net: remove type_check from dev_get_nest_level()
[linux-2.6-block.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
a7862b45 97#include <linux/bpf.h>
457c4cbc 98#include <net/net_namespace.h>
1da177e4 99#include <net/sock.h>
02d62e86 100#include <net/busy_poll.h>
1da177e4 101#include <linux/rtnetlink.h>
1da177e4 102#include <linux/stat.h>
1da177e4 103#include <net/dst.h>
fc4099f1 104#include <net/dst_metadata.h>
1da177e4
LT
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
44540960 107#include <net/xfrm.h>
1da177e4
LT
108#include <linux/highmem.h>
109#include <linux/init.h>
1da177e4 110#include <linux/module.h>
1da177e4
LT
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
1da177e4 114#include <net/iw_handler.h>
1da177e4 115#include <asm/current.h>
5bdb9886 116#include <linux/audit.h>
db217334 117#include <linux/dmaengine.h>
f6a78bfc 118#include <linux/err.h>
c7fa9d18 119#include <linux/ctype.h>
723e98b7 120#include <linux/if_arp.h>
6de329e2 121#include <linux/if_vlan.h>
8f0f2223 122#include <linux/ip.h>
ad55dcaf 123#include <net/ip.h>
25cd9ba0 124#include <net/mpls.h>
8f0f2223
DM
125#include <linux/ipv6.h>
126#include <linux/in.h>
b6b2fed1
DM
127#include <linux/jhash.h>
128#include <linux/random.h>
9cbc1cb8 129#include <trace/events/napi.h>
cf66ba58 130#include <trace/events/net.h>
07dc22e7 131#include <trace/events/skb.h>
5acbbd42 132#include <linux/pci.h>
caeda9b9 133#include <linux/inetdevice.h>
c445477d 134#include <linux/cpu_rmap.h>
c5905afb 135#include <linux/static_key.h>
af12fa6e 136#include <linux/hashtable.h>
60877a32 137#include <linux/vmalloc.h>
529d0489 138#include <linux/if_macvlan.h>
e7fd2885 139#include <linux/errqueue.h>
3b47d303 140#include <linux/hrtimer.h>
e687ad60 141#include <linux/netfilter_ingress.h>
6ae23ad3 142#include <linux/sctp.h>
40e4e713 143#include <linux/crash_dump.h>
1da177e4 144
342709ef
PE
145#include "net-sysfs.h"
146
d565b0a1
HX
147/* Instead of increasing this, you should create a hash table. */
148#define MAX_GRO_SKBS 8
149
5d38a079
HX
150/* This should be increased if a protocol with a bigger head is added. */
151#define GRO_MAX_HEAD (MAX_HEADER + 128)
152
1da177e4 153static DEFINE_SPINLOCK(ptype_lock);
62532da9 154static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
155struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156struct list_head ptype_all __read_mostly; /* Taps */
62532da9 157static struct list_head offload_base __read_mostly;
1da177e4 158
ae78dbfa 159static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
160static int call_netdevice_notifiers_info(unsigned long val,
161 struct net_device *dev,
162 struct netdev_notifier_info *info);
ae78dbfa 163
1da177e4 164/*
7562f876 165 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
166 * semaphore.
167 *
c6d14c84 168 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
169 *
170 * Writers must hold the rtnl semaphore while they loop through the
7562f876 171 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
172 * actual updates. This allows pure readers to access the list even
173 * while a writer is preparing to update it.
174 *
175 * To put it another way, dev_base_lock is held for writing only to
176 * protect against pure readers; the rtnl semaphore provides the
177 * protection against other writers.
178 *
179 * See, for example usages, register_netdevice() and
180 * unregister_netdevice(), which must be called with the rtnl
181 * semaphore held.
182 */
1da177e4 183DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
184EXPORT_SYMBOL(dev_base_lock);
185
af12fa6e
ET
186/* protects napi_hash addition/deletion and napi_gen_id */
187static DEFINE_SPINLOCK(napi_hash_lock);
188
52bd2d62 189static unsigned int napi_gen_id = NR_CPUS;
6180d9de 190static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 191
18afa4b0 192static seqcount_t devnet_rename_seq;
c91f6df2 193
4e985ada
TG
194static inline void dev_base_seq_inc(struct net *net)
195{
196 while (++net->dev_base_seq == 0);
197}
198
881d966b 199static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 200{
8387ff25 201 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 202
08e9897d 203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
204}
205
881d966b 206static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 207{
7c28bd0b 208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
209}
210
e36fa2f7 211static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
212{
213#ifdef CONFIG_RPS
e36fa2f7 214 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
215#endif
216}
217
e36fa2f7 218static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
219{
220#ifdef CONFIG_RPS
e36fa2f7 221 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
222#endif
223}
224
ce286d32 225/* Device list insertion */
53759be9 226static void list_netdevice(struct net_device *dev)
ce286d32 227{
c346dca1 228 struct net *net = dev_net(dev);
ce286d32
EB
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
c6d14c84 233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
ce286d32 237 write_unlock_bh(&dev_base_lock);
4e985ada
TG
238
239 dev_base_seq_inc(net);
ce286d32
EB
240}
241
fb699dfd
ED
242/* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
ce286d32
EB
245static void unlist_netdevice(struct net_device *dev)
246{
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
c6d14c84 251 list_del_rcu(&dev->dev_list);
72c9528b 252 hlist_del_rcu(&dev->name_hlist);
fb699dfd 253 hlist_del_rcu(&dev->index_hlist);
ce286d32 254 write_unlock_bh(&dev_base_lock);
4e985ada
TG
255
256 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
257}
258
1da177e4
LT
259/*
260 * Our notifier list
261 */
262
f07d5b94 263static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
264
265/*
266 * Device drivers call our routines to queue packets here. We empty the
267 * queue in the local softnet handler.
268 */
bea3348e 269
9958da05 270DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 271EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 272
cf508b12 273#ifdef CONFIG_LOCKDEP
723e98b7 274/*
c773e847 275 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
276 * according to dev->type
277 */
278static const unsigned short netdev_lock_type[] =
279 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
291 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 294
36cbd3dc 295static const char *const netdev_lock_name[] =
723e98b7
JP
296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
308 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
311
312static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 313static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
314
315static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316{
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324}
325
cf508b12
DM
326static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
723e98b7
JP
328{
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334}
cf508b12
DM
335
336static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337{
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344}
723e98b7 345#else
cf508b12
DM
346static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348{
349}
350static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
351{
352}
353#endif
1da177e4
LT
354
355/*******************************************************************************
356
357 Protocol management and registration routines
358
359*******************************************************************************/
360
1da177e4
LT
361/*
362 * Add a protocol ID to the list. Now that the input handler is
363 * smarter we can dispense with all the messy stuff that used to be
364 * here.
365 *
366 * BEWARE!!! Protocol handlers, mangling input packets,
367 * MUST BE last in hash buckets and checking protocol handlers
368 * MUST start from promiscuous ptype_all chain in net_bh.
369 * It is true now, do not change it.
370 * Explanation follows: if protocol handler, mangling packet, will
371 * be the first on list, it is not able to sense, that packet
372 * is cloned and should be copied-on-write, so that it will
373 * change it and subsequent readers will get broken packet.
374 * --ANK (980803)
375 */
376
c07b68e8
ED
377static inline struct list_head *ptype_head(const struct packet_type *pt)
378{
379 if (pt->type == htons(ETH_P_ALL))
7866a621 380 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 381 else
7866a621
SN
382 return pt->dev ? &pt->dev->ptype_specific :
383 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
384}
385
1da177e4
LT
386/**
387 * dev_add_pack - add packet handler
388 * @pt: packet type declaration
389 *
390 * Add a protocol handler to the networking stack. The passed &packet_type
391 * is linked into kernel lists and may not be freed until it has been
392 * removed from the kernel lists.
393 *
4ec93edb 394 * This call does not sleep therefore it can not
1da177e4
LT
395 * guarantee all CPU's that are in middle of receiving packets
396 * will see the new packet type (until the next received packet).
397 */
398
399void dev_add_pack(struct packet_type *pt)
400{
c07b68e8 401 struct list_head *head = ptype_head(pt);
1da177e4 402
c07b68e8
ED
403 spin_lock(&ptype_lock);
404 list_add_rcu(&pt->list, head);
405 spin_unlock(&ptype_lock);
1da177e4 406}
d1b19dff 407EXPORT_SYMBOL(dev_add_pack);
1da177e4 408
1da177e4
LT
409/**
410 * __dev_remove_pack - remove packet handler
411 * @pt: packet type declaration
412 *
413 * Remove a protocol handler that was previously added to the kernel
414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
415 * from the kernel lists and can be freed or reused once this function
4ec93edb 416 * returns.
1da177e4
LT
417 *
418 * The packet type might still be in use by receivers
419 * and must not be freed until after all the CPU's have gone
420 * through a quiescent state.
421 */
422void __dev_remove_pack(struct packet_type *pt)
423{
c07b68e8 424 struct list_head *head = ptype_head(pt);
1da177e4
LT
425 struct packet_type *pt1;
426
c07b68e8 427 spin_lock(&ptype_lock);
1da177e4
LT
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
7b6cd1ce 436 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 437out:
c07b68e8 438 spin_unlock(&ptype_lock);
1da177e4 439}
d1b19dff
ED
440EXPORT_SYMBOL(__dev_remove_pack);
441
1da177e4
LT
442/**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454void dev_remove_pack(struct packet_type *pt)
455{
456 __dev_remove_pack(pt);
4ec93edb 457
1da177e4
LT
458 synchronize_net();
459}
d1b19dff 460EXPORT_SYMBOL(dev_remove_pack);
1da177e4 461
62532da9
VY
462
463/**
464 * dev_add_offload - register offload handlers
465 * @po: protocol offload declaration
466 *
467 * Add protocol offload handlers to the networking stack. The passed
468 * &proto_offload is linked into kernel lists and may not be freed until
469 * it has been removed from the kernel lists.
470 *
471 * This call does not sleep therefore it can not
472 * guarantee all CPU's that are in middle of receiving packets
473 * will see the new offload handlers (until the next received packet).
474 */
475void dev_add_offload(struct packet_offload *po)
476{
bdef7de4 477 struct packet_offload *elem;
62532da9
VY
478
479 spin_lock(&offload_lock);
bdef7de4
DM
480 list_for_each_entry(elem, &offload_base, list) {
481 if (po->priority < elem->priority)
482 break;
483 }
484 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
485 spin_unlock(&offload_lock);
486}
487EXPORT_SYMBOL(dev_add_offload);
488
489/**
490 * __dev_remove_offload - remove offload handler
491 * @po: packet offload declaration
492 *
493 * Remove a protocol offload handler that was previously added to the
494 * kernel offload handlers by dev_add_offload(). The passed &offload_type
495 * is removed from the kernel lists and can be freed or reused once this
496 * function returns.
497 *
498 * The packet type might still be in use by receivers
499 * and must not be freed until after all the CPU's have gone
500 * through a quiescent state.
501 */
1d143d9f 502static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
503{
504 struct list_head *head = &offload_base;
505 struct packet_offload *po1;
506
c53aa505 507 spin_lock(&offload_lock);
62532da9
VY
508
509 list_for_each_entry(po1, head, list) {
510 if (po == po1) {
511 list_del_rcu(&po->list);
512 goto out;
513 }
514 }
515
516 pr_warn("dev_remove_offload: %p not found\n", po);
517out:
c53aa505 518 spin_unlock(&offload_lock);
62532da9 519}
62532da9
VY
520
521/**
522 * dev_remove_offload - remove packet offload handler
523 * @po: packet offload declaration
524 *
525 * Remove a packet offload handler that was previously added to the kernel
526 * offload handlers by dev_add_offload(). The passed &offload_type is
527 * removed from the kernel lists and can be freed or reused once this
528 * function returns.
529 *
530 * This call sleeps to guarantee that no CPU is looking at the packet
531 * type after return.
532 */
533void dev_remove_offload(struct packet_offload *po)
534{
535 __dev_remove_offload(po);
536
537 synchronize_net();
538}
539EXPORT_SYMBOL(dev_remove_offload);
540
1da177e4
LT
541/******************************************************************************
542
543 Device Boot-time Settings Routines
544
545*******************************************************************************/
546
547/* Boot time configuration table */
548static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
549
550/**
551 * netdev_boot_setup_add - add new setup entry
552 * @name: name of the device
553 * @map: configured settings for the device
554 *
555 * Adds new setup entry to the dev_boot_setup list. The function
556 * returns 0 on error and 1 on success. This is a generic routine to
557 * all netdevices.
558 */
559static int netdev_boot_setup_add(char *name, struct ifmap *map)
560{
561 struct netdev_boot_setup *s;
562 int i;
563
564 s = dev_boot_setup;
565 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
566 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
567 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 568 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
569 memcpy(&s[i].map, map, sizeof(s[i].map));
570 break;
571 }
572 }
573
574 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
575}
576
577/**
578 * netdev_boot_setup_check - check boot time settings
579 * @dev: the netdevice
580 *
581 * Check boot time settings for the device.
582 * The found settings are set for the device to be used
583 * later in the device probing.
584 * Returns 0 if no settings found, 1 if they are.
585 */
586int netdev_boot_setup_check(struct net_device *dev)
587{
588 struct netdev_boot_setup *s = dev_boot_setup;
589 int i;
590
591 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
592 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 593 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
594 dev->irq = s[i].map.irq;
595 dev->base_addr = s[i].map.base_addr;
596 dev->mem_start = s[i].map.mem_start;
597 dev->mem_end = s[i].map.mem_end;
598 return 1;
599 }
600 }
601 return 0;
602}
d1b19dff 603EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
604
605
606/**
607 * netdev_boot_base - get address from boot time settings
608 * @prefix: prefix for network device
609 * @unit: id for network device
610 *
611 * Check boot time settings for the base address of device.
612 * The found settings are set for the device to be used
613 * later in the device probing.
614 * Returns 0 if no settings found.
615 */
616unsigned long netdev_boot_base(const char *prefix, int unit)
617{
618 const struct netdev_boot_setup *s = dev_boot_setup;
619 char name[IFNAMSIZ];
620 int i;
621
622 sprintf(name, "%s%d", prefix, unit);
623
624 /*
625 * If device already registered then return base of 1
626 * to indicate not to probe for this interface
627 */
881d966b 628 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
629 return 1;
630
631 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
632 if (!strcmp(name, s[i].name))
633 return s[i].map.base_addr;
634 return 0;
635}
636
637/*
638 * Saves at boot time configured settings for any netdevice.
639 */
640int __init netdev_boot_setup(char *str)
641{
642 int ints[5];
643 struct ifmap map;
644
645 str = get_options(str, ARRAY_SIZE(ints), ints);
646 if (!str || !*str)
647 return 0;
648
649 /* Save settings */
650 memset(&map, 0, sizeof(map));
651 if (ints[0] > 0)
652 map.irq = ints[1];
653 if (ints[0] > 1)
654 map.base_addr = ints[2];
655 if (ints[0] > 2)
656 map.mem_start = ints[3];
657 if (ints[0] > 3)
658 map.mem_end = ints[4];
659
660 /* Add new entry to the list */
661 return netdev_boot_setup_add(str, &map);
662}
663
664__setup("netdev=", netdev_boot_setup);
665
666/*******************************************************************************
667
668 Device Interface Subroutines
669
670*******************************************************************************/
671
a54acb3a
ND
672/**
673 * dev_get_iflink - get 'iflink' value of a interface
674 * @dev: targeted interface
675 *
676 * Indicates the ifindex the interface is linked to.
677 * Physical interfaces have the same 'ifindex' and 'iflink' values.
678 */
679
680int dev_get_iflink(const struct net_device *dev)
681{
682 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
683 return dev->netdev_ops->ndo_get_iflink(dev);
684
7a66bbc9 685 return dev->ifindex;
a54acb3a
ND
686}
687EXPORT_SYMBOL(dev_get_iflink);
688
fc4099f1
PS
689/**
690 * dev_fill_metadata_dst - Retrieve tunnel egress information.
691 * @dev: targeted interface
692 * @skb: The packet.
693 *
694 * For better visibility of tunnel traffic OVS needs to retrieve
695 * egress tunnel information for a packet. Following API allows
696 * user to get this info.
697 */
698int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
699{
700 struct ip_tunnel_info *info;
701
702 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
703 return -EINVAL;
704
705 info = skb_tunnel_info_unclone(skb);
706 if (!info)
707 return -ENOMEM;
708 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
709 return -EINVAL;
710
711 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
712}
713EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
714
1da177e4
LT
715/**
716 * __dev_get_by_name - find a device by its name
c4ea43c5 717 * @net: the applicable net namespace
1da177e4
LT
718 * @name: name to find
719 *
720 * Find an interface by name. Must be called under RTNL semaphore
721 * or @dev_base_lock. If the name is found a pointer to the device
722 * is returned. If the name is not found then %NULL is returned. The
723 * reference counters are not incremented so the caller must be
724 * careful with locks.
725 */
726
881d966b 727struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 728{
0bd8d536
ED
729 struct net_device *dev;
730 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 731
b67bfe0d 732 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
733 if (!strncmp(dev->name, name, IFNAMSIZ))
734 return dev;
0bd8d536 735
1da177e4
LT
736 return NULL;
737}
d1b19dff 738EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 739
72c9528b
ED
740/**
741 * dev_get_by_name_rcu - find a device by its name
742 * @net: the applicable net namespace
743 * @name: name to find
744 *
745 * Find an interface by name.
746 * If the name is found a pointer to the device is returned.
747 * If the name is not found then %NULL is returned.
748 * The reference counters are not incremented so the caller must be
749 * careful with locks. The caller must hold RCU lock.
750 */
751
752struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753{
72c9528b
ED
754 struct net_device *dev;
755 struct hlist_head *head = dev_name_hash(net, name);
756
b67bfe0d 757 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
758 if (!strncmp(dev->name, name, IFNAMSIZ))
759 return dev;
760
761 return NULL;
762}
763EXPORT_SYMBOL(dev_get_by_name_rcu);
764
1da177e4
LT
765/**
766 * dev_get_by_name - find a device by its name
c4ea43c5 767 * @net: the applicable net namespace
1da177e4
LT
768 * @name: name to find
769 *
770 * Find an interface by name. This can be called from any
771 * context and does its own locking. The returned handle has
772 * the usage count incremented and the caller must use dev_put() to
773 * release it when it is no longer needed. %NULL is returned if no
774 * matching device is found.
775 */
776
881d966b 777struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
778{
779 struct net_device *dev;
780
72c9528b
ED
781 rcu_read_lock();
782 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
783 if (dev)
784 dev_hold(dev);
72c9528b 785 rcu_read_unlock();
1da177e4
LT
786 return dev;
787}
d1b19dff 788EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
789
790/**
791 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 792 * @net: the applicable net namespace
1da177e4
LT
793 * @ifindex: index of device
794 *
795 * Search for an interface by index. Returns %NULL if the device
796 * is not found or a pointer to the device. The device has not
797 * had its reference counter increased so the caller must be careful
798 * about locking. The caller must hold either the RTNL semaphore
799 * or @dev_base_lock.
800 */
801
881d966b 802struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 803{
0bd8d536
ED
804 struct net_device *dev;
805 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 806
b67bfe0d 807 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
808 if (dev->ifindex == ifindex)
809 return dev;
0bd8d536 810
1da177e4
LT
811 return NULL;
812}
d1b19dff 813EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 814
fb699dfd
ED
815/**
816 * dev_get_by_index_rcu - find a device by its ifindex
817 * @net: the applicable net namespace
818 * @ifindex: index of device
819 *
820 * Search for an interface by index. Returns %NULL if the device
821 * is not found or a pointer to the device. The device has not
822 * had its reference counter increased so the caller must be careful
823 * about locking. The caller must hold RCU lock.
824 */
825
826struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
827{
fb699dfd
ED
828 struct net_device *dev;
829 struct hlist_head *head = dev_index_hash(net, ifindex);
830
b67bfe0d 831 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
832 if (dev->ifindex == ifindex)
833 return dev;
834
835 return NULL;
836}
837EXPORT_SYMBOL(dev_get_by_index_rcu);
838
1da177e4
LT
839
840/**
841 * dev_get_by_index - find a device by its ifindex
c4ea43c5 842 * @net: the applicable net namespace
1da177e4
LT
843 * @ifindex: index of device
844 *
845 * Search for an interface by index. Returns NULL if the device
846 * is not found or a pointer to the device. The device returned has
847 * had a reference added and the pointer is safe until the user calls
848 * dev_put to indicate they have finished with it.
849 */
850
881d966b 851struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
852{
853 struct net_device *dev;
854
fb699dfd
ED
855 rcu_read_lock();
856 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
857 if (dev)
858 dev_hold(dev);
fb699dfd 859 rcu_read_unlock();
1da177e4
LT
860 return dev;
861}
d1b19dff 862EXPORT_SYMBOL(dev_get_by_index);
1da177e4 863
5dbe7c17
NS
864/**
865 * netdev_get_name - get a netdevice name, knowing its ifindex.
866 * @net: network namespace
867 * @name: a pointer to the buffer where the name will be stored.
868 * @ifindex: the ifindex of the interface to get the name from.
869 *
870 * The use of raw_seqcount_begin() and cond_resched() before
871 * retrying is required as we want to give the writers a chance
872 * to complete when CONFIG_PREEMPT is not set.
873 */
874int netdev_get_name(struct net *net, char *name, int ifindex)
875{
876 struct net_device *dev;
877 unsigned int seq;
878
879retry:
880 seq = raw_seqcount_begin(&devnet_rename_seq);
881 rcu_read_lock();
882 dev = dev_get_by_index_rcu(net, ifindex);
883 if (!dev) {
884 rcu_read_unlock();
885 return -ENODEV;
886 }
887
888 strcpy(name, dev->name);
889 rcu_read_unlock();
890 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
891 cond_resched();
892 goto retry;
893 }
894
895 return 0;
896}
897
1da177e4 898/**
941666c2 899 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 900 * @net: the applicable net namespace
1da177e4
LT
901 * @type: media type of device
902 * @ha: hardware address
903 *
904 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
905 * is not found or a pointer to the device.
906 * The caller must hold RCU or RTNL.
941666c2 907 * The returned device has not had its ref count increased
1da177e4
LT
908 * and the caller must therefore be careful about locking
909 *
1da177e4
LT
910 */
911
941666c2
ED
912struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
913 const char *ha)
1da177e4
LT
914{
915 struct net_device *dev;
916
941666c2 917 for_each_netdev_rcu(net, dev)
1da177e4
LT
918 if (dev->type == type &&
919 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
920 return dev;
921
922 return NULL;
1da177e4 923}
941666c2 924EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 925
881d966b 926struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
927{
928 struct net_device *dev;
929
4e9cac2b 930 ASSERT_RTNL();
881d966b 931 for_each_netdev(net, dev)
4e9cac2b 932 if (dev->type == type)
7562f876
PE
933 return dev;
934
935 return NULL;
4e9cac2b 936}
4e9cac2b
PM
937EXPORT_SYMBOL(__dev_getfirstbyhwtype);
938
881d966b 939struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 940{
99fe3c39 941 struct net_device *dev, *ret = NULL;
4e9cac2b 942
99fe3c39
ED
943 rcu_read_lock();
944 for_each_netdev_rcu(net, dev)
945 if (dev->type == type) {
946 dev_hold(dev);
947 ret = dev;
948 break;
949 }
950 rcu_read_unlock();
951 return ret;
1da177e4 952}
1da177e4
LT
953EXPORT_SYMBOL(dev_getfirstbyhwtype);
954
955/**
6c555490 956 * __dev_get_by_flags - find any device with given flags
c4ea43c5 957 * @net: the applicable net namespace
1da177e4
LT
958 * @if_flags: IFF_* values
959 * @mask: bitmask of bits in if_flags to check
960 *
961 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 962 * is not found or a pointer to the device. Must be called inside
6c555490 963 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
964 */
965
6c555490
WC
966struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
967 unsigned short mask)
1da177e4 968{
7562f876 969 struct net_device *dev, *ret;
1da177e4 970
6c555490
WC
971 ASSERT_RTNL();
972
7562f876 973 ret = NULL;
6c555490 974 for_each_netdev(net, dev) {
1da177e4 975 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 976 ret = dev;
1da177e4
LT
977 break;
978 }
979 }
7562f876 980 return ret;
1da177e4 981}
6c555490 982EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
983
984/**
985 * dev_valid_name - check if name is okay for network device
986 * @name: name string
987 *
988 * Network device names need to be valid file names to
c7fa9d18
DM
989 * to allow sysfs to work. We also disallow any kind of
990 * whitespace.
1da177e4 991 */
95f050bf 992bool dev_valid_name(const char *name)
1da177e4 993{
c7fa9d18 994 if (*name == '\0')
95f050bf 995 return false;
b6fe17d6 996 if (strlen(name) >= IFNAMSIZ)
95f050bf 997 return false;
c7fa9d18 998 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 999 return false;
c7fa9d18
DM
1000
1001 while (*name) {
a4176a93 1002 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1003 return false;
c7fa9d18
DM
1004 name++;
1005 }
95f050bf 1006 return true;
1da177e4 1007}
d1b19dff 1008EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1009
1010/**
b267b179
EB
1011 * __dev_alloc_name - allocate a name for a device
1012 * @net: network namespace to allocate the device name in
1da177e4 1013 * @name: name format string
b267b179 1014 * @buf: scratch buffer and result name string
1da177e4
LT
1015 *
1016 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1017 * id. It scans list of devices to build up a free map, then chooses
1018 * the first empty slot. The caller must hold the dev_base or rtnl lock
1019 * while allocating the name and adding the device in order to avoid
1020 * duplicates.
1021 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1022 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1023 */
1024
b267b179 1025static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1026{
1027 int i = 0;
1da177e4
LT
1028 const char *p;
1029 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1030 unsigned long *inuse;
1da177e4
LT
1031 struct net_device *d;
1032
1033 p = strnchr(name, IFNAMSIZ-1, '%');
1034 if (p) {
1035 /*
1036 * Verify the string as this thing may have come from
1037 * the user. There must be either one "%d" and no other "%"
1038 * characters.
1039 */
1040 if (p[1] != 'd' || strchr(p + 2, '%'))
1041 return -EINVAL;
1042
1043 /* Use one page as a bit array of possible slots */
cfcabdcc 1044 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1045 if (!inuse)
1046 return -ENOMEM;
1047
881d966b 1048 for_each_netdev(net, d) {
1da177e4
LT
1049 if (!sscanf(d->name, name, &i))
1050 continue;
1051 if (i < 0 || i >= max_netdevices)
1052 continue;
1053
1054 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1055 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1056 if (!strncmp(buf, d->name, IFNAMSIZ))
1057 set_bit(i, inuse);
1058 }
1059
1060 i = find_first_zero_bit(inuse, max_netdevices);
1061 free_page((unsigned long) inuse);
1062 }
1063
d9031024
OP
1064 if (buf != name)
1065 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1066 if (!__dev_get_by_name(net, buf))
1da177e4 1067 return i;
1da177e4
LT
1068
1069 /* It is possible to run out of possible slots
1070 * when the name is long and there isn't enough space left
1071 * for the digits, or if all bits are used.
1072 */
1073 return -ENFILE;
1074}
1075
b267b179
EB
1076/**
1077 * dev_alloc_name - allocate a name for a device
1078 * @dev: device
1079 * @name: name format string
1080 *
1081 * Passed a format string - eg "lt%d" it will try and find a suitable
1082 * id. It scans list of devices to build up a free map, then chooses
1083 * the first empty slot. The caller must hold the dev_base or rtnl lock
1084 * while allocating the name and adding the device in order to avoid
1085 * duplicates.
1086 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1087 * Returns the number of the unit assigned or a negative errno code.
1088 */
1089
1090int dev_alloc_name(struct net_device *dev, const char *name)
1091{
1092 char buf[IFNAMSIZ];
1093 struct net *net;
1094 int ret;
1095
c346dca1
YH
1096 BUG_ON(!dev_net(dev));
1097 net = dev_net(dev);
b267b179
EB
1098 ret = __dev_alloc_name(net, name, buf);
1099 if (ret >= 0)
1100 strlcpy(dev->name, buf, IFNAMSIZ);
1101 return ret;
1102}
d1b19dff 1103EXPORT_SYMBOL(dev_alloc_name);
b267b179 1104
828de4f6
G
1105static int dev_alloc_name_ns(struct net *net,
1106 struct net_device *dev,
1107 const char *name)
d9031024 1108{
828de4f6
G
1109 char buf[IFNAMSIZ];
1110 int ret;
8ce6cebc 1111
828de4f6
G
1112 ret = __dev_alloc_name(net, name, buf);
1113 if (ret >= 0)
1114 strlcpy(dev->name, buf, IFNAMSIZ);
1115 return ret;
1116}
1117
1118static int dev_get_valid_name(struct net *net,
1119 struct net_device *dev,
1120 const char *name)
1121{
1122 BUG_ON(!net);
8ce6cebc 1123
d9031024
OP
1124 if (!dev_valid_name(name))
1125 return -EINVAL;
1126
1c5cae81 1127 if (strchr(name, '%'))
828de4f6 1128 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1129 else if (__dev_get_by_name(net, name))
1130 return -EEXIST;
8ce6cebc
DL
1131 else if (dev->name != name)
1132 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1133
1134 return 0;
1135}
1da177e4
LT
1136
1137/**
1138 * dev_change_name - change name of a device
1139 * @dev: device
1140 * @newname: name (or format string) must be at least IFNAMSIZ
1141 *
1142 * Change name of a device, can pass format strings "eth%d".
1143 * for wildcarding.
1144 */
cf04a4c7 1145int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1146{
238fa362 1147 unsigned char old_assign_type;
fcc5a03a 1148 char oldname[IFNAMSIZ];
1da177e4 1149 int err = 0;
fcc5a03a 1150 int ret;
881d966b 1151 struct net *net;
1da177e4
LT
1152
1153 ASSERT_RTNL();
c346dca1 1154 BUG_ON(!dev_net(dev));
1da177e4 1155
c346dca1 1156 net = dev_net(dev);
1da177e4
LT
1157 if (dev->flags & IFF_UP)
1158 return -EBUSY;
1159
30e6c9fa 1160 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1161
1162 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1163 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1164 return 0;
c91f6df2 1165 }
c8d90dca 1166
fcc5a03a
HX
1167 memcpy(oldname, dev->name, IFNAMSIZ);
1168
828de4f6 1169 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1170 if (err < 0) {
30e6c9fa 1171 write_seqcount_end(&devnet_rename_seq);
d9031024 1172 return err;
c91f6df2 1173 }
1da177e4 1174
6fe82a39
VF
1175 if (oldname[0] && !strchr(oldname, '%'))
1176 netdev_info(dev, "renamed from %s\n", oldname);
1177
238fa362
TG
1178 old_assign_type = dev->name_assign_type;
1179 dev->name_assign_type = NET_NAME_RENAMED;
1180
fcc5a03a 1181rollback:
a1b3f594
EB
1182 ret = device_rename(&dev->dev, dev->name);
1183 if (ret) {
1184 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1185 dev->name_assign_type = old_assign_type;
30e6c9fa 1186 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1187 return ret;
dcc99773 1188 }
7f988eab 1189
30e6c9fa 1190 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1191
5bb025fa
VF
1192 netdev_adjacent_rename_links(dev, oldname);
1193
7f988eab 1194 write_lock_bh(&dev_base_lock);
372b2312 1195 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1196 write_unlock_bh(&dev_base_lock);
1197
1198 synchronize_rcu();
1199
1200 write_lock_bh(&dev_base_lock);
1201 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1202 write_unlock_bh(&dev_base_lock);
1203
056925ab 1204 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1205 ret = notifier_to_errno(ret);
1206
1207 if (ret) {
91e9c07b
ED
1208 /* err >= 0 after dev_alloc_name() or stores the first errno */
1209 if (err >= 0) {
fcc5a03a 1210 err = ret;
30e6c9fa 1211 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1212 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1213 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1214 dev->name_assign_type = old_assign_type;
1215 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1216 goto rollback;
91e9c07b 1217 } else {
7b6cd1ce 1218 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1219 dev->name, ret);
fcc5a03a
HX
1220 }
1221 }
1da177e4
LT
1222
1223 return err;
1224}
1225
0b815a1a
SH
1226/**
1227 * dev_set_alias - change ifalias of a device
1228 * @dev: device
1229 * @alias: name up to IFALIASZ
f0db275a 1230 * @len: limit of bytes to copy from info
0b815a1a
SH
1231 *
1232 * Set ifalias for a device,
1233 */
1234int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1235{
7364e445
AK
1236 char *new_ifalias;
1237
0b815a1a
SH
1238 ASSERT_RTNL();
1239
1240 if (len >= IFALIASZ)
1241 return -EINVAL;
1242
96ca4a2c 1243 if (!len) {
388dfc2d
SK
1244 kfree(dev->ifalias);
1245 dev->ifalias = NULL;
96ca4a2c
OH
1246 return 0;
1247 }
1248
7364e445
AK
1249 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1250 if (!new_ifalias)
0b815a1a 1251 return -ENOMEM;
7364e445 1252 dev->ifalias = new_ifalias;
0b815a1a
SH
1253
1254 strlcpy(dev->ifalias, alias, len+1);
1255 return len;
1256}
1257
1258
d8a33ac4 1259/**
3041a069 1260 * netdev_features_change - device changes features
d8a33ac4
SH
1261 * @dev: device to cause notification
1262 *
1263 * Called to indicate a device has changed features.
1264 */
1265void netdev_features_change(struct net_device *dev)
1266{
056925ab 1267 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1268}
1269EXPORT_SYMBOL(netdev_features_change);
1270
1da177e4
LT
1271/**
1272 * netdev_state_change - device changes state
1273 * @dev: device to cause notification
1274 *
1275 * Called to indicate a device has changed state. This function calls
1276 * the notifier chains for netdev_chain and sends a NEWLINK message
1277 * to the routing socket.
1278 */
1279void netdev_state_change(struct net_device *dev)
1280{
1281 if (dev->flags & IFF_UP) {
54951194
LP
1282 struct netdev_notifier_change_info change_info;
1283
1284 change_info.flags_changed = 0;
1285 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1286 &change_info.info);
7f294054 1287 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1288 }
1289}
d1b19dff 1290EXPORT_SYMBOL(netdev_state_change);
1da177e4 1291
ee89bab1
AW
1292/**
1293 * netdev_notify_peers - notify network peers about existence of @dev
1294 * @dev: network device
1295 *
1296 * Generate traffic such that interested network peers are aware of
1297 * @dev, such as by generating a gratuitous ARP. This may be used when
1298 * a device wants to inform the rest of the network about some sort of
1299 * reconfiguration such as a failover event or virtual machine
1300 * migration.
1301 */
1302void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1303{
ee89bab1
AW
1304 rtnl_lock();
1305 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1306 rtnl_unlock();
c1da4ac7 1307}
ee89bab1 1308EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1309
bd380811 1310static int __dev_open(struct net_device *dev)
1da177e4 1311{
d314774c 1312 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1313 int ret;
1da177e4 1314
e46b66bc
BH
1315 ASSERT_RTNL();
1316
1da177e4
LT
1317 if (!netif_device_present(dev))
1318 return -ENODEV;
1319
ca99ca14
NH
1320 /* Block netpoll from trying to do any rx path servicing.
1321 * If we don't do this there is a chance ndo_poll_controller
1322 * or ndo_poll may be running while we open the device
1323 */
66b5552f 1324 netpoll_poll_disable(dev);
ca99ca14 1325
3b8bcfd5
JB
1326 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1327 ret = notifier_to_errno(ret);
1328 if (ret)
1329 return ret;
1330
1da177e4 1331 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1332
d314774c
SH
1333 if (ops->ndo_validate_addr)
1334 ret = ops->ndo_validate_addr(dev);
bada339b 1335
d314774c
SH
1336 if (!ret && ops->ndo_open)
1337 ret = ops->ndo_open(dev);
1da177e4 1338
66b5552f 1339 netpoll_poll_enable(dev);
ca99ca14 1340
bada339b
JG
1341 if (ret)
1342 clear_bit(__LINK_STATE_START, &dev->state);
1343 else {
1da177e4 1344 dev->flags |= IFF_UP;
4417da66 1345 dev_set_rx_mode(dev);
1da177e4 1346 dev_activate(dev);
7bf23575 1347 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1348 }
bada339b 1349
1da177e4
LT
1350 return ret;
1351}
1352
1353/**
bd380811
PM
1354 * dev_open - prepare an interface for use.
1355 * @dev: device to open
1da177e4 1356 *
bd380811
PM
1357 * Takes a device from down to up state. The device's private open
1358 * function is invoked and then the multicast lists are loaded. Finally
1359 * the device is moved into the up state and a %NETDEV_UP message is
1360 * sent to the netdev notifier chain.
1361 *
1362 * Calling this function on an active interface is a nop. On a failure
1363 * a negative errno code is returned.
1da177e4 1364 */
bd380811
PM
1365int dev_open(struct net_device *dev)
1366{
1367 int ret;
1368
bd380811
PM
1369 if (dev->flags & IFF_UP)
1370 return 0;
1371
bd380811
PM
1372 ret = __dev_open(dev);
1373 if (ret < 0)
1374 return ret;
1375
7f294054 1376 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1377 call_netdevice_notifiers(NETDEV_UP, dev);
1378
1379 return ret;
1380}
1381EXPORT_SYMBOL(dev_open);
1382
44345724 1383static int __dev_close_many(struct list_head *head)
1da177e4 1384{
44345724 1385 struct net_device *dev;
e46b66bc 1386
bd380811 1387 ASSERT_RTNL();
9d5010db
DM
1388 might_sleep();
1389
5cde2829 1390 list_for_each_entry(dev, head, close_list) {
3f4df206 1391 /* Temporarily disable netpoll until the interface is down */
66b5552f 1392 netpoll_poll_disable(dev);
3f4df206 1393
44345724 1394 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1395
44345724 1396 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1397
44345724
OP
1398 /* Synchronize to scheduled poll. We cannot touch poll list, it
1399 * can be even on different cpu. So just clear netif_running().
1400 *
1401 * dev->stop() will invoke napi_disable() on all of it's
1402 * napi_struct instances on this device.
1403 */
4e857c58 1404 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1405 }
1da177e4 1406
44345724 1407 dev_deactivate_many(head);
d8b2a4d2 1408
5cde2829 1409 list_for_each_entry(dev, head, close_list) {
44345724 1410 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1411
44345724
OP
1412 /*
1413 * Call the device specific close. This cannot fail.
1414 * Only if device is UP
1415 *
1416 * We allow it to be called even after a DETACH hot-plug
1417 * event.
1418 */
1419 if (ops->ndo_stop)
1420 ops->ndo_stop(dev);
1421
44345724 1422 dev->flags &= ~IFF_UP;
66b5552f 1423 netpoll_poll_enable(dev);
44345724
OP
1424 }
1425
1426 return 0;
1427}
1428
1429static int __dev_close(struct net_device *dev)
1430{
f87e6f47 1431 int retval;
44345724
OP
1432 LIST_HEAD(single);
1433
5cde2829 1434 list_add(&dev->close_list, &single);
f87e6f47
LT
1435 retval = __dev_close_many(&single);
1436 list_del(&single);
ca99ca14 1437
f87e6f47 1438 return retval;
44345724
OP
1439}
1440
99c4a26a 1441int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1442{
1443 struct net_device *dev, *tmp;
1da177e4 1444
5cde2829
EB
1445 /* Remove the devices that don't need to be closed */
1446 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1447 if (!(dev->flags & IFF_UP))
5cde2829 1448 list_del_init(&dev->close_list);
44345724
OP
1449
1450 __dev_close_many(head);
1da177e4 1451
5cde2829 1452 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1453 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1454 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1455 if (unlink)
1456 list_del_init(&dev->close_list);
44345724 1457 }
bd380811
PM
1458
1459 return 0;
1460}
99c4a26a 1461EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1462
1463/**
1464 * dev_close - shutdown an interface.
1465 * @dev: device to shutdown
1466 *
1467 * This function moves an active device into down state. A
1468 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1469 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1470 * chain.
1471 */
1472int dev_close(struct net_device *dev)
1473{
e14a5993
ED
1474 if (dev->flags & IFF_UP) {
1475 LIST_HEAD(single);
1da177e4 1476
5cde2829 1477 list_add(&dev->close_list, &single);
99c4a26a 1478 dev_close_many(&single, true);
e14a5993
ED
1479 list_del(&single);
1480 }
da6e378b 1481 return 0;
1da177e4 1482}
d1b19dff 1483EXPORT_SYMBOL(dev_close);
1da177e4
LT
1484
1485
0187bdfb
BH
1486/**
1487 * dev_disable_lro - disable Large Receive Offload on a device
1488 * @dev: device
1489 *
1490 * Disable Large Receive Offload (LRO) on a net device. Must be
1491 * called under RTNL. This is needed if received packets may be
1492 * forwarded to another interface.
1493 */
1494void dev_disable_lro(struct net_device *dev)
1495{
fbe168ba
MK
1496 struct net_device *lower_dev;
1497 struct list_head *iter;
529d0489 1498
bc5787c6
MM
1499 dev->wanted_features &= ~NETIF_F_LRO;
1500 netdev_update_features(dev);
27660515 1501
22d5969f
MM
1502 if (unlikely(dev->features & NETIF_F_LRO))
1503 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1504
1505 netdev_for_each_lower_dev(dev, lower_dev, iter)
1506 dev_disable_lro(lower_dev);
0187bdfb
BH
1507}
1508EXPORT_SYMBOL(dev_disable_lro);
1509
351638e7
JP
1510static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1511 struct net_device *dev)
1512{
1513 struct netdev_notifier_info info;
1514
1515 netdev_notifier_info_init(&info, dev);
1516 return nb->notifier_call(nb, val, &info);
1517}
0187bdfb 1518
881d966b
EB
1519static int dev_boot_phase = 1;
1520
1da177e4
LT
1521/**
1522 * register_netdevice_notifier - register a network notifier block
1523 * @nb: notifier
1524 *
1525 * Register a notifier to be called when network device events occur.
1526 * The notifier passed is linked into the kernel structures and must
1527 * not be reused until it has been unregistered. A negative errno code
1528 * is returned on a failure.
1529 *
1530 * When registered all registration and up events are replayed
4ec93edb 1531 * to the new notifier to allow device to have a race free
1da177e4
LT
1532 * view of the network device list.
1533 */
1534
1535int register_netdevice_notifier(struct notifier_block *nb)
1536{
1537 struct net_device *dev;
fcc5a03a 1538 struct net_device *last;
881d966b 1539 struct net *net;
1da177e4
LT
1540 int err;
1541
1542 rtnl_lock();
f07d5b94 1543 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1544 if (err)
1545 goto unlock;
881d966b
EB
1546 if (dev_boot_phase)
1547 goto unlock;
1548 for_each_net(net) {
1549 for_each_netdev(net, dev) {
351638e7 1550 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1551 err = notifier_to_errno(err);
1552 if (err)
1553 goto rollback;
1554
1555 if (!(dev->flags & IFF_UP))
1556 continue;
1da177e4 1557
351638e7 1558 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1559 }
1da177e4 1560 }
fcc5a03a
HX
1561
1562unlock:
1da177e4
LT
1563 rtnl_unlock();
1564 return err;
fcc5a03a
HX
1565
1566rollback:
1567 last = dev;
881d966b
EB
1568 for_each_net(net) {
1569 for_each_netdev(net, dev) {
1570 if (dev == last)
8f891489 1571 goto outroll;
fcc5a03a 1572
881d966b 1573 if (dev->flags & IFF_UP) {
351638e7
JP
1574 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1575 dev);
1576 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1577 }
351638e7 1578 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1579 }
fcc5a03a 1580 }
c67625a1 1581
8f891489 1582outroll:
c67625a1 1583 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1584 goto unlock;
1da177e4 1585}
d1b19dff 1586EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1587
1588/**
1589 * unregister_netdevice_notifier - unregister a network notifier block
1590 * @nb: notifier
1591 *
1592 * Unregister a notifier previously registered by
1593 * register_netdevice_notifier(). The notifier is unlinked into the
1594 * kernel structures and may then be reused. A negative errno code
1595 * is returned on a failure.
7d3d43da
EB
1596 *
1597 * After unregistering unregister and down device events are synthesized
1598 * for all devices on the device list to the removed notifier to remove
1599 * the need for special case cleanup code.
1da177e4
LT
1600 */
1601
1602int unregister_netdevice_notifier(struct notifier_block *nb)
1603{
7d3d43da
EB
1604 struct net_device *dev;
1605 struct net *net;
9f514950
HX
1606 int err;
1607
1608 rtnl_lock();
f07d5b94 1609 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1610 if (err)
1611 goto unlock;
1612
1613 for_each_net(net) {
1614 for_each_netdev(net, dev) {
1615 if (dev->flags & IFF_UP) {
351638e7
JP
1616 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1617 dev);
1618 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1619 }
351638e7 1620 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1621 }
1622 }
1623unlock:
9f514950
HX
1624 rtnl_unlock();
1625 return err;
1da177e4 1626}
d1b19dff 1627EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1628
351638e7
JP
1629/**
1630 * call_netdevice_notifiers_info - call all network notifier blocks
1631 * @val: value passed unmodified to notifier function
1632 * @dev: net_device pointer passed unmodified to notifier function
1633 * @info: notifier information data
1634 *
1635 * Call all network notifier blocks. Parameters and return value
1636 * are as for raw_notifier_call_chain().
1637 */
1638
1d143d9f 1639static int call_netdevice_notifiers_info(unsigned long val,
1640 struct net_device *dev,
1641 struct netdev_notifier_info *info)
351638e7
JP
1642{
1643 ASSERT_RTNL();
1644 netdev_notifier_info_init(info, dev);
1645 return raw_notifier_call_chain(&netdev_chain, val, info);
1646}
351638e7 1647
1da177e4
LT
1648/**
1649 * call_netdevice_notifiers - call all network notifier blocks
1650 * @val: value passed unmodified to notifier function
c4ea43c5 1651 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1652 *
1653 * Call all network notifier blocks. Parameters and return value
f07d5b94 1654 * are as for raw_notifier_call_chain().
1da177e4
LT
1655 */
1656
ad7379d4 1657int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1658{
351638e7
JP
1659 struct netdev_notifier_info info;
1660
1661 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1662}
edf947f1 1663EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1664
1cf51900 1665#ifdef CONFIG_NET_INGRESS
4577139b
DB
1666static struct static_key ingress_needed __read_mostly;
1667
1668void net_inc_ingress_queue(void)
1669{
1670 static_key_slow_inc(&ingress_needed);
1671}
1672EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1673
1674void net_dec_ingress_queue(void)
1675{
1676 static_key_slow_dec(&ingress_needed);
1677}
1678EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1679#endif
1680
1f211a1b
DB
1681#ifdef CONFIG_NET_EGRESS
1682static struct static_key egress_needed __read_mostly;
1683
1684void net_inc_egress_queue(void)
1685{
1686 static_key_slow_inc(&egress_needed);
1687}
1688EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1689
1690void net_dec_egress_queue(void)
1691{
1692 static_key_slow_dec(&egress_needed);
1693}
1694EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1695#endif
1696
c5905afb 1697static struct static_key netstamp_needed __read_mostly;
b90e5794 1698#ifdef HAVE_JUMP_LABEL
c5905afb 1699/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1700 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1701 * static_key_slow_dec() calls.
b90e5794
ED
1702 */
1703static atomic_t netstamp_needed_deferred;
1704#endif
1da177e4
LT
1705
1706void net_enable_timestamp(void)
1707{
b90e5794
ED
1708#ifdef HAVE_JUMP_LABEL
1709 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1710
1711 if (deferred) {
1712 while (--deferred)
c5905afb 1713 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1714 return;
1715 }
1716#endif
c5905afb 1717 static_key_slow_inc(&netstamp_needed);
1da177e4 1718}
d1b19dff 1719EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1720
1721void net_disable_timestamp(void)
1722{
b90e5794
ED
1723#ifdef HAVE_JUMP_LABEL
1724 if (in_interrupt()) {
1725 atomic_inc(&netstamp_needed_deferred);
1726 return;
1727 }
1728#endif
c5905afb 1729 static_key_slow_dec(&netstamp_needed);
1da177e4 1730}
d1b19dff 1731EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1732
3b098e2d 1733static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1734{
588f0330 1735 skb->tstamp.tv64 = 0;
c5905afb 1736 if (static_key_false(&netstamp_needed))
a61bbcf2 1737 __net_timestamp(skb);
1da177e4
LT
1738}
1739
588f0330 1740#define net_timestamp_check(COND, SKB) \
c5905afb 1741 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1742 if ((COND) && !(SKB)->tstamp.tv64) \
1743 __net_timestamp(SKB); \
1744 } \
3b098e2d 1745
f4b05d27 1746bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1747{
1748 unsigned int len;
1749
1750 if (!(dev->flags & IFF_UP))
1751 return false;
1752
1753 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1754 if (skb->len <= len)
1755 return true;
1756
1757 /* if TSO is enabled, we don't care about the length as the packet
1758 * could be forwarded without being segmented before
1759 */
1760 if (skb_is_gso(skb))
1761 return true;
1762
1763 return false;
1764}
1ee481fb 1765EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1766
a0265d28
HX
1767int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1768{
bbbf2df0
WB
1769 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1770 unlikely(!is_skb_forwardable(dev, skb))) {
a0265d28
HX
1771 atomic_long_inc(&dev->rx_dropped);
1772 kfree_skb(skb);
1773 return NET_RX_DROP;
1774 }
1775
1776 skb_scrub_packet(skb, true);
08b4b8ea 1777 skb->priority = 0;
a0265d28 1778 skb->protocol = eth_type_trans(skb, dev);
2c26d34b 1779 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
a0265d28
HX
1780
1781 return 0;
1782}
1783EXPORT_SYMBOL_GPL(__dev_forward_skb);
1784
44540960
AB
1785/**
1786 * dev_forward_skb - loopback an skb to another netif
1787 *
1788 * @dev: destination network device
1789 * @skb: buffer to forward
1790 *
1791 * return values:
1792 * NET_RX_SUCCESS (no congestion)
6ec82562 1793 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1794 *
1795 * dev_forward_skb can be used for injecting an skb from the
1796 * start_xmit function of one device into the receive queue
1797 * of another device.
1798 *
1799 * The receiving device may be in another namespace, so
1800 * we have to clear all information in the skb that could
1801 * impact namespace isolation.
1802 */
1803int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1804{
a0265d28 1805 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1806}
1807EXPORT_SYMBOL_GPL(dev_forward_skb);
1808
71d9dec2
CG
1809static inline int deliver_skb(struct sk_buff *skb,
1810 struct packet_type *pt_prev,
1811 struct net_device *orig_dev)
1812{
1080e512
MT
1813 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1814 return -ENOMEM;
71d9dec2
CG
1815 atomic_inc(&skb->users);
1816 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1817}
1818
7866a621
SN
1819static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1820 struct packet_type **pt,
fbcb2170
JP
1821 struct net_device *orig_dev,
1822 __be16 type,
7866a621
SN
1823 struct list_head *ptype_list)
1824{
1825 struct packet_type *ptype, *pt_prev = *pt;
1826
1827 list_for_each_entry_rcu(ptype, ptype_list, list) {
1828 if (ptype->type != type)
1829 continue;
1830 if (pt_prev)
fbcb2170 1831 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1832 pt_prev = ptype;
1833 }
1834 *pt = pt_prev;
1835}
1836
c0de08d0
EL
1837static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1838{
a3d744e9 1839 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1840 return false;
1841
1842 if (ptype->id_match)
1843 return ptype->id_match(ptype, skb->sk);
1844 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1845 return true;
1846
1847 return false;
1848}
1849
1da177e4
LT
1850/*
1851 * Support routine. Sends outgoing frames to any network
1852 * taps currently in use.
1853 */
1854
74b20582 1855void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1856{
1857 struct packet_type *ptype;
71d9dec2
CG
1858 struct sk_buff *skb2 = NULL;
1859 struct packet_type *pt_prev = NULL;
7866a621 1860 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1861
1da177e4 1862 rcu_read_lock();
7866a621
SN
1863again:
1864 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1865 /* Never send packets back to the socket
1866 * they originated from - MvS (miquels@drinkel.ow.org)
1867 */
7866a621
SN
1868 if (skb_loop_sk(ptype, skb))
1869 continue;
71d9dec2 1870
7866a621
SN
1871 if (pt_prev) {
1872 deliver_skb(skb2, pt_prev, skb->dev);
1873 pt_prev = ptype;
1874 continue;
1875 }
1da177e4 1876
7866a621
SN
1877 /* need to clone skb, done only once */
1878 skb2 = skb_clone(skb, GFP_ATOMIC);
1879 if (!skb2)
1880 goto out_unlock;
70978182 1881
7866a621 1882 net_timestamp_set(skb2);
1da177e4 1883
7866a621
SN
1884 /* skb->nh should be correctly
1885 * set by sender, so that the second statement is
1886 * just protection against buggy protocols.
1887 */
1888 skb_reset_mac_header(skb2);
1889
1890 if (skb_network_header(skb2) < skb2->data ||
1891 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1892 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1893 ntohs(skb2->protocol),
1894 dev->name);
1895 skb_reset_network_header(skb2);
1da177e4 1896 }
7866a621
SN
1897
1898 skb2->transport_header = skb2->network_header;
1899 skb2->pkt_type = PACKET_OUTGOING;
1900 pt_prev = ptype;
1901 }
1902
1903 if (ptype_list == &ptype_all) {
1904 ptype_list = &dev->ptype_all;
1905 goto again;
1da177e4 1906 }
7866a621 1907out_unlock:
71d9dec2
CG
1908 if (pt_prev)
1909 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1910 rcu_read_unlock();
1911}
74b20582 1912EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1913
2c53040f
BH
1914/**
1915 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1916 * @dev: Network device
1917 * @txq: number of queues available
1918 *
1919 * If real_num_tx_queues is changed the tc mappings may no longer be
1920 * valid. To resolve this verify the tc mapping remains valid and if
1921 * not NULL the mapping. With no priorities mapping to this
1922 * offset/count pair it will no longer be used. In the worst case TC0
1923 * is invalid nothing can be done so disable priority mappings. If is
1924 * expected that drivers will fix this mapping if they can before
1925 * calling netif_set_real_num_tx_queues.
1926 */
bb134d22 1927static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1928{
1929 int i;
1930 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1931
1932 /* If TC0 is invalidated disable TC mapping */
1933 if (tc->offset + tc->count > txq) {
7b6cd1ce 1934 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1935 dev->num_tc = 0;
1936 return;
1937 }
1938
1939 /* Invalidated prio to tc mappings set to TC0 */
1940 for (i = 1; i < TC_BITMASK + 1; i++) {
1941 int q = netdev_get_prio_tc_map(dev, i);
1942
1943 tc = &dev->tc_to_txq[q];
1944 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1945 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1946 i, q);
4f57c087
JF
1947 netdev_set_prio_tc_map(dev, i, 0);
1948 }
1949 }
1950}
1951
537c00de
AD
1952#ifdef CONFIG_XPS
1953static DEFINE_MUTEX(xps_map_mutex);
1954#define xmap_dereference(P) \
1955 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1956
10cdc3f3
AD
1957static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1958 int cpu, u16 index)
537c00de 1959{
10cdc3f3
AD
1960 struct xps_map *map = NULL;
1961 int pos;
537c00de 1962
10cdc3f3
AD
1963 if (dev_maps)
1964 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1965
10cdc3f3
AD
1966 for (pos = 0; map && pos < map->len; pos++) {
1967 if (map->queues[pos] == index) {
537c00de
AD
1968 if (map->len > 1) {
1969 map->queues[pos] = map->queues[--map->len];
1970 } else {
10cdc3f3 1971 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1972 kfree_rcu(map, rcu);
1973 map = NULL;
1974 }
10cdc3f3 1975 break;
537c00de 1976 }
537c00de
AD
1977 }
1978
10cdc3f3
AD
1979 return map;
1980}
1981
024e9679 1982static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1983{
1984 struct xps_dev_maps *dev_maps;
024e9679 1985 int cpu, i;
10cdc3f3
AD
1986 bool active = false;
1987
1988 mutex_lock(&xps_map_mutex);
1989 dev_maps = xmap_dereference(dev->xps_maps);
1990
1991 if (!dev_maps)
1992 goto out_no_maps;
1993
1994 for_each_possible_cpu(cpu) {
024e9679
AD
1995 for (i = index; i < dev->num_tx_queues; i++) {
1996 if (!remove_xps_queue(dev_maps, cpu, i))
1997 break;
1998 }
1999 if (i == dev->num_tx_queues)
10cdc3f3
AD
2000 active = true;
2001 }
2002
2003 if (!active) {
537c00de
AD
2004 RCU_INIT_POINTER(dev->xps_maps, NULL);
2005 kfree_rcu(dev_maps, rcu);
2006 }
2007
024e9679
AD
2008 for (i = index; i < dev->num_tx_queues; i++)
2009 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2010 NUMA_NO_NODE);
2011
537c00de
AD
2012out_no_maps:
2013 mutex_unlock(&xps_map_mutex);
2014}
2015
01c5f864
AD
2016static struct xps_map *expand_xps_map(struct xps_map *map,
2017 int cpu, u16 index)
2018{
2019 struct xps_map *new_map;
2020 int alloc_len = XPS_MIN_MAP_ALLOC;
2021 int i, pos;
2022
2023 for (pos = 0; map && pos < map->len; pos++) {
2024 if (map->queues[pos] != index)
2025 continue;
2026 return map;
2027 }
2028
2029 /* Need to add queue to this CPU's existing map */
2030 if (map) {
2031 if (pos < map->alloc_len)
2032 return map;
2033
2034 alloc_len = map->alloc_len * 2;
2035 }
2036
2037 /* Need to allocate new map to store queue on this CPU's map */
2038 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2039 cpu_to_node(cpu));
2040 if (!new_map)
2041 return NULL;
2042
2043 for (i = 0; i < pos; i++)
2044 new_map->queues[i] = map->queues[i];
2045 new_map->alloc_len = alloc_len;
2046 new_map->len = pos;
2047
2048 return new_map;
2049}
2050
3573540c
MT
2051int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2052 u16 index)
537c00de 2053{
01c5f864 2054 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 2055 struct xps_map *map, *new_map;
537c00de 2056 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
2057 int cpu, numa_node_id = -2;
2058 bool active = false;
537c00de
AD
2059
2060 mutex_lock(&xps_map_mutex);
2061
2062 dev_maps = xmap_dereference(dev->xps_maps);
2063
01c5f864
AD
2064 /* allocate memory for queue storage */
2065 for_each_online_cpu(cpu) {
2066 if (!cpumask_test_cpu(cpu, mask))
2067 continue;
2068
2069 if (!new_dev_maps)
2070 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2071 if (!new_dev_maps) {
2072 mutex_unlock(&xps_map_mutex);
01c5f864 2073 return -ENOMEM;
2bb60cb9 2074 }
01c5f864
AD
2075
2076 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2077 NULL;
2078
2079 map = expand_xps_map(map, cpu, index);
2080 if (!map)
2081 goto error;
2082
2083 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2084 }
2085
2086 if (!new_dev_maps)
2087 goto out_no_new_maps;
2088
537c00de 2089 for_each_possible_cpu(cpu) {
01c5f864
AD
2090 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2091 /* add queue to CPU maps */
2092 int pos = 0;
2093
2094 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2095 while ((pos < map->len) && (map->queues[pos] != index))
2096 pos++;
2097
2098 if (pos == map->len)
2099 map->queues[map->len++] = index;
537c00de 2100#ifdef CONFIG_NUMA
537c00de
AD
2101 if (numa_node_id == -2)
2102 numa_node_id = cpu_to_node(cpu);
2103 else if (numa_node_id != cpu_to_node(cpu))
2104 numa_node_id = -1;
537c00de 2105#endif
01c5f864
AD
2106 } else if (dev_maps) {
2107 /* fill in the new device map from the old device map */
2108 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2109 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2110 }
01c5f864 2111
537c00de
AD
2112 }
2113
01c5f864
AD
2114 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2115
537c00de 2116 /* Cleanup old maps */
01c5f864
AD
2117 if (dev_maps) {
2118 for_each_possible_cpu(cpu) {
2119 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2120 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2121 if (map && map != new_map)
2122 kfree_rcu(map, rcu);
2123 }
537c00de 2124
01c5f864 2125 kfree_rcu(dev_maps, rcu);
537c00de
AD
2126 }
2127
01c5f864
AD
2128 dev_maps = new_dev_maps;
2129 active = true;
537c00de 2130
01c5f864
AD
2131out_no_new_maps:
2132 /* update Tx queue numa node */
537c00de
AD
2133 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2134 (numa_node_id >= 0) ? numa_node_id :
2135 NUMA_NO_NODE);
2136
01c5f864
AD
2137 if (!dev_maps)
2138 goto out_no_maps;
2139
2140 /* removes queue from unused CPUs */
2141 for_each_possible_cpu(cpu) {
2142 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2143 continue;
2144
2145 if (remove_xps_queue(dev_maps, cpu, index))
2146 active = true;
2147 }
2148
2149 /* free map if not active */
2150 if (!active) {
2151 RCU_INIT_POINTER(dev->xps_maps, NULL);
2152 kfree_rcu(dev_maps, rcu);
2153 }
2154
2155out_no_maps:
537c00de
AD
2156 mutex_unlock(&xps_map_mutex);
2157
2158 return 0;
2159error:
01c5f864
AD
2160 /* remove any maps that we added */
2161 for_each_possible_cpu(cpu) {
2162 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2163 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2164 NULL;
2165 if (new_map && new_map != map)
2166 kfree(new_map);
2167 }
2168
537c00de
AD
2169 mutex_unlock(&xps_map_mutex);
2170
537c00de
AD
2171 kfree(new_dev_maps);
2172 return -ENOMEM;
2173}
2174EXPORT_SYMBOL(netif_set_xps_queue);
2175
2176#endif
f0796d5c
JF
2177/*
2178 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2179 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2180 */
e6484930 2181int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2182{
1d24eb48
TH
2183 int rc;
2184
e6484930
TH
2185 if (txq < 1 || txq > dev->num_tx_queues)
2186 return -EINVAL;
f0796d5c 2187
5c56580b
BH
2188 if (dev->reg_state == NETREG_REGISTERED ||
2189 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2190 ASSERT_RTNL();
2191
1d24eb48
TH
2192 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2193 txq);
bf264145
TH
2194 if (rc)
2195 return rc;
2196
4f57c087
JF
2197 if (dev->num_tc)
2198 netif_setup_tc(dev, txq);
2199
024e9679 2200 if (txq < dev->real_num_tx_queues) {
e6484930 2201 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2202#ifdef CONFIG_XPS
2203 netif_reset_xps_queues_gt(dev, txq);
2204#endif
2205 }
f0796d5c 2206 }
e6484930
TH
2207
2208 dev->real_num_tx_queues = txq;
2209 return 0;
f0796d5c
JF
2210}
2211EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2212
a953be53 2213#ifdef CONFIG_SYSFS
62fe0b40
BH
2214/**
2215 * netif_set_real_num_rx_queues - set actual number of RX queues used
2216 * @dev: Network device
2217 * @rxq: Actual number of RX queues
2218 *
2219 * This must be called either with the rtnl_lock held or before
2220 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2221 * negative error code. If called before registration, it always
2222 * succeeds.
62fe0b40
BH
2223 */
2224int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2225{
2226 int rc;
2227
bd25fa7b
TH
2228 if (rxq < 1 || rxq > dev->num_rx_queues)
2229 return -EINVAL;
2230
62fe0b40
BH
2231 if (dev->reg_state == NETREG_REGISTERED) {
2232 ASSERT_RTNL();
2233
62fe0b40
BH
2234 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2235 rxq);
2236 if (rc)
2237 return rc;
62fe0b40
BH
2238 }
2239
2240 dev->real_num_rx_queues = rxq;
2241 return 0;
2242}
2243EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2244#endif
2245
2c53040f
BH
2246/**
2247 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2248 *
2249 * This routine should set an upper limit on the number of RSS queues
2250 * used by default by multiqueue devices.
2251 */
a55b138b 2252int netif_get_num_default_rss_queues(void)
16917b87 2253{
40e4e713
HS
2254 return is_kdump_kernel() ?
2255 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2256}
2257EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2258
3bcb846c 2259static void __netif_reschedule(struct Qdisc *q)
56079431 2260{
def82a1d
JP
2261 struct softnet_data *sd;
2262 unsigned long flags;
56079431 2263
def82a1d 2264 local_irq_save(flags);
903ceff7 2265 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2266 q->next_sched = NULL;
2267 *sd->output_queue_tailp = q;
2268 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2269 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2270 local_irq_restore(flags);
2271}
2272
2273void __netif_schedule(struct Qdisc *q)
2274{
2275 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2276 __netif_reschedule(q);
56079431
DV
2277}
2278EXPORT_SYMBOL(__netif_schedule);
2279
e6247027
ED
2280struct dev_kfree_skb_cb {
2281 enum skb_free_reason reason;
2282};
2283
2284static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2285{
e6247027
ED
2286 return (struct dev_kfree_skb_cb *)skb->cb;
2287}
2288
46e5da40
JF
2289void netif_schedule_queue(struct netdev_queue *txq)
2290{
2291 rcu_read_lock();
2292 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2293 struct Qdisc *q = rcu_dereference(txq->qdisc);
2294
2295 __netif_schedule(q);
2296 }
2297 rcu_read_unlock();
2298}
2299EXPORT_SYMBOL(netif_schedule_queue);
2300
2301/**
2302 * netif_wake_subqueue - allow sending packets on subqueue
2303 * @dev: network device
2304 * @queue_index: sub queue index
2305 *
2306 * Resume individual transmit queue of a device with multiple transmit queues.
2307 */
2308void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2309{
2310 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2311
2312 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2313 struct Qdisc *q;
2314
2315 rcu_read_lock();
2316 q = rcu_dereference(txq->qdisc);
2317 __netif_schedule(q);
2318 rcu_read_unlock();
2319 }
2320}
2321EXPORT_SYMBOL(netif_wake_subqueue);
2322
2323void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2324{
2325 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2326 struct Qdisc *q;
2327
2328 rcu_read_lock();
2329 q = rcu_dereference(dev_queue->qdisc);
2330 __netif_schedule(q);
2331 rcu_read_unlock();
2332 }
2333}
2334EXPORT_SYMBOL(netif_tx_wake_queue);
2335
e6247027 2336void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2337{
e6247027 2338 unsigned long flags;
56079431 2339
e6247027
ED
2340 if (likely(atomic_read(&skb->users) == 1)) {
2341 smp_rmb();
2342 atomic_set(&skb->users, 0);
2343 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2344 return;
bea3348e 2345 }
e6247027
ED
2346 get_kfree_skb_cb(skb)->reason = reason;
2347 local_irq_save(flags);
2348 skb->next = __this_cpu_read(softnet_data.completion_queue);
2349 __this_cpu_write(softnet_data.completion_queue, skb);
2350 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2351 local_irq_restore(flags);
56079431 2352}
e6247027 2353EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2354
e6247027 2355void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2356{
2357 if (in_irq() || irqs_disabled())
e6247027 2358 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2359 else
2360 dev_kfree_skb(skb);
2361}
e6247027 2362EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2363
2364
bea3348e
SH
2365/**
2366 * netif_device_detach - mark device as removed
2367 * @dev: network device
2368 *
2369 * Mark device as removed from system and therefore no longer available.
2370 */
56079431
DV
2371void netif_device_detach(struct net_device *dev)
2372{
2373 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2374 netif_running(dev)) {
d543103a 2375 netif_tx_stop_all_queues(dev);
56079431
DV
2376 }
2377}
2378EXPORT_SYMBOL(netif_device_detach);
2379
bea3348e
SH
2380/**
2381 * netif_device_attach - mark device as attached
2382 * @dev: network device
2383 *
2384 * Mark device as attached from system and restart if needed.
2385 */
56079431
DV
2386void netif_device_attach(struct net_device *dev)
2387{
2388 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2389 netif_running(dev)) {
d543103a 2390 netif_tx_wake_all_queues(dev);
4ec93edb 2391 __netdev_watchdog_up(dev);
56079431
DV
2392 }
2393}
2394EXPORT_SYMBOL(netif_device_attach);
2395
5605c762
JP
2396/*
2397 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2398 * to be used as a distribution range.
2399 */
2400u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2401 unsigned int num_tx_queues)
2402{
2403 u32 hash;
2404 u16 qoffset = 0;
2405 u16 qcount = num_tx_queues;
2406
2407 if (skb_rx_queue_recorded(skb)) {
2408 hash = skb_get_rx_queue(skb);
2409 while (unlikely(hash >= num_tx_queues))
2410 hash -= num_tx_queues;
2411 return hash;
2412 }
2413
2414 if (dev->num_tc) {
2415 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2416 qoffset = dev->tc_to_txq[tc].offset;
2417 qcount = dev->tc_to_txq[tc].count;
2418 }
2419
2420 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2421}
2422EXPORT_SYMBOL(__skb_tx_hash);
2423
36c92474
BH
2424static void skb_warn_bad_offload(const struct sk_buff *skb)
2425{
84d15ae5 2426 static const netdev_features_t null_features;
36c92474 2427 struct net_device *dev = skb->dev;
88ad4175 2428 const char *name = "";
36c92474 2429
c846ad9b
BG
2430 if (!net_ratelimit())
2431 return;
2432
88ad4175
BM
2433 if (dev) {
2434 if (dev->dev.parent)
2435 name = dev_driver_string(dev->dev.parent);
2436 else
2437 name = netdev_name(dev);
2438 }
36c92474
BH
2439 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2440 "gso_type=%d ip_summed=%d\n",
88ad4175 2441 name, dev ? &dev->features : &null_features,
65e9d2fa 2442 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2443 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2444 skb_shinfo(skb)->gso_type, skb->ip_summed);
2445}
2446
1da177e4
LT
2447/*
2448 * Invalidate hardware checksum when packet is to be mangled, and
2449 * complete checksum manually on outgoing path.
2450 */
84fa7933 2451int skb_checksum_help(struct sk_buff *skb)
1da177e4 2452{
d3bc23e7 2453 __wsum csum;
663ead3b 2454 int ret = 0, offset;
1da177e4 2455
84fa7933 2456 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2457 goto out_set_summed;
2458
2459 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2460 skb_warn_bad_offload(skb);
2461 return -EINVAL;
1da177e4
LT
2462 }
2463
cef401de
ED
2464 /* Before computing a checksum, we should make sure no frag could
2465 * be modified by an external entity : checksum could be wrong.
2466 */
2467 if (skb_has_shared_frag(skb)) {
2468 ret = __skb_linearize(skb);
2469 if (ret)
2470 goto out;
2471 }
2472
55508d60 2473 offset = skb_checksum_start_offset(skb);
a030847e
HX
2474 BUG_ON(offset >= skb_headlen(skb));
2475 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2476
2477 offset += skb->csum_offset;
2478 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2479
2480 if (skb_cloned(skb) &&
2481 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2482 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2483 if (ret)
2484 goto out;
2485 }
2486
a030847e 2487 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2488out_set_summed:
1da177e4 2489 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2490out:
1da177e4
LT
2491 return ret;
2492}
d1b19dff 2493EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2494
6ae23ad3
TH
2495/* skb_csum_offload_check - Driver helper function to determine if a device
2496 * with limited checksum offload capabilities is able to offload the checksum
2497 * for a given packet.
2498 *
2499 * Arguments:
2500 * skb - sk_buff for the packet in question
2501 * spec - contains the description of what device can offload
2502 * csum_encapped - returns true if the checksum being offloaded is
2503 * encpasulated. That is it is checksum for the transport header
2504 * in the inner headers.
2505 * checksum_help - when set indicates that helper function should
2506 * call skb_checksum_help if offload checks fail
2507 *
2508 * Returns:
2509 * true: Packet has passed the checksum checks and should be offloadable to
2510 * the device (a driver may still need to check for additional
2511 * restrictions of its device)
2512 * false: Checksum is not offloadable. If checksum_help was set then
2513 * skb_checksum_help was called to resolve checksum for non-GSO
2514 * packets and when IP protocol is not SCTP
2515 */
2516bool __skb_csum_offload_chk(struct sk_buff *skb,
2517 const struct skb_csum_offl_spec *spec,
2518 bool *csum_encapped,
2519 bool csum_help)
2520{
2521 struct iphdr *iph;
2522 struct ipv6hdr *ipv6;
2523 void *nhdr;
2524 int protocol;
2525 u8 ip_proto;
2526
2527 if (skb->protocol == htons(ETH_P_8021Q) ||
2528 skb->protocol == htons(ETH_P_8021AD)) {
2529 if (!spec->vlan_okay)
2530 goto need_help;
2531 }
2532
2533 /* We check whether the checksum refers to a transport layer checksum in
2534 * the outermost header or an encapsulated transport layer checksum that
2535 * corresponds to the inner headers of the skb. If the checksum is for
2536 * something else in the packet we need help.
2537 */
2538 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2539 /* Non-encapsulated checksum */
2540 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2541 nhdr = skb_network_header(skb);
2542 *csum_encapped = false;
2543 if (spec->no_not_encapped)
2544 goto need_help;
2545 } else if (skb->encapsulation && spec->encap_okay &&
2546 skb_checksum_start_offset(skb) ==
2547 skb_inner_transport_offset(skb)) {
2548 /* Encapsulated checksum */
2549 *csum_encapped = true;
2550 switch (skb->inner_protocol_type) {
2551 case ENCAP_TYPE_ETHER:
2552 protocol = eproto_to_ipproto(skb->inner_protocol);
2553 break;
2554 case ENCAP_TYPE_IPPROTO:
2555 protocol = skb->inner_protocol;
2556 break;
2557 }
2558 nhdr = skb_inner_network_header(skb);
2559 } else {
2560 goto need_help;
2561 }
2562
2563 switch (protocol) {
2564 case IPPROTO_IP:
2565 if (!spec->ipv4_okay)
2566 goto need_help;
2567 iph = nhdr;
2568 ip_proto = iph->protocol;
2569 if (iph->ihl != 5 && !spec->ip_options_okay)
2570 goto need_help;
2571 break;
2572 case IPPROTO_IPV6:
2573 if (!spec->ipv6_okay)
2574 goto need_help;
2575 if (spec->no_encapped_ipv6 && *csum_encapped)
2576 goto need_help;
2577 ipv6 = nhdr;
2578 nhdr += sizeof(*ipv6);
2579 ip_proto = ipv6->nexthdr;
2580 break;
2581 default:
2582 goto need_help;
2583 }
2584
2585ip_proto_again:
2586 switch (ip_proto) {
2587 case IPPROTO_TCP:
2588 if (!spec->tcp_okay ||
2589 skb->csum_offset != offsetof(struct tcphdr, check))
2590 goto need_help;
2591 break;
2592 case IPPROTO_UDP:
2593 if (!spec->udp_okay ||
2594 skb->csum_offset != offsetof(struct udphdr, check))
2595 goto need_help;
2596 break;
2597 case IPPROTO_SCTP:
2598 if (!spec->sctp_okay ||
2599 skb->csum_offset != offsetof(struct sctphdr, checksum))
2600 goto cant_help;
2601 break;
2602 case NEXTHDR_HOP:
2603 case NEXTHDR_ROUTING:
2604 case NEXTHDR_DEST: {
2605 u8 *opthdr = nhdr;
2606
2607 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2608 goto need_help;
2609
2610 ip_proto = opthdr[0];
2611 nhdr += (opthdr[1] + 1) << 3;
2612
2613 goto ip_proto_again;
2614 }
2615 default:
2616 goto need_help;
2617 }
2618
2619 /* Passed the tests for offloading checksum */
2620 return true;
2621
2622need_help:
2623 if (csum_help && !skb_shinfo(skb)->gso_size)
2624 skb_checksum_help(skb);
2625cant_help:
2626 return false;
2627}
2628EXPORT_SYMBOL(__skb_csum_offload_chk);
2629
53d6471c 2630__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2631{
252e3346 2632 __be16 type = skb->protocol;
f6a78bfc 2633
19acc327
PS
2634 /* Tunnel gso handlers can set protocol to ethernet. */
2635 if (type == htons(ETH_P_TEB)) {
2636 struct ethhdr *eth;
2637
2638 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2639 return 0;
2640
2641 eth = (struct ethhdr *)skb_mac_header(skb);
2642 type = eth->h_proto;
2643 }
2644
d4bcef3f 2645 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2646}
2647
2648/**
2649 * skb_mac_gso_segment - mac layer segmentation handler.
2650 * @skb: buffer to segment
2651 * @features: features for the output path (see dev->features)
2652 */
2653struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2654 netdev_features_t features)
2655{
2656 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2657 struct packet_offload *ptype;
53d6471c
VY
2658 int vlan_depth = skb->mac_len;
2659 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2660
2661 if (unlikely(!type))
2662 return ERR_PTR(-EINVAL);
2663
53d6471c 2664 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2665
2666 rcu_read_lock();
22061d80 2667 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2668 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2669 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2670 break;
2671 }
2672 }
2673 rcu_read_unlock();
2674
98e399f8 2675 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2676
f6a78bfc
HX
2677 return segs;
2678}
05e8ef4a
PS
2679EXPORT_SYMBOL(skb_mac_gso_segment);
2680
2681
2682/* openvswitch calls this on rx path, so we need a different check.
2683 */
2684static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2685{
2686 if (tx_path)
2687 return skb->ip_summed != CHECKSUM_PARTIAL;
2688 else
2689 return skb->ip_summed == CHECKSUM_NONE;
2690}
2691
2692/**
2693 * __skb_gso_segment - Perform segmentation on skb.
2694 * @skb: buffer to segment
2695 * @features: features for the output path (see dev->features)
2696 * @tx_path: whether it is called in TX path
2697 *
2698 * This function segments the given skb and returns a list of segments.
2699 *
2700 * It may return NULL if the skb requires no segmentation. This is
2701 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2702 *
2703 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2704 */
2705struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2706 netdev_features_t features, bool tx_path)
2707{
2708 if (unlikely(skb_needs_check(skb, tx_path))) {
2709 int err;
2710
2711 skb_warn_bad_offload(skb);
2712
a40e0a66 2713 err = skb_cow_head(skb, 0);
2714 if (err < 0)
05e8ef4a
PS
2715 return ERR_PTR(err);
2716 }
2717
802ab55a
AD
2718 /* Only report GSO partial support if it will enable us to
2719 * support segmentation on this frame without needing additional
2720 * work.
2721 */
2722 if (features & NETIF_F_GSO_PARTIAL) {
2723 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2724 struct net_device *dev = skb->dev;
2725
2726 partial_features |= dev->features & dev->gso_partial_features;
2727 if (!skb_gso_ok(skb, features | partial_features))
2728 features &= ~NETIF_F_GSO_PARTIAL;
2729 }
2730
9207f9d4
KK
2731 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2732 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2733
68c33163 2734 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2735 SKB_GSO_CB(skb)->encap_level = 0;
2736
05e8ef4a
PS
2737 skb_reset_mac_header(skb);
2738 skb_reset_mac_len(skb);
2739
2740 return skb_mac_gso_segment(skb, features);
2741}
12b0004d 2742EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2743
fb286bb2
HX
2744/* Take action when hardware reception checksum errors are detected. */
2745#ifdef CONFIG_BUG
2746void netdev_rx_csum_fault(struct net_device *dev)
2747{
2748 if (net_ratelimit()) {
7b6cd1ce 2749 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2750 dump_stack();
2751 }
2752}
2753EXPORT_SYMBOL(netdev_rx_csum_fault);
2754#endif
2755
1da177e4
LT
2756/* Actually, we should eliminate this check as soon as we know, that:
2757 * 1. IOMMU is present and allows to map all the memory.
2758 * 2. No high memory really exists on this machine.
2759 */
2760
c1e756bf 2761static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2762{
3d3a8533 2763#ifdef CONFIG_HIGHMEM
1da177e4 2764 int i;
5acbbd42 2765 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2766 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2767 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2768 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2769 return 1;
ea2ab693 2770 }
5acbbd42 2771 }
1da177e4 2772
5acbbd42
FT
2773 if (PCI_DMA_BUS_IS_PHYS) {
2774 struct device *pdev = dev->dev.parent;
1da177e4 2775
9092c658
ED
2776 if (!pdev)
2777 return 0;
5acbbd42 2778 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2779 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2780 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2781 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2782 return 1;
2783 }
2784 }
3d3a8533 2785#endif
1da177e4
LT
2786 return 0;
2787}
1da177e4 2788
3b392ddb
SH
2789/* If MPLS offload request, verify we are testing hardware MPLS features
2790 * instead of standard features for the netdev.
2791 */
d0edc7bf 2792#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2793static netdev_features_t net_mpls_features(struct sk_buff *skb,
2794 netdev_features_t features,
2795 __be16 type)
2796{
25cd9ba0 2797 if (eth_p_mpls(type))
3b392ddb
SH
2798 features &= skb->dev->mpls_features;
2799
2800 return features;
2801}
2802#else
2803static netdev_features_t net_mpls_features(struct sk_buff *skb,
2804 netdev_features_t features,
2805 __be16 type)
2806{
2807 return features;
2808}
2809#endif
2810
c8f44aff 2811static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2812 netdev_features_t features)
f01a5236 2813{
53d6471c 2814 int tmp;
3b392ddb
SH
2815 __be16 type;
2816
2817 type = skb_network_protocol(skb, &tmp);
2818 features = net_mpls_features(skb, features, type);
53d6471c 2819
c0d680e5 2820 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2821 !can_checksum_protocol(features, type)) {
996e8021 2822 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
c1e756bf 2823 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2824 features &= ~NETIF_F_SG;
2825 }
2826
2827 return features;
2828}
2829
e38f3025
TM
2830netdev_features_t passthru_features_check(struct sk_buff *skb,
2831 struct net_device *dev,
2832 netdev_features_t features)
2833{
2834 return features;
2835}
2836EXPORT_SYMBOL(passthru_features_check);
2837
8cb65d00
TM
2838static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2839 struct net_device *dev,
2840 netdev_features_t features)
2841{
2842 return vlan_features_check(skb, features);
2843}
2844
cbc53e08
AD
2845static netdev_features_t gso_features_check(const struct sk_buff *skb,
2846 struct net_device *dev,
2847 netdev_features_t features)
2848{
2849 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2850
2851 if (gso_segs > dev->gso_max_segs)
2852 return features & ~NETIF_F_GSO_MASK;
2853
802ab55a
AD
2854 /* Support for GSO partial features requires software
2855 * intervention before we can actually process the packets
2856 * so we need to strip support for any partial features now
2857 * and we can pull them back in after we have partially
2858 * segmented the frame.
2859 */
2860 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2861 features &= ~dev->gso_partial_features;
2862
2863 /* Make sure to clear the IPv4 ID mangling feature if the
2864 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2865 */
2866 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2867 struct iphdr *iph = skb->encapsulation ?
2868 inner_ip_hdr(skb) : ip_hdr(skb);
2869
2870 if (!(iph->frag_off & htons(IP_DF)))
2871 features &= ~NETIF_F_TSO_MANGLEID;
2872 }
2873
2874 return features;
2875}
2876
c1e756bf 2877netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2878{
5f35227e 2879 struct net_device *dev = skb->dev;
fcbeb976 2880 netdev_features_t features = dev->features;
58e998c6 2881
cbc53e08
AD
2882 if (skb_is_gso(skb))
2883 features = gso_features_check(skb, dev, features);
30b678d8 2884
5f35227e
JG
2885 /* If encapsulation offload request, verify we are testing
2886 * hardware encapsulation features instead of standard
2887 * features for the netdev
2888 */
2889 if (skb->encapsulation)
2890 features &= dev->hw_enc_features;
2891
f5a7fb88
TM
2892 if (skb_vlan_tagged(skb))
2893 features = netdev_intersect_features(features,
2894 dev->vlan_features |
2895 NETIF_F_HW_VLAN_CTAG_TX |
2896 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2897
5f35227e
JG
2898 if (dev->netdev_ops->ndo_features_check)
2899 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2900 features);
8cb65d00
TM
2901 else
2902 features &= dflt_features_check(skb, dev, features);
5f35227e 2903
c1e756bf 2904 return harmonize_features(skb, features);
58e998c6 2905}
c1e756bf 2906EXPORT_SYMBOL(netif_skb_features);
58e998c6 2907
2ea25513 2908static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2909 struct netdev_queue *txq, bool more)
f6a78bfc 2910{
2ea25513
DM
2911 unsigned int len;
2912 int rc;
00829823 2913
7866a621 2914 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2915 dev_queue_xmit_nit(skb, dev);
fc741216 2916
2ea25513
DM
2917 len = skb->len;
2918 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2919 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2920 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2921
2ea25513
DM
2922 return rc;
2923}
7b9c6090 2924
8dcda22a
DM
2925struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2926 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2927{
2928 struct sk_buff *skb = first;
2929 int rc = NETDEV_TX_OK;
7b9c6090 2930
7f2e870f
DM
2931 while (skb) {
2932 struct sk_buff *next = skb->next;
fc70fb64 2933
7f2e870f 2934 skb->next = NULL;
95f6b3dd 2935 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2936 if (unlikely(!dev_xmit_complete(rc))) {
2937 skb->next = next;
2938 goto out;
2939 }
6afff0ca 2940
7f2e870f
DM
2941 skb = next;
2942 if (netif_xmit_stopped(txq) && skb) {
2943 rc = NETDEV_TX_BUSY;
2944 break;
9ccb8975 2945 }
7f2e870f 2946 }
9ccb8975 2947
7f2e870f
DM
2948out:
2949 *ret = rc;
2950 return skb;
2951}
b40863c6 2952
1ff0dc94
ED
2953static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2954 netdev_features_t features)
f6a78bfc 2955{
df8a39de 2956 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2957 !vlan_hw_offload_capable(features, skb->vlan_proto))
2958 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2959 return skb;
2960}
f6a78bfc 2961
55a93b3e 2962static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2963{
2964 netdev_features_t features;
f6a78bfc 2965
eae3f88e
DM
2966 features = netif_skb_features(skb);
2967 skb = validate_xmit_vlan(skb, features);
2968 if (unlikely(!skb))
2969 goto out_null;
7b9c6090 2970
8b86a61d 2971 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2972 struct sk_buff *segs;
2973
2974 segs = skb_gso_segment(skb, features);
cecda693 2975 if (IS_ERR(segs)) {
af6dabc9 2976 goto out_kfree_skb;
cecda693
JW
2977 } else if (segs) {
2978 consume_skb(skb);
2979 skb = segs;
f6a78bfc 2980 }
eae3f88e
DM
2981 } else {
2982 if (skb_needs_linearize(skb, features) &&
2983 __skb_linearize(skb))
2984 goto out_kfree_skb;
4ec93edb 2985
eae3f88e
DM
2986 /* If packet is not checksummed and device does not
2987 * support checksumming for this protocol, complete
2988 * checksumming here.
2989 */
2990 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2991 if (skb->encapsulation)
2992 skb_set_inner_transport_header(skb,
2993 skb_checksum_start_offset(skb));
2994 else
2995 skb_set_transport_header(skb,
2996 skb_checksum_start_offset(skb));
a188222b 2997 if (!(features & NETIF_F_CSUM_MASK) &&
eae3f88e
DM
2998 skb_checksum_help(skb))
2999 goto out_kfree_skb;
7b9c6090 3000 }
0c772159 3001 }
7b9c6090 3002
eae3f88e 3003 return skb;
fc70fb64 3004
f6a78bfc
HX
3005out_kfree_skb:
3006 kfree_skb(skb);
eae3f88e 3007out_null:
d21fd63e 3008 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3009 return NULL;
3010}
6afff0ca 3011
55a93b3e
ED
3012struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3013{
3014 struct sk_buff *next, *head = NULL, *tail;
3015
bec3cfdc 3016 for (; skb != NULL; skb = next) {
55a93b3e
ED
3017 next = skb->next;
3018 skb->next = NULL;
bec3cfdc
ED
3019
3020 /* in case skb wont be segmented, point to itself */
3021 skb->prev = skb;
3022
55a93b3e 3023 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
3024 if (!skb)
3025 continue;
55a93b3e 3026
bec3cfdc
ED
3027 if (!head)
3028 head = skb;
3029 else
3030 tail->next = skb;
3031 /* If skb was segmented, skb->prev points to
3032 * the last segment. If not, it still contains skb.
3033 */
3034 tail = skb->prev;
55a93b3e
ED
3035 }
3036 return head;
f6a78bfc
HX
3037}
3038
1def9238
ED
3039static void qdisc_pkt_len_init(struct sk_buff *skb)
3040{
3041 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3042
3043 qdisc_skb_cb(skb)->pkt_len = skb->len;
3044
3045 /* To get more precise estimation of bytes sent on wire,
3046 * we add to pkt_len the headers size of all segments
3047 */
3048 if (shinfo->gso_size) {
757b8b1d 3049 unsigned int hdr_len;
15e5a030 3050 u16 gso_segs = shinfo->gso_segs;
1def9238 3051
757b8b1d
ED
3052 /* mac layer + network layer */
3053 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3054
3055 /* + transport layer */
1def9238
ED
3056 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3057 hdr_len += tcp_hdrlen(skb);
3058 else
3059 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3060
3061 if (shinfo->gso_type & SKB_GSO_DODGY)
3062 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3063 shinfo->gso_size);
3064
3065 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3066 }
3067}
3068
bbd8a0d3
KK
3069static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3070 struct net_device *dev,
3071 struct netdev_queue *txq)
3072{
3073 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3074 struct sk_buff *to_free = NULL;
a2da570d 3075 bool contended;
bbd8a0d3
KK
3076 int rc;
3077
a2da570d 3078 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3079 /*
3080 * Heuristic to force contended enqueues to serialize on a
3081 * separate lock before trying to get qdisc main lock.
f9eb8aea 3082 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3083 * often and dequeue packets faster.
79640a4c 3084 */
a2da570d 3085 contended = qdisc_is_running(q);
79640a4c
ED
3086 if (unlikely(contended))
3087 spin_lock(&q->busylock);
3088
bbd8a0d3
KK
3089 spin_lock(root_lock);
3090 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3091 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3092 rc = NET_XMIT_DROP;
3093 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3094 qdisc_run_begin(q)) {
bbd8a0d3
KK
3095 /*
3096 * This is a work-conserving queue; there are no old skbs
3097 * waiting to be sent out; and the qdisc is not running -
3098 * xmit the skb directly.
3099 */
bfe0d029 3100
bfe0d029
ED
3101 qdisc_bstats_update(q, skb);
3102
55a93b3e 3103 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3104 if (unlikely(contended)) {
3105 spin_unlock(&q->busylock);
3106 contended = false;
3107 }
bbd8a0d3 3108 __qdisc_run(q);
79640a4c 3109 } else
bc135b23 3110 qdisc_run_end(q);
bbd8a0d3
KK
3111
3112 rc = NET_XMIT_SUCCESS;
3113 } else {
520ac30f 3114 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3115 if (qdisc_run_begin(q)) {
3116 if (unlikely(contended)) {
3117 spin_unlock(&q->busylock);
3118 contended = false;
3119 }
3120 __qdisc_run(q);
3121 }
bbd8a0d3
KK
3122 }
3123 spin_unlock(root_lock);
520ac30f
ED
3124 if (unlikely(to_free))
3125 kfree_skb_list(to_free);
79640a4c
ED
3126 if (unlikely(contended))
3127 spin_unlock(&q->busylock);
bbd8a0d3
KK
3128 return rc;
3129}
3130
86f8515f 3131#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3132static void skb_update_prio(struct sk_buff *skb)
3133{
6977a79d 3134 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3135
91c68ce2 3136 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3137 unsigned int prioidx =
3138 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3139
3140 if (prioidx < map->priomap_len)
3141 skb->priority = map->priomap[prioidx];
3142 }
5bc1421e
NH
3143}
3144#else
3145#define skb_update_prio(skb)
3146#endif
3147
f60e5990 3148DEFINE_PER_CPU(int, xmit_recursion);
3149EXPORT_SYMBOL(xmit_recursion);
3150
95603e22
MM
3151/**
3152 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3153 * @net: network namespace this loopback is happening in
3154 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3155 * @skb: buffer to transmit
3156 */
0c4b51f0 3157int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3158{
3159 skb_reset_mac_header(skb);
3160 __skb_pull(skb, skb_network_offset(skb));
3161 skb->pkt_type = PACKET_LOOPBACK;
3162 skb->ip_summed = CHECKSUM_UNNECESSARY;
3163 WARN_ON(!skb_dst(skb));
3164 skb_dst_force(skb);
3165 netif_rx_ni(skb);
3166 return 0;
3167}
3168EXPORT_SYMBOL(dev_loopback_xmit);
3169
1f211a1b
DB
3170#ifdef CONFIG_NET_EGRESS
3171static struct sk_buff *
3172sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3173{
3174 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3175 struct tcf_result cl_res;
3176
3177 if (!cl)
3178 return skb;
3179
3180 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3181 * earlier by the caller.
3182 */
3183 qdisc_bstats_cpu_update(cl->q, skb);
3184
3185 switch (tc_classify(skb, cl, &cl_res, false)) {
3186 case TC_ACT_OK:
3187 case TC_ACT_RECLASSIFY:
3188 skb->tc_index = TC_H_MIN(cl_res.classid);
3189 break;
3190 case TC_ACT_SHOT:
3191 qdisc_qstats_cpu_drop(cl->q);
3192 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3193 kfree_skb(skb);
3194 return NULL;
1f211a1b
DB
3195 case TC_ACT_STOLEN:
3196 case TC_ACT_QUEUED:
3197 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3198 consume_skb(skb);
1f211a1b
DB
3199 return NULL;
3200 case TC_ACT_REDIRECT:
3201 /* No need to push/pop skb's mac_header here on egress! */
3202 skb_do_redirect(skb);
3203 *ret = NET_XMIT_SUCCESS;
3204 return NULL;
3205 default:
3206 break;
3207 }
3208
3209 return skb;
3210}
3211#endif /* CONFIG_NET_EGRESS */
3212
638b2a69
JP
3213static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3214{
3215#ifdef CONFIG_XPS
3216 struct xps_dev_maps *dev_maps;
3217 struct xps_map *map;
3218 int queue_index = -1;
3219
3220 rcu_read_lock();
3221 dev_maps = rcu_dereference(dev->xps_maps);
3222 if (dev_maps) {
3223 map = rcu_dereference(
3224 dev_maps->cpu_map[skb->sender_cpu - 1]);
3225 if (map) {
3226 if (map->len == 1)
3227 queue_index = map->queues[0];
3228 else
3229 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3230 map->len)];
3231 if (unlikely(queue_index >= dev->real_num_tx_queues))
3232 queue_index = -1;
3233 }
3234 }
3235 rcu_read_unlock();
3236
3237 return queue_index;
3238#else
3239 return -1;
3240#endif
3241}
3242
3243static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3244{
3245 struct sock *sk = skb->sk;
3246 int queue_index = sk_tx_queue_get(sk);
3247
3248 if (queue_index < 0 || skb->ooo_okay ||
3249 queue_index >= dev->real_num_tx_queues) {
3250 int new_index = get_xps_queue(dev, skb);
3251 if (new_index < 0)
3252 new_index = skb_tx_hash(dev, skb);
3253
3254 if (queue_index != new_index && sk &&
004a5d01 3255 sk_fullsock(sk) &&
638b2a69
JP
3256 rcu_access_pointer(sk->sk_dst_cache))
3257 sk_tx_queue_set(sk, new_index);
3258
3259 queue_index = new_index;
3260 }
3261
3262 return queue_index;
3263}
3264
3265struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3266 struct sk_buff *skb,
3267 void *accel_priv)
3268{
3269 int queue_index = 0;
3270
3271#ifdef CONFIG_XPS
52bd2d62
ED
3272 u32 sender_cpu = skb->sender_cpu - 1;
3273
3274 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3275 skb->sender_cpu = raw_smp_processor_id() + 1;
3276#endif
3277
3278 if (dev->real_num_tx_queues != 1) {
3279 const struct net_device_ops *ops = dev->netdev_ops;
3280 if (ops->ndo_select_queue)
3281 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3282 __netdev_pick_tx);
3283 else
3284 queue_index = __netdev_pick_tx(dev, skb);
3285
3286 if (!accel_priv)
3287 queue_index = netdev_cap_txqueue(dev, queue_index);
3288 }
3289
3290 skb_set_queue_mapping(skb, queue_index);
3291 return netdev_get_tx_queue(dev, queue_index);
3292}
3293
d29f749e 3294/**
9d08dd3d 3295 * __dev_queue_xmit - transmit a buffer
d29f749e 3296 * @skb: buffer to transmit
9d08dd3d 3297 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3298 *
3299 * Queue a buffer for transmission to a network device. The caller must
3300 * have set the device and priority and built the buffer before calling
3301 * this function. The function can be called from an interrupt.
3302 *
3303 * A negative errno code is returned on a failure. A success does not
3304 * guarantee the frame will be transmitted as it may be dropped due
3305 * to congestion or traffic shaping.
3306 *
3307 * -----------------------------------------------------------------------------------
3308 * I notice this method can also return errors from the queue disciplines,
3309 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3310 * be positive.
3311 *
3312 * Regardless of the return value, the skb is consumed, so it is currently
3313 * difficult to retry a send to this method. (You can bump the ref count
3314 * before sending to hold a reference for retry if you are careful.)
3315 *
3316 * When calling this method, interrupts MUST be enabled. This is because
3317 * the BH enable code must have IRQs enabled so that it will not deadlock.
3318 * --BLG
3319 */
0a59f3a9 3320static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3321{
3322 struct net_device *dev = skb->dev;
dc2b4847 3323 struct netdev_queue *txq;
1da177e4
LT
3324 struct Qdisc *q;
3325 int rc = -ENOMEM;
3326
6d1ccff6
ED
3327 skb_reset_mac_header(skb);
3328
e7fd2885
WB
3329 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3330 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3331
4ec93edb
YH
3332 /* Disable soft irqs for various locks below. Also
3333 * stops preemption for RCU.
1da177e4 3334 */
4ec93edb 3335 rcu_read_lock_bh();
1da177e4 3336
5bc1421e
NH
3337 skb_update_prio(skb);
3338
1f211a1b
DB
3339 qdisc_pkt_len_init(skb);
3340#ifdef CONFIG_NET_CLS_ACT
3341 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3342# ifdef CONFIG_NET_EGRESS
3343 if (static_key_false(&egress_needed)) {
3344 skb = sch_handle_egress(skb, &rc, dev);
3345 if (!skb)
3346 goto out;
3347 }
3348# endif
3349#endif
02875878
ED
3350 /* If device/qdisc don't need skb->dst, release it right now while
3351 * its hot in this cpu cache.
3352 */
3353 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3354 skb_dst_drop(skb);
3355 else
3356 skb_dst_force(skb);
3357
0c4f691f
SF
3358#ifdef CONFIG_NET_SWITCHDEV
3359 /* Don't forward if offload device already forwarded */
3360 if (skb->offload_fwd_mark &&
3361 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3362 consume_skb(skb);
3363 rc = NET_XMIT_SUCCESS;
3364 goto out;
3365 }
3366#endif
3367
f663dd9a 3368 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3369 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3370
cf66ba58 3371 trace_net_dev_queue(skb);
1da177e4 3372 if (q->enqueue) {
bbd8a0d3 3373 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3374 goto out;
1da177e4
LT
3375 }
3376
3377 /* The device has no queue. Common case for software devices:
3378 loopback, all the sorts of tunnels...
3379
932ff279
HX
3380 Really, it is unlikely that netif_tx_lock protection is necessary
3381 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
3382 counters.)
3383 However, it is possible, that they rely on protection
3384 made by us here.
3385
3386 Check this and shot the lock. It is not prone from deadlocks.
3387 Either shot noqueue qdisc, it is even simpler 8)
3388 */
3389 if (dev->flags & IFF_UP) {
3390 int cpu = smp_processor_id(); /* ok because BHs are off */
3391
c773e847 3392 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3393 if (unlikely(__this_cpu_read(xmit_recursion) >
3394 XMIT_RECURSION_LIMIT))
745e20f1
ED
3395 goto recursion_alert;
3396
1f59533f
JDB
3397 skb = validate_xmit_skb(skb, dev);
3398 if (!skb)
d21fd63e 3399 goto out;
1f59533f 3400
c773e847 3401 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3402
73466498 3403 if (!netif_xmit_stopped(txq)) {
745e20f1 3404 __this_cpu_inc(xmit_recursion);
ce93718f 3405 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3406 __this_cpu_dec(xmit_recursion);
572a9d7b 3407 if (dev_xmit_complete(rc)) {
c773e847 3408 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3409 goto out;
3410 }
3411 }
c773e847 3412 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3413 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3414 dev->name);
1da177e4
LT
3415 } else {
3416 /* Recursion is detected! It is possible,
745e20f1
ED
3417 * unfortunately
3418 */
3419recursion_alert:
e87cc472
JP
3420 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3421 dev->name);
1da177e4
LT
3422 }
3423 }
3424
3425 rc = -ENETDOWN;
d4828d85 3426 rcu_read_unlock_bh();
1da177e4 3427
015f0688 3428 atomic_long_inc(&dev->tx_dropped);
1f59533f 3429 kfree_skb_list(skb);
1da177e4
LT
3430 return rc;
3431out:
d4828d85 3432 rcu_read_unlock_bh();
1da177e4
LT
3433 return rc;
3434}
f663dd9a 3435
2b4aa3ce 3436int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3437{
3438 return __dev_queue_xmit(skb, NULL);
3439}
2b4aa3ce 3440EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3441
f663dd9a
JW
3442int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3443{
3444 return __dev_queue_xmit(skb, accel_priv);
3445}
3446EXPORT_SYMBOL(dev_queue_xmit_accel);
3447
1da177e4
LT
3448
3449/*=======================================================================
3450 Receiver routines
3451 =======================================================================*/
3452
6b2bedc3 3453int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3454EXPORT_SYMBOL(netdev_max_backlog);
3455
3b098e2d 3456int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3457int netdev_budget __read_mostly = 300;
3458int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3459
eecfd7c4
ED
3460/* Called with irq disabled */
3461static inline void ____napi_schedule(struct softnet_data *sd,
3462 struct napi_struct *napi)
3463{
3464 list_add_tail(&napi->poll_list, &sd->poll_list);
3465 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3466}
3467
bfb564e7
KK
3468#ifdef CONFIG_RPS
3469
3470/* One global table that all flow-based protocols share. */
6e3f7faf 3471struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3472EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3473u32 rps_cpu_mask __read_mostly;
3474EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3475
c5905afb 3476struct static_key rps_needed __read_mostly;
3df97ba8 3477EXPORT_SYMBOL(rps_needed);
adc9300e 3478
c445477d
BH
3479static struct rps_dev_flow *
3480set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3481 struct rps_dev_flow *rflow, u16 next_cpu)
3482{
a31196b0 3483 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3484#ifdef CONFIG_RFS_ACCEL
3485 struct netdev_rx_queue *rxqueue;
3486 struct rps_dev_flow_table *flow_table;
3487 struct rps_dev_flow *old_rflow;
3488 u32 flow_id;
3489 u16 rxq_index;
3490 int rc;
3491
3492 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3493 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3494 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3495 goto out;
3496 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3497 if (rxq_index == skb_get_rx_queue(skb))
3498 goto out;
3499
3500 rxqueue = dev->_rx + rxq_index;
3501 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3502 if (!flow_table)
3503 goto out;
61b905da 3504 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3505 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3506 rxq_index, flow_id);
3507 if (rc < 0)
3508 goto out;
3509 old_rflow = rflow;
3510 rflow = &flow_table->flows[flow_id];
c445477d
BH
3511 rflow->filter = rc;
3512 if (old_rflow->filter == rflow->filter)
3513 old_rflow->filter = RPS_NO_FILTER;
3514 out:
3515#endif
3516 rflow->last_qtail =
09994d1b 3517 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3518 }
3519
09994d1b 3520 rflow->cpu = next_cpu;
c445477d
BH
3521 return rflow;
3522}
3523
bfb564e7
KK
3524/*
3525 * get_rps_cpu is called from netif_receive_skb and returns the target
3526 * CPU from the RPS map of the receiving queue for a given skb.
3527 * rcu_read_lock must be held on entry.
3528 */
3529static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3530 struct rps_dev_flow **rflowp)
3531{
567e4b79
ED
3532 const struct rps_sock_flow_table *sock_flow_table;
3533 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3534 struct rps_dev_flow_table *flow_table;
567e4b79 3535 struct rps_map *map;
bfb564e7 3536 int cpu = -1;
567e4b79 3537 u32 tcpu;
61b905da 3538 u32 hash;
bfb564e7
KK
3539
3540 if (skb_rx_queue_recorded(skb)) {
3541 u16 index = skb_get_rx_queue(skb);
567e4b79 3542
62fe0b40
BH
3543 if (unlikely(index >= dev->real_num_rx_queues)) {
3544 WARN_ONCE(dev->real_num_rx_queues > 1,
3545 "%s received packet on queue %u, but number "
3546 "of RX queues is %u\n",
3547 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3548 goto done;
3549 }
567e4b79
ED
3550 rxqueue += index;
3551 }
bfb564e7 3552
567e4b79
ED
3553 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3554
3555 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3556 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3557 if (!flow_table && !map)
bfb564e7
KK
3558 goto done;
3559
2d47b459 3560 skb_reset_network_header(skb);
61b905da
TH
3561 hash = skb_get_hash(skb);
3562 if (!hash)
bfb564e7
KK
3563 goto done;
3564
fec5e652
TH
3565 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3566 if (flow_table && sock_flow_table) {
fec5e652 3567 struct rps_dev_flow *rflow;
567e4b79
ED
3568 u32 next_cpu;
3569 u32 ident;
3570
3571 /* First check into global flow table if there is a match */
3572 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3573 if ((ident ^ hash) & ~rps_cpu_mask)
3574 goto try_rps;
fec5e652 3575
567e4b79
ED
3576 next_cpu = ident & rps_cpu_mask;
3577
3578 /* OK, now we know there is a match,
3579 * we can look at the local (per receive queue) flow table
3580 */
61b905da 3581 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3582 tcpu = rflow->cpu;
3583
fec5e652
TH
3584 /*
3585 * If the desired CPU (where last recvmsg was done) is
3586 * different from current CPU (one in the rx-queue flow
3587 * table entry), switch if one of the following holds:
a31196b0 3588 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3589 * - Current CPU is offline.
3590 * - The current CPU's queue tail has advanced beyond the
3591 * last packet that was enqueued using this table entry.
3592 * This guarantees that all previous packets for the flow
3593 * have been dequeued, thus preserving in order delivery.
3594 */
3595 if (unlikely(tcpu != next_cpu) &&
a31196b0 3596 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3597 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3598 rflow->last_qtail)) >= 0)) {
3599 tcpu = next_cpu;
c445477d 3600 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3601 }
c445477d 3602
a31196b0 3603 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3604 *rflowp = rflow;
3605 cpu = tcpu;
3606 goto done;
3607 }
3608 }
3609
567e4b79
ED
3610try_rps:
3611
0a9627f2 3612 if (map) {
8fc54f68 3613 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3614 if (cpu_online(tcpu)) {
3615 cpu = tcpu;
3616 goto done;
3617 }
3618 }
3619
3620done:
0a9627f2
TH
3621 return cpu;
3622}
3623
c445477d
BH
3624#ifdef CONFIG_RFS_ACCEL
3625
3626/**
3627 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3628 * @dev: Device on which the filter was set
3629 * @rxq_index: RX queue index
3630 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3631 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3632 *
3633 * Drivers that implement ndo_rx_flow_steer() should periodically call
3634 * this function for each installed filter and remove the filters for
3635 * which it returns %true.
3636 */
3637bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3638 u32 flow_id, u16 filter_id)
3639{
3640 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3641 struct rps_dev_flow_table *flow_table;
3642 struct rps_dev_flow *rflow;
3643 bool expire = true;
a31196b0 3644 unsigned int cpu;
c445477d
BH
3645
3646 rcu_read_lock();
3647 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3648 if (flow_table && flow_id <= flow_table->mask) {
3649 rflow = &flow_table->flows[flow_id];
3650 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3651 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3652 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3653 rflow->last_qtail) <
3654 (int)(10 * flow_table->mask)))
3655 expire = false;
3656 }
3657 rcu_read_unlock();
3658 return expire;
3659}
3660EXPORT_SYMBOL(rps_may_expire_flow);
3661
3662#endif /* CONFIG_RFS_ACCEL */
3663
0a9627f2 3664/* Called from hardirq (IPI) context */
e36fa2f7 3665static void rps_trigger_softirq(void *data)
0a9627f2 3666{
e36fa2f7
ED
3667 struct softnet_data *sd = data;
3668
eecfd7c4 3669 ____napi_schedule(sd, &sd->backlog);
dee42870 3670 sd->received_rps++;
0a9627f2 3671}
e36fa2f7 3672
fec5e652 3673#endif /* CONFIG_RPS */
0a9627f2 3674
e36fa2f7
ED
3675/*
3676 * Check if this softnet_data structure is another cpu one
3677 * If yes, queue it to our IPI list and return 1
3678 * If no, return 0
3679 */
3680static int rps_ipi_queued(struct softnet_data *sd)
3681{
3682#ifdef CONFIG_RPS
903ceff7 3683 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3684
3685 if (sd != mysd) {
3686 sd->rps_ipi_next = mysd->rps_ipi_list;
3687 mysd->rps_ipi_list = sd;
3688
3689 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3690 return 1;
3691 }
3692#endif /* CONFIG_RPS */
3693 return 0;
3694}
3695
99bbc707
WB
3696#ifdef CONFIG_NET_FLOW_LIMIT
3697int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3698#endif
3699
3700static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3701{
3702#ifdef CONFIG_NET_FLOW_LIMIT
3703 struct sd_flow_limit *fl;
3704 struct softnet_data *sd;
3705 unsigned int old_flow, new_flow;
3706
3707 if (qlen < (netdev_max_backlog >> 1))
3708 return false;
3709
903ceff7 3710 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3711
3712 rcu_read_lock();
3713 fl = rcu_dereference(sd->flow_limit);
3714 if (fl) {
3958afa1 3715 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3716 old_flow = fl->history[fl->history_head];
3717 fl->history[fl->history_head] = new_flow;
3718
3719 fl->history_head++;
3720 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3721
3722 if (likely(fl->buckets[old_flow]))
3723 fl->buckets[old_flow]--;
3724
3725 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3726 fl->count++;
3727 rcu_read_unlock();
3728 return true;
3729 }
3730 }
3731 rcu_read_unlock();
3732#endif
3733 return false;
3734}
3735
0a9627f2
TH
3736/*
3737 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3738 * queue (may be a remote CPU queue).
3739 */
fec5e652
TH
3740static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3741 unsigned int *qtail)
0a9627f2 3742{
e36fa2f7 3743 struct softnet_data *sd;
0a9627f2 3744 unsigned long flags;
99bbc707 3745 unsigned int qlen;
0a9627f2 3746
e36fa2f7 3747 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3748
3749 local_irq_save(flags);
0a9627f2 3750
e36fa2f7 3751 rps_lock(sd);
e9e4dd32
JA
3752 if (!netif_running(skb->dev))
3753 goto drop;
99bbc707
WB
3754 qlen = skb_queue_len(&sd->input_pkt_queue);
3755 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3756 if (qlen) {
0a9627f2 3757enqueue:
e36fa2f7 3758 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3759 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3760 rps_unlock(sd);
152102c7 3761 local_irq_restore(flags);
0a9627f2
TH
3762 return NET_RX_SUCCESS;
3763 }
3764
ebda37c2
ED
3765 /* Schedule NAPI for backlog device
3766 * We can use non atomic operation since we own the queue lock
3767 */
3768 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3769 if (!rps_ipi_queued(sd))
eecfd7c4 3770 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3771 }
3772 goto enqueue;
3773 }
3774
e9e4dd32 3775drop:
dee42870 3776 sd->dropped++;
e36fa2f7 3777 rps_unlock(sd);
0a9627f2 3778
0a9627f2
TH
3779 local_irq_restore(flags);
3780
caf586e5 3781 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3782 kfree_skb(skb);
3783 return NET_RX_DROP;
3784}
1da177e4 3785
ae78dbfa 3786static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3787{
b0e28f1e 3788 int ret;
1da177e4 3789
588f0330 3790 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3791
cf66ba58 3792 trace_netif_rx(skb);
df334545 3793#ifdef CONFIG_RPS
c5905afb 3794 if (static_key_false(&rps_needed)) {
fec5e652 3795 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3796 int cpu;
3797
cece1945 3798 preempt_disable();
b0e28f1e 3799 rcu_read_lock();
fec5e652
TH
3800
3801 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3802 if (cpu < 0)
3803 cpu = smp_processor_id();
fec5e652
TH
3804
3805 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3806
b0e28f1e 3807 rcu_read_unlock();
cece1945 3808 preempt_enable();
adc9300e
ED
3809 } else
3810#endif
fec5e652
TH
3811 {
3812 unsigned int qtail;
3813 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3814 put_cpu();
3815 }
b0e28f1e 3816 return ret;
1da177e4 3817}
ae78dbfa
BH
3818
3819/**
3820 * netif_rx - post buffer to the network code
3821 * @skb: buffer to post
3822 *
3823 * This function receives a packet from a device driver and queues it for
3824 * the upper (protocol) levels to process. It always succeeds. The buffer
3825 * may be dropped during processing for congestion control or by the
3826 * protocol layers.
3827 *
3828 * return values:
3829 * NET_RX_SUCCESS (no congestion)
3830 * NET_RX_DROP (packet was dropped)
3831 *
3832 */
3833
3834int netif_rx(struct sk_buff *skb)
3835{
3836 trace_netif_rx_entry(skb);
3837
3838 return netif_rx_internal(skb);
3839}
d1b19dff 3840EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3841
3842int netif_rx_ni(struct sk_buff *skb)
3843{
3844 int err;
3845
ae78dbfa
BH
3846 trace_netif_rx_ni_entry(skb);
3847
1da177e4 3848 preempt_disable();
ae78dbfa 3849 err = netif_rx_internal(skb);
1da177e4
LT
3850 if (local_softirq_pending())
3851 do_softirq();
3852 preempt_enable();
3853
3854 return err;
3855}
1da177e4
LT
3856EXPORT_SYMBOL(netif_rx_ni);
3857
1da177e4
LT
3858static void net_tx_action(struct softirq_action *h)
3859{
903ceff7 3860 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3861
3862 if (sd->completion_queue) {
3863 struct sk_buff *clist;
3864
3865 local_irq_disable();
3866 clist = sd->completion_queue;
3867 sd->completion_queue = NULL;
3868 local_irq_enable();
3869
3870 while (clist) {
3871 struct sk_buff *skb = clist;
3872 clist = clist->next;
3873
547b792c 3874 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3875 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3876 trace_consume_skb(skb);
3877 else
3878 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
3879
3880 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3881 __kfree_skb(skb);
3882 else
3883 __kfree_skb_defer(skb);
1da177e4 3884 }
15fad714
JDB
3885
3886 __kfree_skb_flush();
1da177e4
LT
3887 }
3888
3889 if (sd->output_queue) {
37437bb2 3890 struct Qdisc *head;
1da177e4
LT
3891
3892 local_irq_disable();
3893 head = sd->output_queue;
3894 sd->output_queue = NULL;
a9cbd588 3895 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3896 local_irq_enable();
3897
3898 while (head) {
37437bb2
DM
3899 struct Qdisc *q = head;
3900 spinlock_t *root_lock;
3901
1da177e4
LT
3902 head = head->next_sched;
3903
5fb66229 3904 root_lock = qdisc_lock(q);
3bcb846c
ED
3905 spin_lock(root_lock);
3906 /* We need to make sure head->next_sched is read
3907 * before clearing __QDISC_STATE_SCHED
3908 */
3909 smp_mb__before_atomic();
3910 clear_bit(__QDISC_STATE_SCHED, &q->state);
3911 qdisc_run(q);
3912 spin_unlock(root_lock);
1da177e4
LT
3913 }
3914 }
3915}
3916
ab95bfe0
JP
3917#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3918 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
da678292
MM
3919/* This hook is defined here for ATM LANE */
3920int (*br_fdb_test_addr_hook)(struct net_device *dev,
3921 unsigned char *addr) __read_mostly;
4fb019a0 3922EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3923#endif
1da177e4 3924
1f211a1b
DB
3925static inline struct sk_buff *
3926sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3927 struct net_device *orig_dev)
f697c3e8 3928{
e7582bab 3929#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3930 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3931 struct tcf_result cl_res;
24824a09 3932
c9e99fd0
DB
3933 /* If there's at least one ingress present somewhere (so
3934 * we get here via enabled static key), remaining devices
3935 * that are not configured with an ingress qdisc will bail
d2788d34 3936 * out here.
c9e99fd0 3937 */
d2788d34 3938 if (!cl)
4577139b 3939 return skb;
f697c3e8
HX
3940 if (*pt_prev) {
3941 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3942 *pt_prev = NULL;
1da177e4
LT
3943 }
3944
3365495c 3945 qdisc_skb_cb(skb)->pkt_len = skb->len;
c9e99fd0 3946 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
24ea591d 3947 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3948
3b3ae880 3949 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3950 case TC_ACT_OK:
3951 case TC_ACT_RECLASSIFY:
3952 skb->tc_index = TC_H_MIN(cl_res.classid);
3953 break;
3954 case TC_ACT_SHOT:
24ea591d 3955 qdisc_qstats_cpu_drop(cl->q);
8a3a4c6e
ED
3956 kfree_skb(skb);
3957 return NULL;
d2788d34
DB
3958 case TC_ACT_STOLEN:
3959 case TC_ACT_QUEUED:
8a3a4c6e 3960 consume_skb(skb);
d2788d34 3961 return NULL;
27b29f63
AS
3962 case TC_ACT_REDIRECT:
3963 /* skb_mac_header check was done by cls/act_bpf, so
3964 * we can safely push the L2 header back before
3965 * redirecting to another netdev
3966 */
3967 __skb_push(skb, skb->mac_len);
3968 skb_do_redirect(skb);
3969 return NULL;
d2788d34
DB
3970 default:
3971 break;
f697c3e8 3972 }
e7582bab 3973#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3974 return skb;
3975}
1da177e4 3976
ab95bfe0
JP
3977/**
3978 * netdev_rx_handler_register - register receive handler
3979 * @dev: device to register a handler for
3980 * @rx_handler: receive handler to register
93e2c32b 3981 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3982 *
e227867f 3983 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3984 * called from __netif_receive_skb. A negative errno code is returned
3985 * on a failure.
3986 *
3987 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3988 *
3989 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3990 */
3991int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3992 rx_handler_func_t *rx_handler,
3993 void *rx_handler_data)
ab95bfe0
JP
3994{
3995 ASSERT_RTNL();
3996
3997 if (dev->rx_handler)
3998 return -EBUSY;
3999
00cfec37 4000 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4001 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4002 rcu_assign_pointer(dev->rx_handler, rx_handler);
4003
4004 return 0;
4005}
4006EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4007
4008/**
4009 * netdev_rx_handler_unregister - unregister receive handler
4010 * @dev: device to unregister a handler from
4011 *
166ec369 4012 * Unregister a receive handler from a device.
ab95bfe0
JP
4013 *
4014 * The caller must hold the rtnl_mutex.
4015 */
4016void netdev_rx_handler_unregister(struct net_device *dev)
4017{
4018
4019 ASSERT_RTNL();
a9b3cd7f 4020 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4021 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4022 * section has a guarantee to see a non NULL rx_handler_data
4023 * as well.
4024 */
4025 synchronize_net();
a9b3cd7f 4026 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4027}
4028EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4029
b4b9e355
MG
4030/*
4031 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4032 * the special handling of PFMEMALLOC skbs.
4033 */
4034static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4035{
4036 switch (skb->protocol) {
2b8837ae
JP
4037 case htons(ETH_P_ARP):
4038 case htons(ETH_P_IP):
4039 case htons(ETH_P_IPV6):
4040 case htons(ETH_P_8021Q):
4041 case htons(ETH_P_8021AD):
b4b9e355
MG
4042 return true;
4043 default:
4044 return false;
4045 }
4046}
4047
e687ad60
PN
4048static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4049 int *ret, struct net_device *orig_dev)
4050{
e7582bab 4051#ifdef CONFIG_NETFILTER_INGRESS
e687ad60
PN
4052 if (nf_hook_ingress_active(skb)) {
4053 if (*pt_prev) {
4054 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4055 *pt_prev = NULL;
4056 }
4057
4058 return nf_hook_ingress(skb);
4059 }
e7582bab 4060#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4061 return 0;
4062}
e687ad60 4063
9754e293 4064static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4065{
4066 struct packet_type *ptype, *pt_prev;
ab95bfe0 4067 rx_handler_func_t *rx_handler;
f2ccd8fa 4068 struct net_device *orig_dev;
8a4eb573 4069 bool deliver_exact = false;
1da177e4 4070 int ret = NET_RX_DROP;
252e3346 4071 __be16 type;
1da177e4 4072
588f0330 4073 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4074
cf66ba58 4075 trace_netif_receive_skb(skb);
9b22ea56 4076
cc9bd5ce 4077 orig_dev = skb->dev;
8f903c70 4078
c1d2bbe1 4079 skb_reset_network_header(skb);
fda55eca
ED
4080 if (!skb_transport_header_was_set(skb))
4081 skb_reset_transport_header(skb);
0b5c9db1 4082 skb_reset_mac_len(skb);
1da177e4
LT
4083
4084 pt_prev = NULL;
4085
63d8ea7f 4086another_round:
b6858177 4087 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4088
4089 __this_cpu_inc(softnet_data.processed);
4090
8ad227ff
PM
4091 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4092 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4093 skb = skb_vlan_untag(skb);
bcc6d479 4094 if (unlikely(!skb))
2c17d27c 4095 goto out;
bcc6d479
JP
4096 }
4097
1da177e4
LT
4098#ifdef CONFIG_NET_CLS_ACT
4099 if (skb->tc_verd & TC_NCLS) {
4100 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4101 goto ncls;
4102 }
4103#endif
4104
9754e293 4105 if (pfmemalloc)
b4b9e355
MG
4106 goto skip_taps;
4107
1da177e4 4108 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4109 if (pt_prev)
4110 ret = deliver_skb(skb, pt_prev, orig_dev);
4111 pt_prev = ptype;
4112 }
4113
4114 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4115 if (pt_prev)
4116 ret = deliver_skb(skb, pt_prev, orig_dev);
4117 pt_prev = ptype;
1da177e4
LT
4118 }
4119
b4b9e355 4120skip_taps:
1cf51900 4121#ifdef CONFIG_NET_INGRESS
4577139b 4122 if (static_key_false(&ingress_needed)) {
1f211a1b 4123 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4124 if (!skb)
2c17d27c 4125 goto out;
e687ad60
PN
4126
4127 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4128 goto out;
4577139b 4129 }
1cf51900
PN
4130#endif
4131#ifdef CONFIG_NET_CLS_ACT
4577139b 4132 skb->tc_verd = 0;
1da177e4
LT
4133ncls:
4134#endif
9754e293 4135 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4136 goto drop;
4137
df8a39de 4138 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4139 if (pt_prev) {
4140 ret = deliver_skb(skb, pt_prev, orig_dev);
4141 pt_prev = NULL;
4142 }
48cc32d3 4143 if (vlan_do_receive(&skb))
2425717b
JF
4144 goto another_round;
4145 else if (unlikely(!skb))
2c17d27c 4146 goto out;
2425717b
JF
4147 }
4148
48cc32d3 4149 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4150 if (rx_handler) {
4151 if (pt_prev) {
4152 ret = deliver_skb(skb, pt_prev, orig_dev);
4153 pt_prev = NULL;
4154 }
8a4eb573
JP
4155 switch (rx_handler(&skb)) {
4156 case RX_HANDLER_CONSUMED:
3bc1b1ad 4157 ret = NET_RX_SUCCESS;
2c17d27c 4158 goto out;
8a4eb573 4159 case RX_HANDLER_ANOTHER:
63d8ea7f 4160 goto another_round;
8a4eb573
JP
4161 case RX_HANDLER_EXACT:
4162 deliver_exact = true;
4163 case RX_HANDLER_PASS:
4164 break;
4165 default:
4166 BUG();
4167 }
ab95bfe0 4168 }
1da177e4 4169
df8a39de
JP
4170 if (unlikely(skb_vlan_tag_present(skb))) {
4171 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4172 skb->pkt_type = PACKET_OTHERHOST;
4173 /* Note: we might in the future use prio bits
4174 * and set skb->priority like in vlan_do_receive()
4175 * For the time being, just ignore Priority Code Point
4176 */
4177 skb->vlan_tci = 0;
4178 }
48cc32d3 4179
7866a621
SN
4180 type = skb->protocol;
4181
63d8ea7f 4182 /* deliver only exact match when indicated */
7866a621
SN
4183 if (likely(!deliver_exact)) {
4184 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4185 &ptype_base[ntohs(type) &
4186 PTYPE_HASH_MASK]);
4187 }
1f3c8804 4188
7866a621
SN
4189 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4190 &orig_dev->ptype_specific);
4191
4192 if (unlikely(skb->dev != orig_dev)) {
4193 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4194 &skb->dev->ptype_specific);
1da177e4
LT
4195 }
4196
4197 if (pt_prev) {
1080e512 4198 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 4199 goto drop;
1080e512
MT
4200 else
4201 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4202 } else {
b4b9e355 4203drop:
6e7333d3
JW
4204 if (!deliver_exact)
4205 atomic_long_inc(&skb->dev->rx_dropped);
4206 else
4207 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4208 kfree_skb(skb);
4209 /* Jamal, now you will not able to escape explaining
4210 * me how you were going to use this. :-)
4211 */
4212 ret = NET_RX_DROP;
4213 }
4214
2c17d27c 4215out:
9754e293
DM
4216 return ret;
4217}
4218
4219static int __netif_receive_skb(struct sk_buff *skb)
4220{
4221 int ret;
4222
4223 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4224 unsigned long pflags = current->flags;
4225
4226 /*
4227 * PFMEMALLOC skbs are special, they should
4228 * - be delivered to SOCK_MEMALLOC sockets only
4229 * - stay away from userspace
4230 * - have bounded memory usage
4231 *
4232 * Use PF_MEMALLOC as this saves us from propagating the allocation
4233 * context down to all allocation sites.
4234 */
4235 current->flags |= PF_MEMALLOC;
4236 ret = __netif_receive_skb_core(skb, true);
4237 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4238 } else
4239 ret = __netif_receive_skb_core(skb, false);
4240
1da177e4
LT
4241 return ret;
4242}
0a9627f2 4243
ae78dbfa 4244static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4245{
2c17d27c
JA
4246 int ret;
4247
588f0330 4248 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4249
c1f19b51
RC
4250 if (skb_defer_rx_timestamp(skb))
4251 return NET_RX_SUCCESS;
4252
2c17d27c
JA
4253 rcu_read_lock();
4254
df334545 4255#ifdef CONFIG_RPS
c5905afb 4256 if (static_key_false(&rps_needed)) {
3b098e2d 4257 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4258 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4259
3b098e2d
ED
4260 if (cpu >= 0) {
4261 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4262 rcu_read_unlock();
adc9300e 4263 return ret;
3b098e2d 4264 }
fec5e652 4265 }
1e94d72f 4266#endif
2c17d27c
JA
4267 ret = __netif_receive_skb(skb);
4268 rcu_read_unlock();
4269 return ret;
0a9627f2 4270}
ae78dbfa
BH
4271
4272/**
4273 * netif_receive_skb - process receive buffer from network
4274 * @skb: buffer to process
4275 *
4276 * netif_receive_skb() is the main receive data processing function.
4277 * It always succeeds. The buffer may be dropped during processing
4278 * for congestion control or by the protocol layers.
4279 *
4280 * This function may only be called from softirq context and interrupts
4281 * should be enabled.
4282 *
4283 * Return values (usually ignored):
4284 * NET_RX_SUCCESS: no congestion
4285 * NET_RX_DROP: packet was dropped
4286 */
04eb4489 4287int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4288{
4289 trace_netif_receive_skb_entry(skb);
4290
4291 return netif_receive_skb_internal(skb);
4292}
04eb4489 4293EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4294
88751275
ED
4295/* Network device is going away, flush any packets still pending
4296 * Called with irqs disabled.
4297 */
152102c7 4298static void flush_backlog(void *arg)
6e583ce5 4299{
152102c7 4300 struct net_device *dev = arg;
903ceff7 4301 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6e583ce5
SH
4302 struct sk_buff *skb, *tmp;
4303
e36fa2f7 4304 rps_lock(sd);
6e7676c1 4305 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6e583ce5 4306 if (skb->dev == dev) {
e36fa2f7 4307 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4308 kfree_skb(skb);
76cc8b13 4309 input_queue_head_incr(sd);
6e583ce5 4310 }
6e7676c1 4311 }
e36fa2f7 4312 rps_unlock(sd);
6e7676c1
CG
4313
4314 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4315 if (skb->dev == dev) {
4316 __skb_unlink(skb, &sd->process_queue);
4317 kfree_skb(skb);
76cc8b13 4318 input_queue_head_incr(sd);
6e7676c1
CG
4319 }
4320 }
6e583ce5
SH
4321}
4322
d565b0a1
HX
4323static int napi_gro_complete(struct sk_buff *skb)
4324{
22061d80 4325 struct packet_offload *ptype;
d565b0a1 4326 __be16 type = skb->protocol;
22061d80 4327 struct list_head *head = &offload_base;
d565b0a1
HX
4328 int err = -ENOENT;
4329
c3c7c254
ED
4330 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4331
fc59f9a3
HX
4332 if (NAPI_GRO_CB(skb)->count == 1) {
4333 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4334 goto out;
fc59f9a3 4335 }
d565b0a1
HX
4336
4337 rcu_read_lock();
4338 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4339 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4340 continue;
4341
299603e8 4342 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4343 break;
4344 }
4345 rcu_read_unlock();
4346
4347 if (err) {
4348 WARN_ON(&ptype->list == head);
4349 kfree_skb(skb);
4350 return NET_RX_SUCCESS;
4351 }
4352
4353out:
ae78dbfa 4354 return netif_receive_skb_internal(skb);
d565b0a1
HX
4355}
4356
2e71a6f8
ED
4357/* napi->gro_list contains packets ordered by age.
4358 * youngest packets at the head of it.
4359 * Complete skbs in reverse order to reduce latencies.
4360 */
4361void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4362{
2e71a6f8 4363 struct sk_buff *skb, *prev = NULL;
d565b0a1 4364
2e71a6f8
ED
4365 /* scan list and build reverse chain */
4366 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4367 skb->prev = prev;
4368 prev = skb;
4369 }
4370
4371 for (skb = prev; skb; skb = prev) {
d565b0a1 4372 skb->next = NULL;
2e71a6f8
ED
4373
4374 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4375 return;
4376
4377 prev = skb->prev;
d565b0a1 4378 napi_gro_complete(skb);
2e71a6f8 4379 napi->gro_count--;
d565b0a1
HX
4380 }
4381
4382 napi->gro_list = NULL;
4383}
86cac58b 4384EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4385
89c5fa33
ED
4386static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4387{
4388 struct sk_buff *p;
4389 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4390 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4391
4392 for (p = napi->gro_list; p; p = p->next) {
4393 unsigned long diffs;
4394
0b4cec8c
TH
4395 NAPI_GRO_CB(p)->flush = 0;
4396
4397 if (hash != skb_get_hash_raw(p)) {
4398 NAPI_GRO_CB(p)->same_flow = 0;
4399 continue;
4400 }
4401
89c5fa33
ED
4402 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4403 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4404 diffs |= skb_metadata_dst_cmp(p, skb);
89c5fa33
ED
4405 if (maclen == ETH_HLEN)
4406 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4407 skb_mac_header(skb));
89c5fa33
ED
4408 else if (!diffs)
4409 diffs = memcmp(skb_mac_header(p),
a50e233c 4410 skb_mac_header(skb),
89c5fa33
ED
4411 maclen);
4412 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4413 }
4414}
4415
299603e8
JC
4416static void skb_gro_reset_offset(struct sk_buff *skb)
4417{
4418 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4419 const skb_frag_t *frag0 = &pinfo->frags[0];
4420
4421 NAPI_GRO_CB(skb)->data_offset = 0;
4422 NAPI_GRO_CB(skb)->frag0 = NULL;
4423 NAPI_GRO_CB(skb)->frag0_len = 0;
4424
4425 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4426 pinfo->nr_frags &&
4427 !PageHighMem(skb_frag_page(frag0))) {
4428 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4429 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
4430 }
4431}
4432
a50e233c
ED
4433static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4434{
4435 struct skb_shared_info *pinfo = skb_shinfo(skb);
4436
4437 BUG_ON(skb->end - skb->tail < grow);
4438
4439 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4440
4441 skb->data_len -= grow;
4442 skb->tail += grow;
4443
4444 pinfo->frags[0].page_offset += grow;
4445 skb_frag_size_sub(&pinfo->frags[0], grow);
4446
4447 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4448 skb_frag_unref(skb, 0);
4449 memmove(pinfo->frags, pinfo->frags + 1,
4450 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4451 }
4452}
4453
bb728820 4454static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4455{
4456 struct sk_buff **pp = NULL;
22061d80 4457 struct packet_offload *ptype;
d565b0a1 4458 __be16 type = skb->protocol;
22061d80 4459 struct list_head *head = &offload_base;
0da2afd5 4460 int same_flow;
5b252f0c 4461 enum gro_result ret;
a50e233c 4462 int grow;
d565b0a1 4463
9c62a68d 4464 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4465 goto normal;
4466
5a212329 4467 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
4468 goto normal;
4469
89c5fa33
ED
4470 gro_list_prepare(napi, skb);
4471
d565b0a1
HX
4472 rcu_read_lock();
4473 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4474 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4475 continue;
4476
86911732 4477 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4478 skb_reset_mac_len(skb);
d565b0a1
HX
4479 NAPI_GRO_CB(skb)->same_flow = 0;
4480 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4481 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4482 NAPI_GRO_CB(skb)->encap_mark = 0;
a0ca153f 4483 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4484 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4485 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4486
662880f4
TH
4487 /* Setup for GRO checksum validation */
4488 switch (skb->ip_summed) {
4489 case CHECKSUM_COMPLETE:
4490 NAPI_GRO_CB(skb)->csum = skb->csum;
4491 NAPI_GRO_CB(skb)->csum_valid = 1;
4492 NAPI_GRO_CB(skb)->csum_cnt = 0;
4493 break;
4494 case CHECKSUM_UNNECESSARY:
4495 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4496 NAPI_GRO_CB(skb)->csum_valid = 0;
4497 break;
4498 default:
4499 NAPI_GRO_CB(skb)->csum_cnt = 0;
4500 NAPI_GRO_CB(skb)->csum_valid = 0;
4501 }
d565b0a1 4502
f191a1d1 4503 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4504 break;
4505 }
4506 rcu_read_unlock();
4507
4508 if (&ptype->list == head)
4509 goto normal;
4510
0da2afd5 4511 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4512 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4513
d565b0a1
HX
4514 if (pp) {
4515 struct sk_buff *nskb = *pp;
4516
4517 *pp = nskb->next;
4518 nskb->next = NULL;
4519 napi_gro_complete(nskb);
4ae5544f 4520 napi->gro_count--;
d565b0a1
HX
4521 }
4522
0da2afd5 4523 if (same_flow)
d565b0a1
HX
4524 goto ok;
4525
600adc18 4526 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4527 goto normal;
d565b0a1 4528
600adc18
ED
4529 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4530 struct sk_buff *nskb = napi->gro_list;
4531
4532 /* locate the end of the list to select the 'oldest' flow */
4533 while (nskb->next) {
4534 pp = &nskb->next;
4535 nskb = *pp;
4536 }
4537 *pp = NULL;
4538 nskb->next = NULL;
4539 napi_gro_complete(nskb);
4540 } else {
4541 napi->gro_count++;
4542 }
d565b0a1 4543 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4544 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4545 NAPI_GRO_CB(skb)->last = skb;
86911732 4546 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4547 skb->next = napi->gro_list;
4548 napi->gro_list = skb;
5d0d9be8 4549 ret = GRO_HELD;
d565b0a1 4550
ad0f9904 4551pull:
a50e233c
ED
4552 grow = skb_gro_offset(skb) - skb_headlen(skb);
4553 if (grow > 0)
4554 gro_pull_from_frag0(skb, grow);
d565b0a1 4555ok:
5d0d9be8 4556 return ret;
d565b0a1
HX
4557
4558normal:
ad0f9904
HX
4559 ret = GRO_NORMAL;
4560 goto pull;
5d38a079 4561}
96e93eab 4562
bf5a755f
JC
4563struct packet_offload *gro_find_receive_by_type(__be16 type)
4564{
4565 struct list_head *offload_head = &offload_base;
4566 struct packet_offload *ptype;
4567
4568 list_for_each_entry_rcu(ptype, offload_head, list) {
4569 if (ptype->type != type || !ptype->callbacks.gro_receive)
4570 continue;
4571 return ptype;
4572 }
4573 return NULL;
4574}
e27a2f83 4575EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4576
4577struct packet_offload *gro_find_complete_by_type(__be16 type)
4578{
4579 struct list_head *offload_head = &offload_base;
4580 struct packet_offload *ptype;
4581
4582 list_for_each_entry_rcu(ptype, offload_head, list) {
4583 if (ptype->type != type || !ptype->callbacks.gro_complete)
4584 continue;
4585 return ptype;
4586 }
4587 return NULL;
4588}
e27a2f83 4589EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4590
bb728820 4591static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4592{
5d0d9be8
HX
4593 switch (ret) {
4594 case GRO_NORMAL:
ae78dbfa 4595 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4596 ret = GRO_DROP;
4597 break;
5d38a079 4598
5d0d9be8 4599 case GRO_DROP:
5d38a079
HX
4600 kfree_skb(skb);
4601 break;
5b252f0c 4602
daa86548 4603 case GRO_MERGED_FREE:
ce87fc6c
JG
4604 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4605 skb_dst_drop(skb);
d7e8883c 4606 kmem_cache_free(skbuff_head_cache, skb);
ce87fc6c 4607 } else {
d7e8883c 4608 __kfree_skb(skb);
ce87fc6c 4609 }
daa86548
ED
4610 break;
4611
5b252f0c
BH
4612 case GRO_HELD:
4613 case GRO_MERGED:
4614 break;
5d38a079
HX
4615 }
4616
c7c4b3b6 4617 return ret;
5d0d9be8 4618}
5d0d9be8 4619
c7c4b3b6 4620gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4621{
93f93a44 4622 skb_mark_napi_id(skb, napi);
ae78dbfa 4623 trace_napi_gro_receive_entry(skb);
86911732 4624
a50e233c
ED
4625 skb_gro_reset_offset(skb);
4626
89c5fa33 4627 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4628}
4629EXPORT_SYMBOL(napi_gro_receive);
4630
d0c2b0d2 4631static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4632{
93a35f59
ED
4633 if (unlikely(skb->pfmemalloc)) {
4634 consume_skb(skb);
4635 return;
4636 }
96e93eab 4637 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4638 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4639 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4640 skb->vlan_tci = 0;
66c46d74 4641 skb->dev = napi->dev;
6d152e23 4642 skb->skb_iif = 0;
c3caf119
JC
4643 skb->encapsulation = 0;
4644 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4645 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4646
4647 napi->skb = skb;
4648}
96e93eab 4649
76620aaf 4650struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4651{
5d38a079 4652 struct sk_buff *skb = napi->skb;
5d38a079
HX
4653
4654 if (!skb) {
fd11a83d 4655 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
4656 if (skb) {
4657 napi->skb = skb;
4658 skb_mark_napi_id(skb, napi);
4659 }
80595d59 4660 }
96e93eab
HX
4661 return skb;
4662}
76620aaf 4663EXPORT_SYMBOL(napi_get_frags);
96e93eab 4664
a50e233c
ED
4665static gro_result_t napi_frags_finish(struct napi_struct *napi,
4666 struct sk_buff *skb,
4667 gro_result_t ret)
96e93eab 4668{
5d0d9be8
HX
4669 switch (ret) {
4670 case GRO_NORMAL:
a50e233c
ED
4671 case GRO_HELD:
4672 __skb_push(skb, ETH_HLEN);
4673 skb->protocol = eth_type_trans(skb, skb->dev);
4674 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4675 ret = GRO_DROP;
86911732 4676 break;
5d38a079 4677
5d0d9be8 4678 case GRO_DROP:
5d0d9be8
HX
4679 case GRO_MERGED_FREE:
4680 napi_reuse_skb(napi, skb);
4681 break;
5b252f0c
BH
4682
4683 case GRO_MERGED:
4684 break;
5d0d9be8 4685 }
5d38a079 4686
c7c4b3b6 4687 return ret;
5d38a079 4688}
5d0d9be8 4689
a50e233c
ED
4690/* Upper GRO stack assumes network header starts at gro_offset=0
4691 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4692 * We copy ethernet header into skb->data to have a common layout.
4693 */
4adb9c4a 4694static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4695{
4696 struct sk_buff *skb = napi->skb;
a50e233c
ED
4697 const struct ethhdr *eth;
4698 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4699
4700 napi->skb = NULL;
4701
a50e233c
ED
4702 skb_reset_mac_header(skb);
4703 skb_gro_reset_offset(skb);
4704
4705 eth = skb_gro_header_fast(skb, 0);
4706 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4707 eth = skb_gro_header_slow(skb, hlen, 0);
4708 if (unlikely(!eth)) {
4da46ceb
AC
4709 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4710 __func__, napi->dev->name);
a50e233c
ED
4711 napi_reuse_skb(napi, skb);
4712 return NULL;
4713 }
4714 } else {
4715 gro_pull_from_frag0(skb, hlen);
4716 NAPI_GRO_CB(skb)->frag0 += hlen;
4717 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4718 }
a50e233c
ED
4719 __skb_pull(skb, hlen);
4720
4721 /*
4722 * This works because the only protocols we care about don't require
4723 * special handling.
4724 * We'll fix it up properly in napi_frags_finish()
4725 */
4726 skb->protocol = eth->h_proto;
76620aaf 4727
76620aaf
HX
4728 return skb;
4729}
76620aaf 4730
c7c4b3b6 4731gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4732{
76620aaf 4733 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4734
4735 if (!skb)
c7c4b3b6 4736 return GRO_DROP;
5d0d9be8 4737
ae78dbfa
BH
4738 trace_napi_gro_frags_entry(skb);
4739
89c5fa33 4740 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4741}
5d38a079
HX
4742EXPORT_SYMBOL(napi_gro_frags);
4743
573e8fca
TH
4744/* Compute the checksum from gro_offset and return the folded value
4745 * after adding in any pseudo checksum.
4746 */
4747__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4748{
4749 __wsum wsum;
4750 __sum16 sum;
4751
4752 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4753
4754 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4755 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4756 if (likely(!sum)) {
4757 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4758 !skb->csum_complete_sw)
4759 netdev_rx_csum_fault(skb->dev);
4760 }
4761
4762 NAPI_GRO_CB(skb)->csum = wsum;
4763 NAPI_GRO_CB(skb)->csum_valid = 1;
4764
4765 return sum;
4766}
4767EXPORT_SYMBOL(__skb_gro_checksum_complete);
4768
e326bed2 4769/*
855abcf0 4770 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4771 * Note: called with local irq disabled, but exits with local irq enabled.
4772 */
4773static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4774{
4775#ifdef CONFIG_RPS
4776 struct softnet_data *remsd = sd->rps_ipi_list;
4777
4778 if (remsd) {
4779 sd->rps_ipi_list = NULL;
4780
4781 local_irq_enable();
4782
4783 /* Send pending IPI's to kick RPS processing on remote cpus. */
4784 while (remsd) {
4785 struct softnet_data *next = remsd->rps_ipi_next;
4786
4787 if (cpu_online(remsd->cpu))
c46fff2a 4788 smp_call_function_single_async(remsd->cpu,
fce8ad15 4789 &remsd->csd);
e326bed2
ED
4790 remsd = next;
4791 }
4792 } else
4793#endif
4794 local_irq_enable();
4795}
4796
d75b1ade
ED
4797static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4798{
4799#ifdef CONFIG_RPS
4800 return sd->rps_ipi_list != NULL;
4801#else
4802 return false;
4803#endif
4804}
4805
bea3348e 4806static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
4807{
4808 int work = 0;
eecfd7c4 4809 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
1da177e4 4810
e326bed2
ED
4811 /* Check if we have pending ipi, its better to send them now,
4812 * not waiting net_rx_action() end.
4813 */
d75b1ade 4814 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4815 local_irq_disable();
4816 net_rps_action_and_irq_enable(sd);
4817 }
d75b1ade 4818
bea3348e 4819 napi->weight = weight_p;
6e7676c1 4820 local_irq_disable();
11ef7a89 4821 while (1) {
1da177e4 4822 struct sk_buff *skb;
6e7676c1
CG
4823
4824 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4825 rcu_read_lock();
6e7676c1
CG
4826 local_irq_enable();
4827 __netif_receive_skb(skb);
2c17d27c 4828 rcu_read_unlock();
6e7676c1 4829 local_irq_disable();
76cc8b13
TH
4830 input_queue_head_incr(sd);
4831 if (++work >= quota) {
4832 local_irq_enable();
4833 return work;
4834 }
6e7676c1 4835 }
1da177e4 4836
e36fa2f7 4837 rps_lock(sd);
11ef7a89 4838 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4839 /*
4840 * Inline a custom version of __napi_complete().
4841 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4842 * and NAPI_STATE_SCHED is the only possible flag set
4843 * on backlog.
4844 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4845 * and we dont need an smp_mb() memory barrier.
4846 */
eecfd7c4 4847 napi->state = 0;
11ef7a89 4848 rps_unlock(sd);
eecfd7c4 4849
11ef7a89 4850 break;
bea3348e 4851 }
11ef7a89
TH
4852
4853 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4854 &sd->process_queue);
e36fa2f7 4855 rps_unlock(sd);
6e7676c1
CG
4856 }
4857 local_irq_enable();
1da177e4 4858
bea3348e
SH
4859 return work;
4860}
1da177e4 4861
bea3348e
SH
4862/**
4863 * __napi_schedule - schedule for receive
c4ea43c5 4864 * @n: entry to schedule
bea3348e 4865 *
bc9ad166
ED
4866 * The entry's receive function will be scheduled to run.
4867 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4868 */
b5606c2d 4869void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4870{
4871 unsigned long flags;
1da177e4 4872
bea3348e 4873 local_irq_save(flags);
903ceff7 4874 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4875 local_irq_restore(flags);
1da177e4 4876}
bea3348e
SH
4877EXPORT_SYMBOL(__napi_schedule);
4878
bc9ad166
ED
4879/**
4880 * __napi_schedule_irqoff - schedule for receive
4881 * @n: entry to schedule
4882 *
4883 * Variant of __napi_schedule() assuming hard irqs are masked
4884 */
4885void __napi_schedule_irqoff(struct napi_struct *n)
4886{
4887 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4888}
4889EXPORT_SYMBOL(__napi_schedule_irqoff);
4890
d565b0a1
HX
4891void __napi_complete(struct napi_struct *n)
4892{
4893 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4894
d75b1ade 4895 list_del_init(&n->poll_list);
4e857c58 4896 smp_mb__before_atomic();
d565b0a1
HX
4897 clear_bit(NAPI_STATE_SCHED, &n->state);
4898}
4899EXPORT_SYMBOL(__napi_complete);
4900
3b47d303 4901void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4902{
4903 unsigned long flags;
4904
4905 /*
4906 * don't let napi dequeue from the cpu poll list
4907 * just in case its running on a different cpu
4908 */
4909 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4910 return;
4911
3b47d303
ED
4912 if (n->gro_list) {
4913 unsigned long timeout = 0;
d75b1ade 4914
3b47d303
ED
4915 if (work_done)
4916 timeout = n->dev->gro_flush_timeout;
4917
4918 if (timeout)
4919 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4920 HRTIMER_MODE_REL_PINNED);
4921 else
4922 napi_gro_flush(n, false);
4923 }
d75b1ade
ED
4924 if (likely(list_empty(&n->poll_list))) {
4925 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4926 } else {
4927 /* If n->poll_list is not empty, we need to mask irqs */
4928 local_irq_save(flags);
4929 __napi_complete(n);
4930 local_irq_restore(flags);
4931 }
d565b0a1 4932}
3b47d303 4933EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4934
af12fa6e 4935/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 4936static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
4937{
4938 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4939 struct napi_struct *napi;
4940
4941 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4942 if (napi->napi_id == napi_id)
4943 return napi;
4944
4945 return NULL;
4946}
02d62e86
ED
4947
4948#if defined(CONFIG_NET_RX_BUSY_POLL)
ce6aea93 4949#define BUSY_POLL_BUDGET 8
02d62e86
ED
4950bool sk_busy_loop(struct sock *sk, int nonblock)
4951{
4952 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
ce6aea93 4953 int (*busy_poll)(struct napi_struct *dev);
02d62e86
ED
4954 struct napi_struct *napi;
4955 int rc = false;
4956
2a028ecb 4957 rcu_read_lock();
02d62e86
ED
4958
4959 napi = napi_by_id(sk->sk_napi_id);
4960 if (!napi)
4961 goto out;
4962
ce6aea93
ED
4963 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4964 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
02d62e86
ED
4965
4966 do {
ce6aea93 4967 rc = 0;
2a028ecb 4968 local_bh_disable();
ce6aea93
ED
4969 if (busy_poll) {
4970 rc = busy_poll(napi);
4971 } else if (napi_schedule_prep(napi)) {
4972 void *have = netpoll_poll_lock(napi);
4973
4974 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4975 rc = napi->poll(napi, BUSY_POLL_BUDGET);
1db19db7 4976 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
ce6aea93
ED
4977 if (rc == BUSY_POLL_BUDGET) {
4978 napi_complete_done(napi, rc);
4979 napi_schedule(napi);
4980 }
4981 }
4982 netpoll_poll_unlock(have);
4983 }
2a028ecb 4984 if (rc > 0)
02a1d6e7
ED
4985 __NET_ADD_STATS(sock_net(sk),
4986 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
2a028ecb 4987 local_bh_enable();
02d62e86
ED
4988
4989 if (rc == LL_FLUSH_FAILED)
4990 break; /* permanent failure */
4991
02d62e86 4992 cpu_relax();
02d62e86
ED
4993 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4994 !need_resched() && !busy_loop_timeout(end_time));
4995
4996 rc = !skb_queue_empty(&sk->sk_receive_queue);
4997out:
2a028ecb 4998 rcu_read_unlock();
02d62e86
ED
4999 return rc;
5000}
5001EXPORT_SYMBOL(sk_busy_loop);
5002
5003#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e
ET
5004
5005void napi_hash_add(struct napi_struct *napi)
5006{
d64b5e85
ED
5007 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5008 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5009 return;
af12fa6e 5010
52bd2d62 5011 spin_lock(&napi_hash_lock);
af12fa6e 5012
52bd2d62
ED
5013 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5014 do {
5015 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5016 napi_gen_id = NR_CPUS + 1;
5017 } while (napi_by_id(napi_gen_id));
5018 napi->napi_id = napi_gen_id;
af12fa6e 5019
52bd2d62
ED
5020 hlist_add_head_rcu(&napi->napi_hash_node,
5021 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5022
52bd2d62 5023 spin_unlock(&napi_hash_lock);
af12fa6e
ET
5024}
5025EXPORT_SYMBOL_GPL(napi_hash_add);
5026
5027/* Warning : caller is responsible to make sure rcu grace period
5028 * is respected before freeing memory containing @napi
5029 */
34cbe27e 5030bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5031{
34cbe27e
ED
5032 bool rcu_sync_needed = false;
5033
af12fa6e
ET
5034 spin_lock(&napi_hash_lock);
5035
34cbe27e
ED
5036 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5037 rcu_sync_needed = true;
af12fa6e 5038 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5039 }
af12fa6e 5040 spin_unlock(&napi_hash_lock);
34cbe27e 5041 return rcu_sync_needed;
af12fa6e
ET
5042}
5043EXPORT_SYMBOL_GPL(napi_hash_del);
5044
3b47d303
ED
5045static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5046{
5047 struct napi_struct *napi;
5048
5049 napi = container_of(timer, struct napi_struct, timer);
5050 if (napi->gro_list)
5051 napi_schedule(napi);
5052
5053 return HRTIMER_NORESTART;
5054}
5055
d565b0a1
HX
5056void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5057 int (*poll)(struct napi_struct *, int), int weight)
5058{
5059 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5060 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5061 napi->timer.function = napi_watchdog;
4ae5544f 5062 napi->gro_count = 0;
d565b0a1 5063 napi->gro_list = NULL;
5d38a079 5064 napi->skb = NULL;
d565b0a1 5065 napi->poll = poll;
82dc3c63
ED
5066 if (weight > NAPI_POLL_WEIGHT)
5067 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5068 weight, dev->name);
d565b0a1
HX
5069 napi->weight = weight;
5070 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5071 napi->dev = dev;
5d38a079 5072#ifdef CONFIG_NETPOLL
d565b0a1
HX
5073 spin_lock_init(&napi->poll_lock);
5074 napi->poll_owner = -1;
5075#endif
5076 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5077 napi_hash_add(napi);
d565b0a1
HX
5078}
5079EXPORT_SYMBOL(netif_napi_add);
5080
3b47d303
ED
5081void napi_disable(struct napi_struct *n)
5082{
5083 might_sleep();
5084 set_bit(NAPI_STATE_DISABLE, &n->state);
5085
5086 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5087 msleep(1);
2d8bff12
NH
5088 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5089 msleep(1);
3b47d303
ED
5090
5091 hrtimer_cancel(&n->timer);
5092
5093 clear_bit(NAPI_STATE_DISABLE, &n->state);
5094}
5095EXPORT_SYMBOL(napi_disable);
5096
93d05d4a 5097/* Must be called in process context */
d565b0a1
HX
5098void netif_napi_del(struct napi_struct *napi)
5099{
93d05d4a
ED
5100 might_sleep();
5101 if (napi_hash_del(napi))
5102 synchronize_net();
d7b06636 5103 list_del_init(&napi->dev_list);
76620aaf 5104 napi_free_frags(napi);
d565b0a1 5105
289dccbe 5106 kfree_skb_list(napi->gro_list);
d565b0a1 5107 napi->gro_list = NULL;
4ae5544f 5108 napi->gro_count = 0;
d565b0a1
HX
5109}
5110EXPORT_SYMBOL(netif_napi_del);
5111
726ce70e
HX
5112static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5113{
5114 void *have;
5115 int work, weight;
5116
5117 list_del_init(&n->poll_list);
5118
5119 have = netpoll_poll_lock(n);
5120
5121 weight = n->weight;
5122
5123 /* This NAPI_STATE_SCHED test is for avoiding a race
5124 * with netpoll's poll_napi(). Only the entity which
5125 * obtains the lock and sees NAPI_STATE_SCHED set will
5126 * actually make the ->poll() call. Therefore we avoid
5127 * accidentally calling ->poll() when NAPI is not scheduled.
5128 */
5129 work = 0;
5130 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5131 work = n->poll(n, weight);
1db19db7 5132 trace_napi_poll(n, work, weight);
726ce70e
HX
5133 }
5134
5135 WARN_ON_ONCE(work > weight);
5136
5137 if (likely(work < weight))
5138 goto out_unlock;
5139
5140 /* Drivers must not modify the NAPI state if they
5141 * consume the entire weight. In such cases this code
5142 * still "owns" the NAPI instance and therefore can
5143 * move the instance around on the list at-will.
5144 */
5145 if (unlikely(napi_disable_pending(n))) {
5146 napi_complete(n);
5147 goto out_unlock;
5148 }
5149
5150 if (n->gro_list) {
5151 /* flush too old packets
5152 * If HZ < 1000, flush all packets.
5153 */
5154 napi_gro_flush(n, HZ >= 1000);
5155 }
5156
001ce546
HX
5157 /* Some drivers may have called napi_schedule
5158 * prior to exhausting their budget.
5159 */
5160 if (unlikely(!list_empty(&n->poll_list))) {
5161 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5162 n->dev ? n->dev->name : "backlog");
5163 goto out_unlock;
5164 }
5165
726ce70e
HX
5166 list_add_tail(&n->poll_list, repoll);
5167
5168out_unlock:
5169 netpoll_poll_unlock(have);
5170
5171 return work;
5172}
5173
1da177e4
LT
5174static void net_rx_action(struct softirq_action *h)
5175{
903ceff7 5176 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 5177 unsigned long time_limit = jiffies + 2;
51b0bded 5178 int budget = netdev_budget;
d75b1ade
ED
5179 LIST_HEAD(list);
5180 LIST_HEAD(repoll);
53fb95d3 5181
1da177e4 5182 local_irq_disable();
d75b1ade
ED
5183 list_splice_init(&sd->poll_list, &list);
5184 local_irq_enable();
1da177e4 5185
ceb8d5bf 5186 for (;;) {
bea3348e 5187 struct napi_struct *n;
1da177e4 5188
ceb8d5bf
HX
5189 if (list_empty(&list)) {
5190 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5191 return;
5192 break;
5193 }
5194
6bd373eb
HX
5195 n = list_first_entry(&list, struct napi_struct, poll_list);
5196 budget -= napi_poll(n, &repoll);
5197
d75b1ade 5198 /* If softirq window is exhausted then punt.
24f8b238
SH
5199 * Allow this to run for 2 jiffies since which will allow
5200 * an average latency of 1.5/HZ.
bea3348e 5201 */
ceb8d5bf
HX
5202 if (unlikely(budget <= 0 ||
5203 time_after_eq(jiffies, time_limit))) {
5204 sd->time_squeeze++;
5205 break;
5206 }
1da177e4 5207 }
d75b1ade 5208
795bb1c0 5209 __kfree_skb_flush();
d75b1ade
ED
5210 local_irq_disable();
5211
5212 list_splice_tail_init(&sd->poll_list, &list);
5213 list_splice_tail(&repoll, &list);
5214 list_splice(&list, &sd->poll_list);
5215 if (!list_empty(&sd->poll_list))
5216 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5217
e326bed2 5218 net_rps_action_and_irq_enable(sd);
1da177e4
LT
5219}
5220
aa9d8560 5221struct netdev_adjacent {
9ff162a8 5222 struct net_device *dev;
5d261913
VF
5223
5224 /* upper master flag, there can only be one master device per list */
9ff162a8 5225 bool master;
5d261913 5226
5d261913
VF
5227 /* counter for the number of times this device was added to us */
5228 u16 ref_nr;
5229
402dae96
VF
5230 /* private field for the users */
5231 void *private;
5232
9ff162a8
JP
5233 struct list_head list;
5234 struct rcu_head rcu;
9ff162a8
JP
5235};
5236
6ea29da1 5237static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5238 struct list_head *adj_list)
9ff162a8 5239{
5d261913 5240 struct netdev_adjacent *adj;
5d261913 5241
2f268f12 5242 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5243 if (adj->dev == adj_dev)
5244 return adj;
9ff162a8
JP
5245 }
5246 return NULL;
5247}
5248
5249/**
5250 * netdev_has_upper_dev - Check if device is linked to an upper device
5251 * @dev: device
5252 * @upper_dev: upper device to check
5253 *
5254 * Find out if a device is linked to specified upper device and return true
5255 * in case it is. Note that this checks only immediate upper device,
5256 * not through a complete stack of devices. The caller must hold the RTNL lock.
5257 */
5258bool netdev_has_upper_dev(struct net_device *dev,
5259 struct net_device *upper_dev)
5260{
5261 ASSERT_RTNL();
5262
6ea29da1 5263 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
5264}
5265EXPORT_SYMBOL(netdev_has_upper_dev);
5266
5267/**
5268 * netdev_has_any_upper_dev - Check if device is linked to some device
5269 * @dev: device
5270 *
5271 * Find out if a device is linked to an upper device and return true in case
5272 * it is. The caller must hold the RTNL lock.
5273 */
1d143d9f 5274static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5275{
5276 ASSERT_RTNL();
5277
2f268f12 5278 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 5279}
9ff162a8
JP
5280
5281/**
5282 * netdev_master_upper_dev_get - Get master upper device
5283 * @dev: device
5284 *
5285 * Find a master upper device and return pointer to it or NULL in case
5286 * it's not there. The caller must hold the RTNL lock.
5287 */
5288struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5289{
aa9d8560 5290 struct netdev_adjacent *upper;
9ff162a8
JP
5291
5292 ASSERT_RTNL();
5293
2f268f12 5294 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5295 return NULL;
5296
2f268f12 5297 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5298 struct netdev_adjacent, list);
9ff162a8
JP
5299 if (likely(upper->master))
5300 return upper->dev;
5301 return NULL;
5302}
5303EXPORT_SYMBOL(netdev_master_upper_dev_get);
5304
b6ccba4c
VF
5305void *netdev_adjacent_get_private(struct list_head *adj_list)
5306{
5307 struct netdev_adjacent *adj;
5308
5309 adj = list_entry(adj_list, struct netdev_adjacent, list);
5310
5311 return adj->private;
5312}
5313EXPORT_SYMBOL(netdev_adjacent_get_private);
5314
44a40855
VY
5315/**
5316 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5317 * @dev: device
5318 * @iter: list_head ** of the current position
5319 *
5320 * Gets the next device from the dev's upper list, starting from iter
5321 * position. The caller must hold RCU read lock.
5322 */
5323struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5324 struct list_head **iter)
5325{
5326 struct netdev_adjacent *upper;
5327
5328 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5329
5330 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5331
5332 if (&upper->list == &dev->adj_list.upper)
5333 return NULL;
5334
5335 *iter = &upper->list;
5336
5337 return upper->dev;
5338}
5339EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5340
31088a11
VF
5341/**
5342 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
5343 * @dev: device
5344 * @iter: list_head ** of the current position
5345 *
5346 * Gets the next device from the dev's upper list, starting from iter
5347 * position. The caller must hold RCU read lock.
5348 */
2f268f12
VF
5349struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5350 struct list_head **iter)
48311f46
VF
5351{
5352 struct netdev_adjacent *upper;
5353
85328240 5354 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
5355
5356 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5357
2f268f12 5358 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
5359 return NULL;
5360
5361 *iter = &upper->list;
5362
5363 return upper->dev;
5364}
2f268f12 5365EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 5366
31088a11
VF
5367/**
5368 * netdev_lower_get_next_private - Get the next ->private from the
5369 * lower neighbour list
5370 * @dev: device
5371 * @iter: list_head ** of the current position
5372 *
5373 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5374 * list, starting from iter position. The caller must hold either hold the
5375 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5376 * list will remain unchanged.
31088a11
VF
5377 */
5378void *netdev_lower_get_next_private(struct net_device *dev,
5379 struct list_head **iter)
5380{
5381 struct netdev_adjacent *lower;
5382
5383 lower = list_entry(*iter, struct netdev_adjacent, list);
5384
5385 if (&lower->list == &dev->adj_list.lower)
5386 return NULL;
5387
6859e7df 5388 *iter = lower->list.next;
31088a11
VF
5389
5390 return lower->private;
5391}
5392EXPORT_SYMBOL(netdev_lower_get_next_private);
5393
5394/**
5395 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5396 * lower neighbour list, RCU
5397 * variant
5398 * @dev: device
5399 * @iter: list_head ** of the current position
5400 *
5401 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5402 * list, starting from iter position. The caller must hold RCU read lock.
5403 */
5404void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5405 struct list_head **iter)
5406{
5407 struct netdev_adjacent *lower;
5408
5409 WARN_ON_ONCE(!rcu_read_lock_held());
5410
5411 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5412
5413 if (&lower->list == &dev->adj_list.lower)
5414 return NULL;
5415
6859e7df 5416 *iter = &lower->list;
31088a11
VF
5417
5418 return lower->private;
5419}
5420EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5421
4085ebe8
VY
5422/**
5423 * netdev_lower_get_next - Get the next device from the lower neighbour
5424 * list
5425 * @dev: device
5426 * @iter: list_head ** of the current position
5427 *
5428 * Gets the next netdev_adjacent from the dev's lower neighbour
5429 * list, starting from iter position. The caller must hold RTNL lock or
5430 * its own locking that guarantees that the neighbour lower
b469139e 5431 * list will remain unchanged.
4085ebe8
VY
5432 */
5433void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5434{
5435 struct netdev_adjacent *lower;
5436
cfdd28be 5437 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5438
5439 if (&lower->list == &dev->adj_list.lower)
5440 return NULL;
5441
cfdd28be 5442 *iter = lower->list.next;
4085ebe8
VY
5443
5444 return lower->dev;
5445}
5446EXPORT_SYMBOL(netdev_lower_get_next);
5447
7ce856aa
JP
5448/**
5449 * netdev_all_lower_get_next - Get the next device from all lower neighbour list
5450 * @dev: device
5451 * @iter: list_head ** of the current position
5452 *
5453 * Gets the next netdev_adjacent from the dev's all lower neighbour
5454 * list, starting from iter position. The caller must hold RTNL lock or
5455 * its own locking that guarantees that the neighbour all lower
5456 * list will remain unchanged.
5457 */
5458struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter)
5459{
5460 struct netdev_adjacent *lower;
5461
5462 lower = list_entry(*iter, struct netdev_adjacent, list);
5463
5464 if (&lower->list == &dev->all_adj_list.lower)
5465 return NULL;
5466
5467 *iter = lower->list.next;
5468
5469 return lower->dev;
5470}
5471EXPORT_SYMBOL(netdev_all_lower_get_next);
5472
5473/**
5474 * netdev_all_lower_get_next_rcu - Get the next device from all
5475 * lower neighbour list, RCU variant
5476 * @dev: device
5477 * @iter: list_head ** of the current position
5478 *
5479 * Gets the next netdev_adjacent from the dev's all lower neighbour
5480 * list, starting from iter position. The caller must hold RCU read lock.
5481 */
5482struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
5483 struct list_head **iter)
5484{
5485 struct netdev_adjacent *lower;
5486
5487 lower = list_first_or_null_rcu(&dev->all_adj_list.lower,
5488 struct netdev_adjacent, list);
5489
5490 return lower ? lower->dev : NULL;
5491}
5492EXPORT_SYMBOL(netdev_all_lower_get_next_rcu);
5493
e001bfad 5494/**
5495 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5496 * lower neighbour list, RCU
5497 * variant
5498 * @dev: device
5499 *
5500 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5501 * list. The caller must hold RCU read lock.
5502 */
5503void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5504{
5505 struct netdev_adjacent *lower;
5506
5507 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5508 struct netdev_adjacent, list);
5509 if (lower)
5510 return lower->private;
5511 return NULL;
5512}
5513EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5514
9ff162a8
JP
5515/**
5516 * netdev_master_upper_dev_get_rcu - Get master upper device
5517 * @dev: device
5518 *
5519 * Find a master upper device and return pointer to it or NULL in case
5520 * it's not there. The caller must hold the RCU read lock.
5521 */
5522struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5523{
aa9d8560 5524 struct netdev_adjacent *upper;
9ff162a8 5525
2f268f12 5526 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5527 struct netdev_adjacent, list);
9ff162a8
JP
5528 if (upper && likely(upper->master))
5529 return upper->dev;
5530 return NULL;
5531}
5532EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5533
0a59f3a9 5534static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5535 struct net_device *adj_dev,
5536 struct list_head *dev_list)
5537{
5538 char linkname[IFNAMSIZ+7];
5539 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5540 "upper_%s" : "lower_%s", adj_dev->name);
5541 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5542 linkname);
5543}
0a59f3a9 5544static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5545 char *name,
5546 struct list_head *dev_list)
5547{
5548 char linkname[IFNAMSIZ+7];
5549 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5550 "upper_%s" : "lower_%s", name);
5551 sysfs_remove_link(&(dev->dev.kobj), linkname);
5552}
5553
7ce64c79
AF
5554static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5555 struct net_device *adj_dev,
5556 struct list_head *dev_list)
5557{
5558 return (dev_list == &dev->adj_list.upper ||
5559 dev_list == &dev->adj_list.lower) &&
5560 net_eq(dev_net(dev), dev_net(adj_dev));
5561}
3ee32707 5562
5d261913
VF
5563static int __netdev_adjacent_dev_insert(struct net_device *dev,
5564 struct net_device *adj_dev,
7863c054 5565 struct list_head *dev_list,
402dae96 5566 void *private, bool master)
5d261913
VF
5567{
5568 struct netdev_adjacent *adj;
842d67a7 5569 int ret;
5d261913 5570
6ea29da1 5571 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5572
5573 if (adj) {
5d261913
VF
5574 adj->ref_nr++;
5575 return 0;
5576 }
5577
5578 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5579 if (!adj)
5580 return -ENOMEM;
5581
5582 adj->dev = adj_dev;
5583 adj->master = master;
5d261913 5584 adj->ref_nr = 1;
402dae96 5585 adj->private = private;
5d261913 5586 dev_hold(adj_dev);
2f268f12
VF
5587
5588 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5589 adj_dev->name, dev->name, adj_dev->name);
5d261913 5590
7ce64c79 5591 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5592 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5593 if (ret)
5594 goto free_adj;
5595 }
5596
7863c054 5597 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5598 if (master) {
5599 ret = sysfs_create_link(&(dev->dev.kobj),
5600 &(adj_dev->dev.kobj), "master");
5601 if (ret)
5831d66e 5602 goto remove_symlinks;
842d67a7 5603
7863c054 5604 list_add_rcu(&adj->list, dev_list);
842d67a7 5605 } else {
7863c054 5606 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5607 }
5d261913
VF
5608
5609 return 0;
842d67a7 5610
5831d66e 5611remove_symlinks:
7ce64c79 5612 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5613 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5614free_adj:
5615 kfree(adj);
974daef7 5616 dev_put(adj_dev);
842d67a7
VF
5617
5618 return ret;
5d261913
VF
5619}
5620
1d143d9f 5621static void __netdev_adjacent_dev_remove(struct net_device *dev,
5622 struct net_device *adj_dev,
5623 struct list_head *dev_list)
5d261913
VF
5624{
5625 struct netdev_adjacent *adj;
5626
6ea29da1 5627 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 5628
2f268f12
VF
5629 if (!adj) {
5630 pr_err("tried to remove device %s from %s\n",
5631 dev->name, adj_dev->name);
5d261913 5632 BUG();
2f268f12 5633 }
5d261913
VF
5634
5635 if (adj->ref_nr > 1) {
2f268f12
VF
5636 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5637 adj->ref_nr-1);
5d261913
VF
5638 adj->ref_nr--;
5639 return;
5640 }
5641
842d67a7
VF
5642 if (adj->master)
5643 sysfs_remove_link(&(dev->dev.kobj), "master");
5644
7ce64c79 5645 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5646 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5647
5d261913 5648 list_del_rcu(&adj->list);
2f268f12
VF
5649 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5650 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5651 dev_put(adj_dev);
5652 kfree_rcu(adj, rcu);
5653}
5654
1d143d9f 5655static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5656 struct net_device *upper_dev,
5657 struct list_head *up_list,
5658 struct list_head *down_list,
5659 void *private, bool master)
5d261913
VF
5660{
5661 int ret;
5662
402dae96
VF
5663 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5664 master);
5d261913
VF
5665 if (ret)
5666 return ret;
5667
402dae96
VF
5668 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5669 false);
5d261913 5670 if (ret) {
2f268f12 5671 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5d261913
VF
5672 return ret;
5673 }
5674
5675 return 0;
5676}
5677
1d143d9f 5678static int __netdev_adjacent_dev_link(struct net_device *dev,
5679 struct net_device *upper_dev)
5d261913 5680{
2f268f12
VF
5681 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5682 &dev->all_adj_list.upper,
5683 &upper_dev->all_adj_list.lower,
402dae96 5684 NULL, false);
5d261913
VF
5685}
5686
1d143d9f 5687static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5688 struct net_device *upper_dev,
5689 struct list_head *up_list,
5690 struct list_head *down_list)
5d261913 5691{
2f268f12
VF
5692 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5693 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5d261913
VF
5694}
5695
1d143d9f 5696static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5697 struct net_device *upper_dev)
5d261913 5698{
2f268f12
VF
5699 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5700 &dev->all_adj_list.upper,
5701 &upper_dev->all_adj_list.lower);
5702}
5703
1d143d9f 5704static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5705 struct net_device *upper_dev,
5706 void *private, bool master)
2f268f12
VF
5707{
5708 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5709
5710 if (ret)
5711 return ret;
5712
5713 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5714 &dev->adj_list.upper,
5715 &upper_dev->adj_list.lower,
402dae96 5716 private, master);
2f268f12
VF
5717 if (ret) {
5718 __netdev_adjacent_dev_unlink(dev, upper_dev);
5719 return ret;
5720 }
5721
5722 return 0;
5d261913
VF
5723}
5724
1d143d9f 5725static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5726 struct net_device *upper_dev)
2f268f12
VF
5727{
5728 __netdev_adjacent_dev_unlink(dev, upper_dev);
5729 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5730 &dev->adj_list.upper,
5731 &upper_dev->adj_list.lower);
5732}
5d261913 5733
9ff162a8 5734static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 5735 struct net_device *upper_dev, bool master,
29bf24af 5736 void *upper_priv, void *upper_info)
9ff162a8 5737{
0e4ead9d 5738 struct netdev_notifier_changeupper_info changeupper_info;
5d261913
VF
5739 struct netdev_adjacent *i, *j, *to_i, *to_j;
5740 int ret = 0;
9ff162a8
JP
5741
5742 ASSERT_RTNL();
5743
5744 if (dev == upper_dev)
5745 return -EBUSY;
5746
5747 /* To prevent loops, check if dev is not upper device to upper_dev. */
6ea29da1 5748 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
5749 return -EBUSY;
5750
6ea29da1 5751 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
9ff162a8
JP
5752 return -EEXIST;
5753
5754 if (master && netdev_master_upper_dev_get(dev))
5755 return -EBUSY;
5756
0e4ead9d
JP
5757 changeupper_info.upper_dev = upper_dev;
5758 changeupper_info.master = master;
5759 changeupper_info.linking = true;
29bf24af 5760 changeupper_info.upper_info = upper_info;
0e4ead9d 5761
573c7ba0
JP
5762 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5763 &changeupper_info.info);
5764 ret = notifier_to_errno(ret);
5765 if (ret)
5766 return ret;
5767
6dffb044 5768 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 5769 master);
5d261913
VF
5770 if (ret)
5771 return ret;
9ff162a8 5772
5d261913 5773 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5774 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5775 * versa, and don't forget the devices itself. All of these
5776 * links are non-neighbours.
5777 */
2f268f12
VF
5778 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5779 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5780 pr_debug("Interlinking %s with %s, non-neighbour\n",
5781 i->dev->name, j->dev->name);
5d261913
VF
5782 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5783 if (ret)
5784 goto rollback_mesh;
5785 }
5786 }
5787
5788 /* add dev to every upper_dev's upper device */
2f268f12
VF
5789 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5790 pr_debug("linking %s's upper device %s with %s\n",
5791 upper_dev->name, i->dev->name, dev->name);
5d261913
VF
5792 ret = __netdev_adjacent_dev_link(dev, i->dev);
5793 if (ret)
5794 goto rollback_upper_mesh;
5795 }
5796
5797 /* add upper_dev to every dev's lower device */
2f268f12
VF
5798 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5799 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5800 i->dev->name, upper_dev->name);
5d261913
VF
5801 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5802 if (ret)
5803 goto rollback_lower_mesh;
5804 }
9ff162a8 5805
b03804e7
IS
5806 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5807 &changeupper_info.info);
5808 ret = notifier_to_errno(ret);
5809 if (ret)
5810 goto rollback_lower_mesh;
5811
9ff162a8 5812 return 0;
5d261913
VF
5813
5814rollback_lower_mesh:
5815 to_i = i;
2f268f12 5816 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5817 if (i == to_i)
5818 break;
5819 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5820 }
5821
5822 i = NULL;
5823
5824rollback_upper_mesh:
5825 to_i = i;
2f268f12 5826 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5827 if (i == to_i)
5828 break;
5829 __netdev_adjacent_dev_unlink(dev, i->dev);
5830 }
5831
5832 i = j = NULL;
5833
5834rollback_mesh:
5835 to_i = i;
5836 to_j = j;
2f268f12
VF
5837 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5838 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5839 if (i == to_i && j == to_j)
5840 break;
5841 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5842 }
5843 if (i == to_i)
5844 break;
5845 }
5846
2f268f12 5847 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5848
5849 return ret;
9ff162a8
JP
5850}
5851
5852/**
5853 * netdev_upper_dev_link - Add a link to the upper device
5854 * @dev: device
5855 * @upper_dev: new upper device
5856 *
5857 * Adds a link to device which is upper to this one. The caller must hold
5858 * the RTNL lock. On a failure a negative errno code is returned.
5859 * On success the reference counts are adjusted and the function
5860 * returns zero.
5861 */
5862int netdev_upper_dev_link(struct net_device *dev,
5863 struct net_device *upper_dev)
5864{
29bf24af 5865 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
5866}
5867EXPORT_SYMBOL(netdev_upper_dev_link);
5868
5869/**
5870 * netdev_master_upper_dev_link - Add a master link to the upper device
5871 * @dev: device
5872 * @upper_dev: new upper device
6dffb044 5873 * @upper_priv: upper device private
29bf24af 5874 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
5875 *
5876 * Adds a link to device which is upper to this one. In this case, only
5877 * one master upper device can be linked, although other non-master devices
5878 * might be linked as well. The caller must hold the RTNL lock.
5879 * On a failure a negative errno code is returned. On success the reference
5880 * counts are adjusted and the function returns zero.
5881 */
5882int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 5883 struct net_device *upper_dev,
29bf24af 5884 void *upper_priv, void *upper_info)
9ff162a8 5885{
29bf24af
JP
5886 return __netdev_upper_dev_link(dev, upper_dev, true,
5887 upper_priv, upper_info);
9ff162a8
JP
5888}
5889EXPORT_SYMBOL(netdev_master_upper_dev_link);
5890
5891/**
5892 * netdev_upper_dev_unlink - Removes a link to upper device
5893 * @dev: device
5894 * @upper_dev: new upper device
5895 *
5896 * Removes a link to device which is upper to this one. The caller must hold
5897 * the RTNL lock.
5898 */
5899void netdev_upper_dev_unlink(struct net_device *dev,
5900 struct net_device *upper_dev)
5901{
0e4ead9d 5902 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5903 struct netdev_adjacent *i, *j;
9ff162a8
JP
5904 ASSERT_RTNL();
5905
0e4ead9d
JP
5906 changeupper_info.upper_dev = upper_dev;
5907 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5908 changeupper_info.linking = false;
5909
573c7ba0
JP
5910 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5911 &changeupper_info.info);
5912
2f268f12 5913 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5914
5915 /* Here is the tricky part. We must remove all dev's lower
5916 * devices from all upper_dev's upper devices and vice
5917 * versa, to maintain the graph relationship.
5918 */
2f268f12
VF
5919 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5920 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5921 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5922
5923 /* remove also the devices itself from lower/upper device
5924 * list
5925 */
2f268f12 5926 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5d261913
VF
5927 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5928
2f268f12 5929 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5930 __netdev_adjacent_dev_unlink(dev, i->dev);
5931
0e4ead9d
JP
5932 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5933 &changeupper_info.info);
9ff162a8
JP
5934}
5935EXPORT_SYMBOL(netdev_upper_dev_unlink);
5936
61bd3857
MS
5937/**
5938 * netdev_bonding_info_change - Dispatch event about slave change
5939 * @dev: device
4a26e453 5940 * @bonding_info: info to dispatch
61bd3857
MS
5941 *
5942 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5943 * The caller must hold the RTNL lock.
5944 */
5945void netdev_bonding_info_change(struct net_device *dev,
5946 struct netdev_bonding_info *bonding_info)
5947{
5948 struct netdev_notifier_bonding_info info;
5949
5950 memcpy(&info.bonding_info, bonding_info,
5951 sizeof(struct netdev_bonding_info));
5952 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5953 &info.info);
5954}
5955EXPORT_SYMBOL(netdev_bonding_info_change);
5956
2ce1ee17 5957static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5958{
5959 struct netdev_adjacent *iter;
5960
5961 struct net *net = dev_net(dev);
5962
5963 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 5964 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5965 continue;
5966 netdev_adjacent_sysfs_add(iter->dev, dev,
5967 &iter->dev->adj_list.lower);
5968 netdev_adjacent_sysfs_add(dev, iter->dev,
5969 &dev->adj_list.upper);
5970 }
5971
5972 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 5973 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5974 continue;
5975 netdev_adjacent_sysfs_add(iter->dev, dev,
5976 &iter->dev->adj_list.upper);
5977 netdev_adjacent_sysfs_add(dev, iter->dev,
5978 &dev->adj_list.lower);
5979 }
5980}
5981
2ce1ee17 5982static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
5983{
5984 struct netdev_adjacent *iter;
5985
5986 struct net *net = dev_net(dev);
5987
5988 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 5989 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5990 continue;
5991 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5992 &iter->dev->adj_list.lower);
5993 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5994 &dev->adj_list.upper);
5995 }
5996
5997 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 5998 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5999 continue;
6000 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6001 &iter->dev->adj_list.upper);
6002 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6003 &dev->adj_list.lower);
6004 }
6005}
6006
5bb025fa 6007void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 6008{
5bb025fa 6009 struct netdev_adjacent *iter;
402dae96 6010
4c75431a
AF
6011 struct net *net = dev_net(dev);
6012
5bb025fa 6013 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6014 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6015 continue;
5bb025fa
VF
6016 netdev_adjacent_sysfs_del(iter->dev, oldname,
6017 &iter->dev->adj_list.lower);
6018 netdev_adjacent_sysfs_add(iter->dev, dev,
6019 &iter->dev->adj_list.lower);
6020 }
402dae96 6021
5bb025fa 6022 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6023 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6024 continue;
5bb025fa
VF
6025 netdev_adjacent_sysfs_del(iter->dev, oldname,
6026 &iter->dev->adj_list.upper);
6027 netdev_adjacent_sysfs_add(iter->dev, dev,
6028 &iter->dev->adj_list.upper);
6029 }
402dae96 6030}
402dae96
VF
6031
6032void *netdev_lower_dev_get_private(struct net_device *dev,
6033 struct net_device *lower_dev)
6034{
6035 struct netdev_adjacent *lower;
6036
6037 if (!lower_dev)
6038 return NULL;
6ea29da1 6039 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
6040 if (!lower)
6041 return NULL;
6042
6043 return lower->private;
6044}
6045EXPORT_SYMBOL(netdev_lower_dev_get_private);
6046
4085ebe8 6047
952fcfd0 6048int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
6049{
6050 struct net_device *lower = NULL;
6051 struct list_head *iter;
6052 int max_nest = -1;
6053 int nest;
6054
6055 ASSERT_RTNL();
6056
6057 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 6058 nest = dev_get_nest_level(lower);
4085ebe8
VY
6059 if (max_nest < nest)
6060 max_nest = nest;
6061 }
6062
952fcfd0 6063 return max_nest + 1;
4085ebe8
VY
6064}
6065EXPORT_SYMBOL(dev_get_nest_level);
6066
04d48266
JP
6067/**
6068 * netdev_lower_change - Dispatch event about lower device state change
6069 * @lower_dev: device
6070 * @lower_state_info: state to dispatch
6071 *
6072 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6073 * The caller must hold the RTNL lock.
6074 */
6075void netdev_lower_state_changed(struct net_device *lower_dev,
6076 void *lower_state_info)
6077{
6078 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6079
6080 ASSERT_RTNL();
6081 changelowerstate_info.lower_state_info = lower_state_info;
6082 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6083 &changelowerstate_info.info);
6084}
6085EXPORT_SYMBOL(netdev_lower_state_changed);
6086
18bfb924
JP
6087int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6088 struct neighbour *n)
6089{
6090 struct net_device *lower_dev, *stop_dev;
6091 struct list_head *iter;
6092 int err;
6093
6094 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6095 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6096 continue;
6097 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6098 if (err) {
6099 stop_dev = lower_dev;
6100 goto rollback;
6101 }
6102 }
6103 return 0;
6104
6105rollback:
6106 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6107 if (lower_dev == stop_dev)
6108 break;
6109 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6110 continue;
6111 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6112 }
6113 return err;
6114}
6115EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6116
6117void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6118 struct neighbour *n)
6119{
6120 struct net_device *lower_dev;
6121 struct list_head *iter;
6122
6123 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6124 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6125 continue;
6126 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6127 }
6128}
6129EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6130
b6c40d68
PM
6131static void dev_change_rx_flags(struct net_device *dev, int flags)
6132{
d314774c
SH
6133 const struct net_device_ops *ops = dev->netdev_ops;
6134
d2615bf4 6135 if (ops->ndo_change_rx_flags)
d314774c 6136 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6137}
6138
991fb3f7 6139static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6140{
b536db93 6141 unsigned int old_flags = dev->flags;
d04a48b0
EB
6142 kuid_t uid;
6143 kgid_t gid;
1da177e4 6144
24023451
PM
6145 ASSERT_RTNL();
6146
dad9b335
WC
6147 dev->flags |= IFF_PROMISC;
6148 dev->promiscuity += inc;
6149 if (dev->promiscuity == 0) {
6150 /*
6151 * Avoid overflow.
6152 * If inc causes overflow, untouch promisc and return error.
6153 */
6154 if (inc < 0)
6155 dev->flags &= ~IFF_PROMISC;
6156 else {
6157 dev->promiscuity -= inc;
7b6cd1ce
JP
6158 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6159 dev->name);
dad9b335
WC
6160 return -EOVERFLOW;
6161 }
6162 }
52609c0b 6163 if (dev->flags != old_flags) {
7b6cd1ce
JP
6164 pr_info("device %s %s promiscuous mode\n",
6165 dev->name,
6166 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6167 if (audit_enabled) {
6168 current_uid_gid(&uid, &gid);
7759db82
KHK
6169 audit_log(current->audit_context, GFP_ATOMIC,
6170 AUDIT_ANOM_PROMISCUOUS,
6171 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6172 dev->name, (dev->flags & IFF_PROMISC),
6173 (old_flags & IFF_PROMISC),
e1760bd5 6174 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6175 from_kuid(&init_user_ns, uid),
6176 from_kgid(&init_user_ns, gid),
7759db82 6177 audit_get_sessionid(current));
8192b0c4 6178 }
24023451 6179
b6c40d68 6180 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6181 }
991fb3f7
ND
6182 if (notify)
6183 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6184 return 0;
1da177e4
LT
6185}
6186
4417da66
PM
6187/**
6188 * dev_set_promiscuity - update promiscuity count on a device
6189 * @dev: device
6190 * @inc: modifier
6191 *
6192 * Add or remove promiscuity from a device. While the count in the device
6193 * remains above zero the interface remains promiscuous. Once it hits zero
6194 * the device reverts back to normal filtering operation. A negative inc
6195 * value is used to drop promiscuity on the device.
dad9b335 6196 * Return 0 if successful or a negative errno code on error.
4417da66 6197 */
dad9b335 6198int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6199{
b536db93 6200 unsigned int old_flags = dev->flags;
dad9b335 6201 int err;
4417da66 6202
991fb3f7 6203 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6204 if (err < 0)
dad9b335 6205 return err;
4417da66
PM
6206 if (dev->flags != old_flags)
6207 dev_set_rx_mode(dev);
dad9b335 6208 return err;
4417da66 6209}
d1b19dff 6210EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6211
991fb3f7 6212static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6213{
991fb3f7 6214 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6215
24023451
PM
6216 ASSERT_RTNL();
6217
1da177e4 6218 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6219 dev->allmulti += inc;
6220 if (dev->allmulti == 0) {
6221 /*
6222 * Avoid overflow.
6223 * If inc causes overflow, untouch allmulti and return error.
6224 */
6225 if (inc < 0)
6226 dev->flags &= ~IFF_ALLMULTI;
6227 else {
6228 dev->allmulti -= inc;
7b6cd1ce
JP
6229 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6230 dev->name);
dad9b335
WC
6231 return -EOVERFLOW;
6232 }
6233 }
24023451 6234 if (dev->flags ^ old_flags) {
b6c40d68 6235 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6236 dev_set_rx_mode(dev);
991fb3f7
ND
6237 if (notify)
6238 __dev_notify_flags(dev, old_flags,
6239 dev->gflags ^ old_gflags);
24023451 6240 }
dad9b335 6241 return 0;
4417da66 6242}
991fb3f7
ND
6243
6244/**
6245 * dev_set_allmulti - update allmulti count on a device
6246 * @dev: device
6247 * @inc: modifier
6248 *
6249 * Add or remove reception of all multicast frames to a device. While the
6250 * count in the device remains above zero the interface remains listening
6251 * to all interfaces. Once it hits zero the device reverts back to normal
6252 * filtering operation. A negative @inc value is used to drop the counter
6253 * when releasing a resource needing all multicasts.
6254 * Return 0 if successful or a negative errno code on error.
6255 */
6256
6257int dev_set_allmulti(struct net_device *dev, int inc)
6258{
6259 return __dev_set_allmulti(dev, inc, true);
6260}
d1b19dff 6261EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6262
6263/*
6264 * Upload unicast and multicast address lists to device and
6265 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6266 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6267 * are present.
6268 */
6269void __dev_set_rx_mode(struct net_device *dev)
6270{
d314774c
SH
6271 const struct net_device_ops *ops = dev->netdev_ops;
6272
4417da66
PM
6273 /* dev_open will call this function so the list will stay sane. */
6274 if (!(dev->flags&IFF_UP))
6275 return;
6276
6277 if (!netif_device_present(dev))
40b77c94 6278 return;
4417da66 6279
01789349 6280 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6281 /* Unicast addresses changes may only happen under the rtnl,
6282 * therefore calling __dev_set_promiscuity here is safe.
6283 */
32e7bfc4 6284 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6285 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6286 dev->uc_promisc = true;
32e7bfc4 6287 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6288 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6289 dev->uc_promisc = false;
4417da66 6290 }
4417da66 6291 }
01789349
JP
6292
6293 if (ops->ndo_set_rx_mode)
6294 ops->ndo_set_rx_mode(dev);
4417da66
PM
6295}
6296
6297void dev_set_rx_mode(struct net_device *dev)
6298{
b9e40857 6299 netif_addr_lock_bh(dev);
4417da66 6300 __dev_set_rx_mode(dev);
b9e40857 6301 netif_addr_unlock_bh(dev);
1da177e4
LT
6302}
6303
f0db275a
SH
6304/**
6305 * dev_get_flags - get flags reported to userspace
6306 * @dev: device
6307 *
6308 * Get the combination of flag bits exported through APIs to userspace.
6309 */
95c96174 6310unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6311{
95c96174 6312 unsigned int flags;
1da177e4
LT
6313
6314 flags = (dev->flags & ~(IFF_PROMISC |
6315 IFF_ALLMULTI |
b00055aa
SR
6316 IFF_RUNNING |
6317 IFF_LOWER_UP |
6318 IFF_DORMANT)) |
1da177e4
LT
6319 (dev->gflags & (IFF_PROMISC |
6320 IFF_ALLMULTI));
6321
b00055aa
SR
6322 if (netif_running(dev)) {
6323 if (netif_oper_up(dev))
6324 flags |= IFF_RUNNING;
6325 if (netif_carrier_ok(dev))
6326 flags |= IFF_LOWER_UP;
6327 if (netif_dormant(dev))
6328 flags |= IFF_DORMANT;
6329 }
1da177e4
LT
6330
6331 return flags;
6332}
d1b19dff 6333EXPORT_SYMBOL(dev_get_flags);
1da177e4 6334
bd380811 6335int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6336{
b536db93 6337 unsigned int old_flags = dev->flags;
bd380811 6338 int ret;
1da177e4 6339
24023451
PM
6340 ASSERT_RTNL();
6341
1da177e4
LT
6342 /*
6343 * Set the flags on our device.
6344 */
6345
6346 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6347 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6348 IFF_AUTOMEDIA)) |
6349 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6350 IFF_ALLMULTI));
6351
6352 /*
6353 * Load in the correct multicast list now the flags have changed.
6354 */
6355
b6c40d68
PM
6356 if ((old_flags ^ flags) & IFF_MULTICAST)
6357 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6358
4417da66 6359 dev_set_rx_mode(dev);
1da177e4
LT
6360
6361 /*
6362 * Have we downed the interface. We handle IFF_UP ourselves
6363 * according to user attempts to set it, rather than blindly
6364 * setting it.
6365 */
6366
6367 ret = 0;
d215d10f 6368 if ((old_flags ^ flags) & IFF_UP)
bd380811 6369 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 6370
1da177e4 6371 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6372 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6373 unsigned int old_flags = dev->flags;
d1b19dff 6374
1da177e4 6375 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6376
6377 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6378 if (dev->flags != old_flags)
6379 dev_set_rx_mode(dev);
1da177e4
LT
6380 }
6381
6382 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6383 is important. Some (broken) drivers set IFF_PROMISC, when
6384 IFF_ALLMULTI is requested not asking us and not reporting.
6385 */
6386 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6387 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6388
1da177e4 6389 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6390 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6391 }
6392
bd380811
PM
6393 return ret;
6394}
6395
a528c219
ND
6396void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6397 unsigned int gchanges)
bd380811
PM
6398{
6399 unsigned int changes = dev->flags ^ old_flags;
6400
a528c219 6401 if (gchanges)
7f294054 6402 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6403
bd380811
PM
6404 if (changes & IFF_UP) {
6405 if (dev->flags & IFF_UP)
6406 call_netdevice_notifiers(NETDEV_UP, dev);
6407 else
6408 call_netdevice_notifiers(NETDEV_DOWN, dev);
6409 }
6410
6411 if (dev->flags & IFF_UP &&
be9efd36
JP
6412 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6413 struct netdev_notifier_change_info change_info;
6414
6415 change_info.flags_changed = changes;
6416 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6417 &change_info.info);
6418 }
bd380811
PM
6419}
6420
6421/**
6422 * dev_change_flags - change device settings
6423 * @dev: device
6424 * @flags: device state flags
6425 *
6426 * Change settings on device based state flags. The flags are
6427 * in the userspace exported format.
6428 */
b536db93 6429int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6430{
b536db93 6431 int ret;
991fb3f7 6432 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6433
6434 ret = __dev_change_flags(dev, flags);
6435 if (ret < 0)
6436 return ret;
6437
991fb3f7 6438 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6439 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6440 return ret;
6441}
d1b19dff 6442EXPORT_SYMBOL(dev_change_flags);
1da177e4 6443
2315dc91
VF
6444static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6445{
6446 const struct net_device_ops *ops = dev->netdev_ops;
6447
6448 if (ops->ndo_change_mtu)
6449 return ops->ndo_change_mtu(dev, new_mtu);
6450
6451 dev->mtu = new_mtu;
6452 return 0;
6453}
6454
f0db275a
SH
6455/**
6456 * dev_set_mtu - Change maximum transfer unit
6457 * @dev: device
6458 * @new_mtu: new transfer unit
6459 *
6460 * Change the maximum transfer size of the network device.
6461 */
1da177e4
LT
6462int dev_set_mtu(struct net_device *dev, int new_mtu)
6463{
2315dc91 6464 int err, orig_mtu;
1da177e4
LT
6465
6466 if (new_mtu == dev->mtu)
6467 return 0;
6468
6469 /* MTU must be positive. */
6470 if (new_mtu < 0)
6471 return -EINVAL;
6472
6473 if (!netif_device_present(dev))
6474 return -ENODEV;
6475
1d486bfb
VF
6476 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6477 err = notifier_to_errno(err);
6478 if (err)
6479 return err;
d314774c 6480
2315dc91
VF
6481 orig_mtu = dev->mtu;
6482 err = __dev_set_mtu(dev, new_mtu);
d314774c 6483
2315dc91
VF
6484 if (!err) {
6485 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6486 err = notifier_to_errno(err);
6487 if (err) {
6488 /* setting mtu back and notifying everyone again,
6489 * so that they have a chance to revert changes.
6490 */
6491 __dev_set_mtu(dev, orig_mtu);
6492 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6493 }
6494 }
1da177e4
LT
6495 return err;
6496}
d1b19dff 6497EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6498
cbda10fa
VD
6499/**
6500 * dev_set_group - Change group this device belongs to
6501 * @dev: device
6502 * @new_group: group this device should belong to
6503 */
6504void dev_set_group(struct net_device *dev, int new_group)
6505{
6506 dev->group = new_group;
6507}
6508EXPORT_SYMBOL(dev_set_group);
6509
f0db275a
SH
6510/**
6511 * dev_set_mac_address - Change Media Access Control Address
6512 * @dev: device
6513 * @sa: new address
6514 *
6515 * Change the hardware (MAC) address of the device
6516 */
1da177e4
LT
6517int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6518{
d314774c 6519 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6520 int err;
6521
d314774c 6522 if (!ops->ndo_set_mac_address)
1da177e4
LT
6523 return -EOPNOTSUPP;
6524 if (sa->sa_family != dev->type)
6525 return -EINVAL;
6526 if (!netif_device_present(dev))
6527 return -ENODEV;
d314774c 6528 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6529 if (err)
6530 return err;
fbdeca2d 6531 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6532 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6533 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6534 return 0;
1da177e4 6535}
d1b19dff 6536EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6537
4bf84c35
JP
6538/**
6539 * dev_change_carrier - Change device carrier
6540 * @dev: device
691b3b7e 6541 * @new_carrier: new value
4bf84c35
JP
6542 *
6543 * Change device carrier
6544 */
6545int dev_change_carrier(struct net_device *dev, bool new_carrier)
6546{
6547 const struct net_device_ops *ops = dev->netdev_ops;
6548
6549 if (!ops->ndo_change_carrier)
6550 return -EOPNOTSUPP;
6551 if (!netif_device_present(dev))
6552 return -ENODEV;
6553 return ops->ndo_change_carrier(dev, new_carrier);
6554}
6555EXPORT_SYMBOL(dev_change_carrier);
6556
66b52b0d
JP
6557/**
6558 * dev_get_phys_port_id - Get device physical port ID
6559 * @dev: device
6560 * @ppid: port ID
6561 *
6562 * Get device physical port ID
6563 */
6564int dev_get_phys_port_id(struct net_device *dev,
02637fce 6565 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6566{
6567 const struct net_device_ops *ops = dev->netdev_ops;
6568
6569 if (!ops->ndo_get_phys_port_id)
6570 return -EOPNOTSUPP;
6571 return ops->ndo_get_phys_port_id(dev, ppid);
6572}
6573EXPORT_SYMBOL(dev_get_phys_port_id);
6574
db24a904
DA
6575/**
6576 * dev_get_phys_port_name - Get device physical port name
6577 * @dev: device
6578 * @name: port name
ed49e650 6579 * @len: limit of bytes to copy to name
db24a904
DA
6580 *
6581 * Get device physical port name
6582 */
6583int dev_get_phys_port_name(struct net_device *dev,
6584 char *name, size_t len)
6585{
6586 const struct net_device_ops *ops = dev->netdev_ops;
6587
6588 if (!ops->ndo_get_phys_port_name)
6589 return -EOPNOTSUPP;
6590 return ops->ndo_get_phys_port_name(dev, name, len);
6591}
6592EXPORT_SYMBOL(dev_get_phys_port_name);
6593
d746d707
AK
6594/**
6595 * dev_change_proto_down - update protocol port state information
6596 * @dev: device
6597 * @proto_down: new value
6598 *
6599 * This info can be used by switch drivers to set the phys state of the
6600 * port.
6601 */
6602int dev_change_proto_down(struct net_device *dev, bool proto_down)
6603{
6604 const struct net_device_ops *ops = dev->netdev_ops;
6605
6606 if (!ops->ndo_change_proto_down)
6607 return -EOPNOTSUPP;
6608 if (!netif_device_present(dev))
6609 return -ENODEV;
6610 return ops->ndo_change_proto_down(dev, proto_down);
6611}
6612EXPORT_SYMBOL(dev_change_proto_down);
6613
a7862b45
BB
6614/**
6615 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6616 * @dev: device
6617 * @fd: new program fd or negative value to clear
6618 *
6619 * Set or clear a bpf program for a device
6620 */
6621int dev_change_xdp_fd(struct net_device *dev, int fd)
6622{
6623 const struct net_device_ops *ops = dev->netdev_ops;
6624 struct bpf_prog *prog = NULL;
6625 struct netdev_xdp xdp = {};
6626 int err;
6627
6628 if (!ops->ndo_xdp)
6629 return -EOPNOTSUPP;
6630 if (fd >= 0) {
6631 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6632 if (IS_ERR(prog))
6633 return PTR_ERR(prog);
6634 }
6635
6636 xdp.command = XDP_SETUP_PROG;
6637 xdp.prog = prog;
6638 err = ops->ndo_xdp(dev, &xdp);
6639 if (err < 0 && prog)
6640 bpf_prog_put(prog);
6641
6642 return err;
6643}
6644EXPORT_SYMBOL(dev_change_xdp_fd);
6645
1da177e4
LT
6646/**
6647 * dev_new_index - allocate an ifindex
c4ea43c5 6648 * @net: the applicable net namespace
1da177e4
LT
6649 *
6650 * Returns a suitable unique value for a new device interface
6651 * number. The caller must hold the rtnl semaphore or the
6652 * dev_base_lock to be sure it remains unique.
6653 */
881d966b 6654static int dev_new_index(struct net *net)
1da177e4 6655{
aa79e66e 6656 int ifindex = net->ifindex;
1da177e4
LT
6657 for (;;) {
6658 if (++ifindex <= 0)
6659 ifindex = 1;
881d966b 6660 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6661 return net->ifindex = ifindex;
1da177e4
LT
6662 }
6663}
6664
1da177e4 6665/* Delayed registration/unregisteration */
3b5b34fd 6666static LIST_HEAD(net_todo_list);
200b916f 6667DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6668
6f05f629 6669static void net_set_todo(struct net_device *dev)
1da177e4 6670{
1da177e4 6671 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6672 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6673}
6674
9b5e383c 6675static void rollback_registered_many(struct list_head *head)
93ee31f1 6676{
e93737b0 6677 struct net_device *dev, *tmp;
5cde2829 6678 LIST_HEAD(close_head);
9b5e383c 6679
93ee31f1
DL
6680 BUG_ON(dev_boot_phase);
6681 ASSERT_RTNL();
6682
e93737b0 6683 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6684 /* Some devices call without registering
e93737b0
KK
6685 * for initialization unwind. Remove those
6686 * devices and proceed with the remaining.
9b5e383c
ED
6687 */
6688 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6689 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6690 dev->name, dev);
93ee31f1 6691
9b5e383c 6692 WARN_ON(1);
e93737b0
KK
6693 list_del(&dev->unreg_list);
6694 continue;
9b5e383c 6695 }
449f4544 6696 dev->dismantle = true;
9b5e383c 6697 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6698 }
93ee31f1 6699
44345724 6700 /* If device is running, close it first. */
5cde2829
EB
6701 list_for_each_entry(dev, head, unreg_list)
6702 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6703 dev_close_many(&close_head, true);
93ee31f1 6704
44345724 6705 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6706 /* And unlink it from device chain. */
6707 unlist_netdevice(dev);
93ee31f1 6708
9b5e383c 6709 dev->reg_state = NETREG_UNREGISTERING;
e9e4dd32 6710 on_each_cpu(flush_backlog, dev, 1);
9b5e383c 6711 }
93ee31f1
DL
6712
6713 synchronize_net();
6714
9b5e383c 6715 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6716 struct sk_buff *skb = NULL;
6717
9b5e383c
ED
6718 /* Shutdown queueing discipline. */
6719 dev_shutdown(dev);
93ee31f1
DL
6720
6721
9b5e383c
ED
6722 /* Notify protocols, that we are about to destroy
6723 this device. They should clean all the things.
6724 */
6725 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6726
395eea6c
MB
6727 if (!dev->rtnl_link_ops ||
6728 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6729 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6730 GFP_KERNEL);
6731
9b5e383c
ED
6732 /*
6733 * Flush the unicast and multicast chains
6734 */
a748ee24 6735 dev_uc_flush(dev);
22bedad3 6736 dev_mc_flush(dev);
93ee31f1 6737
9b5e383c
ED
6738 if (dev->netdev_ops->ndo_uninit)
6739 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6740
395eea6c
MB
6741 if (skb)
6742 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6743
9ff162a8
JP
6744 /* Notifier chain MUST detach us all upper devices. */
6745 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 6746
9b5e383c
ED
6747 /* Remove entries from kobject tree */
6748 netdev_unregister_kobject(dev);
024e9679
AD
6749#ifdef CONFIG_XPS
6750 /* Remove XPS queueing entries */
6751 netif_reset_xps_queues_gt(dev, 0);
6752#endif
9b5e383c 6753 }
93ee31f1 6754
850a545b 6755 synchronize_net();
395264d5 6756
a5ee1551 6757 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6758 dev_put(dev);
6759}
6760
6761static void rollback_registered(struct net_device *dev)
6762{
6763 LIST_HEAD(single);
6764
6765 list_add(&dev->unreg_list, &single);
6766 rollback_registered_many(&single);
ceaaec98 6767 list_del(&single);
93ee31f1
DL
6768}
6769
fd867d51
JW
6770static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6771 struct net_device *upper, netdev_features_t features)
6772{
6773 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6774 netdev_features_t feature;
5ba3f7d6 6775 int feature_bit;
fd867d51 6776
5ba3f7d6
JW
6777 for_each_netdev_feature(&upper_disables, feature_bit) {
6778 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6779 if (!(upper->wanted_features & feature)
6780 && (features & feature)) {
6781 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6782 &feature, upper->name);
6783 features &= ~feature;
6784 }
6785 }
6786
6787 return features;
6788}
6789
6790static void netdev_sync_lower_features(struct net_device *upper,
6791 struct net_device *lower, netdev_features_t features)
6792{
6793 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6794 netdev_features_t feature;
5ba3f7d6 6795 int feature_bit;
fd867d51 6796
5ba3f7d6
JW
6797 for_each_netdev_feature(&upper_disables, feature_bit) {
6798 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6799 if (!(features & feature) && (lower->features & feature)) {
6800 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6801 &feature, lower->name);
6802 lower->wanted_features &= ~feature;
6803 netdev_update_features(lower);
6804
6805 if (unlikely(lower->features & feature))
6806 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6807 &feature, lower->name);
6808 }
6809 }
6810}
6811
c8f44aff
MM
6812static netdev_features_t netdev_fix_features(struct net_device *dev,
6813 netdev_features_t features)
b63365a2 6814{
57422dc5
MM
6815 /* Fix illegal checksum combinations */
6816 if ((features & NETIF_F_HW_CSUM) &&
6817 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6818 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6819 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6820 }
6821
b63365a2 6822 /* TSO requires that SG is present as well. */
ea2d3688 6823 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6824 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6825 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6826 }
6827
ec5f0615
PS
6828 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6829 !(features & NETIF_F_IP_CSUM)) {
6830 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6831 features &= ~NETIF_F_TSO;
6832 features &= ~NETIF_F_TSO_ECN;
6833 }
6834
6835 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6836 !(features & NETIF_F_IPV6_CSUM)) {
6837 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6838 features &= ~NETIF_F_TSO6;
6839 }
6840
b1dc497b
AD
6841 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6842 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6843 features &= ~NETIF_F_TSO_MANGLEID;
6844
31d8b9e0
BH
6845 /* TSO ECN requires that TSO is present as well. */
6846 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6847 features &= ~NETIF_F_TSO_ECN;
6848
212b573f
MM
6849 /* Software GSO depends on SG. */
6850 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6851 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6852 features &= ~NETIF_F_GSO;
6853 }
6854
acd1130e 6855 /* UFO needs SG and checksumming */
b63365a2 6856 if (features & NETIF_F_UFO) {
79032644 6857 /* maybe split UFO into V4 and V6? */
c8cd0989
TH
6858 if (!(features & NETIF_F_HW_CSUM) &&
6859 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6860 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6f404e44 6861 netdev_dbg(dev,
acd1130e 6862 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6863 features &= ~NETIF_F_UFO;
6864 }
6865
6866 if (!(features & NETIF_F_SG)) {
6f404e44 6867 netdev_dbg(dev,
acd1130e 6868 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6869 features &= ~NETIF_F_UFO;
6870 }
6871 }
6872
802ab55a
AD
6873 /* GSO partial features require GSO partial be set */
6874 if ((features & dev->gso_partial_features) &&
6875 !(features & NETIF_F_GSO_PARTIAL)) {
6876 netdev_dbg(dev,
6877 "Dropping partially supported GSO features since no GSO partial.\n");
6878 features &= ~dev->gso_partial_features;
6879 }
6880
d0290214
JP
6881#ifdef CONFIG_NET_RX_BUSY_POLL
6882 if (dev->netdev_ops->ndo_busy_poll)
6883 features |= NETIF_F_BUSY_POLL;
6884 else
6885#endif
6886 features &= ~NETIF_F_BUSY_POLL;
6887
b63365a2
HX
6888 return features;
6889}
b63365a2 6890
6cb6a27c 6891int __netdev_update_features(struct net_device *dev)
5455c699 6892{
fd867d51 6893 struct net_device *upper, *lower;
c8f44aff 6894 netdev_features_t features;
fd867d51 6895 struct list_head *iter;
e7868a85 6896 int err = -1;
5455c699 6897
87267485
MM
6898 ASSERT_RTNL();
6899
5455c699
MM
6900 features = netdev_get_wanted_features(dev);
6901
6902 if (dev->netdev_ops->ndo_fix_features)
6903 features = dev->netdev_ops->ndo_fix_features(dev, features);
6904
6905 /* driver might be less strict about feature dependencies */
6906 features = netdev_fix_features(dev, features);
6907
fd867d51
JW
6908 /* some features can't be enabled if they're off an an upper device */
6909 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6910 features = netdev_sync_upper_features(dev, upper, features);
6911
5455c699 6912 if (dev->features == features)
e7868a85 6913 goto sync_lower;
5455c699 6914
c8f44aff
MM
6915 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6916 &dev->features, &features);
5455c699
MM
6917
6918 if (dev->netdev_ops->ndo_set_features)
6919 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
6920 else
6921 err = 0;
5455c699 6922
6cb6a27c 6923 if (unlikely(err < 0)) {
5455c699 6924 netdev_err(dev,
c8f44aff
MM
6925 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6926 err, &features, &dev->features);
17b85d29
NA
6927 /* return non-0 since some features might have changed and
6928 * it's better to fire a spurious notification than miss it
6929 */
6930 return -1;
6cb6a27c
MM
6931 }
6932
e7868a85 6933sync_lower:
fd867d51
JW
6934 /* some features must be disabled on lower devices when disabled
6935 * on an upper device (think: bonding master or bridge)
6936 */
6937 netdev_for_each_lower_dev(dev, lower, iter)
6938 netdev_sync_lower_features(dev, lower, features);
6939
6cb6a27c
MM
6940 if (!err)
6941 dev->features = features;
6942
e7868a85 6943 return err < 0 ? 0 : 1;
6cb6a27c
MM
6944}
6945
afe12cc8
MM
6946/**
6947 * netdev_update_features - recalculate device features
6948 * @dev: the device to check
6949 *
6950 * Recalculate dev->features set and send notifications if it
6951 * has changed. Should be called after driver or hardware dependent
6952 * conditions might have changed that influence the features.
6953 */
6cb6a27c
MM
6954void netdev_update_features(struct net_device *dev)
6955{
6956 if (__netdev_update_features(dev))
6957 netdev_features_change(dev);
5455c699
MM
6958}
6959EXPORT_SYMBOL(netdev_update_features);
6960
afe12cc8
MM
6961/**
6962 * netdev_change_features - recalculate device features
6963 * @dev: the device to check
6964 *
6965 * Recalculate dev->features set and send notifications even
6966 * if they have not changed. Should be called instead of
6967 * netdev_update_features() if also dev->vlan_features might
6968 * have changed to allow the changes to be propagated to stacked
6969 * VLAN devices.
6970 */
6971void netdev_change_features(struct net_device *dev)
6972{
6973 __netdev_update_features(dev);
6974 netdev_features_change(dev);
6975}
6976EXPORT_SYMBOL(netdev_change_features);
6977
fc4a7489
PM
6978/**
6979 * netif_stacked_transfer_operstate - transfer operstate
6980 * @rootdev: the root or lower level device to transfer state from
6981 * @dev: the device to transfer operstate to
6982 *
6983 * Transfer operational state from root to device. This is normally
6984 * called when a stacking relationship exists between the root
6985 * device and the device(a leaf device).
6986 */
6987void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6988 struct net_device *dev)
6989{
6990 if (rootdev->operstate == IF_OPER_DORMANT)
6991 netif_dormant_on(dev);
6992 else
6993 netif_dormant_off(dev);
6994
6995 if (netif_carrier_ok(rootdev)) {
6996 if (!netif_carrier_ok(dev))
6997 netif_carrier_on(dev);
6998 } else {
6999 if (netif_carrier_ok(dev))
7000 netif_carrier_off(dev);
7001 }
7002}
7003EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7004
a953be53 7005#ifdef CONFIG_SYSFS
1b4bf461
ED
7006static int netif_alloc_rx_queues(struct net_device *dev)
7007{
1b4bf461 7008 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 7009 struct netdev_rx_queue *rx;
10595902 7010 size_t sz = count * sizeof(*rx);
1b4bf461 7011
bd25fa7b 7012 BUG_ON(count < 1);
1b4bf461 7013
10595902
PG
7014 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7015 if (!rx) {
7016 rx = vzalloc(sz);
7017 if (!rx)
7018 return -ENOMEM;
7019 }
bd25fa7b
TH
7020 dev->_rx = rx;
7021
bd25fa7b 7022 for (i = 0; i < count; i++)
fe822240 7023 rx[i].dev = dev;
1b4bf461
ED
7024 return 0;
7025}
bf264145 7026#endif
1b4bf461 7027
aa942104
CG
7028static void netdev_init_one_queue(struct net_device *dev,
7029 struct netdev_queue *queue, void *_unused)
7030{
7031 /* Initialize queue lock */
7032 spin_lock_init(&queue->_xmit_lock);
7033 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7034 queue->xmit_lock_owner = -1;
b236da69 7035 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 7036 queue->dev = dev;
114cf580
TH
7037#ifdef CONFIG_BQL
7038 dql_init(&queue->dql, HZ);
7039#endif
aa942104
CG
7040}
7041
60877a32
ED
7042static void netif_free_tx_queues(struct net_device *dev)
7043{
4cb28970 7044 kvfree(dev->_tx);
60877a32
ED
7045}
7046
e6484930
TH
7047static int netif_alloc_netdev_queues(struct net_device *dev)
7048{
7049 unsigned int count = dev->num_tx_queues;
7050 struct netdev_queue *tx;
60877a32 7051 size_t sz = count * sizeof(*tx);
e6484930 7052
d339727c
ED
7053 if (count < 1 || count > 0xffff)
7054 return -EINVAL;
62b5942a 7055
60877a32
ED
7056 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7057 if (!tx) {
7058 tx = vzalloc(sz);
7059 if (!tx)
7060 return -ENOMEM;
7061 }
e6484930 7062 dev->_tx = tx;
1d24eb48 7063
e6484930
TH
7064 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7065 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
7066
7067 return 0;
e6484930
TH
7068}
7069
a2029240
DV
7070void netif_tx_stop_all_queues(struct net_device *dev)
7071{
7072 unsigned int i;
7073
7074 for (i = 0; i < dev->num_tx_queues; i++) {
7075 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7076 netif_tx_stop_queue(txq);
7077 }
7078}
7079EXPORT_SYMBOL(netif_tx_stop_all_queues);
7080
1da177e4
LT
7081/**
7082 * register_netdevice - register a network device
7083 * @dev: device to register
7084 *
7085 * Take a completed network device structure and add it to the kernel
7086 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7087 * chain. 0 is returned on success. A negative errno code is returned
7088 * on a failure to set up the device, or if the name is a duplicate.
7089 *
7090 * Callers must hold the rtnl semaphore. You may want
7091 * register_netdev() instead of this.
7092 *
7093 * BUGS:
7094 * The locking appears insufficient to guarantee two parallel registers
7095 * will not get the same name.
7096 */
7097
7098int register_netdevice(struct net_device *dev)
7099{
1da177e4 7100 int ret;
d314774c 7101 struct net *net = dev_net(dev);
1da177e4
LT
7102
7103 BUG_ON(dev_boot_phase);
7104 ASSERT_RTNL();
7105
b17a7c17
SH
7106 might_sleep();
7107
1da177e4
LT
7108 /* When net_device's are persistent, this will be fatal. */
7109 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 7110 BUG_ON(!net);
1da177e4 7111
f1f28aa3 7112 spin_lock_init(&dev->addr_list_lock);
cf508b12 7113 netdev_set_addr_lockdep_class(dev);
1da177e4 7114
828de4f6 7115 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7116 if (ret < 0)
7117 goto out;
7118
1da177e4 7119 /* Init, if this function is available */
d314774c
SH
7120 if (dev->netdev_ops->ndo_init) {
7121 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7122 if (ret) {
7123 if (ret > 0)
7124 ret = -EIO;
90833aa4 7125 goto out;
1da177e4
LT
7126 }
7127 }
4ec93edb 7128
f646968f
PM
7129 if (((dev->hw_features | dev->features) &
7130 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7131 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7132 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7133 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7134 ret = -EINVAL;
7135 goto err_uninit;
7136 }
7137
9c7dafbf
PE
7138 ret = -EBUSY;
7139 if (!dev->ifindex)
7140 dev->ifindex = dev_new_index(net);
7141 else if (__dev_get_by_index(net, dev->ifindex))
7142 goto err_uninit;
7143
5455c699
MM
7144 /* Transfer changeable features to wanted_features and enable
7145 * software offloads (GSO and GRO).
7146 */
7147 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
7148 dev->features |= NETIF_F_SOFT_FEATURES;
7149 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7150
cbc53e08 7151 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7152 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7153
7f348a60
AD
7154 /* If IPv4 TCP segmentation offload is supported we should also
7155 * allow the device to enable segmenting the frame with the option
7156 * of ignoring a static IP ID value. This doesn't enable the
7157 * feature itself but allows the user to enable it later.
7158 */
cbc53e08
AD
7159 if (dev->hw_features & NETIF_F_TSO)
7160 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7161 if (dev->vlan_features & NETIF_F_TSO)
7162 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7163 if (dev->mpls_features & NETIF_F_TSO)
7164 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7165 if (dev->hw_enc_features & NETIF_F_TSO)
7166 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7167
1180e7d6 7168 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7169 */
1180e7d6 7170 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7171
ee579677
PS
7172 /* Make NETIF_F_SG inheritable to tunnel devices.
7173 */
802ab55a 7174 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7175
0d89d203
SH
7176 /* Make NETIF_F_SG inheritable to MPLS.
7177 */
7178 dev->mpls_features |= NETIF_F_SG;
7179
7ffbe3fd
JB
7180 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7181 ret = notifier_to_errno(ret);
7182 if (ret)
7183 goto err_uninit;
7184
8b41d188 7185 ret = netdev_register_kobject(dev);
b17a7c17 7186 if (ret)
7ce1b0ed 7187 goto err_uninit;
b17a7c17
SH
7188 dev->reg_state = NETREG_REGISTERED;
7189
6cb6a27c 7190 __netdev_update_features(dev);
8e9b59b2 7191
1da177e4
LT
7192 /*
7193 * Default initial state at registry is that the
7194 * device is present.
7195 */
7196
7197 set_bit(__LINK_STATE_PRESENT, &dev->state);
7198
8f4cccbb
BH
7199 linkwatch_init_dev(dev);
7200
1da177e4 7201 dev_init_scheduler(dev);
1da177e4 7202 dev_hold(dev);
ce286d32 7203 list_netdevice(dev);
7bf23575 7204 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7205
948b337e
JP
7206 /* If the device has permanent device address, driver should
7207 * set dev_addr and also addr_assign_type should be set to
7208 * NET_ADDR_PERM (default value).
7209 */
7210 if (dev->addr_assign_type == NET_ADDR_PERM)
7211 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7212
1da177e4 7213 /* Notify protocols, that a new device appeared. */
056925ab 7214 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7215 ret = notifier_to_errno(ret);
93ee31f1
DL
7216 if (ret) {
7217 rollback_registered(dev);
7218 dev->reg_state = NETREG_UNREGISTERED;
7219 }
d90a909e
EB
7220 /*
7221 * Prevent userspace races by waiting until the network
7222 * device is fully setup before sending notifications.
7223 */
a2835763
PM
7224 if (!dev->rtnl_link_ops ||
7225 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7226 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7227
7228out:
7229 return ret;
7ce1b0ed
HX
7230
7231err_uninit:
d314774c
SH
7232 if (dev->netdev_ops->ndo_uninit)
7233 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 7234 goto out;
1da177e4 7235}
d1b19dff 7236EXPORT_SYMBOL(register_netdevice);
1da177e4 7237
937f1ba5
BH
7238/**
7239 * init_dummy_netdev - init a dummy network device for NAPI
7240 * @dev: device to init
7241 *
7242 * This takes a network device structure and initialize the minimum
7243 * amount of fields so it can be used to schedule NAPI polls without
7244 * registering a full blown interface. This is to be used by drivers
7245 * that need to tie several hardware interfaces to a single NAPI
7246 * poll scheduler due to HW limitations.
7247 */
7248int init_dummy_netdev(struct net_device *dev)
7249{
7250 /* Clear everything. Note we don't initialize spinlocks
7251 * are they aren't supposed to be taken by any of the
7252 * NAPI code and this dummy netdev is supposed to be
7253 * only ever used for NAPI polls
7254 */
7255 memset(dev, 0, sizeof(struct net_device));
7256
7257 /* make sure we BUG if trying to hit standard
7258 * register/unregister code path
7259 */
7260 dev->reg_state = NETREG_DUMMY;
7261
937f1ba5
BH
7262 /* NAPI wants this */
7263 INIT_LIST_HEAD(&dev->napi_list);
7264
7265 /* a dummy interface is started by default */
7266 set_bit(__LINK_STATE_PRESENT, &dev->state);
7267 set_bit(__LINK_STATE_START, &dev->state);
7268
29b4433d
ED
7269 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7270 * because users of this 'device' dont need to change
7271 * its refcount.
7272 */
7273
937f1ba5
BH
7274 return 0;
7275}
7276EXPORT_SYMBOL_GPL(init_dummy_netdev);
7277
7278
1da177e4
LT
7279/**
7280 * register_netdev - register a network device
7281 * @dev: device to register
7282 *
7283 * Take a completed network device structure and add it to the kernel
7284 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7285 * chain. 0 is returned on success. A negative errno code is returned
7286 * on a failure to set up the device, or if the name is a duplicate.
7287 *
38b4da38 7288 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7289 * and expands the device name if you passed a format string to
7290 * alloc_netdev.
7291 */
7292int register_netdev(struct net_device *dev)
7293{
7294 int err;
7295
7296 rtnl_lock();
1da177e4 7297 err = register_netdevice(dev);
1da177e4
LT
7298 rtnl_unlock();
7299 return err;
7300}
7301EXPORT_SYMBOL(register_netdev);
7302
29b4433d
ED
7303int netdev_refcnt_read(const struct net_device *dev)
7304{
7305 int i, refcnt = 0;
7306
7307 for_each_possible_cpu(i)
7308 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7309 return refcnt;
7310}
7311EXPORT_SYMBOL(netdev_refcnt_read);
7312
2c53040f 7313/**
1da177e4 7314 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7315 * @dev: target net_device
1da177e4
LT
7316 *
7317 * This is called when unregistering network devices.
7318 *
7319 * Any protocol or device that holds a reference should register
7320 * for netdevice notification, and cleanup and put back the
7321 * reference if they receive an UNREGISTER event.
7322 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7323 * call dev_put.
1da177e4
LT
7324 */
7325static void netdev_wait_allrefs(struct net_device *dev)
7326{
7327 unsigned long rebroadcast_time, warning_time;
29b4433d 7328 int refcnt;
1da177e4 7329
e014debe
ED
7330 linkwatch_forget_dev(dev);
7331
1da177e4 7332 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7333 refcnt = netdev_refcnt_read(dev);
7334
7335 while (refcnt != 0) {
1da177e4 7336 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7337 rtnl_lock();
1da177e4
LT
7338
7339 /* Rebroadcast unregister notification */
056925ab 7340 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7341
748e2d93 7342 __rtnl_unlock();
0115e8e3 7343 rcu_barrier();
748e2d93
ED
7344 rtnl_lock();
7345
0115e8e3 7346 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7347 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7348 &dev->state)) {
7349 /* We must not have linkwatch events
7350 * pending on unregister. If this
7351 * happens, we simply run the queue
7352 * unscheduled, resulting in a noop
7353 * for this device.
7354 */
7355 linkwatch_run_queue();
7356 }
7357
6756ae4b 7358 __rtnl_unlock();
1da177e4
LT
7359
7360 rebroadcast_time = jiffies;
7361 }
7362
7363 msleep(250);
7364
29b4433d
ED
7365 refcnt = netdev_refcnt_read(dev);
7366
1da177e4 7367 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7368 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7369 dev->name, refcnt);
1da177e4
LT
7370 warning_time = jiffies;
7371 }
7372 }
7373}
7374
7375/* The sequence is:
7376 *
7377 * rtnl_lock();
7378 * ...
7379 * register_netdevice(x1);
7380 * register_netdevice(x2);
7381 * ...
7382 * unregister_netdevice(y1);
7383 * unregister_netdevice(y2);
7384 * ...
7385 * rtnl_unlock();
7386 * free_netdev(y1);
7387 * free_netdev(y2);
7388 *
58ec3b4d 7389 * We are invoked by rtnl_unlock().
1da177e4 7390 * This allows us to deal with problems:
b17a7c17 7391 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7392 * without deadlocking with linkwatch via keventd.
7393 * 2) Since we run with the RTNL semaphore not held, we can sleep
7394 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7395 *
7396 * We must not return until all unregister events added during
7397 * the interval the lock was held have been completed.
1da177e4 7398 */
1da177e4
LT
7399void netdev_run_todo(void)
7400{
626ab0e6 7401 struct list_head list;
1da177e4 7402
1da177e4 7403 /* Snapshot list, allow later requests */
626ab0e6 7404 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7405
7406 __rtnl_unlock();
626ab0e6 7407
0115e8e3
ED
7408
7409 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7410 if (!list_empty(&list))
7411 rcu_barrier();
7412
1da177e4
LT
7413 while (!list_empty(&list)) {
7414 struct net_device *dev
e5e26d75 7415 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7416 list_del(&dev->todo_list);
7417
748e2d93 7418 rtnl_lock();
0115e8e3 7419 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7420 __rtnl_unlock();
0115e8e3 7421
b17a7c17 7422 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7423 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7424 dev->name, dev->reg_state);
7425 dump_stack();
7426 continue;
7427 }
1da177e4 7428
b17a7c17 7429 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7430
b17a7c17 7431 netdev_wait_allrefs(dev);
1da177e4 7432
b17a7c17 7433 /* paranoia */
29b4433d 7434 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7435 BUG_ON(!list_empty(&dev->ptype_all));
7436 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7437 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7438 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7439 WARN_ON(dev->dn_ptr);
1da177e4 7440
b17a7c17
SH
7441 if (dev->destructor)
7442 dev->destructor(dev);
9093bbb2 7443
50624c93
EB
7444 /* Report a network device has been unregistered */
7445 rtnl_lock();
7446 dev_net(dev)->dev_unreg_count--;
7447 __rtnl_unlock();
7448 wake_up(&netdev_unregistering_wq);
7449
9093bbb2
SH
7450 /* Free network device */
7451 kobject_put(&dev->dev.kobj);
1da177e4 7452 }
1da177e4
LT
7453}
7454
9256645a
JW
7455/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7456 * all the same fields in the same order as net_device_stats, with only
7457 * the type differing, but rtnl_link_stats64 may have additional fields
7458 * at the end for newer counters.
3cfde79c 7459 */
77a1abf5
ED
7460void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7461 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7462{
7463#if BITS_PER_LONG == 64
9256645a 7464 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
77a1abf5 7465 memcpy(stats64, netdev_stats, sizeof(*stats64));
9256645a
JW
7466 /* zero out counters that only exist in rtnl_link_stats64 */
7467 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7468 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7469#else
9256645a 7470 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7471 const unsigned long *src = (const unsigned long *)netdev_stats;
7472 u64 *dst = (u64 *)stats64;
7473
9256645a 7474 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7475 for (i = 0; i < n; i++)
7476 dst[i] = src[i];
9256645a
JW
7477 /* zero out counters that only exist in rtnl_link_stats64 */
7478 memset((char *)stats64 + n * sizeof(u64), 0,
7479 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7480#endif
7481}
77a1abf5 7482EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7483
eeda3fd6
SH
7484/**
7485 * dev_get_stats - get network device statistics
7486 * @dev: device to get statistics from
28172739 7487 * @storage: place to store stats
eeda3fd6 7488 *
d7753516
BH
7489 * Get network statistics from device. Return @storage.
7490 * The device driver may provide its own method by setting
7491 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7492 * otherwise the internal statistics structure is used.
eeda3fd6 7493 */
d7753516
BH
7494struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7495 struct rtnl_link_stats64 *storage)
7004bf25 7496{
eeda3fd6
SH
7497 const struct net_device_ops *ops = dev->netdev_ops;
7498
28172739
ED
7499 if (ops->ndo_get_stats64) {
7500 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7501 ops->ndo_get_stats64(dev, storage);
7502 } else if (ops->ndo_get_stats) {
3cfde79c 7503 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7504 } else {
7505 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7506 }
caf586e5 7507 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 7508 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6e7333d3 7509 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
28172739 7510 return storage;
c45d286e 7511}
eeda3fd6 7512EXPORT_SYMBOL(dev_get_stats);
c45d286e 7513
24824a09 7514struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7515{
24824a09 7516 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7517
24824a09
ED
7518#ifdef CONFIG_NET_CLS_ACT
7519 if (queue)
7520 return queue;
7521 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7522 if (!queue)
7523 return NULL;
7524 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7525 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7526 queue->qdisc_sleeping = &noop_qdisc;
7527 rcu_assign_pointer(dev->ingress_queue, queue);
7528#endif
7529 return queue;
bb949fbd
DM
7530}
7531
2c60db03
ED
7532static const struct ethtool_ops default_ethtool_ops;
7533
d07d7507
SG
7534void netdev_set_default_ethtool_ops(struct net_device *dev,
7535 const struct ethtool_ops *ops)
7536{
7537 if (dev->ethtool_ops == &default_ethtool_ops)
7538 dev->ethtool_ops = ops;
7539}
7540EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7541
74d332c1
ED
7542void netdev_freemem(struct net_device *dev)
7543{
7544 char *addr = (char *)dev - dev->padded;
7545
4cb28970 7546 kvfree(addr);
74d332c1
ED
7547}
7548
1da177e4 7549/**
36909ea4 7550 * alloc_netdev_mqs - allocate network device
c835a677
TG
7551 * @sizeof_priv: size of private data to allocate space for
7552 * @name: device name format string
7553 * @name_assign_type: origin of device name
7554 * @setup: callback to initialize device
7555 * @txqs: the number of TX subqueues to allocate
7556 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
7557 *
7558 * Allocates a struct net_device with private data area for driver use
90e51adf 7559 * and performs basic initialization. Also allocates subqueue structs
36909ea4 7560 * for each queue on the device.
1da177e4 7561 */
36909ea4 7562struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7563 unsigned char name_assign_type,
36909ea4
TH
7564 void (*setup)(struct net_device *),
7565 unsigned int txqs, unsigned int rxqs)
1da177e4 7566{
1da177e4 7567 struct net_device *dev;
7943986c 7568 size_t alloc_size;
1ce8e7b5 7569 struct net_device *p;
1da177e4 7570
b6fe17d6
SH
7571 BUG_ON(strlen(name) >= sizeof(dev->name));
7572
36909ea4 7573 if (txqs < 1) {
7b6cd1ce 7574 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7575 return NULL;
7576 }
7577
a953be53 7578#ifdef CONFIG_SYSFS
36909ea4 7579 if (rxqs < 1) {
7b6cd1ce 7580 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7581 return NULL;
7582 }
7583#endif
7584
fd2ea0a7 7585 alloc_size = sizeof(struct net_device);
d1643d24
AD
7586 if (sizeof_priv) {
7587 /* ensure 32-byte alignment of private area */
1ce8e7b5 7588 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7589 alloc_size += sizeof_priv;
7590 }
7591 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7592 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7593
74d332c1
ED
7594 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7595 if (!p)
7596 p = vzalloc(alloc_size);
62b5942a 7597 if (!p)
1da177e4 7598 return NULL;
1da177e4 7599
1ce8e7b5 7600 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7601 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7602
29b4433d
ED
7603 dev->pcpu_refcnt = alloc_percpu(int);
7604 if (!dev->pcpu_refcnt)
74d332c1 7605 goto free_dev;
ab9c73cc 7606
ab9c73cc 7607 if (dev_addr_init(dev))
29b4433d 7608 goto free_pcpu;
ab9c73cc 7609
22bedad3 7610 dev_mc_init(dev);
a748ee24 7611 dev_uc_init(dev);
ccffad25 7612
c346dca1 7613 dev_net_set(dev, &init_net);
1da177e4 7614
8d3bdbd5 7615 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7616 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 7617
8d3bdbd5
DM
7618 INIT_LIST_HEAD(&dev->napi_list);
7619 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7620 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7621 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7622 INIT_LIST_HEAD(&dev->adj_list.upper);
7623 INIT_LIST_HEAD(&dev->adj_list.lower);
7624 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7625 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7866a621
SN
7626 INIT_LIST_HEAD(&dev->ptype_all);
7627 INIT_LIST_HEAD(&dev->ptype_specific);
02875878 7628 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7629 setup(dev);
7630
a813104d 7631 if (!dev->tx_queue_len) {
f84bb1ea 7632 dev->priv_flags |= IFF_NO_QUEUE;
a813104d
PS
7633 dev->tx_queue_len = 1;
7634 }
906470c1 7635
36909ea4
TH
7636 dev->num_tx_queues = txqs;
7637 dev->real_num_tx_queues = txqs;
ed9af2e8 7638 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7639 goto free_all;
e8a0464c 7640
a953be53 7641#ifdef CONFIG_SYSFS
36909ea4
TH
7642 dev->num_rx_queues = rxqs;
7643 dev->real_num_rx_queues = rxqs;
fe822240 7644 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7645 goto free_all;
df334545 7646#endif
0a9627f2 7647
1da177e4 7648 strcpy(dev->name, name);
c835a677 7649 dev->name_assign_type = name_assign_type;
cbda10fa 7650 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7651 if (!dev->ethtool_ops)
7652 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7653
7654 nf_hook_ingress_init(dev);
7655
1da177e4 7656 return dev;
ab9c73cc 7657
8d3bdbd5
DM
7658free_all:
7659 free_netdev(dev);
7660 return NULL;
7661
29b4433d
ED
7662free_pcpu:
7663 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7664free_dev:
7665 netdev_freemem(dev);
ab9c73cc 7666 return NULL;
1da177e4 7667}
36909ea4 7668EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7669
7670/**
7671 * free_netdev - free network device
7672 * @dev: device
7673 *
4ec93edb
YH
7674 * This function does the last stage of destroying an allocated device
7675 * interface. The reference to the device object is released.
1da177e4 7676 * If this is the last reference then it will be freed.
93d05d4a 7677 * Must be called in process context.
1da177e4
LT
7678 */
7679void free_netdev(struct net_device *dev)
7680{
d565b0a1
HX
7681 struct napi_struct *p, *n;
7682
93d05d4a 7683 might_sleep();
60877a32 7684 netif_free_tx_queues(dev);
a953be53 7685#ifdef CONFIG_SYSFS
10595902 7686 kvfree(dev->_rx);
fe822240 7687#endif
e8a0464c 7688
33d480ce 7689 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7690
f001fde5
JP
7691 /* Flush device addresses */
7692 dev_addr_flush(dev);
7693
d565b0a1
HX
7694 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7695 netif_napi_del(p);
7696
29b4433d
ED
7697 free_percpu(dev->pcpu_refcnt);
7698 dev->pcpu_refcnt = NULL;
7699
3041a069 7700 /* Compatibility with error handling in drivers */
1da177e4 7701 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7702 netdev_freemem(dev);
1da177e4
LT
7703 return;
7704 }
7705
7706 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7707 dev->reg_state = NETREG_RELEASED;
7708
43cb76d9
GKH
7709 /* will free via device release */
7710 put_device(&dev->dev);
1da177e4 7711}
d1b19dff 7712EXPORT_SYMBOL(free_netdev);
4ec93edb 7713
f0db275a
SH
7714/**
7715 * synchronize_net - Synchronize with packet receive processing
7716 *
7717 * Wait for packets currently being received to be done.
7718 * Does not block later packets from starting.
7719 */
4ec93edb 7720void synchronize_net(void)
1da177e4
LT
7721{
7722 might_sleep();
be3fc413
ED
7723 if (rtnl_is_locked())
7724 synchronize_rcu_expedited();
7725 else
7726 synchronize_rcu();
1da177e4 7727}
d1b19dff 7728EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7729
7730/**
44a0873d 7731 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7732 * @dev: device
44a0873d 7733 * @head: list
6ebfbc06 7734 *
1da177e4 7735 * This function shuts down a device interface and removes it
d59b54b1 7736 * from the kernel tables.
44a0873d 7737 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7738 *
7739 * Callers must hold the rtnl semaphore. You may want
7740 * unregister_netdev() instead of this.
7741 */
7742
44a0873d 7743void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7744{
a6620712
HX
7745 ASSERT_RTNL();
7746
44a0873d 7747 if (head) {
9fdce099 7748 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7749 } else {
7750 rollback_registered(dev);
7751 /* Finish processing unregister after unlock */
7752 net_set_todo(dev);
7753 }
1da177e4 7754}
44a0873d 7755EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7756
9b5e383c
ED
7757/**
7758 * unregister_netdevice_many - unregister many devices
7759 * @head: list of devices
87757a91
ED
7760 *
7761 * Note: As most callers use a stack allocated list_head,
7762 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7763 */
7764void unregister_netdevice_many(struct list_head *head)
7765{
7766 struct net_device *dev;
7767
7768 if (!list_empty(head)) {
7769 rollback_registered_many(head);
7770 list_for_each_entry(dev, head, unreg_list)
7771 net_set_todo(dev);
87757a91 7772 list_del(head);
9b5e383c
ED
7773 }
7774}
63c8099d 7775EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7776
1da177e4
LT
7777/**
7778 * unregister_netdev - remove device from the kernel
7779 * @dev: device
7780 *
7781 * This function shuts down a device interface and removes it
d59b54b1 7782 * from the kernel tables.
1da177e4
LT
7783 *
7784 * This is just a wrapper for unregister_netdevice that takes
7785 * the rtnl semaphore. In general you want to use this and not
7786 * unregister_netdevice.
7787 */
7788void unregister_netdev(struct net_device *dev)
7789{
7790 rtnl_lock();
7791 unregister_netdevice(dev);
7792 rtnl_unlock();
7793}
1da177e4
LT
7794EXPORT_SYMBOL(unregister_netdev);
7795
ce286d32
EB
7796/**
7797 * dev_change_net_namespace - move device to different nethost namespace
7798 * @dev: device
7799 * @net: network namespace
7800 * @pat: If not NULL name pattern to try if the current device name
7801 * is already taken in the destination network namespace.
7802 *
7803 * This function shuts down a device interface and moves it
7804 * to a new network namespace. On success 0 is returned, on
7805 * a failure a netagive errno code is returned.
7806 *
7807 * Callers must hold the rtnl semaphore.
7808 */
7809
7810int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7811{
ce286d32
EB
7812 int err;
7813
7814 ASSERT_RTNL();
7815
7816 /* Don't allow namespace local devices to be moved. */
7817 err = -EINVAL;
7818 if (dev->features & NETIF_F_NETNS_LOCAL)
7819 goto out;
7820
7821 /* Ensure the device has been registrered */
ce286d32
EB
7822 if (dev->reg_state != NETREG_REGISTERED)
7823 goto out;
7824
7825 /* Get out if there is nothing todo */
7826 err = 0;
878628fb 7827 if (net_eq(dev_net(dev), net))
ce286d32
EB
7828 goto out;
7829
7830 /* Pick the destination device name, and ensure
7831 * we can use it in the destination network namespace.
7832 */
7833 err = -EEXIST;
d9031024 7834 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7835 /* We get here if we can't use the current device name */
7836 if (!pat)
7837 goto out;
828de4f6 7838 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7839 goto out;
7840 }
7841
7842 /*
7843 * And now a mini version of register_netdevice unregister_netdevice.
7844 */
7845
7846 /* If device is running close it first. */
9b772652 7847 dev_close(dev);
ce286d32
EB
7848
7849 /* And unlink it from device chain */
7850 err = -ENODEV;
7851 unlist_netdevice(dev);
7852
7853 synchronize_net();
7854
7855 /* Shutdown queueing discipline. */
7856 dev_shutdown(dev);
7857
7858 /* Notify protocols, that we are about to destroy
7859 this device. They should clean all the things.
3b27e105
DL
7860
7861 Note that dev->reg_state stays at NETREG_REGISTERED.
7862 This is wanted because this way 8021q and macvlan know
7863 the device is just moving and can keep their slaves up.
ce286d32
EB
7864 */
7865 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7866 rcu_barrier();
7867 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7868 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7869
7870 /*
7871 * Flush the unicast and multicast chains
7872 */
a748ee24 7873 dev_uc_flush(dev);
22bedad3 7874 dev_mc_flush(dev);
ce286d32 7875
4e66ae2e
SH
7876 /* Send a netdev-removed uevent to the old namespace */
7877 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7878 netdev_adjacent_del_links(dev);
4e66ae2e 7879
ce286d32 7880 /* Actually switch the network namespace */
c346dca1 7881 dev_net_set(dev, net);
ce286d32 7882
ce286d32 7883 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7884 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7885 dev->ifindex = dev_new_index(net);
ce286d32 7886
4e66ae2e
SH
7887 /* Send a netdev-add uevent to the new namespace */
7888 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7889 netdev_adjacent_add_links(dev);
4e66ae2e 7890
8b41d188 7891 /* Fixup kobjects */
a1b3f594 7892 err = device_rename(&dev->dev, dev->name);
8b41d188 7893 WARN_ON(err);
ce286d32
EB
7894
7895 /* Add the device back in the hashes */
7896 list_netdevice(dev);
7897
7898 /* Notify protocols, that a new device appeared. */
7899 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7900
d90a909e
EB
7901 /*
7902 * Prevent userspace races by waiting until the network
7903 * device is fully setup before sending notifications.
7904 */
7f294054 7905 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7906
ce286d32
EB
7907 synchronize_net();
7908 err = 0;
7909out:
7910 return err;
7911}
463d0183 7912EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7913
1da177e4
LT
7914static int dev_cpu_callback(struct notifier_block *nfb,
7915 unsigned long action,
7916 void *ocpu)
7917{
7918 struct sk_buff **list_skb;
1da177e4
LT
7919 struct sk_buff *skb;
7920 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7921 struct softnet_data *sd, *oldsd;
7922
8bb78442 7923 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
7924 return NOTIFY_OK;
7925
7926 local_irq_disable();
7927 cpu = smp_processor_id();
7928 sd = &per_cpu(softnet_data, cpu);
7929 oldsd = &per_cpu(softnet_data, oldcpu);
7930
7931 /* Find end of our completion_queue. */
7932 list_skb = &sd->completion_queue;
7933 while (*list_skb)
7934 list_skb = &(*list_skb)->next;
7935 /* Append completion queue from offline CPU. */
7936 *list_skb = oldsd->completion_queue;
7937 oldsd->completion_queue = NULL;
7938
1da177e4 7939 /* Append output queue from offline CPU. */
a9cbd588
CG
7940 if (oldsd->output_queue) {
7941 *sd->output_queue_tailp = oldsd->output_queue;
7942 sd->output_queue_tailp = oldsd->output_queue_tailp;
7943 oldsd->output_queue = NULL;
7944 oldsd->output_queue_tailp = &oldsd->output_queue;
7945 }
ac64da0b
ED
7946 /* Append NAPI poll list from offline CPU, with one exception :
7947 * process_backlog() must be called by cpu owning percpu backlog.
7948 * We properly handle process_queue & input_pkt_queue later.
7949 */
7950 while (!list_empty(&oldsd->poll_list)) {
7951 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7952 struct napi_struct,
7953 poll_list);
7954
7955 list_del_init(&napi->poll_list);
7956 if (napi->poll == process_backlog)
7957 napi->state = 0;
7958 else
7959 ____napi_schedule(sd, napi);
264524d5 7960 }
1da177e4
LT
7961
7962 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7963 local_irq_enable();
7964
7965 /* Process offline CPU's input_pkt_queue */
76cc8b13 7966 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 7967 netif_rx_ni(skb);
76cc8b13 7968 input_queue_head_incr(oldsd);
fec5e652 7969 }
ac64da0b 7970 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 7971 netif_rx_ni(skb);
76cc8b13
TH
7972 input_queue_head_incr(oldsd);
7973 }
1da177e4
LT
7974
7975 return NOTIFY_OK;
7976}
1da177e4
LT
7977
7978
7f353bf2 7979/**
b63365a2
HX
7980 * netdev_increment_features - increment feature set by one
7981 * @all: current feature set
7982 * @one: new feature set
7983 * @mask: mask feature set
7f353bf2
HX
7984 *
7985 * Computes a new feature set after adding a device with feature set
b63365a2
HX
7986 * @one to the master device with current feature set @all. Will not
7987 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 7988 */
c8f44aff
MM
7989netdev_features_t netdev_increment_features(netdev_features_t all,
7990 netdev_features_t one, netdev_features_t mask)
b63365a2 7991{
c8cd0989 7992 if (mask & NETIF_F_HW_CSUM)
a188222b 7993 mask |= NETIF_F_CSUM_MASK;
1742f183 7994 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 7995
a188222b 7996 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 7997 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 7998
1742f183 7999 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
8000 if (all & NETIF_F_HW_CSUM)
8001 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
8002
8003 return all;
8004}
b63365a2 8005EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 8006
430f03cd 8007static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
8008{
8009 int i;
8010 struct hlist_head *hash;
8011
8012 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8013 if (hash != NULL)
8014 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8015 INIT_HLIST_HEAD(&hash[i]);
8016
8017 return hash;
8018}
8019
881d966b 8020/* Initialize per network namespace state */
4665079c 8021static int __net_init netdev_init(struct net *net)
881d966b 8022{
734b6541
RM
8023 if (net != &init_net)
8024 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 8025
30d97d35
PE
8026 net->dev_name_head = netdev_create_hash();
8027 if (net->dev_name_head == NULL)
8028 goto err_name;
881d966b 8029
30d97d35
PE
8030 net->dev_index_head = netdev_create_hash();
8031 if (net->dev_index_head == NULL)
8032 goto err_idx;
881d966b
EB
8033
8034 return 0;
30d97d35
PE
8035
8036err_idx:
8037 kfree(net->dev_name_head);
8038err_name:
8039 return -ENOMEM;
881d966b
EB
8040}
8041
f0db275a
SH
8042/**
8043 * netdev_drivername - network driver for the device
8044 * @dev: network device
f0db275a
SH
8045 *
8046 * Determine network driver for device.
8047 */
3019de12 8048const char *netdev_drivername(const struct net_device *dev)
6579e57b 8049{
cf04a4c7
SH
8050 const struct device_driver *driver;
8051 const struct device *parent;
3019de12 8052 const char *empty = "";
6579e57b
AV
8053
8054 parent = dev->dev.parent;
6579e57b 8055 if (!parent)
3019de12 8056 return empty;
6579e57b
AV
8057
8058 driver = parent->driver;
8059 if (driver && driver->name)
3019de12
DM
8060 return driver->name;
8061 return empty;
6579e57b
AV
8062}
8063
6ea754eb
JP
8064static void __netdev_printk(const char *level, const struct net_device *dev,
8065 struct va_format *vaf)
256df2f3 8066{
b004ff49 8067 if (dev && dev->dev.parent) {
6ea754eb
JP
8068 dev_printk_emit(level[1] - '0',
8069 dev->dev.parent,
8070 "%s %s %s%s: %pV",
8071 dev_driver_string(dev->dev.parent),
8072 dev_name(dev->dev.parent),
8073 netdev_name(dev), netdev_reg_state(dev),
8074 vaf);
b004ff49 8075 } else if (dev) {
6ea754eb
JP
8076 printk("%s%s%s: %pV",
8077 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 8078 } else {
6ea754eb 8079 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 8080 }
256df2f3
JP
8081}
8082
6ea754eb
JP
8083void netdev_printk(const char *level, const struct net_device *dev,
8084 const char *format, ...)
256df2f3
JP
8085{
8086 struct va_format vaf;
8087 va_list args;
256df2f3
JP
8088
8089 va_start(args, format);
8090
8091 vaf.fmt = format;
8092 vaf.va = &args;
8093
6ea754eb 8094 __netdev_printk(level, dev, &vaf);
b004ff49 8095
256df2f3 8096 va_end(args);
256df2f3
JP
8097}
8098EXPORT_SYMBOL(netdev_printk);
8099
8100#define define_netdev_printk_level(func, level) \
6ea754eb 8101void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 8102{ \
256df2f3
JP
8103 struct va_format vaf; \
8104 va_list args; \
8105 \
8106 va_start(args, fmt); \
8107 \
8108 vaf.fmt = fmt; \
8109 vaf.va = &args; \
8110 \
6ea754eb 8111 __netdev_printk(level, dev, &vaf); \
b004ff49 8112 \
256df2f3 8113 va_end(args); \
256df2f3
JP
8114} \
8115EXPORT_SYMBOL(func);
8116
8117define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8118define_netdev_printk_level(netdev_alert, KERN_ALERT);
8119define_netdev_printk_level(netdev_crit, KERN_CRIT);
8120define_netdev_printk_level(netdev_err, KERN_ERR);
8121define_netdev_printk_level(netdev_warn, KERN_WARNING);
8122define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8123define_netdev_printk_level(netdev_info, KERN_INFO);
8124
4665079c 8125static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8126{
8127 kfree(net->dev_name_head);
8128 kfree(net->dev_index_head);
8129}
8130
022cbae6 8131static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8132 .init = netdev_init,
8133 .exit = netdev_exit,
8134};
8135
4665079c 8136static void __net_exit default_device_exit(struct net *net)
ce286d32 8137{
e008b5fc 8138 struct net_device *dev, *aux;
ce286d32 8139 /*
e008b5fc 8140 * Push all migratable network devices back to the
ce286d32
EB
8141 * initial network namespace
8142 */
8143 rtnl_lock();
e008b5fc 8144 for_each_netdev_safe(net, dev, aux) {
ce286d32 8145 int err;
aca51397 8146 char fb_name[IFNAMSIZ];
ce286d32
EB
8147
8148 /* Ignore unmoveable devices (i.e. loopback) */
8149 if (dev->features & NETIF_F_NETNS_LOCAL)
8150 continue;
8151
e008b5fc
EB
8152 /* Leave virtual devices for the generic cleanup */
8153 if (dev->rtnl_link_ops)
8154 continue;
d0c082ce 8155
25985edc 8156 /* Push remaining network devices to init_net */
aca51397
PE
8157 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8158 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8159 if (err) {
7b6cd1ce
JP
8160 pr_emerg("%s: failed to move %s to init_net: %d\n",
8161 __func__, dev->name, err);
aca51397 8162 BUG();
ce286d32
EB
8163 }
8164 }
8165 rtnl_unlock();
8166}
8167
50624c93
EB
8168static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8169{
8170 /* Return with the rtnl_lock held when there are no network
8171 * devices unregistering in any network namespace in net_list.
8172 */
8173 struct net *net;
8174 bool unregistering;
ff960a73 8175 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8176
ff960a73 8177 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8178 for (;;) {
50624c93
EB
8179 unregistering = false;
8180 rtnl_lock();
8181 list_for_each_entry(net, net_list, exit_list) {
8182 if (net->dev_unreg_count > 0) {
8183 unregistering = true;
8184 break;
8185 }
8186 }
8187 if (!unregistering)
8188 break;
8189 __rtnl_unlock();
ff960a73
PZ
8190
8191 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8192 }
ff960a73 8193 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8194}
8195
04dc7f6b
EB
8196static void __net_exit default_device_exit_batch(struct list_head *net_list)
8197{
8198 /* At exit all network devices most be removed from a network
b595076a 8199 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8200 * Do this across as many network namespaces as possible to
8201 * improve batching efficiency.
8202 */
8203 struct net_device *dev;
8204 struct net *net;
8205 LIST_HEAD(dev_kill_list);
8206
50624c93
EB
8207 /* To prevent network device cleanup code from dereferencing
8208 * loopback devices or network devices that have been freed
8209 * wait here for all pending unregistrations to complete,
8210 * before unregistring the loopback device and allowing the
8211 * network namespace be freed.
8212 *
8213 * The netdev todo list containing all network devices
8214 * unregistrations that happen in default_device_exit_batch
8215 * will run in the rtnl_unlock() at the end of
8216 * default_device_exit_batch.
8217 */
8218 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8219 list_for_each_entry(net, net_list, exit_list) {
8220 for_each_netdev_reverse(net, dev) {
b0ab2fab 8221 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8222 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8223 else
8224 unregister_netdevice_queue(dev, &dev_kill_list);
8225 }
8226 }
8227 unregister_netdevice_many(&dev_kill_list);
8228 rtnl_unlock();
8229}
8230
022cbae6 8231static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8232 .exit = default_device_exit,
04dc7f6b 8233 .exit_batch = default_device_exit_batch,
ce286d32
EB
8234};
8235
1da177e4
LT
8236/*
8237 * Initialize the DEV module. At boot time this walks the device list and
8238 * unhooks any devices that fail to initialise (normally hardware not
8239 * present) and leaves us with a valid list of present and active devices.
8240 *
8241 */
8242
8243/*
8244 * This is called single threaded during boot, so no need
8245 * to take the rtnl semaphore.
8246 */
8247static int __init net_dev_init(void)
8248{
8249 int i, rc = -ENOMEM;
8250
8251 BUG_ON(!dev_boot_phase);
8252
1da177e4
LT
8253 if (dev_proc_init())
8254 goto out;
8255
8b41d188 8256 if (netdev_kobject_init())
1da177e4
LT
8257 goto out;
8258
8259 INIT_LIST_HEAD(&ptype_all);
82d8a867 8260 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8261 INIT_LIST_HEAD(&ptype_base[i]);
8262
62532da9
VY
8263 INIT_LIST_HEAD(&offload_base);
8264
881d966b
EB
8265 if (register_pernet_subsys(&netdev_net_ops))
8266 goto out;
1da177e4
LT
8267
8268 /*
8269 * Initialise the packet receive queues.
8270 */
8271
6f912042 8272 for_each_possible_cpu(i) {
e36fa2f7 8273 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8274
e36fa2f7 8275 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8276 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8277 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8278 sd->output_queue_tailp = &sd->output_queue;
df334545 8279#ifdef CONFIG_RPS
e36fa2f7
ED
8280 sd->csd.func = rps_trigger_softirq;
8281 sd->csd.info = sd;
e36fa2f7 8282 sd->cpu = i;
1e94d72f 8283#endif
0a9627f2 8284
e36fa2f7
ED
8285 sd->backlog.poll = process_backlog;
8286 sd->backlog.weight = weight_p;
1da177e4
LT
8287 }
8288
1da177e4
LT
8289 dev_boot_phase = 0;
8290
505d4f73
EB
8291 /* The loopback device is special if any other network devices
8292 * is present in a network namespace the loopback device must
8293 * be present. Since we now dynamically allocate and free the
8294 * loopback device ensure this invariant is maintained by
8295 * keeping the loopback device as the first device on the
8296 * list of network devices. Ensuring the loopback devices
8297 * is the first device that appears and the last network device
8298 * that disappears.
8299 */
8300 if (register_pernet_device(&loopback_net_ops))
8301 goto out;
8302
8303 if (register_pernet_device(&default_device_ops))
8304 goto out;
8305
962cf36c
CM
8306 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8307 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
8308
8309 hotcpu_notifier(dev_cpu_callback, 0);
f38a9eb1 8310 dst_subsys_init();
1da177e4
LT
8311 rc = 0;
8312out:
8313 return rc;
8314}
8315
8316subsys_initcall(net_dev_init);