb, features);
3216}
3217
cbc53e08
AD
3218static netdev_features_t gso_features_check(const struct sk_buff *skb,
3219 struct net_device *dev,
3220 netdev_features_t features)
3221{
3222 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3223
3224 if (gso_segs > dev->gso_max_segs)
3225 return features & ~NETIF_F_GSO_MASK;
3226
802ab55a
AD
3227 /* Support for GSO partial features requires software
3228 * intervention before we can actually process the packets
3229 * so we need to strip support for any partial features now
3230 * and we can pull them back in after we have partially
3231 * segmented the frame.
3232 */
3233 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3234 features &= ~dev->gso_partial_features;
3235
3236 /* Make sure to clear the IPv4 ID mangling feature if the
3237 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
3238 */
3239 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3240 struct iphdr *iph = skb->encapsulation ?
3241 inner_ip_hdr(skb) : ip_hdr(skb);
3242
3243 if (!(iph->frag_off & htons(IP_DF)))
3244 features &= ~NETIF_F_TSO_MANGLEID;
3245 }
3246
3247 return features;
3248}
3249
c1e756bf 3250netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 3251{
5f35227e 3252 struct net_device *dev = skb->dev;
fcbeb976 3253 netdev_features_t features = dev->features;
58e998c6 3254
cbc53e08
AD
3255 if (skb_is_gso(skb))
3256 features = gso_features_check(skb, dev, features);
30b678d8 3257
5f35227e
JG
3258 /* If encapsulation offload request, verify we are testing
3259 * hardware encapsulation features instead of standard
3260 * features for the netdev
3261 */
3262 if (skb->encapsulation)
3263 features &= dev->hw_enc_features;
3264
f5a7fb88
TM
3265 if (skb_vlan_tagged(skb))
3266 features = netdev_intersect_features(features,
3267 dev->vlan_features |
3268 NETIF_F_HW_VLAN_CTAG_TX |
3269 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 3270
5f35227e
JG
3271 if (dev->netdev_ops->ndo_features_check)
3272 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3273 features);
8cb65d00
TM
3274 else
3275 features &= dflt_features_check(skb, dev, features);
5f35227e 3276
c1e756bf 3277 return harmonize_features(skb, features);
58e998c6 3278}
c1e756bf 3279EXPORT_SYMBOL(netif_skb_features);
58e998c6 3280
2ea25513 3281static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 3282 struct netdev_queue *txq, bool more)
f6a78bfc 3283{
2ea25513
DM
3284 unsigned int len;
3285 int rc;
00829823 3286
9f9a742d 3287 if (dev_nit_active(dev))
2ea25513 3288 dev_queue_xmit_nit(skb, dev);
fc741216 3289
2ea25513
DM
3290 len = skb->len;
3291 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 3292 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 3293 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 3294
2ea25513
DM
3295 return rc;
3296}
7b9c6090 3297
8dcda22a
DM
3298struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3299 struct netdev_queue *txq, int *ret)
7f2e870f
DM
3300{
3301 struct sk_buff *skb = first;
3302 int rc = NETDEV_TX_OK;
7b9c6090 3303
7f2e870f
DM
3304 while (skb) {
3305 struct sk_buff *next = skb->next;
fc70fb64 3306
a8305bff 3307 skb_mark_not_on_list(skb);
95f6b3dd 3308 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3309 if (unlikely(!dev_xmit_complete(rc))) {
3310 skb->next = next;
3311 goto out;
3312 }
6afff0ca 3313
7f2e870f 3314 skb = next;
fe60faa5 3315 if (netif_tx_queue_stopped(txq) && skb) {
7f2e870f
DM
3316 rc = NETDEV_TX_BUSY;
3317 break;
9ccb8975 3318 }
7f2e870f 3319 }
9ccb8975 3320
7f2e870f
DM
3321out:
3322 *ret = rc;
3323 return skb;
3324}
b40863c6 3325
1ff0dc94
ED
3326static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3327 netdev_features_t features)
f6a78bfc 3328{
df8a39de 3329 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3330 !vlan_hw_offload_capable(features, skb->vlan_proto))
3331 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3332 return skb;
3333}
f6a78bfc 3334
43c26a1a
DC
3335int skb_csum_hwoffload_help(struct sk_buff *skb,
3336 const netdev_features_t features)
3337{
3338 if (unlikely(skb->csum_not_inet))
3339 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3340 skb_crc32c_csum_help(skb);
3341
3342 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3343}
3344EXPORT_SYMBOL(skb_csum_hwoffload_help);
3345
f53c7239 3346static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
eae3f88e
DM
3347{
3348 netdev_features_t features;
f6a78bfc 3349
eae3f88e
DM
3350 features = netif_skb_features(skb);
3351 skb = validate_xmit_vlan(skb, features);
3352 if (unlikely(!skb))
3353 goto out_null;
7b9c6090 3354
ebf4e808
IL
3355 skb = sk_validate_xmit_skb(skb, dev);
3356 if (unlikely(!skb))
3357 goto out_null;
3358
8b86a61d 3359 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3360 struct sk_buff *segs;
3361
3362 segs = skb_gso_segment(skb, features);
cecda693 3363 if (IS_ERR(segs)) {
af6dabc9 3364 goto out_kfree_skb;
cecda693
JW
3365 } else if (segs) {
3366 consume_skb(skb);
3367 skb = segs;
f6a78bfc 3368 }
eae3f88e
DM
3369 } else {
3370 if (skb_needs_linearize(skb, features) &&
3371 __skb_linearize(skb))
3372 goto out_kfree_skb;
4ec93edb 3373
eae3f88e
DM
3374 /* If packet is not checksummed and device does not
3375 * support checksumming for this protocol, complete
3376 * checksumming here.
3377 */
3378 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3379 if (skb->encapsulation)
3380 skb_set_inner_transport_header(skb,
3381 skb_checksum_start_offset(skb));
3382 else
3383 skb_set_transport_header(skb,
3384 skb_checksum_start_offset(skb));
43c26a1a 3385 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3386 goto out_kfree_skb;
7b9c6090 3387 }
0c772159 3388 }
7b9c6090 3389
f53c7239 3390 skb = validate_xmit_xfrm(skb, features, again);
3dca3f38 3391
eae3f88e 3392 return skb;
fc70fb64 3393
f6a78bfc
HX
3394out_kfree_skb:
3395 kfree_skb(skb);
eae3f88e 3396out_null:
d21fd63e 3397 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3398 return NULL;
3399}
6afff0ca 3400
f53c7239 3401struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
55a93b3e
ED
3402{
3403 struct sk_buff *next, *head = NULL, *tail;
3404
bec3cfdc 3405 for (; skb != NULL; skb = next) {
55a93b3e 3406 next = skb->next;
a8305bff 3407 skb_mark_not_on_list(skb);
bec3cfdc
ED
3408
3409 /* in case skb wont be segmented, point to itself */
3410 skb->prev = skb;
3411
f53c7239 3412 skb = validate_xmit_skb(skb, dev, again);
bec3cfdc
ED
3413 if (!skb)
3414 continue;
55a93b3e 3415
bec3cfdc
ED
3416 if (!head)
3417 head = skb;
3418 else
3419 tail->next = skb;
3420 /* If skb was segmented, skb->prev points to
3421 * the last segment. If not, it still contains skb.
3422 */
3423 tail = skb->prev;
55a93b3e
ED
3424 }
3425 return head;
f6a78bfc 3426}
104ba78c 3427EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3428
1def9238
ED
3429static void qdisc_pkt_len_init(struct sk_buff *skb)
3430{
3431 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3432
3433 qdisc_skb_cb(skb)->pkt_len = skb->len;
3434
3435 /* To get more precise estimation of bytes sent on wire,
3436 * we add to pkt_len the headers size of all segments
3437 */
a0dce875 3438 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
757b8b1d 3439 unsigned int hdr_len;
15e5a030 3440 u16 gso_segs = shinfo->gso_segs;
1def9238 3441
757b8b1d
ED
3442 /* mac layer + network layer */
3443 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3444
3445 /* + transport layer */
7c68d1a6
ED
3446 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3447 const struct tcphdr *th;
3448 struct tcphdr _tcphdr;
3449
3450 th = skb_header_pointer(skb, skb_transport_offset(skb),
3451 sizeof(_tcphdr), &_tcphdr);
3452 if (likely(th))
3453 hdr_len += __tcp_hdrlen(th);
3454 } else {
3455 struct udphdr _udphdr;
3456
3457 if (skb_header_pointer(skb, skb_transport_offset(skb),
3458 sizeof(_udphdr), &_udphdr))
3459 hdr_len += sizeof(struct udphdr);
3460 }
15e5a030
JW
3461
3462 if (shinfo->gso_type & SKB_GSO_DODGY)
3463 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3464 shinfo->gso_size);
3465
3466 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3467 }
3468}
3469
bbd8a0d3
KK
3470static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3471 struct net_device *dev,
3472 struct netdev_queue *txq)
3473{
3474 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3475 struct sk_buff *to_free = NULL;
a2da570d 3476 bool contended;
bbd8a0d3
KK
3477 int rc;
3478
a2da570d 3479 qdisc_calculate_pkt_len(skb, q);
6b3ba914
JF
3480
3481 if (q->flags & TCQ_F_NOLOCK) {
3482 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3483 __qdisc_drop(skb, &to_free);
3484 rc = NET_XMIT_DROP;
ba27b4cd
PA
3485 } else if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3486 qdisc_run_begin(q)) {
3487 qdisc_bstats_cpu_update(q, skb);
3488
3489 if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3490 __qdisc_run(q);
3491
3492 qdisc_run_end(q);
3493 rc = NET_XMIT_SUCCESS;
6b3ba914
JF
3494 } else {
3495 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
32f7b44d 3496 qdisc_run(q);
6b3ba914
JF
3497 }
3498
3499 if (unlikely(to_free))
3500 kfree_skb_list(to_free);
3501 return rc;
3502 }
3503
79640a4c
ED
3504 /*
3505 * Heuristic to force contended enqueues to serialize on a
3506 * separate lock before trying to get qdisc main lock.
f9eb8aea 3507 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3508 * often and dequeue packets faster.
79640a4c 3509 */
a2da570d 3510 contended = qdisc_is_running(q);
79640a4c
ED
3511 if (unlikely(contended))
3512 spin_lock(&q->busylock);
3513
bbd8a0d3
KK
3514 spin_lock(root_lock);
3515 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3516 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3517 rc = NET_XMIT_DROP;
3518 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3519 qdisc_run_begin(q)) {
bbd8a0d3
KK
3520 /*
3521 * This is a work-conserving queue; there are no old skbs
3522 * waiting to be sent out; and the qdisc is not running -
3523 * xmit the skb directly.
3524 */
bfe0d029 3525
bfe0d029
ED
3526 qdisc_bstats_update(q, skb);
3527
55a93b3e 3528 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3529 if (unlikely(contended)) {
3530 spin_unlock(&q->busylock);
3531 contended = false;
3532 }
bbd8a0d3 3533 __qdisc_run(q);
6c148184 3534 }
bbd8a0d3 3535
6c148184 3536 qdisc_run_end(q);
bbd8a0d3
KK
3537 rc = NET_XMIT_SUCCESS;
3538 } else {
520ac30f 3539 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3540 if (qdisc_run_begin(q)) {
3541 if (unlikely(contended)) {
3542 spin_unlock(&q->busylock);
3543 contended = false;
3544 }
3545 __qdisc_run(q);
6c148184 3546 qdisc_run_end(q);
79640a4c 3547 }
bbd8a0d3
KK
3548 }
3549 spin_unlock(root_lock);
520ac30f
ED
3550 if (unlikely(to_free))
3551 kfree_skb_list(to_free);
79640a4c
ED
3552 if (unlikely(contended))
3553 spin_unlock(&q->busylock);
bbd8a0d3
KK
3554 return rc;
3555}
3556
86f8515f 3557#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3558static void skb_update_prio(struct sk_buff *skb)
3559{
4dcb31d4
ED
3560 const struct netprio_map *map;
3561 const struct sock *sk;
3562 unsigned int prioidx;
5bc1421e 3563
4dcb31d4
ED
3564 if (skb->priority)
3565 return;
3566 map = rcu_dereference_bh(skb->dev->priomap);
3567 if (!map)
3568 return;
3569 sk = skb_to_full_sk(skb);
3570 if (!sk)
3571 return;
91c68ce2 3572
4dcb31d4
ED
3573 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3574
3575 if (prioidx < map->priomap_len)
3576 skb->priority = map->priomap[prioidx];
5bc1421e
NH
3577}
3578#else
3579#define skb_update_prio(skb)
3580#endif
3581
95603e22
MM
3582/**
3583 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3584 * @net: network namespace this loopback is happening in
3585 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3586 * @skb: buffer to transmit
3587 */
0c4b51f0 3588int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3589{
3590 skb_reset_mac_header(skb);
3591 __skb_pull(skb, skb_network_offset(skb));
3592 skb->pkt_type = PACKET_LOOPBACK;
3593 skb->ip_summed = CHECKSUM_UNNECESSARY;
3594 WARN_ON(!skb_dst(skb));
3595 skb_dst_force(skb);
3596 netif_rx_ni(skb);
3597 return 0;
3598}
3599EXPORT_SYMBOL(dev_loopback_xmit);
3600
1f211a1b
DB
3601#ifdef CONFIG_NET_EGRESS
3602static struct sk_buff *
3603sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3604{
46209401 3605 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
1f211a1b
DB
3606 struct tcf_result cl_res;
3607
46209401 3608 if (!miniq)
1f211a1b
DB
3609 return skb;
3610
8dc07fdb 3611 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
46209401 3612 mini_qdisc_bstats_cpu_update(miniq, skb);
1f211a1b 3613
46209401 3614 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
1f211a1b
DB
3615 case TC_ACT_OK:
3616 case TC_ACT_RECLASSIFY:
3617 skb->tc_index = TC_H_MIN(cl_res.classid);
3618 break;
3619 case TC_ACT_SHOT:
46209401 3620 mini_qdisc_qstats_cpu_drop(miniq);
1f211a1b 3621 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3622 kfree_skb(skb);
3623 return NULL;
1f211a1b
DB
3624 case TC_ACT_STOLEN:
3625 case TC_ACT_QUEUED:
e25ea21f 3626 case TC_ACT_TRAP:
1f211a1b 3627 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3628 consume_skb(skb);
1f211a1b
DB
3629 return NULL;
3630 case TC_ACT_REDIRECT:
3631 /* No need to push/pop skb's mac_header here on egress! */
3632 skb_do_redirect(skb);
3633 *ret = NET_XMIT_SUCCESS;
3634 return NULL;
3635 default:
3636 break;
3637 }
3638
3639 return skb;
3640}
3641#endif /* CONFIG_NET_EGRESS */
3642
fc9bab24
AN
3643#ifdef CONFIG_XPS
3644static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3645 struct xps_dev_maps *dev_maps, unsigned int tci)
3646{
3647 struct xps_map *map;
3648 int queue_index = -1;
3649
3650 if (dev->num_tc) {
3651 tci *= dev->num_tc;
3652 tci += netdev_get_prio_tc_map(dev, skb->priority);
3653 }
3654
3655 map = rcu_dereference(dev_maps->attr_map[tci]);
3656 if (map) {
3657 if (map->len == 1)
3658 queue_index = map->queues[0];
3659 else
3660 queue_index = map->queues[reciprocal_scale(
3661 skb_get_hash(skb), map->len)];
3662 if (unlikely(queue_index >= dev->real_num_tx_queues))
3663 queue_index = -1;
3664 }
3665 return queue_index;
3666}
3667#endif
3668
eadec877
AD
3669static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3670 struct sk_buff *skb)
638b2a69
JP
3671{
3672#ifdef CONFIG_XPS
3673 struct xps_dev_maps *dev_maps;
fc9bab24 3674 struct sock *sk = skb->sk;
638b2a69
JP
3675 int queue_index = -1;
3676
04157469
AN
3677 if (!static_key_false(&xps_needed))
3678 return -1;
3679
638b2a69 3680 rcu_read_lock();
fc9bab24
AN
3681 if (!static_key_false(&xps_rxqs_needed))
3682 goto get_cpus_map;
3683
eadec877 3684 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
638b2a69 3685 if (dev_maps) {
fc9bab24 3686 int tci = sk_rx_queue_get(sk);
184c449f 3687
fc9bab24
AN
3688 if (tci >= 0 && tci < dev->num_rx_queues)
3689 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3690 tci);
3691 }
184c449f 3692
fc9bab24
AN
3693get_cpus_map:
3694 if (queue_index < 0) {
eadec877 3695 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
fc9bab24
AN
3696 if (dev_maps) {
3697 unsigned int tci = skb->sender_cpu - 1;
3698
3699 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3700 tci);
638b2a69
JP
3701 }
3702 }
3703 rcu_read_unlock();
3704
3705 return queue_index;
3706#else
3707 return -1;
3708#endif
3709}
3710
a4ea8a3d 3711u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
a350ecce 3712 struct net_device *sb_dev)
a4ea8a3d
AD
3713{
3714 return 0;
3715}
3716EXPORT_SYMBOL(dev_pick_tx_zero);
3717
3718u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
a350ecce 3719 struct net_device *sb_dev)
a4ea8a3d
AD
3720{
3721 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3722}
3723EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3724
b71b5837
PA
3725u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3726 struct net_device *sb_dev)
638b2a69
JP
3727{
3728 struct sock *sk = skb->sk;
3729 int queue_index = sk_tx_queue_get(sk);
3730
eadec877
AD
3731 sb_dev = sb_dev ? : dev;
3732
638b2a69
JP
3733 if (queue_index < 0 || skb->ooo_okay ||
3734 queue_index >= dev->real_num_tx_queues) {
eadec877 3735 int new_index = get_xps_queue(dev, sb_dev, skb);
f4563a75 3736
638b2a69 3737 if (new_index < 0)
eadec877 3738 new_index = skb_tx_hash(dev, sb_dev, skb);
638b2a69
JP
3739
3740 if (queue_index != new_index && sk &&
004a5d01 3741 sk_fullsock(sk) &&
638b2a69
JP
3742 rcu_access_pointer(sk->sk_dst_cache))
3743 sk_tx_queue_set(sk, new_index);
3744
3745 queue_index = new_index;
3746 }
3747
3748 return queue_index;
3749}
b71b5837 3750EXPORT_SYMBOL(netdev_pick_tx);
638b2a69 3751
4bd97d51
PA
3752struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3753 struct sk_buff *skb,
3754 struct net_device *sb_dev)
638b2a69
JP
3755{
3756 int queue_index = 0;
3757
3758#ifdef CONFIG_XPS
52bd2d62
ED
3759 u32 sender_cpu = skb->sender_cpu - 1;
3760
3761 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3762 skb->sender_cpu = raw_smp_processor_id() + 1;
3763#endif
3764
3765 if (dev->real_num_tx_queues != 1) {
3766 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 3767
638b2a69 3768 if (ops->ndo_select_queue)
a350ecce 3769 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
638b2a69 3770 else
4bd97d51 3771 queue_index = netdev_pick_tx(dev, skb, sb_dev);
638b2a69 3772
d584527c 3773 queue_index = netdev_cap_txqueue(dev, queue_index);
638b2a69
JP
3774 }
3775
3776 skb_set_queue_mapping(skb, queue_index);
3777 return netdev_get_tx_queue(dev, queue_index);
3778}
3779
d29f749e 3780/**
9d08dd3d 3781 * __dev_queue_xmit - transmit a buffer
d29f749e 3782 * @skb: buffer to transmit
eadec877 3783 * @sb_dev: suboordinate device used for L2 forwarding offload
d29f749e
DJ
3784 *
3785 * Queue a buffer for transmission to a network device. The caller must
3786 * have set the device and priority and built the buffer before calling
3787 * this function. The function can be called from an interrupt.
3788 *
3789 * A negative errno code is returned on a failure. A success does not
3790 * guarantee the frame will be transmitted as it may be dropped due
3791 * to congestion or traffic shaping.
3792 *
3793 * -----------------------------------------------------------------------------------
3794 * I notice this method can also return errors from the queue disciplines,
3795 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3796 * be positive.
3797 *
3798 * Regardless of the return value, the skb is consumed, so it is currently
3799 * difficult to retry a send to this method. (You can bump the ref count
3800 * before sending to hold a reference for retry if you are careful.)
3801 *
3802 * When calling this method, interrupts MUST be enabled. This is because
3803 * the BH enable code must have IRQs enabled so that it will not deadlock.
3804 * --BLG
3805 */
eadec877 3806static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
1da177e4
LT
3807{
3808 struct net_device *dev = skb->dev;
dc2b4847 3809 struct netdev_queue *txq;
1da177e4
LT
3810 struct Qdisc *q;
3811 int rc = -ENOMEM;
f53c7239 3812 bool again = false;
1da177e4 3813
6d1ccff6
ED
3814 skb_reset_mac_header(skb);
3815
e7fd2885
WB
3816 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3817 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3818
4ec93edb
YH
3819 /* Disable soft irqs for various locks below. Also
3820 * stops preemption for RCU.
1da177e4 3821 */
4ec93edb 3822 rcu_read_lock_bh();
1da177e4 3823
5bc1421e
NH
3824 skb_update_prio(skb);
3825
1f211a1b
DB
3826 qdisc_pkt_len_init(skb);
3827#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 3828 skb->tc_at_ingress = 0;
1f211a1b 3829# ifdef CONFIG_NET_EGRESS
aabf6772 3830 if (static_branch_unlikely(&egress_needed_key)) {
1f211a1b
DB
3831 skb = sch_handle_egress(skb, &rc, dev);
3832 if (!skb)
3833 goto out;
3834 }
3835# endif
3836#endif
02875878
ED
3837 /* If device/qdisc don't need skb->dst, release it right now while
3838 * its hot in this cpu cache.
3839 */
3840 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3841 skb_dst_drop(skb);
3842 else
3843 skb_dst_force(skb);
3844
4bd97d51 3845 txq = netdev_core_pick_tx(dev, skb, sb_dev);
a898def2 3846 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3847
cf66ba58 3848 trace_net_dev_queue(skb);
1da177e4 3849 if (q->enqueue) {
bbd8a0d3 3850 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3851 goto out;
1da177e4
LT
3852 }
3853
3854 /* The device has no queue. Common case for software devices:
eb13da1a 3855 * loopback, all the sorts of tunnels...
1da177e4 3856
eb13da1a 3857 * Really, it is unlikely that netif_tx_lock protection is necessary
3858 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3859 * counters.)
3860 * However, it is possible, that they rely on protection
3861 * made by us here.
1da177e4 3862
eb13da1a 3863 * Check this and shot the lock. It is not prone from deadlocks.
3864 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
3865 */
3866 if (dev->flags & IFF_UP) {
3867 int cpu = smp_processor_id(); /* ok because BHs are off */
3868
c773e847 3869 if (txq->xmit_lock_owner != cpu) {
97cdcf37 3870 if (dev_xmit_recursion())
745e20f1
ED
3871 goto recursion_alert;
3872
f53c7239 3873 skb = validate_xmit_skb(skb, dev, &again);
1f59533f 3874 if (!skb)
d21fd63e 3875 goto out;
1f59533f 3876
c773e847 3877 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3878
73466498 3879 if (!netif_xmit_stopped(txq)) {
97cdcf37 3880 dev_xmit_recursion_inc();
ce93718f 3881 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
97cdcf37 3882 dev_xmit_recursion_dec();
572a9d7b 3883 if (dev_xmit_complete(rc)) {
c773e847 3884 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3885 goto out;
3886 }
3887 }
c773e847 3888 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3889 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3890 dev->name);
1da177e4
LT
3891 } else {
3892 /* Recursion is detected! It is possible,
745e20f1
ED
3893 * unfortunately
3894 */
3895recursion_alert:
e87cc472
JP
3896 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3897 dev->name);
1da177e4
LT
3898 }
3899 }
3900
3901 rc = -ENETDOWN;
d4828d85 3902 rcu_read_unlock_bh();
1da177e4 3903
015f0688 3904 atomic_long_inc(&dev->tx_dropped);
1f59533f 3905 kfree_skb_list(skb);
1da177e4
LT
3906 return rc;
3907out:
d4828d85 3908 rcu_read_unlock_bh();
1da177e4
LT
3909 return rc;
3910}
f663dd9a 3911
2b4aa3ce 3912int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3913{
3914 return __dev_queue_xmit(skb, NULL);
3915}
2b4aa3ce 3916EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3917
eadec877 3918int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
f663dd9a 3919{
eadec877 3920 return __dev_queue_xmit(skb, sb_dev);
f663dd9a
JW
3921}
3922EXPORT_SYMBOL(dev_queue_xmit_accel);
3923
865b03f2
MK
3924int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3925{
3926 struct net_device *dev = skb->dev;
3927 struct sk_buff *orig_skb = skb;
3928 struct netdev_queue *txq;
3929 int ret = NETDEV_TX_BUSY;
3930 bool again = false;
3931
3932 if (unlikely(!netif_running(dev) ||
3933 !netif_carrier_ok(dev)))
3934 goto drop;
3935
3936 skb = validate_xmit_skb_list(skb, dev, &again);
3937 if (skb != orig_skb)
3938 goto drop;
3939
3940 skb_set_queue_mapping(skb, queue_id);
3941 txq = skb_get_tx_queue(dev, skb);
3942
3943 local_bh_disable();
3944
3945 HARD_TX_LOCK(dev, txq, smp_processor_id());
3946 if (!netif_xmit_frozen_or_drv_stopped(txq))
3947 ret = netdev_start_xmit(skb, dev, txq, false);
3948 HARD_TX_UNLOCK(dev, txq);
3949
3950 local_bh_enable();
3951
3952 if (!dev_xmit_complete(ret))
3953 kfree_skb(skb);
3954
3955 return ret;
3956drop:
3957 atomic_long_inc(&dev->tx_dropped);
3958 kfree_skb_list(skb);
3959 return NET_XMIT_DROP;
3960}
3961EXPORT_SYMBOL(dev_direct_xmit);
1da177e4 3962
eb13da1a 3963/*************************************************************************
3964 * Receiver routines
3965 *************************************************************************/
1da177e4 3966
6b2bedc3 3967int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3968EXPORT_SYMBOL(netdev_max_backlog);
3969
3b098e2d 3970int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 3971int netdev_budget __read_mostly = 300;
7acf8a1e 3972unsigned int __read_mostly netdev_budget_usecs = 2000;
3d48b53f
MT
3973int weight_p __read_mostly = 64; /* old backlog weight */
3974int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3975int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3976int dev_rx_weight __read_mostly = 64;
3977int dev_tx_weight __read_mostly = 64;
1da177e4 3978
eecfd7c4
ED
3979/* Called with irq disabled */
3980static inline void ____napi_schedule(struct softnet_data *sd,
3981 struct napi_struct *napi)
3982{
3983 list_add_tail(&napi->poll_list, &sd->poll_list);
3984 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3985}
3986
bfb564e7
KK
3987#ifdef CONFIG_RPS
3988
3989/* One global table that all flow-based protocols share. */
6e3f7faf 3990struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3991EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3992u32 rps_cpu_mask __read_mostly;
3993EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3994
dc05360f 3995struct static_key_false rps_needed __read_mostly;
3df97ba8 3996EXPORT_SYMBOL(rps_needed);
dc05360f 3997struct static_key_false rfs_needed __read_mostly;
13bfff25 3998EXPORT_SYMBOL(rfs_needed);
adc9300e 3999
c445477d
BH
4000static struct rps_dev_flow *
4001set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4002 struct rps_dev_flow *rflow, u16 next_cpu)
4003{
a31196b0 4004 if (next_cpu < nr_cpu_ids) {
c445477d
BH
4005#ifdef CONFIG_RFS_ACCEL
4006 struct netdev_rx_queue *rxqueue;
4007 struct rps_dev_flow_table *flow_table;
4008 struct rps_dev_flow *old_rflow;
4009 u32 flow_id;
4010 u16 rxq_index;
4011 int rc;
4012
4013 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
4014 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4015 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
4016 goto out;
4017 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4018 if (rxq_index == skb_get_rx_queue(skb))
4019 goto out;
4020
4021 rxqueue = dev->_rx + rxq_index;
4022 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4023 if (!flow_table)
4024 goto out;
61b905da 4025 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
4026 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4027 rxq_index, flow_id);
4028 if (rc < 0)
4029 goto out;
4030 old_rflow = rflow;
4031 rflow = &flow_table->flows[flow_id];
c445477d
BH
4032 rflow->filter = rc;
4033 if (old_rflow->filter == rflow->filter)
4034 old_rflow->filter = RPS_NO_FILTER;
4035 out:
4036#endif
4037 rflow->last_qtail =
09994d1b 4038 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
4039 }
4040
09994d1b 4041 rflow->cpu = next_cpu;
c445477d
BH
4042 return rflow;
4043}
4044
bfb564e7
KK
4045/*
4046 * get_rps_cpu is called from netif_receive_skb and returns the target
4047 * CPU from the RPS map of the receiving queue for a given skb.
4048 * rcu_read_lock must be held on entry.
4049 */
4050static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4051 struct rps_dev_flow **rflowp)
4052{
567e4b79
ED
4053 const struct rps_sock_flow_table *sock_flow_table;
4054 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 4055 struct rps_dev_flow_table *flow_table;
567e4b79 4056 struct rps_map *map;
bfb564e7 4057 int cpu = -1;
567e4b79 4058 u32 tcpu;
61b905da 4059 u32 hash;
bfb564e7
KK
4060
4061 if (skb_rx_queue_recorded(skb)) {
4062 u16 index = skb_get_rx_queue(skb);
567e4b79 4063
62fe0b40
BH
4064 if (unlikely(index >= dev->real_num_rx_queues)) {
4065 WARN_ONCE(dev->real_num_rx_queues > 1,
4066 "%s received packet on queue %u, but number "
4067 "of RX queues is %u\n",
4068 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
4069 goto done;
4070 }
567e4b79
ED
4071 rxqueue += index;
4072 }
bfb564e7 4073
567e4b79
ED
4074 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4075
4076 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 4077 map = rcu_dereference(rxqueue->rps_map);
567e4b79 4078 if (!flow_table && !map)
bfb564e7
KK
4079 goto done;
4080
2d47b459 4081 skb_reset_network_header(skb);
61b905da
TH
4082 hash = skb_get_hash(skb);
4083 if (!hash)
bfb564e7
KK
4084 goto done;
4085
fec5e652
TH
4086 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4087 if (flow_table && sock_flow_table) {
fec5e652 4088 struct rps_dev_flow *rflow;
567e4b79
ED
4089 u32 next_cpu;
4090 u32 ident;
4091
4092 /* First check into global flow table if there is a match */
4093 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4094 if ((ident ^ hash) & ~rps_cpu_mask)
4095 goto try_rps;
fec5e652 4096
567e4b79
ED
4097 next_cpu = ident & rps_cpu_mask;
4098
4099 /* OK, now we know there is a match,
4100 * we can look at the local (per receive queue) flow table
4101 */
61b905da 4102 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
4103 tcpu = rflow->cpu;
4104
fec5e652
TH
4105 /*
4106 * If the desired CPU (where last recvmsg was done) is
4107 * different from current CPU (one in the rx-queue flow
4108 * table entry), switch if one of the following holds:
a31196b0 4109 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
4110 * - Current CPU is offline.
4111 * - The current CPU's queue tail has advanced beyond the
4112 * last packet that was enqueued using this table entry.
4113 * This guarantees that all previous packets for the flow
4114 * have been dequeued, thus preserving in order delivery.
4115 */
4116 if (unlikely(tcpu != next_cpu) &&
a31196b0 4117 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 4118 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
4119 rflow->last_qtail)) >= 0)) {
4120 tcpu = next_cpu;
c445477d 4121 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 4122 }
c445477d 4123
a31196b0 4124 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
4125 *rflowp = rflow;
4126 cpu = tcpu;
4127 goto done;
4128 }
4129 }
4130
567e4b79
ED
4131try_rps:
4132
0a9627f2 4133 if (map) {
8fc54f68 4134 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
4135 if (cpu_online(tcpu)) {
4136 cpu = tcpu;
4137 goto done;
4138 }
4139 }
4140
4141done:
0a9627f2
TH
4142 return cpu;
4143}
4144
c445477d
BH
4145#ifdef CONFIG_RFS_ACCEL
4146
4147/**
4148 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4149 * @dev: Device on which the filter was set
4150 * @rxq_index: RX queue index
4151 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4152 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4153 *
4154 * Drivers that implement ndo_rx_flow_steer() should periodically call
4155 * this function for each installed filter and remove the filters for
4156 * which it returns %true.
4157 */
4158bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4159 u32 flow_id, u16 filter_id)
4160{
4161 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4162 struct rps_dev_flow_table *flow_table;
4163 struct rps_dev_flow *rflow;
4164 bool expire = true;
a31196b0 4165 unsigned int cpu;
c445477d
BH
4166
4167 rcu_read_lock();
4168 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4169 if (flow_table && flow_id <= flow_table->mask) {
4170 rflow = &flow_table->flows[flow_id];
6aa7de05 4171 cpu = READ_ONCE(rflow->cpu);
a31196b0 4172 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
4173 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4174 rflow->last_qtail) <
4175 (int)(10 * flow_table->mask)))
4176 expire = false;
4177 }
4178 rcu_read_unlock();
4179 return expire;
4180}
4181EXPORT_SYMBOL(rps_may_expire_flow);
4182
4183#endif /* CONFIG_RFS_ACCEL */
4184
0a9627f2 4185/* Called from hardirq (IPI) context */
e36fa2f7 4186static void rps_trigger_softirq(void *data)
0a9627f2 4187{
e36fa2f7
ED
4188 struct softnet_data *sd = data;
4189
eecfd7c4 4190 ____napi_schedule(sd, &sd->backlog);
dee42870 4191 sd->received_rps++;
0a9627f2 4192}
e36fa2f7 4193
fec5e652 4194#endif /* CONFIG_RPS */
0a9627f2 4195
e36fa2f7
ED
4196/*
4197 * Check if this softnet_data structure is another cpu one
4198 * If yes, queue it to our IPI list and return 1
4199 * If no, return 0
4200 */
4201static int rps_ipi_queued(struct softnet_data *sd)
4202{
4203#ifdef CONFIG_RPS
903ceff7 4204 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
4205
4206 if (sd != mysd) {
4207 sd->rps_ipi_next = mysd->rps_ipi_list;
4208 mysd->rps_ipi_list = sd;
4209
4210 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4211 return 1;
4212 }
4213#endif /* CONFIG_RPS */
4214 return 0;
4215}
4216
99bbc707
WB
4217#ifdef CONFIG_NET_FLOW_LIMIT
4218int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4219#endif
4220
4221static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4222{
4223#ifdef CONFIG_NET_FLOW_LIMIT
4224 struct sd_flow_limit *fl;
4225 struct softnet_data *sd;
4226 unsigned int old_flow, new_flow;
4227
4228 if (qlen < (netdev_max_backlog >> 1))
4229 return false;
4230
903ceff7 4231 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
4232
4233 rcu_read_lock();
4234 fl = rcu_dereference(sd->flow_limit);
4235 if (fl) {
3958afa1 4236 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
4237 old_flow = fl->history[fl->history_head];
4238 fl->history[fl->history_head] = new_flow;
4239
4240 fl->history_head++;
4241 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4242
4243 if (likely(fl->buckets[old_flow]))
4244 fl->buckets[old_flow]--;
4245
4246 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4247 fl->count++;
4248 rcu_read_unlock();
4249 return true;
4250 }
4251 }
4252 rcu_read_unlock();
4253#endif
4254 return false;
4255}
4256
0a9627f2
TH
4257/*
4258 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4259 * queue (may be a remote CPU queue).
4260 */
fec5e652
TH
4261static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4262 unsigned int *qtail)
0a9627f2 4263{
e36fa2f7 4264 struct softnet_data *sd;
0a9627f2 4265 unsigned long flags;
99bbc707 4266 unsigned int qlen;
0a9627f2 4267
e36fa2f7 4268 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
4269
4270 local_irq_save(flags);
0a9627f2 4271
e36fa2f7 4272 rps_lock(sd);
e9e4dd32
JA
4273 if (!netif_running(skb->dev))
4274 goto drop;
99bbc707
WB
4275 qlen = skb_queue_len(&sd->input_pkt_queue);
4276 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 4277 if (qlen) {
0a9627f2 4278enqueue:
e36fa2f7 4279 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 4280 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 4281 rps_unlock(sd);
152102c7 4282 local_irq_restore(flags);
0a9627f2
TH
4283 return NET_RX_SUCCESS;
4284 }
4285
ebda37c2
ED
4286 /* Schedule NAPI for backlog device
4287 * We can use non atomic operation since we own the queue lock
4288 */
4289 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 4290 if (!rps_ipi_queued(sd))
eecfd7c4 4291 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
4292 }
4293 goto enqueue;
4294 }
4295
e9e4dd32 4296drop:
dee42870 4297 sd->dropped++;
e36fa2f7 4298 rps_unlock(sd);
0a9627f2 4299
0a9627f2
TH
4300 local_irq_restore(flags);
4301
caf586e5 4302 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
4303 kfree_skb(skb);
4304 return NET_RX_DROP;
4305}
1da177e4 4306
e817f856
JDB
4307static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4308{
4309 struct net_device *dev = skb->dev;
4310 struct netdev_rx_queue *rxqueue;
4311
4312 rxqueue = dev->_rx;
4313
4314 if (skb_rx_queue_recorded(skb)) {
4315 u16 index = skb_get_rx_queue(skb);
4316
4317 if (unlikely(index >= dev->real_num_rx_queues)) {
4318 WARN_ONCE(dev->real_num_rx_queues > 1,
4319 "%s received packet on queue %u, but number "
4320 "of RX queues is %u\n",
4321 dev->name, index, dev->real_num_rx_queues);
4322
4323 return rxqueue; /* Return first rxqueue */
4324 }
4325 rxqueue += index;
4326 }
4327 return rxqueue;
4328}
4329
d4455169 4330static u32 netif_receive_generic_xdp(struct sk_buff *skb,
02671e23 4331 struct xdp_buff *xdp,
d4455169
JF
4332 struct bpf_prog *xdp_prog)
4333{
e817f856 4334 struct netdev_rx_queue *rxqueue;
198d83bb 4335 void *orig_data, *orig_data_end;
de8f3a83 4336 u32 metalen, act = XDP_DROP;
29724956
JDB
4337 __be16 orig_eth_type;
4338 struct ethhdr *eth;
4339 bool orig_bcast;
d4455169
JF
4340 int hlen, off;
4341 u32 mac_len;
4342
4343 /* Reinjected packets coming from act_mirred or similar should
4344 * not get XDP generic processing.
4345 */
cd11b164 4346 if (skb_cloned(skb) || skb_is_tc_redirected(skb))
d4455169
JF
4347 return XDP_PASS;
4348
de8f3a83
DB
4349 /* XDP packets must be linear and must have sufficient headroom
4350 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4351 * native XDP provides, thus we need to do it here as well.
4352 */
4353 if (skb_is_nonlinear(skb) ||
4354 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4355 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4356 int troom = skb->tail + skb->data_len - skb->end;
4357
4358 /* In case we have to go down the path and also linearize,
4359 * then lets do the pskb_expand_head() work just once here.
4360 */
4361 if (pskb_expand_head(skb,
4362 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4363 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4364 goto do_drop;
2d17d8d7 4365 if (skb_linearize(skb))
de8f3a83
DB
4366 goto do_drop;
4367 }
d4455169
JF
4368
4369 /* The XDP program wants to see the packet starting at the MAC
4370 * header.
4371 */
4372 mac_len = skb->data - skb_mac_header(skb);
4373 hlen = skb_headlen(skb) + mac_len;
02671e23
BT
4374 xdp->data = skb->data - mac_len;
4375 xdp->data_meta = xdp->data;
4376 xdp->data_end = xdp->data + hlen;
4377 xdp->data_hard_start = skb->data - skb_headroom(skb);
4378 orig_data_end = xdp->data_end;
4379 orig_data = xdp->data;
29724956
JDB
4380 eth = (struct ethhdr *)xdp->data;
4381 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4382 orig_eth_type = eth->h_proto;
d4455169 4383
e817f856 4384 rxqueue = netif_get_rxqueue(skb);
02671e23 4385 xdp->rxq = &rxqueue->xdp_rxq;
e817f856 4386
02671e23 4387 act = bpf_prog_run_xdp(xdp_prog, xdp);
d4455169 4388
02671e23 4389 off = xdp->data - orig_data;
d4455169
JF
4390 if (off > 0)
4391 __skb_pull(skb, off);
4392 else if (off < 0)
4393 __skb_push(skb, -off);
92dd5452 4394 skb->mac_header += off;
d4455169 4395
198d83bb
NS
4396 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4397 * pckt.
4398 */
02671e23 4399 off = orig_data_end - xdp->data_end;
f7613120 4400 if (off != 0) {
02671e23 4401 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
f7613120 4402 skb->len -= off;
02671e23 4403
f7613120 4404 }
198d83bb 4405
29724956
JDB
4406 /* check if XDP changed eth hdr such SKB needs update */
4407 eth = (struct ethhdr *)xdp->data;
4408 if ((orig_eth_type != eth->h_proto) ||
4409 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4410 __skb_push(skb, ETH_HLEN);
4411 skb->protocol = eth_type_trans(skb, skb->dev);
4412 }
4413
d4455169 4414 switch (act) {
6103aa96 4415 case XDP_REDIRECT:
d4455169
JF
4416 case XDP_TX:
4417 __skb_push(skb, mac_len);
de8f3a83 4418 break;
d4455169 4419 case XDP_PASS:
02671e23 4420 metalen = xdp->data - xdp->data_meta;
de8f3a83
DB
4421 if (metalen)
4422 skb_metadata_set(skb, metalen);
d4455169 4423 break;
d4455169
JF
4424 default:
4425 bpf_warn_invalid_xdp_action(act);
4426 /* fall through */
4427 case XDP_ABORTED:
4428 trace_xdp_exception(skb->dev, xdp_prog, act);
4429 /* fall through */
4430 case XDP_DROP:
4431 do_drop:
4432 kfree_skb(skb);
4433 break;
4434 }
4435
4436 return act;
4437}
4438
4439/* When doing generic XDP we have to bypass the qdisc layer and the
4440 * network taps in order to match in-driver-XDP behavior.
4441 */
7c497478 4442void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
4443{
4444 struct net_device *dev = skb->dev;
4445 struct netdev_queue *txq;
4446 bool free_skb = true;
4447 int cpu, rc;
4448
4bd97d51 4449 txq = netdev_core_pick_tx(dev, skb, NULL);
d4455169
JF
4450 cpu = smp_processor_id();
4451 HARD_TX_LOCK(dev, txq, cpu);
4452 if (!netif_xmit_stopped(txq)) {
4453 rc = netdev_start_xmit(skb, dev, txq, 0);
4454 if (dev_xmit_complete(rc))
4455 free_skb = false;
4456 }
4457 HARD_TX_UNLOCK(dev, txq);
4458 if (free_skb) {
4459 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4460 kfree_skb(skb);
4461 }
4462}
7c497478 4463EXPORT_SYMBOL_GPL(generic_xdp_tx);
d4455169 4464
02786475 4465static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
d4455169 4466
7c497478 4467int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 4468{
d4455169 4469 if (xdp_prog) {
02671e23
BT
4470 struct xdp_buff xdp;
4471 u32 act;
6103aa96 4472 int err;
d4455169 4473
02671e23 4474 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
d4455169 4475 if (act != XDP_PASS) {
6103aa96
JF
4476 switch (act) {
4477 case XDP_REDIRECT:
2facaad6 4478 err = xdp_do_generic_redirect(skb->dev, skb,
02671e23 4479 &xdp, xdp_prog);
6103aa96
JF
4480 if (err)
4481 goto out_redir;
02671e23 4482 break;
6103aa96 4483 case XDP_TX:
d4455169 4484 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4485 break;
4486 }
d4455169
JF
4487 return XDP_DROP;
4488 }
4489 }
4490 return XDP_PASS;
6103aa96 4491out_redir:
6103aa96
JF
4492 kfree_skb(skb);
4493 return XDP_DROP;
d4455169 4494}
7c497478 4495EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4496
ae78dbfa 4497static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4498{
b0e28f1e 4499 int ret;
1da177e4 4500
588f0330 4501 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4502
cf66ba58 4503 trace_netif_rx(skb);
d4455169 4504
df334545 4505#ifdef CONFIG_RPS
dc05360f 4506 if (static_branch_unlikely(&rps_needed)) {
fec5e652 4507 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4508 int cpu;
4509
cece1945 4510 preempt_disable();
b0e28f1e 4511 rcu_read_lock();
fec5e652
TH
4512
4513 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4514 if (cpu < 0)
4515 cpu = smp_processor_id();
fec5e652
TH
4516
4517 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4518
b0e28f1e 4519 rcu_read_unlock();
cece1945 4520 preempt_enable();
adc9300e
ED
4521 } else
4522#endif
fec5e652
TH
4523 {
4524 unsigned int qtail;
f4563a75 4525
fec5e652
TH
4526 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4527 put_cpu();
4528 }
b0e28f1e 4529 return ret;
1da177e4 4530}
ae78dbfa
BH
4531
4532/**
4533 * netif_rx - post buffer to the network code
4534 * @skb: buffer to post
4535 *
4536 * This function receives a packet from a device driver and queues it for
4537 * the upper (protocol) levels to process. It always succeeds. The buffer
4538 * may be dropped during processing for congestion control or by the
4539 * protocol layers.
4540 *
4541 * return values:
4542 * NET_RX_SUCCESS (no congestion)
4543 * NET_RX_DROP (packet was dropped)
4544 *
4545 */
4546
4547int netif_rx(struct sk_buff *skb)
4548{
b0e3f1bd
GB
4549 int ret;
4550
ae78dbfa
BH
4551 trace_netif_rx_entry(skb);
4552
b0e3f1bd
GB
4553 ret = netif_rx_internal(skb);
4554 trace_netif_rx_exit(ret);
4555
4556 return ret;
ae78dbfa 4557}
d1b19dff 4558EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4559
4560int netif_rx_ni(struct sk_buff *skb)
4561{
4562 int err;
4563
ae78dbfa
BH
4564 trace_netif_rx_ni_entry(skb);
4565
1da177e4 4566 preempt_disable();
ae78dbfa 4567 err = netif_rx_internal(skb);
1da177e4
LT
4568 if (local_softirq_pending())
4569 do_softirq();
4570 preempt_enable();
b0e3f1bd 4571 trace_netif_rx_ni_exit(err);
1da177e4
LT
4572
4573 return err;
4574}
1da177e4
LT
4575EXPORT_SYMBOL(netif_rx_ni);
4576
0766f788 4577static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4578{
903ceff7 4579 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4580
4581 if (sd->completion_queue) {
4582 struct sk_buff *clist;
4583
4584 local_irq_disable();
4585 clist = sd->completion_queue;
4586 sd->completion_queue = NULL;
4587 local_irq_enable();
4588
4589 while (clist) {
4590 struct sk_buff *skb = clist;
f4563a75 4591
1da177e4
LT
4592 clist = clist->next;
4593
63354797 4594 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4595 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4596 trace_consume_skb(skb);
4597 else
4598 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
4599
4600 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4601 __kfree_skb(skb);
4602 else
4603 __kfree_skb_defer(skb);
1da177e4 4604 }
15fad714
JDB
4605
4606 __kfree_skb_flush();
1da177e4
LT
4607 }
4608
4609 if (sd->output_queue) {
37437bb2 4610 struct Qdisc *head;
1da177e4
LT
4611
4612 local_irq_disable();
4613 head = sd->output_queue;
4614 sd->output_queue = NULL;
a9cbd588 4615 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
4616 local_irq_enable();
4617
4618 while (head) {
37437bb2 4619 struct Qdisc *q = head;
6b3ba914 4620 spinlock_t *root_lock = NULL;
37437bb2 4621
1da177e4
LT
4622 head = head->next_sched;
4623
6b3ba914
JF
4624 if (!(q->flags & TCQ_F_NOLOCK)) {
4625 root_lock = qdisc_lock(q);
4626 spin_lock(root_lock);
4627 }
3bcb846c
ED
4628 /* We need to make sure head->next_sched is read
4629 * before clearing __QDISC_STATE_SCHED
4630 */
4631 smp_mb__before_atomic();
4632 clear_bit(__QDISC_STATE_SCHED, &q->state);
4633 qdisc_run(q);
6b3ba914
JF
4634 if (root_lock)
4635 spin_unlock(root_lock);
1da177e4
LT
4636 }
4637 }
f53c7239
SK
4638
4639 xfrm_dev_backlog(sd);
1da177e4
LT
4640}
4641
181402a5 4642#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
4643/* This hook is defined here for ATM LANE */
4644int (*br_fdb_test_addr_hook)(struct net_device *dev,
4645 unsigned char *addr) __read_mostly;
4fb019a0 4646EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 4647#endif
1da177e4 4648
1f211a1b
DB
4649static inline struct sk_buff *
4650sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4651 struct net_device *orig_dev)
f697c3e8 4652{
e7582bab 4653#ifdef CONFIG_NET_CLS_ACT
46209401 4654 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
d2788d34 4655 struct tcf_result cl_res;
24824a09 4656
c9e99fd0
DB
4657 /* If there's at least one ingress present somewhere (so
4658 * we get here via enabled static key), remaining devices
4659 * that are not configured with an ingress qdisc will bail
d2788d34 4660 * out here.
c9e99fd0 4661 */
46209401 4662 if (!miniq)
4577139b 4663 return skb;
46209401 4664
f697c3e8
HX
4665 if (*pt_prev) {
4666 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4667 *pt_prev = NULL;
1da177e4
LT
4668 }
4669
3365495c 4670 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 4671 skb->tc_at_ingress = 1;
46209401 4672 mini_qdisc_bstats_cpu_update(miniq, skb);
c9e99fd0 4673
46209401 4674 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
d2788d34
DB
4675 case TC_ACT_OK:
4676 case TC_ACT_RECLASSIFY:
4677 skb->tc_index = TC_H_MIN(cl_res.classid);
4678 break;
4679 case TC_ACT_SHOT:
46209401 4680 mini_qdisc_qstats_cpu_drop(miniq);
8a3a4c6e
ED
4681 kfree_skb(skb);
4682 return NULL;
d2788d34
DB
4683 case TC_ACT_STOLEN:
4684 case TC_ACT_QUEUED:
e25ea21f 4685 case TC_ACT_TRAP:
8a3a4c6e 4686 consume_skb(skb);
d2788d34 4687 return NULL;
27b29f63
AS
4688 case TC_ACT_REDIRECT:
4689 /* skb_mac_header check was done by cls/act_bpf, so
4690 * we can safely push the L2 header back before
4691 * redirecting to another netdev
4692 */
4693 __skb_push(skb, skb->mac_len);
4694 skb_do_redirect(skb);
4695 return NULL;
cd11b164
PA
4696 case TC_ACT_REINSERT:
4697 /* this does not scrub the packet, and updates stats on error */
4698 skb_tc_reinsert(skb, &cl_res);
4699 return NULL;
d2788d34
DB
4700 default:
4701 break;
f697c3e8 4702 }
e7582bab 4703#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
4704 return skb;
4705}
1da177e4 4706
24b27fc4
MB
4707/**
4708 * netdev_is_rx_handler_busy - check if receive handler is registered
4709 * @dev: device to check
4710 *
4711 * Check if a receive handler is already registered for a given device.
4712 * Return true if there one.
4713 *
4714 * The caller must hold the rtnl_mutex.
4715 */
4716bool netdev_is_rx_handler_busy(struct net_device *dev)
4717{
4718 ASSERT_RTNL();
4719 return dev && rtnl_dereference(dev->rx_handler);
4720}
4721EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4722
ab95bfe0
JP
4723/**
4724 * netdev_rx_handler_register - register receive handler
4725 * @dev: device to register a handler for
4726 * @rx_handler: receive handler to register
93e2c32b 4727 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 4728 *
e227867f 4729 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
4730 * called from __netif_receive_skb. A negative errno code is returned
4731 * on a failure.
4732 *
4733 * The caller must hold the rtnl_mutex.
8a4eb573
JP
4734 *
4735 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
4736 */
4737int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
4738 rx_handler_func_t *rx_handler,
4739 void *rx_handler_data)
ab95bfe0 4740{
1b7cd004 4741 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
4742 return -EBUSY;
4743
f5426250
PA
4744 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4745 return -EINVAL;
4746
00cfec37 4747 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4748 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4749 rcu_assign_pointer(dev->rx_handler, rx_handler);
4750
4751 return 0;
4752}
4753EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4754
4755/**
4756 * netdev_rx_handler_unregister - unregister receive handler
4757 * @dev: device to unregister a handler from
4758 *
166ec369 4759 * Unregister a receive handler from a device.
ab95bfe0
JP
4760 *
4761 * The caller must hold the rtnl_mutex.
4762 */
4763void netdev_rx_handler_unregister(struct net_device *dev)
4764{
4765
4766 ASSERT_RTNL();
a9b3cd7f 4767 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4768 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4769 * section has a guarantee to see a non NULL rx_handler_data
4770 * as well.
4771 */
4772 synchronize_net();
a9b3cd7f 4773 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4774}
4775EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4776
b4b9e355
MG
4777/*
4778 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4779 * the special handling of PFMEMALLOC skbs.
4780 */
4781static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4782{
4783 switch (skb->protocol) {
2b8837ae
JP
4784 case htons(ETH_P_ARP):
4785 case htons(ETH_P_IP):
4786 case htons(ETH_P_IPV6):
4787 case htons(ETH_P_8021Q):
4788 case htons(ETH_P_8021AD):
b4b9e355
MG
4789 return true;
4790 default:
4791 return false;
4792 }
4793}
4794
e687ad60
PN
4795static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4796 int *ret, struct net_device *orig_dev)
4797{
e7582bab 4798#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4799 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4800 int ingress_retval;
4801
e687ad60
PN
4802 if (*pt_prev) {
4803 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4804 *pt_prev = NULL;
4805 }
4806
2c1e2703
AC
4807 rcu_read_lock();
4808 ingress_retval = nf_hook_ingress(skb);
4809 rcu_read_unlock();
4810 return ingress_retval;
e687ad60 4811 }
e7582bab 4812#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4813 return 0;
4814}
e687ad60 4815
88eb1944
EC
4816static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4817 struct packet_type **ppt_prev)
1da177e4
LT
4818{
4819 struct packet_type *ptype, *pt_prev;
ab95bfe0 4820 rx_handler_func_t *rx_handler;
f2ccd8fa 4821 struct net_device *orig_dev;
8a4eb573 4822 bool deliver_exact = false;
1da177e4 4823 int ret = NET_RX_DROP;
252e3346 4824 __be16 type;
1da177e4 4825
588f0330 4826 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4827
cf66ba58 4828 trace_netif_receive_skb(skb);
9b22ea56 4829
cc9bd5ce 4830 orig_dev = skb->dev;
8f903c70 4831
c1d2bbe1 4832 skb_reset_network_header(skb);
fda55eca
ED
4833 if (!skb_transport_header_was_set(skb))
4834 skb_reset_transport_header(skb);
0b5c9db1 4835 skb_reset_mac_len(skb);
1da177e4
LT
4836
4837 pt_prev = NULL;
4838
63d8ea7f 4839another_round:
b6858177 4840 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4841
4842 __this_cpu_inc(softnet_data.processed);
4843
458bf2f2
SH
4844 if (static_branch_unlikely(&generic_xdp_needed_key)) {
4845 int ret2;
4846
4847 preempt_disable();
4848 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4849 preempt_enable();
4850
4851 if (ret2 != XDP_PASS)
4852 return NET_RX_DROP;
4853 skb_reset_mac_len(skb);
4854 }
4855
8ad227ff
PM
4856 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4857 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4858 skb = skb_vlan_untag(skb);
bcc6d479 4859 if (unlikely(!skb))
2c17d27c 4860 goto out;
bcc6d479
JP
4861 }
4862
e7246e12
WB
4863 if (skb_skip_tc_classify(skb))
4864 goto skip_classify;
1da177e4 4865
9754e293 4866 if (pfmemalloc)
b4b9e355
MG
4867 goto skip_taps;
4868
1da177e4 4869 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4870 if (pt_prev)
4871 ret = deliver_skb(skb, pt_prev, orig_dev);
4872 pt_prev = ptype;
4873 }
4874
4875 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4876 if (pt_prev)
4877 ret = deliver_skb(skb, pt_prev, orig_dev);
4878 pt_prev = ptype;
1da177e4
LT
4879 }
4880
b4b9e355 4881skip_taps:
1cf51900 4882#ifdef CONFIG_NET_INGRESS
aabf6772 4883 if (static_branch_unlikely(&ingress_needed_key)) {
1f211a1b 4884 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4885 if (!skb)
2c17d27c 4886 goto out;
e687ad60
PN
4887
4888 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4889 goto out;
4577139b 4890 }
1cf51900 4891#endif
a5135bcf 4892 skb_reset_tc(skb);
e7246e12 4893skip_classify:
9754e293 4894 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4895 goto drop;
4896
df8a39de 4897 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4898 if (pt_prev) {
4899 ret = deliver_skb(skb, pt_prev, orig_dev);
4900 pt_prev = NULL;
4901 }
48cc32d3 4902 if (vlan_do_receive(&skb))
2425717b
JF
4903 goto another_round;
4904 else if (unlikely(!skb))
2c17d27c 4905 goto out;
2425717b
JF
4906 }
4907
48cc32d3 4908 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4909 if (rx_handler) {
4910 if (pt_prev) {
4911 ret = deliver_skb(skb, pt_prev, orig_dev);
4912 pt_prev = NULL;
4913 }
8a4eb573
JP
4914 switch (rx_handler(&skb)) {
4915 case RX_HANDLER_CONSUMED:
3bc1b1ad 4916 ret = NET_RX_SUCCESS;
2c17d27c 4917 goto out;
8a4eb573 4918 case RX_HANDLER_ANOTHER:
63d8ea7f 4919 goto another_round;
8a4eb573
JP
4920 case RX_HANDLER_EXACT:
4921 deliver_exact = true;
4922 case RX_HANDLER_PASS:
4923 break;
4924 default:
4925 BUG();
4926 }
ab95bfe0 4927 }
1da177e4 4928
df8a39de
JP
4929 if (unlikely(skb_vlan_tag_present(skb))) {
4930 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4931 skb->pkt_type = PACKET_OTHERHOST;
4932 /* Note: we might in the future use prio bits
4933 * and set skb->priority like in vlan_do_receive()
4934 * For the time being, just ignore Priority Code Point
4935 */
b1817524 4936 __vlan_hwaccel_clear_tag(skb);
d4b812de 4937 }
48cc32d3 4938
7866a621
SN
4939 type = skb->protocol;
4940
63d8ea7f 4941 /* deliver only exact match when indicated */
7866a621
SN
4942 if (likely(!deliver_exact)) {
4943 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4944 &ptype_base[ntohs(type) &
4945 PTYPE_HASH_MASK]);
4946 }
1f3c8804 4947
7866a621
SN
4948 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4949 &orig_dev->ptype_specific);
4950
4951 if (unlikely(skb->dev != orig_dev)) {
4952 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4953 &skb->dev->ptype_specific);
1da177e4
LT
4954 }
4955
4956 if (pt_prev) {
1f8b977a 4957 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 4958 goto drop;
88eb1944 4959 *ppt_prev = pt_prev;
1da177e4 4960 } else {
b4b9e355 4961drop:
6e7333d3
JW
4962 if (!deliver_exact)
4963 atomic_long_inc(&skb->dev->rx_dropped);
4964 else
4965 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4966 kfree_skb(skb);
4967 /* Jamal, now you will not able to escape explaining
4968 * me how you were going to use this. :-)
4969 */
4970 ret = NET_RX_DROP;
4971 }
4972
2c17d27c 4973out:
9754e293
DM
4974 return ret;
4975}
4976
88eb1944
EC
4977static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4978{
4979 struct net_device *orig_dev = skb->dev;
4980 struct packet_type *pt_prev = NULL;
4981 int ret;
4982
4983 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4984 if (pt_prev)
f5737cba
PA
4985 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
4986 skb->dev, pt_prev, orig_dev);
88eb1944
EC
4987 return ret;
4988}
4989
1c601d82
JDB
4990/**
4991 * netif_receive_skb_core - special purpose version of netif_receive_skb
4992 * @skb: buffer to process
4993 *
4994 * More direct receive version of netif_receive_skb(). It should
4995 * only be used by callers that have a need to skip RPS and Generic XDP.
4996 * Caller must also take care of handling if (page_is_)pfmemalloc.
4997 *
4998 * This function may only be called from softirq context and interrupts
4999 * should be enabled.
5000 *
5001 * Return values (usually ignored):
5002 * NET_RX_SUCCESS: no congestion
5003 * NET_RX_DROP: packet was dropped
5004 */
5005int netif_receive_skb_core(struct sk_buff *skb)
5006{
5007 int ret;
5008
5009 rcu_read_lock();
88eb1944 5010 ret = __netif_receive_skb_one_core(skb, false);
1c601d82
JDB
5011 rcu_read_unlock();
5012
5013 return ret;
5014}
5015EXPORT_SYMBOL(netif_receive_skb_core);
5016
88eb1944
EC
5017static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5018 struct packet_type *pt_prev,
5019 struct net_device *orig_dev)
4ce0017a
EC
5020{
5021 struct sk_buff *skb, *next;
5022
88eb1944
EC
5023 if (!pt_prev)
5024 return;
5025 if (list_empty(head))
5026 return;
17266ee9 5027 if (pt_prev->list_func != NULL)
fdf71426
PA
5028 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5029 ip_list_rcv, head, pt_prev, orig_dev);
17266ee9 5030 else
9a5a90d1
AL
5031 list_for_each_entry_safe(skb, next, head, list) {
5032 skb_list_del_init(skb);
fdf71426 5033 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
9a5a90d1 5034 }
88eb1944
EC
5035}
5036
5037static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5038{
5039 /* Fast-path assumptions:
5040 * - There is no RX handler.
5041 * - Only one packet_type matches.
5042 * If either of these fails, we will end up doing some per-packet
5043 * processing in-line, then handling the 'last ptype' for the whole
5044 * sublist. This can't cause out-of-order delivery to any single ptype,
5045 * because the 'last ptype' must be constant across the sublist, and all
5046 * other ptypes are handled per-packet.
5047 */
5048 /* Current (common) ptype of sublist */
5049 struct packet_type *pt_curr = NULL;
5050 /* Current (common) orig_dev of sublist */
5051 struct net_device *od_curr = NULL;
5052 struct list_head sublist;
5053 struct sk_buff *skb, *next;
5054
9af86f93 5055 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5056 list_for_each_entry_safe(skb, next, head, list) {
5057 struct net_device *orig_dev = skb->dev;
5058 struct packet_type *pt_prev = NULL;
5059
22f6bbb7 5060 skb_list_del_init(skb);
88eb1944 5061 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
9af86f93
EC
5062 if (!pt_prev)
5063 continue;
88eb1944
EC
5064 if (pt_curr != pt_prev || od_curr != orig_dev) {
5065 /* dispatch old sublist */
88eb1944
EC
5066 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5067 /* start new sublist */
9af86f93 5068 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5069 pt_curr = pt_prev;
5070 od_curr = orig_dev;
5071 }
9af86f93 5072 list_add_tail(&skb->list, &sublist);
88eb1944
EC
5073 }
5074
5075 /* dispatch final sublist */
9af86f93 5076 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4ce0017a
EC
5077}
5078
9754e293
DM
5079static int __netif_receive_skb(struct sk_buff *skb)
5080{
5081 int ret;
5082
5083 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 5084 unsigned int noreclaim_flag;
9754e293
DM
5085
5086 /*
5087 * PFMEMALLOC skbs are special, they should
5088 * - be delivered to SOCK_MEMALLOC sockets only
5089 * - stay away from userspace
5090 * - have bounded memory usage
5091 *
5092 * Use PF_MEMALLOC as this saves us from propagating the allocation
5093 * context down to all allocation sites.
5094 */
f1083048 5095 noreclaim_flag = memalloc_noreclaim_save();
88eb1944 5096 ret = __netif_receive_skb_one_core(skb, true);
f1083048 5097 memalloc_noreclaim_restore(noreclaim_flag);
9754e293 5098 } else
88eb1944 5099 ret = __netif_receive_skb_one_core(skb, false);
9754e293 5100
1da177e4
LT
5101 return ret;
5102}
0a9627f2 5103
4ce0017a
EC
5104static void __netif_receive_skb_list(struct list_head *head)
5105{
5106 unsigned long noreclaim_flag = 0;
5107 struct sk_buff *skb, *next;
5108 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5109
5110 list_for_each_entry_safe(skb, next, head, list) {
5111 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5112 struct list_head sublist;
5113
5114 /* Handle the previous sublist */
5115 list_cut_before(&sublist, head, &skb->list);
b9f463d6
EC
5116 if (!list_empty(&sublist))
5117 __netif_receive_skb_list_core(&sublist, pfmemalloc);
4ce0017a
EC
5118 pfmemalloc = !pfmemalloc;
5119 /* See comments in __netif_receive_skb */
5120 if (pfmemalloc)
5121 noreclaim_flag = memalloc_noreclaim_save();
5122 else
5123 memalloc_noreclaim_restore(noreclaim_flag);
5124 }
5125 }
5126 /* Handle the remaining sublist */
b9f463d6
EC
5127 if (!list_empty(head))
5128 __netif_receive_skb_list_core(head, pfmemalloc);
4ce0017a
EC
5129 /* Restore pflags */
5130 if (pfmemalloc)
5131 memalloc_noreclaim_restore(noreclaim_flag);
5132}
5133
f4e63525 5134static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
b5cdae32 5135{
58038695 5136 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
5137 struct bpf_prog *new = xdp->prog;
5138 int ret = 0;
5139
5140 switch (xdp->command) {
58038695 5141 case XDP_SETUP_PROG:
b5cdae32
DM
5142 rcu_assign_pointer(dev->xdp_prog, new);
5143 if (old)
5144 bpf_prog_put(old);
5145
5146 if (old && !new) {
02786475 5147 static_branch_dec(&generic_xdp_needed_key);
b5cdae32 5148 } else if (new && !old) {
02786475 5149 static_branch_inc(&generic_xdp_needed_key);
b5cdae32 5150 dev_disable_lro(dev);
56f5aa77 5151 dev_disable_gro_hw(dev);
b5cdae32
DM
5152 }
5153 break;
b5cdae32
DM
5154
5155 case XDP_QUERY_PROG:
58038695 5156 xdp->prog_id = old ? old->aux->id : 0;
b5cdae32
DM
5157 break;
5158
5159 default:
5160 ret = -EINVAL;
5161 break;
5162 }
5163
5164 return ret;
5165}
5166
ae78dbfa 5167static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 5168{
2c17d27c
JA
5169 int ret;
5170
588f0330 5171 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 5172
c1f19b51
RC
5173 if (skb_defer_rx_timestamp(skb))
5174 return NET_RX_SUCCESS;
5175
bbbe211c 5176 rcu_read_lock();
df334545 5177#ifdef CONFIG_RPS
dc05360f 5178 if (static_branch_unlikely(&rps_needed)) {
3b098e2d 5179 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 5180 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 5181
3b098e2d
ED
5182 if (cpu >= 0) {
5183 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5184 rcu_read_unlock();
adc9300e 5185 return ret;
3b098e2d 5186 }
fec5e652 5187 }
1e94d72f 5188#endif
2c17d27c
JA
5189 ret = __netif_receive_skb(skb);
5190 rcu_read_unlock();
5191 return ret;
0a9627f2 5192}
ae78dbfa 5193
7da517a3
EC
5194static void netif_receive_skb_list_internal(struct list_head *head)
5195{
7da517a3 5196 struct sk_buff *skb, *next;
8c057efa 5197 struct list_head sublist;
7da517a3 5198
8c057efa 5199 INIT_LIST_HEAD(&sublist);
7da517a3
EC
5200 list_for_each_entry_safe(skb, next, head, list) {
5201 net_timestamp_check(netdev_tstamp_prequeue, skb);
22f6bbb7 5202 skb_list_del_init(skb);
8c057efa
EC
5203 if (!skb_defer_rx_timestamp(skb))
5204 list_add_tail(&skb->list, &sublist);
7da517a3 5205 }
8c057efa 5206 list_splice_init(&sublist, head);
7da517a3 5207
7da517a3
EC
5208 rcu_read_lock();
5209#ifdef CONFIG_RPS
dc05360f 5210 if (static_branch_unlikely(&rps_needed)) {
7da517a3
EC
5211 list_for_each_entry_safe(skb, next, head, list) {
5212 struct rps_dev_flow voidflow, *rflow = &voidflow;
5213 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5214
5215 if (cpu >= 0) {
8c057efa 5216 /* Will be handled, remove from list */
22f6bbb7 5217 skb_list_del_init(skb);
8c057efa 5218 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
7da517a3
EC
5219 }
5220 }
5221 }
5222#endif
5223 __netif_receive_skb_list(head);
5224 rcu_read_unlock();
5225}
5226
ae78dbfa
BH
5227/**
5228 * netif_receive_skb - process receive buffer from network
5229 * @skb: buffer to process
5230 *
5231 * netif_receive_skb() is the main receive data processing function.
5232 * It always succeeds. The buffer may be dropped during processing
5233 * for congestion control or by the protocol layers.
5234 *
5235 * This function may only be called from softirq context and interrupts
5236 * should be enabled.
5237 *
5238 * Return values (usually ignored):
5239 * NET_RX_SUCCESS: no congestion
5240 * NET_RX_DROP: packet was dropped
5241 */
04eb4489 5242int netif_receive_skb(struct sk_buff *skb)
ae78dbfa 5243{
b0e3f1bd
GB
5244 int ret;
5245
ae78dbfa
BH
5246 trace_netif_receive_skb_entry(skb);
5247
b0e3f1bd
GB
5248 ret = netif_receive_skb_internal(skb);
5249 trace_netif_receive_skb_exit(ret);
5250
5251 return ret;
ae78dbfa 5252}
04eb4489 5253EXPORT_SYMBOL(netif_receive_skb);
1da177e4 5254
f6ad8c1b
EC
5255/**
5256 * netif_receive_skb_list - process many receive buffers from network
5257 * @head: list of skbs to process.
5258 *
7da517a3
EC
5259 * Since return value of netif_receive_skb() is normally ignored, and
5260 * wouldn't be meaningful for a list, this function returns void.
f6ad8c1b
EC
5261 *
5262 * This function may only be called from softirq context and interrupts
5263 * should be enabled.
5264 */
5265void netif_receive_skb_list(struct list_head *head)
5266{
7da517a3 5267 struct sk_buff *skb;
f6ad8c1b 5268
b9f463d6
EC
5269 if (list_empty(head))
5270 return;
b0e3f1bd
GB
5271 if (trace_netif_receive_skb_list_entry_enabled()) {
5272 list_for_each_entry(skb, head, list)
5273 trace_netif_receive_skb_list_entry(skb);
5274 }
7da517a3 5275 netif_receive_skb_list_internal(head);
b0e3f1bd 5276 trace_netif_receive_skb_list_exit(0);
f6ad8c1b
EC
5277}
5278EXPORT_SYMBOL(netif_receive_skb_list);
5279
41852497 5280DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
5281
5282/* Network device is going away, flush any packets still pending */
5283static void flush_backlog(struct work_struct *work)
6e583ce5 5284{
6e583ce5 5285 struct sk_buff *skb, *tmp;
145dd5f9
PA
5286 struct softnet_data *sd;
5287
5288 local_bh_disable();
5289 sd = this_cpu_ptr(&softnet_data);
6e583ce5 5290
145dd5f9 5291 local_irq_disable();
e36fa2f7 5292 rps_lock(sd);
6e7676c1 5293 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 5294 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 5295 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 5296 kfree_skb(skb);
76cc8b13 5297 input_queue_head_incr(sd);
6e583ce5 5298 }
6e7676c1 5299 }
e36fa2f7 5300 rps_unlock(sd);
145dd5f9 5301 local_irq_enable();
6e7676c1
CG
5302
5303 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 5304 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
5305 __skb_unlink(skb, &sd->process_queue);
5306 kfree_skb(skb);
76cc8b13 5307 input_queue_head_incr(sd);
6e7676c1
CG
5308 }
5309 }
145dd5f9
PA
5310 local_bh_enable();
5311}
5312
41852497 5313static void flush_all_backlogs(void)
145dd5f9
PA
5314{
5315 unsigned int cpu;
5316
5317 get_online_cpus();
5318
41852497
ED
5319 for_each_online_cpu(cpu)
5320 queue_work_on(cpu, system_highpri_wq,
5321 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5322
5323 for_each_online_cpu(cpu)
41852497 5324 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5325
5326 put_online_cpus();
6e583ce5
SH
5327}
5328
aaa5d90b
PA
5329INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5330INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
d565b0a1
HX
5331static int napi_gro_complete(struct sk_buff *skb)
5332{
22061d80 5333 struct packet_offload *ptype;
d565b0a1 5334 __be16 type = skb->protocol;
22061d80 5335 struct list_head *head = &offload_base;
d565b0a1
HX
5336 int err = -ENOENT;
5337
c3c7c254
ED
5338 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5339
fc59f9a3
HX
5340 if (NAPI_GRO_CB(skb)->count == 1) {
5341 skb_shinfo(skb)->gso_size = 0;
d565b0a1 5342 goto out;
fc59f9a3 5343 }
d565b0a1
HX
5344
5345 rcu_read_lock();
5346 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5347 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
5348 continue;
5349
aaa5d90b
PA
5350 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5351 ipv6_gro_complete, inet_gro_complete,
5352 skb, 0);
d565b0a1
HX
5353 break;
5354 }
5355 rcu_read_unlock();
5356
5357 if (err) {
5358 WARN_ON(&ptype->list == head);
5359 kfree_skb(skb);
5360 return NET_RX_SUCCESS;
5361 }
5362
5363out:
ae78dbfa 5364 return netif_receive_skb_internal(skb);
d565b0a1
HX
5365}
5366
6312fe77 5367static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
07d78363 5368 bool flush_old)
d565b0a1 5369{
6312fe77 5370 struct list_head *head = &napi->gro_hash[index].list;
d4546c25 5371 struct sk_buff *skb, *p;
2e71a6f8 5372
07d78363 5373 list_for_each_entry_safe_reverse(skb, p, head, list) {
2e71a6f8
ED
5374 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5375 return;
992cba7e 5376 skb_list_del_init(skb);
d565b0a1 5377 napi_gro_complete(skb);
6312fe77 5378 napi->gro_hash[index].count--;
d565b0a1 5379 }
d9f37d01
LR
5380
5381 if (!napi->gro_hash[index].count)
5382 __clear_bit(index, &napi->gro_bitmask);
d565b0a1 5383}
07d78363 5384
6312fe77 5385/* napi->gro_hash[].list contains packets ordered by age.
07d78363
DM
5386 * youngest packets at the head of it.
5387 * Complete skbs in reverse order to reduce latencies.
5388 */
5389void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5390{
42519ede
ED
5391 unsigned long bitmask = napi->gro_bitmask;
5392 unsigned int i, base = ~0U;
07d78363 5393
42519ede
ED
5394 while ((i = ffs(bitmask)) != 0) {
5395 bitmask >>= i;
5396 base += i;
5397 __napi_gro_flush_chain(napi, base, flush_old);
d9f37d01 5398 }
07d78363 5399}
86cac58b 5400EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 5401
07d78363
DM
5402static struct list_head *gro_list_prepare(struct napi_struct *napi,
5403 struct sk_buff *skb)
89c5fa33 5404{
89c5fa33 5405 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 5406 u32 hash = skb_get_hash_raw(skb);
07d78363 5407 struct list_head *head;
d4546c25 5408 struct sk_buff *p;
89c5fa33 5409
6312fe77 5410 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
07d78363 5411 list_for_each_entry(p, head, list) {
89c5fa33
ED
5412 unsigned long diffs;
5413
0b4cec8c
TH
5414 NAPI_GRO_CB(p)->flush = 0;
5415
5416 if (hash != skb_get_hash_raw(p)) {
5417 NAPI_GRO_CB(p)->same_flow = 0;
5418 continue;
5419 }
5420
89c5fa33 5421 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
b1817524
MM
5422 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5423 if (skb_vlan_tag_present(p))
5424 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 5425 diffs |= skb_metadata_dst_cmp(p, skb);
de8f3a83 5426 diffs |= skb_metadata_differs(p, skb);
89c5fa33
ED
5427 if (maclen == ETH_HLEN)
5428 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 5429 skb_mac_header(skb));
89c5fa33
ED
5430 else if (!diffs)
5431 diffs = memcmp(skb_mac_header(p),
a50e233c 5432 skb_mac_header(skb),
89c5fa33
ED
5433 maclen);
5434 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33 5435 }
07d78363
DM
5436
5437 return head;
89c5fa33
ED
5438}
5439
299603e8
JC
5440static void skb_gro_reset_offset(struct sk_buff *skb)
5441{
5442 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5443 const skb_frag_t *frag0 = &pinfo->frags[0];
5444
5445 NAPI_GRO_CB(skb)->data_offset = 0;
5446 NAPI_GRO_CB(skb)->frag0 = NULL;
5447 NAPI_GRO_CB(skb)->frag0_len = 0;
5448
5449 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5450 pinfo->nr_frags &&
5451 !PageHighMem(skb_frag_page(frag0))) {
5452 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
5453 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5454 skb_frag_size(frag0),
5455 skb->end - skb->tail);
89c5fa33
ED
5456 }
5457}
5458
a50e233c
ED
5459static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5460{
5461 struct skb_shared_info *pinfo = skb_shinfo(skb);
5462
5463 BUG_ON(skb->end - skb->tail < grow);
5464
5465 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5466
5467 skb->data_len -= grow;
5468 skb->tail += grow;
5469
5470 pinfo->frags[0].page_offset += grow;
5471 skb_frag_size_sub(&pinfo->frags[0], grow);
5472
5473 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5474 skb_frag_unref(skb, 0);
5475 memmove(pinfo->frags, pinfo->frags + 1,
5476 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5477 }
5478}
5479
6312fe77 5480static void gro_flush_oldest(struct list_head *head)
07d78363 5481{
6312fe77 5482 struct sk_buff *oldest;
07d78363 5483
6312fe77 5484 oldest = list_last_entry(head, struct sk_buff, list);
07d78363 5485
6312fe77 5486 /* We are called with head length >= MAX_GRO_SKBS, so this is
07d78363
DM
5487 * impossible.
5488 */
5489 if (WARN_ON_ONCE(!oldest))
5490 return;
5491
d9f37d01
LR
5492 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5493 * SKB to the chain.
07d78363 5494 */
ece23711 5495 skb_list_del_init(oldest);
07d78363
DM
5496 napi_gro_complete(oldest);
5497}
5498
aaa5d90b
PA
5499INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5500 struct sk_buff *));
5501INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5502 struct sk_buff *));
bb728820 5503static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5504{
6312fe77 5505 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
d4546c25 5506 struct list_head *head = &offload_base;
22061d80 5507 struct packet_offload *ptype;
d565b0a1 5508 __be16 type = skb->protocol;
07d78363 5509 struct list_head *gro_head;
d4546c25 5510 struct sk_buff *pp = NULL;
5b252f0c 5511 enum gro_result ret;
d4546c25 5512 int same_flow;
a50e233c 5513 int grow;
d565b0a1 5514
b5cdae32 5515 if (netif_elide_gro(skb->dev))
d565b0a1
HX
5516 goto normal;
5517
07d78363 5518 gro_head = gro_list_prepare(napi, skb);
89c5fa33 5519
d565b0a1
HX
5520 rcu_read_lock();
5521 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5522 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
5523 continue;
5524
86911732 5525 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 5526 skb_reset_mac_len(skb);
d565b0a1 5527 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 5528 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 5529 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 5530 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 5531 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 5532 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 5533 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 5534 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 5535
662880f4
TH
5536 /* Setup for GRO checksum validation */
5537 switch (skb->ip_summed) {
5538 case CHECKSUM_COMPLETE:
5539 NAPI_GRO_CB(skb)->csum = skb->csum;
5540 NAPI_GRO_CB(skb)->csum_valid = 1;
5541 NAPI_GRO_CB(skb)->csum_cnt = 0;
5542 break;
5543 case CHECKSUM_UNNECESSARY:
5544 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5545 NAPI_GRO_CB(skb)->csum_valid = 0;
5546 break;
5547 default:
5548 NAPI_GRO_CB(skb)->csum_cnt = 0;
5549 NAPI_GRO_CB(skb)->csum_valid = 0;
5550 }
d565b0a1 5551
aaa5d90b
PA
5552 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5553 ipv6_gro_receive, inet_gro_receive,
5554 gro_head, skb);
d565b0a1
HX
5555 break;
5556 }
5557 rcu_read_unlock();
5558
5559 if (&ptype->list == head)
5560 goto normal;
5561
25393d3f
SK
5562 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5563 ret = GRO_CONSUMED;
5564 goto ok;
5565 }
5566
0da2afd5 5567 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 5568 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 5569
d565b0a1 5570 if (pp) {
992cba7e 5571 skb_list_del_init(pp);
d4546c25 5572 napi_gro_complete(pp);
6312fe77 5573 napi->gro_hash[hash].count--;
d565b0a1
HX
5574 }
5575
0da2afd5 5576 if (same_flow)
d565b0a1
HX
5577 goto ok;
5578
600adc18 5579 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 5580 goto normal;
d565b0a1 5581
6312fe77
LR
5582 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5583 gro_flush_oldest(gro_head);
600adc18 5584 } else {
6312fe77 5585 napi->gro_hash[hash].count++;
600adc18 5586 }
d565b0a1 5587 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 5588 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 5589 NAPI_GRO_CB(skb)->last = skb;
86911732 5590 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
07d78363 5591 list_add(&skb->list, gro_head);
5d0d9be8 5592 ret = GRO_HELD;
d565b0a1 5593
ad0f9904 5594pull:
a50e233c
ED
5595 grow = skb_gro_offset(skb) - skb_headlen(skb);
5596 if (grow > 0)
5597 gro_pull_from_frag0(skb, grow);
d565b0a1 5598ok:
d9f37d01
LR
5599 if (napi->gro_hash[hash].count) {
5600 if (!test_bit(hash, &napi->gro_bitmask))
5601 __set_bit(hash, &napi->gro_bitmask);
5602 } else if (test_bit(hash, &napi->gro_bitmask)) {
5603 __clear_bit(hash, &napi->gro_bitmask);
5604 }
5605
5d0d9be8 5606 return ret;
d565b0a1
HX
5607
5608normal:
ad0f9904
HX
5609 ret = GRO_NORMAL;
5610 goto pull;
5d38a079 5611}
96e93eab 5612
bf5a755f
JC
5613struct packet_offload *gro_find_receive_by_type(__be16 type)
5614{
5615 struct list_head *offload_head = &offload_base;
5616 struct packet_offload *ptype;
5617
5618 list_for_each_entry_rcu(ptype, offload_head, list) {
5619 if (ptype->type != type || !ptype->callbacks.gro_receive)
5620 continue;
5621 return ptype;
5622 }
5623 return NULL;
5624}
e27a2f83 5625EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
5626
5627struct packet_offload *gro_find_complete_by_type(__be16 type)
5628{
5629 struct list_head *offload_head = &offload_base;
5630 struct packet_offload *ptype;
5631
5632 list_for_each_entry_rcu(ptype, offload_head, list) {
5633 if (ptype->type != type || !ptype->callbacks.gro_complete)
5634 continue;
5635 return ptype;
5636 }
5637 return NULL;
5638}
e27a2f83 5639EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 5640
e44699d2
MK
5641static void napi_skb_free_stolen_head(struct sk_buff *skb)
5642{
5643 skb_dst_drop(skb);
5644 secpath_reset(skb);
5645 kmem_cache_free(skbuff_head_cache, skb);
5646}
5647
bb728820 5648static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 5649{
5d0d9be8
HX
5650 switch (ret) {
5651 case GRO_NORMAL:
ae78dbfa 5652 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
5653 ret = GRO_DROP;
5654 break;
5d38a079 5655
5d0d9be8 5656 case GRO_DROP:
5d38a079
HX
5657 kfree_skb(skb);
5658 break;
5b252f0c 5659
daa86548 5660 case GRO_MERGED_FREE:
e44699d2
MK
5661 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5662 napi_skb_free_stolen_head(skb);
5663 else
d7e8883c 5664 __kfree_skb(skb);
daa86548
ED
5665 break;
5666
5b252f0c
BH
5667 case GRO_HELD:
5668 case GRO_MERGED:
25393d3f 5669 case GRO_CONSUMED:
5b252f0c 5670 break;
5d38a079
HX
5671 }
5672
c7c4b3b6 5673 return ret;
5d0d9be8 5674}
5d0d9be8 5675
c7c4b3b6 5676gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 5677{
b0e3f1bd
GB
5678 gro_result_t ret;
5679
93f93a44 5680 skb_mark_napi_id(skb, napi);
ae78dbfa 5681 trace_napi_gro_receive_entry(skb);
86911732 5682
a50e233c
ED
5683 skb_gro_reset_offset(skb);
5684
b0e3f1bd
GB
5685 ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5686 trace_napi_gro_receive_exit(ret);
5687
5688 return ret;
d565b0a1
HX
5689}
5690EXPORT_SYMBOL(napi_gro_receive);
5691
d0c2b0d2 5692static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 5693{
93a35f59
ED
5694 if (unlikely(skb->pfmemalloc)) {
5695 consume_skb(skb);
5696 return;
5697 }
96e93eab 5698 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
5699 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5700 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
b1817524 5701 __vlan_hwaccel_clear_tag(skb);
66c46d74 5702 skb->dev = napi->dev;
6d152e23 5703 skb->skb_iif = 0;
33d9a2c7
ED
5704
5705 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5706 skb->pkt_type = PACKET_HOST;
5707
c3caf119
JC
5708 skb->encapsulation = 0;
5709 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 5710 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
f991bb9d 5711 secpath_reset(skb);
96e93eab
HX
5712
5713 napi->skb = skb;
5714}
96e93eab 5715
76620aaf 5716struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 5717{
5d38a079 5718 struct sk_buff *skb = napi->skb;
5d38a079
HX
5719
5720 if (!skb) {
fd11a83d 5721 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
5722 if (skb) {
5723 napi->skb = skb;
5724 skb_mark_napi_id(skb, napi);
5725 }
80595d59 5726 }
96e93eab
HX
5727 return skb;
5728}
76620aaf 5729EXPORT_SYMBOL(napi_get_frags);
96e93eab 5730
a50e233c
ED
5731static gro_result_t napi_frags_finish(struct napi_struct *napi,
5732 struct sk_buff *skb,
5733 gro_result_t ret)
96e93eab 5734{
5d0d9be8
HX
5735 switch (ret) {
5736 case GRO_NORMAL:
a50e233c
ED
5737 case GRO_HELD:
5738 __skb_push(skb, ETH_HLEN);
5739 skb->protocol = eth_type_trans(skb, skb->dev);
5740 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 5741 ret = GRO_DROP;
86911732 5742 break;
5d38a079 5743
5d0d9be8 5744 case GRO_DROP:
5d0d9be8
HX
5745 napi_reuse_skb(napi, skb);
5746 break;
5b252f0c 5747
e44699d2
MK
5748 case GRO_MERGED_FREE:
5749 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5750 napi_skb_free_stolen_head(skb);
5751 else
5752 napi_reuse_skb(napi, skb);
5753 break;
5754
5b252f0c 5755 case GRO_MERGED:
25393d3f 5756 case GRO_CONSUMED:
5b252f0c 5757 break;
5d0d9be8 5758 }
5d38a079 5759
c7c4b3b6 5760 return ret;
5d38a079 5761}
5d0d9be8 5762
a50e233c
ED
5763/* Upper GRO stack assumes network header starts at gro_offset=0
5764 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5765 * We copy ethernet header into skb->data to have a common layout.
5766 */
4adb9c4a 5767static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
5768{
5769 struct sk_buff *skb = napi->skb;
a50e233c
ED
5770 const struct ethhdr *eth;
5771 unsigned int hlen = sizeof(*eth);
76620aaf
HX
5772
5773 napi->skb = NULL;
5774
a50e233c
ED
5775 skb_reset_mac_header(skb);
5776 skb_gro_reset_offset(skb);
5777
a50e233c
ED
5778 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5779 eth = skb_gro_header_slow(skb, hlen, 0);
5780 if (unlikely(!eth)) {
4da46ceb
AC
5781 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5782 __func__, napi->dev->name);
a50e233c
ED
5783 napi_reuse_skb(napi, skb);
5784 return NULL;
5785 }
5786 } else {
a4270d67 5787 eth = (const struct ethhdr *)skb->data;
a50e233c
ED
5788 gro_pull_from_frag0(skb, hlen);
5789 NAPI_GRO_CB(skb)->frag0 += hlen;
5790 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 5791 }
a50e233c
ED
5792 __skb_pull(skb, hlen);
5793
5794 /*
5795 * This works because the only protocols we care about don't require
5796 * special handling.
5797 * We'll fix it up properly in napi_frags_finish()
5798 */
5799 skb->protocol = eth->h_proto;
76620aaf 5800
76620aaf
HX
5801 return skb;
5802}
76620aaf 5803
c7c4b3b6 5804gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 5805{
b0e3f1bd 5806 gro_result_t ret;
76620aaf 5807 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
5808
5809 if (!skb)
c7c4b3b6 5810 return GRO_DROP;
5d0d9be8 5811
ae78dbfa
BH
5812 trace_napi_gro_frags_entry(skb);
5813
b0e3f1bd
GB
5814 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5815 trace_napi_gro_frags_exit(ret);
5816
5817 return ret;
5d0d9be8 5818}
5d38a079
HX
5819EXPORT_SYMBOL(napi_gro_frags);
5820
573e8fca
TH
5821/* Compute the checksum from gro_offset and return the folded value
5822 * after adding in any pseudo checksum.
5823 */
5824__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5825{
5826 __wsum wsum;
5827 __sum16 sum;
5828
5829 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5830
5831 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5832 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
14641931 5833 /* See comments in __skb_checksum_complete(). */
573e8fca
TH
5834 if (likely(!sum)) {
5835 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5836 !skb->csum_complete_sw)
7fe50ac8 5837 netdev_rx_csum_fault(skb->dev, skb);
573e8fca
TH
5838 }
5839
5840 NAPI_GRO_CB(skb)->csum = wsum;
5841 NAPI_GRO_CB(skb)->csum_valid = 1;
5842
5843 return sum;
5844}
5845EXPORT_SYMBOL(__skb_gro_checksum_complete);
5846
773fc8f6 5847static void net_rps_send_ipi(struct softnet_data *remsd)
5848{
5849#ifdef CONFIG_RPS
5850 while (remsd) {
5851 struct softnet_data *next = remsd->rps_ipi_next;
5852
5853 if (cpu_online(remsd->cpu))
5854 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5855 remsd = next;
5856 }
5857#endif
5858}
5859
e326bed2 5860/*
855abcf0 5861 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
5862 * Note: called with local irq disabled, but exits with local irq enabled.
5863 */
5864static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5865{
5866#ifdef CONFIG_RPS
5867 struct softnet_data *remsd = sd->rps_ipi_list;
5868
5869 if (remsd) {
5870 sd->rps_ipi_list = NULL;
5871
5872 local_irq_enable();
5873
5874 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 5875 net_rps_send_ipi(remsd);
e326bed2
ED
5876 } else
5877#endif
5878 local_irq_enable();
5879}
5880
d75b1ade
ED
5881static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5882{
5883#ifdef CONFIG_RPS
5884 return sd->rps_ipi_list != NULL;
5885#else
5886 return false;
5887#endif
5888}
5889
bea3348e 5890static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 5891{
eecfd7c4 5892 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
5893 bool again = true;
5894 int work = 0;
1da177e4 5895
e326bed2
ED
5896 /* Check if we have pending ipi, its better to send them now,
5897 * not waiting net_rx_action() end.
5898 */
d75b1ade 5899 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
5900 local_irq_disable();
5901 net_rps_action_and_irq_enable(sd);
5902 }
d75b1ade 5903
3d48b53f 5904 napi->weight = dev_rx_weight;
145dd5f9 5905 while (again) {
1da177e4 5906 struct sk_buff *skb;
6e7676c1
CG
5907
5908 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 5909 rcu_read_lock();
6e7676c1 5910 __netif_receive_skb(skb);
2c17d27c 5911 rcu_read_unlock();
76cc8b13 5912 input_queue_head_incr(sd);
145dd5f9 5913 if (++work >= quota)
76cc8b13 5914 return work;
145dd5f9 5915
6e7676c1 5916 }
1da177e4 5917
145dd5f9 5918 local_irq_disable();
e36fa2f7 5919 rps_lock(sd);
11ef7a89 5920 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
5921 /*
5922 * Inline a custom version of __napi_complete().
5923 * only current cpu owns and manipulates this napi,
11ef7a89
TH
5924 * and NAPI_STATE_SCHED is the only possible flag set
5925 * on backlog.
5926 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
5927 * and we dont need an smp_mb() memory barrier.
5928 */
eecfd7c4 5929 napi->state = 0;
145dd5f9
PA
5930 again = false;
5931 } else {
5932 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5933 &sd->process_queue);
bea3348e 5934 }
e36fa2f7 5935 rps_unlock(sd);
145dd5f9 5936 local_irq_enable();
6e7676c1 5937 }
1da177e4 5938
bea3348e
SH
5939 return work;
5940}
1da177e4 5941
bea3348e
SH
5942/**
5943 * __napi_schedule - schedule for receive
c4ea43c5 5944 * @n: entry to schedule
bea3348e 5945 *
bc9ad166
ED
5946 * The entry's receive function will be scheduled to run.
5947 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 5948 */
b5606c2d 5949void __napi_schedule(struct napi_struct *n)
bea3348e
SH
5950{
5951 unsigned long flags;
1da177e4 5952
bea3348e 5953 local_irq_save(flags);
903ceff7 5954 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 5955 local_irq_restore(flags);
1da177e4 5956}
bea3348e
SH
5957EXPORT_SYMBOL(__napi_schedule);
5958
39e6c820
ED
5959/**
5960 * napi_schedule_prep - check if napi can be scheduled
5961 * @n: napi context
5962 *
5963 * Test if NAPI routine is already running, and if not mark
5964 * it as running. This is used as a condition variable
5965 * insure only one NAPI poll instance runs. We also make
5966 * sure there is no pending NAPI disable.
5967 */
5968bool napi_schedule_prep(struct napi_struct *n)
5969{
5970 unsigned long val, new;
5971
5972 do {
5973 val = READ_ONCE(n->state);
5974 if (unlikely(val & NAPIF_STATE_DISABLE))
5975 return false;
5976 new = val | NAPIF_STATE_SCHED;
5977
5978 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5979 * This was suggested by Alexander Duyck, as compiler
5980 * emits better code than :
5981 * if (val & NAPIF_STATE_SCHED)
5982 * new |= NAPIF_STATE_MISSED;
5983 */
5984 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5985 NAPIF_STATE_MISSED;
5986 } while (cmpxchg(&n->state, val, new) != val);
5987
5988 return !(val & NAPIF_STATE_SCHED);
5989}
5990EXPORT_SYMBOL(napi_schedule_prep);
5991
bc9ad166
ED
5992/**
5993 * __napi_schedule_irqoff - schedule for receive
5994 * @n: entry to schedule
5995 *
5996 * Variant of __napi_schedule() assuming hard irqs are masked
5997 */
5998void __napi_schedule_irqoff(struct napi_struct *n)
5999{
6000 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6001}
6002EXPORT_SYMBOL(__napi_schedule_irqoff);
6003
364b6055 6004bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 6005{
39e6c820 6006 unsigned long flags, val, new;
d565b0a1
HX
6007
6008 /*
217f6974
ED
6009 * 1) Don't let napi dequeue from the cpu poll list
6010 * just in case its running on a different cpu.
6011 * 2) If we are busy polling, do nothing here, we have
6012 * the guarantee we will be called later.
d565b0a1 6013 */
217f6974
ED
6014 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6015 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 6016 return false;
d565b0a1 6017
d9f37d01 6018 if (n->gro_bitmask) {
3b47d303 6019 unsigned long timeout = 0;
d75b1ade 6020
3b47d303
ED
6021 if (work_done)
6022 timeout = n->dev->gro_flush_timeout;
6023
605108ac
PA
6024 /* When the NAPI instance uses a timeout and keeps postponing
6025 * it, we need to bound somehow the time packets are kept in
6026 * the GRO layer
6027 */
6028 napi_gro_flush(n, !!timeout);
3b47d303
ED
6029 if (timeout)
6030 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6031 HRTIMER_MODE_REL_PINNED);
3b47d303 6032 }
02c1602e 6033 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
6034 /* If n->poll_list is not empty, we need to mask irqs */
6035 local_irq_save(flags);
02c1602e 6036 list_del_init(&n->poll_list);
d75b1ade
ED
6037 local_irq_restore(flags);
6038 }
39e6c820
ED
6039
6040 do {
6041 val = READ_ONCE(n->state);
6042
6043 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6044
6045 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6046
6047 /* If STATE_MISSED was set, leave STATE_SCHED set,
6048 * because we will call napi->poll() one more time.
6049 * This C code was suggested by Alexander Duyck to help gcc.
6050 */
6051 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6052 NAPIF_STATE_SCHED;
6053 } while (cmpxchg(&n->state, val, new) != val);
6054
6055 if (unlikely(val & NAPIF_STATE_MISSED)) {
6056 __napi_schedule(n);
6057 return false;
6058 }
6059
364b6055 6060 return true;
d565b0a1 6061}
3b47d303 6062EXPORT_SYMBOL(napi_complete_done);
d565b0a1 6063
af12fa6e 6064/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 6065static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
6066{
6067 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6068 struct napi_struct *napi;
6069
6070 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6071 if (napi->napi_id == napi_id)
6072 return napi;
6073
6074 return NULL;
6075}
02d62e86
ED
6076
6077#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 6078
ce6aea93 6079#define BUSY_POLL_BUDGET 8
217f6974
ED
6080
6081static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6082{
6083 int rc;
6084
39e6c820
ED
6085 /* Busy polling means there is a high chance device driver hard irq
6086 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6087 * set in napi_schedule_prep().
6088 * Since we are about to call napi->poll() once more, we can safely
6089 * clear NAPI_STATE_MISSED.
6090 *
6091 * Note: x86 could use a single "lock and ..." instruction
6092 * to perform these two clear_bit()
6093 */
6094 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
6095 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6096
6097 local_bh_disable();
6098
6099 /* All we really want here is to re-enable device interrupts.
6100 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6101 */
6102 rc = napi->poll(napi, BUSY_POLL_BUDGET);
1e22391e 6103 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
217f6974
ED
6104 netpoll_poll_unlock(have_poll_lock);
6105 if (rc == BUSY_POLL_BUDGET)
6106 __napi_schedule(napi);
6107 local_bh_enable();
217f6974
ED
6108}
6109
7db6b048
SS
6110void napi_busy_loop(unsigned int napi_id,
6111 bool (*loop_end)(void *, unsigned long),
6112 void *loop_end_arg)
02d62e86 6113{
7db6b048 6114 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 6115 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 6116 void *have_poll_lock = NULL;
02d62e86 6117 struct napi_struct *napi;
217f6974
ED
6118
6119restart:
217f6974 6120 napi_poll = NULL;
02d62e86 6121
2a028ecb 6122 rcu_read_lock();
02d62e86 6123
545cd5e5 6124 napi = napi_by_id(napi_id);
02d62e86
ED
6125 if (!napi)
6126 goto out;
6127
217f6974
ED
6128 preempt_disable();
6129 for (;;) {
2b5cd0df
AD
6130 int work = 0;
6131
2a028ecb 6132 local_bh_disable();
217f6974
ED
6133 if (!napi_poll) {
6134 unsigned long val = READ_ONCE(napi->state);
6135
6136 /* If multiple threads are competing for this napi,
6137 * we avoid dirtying napi->state as much as we can.
6138 */
6139 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6140 NAPIF_STATE_IN_BUSY_POLL))
6141 goto count;
6142 if (cmpxchg(&napi->state, val,
6143 val | NAPIF_STATE_IN_BUSY_POLL |
6144 NAPIF_STATE_SCHED) != val)
6145 goto count;
6146 have_poll_lock = netpoll_poll_lock(napi);
6147 napi_poll = napi->poll;
6148 }
2b5cd0df
AD
6149 work = napi_poll(napi, BUSY_POLL_BUDGET);
6150 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
217f6974 6151count:
2b5cd0df 6152 if (work > 0)
7db6b048 6153 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 6154 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 6155 local_bh_enable();
02d62e86 6156
7db6b048 6157 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 6158 break;
02d62e86 6159
217f6974
ED
6160 if (unlikely(need_resched())) {
6161 if (napi_poll)
6162 busy_poll_stop(napi, have_poll_lock);
6163 preempt_enable();
6164 rcu_read_unlock();
6165 cond_resched();
7db6b048 6166 if (loop_end(loop_end_arg, start_time))
2b5cd0df 6167 return;
217f6974
ED
6168 goto restart;
6169 }
6cdf89b1 6170 cpu_relax();
217f6974
ED
6171 }
6172 if (napi_poll)
6173 busy_poll_stop(napi, have_poll_lock);
6174 preempt_enable();
02d62e86 6175out:
2a028ecb 6176 rcu_read_unlock();
02d62e86 6177}
7db6b048 6178EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
6179
6180#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 6181
149d6ad8 6182static void napi_hash_add(struct napi_struct *napi)
af12fa6e 6183{
d64b5e85
ED
6184 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6185 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 6186 return;
af12fa6e 6187
52bd2d62 6188 spin_lock(&napi_hash_lock);
af12fa6e 6189
545cd5e5 6190 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 6191 do {
545cd5e5
AD
6192 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6193 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
6194 } while (napi_by_id(napi_gen_id));
6195 napi->napi_id = napi_gen_id;
af12fa6e 6196
52bd2d62
ED
6197 hlist_add_head_rcu(&napi->napi_hash_node,
6198 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 6199
52bd2d62 6200 spin_unlock(&napi_hash_lock);
af12fa6e 6201}
af12fa6e
ET
6202
6203/* Warning : caller is responsible to make sure rcu grace period
6204 * is respected before freeing memory containing @napi
6205 */
34cbe27e 6206bool napi_hash_del(struct napi_struct *napi)
af12fa6e 6207{
34cbe27e
ED
6208 bool rcu_sync_needed = false;
6209
af12fa6e
ET
6210 spin_lock(&napi_hash_lock);
6211
34cbe27e
ED
6212 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6213 rcu_sync_needed = true;
af12fa6e 6214 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 6215 }
af12fa6e 6216 spin_unlock(&napi_hash_lock);
34cbe27e 6217 return rcu_sync_needed;
af12fa6e
ET
6218}
6219EXPORT_SYMBOL_GPL(napi_hash_del);
6220
3b47d303
ED
6221static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6222{
6223 struct napi_struct *napi;
6224
6225 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
6226
6227 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6228 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6229 */
d9f37d01 6230 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
39e6c820
ED
6231 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6232 __napi_schedule_irqoff(napi);
3b47d303
ED
6233
6234 return HRTIMER_NORESTART;
6235}
6236
7c4ec749 6237static void init_gro_hash(struct napi_struct *napi)
d565b0a1 6238{
07d78363
DM
6239 int i;
6240
6312fe77
LR
6241 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6242 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6243 napi->gro_hash[i].count = 0;
6244 }
7c4ec749
DM
6245 napi->gro_bitmask = 0;
6246}
6247
6248void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6249 int (*poll)(struct napi_struct *, int), int weight)
6250{
6251 INIT_LIST_HEAD(&napi->poll_list);
6252 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6253 napi->timer.function = napi_watchdog;
6254 init_gro_hash(napi);
5d38a079 6255 napi->skb = NULL;
d565b0a1 6256 napi->poll = poll;
82dc3c63 6257 if (weight > NAPI_POLL_WEIGHT)
bf29e9e9
QC
6258 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6259 weight);
d565b0a1
HX
6260 napi->weight = weight;
6261 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 6262 napi->dev = dev;
5d38a079 6263#ifdef CONFIG_NETPOLL
d565b0a1
HX
6264 napi->poll_owner = -1;
6265#endif
6266 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 6267 napi_hash_add(napi);
d565b0a1
HX
6268}
6269EXPORT_SYMBOL(netif_napi_add);
6270
3b47d303
ED
6271void napi_disable(struct napi_struct *n)
6272{
6273 might_sleep();
6274 set_bit(NAPI_STATE_DISABLE, &n->state);
6275
6276 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6277 msleep(1);
2d8bff12
NH
6278 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6279 msleep(1);
3b47d303
ED
6280
6281 hrtimer_cancel(&n->timer);
6282
6283 clear_bit(NAPI_STATE_DISABLE, &n->state);
6284}
6285EXPORT_SYMBOL(napi_disable);
6286
07d78363 6287static void flush_gro_hash(struct napi_struct *napi)
d4546c25 6288{
07d78363 6289 int i;
d4546c25 6290
07d78363
DM
6291 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6292 struct sk_buff *skb, *n;
6293
6312fe77 6294 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
07d78363 6295 kfree_skb(skb);
6312fe77 6296 napi->gro_hash[i].count = 0;
07d78363 6297 }
d4546c25
DM
6298}
6299
93d05d4a 6300/* Must be called in process context */
d565b0a1
HX
6301void netif_napi_del(struct napi_struct *napi)
6302{
93d05d4a
ED
6303 might_sleep();
6304 if (napi_hash_del(napi))
6305 synchronize_net();
d7b06636 6306 list_del_init(&napi->dev_list);
76620aaf 6307 napi_free_frags(napi);
d565b0a1 6308
07d78363 6309 flush_gro_hash(napi);
d9f37d01 6310 napi->gro_bitmask = 0;
d565b0a1
HX
6311}
6312EXPORT_SYMBOL(netif_napi_del);
6313
726ce70e
HX
6314static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6315{
6316 void *have;
6317 int work, weight;
6318
6319 list_del_init(&n->poll_list);
6320
6321 have = netpoll_poll_lock(n);
6322
6323 weight = n->weight;
6324
6325 /* This NAPI_STATE_SCHED test is for avoiding a race
6326 * with netpoll's poll_napi(). Only the entity which
6327 * obtains the lock and sees NAPI_STATE_SCHED set will
6328 * actually make the ->poll() call. Therefore we avoid
6329 * accidentally calling ->poll() when NAPI is not scheduled.
6330 */
6331 work = 0;
6332 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6333 work = n->poll(n, weight);
1db19db7 6334 trace_napi_poll(n, work, weight);
726ce70e
HX
6335 }
6336
6337 WARN_ON_ONCE(work > weight);
6338
6339 if (likely(work < weight))
6340 goto out_unlock;
6341
6342 /* Drivers must not modify the NAPI state if they
6343 * consume the entire weight. In such cases this code
6344 * still "owns" the NAPI instance and therefore can
6345 * move the instance around on the list at-will.
6346 */
6347 if (unlikely(napi_disable_pending(n))) {
6348 napi_complete(n);
6349 goto out_unlock;
6350 }
6351
d9f37d01 6352 if (n->gro_bitmask) {
726ce70e
HX
6353 /* flush too old packets
6354 * If HZ < 1000, flush all packets.
6355 */
6356 napi_gro_flush(n, HZ >= 1000);
6357 }
6358
001ce546
HX
6359 /* Some drivers may have called napi_schedule
6360 * prior to exhausting their budget.
6361 */
6362 if (unlikely(!list_empty(&n->poll_list))) {
6363 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6364 n->dev ? n->dev->name : "backlog");
6365 goto out_unlock;
6366 }
6367
726ce70e
HX
6368 list_add_tail(&n->poll_list, repoll);
6369
6370out_unlock:
6371 netpoll_poll_unlock(have);
6372
6373 return work;
6374}
6375
0766f788 6376static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 6377{
903ceff7 6378 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
6379 unsigned long time_limit = jiffies +
6380 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 6381 int budget = netdev_budget;
d75b1ade
ED
6382 LIST_HEAD(list);
6383 LIST_HEAD(repoll);
53fb95d3 6384
1da177e4 6385 local_irq_disable();
d75b1ade
ED
6386 list_splice_init(&sd->poll_list, &list);
6387 local_irq_enable();
1da177e4 6388
ceb8d5bf 6389 for (;;) {
bea3348e 6390 struct napi_struct *n;
1da177e4 6391
ceb8d5bf
HX
6392 if (list_empty(&list)) {
6393 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 6394 goto out;
ceb8d5bf
HX
6395 break;
6396 }
6397
6bd373eb
HX
6398 n = list_first_entry(&list, struct napi_struct, poll_list);
6399 budget -= napi_poll(n, &repoll);
6400
d75b1ade 6401 /* If softirq window is exhausted then punt.
24f8b238
SH
6402 * Allow this to run for 2 jiffies since which will allow
6403 * an average latency of 1.5/HZ.
bea3348e 6404 */
ceb8d5bf
HX
6405 if (unlikely(budget <= 0 ||
6406 time_after_eq(jiffies, time_limit))) {
6407 sd->time_squeeze++;
6408 break;
6409 }
1da177e4 6410 }
d75b1ade 6411
d75b1ade
ED
6412 local_irq_disable();
6413
6414 list_splice_tail_init(&sd->poll_list, &list);
6415 list_splice_tail(&repoll, &list);
6416 list_splice(&list, &sd->poll_list);
6417 if (!list_empty(&sd->poll_list))
6418 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6419
e326bed2 6420 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
6421out:
6422 __kfree_skb_flush();
1da177e4
LT
6423}
6424
aa9d8560 6425struct netdev_adjacent {
9ff162a8 6426 struct net_device *dev;
5d261913
VF
6427
6428 /* upper master flag, there can only be one master device per list */
9ff162a8 6429 bool master;
5d261913 6430
5d261913
VF
6431 /* counter for the number of times this device was added to us */
6432 u16 ref_nr;
6433
402dae96
VF
6434 /* private field for the users */
6435 void *private;
6436
9ff162a8
JP
6437 struct list_head list;
6438 struct rcu_head rcu;
9ff162a8
JP
6439};
6440
6ea29da1 6441static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 6442 struct list_head *adj_list)
9ff162a8 6443{
5d261913 6444 struct netdev_adjacent *adj;
5d261913 6445
2f268f12 6446 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
6447 if (adj->dev == adj_dev)
6448 return adj;
9ff162a8
JP
6449 }
6450 return NULL;
6451}
6452
f1170fd4
DA
6453static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6454{
6455 struct net_device *dev = data;
6456
6457 return upper_dev == dev;
6458}
6459
9ff162a8
JP
6460/**
6461 * netdev_has_upper_dev - Check if device is linked to an upper device
6462 * @dev: device
6463 * @upper_dev: upper device to check
6464 *
6465 * Find out if a device is linked to specified upper device and return true
6466 * in case it is. Note that this checks only immediate upper device,
6467 * not through a complete stack of devices. The caller must hold the RTNL lock.
6468 */
6469bool netdev_has_upper_dev(struct net_device *dev,
6470 struct net_device *upper_dev)
6471{
6472 ASSERT_RTNL();
6473
f1170fd4
DA
6474 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6475 upper_dev);
9ff162a8
JP
6476}
6477EXPORT_SYMBOL(netdev_has_upper_dev);
6478
1a3f060c
DA
6479/**
6480 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6481 * @dev: device
6482 * @upper_dev: upper device to check
6483 *
6484 * Find out if a device is linked to specified upper device and return true
6485 * in case it is. Note that this checks the entire upper device chain.
6486 * The caller must hold rcu lock.
6487 */
6488
1a3f060c
DA
6489bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6490 struct net_device *upper_dev)
6491{
6492 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6493 upper_dev);
6494}
6495EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6496
9ff162a8
JP
6497/**
6498 * netdev_has_any_upper_dev - Check if device is linked to some device
6499 * @dev: device
6500 *
6501 * Find out if a device is linked to an upper device and return true in case
6502 * it is. The caller must hold the RTNL lock.
6503 */
25cc72a3 6504bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
6505{
6506 ASSERT_RTNL();
6507
f1170fd4 6508 return !list_empty(&dev->adj_list.upper);
9ff162a8 6509}
25cc72a3 6510EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
6511
6512/**
6513 * netdev_master_upper_dev_get - Get master upper device
6514 * @dev: device
6515 *
6516 * Find a master upper device and return pointer to it or NULL in case
6517 * it's not there. The caller must hold the RTNL lock.
6518 */
6519struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6520{
aa9d8560 6521 struct netdev_adjacent *upper;
9ff162a8
JP
6522
6523 ASSERT_RTNL();
6524
2f268f12 6525 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
6526 return NULL;
6527
2f268f12 6528 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 6529 struct netdev_adjacent, list);
9ff162a8
JP
6530 if (likely(upper->master))
6531 return upper->dev;
6532 return NULL;
6533}
6534EXPORT_SYMBOL(netdev_master_upper_dev_get);
6535
0f524a80
DA
6536/**
6537 * netdev_has_any_lower_dev - Check if device is linked to some device
6538 * @dev: device
6539 *
6540 * Find out if a device is linked to a lower device and return true in case
6541 * it is. The caller must hold the RTNL lock.
6542 */
6543static bool netdev_has_any_lower_dev(struct net_device *dev)
6544{
6545 ASSERT_RTNL();
6546
6547 return !list_empty(&dev->adj_list.lower);
6548}
6549
b6ccba4c
VF
6550void *netdev_adjacent_get_private(struct list_head *adj_list)
6551{
6552 struct netdev_adjacent *adj;
6553
6554 adj = list_entry(adj_list, struct netdev_adjacent, list);
6555
6556 return adj->private;
6557}
6558EXPORT_SYMBOL(netdev_adjacent_get_private);
6559
44a40855
VY
6560/**
6561 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6562 * @dev: device
6563 * @iter: list_head ** of the current position
6564 *
6565 * Gets the next device from the dev's upper list, starting from iter
6566 * position. The caller must hold RCU read lock.
6567 */
6568struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6569 struct list_head **iter)
6570{
6571 struct netdev_adjacent *upper;
6572
6573 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6574
6575 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6576
6577 if (&upper->list == &dev->adj_list.upper)
6578 return NULL;
6579
6580 *iter = &upper->list;
6581
6582 return upper->dev;
6583}
6584EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6585
1a3f060c
DA
6586static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6587 struct list_head **iter)
6588{
6589 struct netdev_adjacent *upper;
6590
6591 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6592
6593 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6594
6595 if (&upper->list == &dev->adj_list.upper)
6596 return NULL;
6597
6598 *iter = &upper->list;
6599
6600 return upper->dev;
6601}
6602
6603int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6604 int (*fn)(struct net_device *dev,
6605 void *data),
6606 void *data)
6607{
6608 struct net_device *udev;
6609 struct list_head *iter;
6610 int ret;
6611
6612 for (iter = &dev->adj_list.upper,
6613 udev = netdev_next_upper_dev_rcu(dev, &iter);
6614 udev;
6615 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6616 /* first is the upper device itself */
6617 ret = fn(udev, data);
6618 if (ret)
6619 return ret;
6620
6621 /* then look at all of its upper devices */
6622 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6623 if (ret)
6624 return ret;
6625 }
6626
6627 return 0;
6628}
6629EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6630
31088a11
VF
6631/**
6632 * netdev_lower_get_next_private - Get the next ->private from the
6633 * lower neighbour list
6634 * @dev: device
6635 * @iter: list_head ** of the current position
6636 *
6637 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6638 * list, starting from iter position. The caller must hold either hold the
6639 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 6640 * list will remain unchanged.
31088a11
VF
6641 */
6642void *netdev_lower_get_next_private(struct net_device *dev,
6643 struct list_head **iter)
6644{
6645 struct netdev_adjacent *lower;
6646
6647 lower = list_entry(*iter, struct netdev_adjacent, list);
6648
6649 if (&lower->list == &dev->adj_list.lower)
6650 return NULL;
6651
6859e7df 6652 *iter = lower->list.next;
31088a11
VF
6653
6654 return lower->private;
6655}
6656EXPORT_SYMBOL(netdev_lower_get_next_private);
6657
6658/**
6659 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6660 * lower neighbour list, RCU
6661 * variant
6662 * @dev: device
6663 * @iter: list_head ** of the current position
6664 *
6665 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6666 * list, starting from iter position. The caller must hold RCU read lock.
6667 */
6668void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6669 struct list_head **iter)
6670{
6671 struct netdev_adjacent *lower;
6672
6673 WARN_ON_ONCE(!rcu_read_lock_held());
6674
6675 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6676
6677 if (&lower->list == &dev->adj_list.lower)
6678 return NULL;
6679
6859e7df 6680 *iter = &lower->list;
31088a11
VF
6681
6682 return lower->private;
6683}
6684EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6685
4085ebe8
VY
6686/**
6687 * netdev_lower_get_next - Get the next device from the lower neighbour
6688 * list
6689 * @dev: device
6690 * @iter: list_head ** of the current position
6691 *
6692 * Gets the next netdev_adjacent from the dev's lower neighbour
6693 * list, starting from iter position. The caller must hold RTNL lock or
6694 * its own locking that guarantees that the neighbour lower
b469139e 6695 * list will remain unchanged.
4085ebe8
VY
6696 */
6697void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6698{
6699 struct netdev_adjacent *lower;
6700
cfdd28be 6701 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
6702
6703 if (&lower->list == &dev->adj_list.lower)
6704 return NULL;
6705
cfdd28be 6706 *iter = lower->list.next;
4085ebe8
VY
6707
6708 return lower->dev;
6709}
6710EXPORT_SYMBOL(netdev_lower_get_next);
6711
1a3f060c
DA
6712static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6713 struct list_head **iter)
6714{
6715 struct netdev_adjacent *lower;
6716
46b5ab1a 6717 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
6718
6719 if (&lower->list == &dev->adj_list.lower)
6720 return NULL;
6721
46b5ab1a 6722 *iter = &lower->list;
1a3f060c
DA
6723
6724 return lower->dev;
6725}
6726
6727int netdev_walk_all_lower_dev(struct net_device *dev,
6728 int (*fn)(struct net_device *dev,
6729 void *data),
6730 void *data)
6731{
6732 struct net_device *ldev;
6733 struct list_head *iter;
6734 int ret;
6735
6736 for (iter = &dev->adj_list.lower,
6737 ldev = netdev_next_lower_dev(dev, &iter);
6738 ldev;
6739 ldev = netdev_next_lower_dev(dev, &iter)) {
6740 /* first is the lower device itself */
6741 ret = fn(ldev, data);
6742 if (ret)
6743 return ret;
6744
6745 /* then look at all of its lower devices */
6746 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6747 if (ret)
6748 return ret;
6749 }
6750
6751 return 0;
6752}
6753EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6754
1a3f060c
DA
6755static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6756 struct list_head **iter)
6757{
6758 struct netdev_adjacent *lower;
6759
6760 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6761 if (&lower->list == &dev->adj_list.lower)
6762 return NULL;
6763
6764 *iter = &lower->list;
6765
6766 return lower->dev;
6767}
6768
6769int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6770 int (*fn)(struct net_device *dev,
6771 void *data),
6772 void *data)
6773{
6774 struct net_device *ldev;
6775 struct list_head *iter;
6776 int ret;
6777
6778 for (iter = &dev->adj_list.lower,
6779 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6780 ldev;
6781 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6782 /* first is the lower device itself */
6783 ret = fn(ldev, data);
6784 if (ret)
6785 return ret;
6786
6787 /* then look at all of its lower devices */
6788 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6789 if (ret)
6790 return ret;
6791 }
6792
6793 return 0;
6794}
6795EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6796
e001bfad 6797/**
6798 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6799 * lower neighbour list, RCU
6800 * variant
6801 * @dev: device
6802 *
6803 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6804 * list. The caller must hold RCU read lock.
6805 */
6806void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6807{
6808 struct netdev_adjacent *lower;
6809
6810 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6811 struct netdev_adjacent, list);
6812 if (lower)
6813 return lower->private;
6814 return NULL;
6815}
6816EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6817
9ff162a8
JP
6818/**
6819 * netdev_master_upper_dev_get_rcu - Get master upper device
6820 * @dev: device
6821 *
6822 * Find a master upper device and return pointer to it or NULL in case
6823 * it's not there. The caller must hold the RCU read lock.
6824 */
6825struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6826{
aa9d8560 6827 struct netdev_adjacent *upper;
9ff162a8 6828
2f268f12 6829 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 6830 struct netdev_adjacent, list);
9ff162a8
JP
6831 if (upper && likely(upper->master))
6832 return upper->dev;
6833 return NULL;
6834}
6835EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6836
0a59f3a9 6837static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
6838 struct net_device *adj_dev,
6839 struct list_head *dev_list)
6840{
6841 char linkname[IFNAMSIZ+7];
f4563a75 6842
3ee32707
VF
6843 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6844 "upper_%s" : "lower_%s", adj_dev->name);
6845 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6846 linkname);
6847}
0a59f3a9 6848static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
6849 char *name,
6850 struct list_head *dev_list)
6851{
6852 char linkname[IFNAMSIZ+7];
f4563a75 6853
3ee32707
VF
6854 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6855 "upper_%s" : "lower_%s", name);
6856 sysfs_remove_link(&(dev->dev.kobj), linkname);
6857}
6858
7ce64c79
AF
6859static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6860 struct net_device *adj_dev,
6861 struct list_head *dev_list)
6862{
6863 return (dev_list == &dev->adj_list.upper ||
6864 dev_list == &dev->adj_list.lower) &&
6865 net_eq(dev_net(dev), dev_net(adj_dev));
6866}
3ee32707 6867
5d261913
VF
6868static int __netdev_adjacent_dev_insert(struct net_device *dev,
6869 struct net_device *adj_dev,
7863c054 6870 struct list_head *dev_list,
402dae96 6871 void *private, bool master)
5d261913
VF
6872{
6873 struct netdev_adjacent *adj;
842d67a7 6874 int ret;
5d261913 6875
6ea29da1 6876 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
6877
6878 if (adj) {
790510d9 6879 adj->ref_nr += 1;
67b62f98
DA
6880 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6881 dev->name, adj_dev->name, adj->ref_nr);
6882
5d261913
VF
6883 return 0;
6884 }
6885
6886 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6887 if (!adj)
6888 return -ENOMEM;
6889
6890 adj->dev = adj_dev;
6891 adj->master = master;
790510d9 6892 adj->ref_nr = 1;
402dae96 6893 adj->private = private;
5d261913 6894 dev_hold(adj_dev);
2f268f12 6895
67b62f98
DA
6896 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6897 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 6898
7ce64c79 6899 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 6900 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
6901 if (ret)
6902 goto free_adj;
6903 }
6904
7863c054 6905 /* Ensure that master link is always the first item in list. */
842d67a7
VF
6906 if (master) {
6907 ret = sysfs_create_link(&(dev->dev.kobj),
6908 &(adj_dev->dev.kobj), "master");
6909 if (ret)
5831d66e 6910 goto remove_symlinks;
842d67a7 6911
7863c054 6912 list_add_rcu(&adj->list, dev_list);
842d67a7 6913 } else {
7863c054 6914 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 6915 }
5d261913
VF
6916
6917 return 0;
842d67a7 6918
5831d66e 6919remove_symlinks:
7ce64c79 6920 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6921 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
6922free_adj:
6923 kfree(adj);
974daef7 6924 dev_put(adj_dev);
842d67a7
VF
6925
6926 return ret;
5d261913
VF
6927}
6928
1d143d9f 6929static void __netdev_adjacent_dev_remove(struct net_device *dev,
6930 struct net_device *adj_dev,
93409033 6931 u16 ref_nr,
1d143d9f 6932 struct list_head *dev_list)
5d261913
VF
6933{
6934 struct netdev_adjacent *adj;
6935
67b62f98
DA
6936 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6937 dev->name, adj_dev->name, ref_nr);
6938
6ea29da1 6939 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 6940
2f268f12 6941 if (!adj) {
67b62f98 6942 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 6943 dev->name, adj_dev->name);
67b62f98
DA
6944 WARN_ON(1);
6945 return;
2f268f12 6946 }
5d261913 6947
93409033 6948 if (adj->ref_nr > ref_nr) {
67b62f98
DA
6949 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6950 dev->name, adj_dev->name, ref_nr,
6951 adj->ref_nr - ref_nr);
93409033 6952 adj->ref_nr -= ref_nr;
5d261913
VF
6953 return;
6954 }
6955
842d67a7
VF
6956 if (adj->master)
6957 sysfs_remove_link(&(dev->dev.kobj), "master");
6958
7ce64c79 6959 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6960 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 6961
5d261913 6962 list_del_rcu(&adj->list);
67b62f98 6963 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 6964 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
6965 dev_put(adj_dev);
6966 kfree_rcu(adj, rcu);
6967}
6968
1d143d9f 6969static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6970 struct net_device *upper_dev,
6971 struct list_head *up_list,
6972 struct list_head *down_list,
6973 void *private, bool master)
5d261913
VF
6974{
6975 int ret;
6976
790510d9 6977 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 6978 private, master);
5d261913
VF
6979 if (ret)
6980 return ret;
6981
790510d9 6982 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 6983 private, false);
5d261913 6984 if (ret) {
790510d9 6985 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
6986 return ret;
6987 }
6988
6989 return 0;
6990}
6991
1d143d9f 6992static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6993 struct net_device *upper_dev,
93409033 6994 u16 ref_nr,
1d143d9f 6995 struct list_head *up_list,
6996 struct list_head *down_list)
5d261913 6997{
93409033
AC
6998 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6999 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
7000}
7001
1d143d9f 7002static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7003 struct net_device *upper_dev,
7004 void *private, bool master)
2f268f12 7005{
f1170fd4
DA
7006 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7007 &dev->adj_list.upper,
7008 &upper_dev->adj_list.lower,
7009 private, master);
5d261913
VF
7010}
7011
1d143d9f 7012static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7013 struct net_device *upper_dev)
2f268f12 7014{
93409033 7015 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
7016 &dev->adj_list.upper,
7017 &upper_dev->adj_list.lower);
7018}
5d261913 7019
9ff162a8 7020static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 7021 struct net_device *upper_dev, bool master,
42ab19ee
DA
7022 void *upper_priv, void *upper_info,
7023 struct netlink_ext_ack *extack)
9ff162a8 7024{
51d0c047
DA
7025 struct netdev_notifier_changeupper_info changeupper_info = {
7026 .info = {
7027 .dev = dev,
42ab19ee 7028 .extack = extack,
51d0c047
DA
7029 },
7030 .upper_dev = upper_dev,
7031 .master = master,
7032 .linking = true,
7033 .upper_info = upper_info,
7034 };
50d629e7 7035 struct net_device *master_dev;
5d261913 7036 int ret = 0;
9ff162a8
JP
7037
7038 ASSERT_RTNL();
7039
7040 if (dev == upper_dev)
7041 return -EBUSY;
7042
7043 /* To prevent loops, check if dev is not upper device to upper_dev. */
f1170fd4 7044 if (netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
7045 return -EBUSY;
7046
50d629e7
MM
7047 if (!master) {
7048 if (netdev_has_upper_dev(dev, upper_dev))
7049 return -EEXIST;
7050 } else {
7051 master_dev = netdev_master_upper_dev_get(dev);
7052 if (master_dev)
7053 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7054 }
9ff162a8 7055
51d0c047 7056 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7057 &changeupper_info.info);
7058 ret = notifier_to_errno(ret);
7059 if (ret)
7060 return ret;
7061
6dffb044 7062 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 7063 master);
5d261913
VF
7064 if (ret)
7065 return ret;
9ff162a8 7066
51d0c047 7067 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
b03804e7
IS
7068 &changeupper_info.info);
7069 ret = notifier_to_errno(ret);
7070 if (ret)
f1170fd4 7071 goto rollback;
b03804e7 7072
9ff162a8 7073 return 0;
5d261913 7074
f1170fd4 7075rollback:
2f268f12 7076 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
7077
7078 return ret;
9ff162a8
JP
7079}
7080
7081/**
7082 * netdev_upper_dev_link - Add a link to the upper device
7083 * @dev: device
7084 * @upper_dev: new upper device
7a006d59 7085 * @extack: netlink extended ack
9ff162a8
JP
7086 *
7087 * Adds a link to device which is upper to this one. The caller must hold
7088 * the RTNL lock. On a failure a negative errno code is returned.
7089 * On success the reference counts are adjusted and the function
7090 * returns zero.
7091 */
7092int netdev_upper_dev_link(struct net_device *dev,
42ab19ee
DA
7093 struct net_device *upper_dev,
7094 struct netlink_ext_ack *extack)
9ff162a8 7095{
42ab19ee
DA
7096 return __netdev_upper_dev_link(dev, upper_dev, false,
7097 NULL, NULL, extack);
9ff162a8
JP
7098}
7099EXPORT_SYMBOL(netdev_upper_dev_link);
7100
7101/**
7102 * netdev_master_upper_dev_link - Add a master link to the upper device
7103 * @dev: device
7104 * @upper_dev: new upper device
6dffb044 7105 * @upper_priv: upper device private
29bf24af 7106 * @upper_info: upper info to be passed down via notifier
7a006d59 7107 * @extack: netlink extended ack
9ff162a8
JP
7108 *
7109 * Adds a link to device which is upper to this one. In this case, only
7110 * one master upper device can be linked, although other non-master devices
7111 * might be linked as well. The caller must hold the RTNL lock.
7112 * On a failure a negative errno code is returned. On success the reference
7113 * counts are adjusted and the function returns zero.
7114 */
7115int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 7116 struct net_device *upper_dev,
42ab19ee
DA
7117 void *upper_priv, void *upper_info,
7118 struct netlink_ext_ack *extack)
9ff162a8 7119{
29bf24af 7120 return __netdev_upper_dev_link(dev, upper_dev, true,
42ab19ee 7121 upper_priv, upper_info, extack);
9ff162a8
JP
7122}
7123EXPORT_SYMBOL(netdev_master_upper_dev_link);
7124
7125/**
7126 * netdev_upper_dev_unlink - Removes a link to upper device
7127 * @dev: device
7128 * @upper_dev: new upper device
7129 *
7130 * Removes a link to device which is upper to this one. The caller must hold
7131 * the RTNL lock.
7132 */
7133void netdev_upper_dev_unlink(struct net_device *dev,
7134 struct net_device *upper_dev)
7135{
51d0c047
DA
7136 struct netdev_notifier_changeupper_info changeupper_info = {
7137 .info = {
7138 .dev = dev,
7139 },
7140 .upper_dev = upper_dev,
7141 .linking = false,
7142 };
f4563a75 7143
9ff162a8
JP
7144 ASSERT_RTNL();
7145
0e4ead9d 7146 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
0e4ead9d 7147
51d0c047 7148 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7149 &changeupper_info.info);
7150
2f268f12 7151 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 7152
51d0c047 7153 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
0e4ead9d 7154 &changeupper_info.info);
9ff162a8
JP
7155}
7156EXPORT_SYMBOL(netdev_upper_dev_unlink);
7157
61bd3857
MS
7158/**
7159 * netdev_bonding_info_change - Dispatch event about slave change
7160 * @dev: device
4a26e453 7161 * @bonding_info: info to dispatch
61bd3857
MS
7162 *
7163 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7164 * The caller must hold the RTNL lock.
7165 */
7166void netdev_bonding_info_change(struct net_device *dev,
7167 struct netdev_bonding_info *bonding_info)
7168{
51d0c047
DA
7169 struct netdev_notifier_bonding_info info = {
7170 .info.dev = dev,
7171 };
61bd3857
MS
7172
7173 memcpy(&info.bonding_info, bonding_info,
7174 sizeof(struct netdev_bonding_info));
51d0c047 7175 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
61bd3857
MS
7176 &info.info);
7177}
7178EXPORT_SYMBOL(netdev_bonding_info_change);
7179
2ce1ee17 7180static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
7181{
7182 struct netdev_adjacent *iter;
7183
7184 struct net *net = dev_net(dev);
7185
7186 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7187 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7188 continue;
7189 netdev_adjacent_sysfs_add(iter->dev, dev,
7190 &iter->dev->adj_list.lower);
7191 netdev_adjacent_sysfs_add(dev, iter->dev,
7192 &dev->adj_list.upper);
7193 }
7194
7195 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7196 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7197 continue;
7198 netdev_adjacent_sysfs_add(iter->dev, dev,
7199 &iter->dev->adj_list.upper);
7200 netdev_adjacent_sysfs_add(dev, iter->dev,
7201 &dev->adj_list.lower);
7202 }
7203}
7204
2ce1ee17 7205static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
7206{
7207 struct netdev_adjacent *iter;
7208
7209 struct net *net = dev_net(dev);
7210
7211 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7212 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7213 continue;
7214 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7215 &iter->dev->adj_list.lower);
7216 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7217 &dev->adj_list.upper);
7218 }
7219
7220 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7221 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7222 continue;
7223 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7224 &iter->dev->adj_list.upper);
7225 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7226 &dev->adj_list.lower);
7227 }
7228}
7229
5bb025fa 7230void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 7231{
5bb025fa 7232 struct netdev_adjacent *iter;
402dae96 7233
4c75431a
AF
7234 struct net *net = dev_net(dev);
7235
5bb025fa 7236 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7237 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 7238 continue;
5bb025fa
VF
7239 netdev_adjacent_sysfs_del(iter->dev, oldname,
7240 &iter->dev->adj_list.lower);
7241 netdev_adjacent_sysfs_add(iter->dev, dev,
7242 &iter->dev->adj_list.lower);
7243 }
402dae96 7244
5bb025fa 7245 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7246 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 7247 continue;
5bb025fa
VF
7248 netdev_adjacent_sysfs_del(iter->dev, oldname,
7249 &iter->dev->adj_list.upper);
7250 netdev_adjacent_sysfs_add(iter->dev, dev,
7251 &iter->dev->adj_list.upper);
7252 }
402dae96 7253}
402dae96
VF
7254
7255void *netdev_lower_dev_get_private(struct net_device *dev,
7256 struct net_device *lower_dev)
7257{
7258 struct netdev_adjacent *lower;
7259
7260 if (!lower_dev)
7261 return NULL;
6ea29da1 7262 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
7263 if (!lower)
7264 return NULL;
7265
7266 return lower->private;
7267}
7268EXPORT_SYMBOL(netdev_lower_dev_get_private);
7269
4085ebe8 7270
952fcfd0 7271int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
7272{
7273 struct net_device *lower = NULL;
7274 struct list_head *iter;
7275 int max_nest = -1;
7276 int nest;
7277
7278 ASSERT_RTNL();
7279
7280 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 7281 nest = dev_get_nest_level(lower);
4085ebe8
VY
7282 if (max_nest < nest)
7283 max_nest = nest;
7284 }
7285
952fcfd0 7286 return max_nest + 1;
4085ebe8
VY
7287}
7288EXPORT_SYMBOL(dev_get_nest_level);
7289
04d48266
JP
7290/**
7291 * netdev_lower_change - Dispatch event about lower device state change
7292 * @lower_dev: device
7293 * @lower_state_info: state to dispatch
7294 *
7295 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7296 * The caller must hold the RTNL lock.
7297 */
7298void netdev_lower_state_changed(struct net_device *lower_dev,
7299 void *lower_state_info)
7300{
51d0c047
DA
7301 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7302 .info.dev = lower_dev,
7303 };
04d48266
JP
7304
7305 ASSERT_RTNL();
7306 changelowerstate_info.lower_state_info = lower_state_info;
51d0c047 7307 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
04d48266
JP
7308 &changelowerstate_info.info);
7309}
7310EXPORT_SYMBOL(netdev_lower_state_changed);
7311
b6c40d68
PM
7312static void dev_change_rx_flags(struct net_device *dev, int flags)
7313{
d314774c
SH
7314 const struct net_device_ops *ops = dev->netdev_ops;
7315
d2615bf4 7316 if (ops->ndo_change_rx_flags)
d314774c 7317 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
7318}
7319
991fb3f7 7320static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 7321{
b536db93 7322 unsigned int old_flags = dev->flags;
d04a48b0
EB
7323 kuid_t uid;
7324 kgid_t gid;
1da177e4 7325
24023451
PM
7326 ASSERT_RTNL();
7327
dad9b335
WC
7328 dev->flags |= IFF_PROMISC;
7329 dev->promiscuity += inc;
7330 if (dev->promiscuity == 0) {
7331 /*
7332 * Avoid overflow.
7333 * If inc causes overflow, untouch promisc and return error.
7334 */
7335 if (inc < 0)
7336 dev->flags &= ~IFF_PROMISC;
7337 else {
7338 dev->promiscuity -= inc;
7b6cd1ce
JP
7339 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7340 dev->name);
dad9b335
WC
7341 return -EOVERFLOW;
7342 }
7343 }
52609c0b 7344 if (dev->flags != old_flags) {
7b6cd1ce
JP
7345 pr_info("device %s %s promiscuous mode\n",
7346 dev->name,
7347 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
7348 if (audit_enabled) {
7349 current_uid_gid(&uid, &gid);
cdfb6b34
RGB
7350 audit_log(audit_context(), GFP_ATOMIC,
7351 AUDIT_ANOM_PROMISCUOUS,
7352 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7353 dev->name, (dev->flags & IFF_PROMISC),
7354 (old_flags & IFF_PROMISC),
7355 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7356 from_kuid(&init_user_ns, uid),
7357 from_kgid(&init_user_ns, gid),
7358 audit_get_sessionid(current));
8192b0c4 7359 }
24023451 7360
b6c40d68 7361 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 7362 }
991fb3f7
ND
7363 if (notify)
7364 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 7365 return 0;
1da177e4
LT
7366}
7367
4417da66
PM
7368/**
7369 * dev_set_promiscuity - update promiscuity count on a device
7370 * @dev: device
7371 * @inc: modifier
7372 *
7373 * Add or remove promiscuity from a device. While the count in the device
7374 * remains above zero the interface remains promiscuous. Once it hits zero
7375 * the device reverts back to normal filtering operation. A negative inc
7376 * value is used to drop promiscuity on the device.
dad9b335 7377 * Return 0 if successful or a negative errno code on error.
4417da66 7378 */
dad9b335 7379int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 7380{
b536db93 7381 unsigned int old_flags = dev->flags;
dad9b335 7382 int err;
4417da66 7383
991fb3f7 7384 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 7385 if (err < 0)
dad9b335 7386 return err;
4417da66
PM
7387 if (dev->flags != old_flags)
7388 dev_set_rx_mode(dev);
dad9b335 7389 return err;
4417da66 7390}
d1b19dff 7391EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 7392
991fb3f7 7393static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 7394{
991fb3f7 7395 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 7396
24023451
PM
7397 ASSERT_RTNL();
7398
1da177e4 7399 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
7400 dev->allmulti += inc;
7401 if (dev->allmulti == 0) {
7402 /*
7403 * Avoid overflow.
7404 * If inc causes overflow, untouch allmulti and return error.
7405 */
7406 if (inc < 0)
7407 dev->flags &= ~IFF_ALLMULTI;
7408 else {
7409 dev->allmulti -= inc;
7b6cd1ce
JP
7410 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7411 dev->name);
dad9b335
WC
7412 return -EOVERFLOW;
7413 }
7414 }
24023451 7415 if (dev->flags ^ old_flags) {
b6c40d68 7416 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 7417 dev_set_rx_mode(dev);
991fb3f7
ND
7418 if (notify)
7419 __dev_notify_flags(dev, old_flags,
7420 dev->gflags ^ old_gflags);
24023451 7421 }
dad9b335 7422 return 0;
4417da66 7423}
991fb3f7
ND
7424
7425/**
7426 * dev_set_allmulti - update allmulti count on a device
7427 * @dev: device
7428 * @inc: modifier
7429 *
7430 * Add or remove reception of all multicast frames to a device. While the
7431 * count in the device remains above zero the interface remains listening
7432 * to all interfaces. Once it hits zero the device reverts back to normal
7433 * filtering operation. A negative @inc value is used to drop the counter
7434 * when releasing a resource needing all multicasts.
7435 * Return 0 if successful or a negative errno code on error.
7436 */
7437
7438int dev_set_allmulti(struct net_device *dev, int inc)
7439{
7440 return __dev_set_allmulti(dev, inc, true);
7441}
d1b19dff 7442EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
7443
7444/*
7445 * Upload unicast and multicast address lists to device and
7446 * configure RX filtering. When the device doesn't support unicast
53ccaae1 7447 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
7448 * are present.
7449 */
7450void __dev_set_rx_mode(struct net_device *dev)
7451{
d314774c
SH
7452 const struct net_device_ops *ops = dev->netdev_ops;
7453
4417da66
PM
7454 /* dev_open will call this function so the list will stay sane. */
7455 if (!(dev->flags&IFF_UP))
7456 return;
7457
7458 if (!netif_device_present(dev))
40b77c94 7459 return;
4417da66 7460
01789349 7461 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
7462 /* Unicast addresses changes may only happen under the rtnl,
7463 * therefore calling __dev_set_promiscuity here is safe.
7464 */
32e7bfc4 7465 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 7466 __dev_set_promiscuity(dev, 1, false);
2d348d1f 7467 dev->uc_promisc = true;
32e7bfc4 7468 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 7469 __dev_set_promiscuity(dev, -1, false);
2d348d1f 7470 dev->uc_promisc = false;
4417da66 7471 }
4417da66 7472 }
01789349
JP
7473
7474 if (ops->ndo_set_rx_mode)
7475 ops->ndo_set_rx_mode(dev);
4417da66
PM
7476}
7477
7478void dev_set_rx_mode(struct net_device *dev)
7479{
b9e40857 7480 netif_addr_lock_bh(dev);
4417da66 7481 __dev_set_rx_mode(dev);
b9e40857 7482 netif_addr_unlock_bh(dev);
1da177e4
LT
7483}
7484
f0db275a
SH
7485/**
7486 * dev_get_flags - get flags reported to userspace
7487 * @dev: device
7488 *
7489 * Get the combination of flag bits exported through APIs to userspace.
7490 */
95c96174 7491unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 7492{
95c96174 7493 unsigned int flags;
1da177e4
LT
7494
7495 flags = (dev->flags & ~(IFF_PROMISC |
7496 IFF_ALLMULTI |
b00055aa
SR
7497 IFF_RUNNING |
7498 IFF_LOWER_UP |
7499 IFF_DORMANT)) |
1da177e4
LT
7500 (dev->gflags & (IFF_PROMISC |
7501 IFF_ALLMULTI));
7502
b00055aa
SR
7503 if (netif_running(dev)) {
7504 if (netif_oper_up(dev))
7505 flags |= IFF_RUNNING;
7506 if (netif_carrier_ok(dev))
7507 flags |= IFF_LOWER_UP;
7508 if (netif_dormant(dev))
7509 flags |= IFF_DORMANT;
7510 }
1da177e4
LT
7511
7512 return flags;
7513}
d1b19dff 7514EXPORT_SYMBOL(dev_get_flags);
1da177e4 7515
6d040321
PM
7516int __dev_change_flags(struct net_device *dev, unsigned int flags,
7517 struct netlink_ext_ack *extack)
1da177e4 7518{
b536db93 7519 unsigned int old_flags = dev->flags;
bd380811 7520 int ret;
1da177e4 7521
24023451
PM
7522 ASSERT_RTNL();
7523
1da177e4
LT
7524 /*
7525 * Set the flags on our device.
7526 */
7527
7528 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7529 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7530 IFF_AUTOMEDIA)) |
7531 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7532 IFF_ALLMULTI));
7533
7534 /*
7535 * Load in the correct multicast list now the flags have changed.
7536 */
7537
b6c40d68
PM
7538 if ((old_flags ^ flags) & IFF_MULTICAST)
7539 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 7540
4417da66 7541 dev_set_rx_mode(dev);
1da177e4
LT
7542
7543 /*
7544 * Have we downed the interface. We handle IFF_UP ourselves
7545 * according to user attempts to set it, rather than blindly
7546 * setting it.
7547 */
7548
7549 ret = 0;
7051b88a 7550 if ((old_flags ^ flags) & IFF_UP) {
7551 if (old_flags & IFF_UP)
7552 __dev_close(dev);
7553 else
40c900aa 7554 ret = __dev_open(dev, extack);
7051b88a 7555 }
1da177e4 7556
1da177e4 7557 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 7558 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 7559 unsigned int old_flags = dev->flags;
d1b19dff 7560
1da177e4 7561 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
7562
7563 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7564 if (dev->flags != old_flags)
7565 dev_set_rx_mode(dev);
1da177e4
LT
7566 }
7567
7568 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 7569 * is important. Some (broken) drivers set IFF_PROMISC, when
7570 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
7571 */
7572 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
7573 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7574
1da177e4 7575 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 7576 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
7577 }
7578
bd380811
PM
7579 return ret;
7580}
7581
a528c219
ND
7582void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7583 unsigned int gchanges)
bd380811
PM
7584{
7585 unsigned int changes = dev->flags ^ old_flags;
7586
a528c219 7587 if (gchanges)
7f294054 7588 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 7589
bd380811
PM
7590 if (changes & IFF_UP) {
7591 if (dev->flags & IFF_UP)
7592 call_netdevice_notifiers(NETDEV_UP, dev);
7593 else
7594 call_netdevice_notifiers(NETDEV_DOWN, dev);
7595 }
7596
7597 if (dev->flags & IFF_UP &&
be9efd36 7598 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
51d0c047
DA
7599 struct netdev_notifier_change_info change_info = {
7600 .info = {
7601 .dev = dev,
7602 },
7603 .flags_changed = changes,
7604 };
be9efd36 7605
51d0c047 7606 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
be9efd36 7607 }
bd380811
PM
7608}
7609
7610/**
7611 * dev_change_flags - change device settings
7612 * @dev: device
7613 * @flags: device state flags
567c5e13 7614 * @extack: netlink extended ack
bd380811
PM
7615 *
7616 * Change settings on device based state flags. The flags are
7617 * in the userspace exported format.
7618 */
567c5e13
PM
7619int dev_change_flags(struct net_device *dev, unsigned int flags,
7620 struct netlink_ext_ack *extack)
bd380811 7621{
b536db93 7622 int ret;
991fb3f7 7623 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811 7624
6d040321 7625 ret = __dev_change_flags(dev, flags, extack);
bd380811
PM
7626 if (ret < 0)
7627 return ret;
7628
991fb3f7 7629 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 7630 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
7631 return ret;
7632}
d1b19dff 7633EXPORT_SYMBOL(dev_change_flags);
1da177e4 7634
f51048c3 7635int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
7636{
7637 const struct net_device_ops *ops = dev->netdev_ops;
7638
7639 if (ops->ndo_change_mtu)
7640 return ops->ndo_change_mtu(dev, new_mtu);
7641
7642 dev->mtu = new_mtu;
7643 return 0;
7644}
f51048c3 7645EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 7646
f0db275a 7647/**
7a4c53be 7648 * dev_set_mtu_ext - Change maximum transfer unit
f0db275a
SH
7649 * @dev: device
7650 * @new_mtu: new transfer unit
7a4c53be 7651 * @extack: netlink extended ack
f0db275a
SH
7652 *
7653 * Change the maximum transfer size of the network device.
7654 */
7a4c53be
SH
7655int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7656 struct netlink_ext_ack *extack)
1da177e4 7657{
2315dc91 7658 int err, orig_mtu;
1da177e4
LT
7659
7660 if (new_mtu == dev->mtu)
7661 return 0;
7662
61e84623
JW
7663 /* MTU must be positive, and in range */
7664 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7a4c53be 7665 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
1da177e4 7666 return -EINVAL;
61e84623
JW
7667 }
7668
7669 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7a4c53be 7670 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
61e84623
JW
7671 return -EINVAL;
7672 }
1da177e4
LT
7673
7674 if (!netif_device_present(dev))
7675 return -ENODEV;
7676
1d486bfb
VF
7677 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7678 err = notifier_to_errno(err);
7679 if (err)
7680 return err;
d314774c 7681
2315dc91
VF
7682 orig_mtu = dev->mtu;
7683 err = __dev_set_mtu(dev, new_mtu);
d314774c 7684
2315dc91 7685 if (!err) {
af7d6cce
SD
7686 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7687 orig_mtu);
2315dc91
VF
7688 err = notifier_to_errno(err);
7689 if (err) {
7690 /* setting mtu back and notifying everyone again,
7691 * so that they have a chance to revert changes.
7692 */
7693 __dev_set_mtu(dev, orig_mtu);
af7d6cce
SD
7694 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7695 new_mtu);
2315dc91
VF
7696 }
7697 }
1da177e4
LT
7698 return err;
7699}
7a4c53be
SH
7700
7701int dev_set_mtu(struct net_device *dev, int new_mtu)
7702{
7703 struct netlink_ext_ack extack;
7704 int err;
7705
a6bcfc89 7706 memset(&extack, 0, sizeof(extack));
7a4c53be 7707 err = dev_set_mtu_ext(dev, new_mtu, &extack);
a6bcfc89 7708 if (err && extack._msg)
7a4c53be
SH
7709 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7710 return err;
7711}
d1b19dff 7712EXPORT_SYMBOL(dev_set_mtu);
1da177e4 7713
6a643ddb
CW
7714/**
7715 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7716 * @dev: device
7717 * @new_len: new tx queue length
7718 */
7719int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7720{
7721 unsigned int orig_len = dev->tx_queue_len;
7722 int res;
7723
7724 if (new_len != (unsigned int)new_len)
7725 return -ERANGE;
7726
7727 if (new_len != orig_len) {
7728 dev->tx_queue_len = new_len;
7729 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7730 res = notifier_to_errno(res);
7effaf06
TT
7731 if (res)
7732 goto err_rollback;
7733 res = dev_qdisc_change_tx_queue_len(dev);
7734 if (res)
7735 goto err_rollback;
6a643ddb
CW
7736 }
7737
7738 return 0;
7effaf06
TT
7739
7740err_rollback:
7741 netdev_err(dev, "refused to change device tx_queue_len\n");
7742 dev->tx_queue_len = orig_len;
7743 return res;
6a643ddb
CW
7744}
7745
cbda10fa
VD
7746/**
7747 * dev_set_group - Change group this device belongs to
7748 * @dev: device
7749 * @new_group: group this device should belong to
7750 */
7751void dev_set_group(struct net_device *dev, int new_group)
7752{
7753 dev->group = new_group;
7754}
7755EXPORT_SYMBOL(dev_set_group);
7756
d59cdf94
PM
7757/**
7758 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7759 * @dev: device
7760 * @addr: new address
7761 * @extack: netlink extended ack
7762 */
7763int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7764 struct netlink_ext_ack *extack)
7765{
7766 struct netdev_notifier_pre_changeaddr_info info = {
7767 .info.dev = dev,
7768 .info.extack = extack,
7769 .dev_addr = addr,
7770 };
7771 int rc;
7772
7773 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7774 return notifier_to_errno(rc);
7775}
7776EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7777
f0db275a
SH
7778/**
7779 * dev_set_mac_address - Change Media Access Control Address
7780 * @dev: device
7781 * @sa: new address
3a37a963 7782 * @extack: netlink extended ack
f0db275a
SH
7783 *
7784 * Change the hardware (MAC) address of the device
7785 */
3a37a963
PM
7786int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7787 struct netlink_ext_ack *extack)
1da177e4 7788{
d314774c 7789 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
7790 int err;
7791
d314774c 7792 if (!ops->ndo_set_mac_address)
1da177e4
LT
7793 return -EOPNOTSUPP;
7794 if (sa->sa_family != dev->type)
7795 return -EINVAL;
7796 if (!netif_device_present(dev))
7797 return -ENODEV;
d59cdf94
PM
7798 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7799 if (err)
7800 return err;
d314774c 7801 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
7802 if (err)
7803 return err;
fbdeca2d 7804 dev->addr_assign_type = NET_ADDR_SET;
f6521516 7805 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 7806 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 7807 return 0;
1da177e4 7808}
d1b19dff 7809EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 7810
4bf84c35
JP
7811/**
7812 * dev_change_carrier - Change device carrier
7813 * @dev: device
691b3b7e 7814 * @new_carrier: new value
4bf84c35
JP
7815 *
7816 * Change device carrier
7817 */
7818int dev_change_carrier(struct net_device *dev, bool new_carrier)
7819{
7820 const struct net_device_ops *ops = dev->netdev_ops;
7821
7822 if (!ops->ndo_change_carrier)
7823 return -EOPNOTSUPP;
7824 if (!netif_device_present(dev))
7825 return -ENODEV;
7826 return ops->ndo_change_carrier(dev, new_carrier);
7827}
7828EXPORT_SYMBOL(dev_change_carrier);
7829
66b52b0d
JP
7830/**
7831 * dev_get_phys_port_id - Get device physical port ID
7832 * @dev: device
7833 * @ppid: port ID
7834 *
7835 * Get device physical port ID
7836 */
7837int dev_get_phys_port_id(struct net_device *dev,
02637fce 7838 struct netdev_phys_item_id *ppid)
66b52b0d
JP
7839{
7840 const struct net_device_ops *ops = dev->netdev_ops;
7841
7842 if (!ops->ndo_get_phys_port_id)
7843 return -EOPNOTSUPP;
7844 return ops->ndo_get_phys_port_id(dev, ppid);
7845}
7846EXPORT_SYMBOL(dev_get_phys_port_id);
7847
db24a904
DA
7848/**
7849 * dev_get_phys_port_name - Get device physical port name
7850 * @dev: device
7851 * @name: port name
ed49e650 7852 * @len: limit of bytes to copy to name
db24a904
DA
7853 *
7854 * Get device physical port name
7855 */
7856int dev_get_phys_port_name(struct net_device *dev,
7857 char *name, size_t len)
7858{
7859 const struct net_device_ops *ops = dev->netdev_ops;
af3836df 7860 int err;
db24a904 7861
af3836df
JP
7862 if (ops->ndo_get_phys_port_name) {
7863 err = ops->ndo_get_phys_port_name(dev, name, len);
7864 if (err != -EOPNOTSUPP)
7865 return err;
7866 }
7867 return devlink_compat_phys_port_name_get(dev, name, len);
db24a904
DA
7868}
7869EXPORT_SYMBOL(dev_get_phys_port_name);
7870
d6abc596
FF
7871/**
7872 * dev_get_port_parent_id - Get the device's port parent identifier
7873 * @dev: network device
7874 * @ppid: pointer to a storage for the port's parent identifier
7875 * @recurse: allow/disallow recursion to lower devices
7876 *
7877 * Get the devices's port parent identifier
7878 */
7879int dev_get_port_parent_id(struct net_device *dev,
7880 struct netdev_phys_item_id *ppid,
7881 bool recurse)
7882{
7883 const struct net_device_ops *ops = dev->netdev_ops;
7884 struct netdev_phys_item_id first = { };
7885 struct net_device *lower_dev;
7886 struct list_head *iter;
7e1146e8
JP
7887 int err;
7888
7889 if (ops->ndo_get_port_parent_id) {
7890 err = ops->ndo_get_port_parent_id(dev, ppid);
7891 if (err != -EOPNOTSUPP)
7892 return err;
7893 }
d6abc596 7894
7e1146e8
JP
7895 err = devlink_compat_switch_id_get(dev, ppid);
7896 if (!err || err != -EOPNOTSUPP)
7897 return err;
d6abc596
FF
7898
7899 if (!recurse)
7e1146e8 7900 return -EOPNOTSUPP;
d6abc596
FF
7901
7902 netdev_for_each_lower_dev(dev, lower_dev, iter) {
7903 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
7904 if (err)
7905 break;
7906 if (!first.id_len)
7907 first = *ppid;
7908 else if (memcmp(&first, ppid, sizeof(*ppid)))
7909 return -ENODATA;
7910 }
7911
7912 return err;
7913}
7914EXPORT_SYMBOL(dev_get_port_parent_id);
7915
7916/**
7917 * netdev_port_same_parent_id - Indicate if two network devices have
7918 * the same port parent identifier
7919 * @a: first network device
7920 * @b: second network device
7921 */
7922bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
7923{
7924 struct netdev_phys_item_id a_id = { };
7925 struct netdev_phys_item_id b_id = { };
7926
7927 if (dev_get_port_parent_id(a, &a_id, true) ||
7928 dev_get_port_parent_id(b, &b_id, true))
7929 return false;
7930
7931 return netdev_phys_item_id_same(&a_id, &b_id);
7932}
7933EXPORT_SYMBOL(netdev_port_same_parent_id);
7934
d746d707
AK
7935/**
7936 * dev_change_proto_down - update protocol port state information
7937 * @dev: device
7938 * @proto_down: new value
7939 *
7940 * This info can be used by switch drivers to set the phys state of the
7941 * port.
7942 */
7943int dev_change_proto_down(struct net_device *dev, bool proto_down)
7944{
7945 const struct net_device_ops *ops = dev->netdev_ops;
7946
7947 if (!ops->ndo_change_proto_down)
7948 return -EOPNOTSUPP;
7949 if (!netif_device_present(dev))
7950 return -ENODEV;
7951 return ops->ndo_change_proto_down(dev, proto_down);
7952}
7953EXPORT_SYMBOL(dev_change_proto_down);
7954
b5899679
AR
7955/**
7956 * dev_change_proto_down_generic - generic implementation for
7957 * ndo_change_proto_down that sets carrier according to
7958 * proto_down.
7959 *
7960 * @dev: device
7961 * @proto_down: new value
7962 */
7963int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
7964{
7965 if (proto_down)
7966 netif_carrier_off(dev);
7967 else
7968 netif_carrier_on(dev);
7969 dev->proto_down = proto_down;
7970 return 0;
7971}
7972EXPORT_SYMBOL(dev_change_proto_down_generic);
7973
a25717d2
JK
7974u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7975 enum bpf_netdev_command cmd)
d67b9cd2 7976{
a25717d2 7977 struct netdev_bpf xdp;
d67b9cd2 7978
a25717d2
JK
7979 if (!bpf_op)
7980 return 0;
118b4aa2 7981
a25717d2
JK
7982 memset(&xdp, 0, sizeof(xdp));
7983 xdp.command = cmd;
118b4aa2 7984
a25717d2
JK
7985 /* Query must always succeed. */
7986 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
58038695 7987
6b867589 7988 return xdp.prog_id;
d67b9cd2
DB
7989}
7990
f4e63525 7991static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
32d60277 7992 struct netlink_ext_ack *extack, u32 flags,
d67b9cd2
DB
7993 struct bpf_prog *prog)
7994{
f4e63525 7995 struct netdev_bpf xdp;
d67b9cd2
DB
7996
7997 memset(&xdp, 0, sizeof(xdp));
ee5d032f
JK
7998 if (flags & XDP_FLAGS_HW_MODE)
7999 xdp.command = XDP_SETUP_PROG_HW;
8000 else
8001 xdp.command = XDP_SETUP_PROG;
d67b9cd2 8002 xdp.extack = extack;
32d60277 8003 xdp.flags = flags;
d67b9cd2
DB
8004 xdp.prog = prog;
8005
f4e63525 8006 return bpf_op(dev, &xdp);
d67b9cd2
DB
8007}
8008
bd0b2e7f
JK
8009static void dev_xdp_uninstall(struct net_device *dev)
8010{
8011 struct netdev_bpf xdp;
8012 bpf_op_t ndo_bpf;
8013
8014 /* Remove generic XDP */
8015 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8016
8017 /* Remove from the driver */
8018 ndo_bpf = dev->netdev_ops->ndo_bpf;
8019 if (!ndo_bpf)
8020 return;
8021
a25717d2
JK
8022 memset(&xdp, 0, sizeof(xdp));
8023 xdp.command = XDP_QUERY_PROG;
8024 WARN_ON(ndo_bpf(dev, &xdp));
8025 if (xdp.prog_id)
8026 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8027 NULL));
bd0b2e7f 8028
a25717d2
JK
8029 /* Remove HW offload */
8030 memset(&xdp, 0, sizeof(xdp));
8031 xdp.command = XDP_QUERY_PROG_HW;
8032 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8033 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8034 NULL));
bd0b2e7f
JK
8035}
8036
a7862b45
BB
8037/**
8038 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8039 * @dev: device
b5d60989 8040 * @extack: netlink extended ack
a7862b45 8041 * @fd: new program fd or negative value to clear
85de8576 8042 * @flags: xdp-related flags
a7862b45
BB
8043 *
8044 * Set or clear a bpf program for a device
8045 */
ddf9f970
JK
8046int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8047 int fd, u32 flags)
a7862b45
BB
8048{
8049 const struct net_device_ops *ops = dev->netdev_ops;
a25717d2 8050 enum bpf_netdev_command query;
a7862b45 8051 struct bpf_prog *prog = NULL;
f4e63525 8052 bpf_op_t bpf_op, bpf_chk;
9ee963d6 8053 bool offload;
a7862b45
BB
8054 int err;
8055
85de8576
DB
8056 ASSERT_RTNL();
8057
9ee963d6
JK
8058 offload = flags & XDP_FLAGS_HW_MODE;
8059 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
a25717d2 8060
f4e63525 8061 bpf_op = bpf_chk = ops->ndo_bpf;
01dde20c
MF
8062 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8063 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
0489df9a 8064 return -EOPNOTSUPP;
01dde20c 8065 }
f4e63525
JK
8066 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8067 bpf_op = generic_xdp_install;
8068 if (bpf_op == bpf_chk)
8069 bpf_chk = generic_xdp_install;
b5cdae32 8070
a7862b45 8071 if (fd >= 0) {
9ee963d6 8072 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
01dde20c 8073 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
d67b9cd2 8074 return -EEXIST;
01dde20c 8075 }
d67b9cd2 8076 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
01dde20c
MF
8077 __dev_xdp_query(dev, bpf_op, query)) {
8078 NL_SET_ERR_MSG(extack, "XDP program already attached");
d67b9cd2 8079 return -EBUSY;
01dde20c 8080 }
85de8576 8081
288b3de5
JK
8082 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8083 bpf_op == ops->ndo_bpf);
a7862b45
BB
8084 if (IS_ERR(prog))
8085 return PTR_ERR(prog);
441a3303 8086
9ee963d6 8087 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
441a3303
JK
8088 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8089 bpf_prog_put(prog);
8090 return -EINVAL;
8091 }
a7862b45
BB
8092 }
8093
f4e63525 8094 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
a7862b45
BB
8095 if (err < 0 && prog)
8096 bpf_prog_put(prog);
8097
8098 return err;
8099}
a7862b45 8100
1da177e4
LT
8101/**
8102 * dev_new_index - allocate an ifindex
c4ea43c5 8103 * @net: the applicable net namespace
1da177e4
LT
8104 *
8105 * Returns a suitable unique value for a new device interface
8106 * number. The caller must hold the rtnl semaphore or the
8107 * dev_base_lock to be sure it remains unique.
8108 */
881d966b 8109static int dev_new_index(struct net *net)
1da177e4 8110{
aa79e66e 8111 int ifindex = net->ifindex;
f4563a75 8112
1da177e4
LT
8113 for (;;) {
8114 if (++ifindex <= 0)
8115 ifindex = 1;
881d966b 8116 if (!__dev_get_by_index(net, ifindex))
aa79e66e 8117 return net->ifindex = ifindex;
1da177e4
LT
8118 }
8119}
8120
1da177e4 8121/* Delayed registration/unregisteration */
3b5b34fd 8122static LIST_HEAD(net_todo_list);
200b916f 8123DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 8124
6f05f629 8125static void net_set_todo(struct net_device *dev)
1da177e4 8126{
1da177e4 8127 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 8128 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
8129}
8130
9b5e383c 8131static void rollback_registered_many(struct list_head *head)
93ee31f1 8132{
e93737b0 8133 struct net_device *dev, *tmp;
5cde2829 8134 LIST_HEAD(close_head);
9b5e383c 8135
93ee31f1
DL
8136 BUG_ON(dev_boot_phase);
8137 ASSERT_RTNL();
8138
e93737b0 8139 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 8140 /* Some devices call without registering
e93737b0
KK
8141 * for initialization unwind. Remove those
8142 * devices and proceed with the remaining.
9b5e383c
ED
8143 */
8144 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
8145 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8146 dev->name, dev);
93ee31f1 8147
9b5e383c 8148 WARN_ON(1);
e93737b0
KK
8149 list_del(&dev->unreg_list);
8150 continue;
9b5e383c 8151 }
449f4544 8152 dev->dismantle = true;
9b5e383c 8153 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 8154 }
93ee31f1 8155
44345724 8156 /* If device is running, close it first. */
5cde2829
EB
8157 list_for_each_entry(dev, head, unreg_list)
8158 list_add_tail(&dev->close_list, &close_head);
99c4a26a 8159 dev_close_many(&close_head, true);
93ee31f1 8160
44345724 8161 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
8162 /* And unlink it from device chain. */
8163 unlist_netdevice(dev);
93ee31f1 8164
9b5e383c
ED
8165 dev->reg_state = NETREG_UNREGISTERING;
8166 }
41852497 8167 flush_all_backlogs();
93ee31f1
DL
8168
8169 synchronize_net();
8170
9b5e383c 8171 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
8172 struct sk_buff *skb = NULL;
8173
9b5e383c
ED
8174 /* Shutdown queueing discipline. */
8175 dev_shutdown(dev);
93ee31f1 8176
bd0b2e7f 8177 dev_xdp_uninstall(dev);
93ee31f1 8178
9b5e383c 8179 /* Notify protocols, that we are about to destroy
eb13da1a 8180 * this device. They should clean all the things.
8181 */
9b5e383c 8182 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 8183
395eea6c
MB
8184 if (!dev->rtnl_link_ops ||
8185 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
3d3ea5af 8186 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
38e01b30 8187 GFP_KERNEL, NULL, 0);
395eea6c 8188
9b5e383c
ED
8189 /*
8190 * Flush the unicast and multicast chains
8191 */
a748ee24 8192 dev_uc_flush(dev);
22bedad3 8193 dev_mc_flush(dev);
93ee31f1 8194
9b5e383c
ED
8195 if (dev->netdev_ops->ndo_uninit)
8196 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 8197
395eea6c
MB
8198 if (skb)
8199 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 8200
9ff162a8
JP
8201 /* Notifier chain MUST detach us all upper devices. */
8202 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 8203 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 8204
9b5e383c
ED
8205 /* Remove entries from kobject tree */
8206 netdev_unregister_kobject(dev);
024e9679
AD
8207#ifdef CONFIG_XPS
8208 /* Remove XPS queueing entries */
8209 netif_reset_xps_queues_gt(dev, 0);
8210#endif
9b5e383c 8211 }
93ee31f1 8212
850a545b 8213 synchronize_net();
395264d5 8214
a5ee1551 8215 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
8216 dev_put(dev);
8217}
8218
8219static void rollback_registered(struct net_device *dev)
8220{
8221 LIST_HEAD(single);
8222
8223 list_add(&dev->unreg_list, &single);
8224 rollback_registered_many(&single);
ceaaec98 8225 list_del(&single);
93ee31f1
DL
8226}
8227
fd867d51
JW
8228static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8229 struct net_device *upper, netdev_features_t features)
8230{
8231 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8232 netdev_features_t feature;
5ba3f7d6 8233 int feature_bit;
fd867d51 8234
3b89ea9c 8235 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 8236 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
8237 if (!(upper->wanted_features & feature)
8238 && (features & feature)) {
8239 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8240 &feature, upper->name);
8241 features &= ~feature;
8242 }
8243 }
8244
8245 return features;
8246}
8247
8248static void netdev_sync_lower_features(struct net_device *upper,
8249 struct net_device *lower, netdev_features_t features)
8250{
8251 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8252 netdev_features_t feature;
5ba3f7d6 8253 int feature_bit;
fd867d51 8254
3b89ea9c 8255 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 8256 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
8257 if (!(features & feature) && (lower->features & feature)) {
8258 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8259 &feature, lower->name);
8260 lower->wanted_features &= ~feature;
8261 netdev_update_features(lower);
8262
8263 if (unlikely(lower->features & feature))
8264 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8265 &feature, lower->name);
8266 }
8267 }
8268}
8269
c8f44aff
MM
8270static netdev_features_t netdev_fix_features(struct net_device *dev,
8271 netdev_features_t features)
b63365a2 8272{
57422dc5
MM
8273 /* Fix illegal checksum combinations */
8274 if ((features & NETIF_F_HW_CSUM) &&
8275 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 8276 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
8277 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8278 }
8279
b63365a2 8280 /* TSO requires that SG is present as well. */
ea2d3688 8281 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 8282 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 8283 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
8284 }
8285
ec5f0615
PS
8286 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8287 !(features & NETIF_F_IP_CSUM)) {
8288 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8289 features &= ~NETIF_F_TSO;
8290 features &= ~NETIF_F_TSO_ECN;
8291 }
8292
8293 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8294 !(features & NETIF_F_IPV6_CSUM)) {
8295 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8296 features &= ~NETIF_F_TSO6;
8297 }
8298
b1dc497b
AD
8299 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8300 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8301 features &= ~NETIF_F_TSO_MANGLEID;
8302
31d8b9e0
BH
8303 /* TSO ECN requires that TSO is present as well. */
8304 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8305 features &= ~NETIF_F_TSO_ECN;
8306
212b573f
MM
8307 /* Software GSO depends on SG. */
8308 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 8309 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
8310 features &= ~NETIF_F_GSO;
8311 }
8312
802ab55a
AD
8313 /* GSO partial features require GSO partial be set */
8314 if ((features & dev->gso_partial_features) &&
8315 !(features & NETIF_F_GSO_PARTIAL)) {
8316 netdev_dbg(dev,
8317 "Dropping partially supported GSO features since no GSO partial.\n");
8318 features &= ~dev->gso_partial_features;
8319 }
8320
fb1f5f79
MC
8321 if (!(features & NETIF_F_RXCSUM)) {
8322 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8323 * successfully merged by hardware must also have the
8324 * checksum verified by hardware. If the user does not
8325 * want to enable RXCSUM, logically, we should disable GRO_HW.
8326 */
8327 if (features & NETIF_F_GRO_HW) {
8328 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8329 features &= ~NETIF_F_GRO_HW;
8330 }
8331 }
8332
de8d5ab2
GP
8333 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8334 if (features & NETIF_F_RXFCS) {
8335 if (features & NETIF_F_LRO) {
8336 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8337 features &= ~NETIF_F_LRO;
8338 }
8339
8340 if (features & NETIF_F_GRO_HW) {
8341 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8342 features &= ~NETIF_F_GRO_HW;
8343 }
e6c6a929
GP
8344 }
8345
b63365a2
HX
8346 return features;
8347}
b63365a2 8348
6cb6a27c 8349int __netdev_update_features(struct net_device *dev)
5455c699 8350{
fd867d51 8351 struct net_device *upper, *lower;
c8f44aff 8352 netdev_features_t features;
fd867d51 8353 struct list_head *iter;
e7868a85 8354 int err = -1;
5455c699 8355
87267485
MM
8356 ASSERT_RTNL();
8357
5455c699
MM
8358 features = netdev_get_wanted_features(dev);
8359
8360 if (dev->netdev_ops->ndo_fix_features)
8361 features = dev->netdev_ops->ndo_fix_features(dev, features);
8362
8363 /* driver might be less strict about feature dependencies */
8364 features = netdev_fix_features(dev, features);
8365
fd867d51
JW
8366 /* some features can't be enabled if they're off an an upper device */
8367 netdev_for_each_upper_dev_rcu(dev, upper, iter)
8368 features = netdev_sync_upper_features(dev, upper, features);
8369
5455c699 8370 if (dev->features == features)
e7868a85 8371 goto sync_lower;
5455c699 8372
c8f44aff
MM
8373 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8374 &dev->features, &features);
5455c699
MM
8375
8376 if (dev->netdev_ops->ndo_set_features)
8377 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
8378 else
8379 err = 0;
5455c699 8380
6cb6a27c 8381 if (unlikely(err < 0)) {
5455c699 8382 netdev_err(dev,
c8f44aff
MM
8383 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8384 err, &features, &dev->features);
17b85d29
NA
8385 /* return non-0 since some features might have changed and
8386 * it's better to fire a spurious notification than miss it
8387 */
8388 return -1;
6cb6a27c
MM
8389 }
8390
e7868a85 8391sync_lower:
fd867d51
JW
8392 /* some features must be disabled on lower devices when disabled
8393 * on an upper device (think: bonding master or bridge)
8394 */
8395 netdev_for_each_lower_dev(dev, lower, iter)
8396 netdev_sync_lower_features(dev, lower, features);
8397
ae847f40
SD
8398 if (!err) {
8399 netdev_features_t diff = features ^ dev->features;
8400
8401 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8402 /* udp_tunnel_{get,drop}_rx_info both need
8403 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8404 * device, or they won't do anything.
8405 * Thus we need to update dev->features
8406 * *before* calling udp_tunnel_get_rx_info,
8407 * but *after* calling udp_tunnel_drop_rx_info.
8408 */
8409 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8410 dev->features = features;
8411 udp_tunnel_get_rx_info(dev);
8412 } else {
8413 udp_tunnel_drop_rx_info(dev);
8414 }
8415 }
8416
9daae9bd
GP
8417 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8418 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8419 dev->features = features;
8420 err |= vlan_get_rx_ctag_filter_info(dev);
8421 } else {
8422 vlan_drop_rx_ctag_filter_info(dev);
8423 }
8424 }
8425
8426 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8427 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8428 dev->features = features;
8429 err |= vlan_get_rx_stag_filter_info(dev);
8430 } else {
8431 vlan_drop_rx_stag_filter_info(dev);
8432 }
8433 }
8434
6cb6a27c 8435 dev->features = features;
ae847f40 8436 }
6cb6a27c 8437
e7868a85 8438 return err < 0 ? 0 : 1;
6cb6a27c
MM
8439}
8440
afe12cc8
MM
8441/**
8442 * netdev_update_features - recalculate device features
8443 * @dev: the device to check
8444 *
8445 * Recalculate dev->features set and send notifications if it
8446 * has changed. Should be called after driver or hardware dependent
8447 * conditions might have changed that influence the features.
8448 */
6cb6a27c
MM
8449void netdev_update_features(struct net_device *dev)
8450{
8451 if (__netdev_update_features(dev))
8452 netdev_features_change(dev);
5455c699
MM
8453}
8454EXPORT_SYMBOL(netdev_update_features);
8455
afe12cc8
MM
8456/**
8457 * netdev_change_features - recalculate device features
8458 * @dev: the device to check
8459 *
8460 * Recalculate dev->features set and send notifications even
8461 * if they have not changed. Should be called instead of
8462 * netdev_update_features() if also dev->vlan_features might
8463 * have changed to allow the changes to be propagated to stacked
8464 * VLAN devices.
8465 */
8466void netdev_change_features(struct net_device *dev)
8467{
8468 __netdev_update_features(dev);
8469 netdev_features_change(dev);
8470}
8471EXPORT_SYMBOL(netdev_change_features);
8472
fc4a7489
PM
8473/**
8474 * netif_stacked_transfer_operstate - transfer operstate
8475 * @rootdev: the root or lower level device to transfer state from
8476 * @dev: the device to transfer operstate to
8477 *
8478 * Transfer operational state from root to device. This is normally
8479 * called when a stacking relationship exists between the root
8480 * device and the device(a leaf device).
8481 */
8482void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8483 struct net_device *dev)
8484{
8485 if (rootdev->operstate == IF_OPER_DORMANT)
8486 netif_dormant_on(dev);
8487 else
8488 netif_dormant_off(dev);
8489
0575c86b
ZS
8490 if (netif_carrier_ok(rootdev))
8491 netif_carrier_on(dev);
8492 else
8493 netif_carrier_off(dev);
fc4a7489
PM
8494}
8495EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8496
1b4bf461
ED
8497static int netif_alloc_rx_queues(struct net_device *dev)
8498{
1b4bf461 8499 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 8500 struct netdev_rx_queue *rx;
10595902 8501 size_t sz = count * sizeof(*rx);
e817f856 8502 int err = 0;
1b4bf461 8503
bd25fa7b 8504 BUG_ON(count < 1);
1b4bf461 8505
dcda9b04 8506 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
8507 if (!rx)
8508 return -ENOMEM;
8509
bd25fa7b
TH
8510 dev->_rx = rx;
8511
e817f856 8512 for (i = 0; i < count; i++) {
fe822240 8513 rx[i].dev = dev;
e817f856
JDB
8514
8515 /* XDP RX-queue setup */
8516 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8517 if (err < 0)
8518 goto err_rxq_info;
8519 }
1b4bf461 8520 return 0;
e817f856
JDB
8521
8522err_rxq_info:
8523 /* Rollback successful reg's and free other resources */
8524 while (i--)
8525 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
141b52a9 8526 kvfree(dev->_rx);
e817f856
JDB
8527 dev->_rx = NULL;
8528 return err;
8529}
8530
8531static void netif_free_rx_queues(struct net_device *dev)
8532{
8533 unsigned int i, count = dev->num_rx_queues;
e817f856
JDB
8534
8535 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8536 if (!dev->_rx)
8537 return;
8538
e817f856 8539 for (i = 0; i < count; i++)
82aaff2f
JK
8540 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8541
8542 kvfree(dev->_rx);
1b4bf461
ED
8543}
8544
aa942104
CG
8545static void netdev_init_one_queue(struct net_device *dev,
8546 struct netdev_queue *queue, void *_unused)
8547{
8548 /* Initialize queue lock */
8549 spin_lock_init(&queue->_xmit_lock);
8550 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8551 queue->xmit_lock_owner = -1;
b236da69 8552 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 8553 queue->dev = dev;
114cf580
TH
8554#ifdef CONFIG_BQL
8555 dql_init(&queue->dql, HZ);
8556#endif
aa942104
CG
8557}
8558
60877a32
ED
8559static void netif_free_tx_queues(struct net_device *dev)
8560{
4cb28970 8561 kvfree(dev->_tx);
60877a32
ED
8562}
8563
e6484930
TH
8564static int netif_alloc_netdev_queues(struct net_device *dev)
8565{
8566 unsigned int count = dev->num_tx_queues;
8567 struct netdev_queue *tx;
60877a32 8568 size_t sz = count * sizeof(*tx);
e6484930 8569
d339727c
ED
8570 if (count < 1 || count > 0xffff)
8571 return -EINVAL;
62b5942a 8572
dcda9b04 8573 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
8574 if (!tx)
8575 return -ENOMEM;
8576
e6484930 8577 dev->_tx = tx;
1d24eb48 8578
e6484930
TH
8579 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8580 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
8581
8582 return 0;
e6484930
TH
8583}
8584
a2029240
DV
8585void netif_tx_stop_all_queues(struct net_device *dev)
8586{
8587 unsigned int i;
8588
8589 for (i = 0; i < dev->num_tx_queues; i++) {
8590 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 8591
a2029240
DV
8592 netif_tx_stop_queue(txq);
8593 }
8594}
8595EXPORT_SYMBOL(netif_tx_stop_all_queues);
8596
1da177e4
LT
8597/**
8598 * register_netdevice - register a network device
8599 * @dev: device to register
8600 *
8601 * Take a completed network device structure and add it to the kernel
8602 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8603 * chain. 0 is returned on success. A negative errno code is returned
8604 * on a failure to set up the device, or if the name is a duplicate.
8605 *
8606 * Callers must hold the rtnl semaphore. You may want
8607 * register_netdev() instead of this.
8608 *
8609 * BUGS:
8610 * The locking appears insufficient to guarantee two parallel registers
8611 * will not get the same name.
8612 */
8613
8614int register_netdevice(struct net_device *dev)
8615{
1da177e4 8616 int ret;
d314774c 8617 struct net *net = dev_net(dev);
1da177e4 8618
e283de3a
FF
8619 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8620 NETDEV_FEATURE_COUNT);
1da177e4
LT
8621 BUG_ON(dev_boot_phase);
8622 ASSERT_RTNL();
8623
b17a7c17
SH
8624 might_sleep();
8625
1da177e4
LT
8626 /* When net_device's are persistent, this will be fatal. */
8627 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 8628 BUG_ON(!net);
1da177e4 8629
f1f28aa3 8630 spin_lock_init(&dev->addr_list_lock);
cf508b12 8631 netdev_set_addr_lockdep_class(dev);
1da177e4 8632
828de4f6 8633 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
8634 if (ret < 0)
8635 goto out;
8636
1da177e4 8637 /* Init, if this function is available */
d314774c
SH
8638 if (dev->netdev_ops->ndo_init) {
8639 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
8640 if (ret) {
8641 if (ret > 0)
8642 ret = -EIO;
90833aa4 8643 goto out;
1da177e4
LT
8644 }
8645 }
4ec93edb 8646
f646968f
PM
8647 if (((dev->hw_features | dev->features) &
8648 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
8649 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8650 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8651 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8652 ret = -EINVAL;
8653 goto err_uninit;
8654 }
8655
9c7dafbf
PE
8656 ret = -EBUSY;
8657 if (!dev->ifindex)
8658 dev->ifindex = dev_new_index(net);
8659 else if (__dev_get_by_index(net, dev->ifindex))
8660 goto err_uninit;
8661
5455c699
MM
8662 /* Transfer changeable features to wanted_features and enable
8663 * software offloads (GSO and GRO).
8664 */
8665 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f 8666 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122
SD
8667
8668 if (dev->netdev_ops->ndo_udp_tunnel_add) {
8669 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8670 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8671 }
8672
14d1232f 8673 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 8674
cbc53e08 8675 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 8676 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 8677
7f348a60
AD
8678 /* If IPv4 TCP segmentation offload is supported we should also
8679 * allow the device to enable segmenting the frame with the option
8680 * of ignoring a static IP ID value. This doesn't enable the
8681 * feature itself but allows the user to enable it later.
8682 */
cbc53e08
AD
8683 if (dev->hw_features & NETIF_F_TSO)
8684 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
8685 if (dev->vlan_features & NETIF_F_TSO)
8686 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8687 if (dev->mpls_features & NETIF_F_TSO)
8688 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8689 if (dev->hw_enc_features & NETIF_F_TSO)
8690 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 8691
1180e7d6 8692 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 8693 */
1180e7d6 8694 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 8695
ee579677
PS
8696 /* Make NETIF_F_SG inheritable to tunnel devices.
8697 */
802ab55a 8698 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 8699
0d89d203
SH
8700 /* Make NETIF_F_SG inheritable to MPLS.
8701 */
8702 dev->mpls_features |= NETIF_F_SG;
8703
7ffbe3fd
JB
8704 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8705 ret = notifier_to_errno(ret);
8706 if (ret)
8707 goto err_uninit;
8708
8b41d188 8709 ret = netdev_register_kobject(dev);
b17a7c17 8710 if (ret)
7ce1b0ed 8711 goto err_uninit;
b17a7c17
SH
8712 dev->reg_state = NETREG_REGISTERED;
8713
6cb6a27c 8714 __netdev_update_features(dev);
8e9b59b2 8715
1da177e4
LT
8716 /*
8717 * Default initial state at registry is that the
8718 * device is present.
8719 */
8720
8721 set_bit(__LINK_STATE_PRESENT, &dev->state);
8722
8f4cccbb
BH
8723 linkwatch_init_dev(dev);
8724
1da177e4 8725 dev_init_scheduler(dev);
1da177e4 8726 dev_hold(dev);
ce286d32 8727 list_netdevice(dev);
7bf23575 8728 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 8729
948b337e
JP
8730 /* If the device has permanent device address, driver should
8731 * set dev_addr and also addr_assign_type should be set to
8732 * NET_ADDR_PERM (default value).
8733 */
8734 if (dev->addr_assign_type == NET_ADDR_PERM)
8735 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8736
1da177e4 8737 /* Notify protocols, that a new device appeared. */
056925ab 8738 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 8739 ret = notifier_to_errno(ret);
93ee31f1
DL
8740 if (ret) {
8741 rollback_registered(dev);
8742 dev->reg_state = NETREG_UNREGISTERED;
8743 }
d90a909e
EB
8744 /*
8745 * Prevent userspace races by waiting until the network
8746 * device is fully setup before sending notifications.
8747 */
a2835763
PM
8748 if (!dev->rtnl_link_ops ||
8749 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 8750 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
8751
8752out:
8753 return ret;
7ce1b0ed
HX
8754
8755err_uninit:
d314774c
SH
8756 if (dev->netdev_ops->ndo_uninit)
8757 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
8758 if (dev->priv_destructor)
8759 dev->priv_destructor(dev);
7ce1b0ed 8760 goto out;
1da177e4 8761}
d1b19dff 8762EXPORT_SYMBOL(register_netdevice);
1da177e4 8763
937f1ba5
BH
8764/**
8765 * init_dummy_netdev - init a dummy network device for NAPI
8766 * @dev: device to init
8767 *
8768 * This takes a network device structure and initialize the minimum
8769 * amount of fields so it can be used to schedule NAPI polls without
8770 * registering a full blown interface. This is to be used by drivers
8771 * that need to tie several hardware interfaces to a single NAPI
8772 * poll scheduler due to HW limitations.
8773 */
8774int init_dummy_netdev(struct net_device *dev)
8775{
8776 /* Clear everything. Note we don't initialize spinlocks
8777 * are they aren't supposed to be taken by any of the
8778 * NAPI code and this dummy netdev is supposed to be
8779 * only ever used for NAPI polls
8780 */
8781 memset(dev, 0, sizeof(struct net_device));
8782
8783 /* make sure we BUG if trying to hit standard
8784 * register/unregister code path
8785 */
8786 dev->reg_state = NETREG_DUMMY;
8787
937f1ba5
BH
8788 /* NAPI wants this */
8789 INIT_LIST_HEAD(&dev->napi_list);
8790
8791 /* a dummy interface is started by default */
8792 set_bit(__LINK_STATE_PRESENT, &dev->state);
8793 set_bit(__LINK_STATE_START, &dev->state);
8794
35edfdc7
JE
8795 /* napi_busy_loop stats accounting wants this */
8796 dev_net_set(dev, &init_net);
8797
29b4433d
ED
8798 /* Note : We dont allocate pcpu_refcnt for dummy devices,
8799 * because users of this 'device' dont need to change
8800 * its refcount.
8801 */
8802
937f1ba5
BH
8803 return 0;
8804}
8805EXPORT_SYMBOL_GPL(init_dummy_netdev);
8806
8807
1da177e4
LT
8808/**
8809 * register_netdev - register a network device
8810 * @dev: device to register
8811 *
8812 * Take a completed network device structure and add it to the kernel
8813 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8814 * chain. 0 is returned on success. A negative errno code is returned
8815 * on a failure to set up the device, or if the name is a duplicate.
8816 *
38b4da38 8817 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
8818 * and expands the device name if you passed a format string to
8819 * alloc_netdev.
8820 */
8821int register_netdev(struct net_device *dev)
8822{
8823 int err;
8824
b0f3debc
KT
8825 if (rtnl_lock_killable())
8826 return -EINTR;
1da177e4 8827 err = register_netdevice(dev);
1da177e4
LT
8828 rtnl_unlock();
8829 return err;
8830}
8831EXPORT_SYMBOL(register_netdev);
8832
29b4433d
ED
8833int netdev_refcnt_read(const struct net_device *dev)
8834{
8835 int i, refcnt = 0;
8836
8837 for_each_possible_cpu(i)
8838 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8839 return refcnt;
8840}
8841EXPORT_SYMBOL(netdev_refcnt_read);
8842
2c53040f 8843/**
1da177e4 8844 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 8845 * @dev: target net_device
1da177e4
LT
8846 *
8847 * This is called when unregistering network devices.
8848 *
8849 * Any protocol or device that holds a reference should register
8850 * for netdevice notification, and cleanup and put back the
8851 * reference if they receive an UNREGISTER event.
8852 * We can get stuck here if buggy protocols don't correctly
4ec93edb 8853 * call dev_put.
1da177e4
LT
8854 */
8855static void netdev_wait_allrefs(struct net_device *dev)
8856{
8857 unsigned long rebroadcast_time, warning_time;
29b4433d 8858 int refcnt;
1da177e4 8859
e014debe
ED
8860 linkwatch_forget_dev(dev);
8861
1da177e4 8862 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
8863 refcnt = netdev_refcnt_read(dev);
8864
8865 while (refcnt != 0) {
1da177e4 8866 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 8867 rtnl_lock();
1da177e4
LT
8868
8869 /* Rebroadcast unregister notification */
056925ab 8870 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 8871
748e2d93 8872 __rtnl_unlock();
0115e8e3 8873 rcu_barrier();
748e2d93
ED
8874 rtnl_lock();
8875
1da177e4
LT
8876 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8877 &dev->state)) {
8878 /* We must not have linkwatch events
8879 * pending on unregister. If this
8880 * happens, we simply run the queue
8881 * unscheduled, resulting in a noop
8882 * for this device.
8883 */
8884 linkwatch_run_queue();
8885 }
8886
6756ae4b 8887 __rtnl_unlock();
1da177e4
LT
8888
8889 rebroadcast_time = jiffies;
8890 }
8891
8892 msleep(250);
8893
29b4433d
ED
8894 refcnt = netdev_refcnt_read(dev);
8895
d7c04b05 8896 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
8897 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8898 dev->name, refcnt);
1da177e4
LT
8899 warning_time = jiffies;
8900 }
8901 }
8902}
8903
8904/* The sequence is:
8905 *
8906 * rtnl_lock();
8907 * ...
8908 * register_netdevice(x1);
8909 * register_netdevice(x2);
8910 * ...
8911 * unregister_netdevice(y1);
8912 * unregister_netdevice(y2);
8913 * ...
8914 * rtnl_unlock();
8915 * free_netdev(y1);
8916 * free_netdev(y2);
8917 *
58ec3b4d 8918 * We are invoked by rtnl_unlock().
1da177e4 8919 * This allows us to deal with problems:
b17a7c17 8920 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
8921 * without deadlocking with linkwatch via keventd.
8922 * 2) Since we run with the RTNL semaphore not held, we can sleep
8923 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
8924 *
8925 * We must not return until all unregister events added during
8926 * the interval the lock was held have been completed.
1da177e4 8927 */
1da177e4
LT
8928void netdev_run_todo(void)
8929{
626ab0e6 8930 struct list_head list;
1da177e4 8931
1da177e4 8932 /* Snapshot list, allow later requests */
626ab0e6 8933 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
8934
8935 __rtnl_unlock();
626ab0e6 8936
0115e8e3
ED
8937
8938 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
8939 if (!list_empty(&list))
8940 rcu_barrier();
8941
1da177e4
LT
8942 while (!list_empty(&list)) {
8943 struct net_device *dev
e5e26d75 8944 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
8945 list_del(&dev->todo_list);
8946
b17a7c17 8947 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 8948 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
8949 dev->name, dev->reg_state);
8950 dump_stack();
8951 continue;
8952 }
1da177e4 8953
b17a7c17 8954 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 8955
b17a7c17 8956 netdev_wait_allrefs(dev);
1da177e4 8957
b17a7c17 8958 /* paranoia */
29b4433d 8959 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
8960 BUG_ON(!list_empty(&dev->ptype_all));
8961 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
8962 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8963 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
330c7272 8964#if IS_ENABLED(CONFIG_DECNET)
547b792c 8965 WARN_ON(dev->dn_ptr);
330c7272 8966#endif
cf124db5
DM
8967 if (dev->priv_destructor)
8968 dev->priv_destructor(dev);
8969 if (dev->needs_free_netdev)
8970 free_netdev(dev);
9093bbb2 8971
50624c93
EB
8972 /* Report a network device has been unregistered */
8973 rtnl_lock();
8974 dev_net(dev)->dev_unreg_count--;
8975 __rtnl_unlock();
8976 wake_up(&netdev_unregistering_wq);
8977
9093bbb2
SH
8978 /* Free network device */
8979 kobject_put(&dev->dev.kobj);
1da177e4 8980 }
1da177e4
LT
8981}
8982
9256645a
JW
8983/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8984 * all the same fields in the same order as net_device_stats, with only
8985 * the type differing, but rtnl_link_stats64 may have additional fields
8986 * at the end for newer counters.
3cfde79c 8987 */
77a1abf5
ED
8988void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8989 const struct net_device_stats *netdev_stats)
3cfde79c
BH
8990{
8991#if BITS_PER_LONG == 64
9256645a 8992 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 8993 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
8994 /* zero out counters that only exist in rtnl_link_stats64 */
8995 memset((char *)stats64 + sizeof(*netdev_stats), 0,
8996 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 8997#else
9256645a 8998 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
8999 const unsigned long *src = (const unsigned long *)netdev_stats;
9000 u64 *dst = (u64 *)stats64;
9001
9256645a 9002 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
9003 for (i = 0; i < n; i++)
9004 dst[i] = src[i];
9256645a
JW
9005 /* zero out counters that only exist in rtnl_link_stats64 */
9006 memset((char *)stats64 + n * sizeof(u64), 0,
9007 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
9008#endif
9009}
77a1abf5 9010EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 9011
eeda3fd6
SH
9012/**
9013 * dev_get_stats - get network device statistics
9014 * @dev: device to get statistics from
28172739 9015 * @storage: place to store stats
eeda3fd6 9016 *
d7753516
BH
9017 * Get network statistics from device. Return @storage.
9018 * The device driver may provide its own method by setting
9019 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9020 * otherwise the internal statistics structure is used.
eeda3fd6 9021 */
d7753516
BH
9022struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9023 struct rtnl_link_stats64 *storage)
7004bf25 9024{
eeda3fd6
SH
9025 const struct net_device_ops *ops = dev->netdev_ops;
9026
28172739
ED
9027 if (ops->ndo_get_stats64) {
9028 memset(storage, 0, sizeof(*storage));
caf586e5
ED
9029 ops->ndo_get_stats64(dev, storage);
9030 } else if (ops->ndo_get_stats) {
3cfde79c 9031 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
9032 } else {
9033 netdev_stats_to_stats64(storage, &dev->stats);
28172739 9034 }
6f64ec74
ED
9035 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9036 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9037 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 9038 return storage;
c45d286e 9039}
eeda3fd6 9040EXPORT_SYMBOL(dev_get_stats);
c45d286e 9041
24824a09 9042struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 9043{
24824a09 9044 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 9045
24824a09
ED
9046#ifdef CONFIG_NET_CLS_ACT
9047 if (queue)
9048 return queue;
9049 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9050 if (!queue)
9051 return NULL;
9052 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 9053 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
9054 queue->qdisc_sleeping = &noop_qdisc;
9055 rcu_assign_pointer(dev->ingress_queue, queue);
9056#endif
9057 return queue;
bb949fbd
DM
9058}
9059
2c60db03
ED
9060static const struct ethtool_ops default_ethtool_ops;
9061
d07d7507
SG
9062void netdev_set_default_ethtool_ops(struct net_device *dev,
9063 const struct ethtool_ops *ops)
9064{
9065 if (dev->ethtool_ops == &default_ethtool_ops)
9066 dev->ethtool_ops = ops;
9067}
9068EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9069
74d332c1
ED
9070void netdev_freemem(struct net_device *dev)
9071{
9072 char *addr = (char *)dev - dev->padded;
9073
4cb28970 9074 kvfree(addr);
74d332c1
ED
9075}
9076
1da177e4 9077/**
722c9a0c 9078 * alloc_netdev_mqs - allocate network device
9079 * @sizeof_priv: size of private data to allocate space for
9080 * @name: device name format string
9081 * @name_assign_type: origin of device name
9082 * @setup: callback to initialize device
9083 * @txqs: the number of TX subqueues to allocate
9084 * @rxqs: the number of RX subqueues to allocate
9085 *
9086 * Allocates a struct net_device with private data area for driver use
9087 * and performs basic initialization. Also allocates subqueue structs
9088 * for each queue on the device.
1da177e4 9089 */
36909ea4 9090struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 9091 unsigned char name_assign_type,
36909ea4
TH
9092 void (*setup)(struct net_device *),
9093 unsigned int txqs, unsigned int rxqs)
1da177e4 9094{
1da177e4 9095 struct net_device *dev;
52a59bd5 9096 unsigned int alloc_size;
1ce8e7b5 9097 struct net_device *p;
1da177e4 9098
b6fe17d6
SH
9099 BUG_ON(strlen(name) >= sizeof(dev->name));
9100
36909ea4 9101 if (txqs < 1) {
7b6cd1ce 9102 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
9103 return NULL;
9104 }
9105
36909ea4 9106 if (rxqs < 1) {
7b6cd1ce 9107 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
9108 return NULL;
9109 }
36909ea4 9110
fd2ea0a7 9111 alloc_size = sizeof(struct net_device);
d1643d24
AD
9112 if (sizeof_priv) {
9113 /* ensure 32-byte alignment of private area */
1ce8e7b5 9114 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
9115 alloc_size += sizeof_priv;
9116 }
9117 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 9118 alloc_size += NETDEV_ALIGN - 1;
1da177e4 9119
dcda9b04 9120 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
62b5942a 9121 if (!p)
1da177e4 9122 return NULL;
1da177e4 9123
1ce8e7b5 9124 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 9125 dev->padded = (char *)dev - (char *)p;
ab9c73cc 9126
29b4433d
ED
9127 dev->pcpu_refcnt = alloc_percpu(int);
9128 if (!dev->pcpu_refcnt)
74d332c1 9129 goto free_dev;
ab9c73cc 9130
ab9c73cc 9131 if (dev_addr_init(dev))
29b4433d 9132 goto free_pcpu;
ab9c73cc 9133
22bedad3 9134 dev_mc_init(dev);
a748ee24 9135 dev_uc_init(dev);
ccffad25 9136
c346dca1 9137 dev_net_set(dev, &init_net);
1da177e4 9138
8d3bdbd5 9139 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 9140 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 9141
8d3bdbd5
DM
9142 INIT_LIST_HEAD(&dev->napi_list);
9143 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 9144 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 9145 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
9146 INIT_LIST_HEAD(&dev->adj_list.upper);
9147 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
9148 INIT_LIST_HEAD(&dev->ptype_all);
9149 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
9150#ifdef CONFIG_NET_SCHED
9151 hash_init(dev->qdisc_hash);
9152#endif
02875878 9153 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
9154 setup(dev);
9155
a813104d 9156 if (!dev->tx_queue_len) {
f84bb1ea 9157 dev->priv_flags |= IFF_NO_QUEUE;
11597084 9158 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 9159 }
906470c1 9160
36909ea4
TH
9161 dev->num_tx_queues = txqs;
9162 dev->real_num_tx_queues = txqs;
ed9af2e8 9163 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 9164 goto free_all;
e8a0464c 9165
36909ea4
TH
9166 dev->num_rx_queues = rxqs;
9167 dev->real_num_rx_queues = rxqs;
fe822240 9168 if (netif_alloc_rx_queues(dev))
8d3bdbd5 9169 goto free_all;
0a9627f2 9170
1da177e4 9171 strcpy(dev->name, name);
c835a677 9172 dev->name_assign_type = name_assign_type;
cbda10fa 9173 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
9174 if (!dev->ethtool_ops)
9175 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
9176
9177 nf_hook_ingress_init(dev);
9178
1da177e4 9179 return dev;
ab9c73cc 9180
8d3bdbd5
DM
9181free_all:
9182 free_netdev(dev);
9183 return NULL;
9184
29b4433d
ED
9185free_pcpu:
9186 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
9187free_dev:
9188 netdev_freemem(dev);
ab9c73cc 9189 return NULL;
1da177e4 9190}
36909ea4 9191EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
9192
9193/**
722c9a0c 9194 * free_netdev - free network device
9195 * @dev: device
1da177e4 9196 *
722c9a0c 9197 * This function does the last stage of destroying an allocated device
9198 * interface. The reference to the device object is released. If this
9199 * is the last reference then it will be freed.Must be called in process
9200 * context.
1da177e4
LT
9201 */
9202void free_netdev(struct net_device *dev)
9203{
d565b0a1
HX
9204 struct napi_struct *p, *n;
9205
93d05d4a 9206 might_sleep();
60877a32 9207 netif_free_tx_queues(dev);
e817f856 9208 netif_free_rx_queues(dev);
e8a0464c 9209
33d480ce 9210 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 9211
f001fde5
JP
9212 /* Flush device addresses */
9213 dev_addr_flush(dev);
9214
d565b0a1
HX
9215 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9216 netif_napi_del(p);
9217
29b4433d
ED
9218 free_percpu(dev->pcpu_refcnt);
9219 dev->pcpu_refcnt = NULL;
9220
3041a069 9221 /* Compatibility with error handling in drivers */
1da177e4 9222 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 9223 netdev_freemem(dev);
1da177e4
LT
9224 return;
9225 }
9226
9227 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9228 dev->reg_state = NETREG_RELEASED;
9229
43cb76d9
GKH
9230 /* will free via device release */
9231 put_device(&dev->dev);
1da177e4 9232}
d1b19dff 9233EXPORT_SYMBOL(free_netdev);
4ec93edb 9234
f0db275a
SH
9235/**
9236 * synchronize_net - Synchronize with packet receive processing
9237 *
9238 * Wait for packets currently being received to be done.
9239 * Does not block later packets from starting.
9240 */
4ec93edb 9241void synchronize_net(void)
1da177e4
LT
9242{
9243 might_sleep();
be3fc413
ED
9244 if (rtnl_is_locked())
9245 synchronize_rcu_expedited();
9246 else
9247 synchronize_rcu();
1da177e4 9248}
d1b19dff 9249EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
9250
9251/**
44a0873d 9252 * unregister_netdevice_queue - remove device from the kernel
1da177e4 9253 * @dev: device
44a0873d 9254 * @head: list
6ebfbc06 9255 *
1da177e4 9256 * This function shuts down a device interface and removes it
d59b54b1 9257 * from the kernel tables.
44a0873d 9258 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
9259 *
9260 * Callers must hold the rtnl semaphore. You may want
9261 * unregister_netdev() instead of this.
9262 */
9263
44a0873d 9264void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 9265{
a6620712
HX
9266 ASSERT_RTNL();
9267
44a0873d 9268 if (head) {
9fdce099 9269 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
9270 } else {
9271 rollback_registered(dev);
9272 /* Finish processing unregister after unlock */
9273 net_set_todo(dev);
9274 }
1da177e4 9275}
44a0873d 9276EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 9277
9b5e383c
ED
9278/**
9279 * unregister_netdevice_many - unregister many devices
9280 * @head: list of devices
87757a91
ED
9281 *
9282 * Note: As most callers use a stack allocated list_head,
9283 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
9284 */
9285void unregister_netdevice_many(struct list_head *head)
9286{
9287 struct net_device *dev;
9288
9289 if (!list_empty(head)) {
9290 rollback_registered_many(head);
9291 list_for_each_entry(dev, head, unreg_list)
9292 net_set_todo(dev);
87757a91 9293 list_del(head);
9b5e383c
ED
9294 }
9295}
63c8099d 9296EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 9297
1da177e4
LT
9298/**
9299 * unregister_netdev - remove device from the kernel
9300 * @dev: device
9301 *
9302 * This function shuts down a device interface and removes it
d59b54b1 9303 * from the kernel tables.
1da177e4
LT
9304 *
9305 * This is just a wrapper for unregister_netdevice that takes
9306 * the rtnl semaphore. In general you want to use this and not
9307 * unregister_netdevice.
9308 */
9309void unregister_netdev(struct net_device *dev)
9310{
9311 rtnl_lock();
9312 unregister_netdevice(dev);
9313 rtnl_unlock();
9314}
1da177e4
LT
9315EXPORT_SYMBOL(unregister_netdev);
9316
ce286d32
EB
9317/**
9318 * dev_change_net_namespace - move device to different nethost namespace
9319 * @dev: device
9320 * @net: network namespace
9321 * @pat: If not NULL name pattern to try if the current device name
9322 * is already taken in the destination network namespace.
9323 *
9324 * This function shuts down a device interface and moves it
9325 * to a new network namespace. On success 0 is returned, on
9326 * a failure a netagive errno code is returned.
9327 *
9328 * Callers must hold the rtnl semaphore.
9329 */
9330
9331int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9332{
38e01b30 9333 int err, new_nsid, new_ifindex;
ce286d32
EB
9334
9335 ASSERT_RTNL();
9336
9337 /* Don't allow namespace local devices to be moved. */
9338 err = -EINVAL;
9339 if (dev->features & NETIF_F_NETNS_LOCAL)
9340 goto out;
9341
9342 /* Ensure the device has been registrered */
ce286d32
EB
9343 if (dev->reg_state != NETREG_REGISTERED)
9344 goto out;
9345
9346 /* Get out if there is nothing todo */
9347 err = 0;
878628fb 9348 if (net_eq(dev_net(dev), net))
ce286d32
EB
9349 goto out;
9350
9351 /* Pick the destination device name, and ensure
9352 * we can use it in the destination network namespace.
9353 */
9354 err = -EEXIST;
d9031024 9355 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
9356 /* We get here if we can't use the current device name */
9357 if (!pat)
9358 goto out;
7892bd08
LR
9359 err = dev_get_valid_name(net, dev, pat);
9360 if (err < 0)
ce286d32
EB
9361 goto out;
9362 }
9363
9364 /*
9365 * And now a mini version of register_netdevice unregister_netdevice.
9366 */
9367
9368 /* If device is running close it first. */
9b772652 9369 dev_close(dev);
ce286d32
EB
9370
9371 /* And unlink it from device chain */
ce286d32
EB
9372 unlist_netdevice(dev);
9373
9374 synchronize_net();
9375
9376 /* Shutdown queueing discipline. */
9377 dev_shutdown(dev);
9378
9379 /* Notify protocols, that we are about to destroy
eb13da1a 9380 * this device. They should clean all the things.
9381 *
9382 * Note that dev->reg_state stays at NETREG_REGISTERED.
9383 * This is wanted because this way 8021q and macvlan know
9384 * the device is just moving and can keep their slaves up.
9385 */
ce286d32 9386 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43 9387 rcu_barrier();
38e01b30 9388
c36ac8e2 9389 new_nsid = peernet2id_alloc(dev_net(dev), net);
38e01b30
ND
9390 /* If there is an ifindex conflict assign a new one */
9391 if (__dev_get_by_index(net, dev->ifindex))
9392 new_ifindex = dev_new_index(net);
9393 else
9394 new_ifindex = dev->ifindex;
9395
9396 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9397 new_ifindex);
ce286d32
EB
9398
9399 /*
9400 * Flush the unicast and multicast chains
9401 */
a748ee24 9402 dev_uc_flush(dev);
22bedad3 9403 dev_mc_flush(dev);
ce286d32 9404
4e66ae2e
SH
9405 /* Send a netdev-removed uevent to the old namespace */
9406 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 9407 netdev_adjacent_del_links(dev);
4e66ae2e 9408
ce286d32 9409 /* Actually switch the network namespace */
c346dca1 9410 dev_net_set(dev, net);
38e01b30 9411 dev->ifindex = new_ifindex;
ce286d32 9412
4e66ae2e
SH
9413 /* Send a netdev-add uevent to the new namespace */
9414 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 9415 netdev_adjacent_add_links(dev);
4e66ae2e 9416
8b41d188 9417 /* Fixup kobjects */
a1b3f594 9418 err = device_rename(&dev->dev, dev->name);
8b41d188 9419 WARN_ON(err);
ce286d32
EB
9420
9421 /* Add the device back in the hashes */
9422 list_netdevice(dev);
9423
9424 /* Notify protocols, that a new device appeared. */
9425 call_netdevice_notifiers(NETDEV_REGISTER, dev);
9426
d90a909e
EB
9427 /*
9428 * Prevent userspace races by waiting until the network
9429 * device is fully setup before sending notifications.
9430 */
7f294054 9431 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 9432
ce286d32
EB
9433 synchronize_net();
9434 err = 0;
9435out:
9436 return err;
9437}
463d0183 9438EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 9439
f0bf90de 9440static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
9441{
9442 struct sk_buff **list_skb;
1da177e4 9443 struct sk_buff *skb;
f0bf90de 9444 unsigned int cpu;
97d8b6e3 9445 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 9446
1da177e4
LT
9447 local_irq_disable();
9448 cpu = smp_processor_id();
9449 sd = &per_cpu(softnet_data, cpu);
9450 oldsd = &per_cpu(softnet_data, oldcpu);
9451
9452 /* Find end of our completion_queue. */
9453 list_skb = &sd->completion_queue;
9454 while (*list_skb)
9455 list_skb = &(*list_skb)->next;
9456 /* Append completion queue from offline CPU. */
9457 *list_skb = oldsd->completion_queue;
9458 oldsd->completion_queue = NULL;
9459
1da177e4 9460 /* Append output queue from offline CPU. */
a9cbd588
CG
9461 if (oldsd->output_queue) {
9462 *sd->output_queue_tailp = oldsd->output_queue;
9463 sd->output_queue_tailp = oldsd->output_queue_tailp;
9464 oldsd->output_queue = NULL;
9465 oldsd->output_queue_tailp = &oldsd->output_queue;
9466 }
ac64da0b
ED
9467 /* Append NAPI poll list from offline CPU, with one exception :
9468 * process_backlog() must be called by cpu owning percpu backlog.
9469 * We properly handle process_queue & input_pkt_queue later.
9470 */
9471 while (!list_empty(&oldsd->poll_list)) {
9472 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9473 struct napi_struct,
9474 poll_list);
9475
9476 list_del_init(&napi->poll_list);
9477 if (napi->poll == process_backlog)
9478 napi->state = 0;
9479 else
9480 ____napi_schedule(sd, napi);
264524d5 9481 }
1da177e4
LT
9482
9483 raise_softirq_irqoff(NET_TX_SOFTIRQ);
9484 local_irq_enable();
9485
773fc8f6 9486#ifdef CONFIG_RPS
9487 remsd = oldsd->rps_ipi_list;
9488 oldsd->rps_ipi_list = NULL;
9489#endif
9490 /* send out pending IPI's on offline CPU */
9491 net_rps_send_ipi(remsd);
9492
1da177e4 9493 /* Process offline CPU's input_pkt_queue */
76cc8b13 9494 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 9495 netif_rx_ni(skb);
76cc8b13 9496 input_queue_head_incr(oldsd);
fec5e652 9497 }
ac64da0b 9498 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 9499 netif_rx_ni(skb);
76cc8b13
TH
9500 input_queue_head_incr(oldsd);
9501 }
1da177e4 9502
f0bf90de 9503 return 0;
1da177e4 9504}
1da177e4 9505
7f353bf2 9506/**
b63365a2
HX
9507 * netdev_increment_features - increment feature set by one
9508 * @all: current feature set
9509 * @one: new feature set
9510 * @mask: mask feature set
7f353bf2
HX
9511 *
9512 * Computes a new feature set after adding a device with feature set
b63365a2
HX
9513 * @one to the master device with current feature set @all. Will not
9514 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 9515 */
c8f44aff
MM
9516netdev_features_t netdev_increment_features(netdev_features_t all,
9517 netdev_features_t one, netdev_features_t mask)
b63365a2 9518{
c8cd0989 9519 if (mask & NETIF_F_HW_CSUM)
a188222b 9520 mask |= NETIF_F_CSUM_MASK;
1742f183 9521 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 9522
a188222b 9523 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 9524 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 9525
1742f183 9526 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
9527 if (all & NETIF_F_HW_CSUM)
9528 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
9529
9530 return all;
9531}
b63365a2 9532EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 9533
430f03cd 9534static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
9535{
9536 int i;
9537 struct hlist_head *hash;
9538
6da2ec56 9539 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
30d97d35
PE
9540 if (hash != NULL)
9541 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9542 INIT_HLIST_HEAD(&hash[i]);
9543
9544 return hash;
9545}
9546
881d966b 9547/* Initialize per network namespace state */
4665079c 9548static int __net_init netdev_init(struct net *net)
881d966b 9549{
d9f37d01 9550 BUILD_BUG_ON(GRO_HASH_BUCKETS >
ccdb5171 9551 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
d9f37d01 9552
734b6541
RM
9553 if (net != &init_net)
9554 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 9555
30d97d35
PE
9556 net->dev_name_head = netdev_create_hash();
9557 if (net->dev_name_head == NULL)
9558 goto err_name;
881d966b 9559
30d97d35
PE
9560 net->dev_index_head = netdev_create_hash();
9561 if (net->dev_index_head == NULL)
9562 goto err_idx;
881d966b
EB
9563
9564 return 0;
30d97d35
PE
9565
9566err_idx:
9567 kfree(net->dev_name_head);
9568err_name:
9569 return -ENOMEM;
881d966b
EB
9570}
9571
f0db275a
SH
9572/**
9573 * netdev_drivername - network driver for the device
9574 * @dev: network device
f0db275a
SH
9575 *
9576 * Determine network driver for device.
9577 */
3019de12 9578const char *netdev_drivername(const struct net_device *dev)
6579e57b 9579{
cf04a4c7
SH
9580 const struct device_driver *driver;
9581 const struct device *parent;
3019de12 9582 const char *empty = "";
6579e57b
AV
9583
9584 parent = dev->dev.parent;
6579e57b 9585 if (!parent)
3019de12 9586 return empty;
6579e57b
AV
9587
9588 driver = parent->driver;
9589 if (driver && driver->name)
3019de12
DM
9590 return driver->name;
9591 return empty;
6579e57b
AV
9592}
9593
6ea754eb
JP
9594static void __netdev_printk(const char *level, const struct net_device *dev,
9595 struct va_format *vaf)
256df2f3 9596{
b004ff49 9597 if (dev && dev->dev.parent) {
6ea754eb
JP
9598 dev_printk_emit(level[1] - '0',
9599 dev->dev.parent,
9600 "%s %s %s%s: %pV",
9601 dev_driver_string(dev->dev.parent),
9602 dev_name(dev->dev.parent),
9603 netdev_name(dev), netdev_reg_state(dev),
9604 vaf);
b004ff49 9605 } else if (dev) {
6ea754eb
JP
9606 printk("%s%s%s: %pV",
9607 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 9608 } else {
6ea754eb 9609 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 9610 }
256df2f3
JP
9611}
9612
6ea754eb
JP
9613void netdev_printk(const char *level, const struct net_device *dev,
9614 const char *format, ...)
256df2f3
JP
9615{
9616 struct va_format vaf;
9617 va_list args;
256df2f3
JP
9618
9619 va_start(args, format);
9620
9621 vaf.fmt = format;
9622 vaf.va = &args;
9623
6ea754eb 9624 __netdev_printk(level, dev, &vaf);
b004ff49 9625
256df2f3 9626 va_end(args);
256df2f3
JP
9627}
9628EXPORT_SYMBOL(netdev_printk);
9629
9630#define define_netdev_printk_level(func, level) \
6ea754eb 9631void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 9632{ \
256df2f3
JP
9633 struct va_format vaf; \
9634 va_list args; \
9635 \
9636 va_start(args, fmt); \
9637 \
9638 vaf.fmt = fmt; \
9639 vaf.va = &args; \
9640 \
6ea754eb 9641 __netdev_printk(level, dev, &vaf); \
b004ff49 9642 \
256df2f3 9643 va_end(args); \
256df2f3
JP
9644} \
9645EXPORT_SYMBOL(func);
9646
9647define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9648define_netdev_printk_level(netdev_alert, KERN_ALERT);
9649define_netdev_printk_level(netdev_crit, KERN_CRIT);
9650define_netdev_printk_level(netdev_err, KERN_ERR);
9651define_netdev_printk_level(netdev_warn, KERN_WARNING);
9652define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9653define_netdev_printk_level(netdev_info, KERN_INFO);
9654
4665079c 9655static void __net_exit netdev_exit(struct net *net)
881d966b
EB
9656{
9657 kfree(net->dev_name_head);
9658 kfree(net->dev_index_head);
ee21b18b
VA
9659 if (net != &init_net)
9660 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
881d966b
EB
9661}
9662
022cbae6 9663static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
9664 .init = netdev_init,
9665 .exit = netdev_exit,
9666};
9667
4665079c 9668static void __net_exit default_device_exit(struct net *net)
ce286d32 9669{
e008b5fc 9670 struct net_device *dev, *aux;
ce286d32 9671 /*
e008b5fc 9672 * Push all migratable network devices back to the
ce286d32
EB
9673 * initial network namespace
9674 */
9675 rtnl_lock();
e008b5fc 9676 for_each_netdev_safe(net, dev, aux) {
ce286d32 9677 int err;
aca51397 9678 char fb_name[IFNAMSIZ];
ce286d32
EB
9679
9680 /* Ignore unmoveable devices (i.e. loopback) */
9681 if (dev->features & NETIF_F_NETNS_LOCAL)
9682 continue;
9683
e008b5fc
EB
9684 /* Leave virtual devices for the generic cleanup */
9685 if (dev->rtnl_link_ops)
9686 continue;
d0c082ce 9687
25985edc 9688 /* Push remaining network devices to init_net */
aca51397
PE
9689 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9690 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 9691 if (err) {
7b6cd1ce
JP
9692 pr_emerg("%s: failed to move %s to init_net: %d\n",
9693 __func__, dev->name, err);
aca51397 9694 BUG();
ce286d32
EB
9695 }
9696 }
9697 rtnl_unlock();
9698}
9699
50624c93
EB
9700static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9701{
9702 /* Return with the rtnl_lock held when there are no network
9703 * devices unregistering in any network namespace in net_list.
9704 */
9705 struct net *net;
9706 bool unregistering;
ff960a73 9707 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 9708
ff960a73 9709 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 9710 for (;;) {
50624c93
EB
9711 unregistering = false;
9712 rtnl_lock();
9713 list_for_each_entry(net, net_list, exit_list) {
9714 if (net->dev_unreg_count > 0) {
9715 unregistering = true;
9716 break;
9717 }
9718 }
9719 if (!unregistering)
9720 break;
9721 __rtnl_unlock();
ff960a73
PZ
9722
9723 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 9724 }
ff960a73 9725 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
9726}
9727
04dc7f6b
EB
9728static void __net_exit default_device_exit_batch(struct list_head *net_list)
9729{
9730 /* At exit all network devices most be removed from a network
b595076a 9731 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
9732 * Do this across as many network namespaces as possible to
9733 * improve batching efficiency.
9734 */
9735 struct net_device *dev;
9736 struct net *net;
9737 LIST_HEAD(dev_kill_list);
9738
50624c93
EB
9739 /* To prevent network device cleanup code from dereferencing
9740 * loopback devices or network devices that have been freed
9741 * wait here for all pending unregistrations to complete,
9742 * before unregistring the loopback device and allowing the
9743 * network namespace be freed.
9744 *
9745 * The netdev todo list containing all network devices
9746 * unregistrations that happen in default_device_exit_batch
9747 * will run in the rtnl_unlock() at the end of
9748 * default_device_exit_batch.
9749 */
9750 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
9751 list_for_each_entry(net, net_list, exit_list) {
9752 for_each_netdev_reverse(net, dev) {
b0ab2fab 9753 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
9754 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9755 else
9756 unregister_netdevice_queue(dev, &dev_kill_list);
9757 }
9758 }
9759 unregister_netdevice_many(&dev_kill_list);
9760 rtnl_unlock();
9761}
9762
022cbae6 9763static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 9764 .exit = default_device_exit,
04dc7f6b 9765 .exit_batch = default_device_exit_batch,
ce286d32
EB
9766};
9767
1da177e4
LT
9768/*
9769 * Initialize the DEV module. At boot time this walks the device list and
9770 * unhooks any devices that fail to initialise (normally hardware not
9771 * present) and leaves us with a valid list of present and active devices.
9772 *
9773 */
9774
9775/*
9776 * This is called single threaded during boot, so no need
9777 * to take the rtnl semaphore.
9778 */
9779static int __init net_dev_init(void)
9780{
9781 int i, rc = -ENOMEM;
9782
9783 BUG_ON(!dev_boot_phase);
9784
1da177e4
LT
9785 if (dev_proc_init())
9786 goto out;
9787
8b41d188 9788 if (netdev_kobject_init())
1da177e4
LT
9789 goto out;
9790
9791 INIT_LIST_HEAD(&ptype_all);
82d8a867 9792 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
9793 INIT_LIST_HEAD(&ptype_base[i]);
9794
62532da9
VY
9795 INIT_LIST_HEAD(&offload_base);
9796
881d966b
EB
9797 if (register_pernet_subsys(&netdev_net_ops))
9798 goto out;
1da177e4
LT
9799
9800 /*
9801 * Initialise the packet receive queues.
9802 */
9803
6f912042 9804 for_each_possible_cpu(i) {
41852497 9805 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 9806 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 9807
41852497
ED
9808 INIT_WORK(flush, flush_backlog);
9809
e36fa2f7 9810 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 9811 skb_queue_head_init(&sd->process_queue);
f53c7239
SK
9812#ifdef CONFIG_XFRM_OFFLOAD
9813 skb_queue_head_init(&sd->xfrm_backlog);
9814#endif
e36fa2f7 9815 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 9816 sd->output_queue_tailp = &sd->output_queue;
df334545 9817#ifdef CONFIG_RPS
e36fa2f7
ED
9818 sd->csd.func = rps_trigger_softirq;
9819 sd->csd.info = sd;
e36fa2f7 9820 sd->cpu = i;
1e94d72f 9821#endif
0a9627f2 9822
7c4ec749 9823 init_gro_hash(&sd->backlog);
e36fa2f7
ED
9824 sd->backlog.poll = process_backlog;
9825 sd->backlog.weight = weight_p;
1da177e4
LT
9826 }
9827
1da177e4
LT
9828 dev_boot_phase = 0;
9829
505d4f73
EB
9830 /* The loopback device is special if any other network devices
9831 * is present in a network namespace the loopback device must
9832 * be present. Since we now dynamically allocate and free the
9833 * loopback device ensure this invariant is maintained by
9834 * keeping the loopback device as the first device on the
9835 * list of network devices. Ensuring the loopback devices
9836 * is the first device that appears and the last network device
9837 * that disappears.
9838 */
9839 if (register_pernet_device(&loopback_net_ops))
9840 goto out;
9841
9842 if (register_pernet_device(&default_device_ops))
9843 goto out;
9844
962cf36c
CM
9845 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9846 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 9847
f0bf90de
SAS
9848 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9849 NULL, dev_cpu_dead);
9850 WARN_ON(rc < 0);
1da177e4
LT
9851 rc = 0;
9852out:
9853 return rc;
9854}
9855
9856subsys_initcall(net_dev_init);