tcp: add proper TS val into RST packets
[linux-2.6-block.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4
LT
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
1da177e4 100#include <linux/stat.h>
1da177e4
LT
101#include <net/dst.h>
102#include <net/pkt_sched.h>
103#include <net/checksum.h>
44540960 104#include <net/xfrm.h>
1da177e4
LT
105#include <linux/highmem.h>
106#include <linux/init.h>
1da177e4 107#include <linux/module.h>
1da177e4
LT
108#include <linux/netpoll.h>
109#include <linux/rcupdate.h>
110#include <linux/delay.h>
1da177e4 111#include <net/iw_handler.h>
1da177e4 112#include <asm/current.h>
5bdb9886 113#include <linux/audit.h>
db217334 114#include <linux/dmaengine.h>
f6a78bfc 115#include <linux/err.h>
c7fa9d18 116#include <linux/ctype.h>
723e98b7 117#include <linux/if_arp.h>
6de329e2 118#include <linux/if_vlan.h>
8f0f2223 119#include <linux/ip.h>
ad55dcaf 120#include <net/ip.h>
25cd9ba0 121#include <net/mpls.h>
8f0f2223
DM
122#include <linux/ipv6.h>
123#include <linux/in.h>
b6b2fed1
DM
124#include <linux/jhash.h>
125#include <linux/random.h>
9cbc1cb8 126#include <trace/events/napi.h>
cf66ba58 127#include <trace/events/net.h>
07dc22e7 128#include <trace/events/skb.h>
5acbbd42 129#include <linux/pci.h>
caeda9b9 130#include <linux/inetdevice.h>
c445477d 131#include <linux/cpu_rmap.h>
c5905afb 132#include <linux/static_key.h>
af12fa6e 133#include <linux/hashtable.h>
60877a32 134#include <linux/vmalloc.h>
529d0489 135#include <linux/if_macvlan.h>
e7fd2885 136#include <linux/errqueue.h>
3b47d303 137#include <linux/hrtimer.h>
e687ad60 138#include <linux/netfilter_ingress.h>
1da177e4 139
342709ef
PE
140#include "net-sysfs.h"
141
d565b0a1
HX
142/* Instead of increasing this, you should create a hash table. */
143#define MAX_GRO_SKBS 8
144
5d38a079
HX
145/* This should be increased if a protocol with a bigger head is added. */
146#define GRO_MAX_HEAD (MAX_HEADER + 128)
147
1da177e4 148static DEFINE_SPINLOCK(ptype_lock);
62532da9 149static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
150struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
151struct list_head ptype_all __read_mostly; /* Taps */
62532da9 152static struct list_head offload_base __read_mostly;
1da177e4 153
ae78dbfa 154static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
155static int call_netdevice_notifiers_info(unsigned long val,
156 struct net_device *dev,
157 struct netdev_notifier_info *info);
ae78dbfa 158
1da177e4 159/*
7562f876 160 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
161 * semaphore.
162 *
c6d14c84 163 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
164 *
165 * Writers must hold the rtnl semaphore while they loop through the
7562f876 166 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
167 * actual updates. This allows pure readers to access the list even
168 * while a writer is preparing to update it.
169 *
170 * To put it another way, dev_base_lock is held for writing only to
171 * protect against pure readers; the rtnl semaphore provides the
172 * protection against other writers.
173 *
174 * See, for example usages, register_netdevice() and
175 * unregister_netdevice(), which must be called with the rtnl
176 * semaphore held.
177 */
1da177e4 178DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
179EXPORT_SYMBOL(dev_base_lock);
180
af12fa6e
ET
181/* protects napi_hash addition/deletion and napi_gen_id */
182static DEFINE_SPINLOCK(napi_hash_lock);
183
184static unsigned int napi_gen_id;
185static DEFINE_HASHTABLE(napi_hash, 8);
186
18afa4b0 187static seqcount_t devnet_rename_seq;
c91f6df2 188
4e985ada
TG
189static inline void dev_base_seq_inc(struct net *net)
190{
191 while (++net->dev_base_seq == 0);
192}
193
881d966b 194static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 195{
95c96174
ED
196 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
197
08e9897d 198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
199}
200
881d966b 201static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 202{
7c28bd0b 203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
204}
205
e36fa2f7 206static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
207{
208#ifdef CONFIG_RPS
e36fa2f7 209 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
210#endif
211}
212
e36fa2f7 213static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
214{
215#ifdef CONFIG_RPS
e36fa2f7 216 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
217#endif
218}
219
ce286d32 220/* Device list insertion */
53759be9 221static void list_netdevice(struct net_device *dev)
ce286d32 222{
c346dca1 223 struct net *net = dev_net(dev);
ce286d32
EB
224
225 ASSERT_RTNL();
226
227 write_lock_bh(&dev_base_lock);
c6d14c84 228 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
230 hlist_add_head_rcu(&dev->index_hlist,
231 dev_index_hash(net, dev->ifindex));
ce286d32 232 write_unlock_bh(&dev_base_lock);
4e985ada
TG
233
234 dev_base_seq_inc(net);
ce286d32
EB
235}
236
fb699dfd
ED
237/* Device list removal
238 * caller must respect a RCU grace period before freeing/reusing dev
239 */
ce286d32
EB
240static void unlist_netdevice(struct net_device *dev)
241{
242 ASSERT_RTNL();
243
244 /* Unlink dev from the device chain */
245 write_lock_bh(&dev_base_lock);
c6d14c84 246 list_del_rcu(&dev->dev_list);
72c9528b 247 hlist_del_rcu(&dev->name_hlist);
fb699dfd 248 hlist_del_rcu(&dev->index_hlist);
ce286d32 249 write_unlock_bh(&dev_base_lock);
4e985ada
TG
250
251 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
252}
253
1da177e4
LT
254/*
255 * Our notifier list
256 */
257
f07d5b94 258static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
259
260/*
261 * Device drivers call our routines to queue packets here. We empty the
262 * queue in the local softnet handler.
263 */
bea3348e 264
9958da05 265DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 266EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 267
cf508b12 268#ifdef CONFIG_LOCKDEP
723e98b7 269/*
c773e847 270 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
271 * according to dev->type
272 */
273static const unsigned short netdev_lock_type[] =
274 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
275 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
276 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
277 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
278 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
279 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
280 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
281 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
282 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
283 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
284 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
285 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
286 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
287 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
288 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 289
36cbd3dc 290static const char *const netdev_lock_name[] =
723e98b7
JP
291 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
292 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
293 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
294 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
295 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
296 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
297 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
298 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
299 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
300 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
301 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
302 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
303 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
304 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
305 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
306
307static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 308static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
309
310static inline unsigned short netdev_lock_pos(unsigned short dev_type)
311{
312 int i;
313
314 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
315 if (netdev_lock_type[i] == dev_type)
316 return i;
317 /* the last key is used by default */
318 return ARRAY_SIZE(netdev_lock_type) - 1;
319}
320
cf508b12
DM
321static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
322 unsigned short dev_type)
723e98b7
JP
323{
324 int i;
325
326 i = netdev_lock_pos(dev_type);
327 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
328 netdev_lock_name[i]);
329}
cf508b12
DM
330
331static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
332{
333 int i;
334
335 i = netdev_lock_pos(dev->type);
336 lockdep_set_class_and_name(&dev->addr_list_lock,
337 &netdev_addr_lock_key[i],
338 netdev_lock_name[i]);
339}
723e98b7 340#else
cf508b12
DM
341static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
342 unsigned short dev_type)
343{
344}
345static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
346{
347}
348#endif
1da177e4
LT
349
350/*******************************************************************************
351
352 Protocol management and registration routines
353
354*******************************************************************************/
355
1da177e4
LT
356/*
357 * Add a protocol ID to the list. Now that the input handler is
358 * smarter we can dispense with all the messy stuff that used to be
359 * here.
360 *
361 * BEWARE!!! Protocol handlers, mangling input packets,
362 * MUST BE last in hash buckets and checking protocol handlers
363 * MUST start from promiscuous ptype_all chain in net_bh.
364 * It is true now, do not change it.
365 * Explanation follows: if protocol handler, mangling packet, will
366 * be the first on list, it is not able to sense, that packet
367 * is cloned and should be copied-on-write, so that it will
368 * change it and subsequent readers will get broken packet.
369 * --ANK (980803)
370 */
371
c07b68e8
ED
372static inline struct list_head *ptype_head(const struct packet_type *pt)
373{
374 if (pt->type == htons(ETH_P_ALL))
7866a621 375 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 376 else
7866a621
SN
377 return pt->dev ? &pt->dev->ptype_specific :
378 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
379}
380
1da177e4
LT
381/**
382 * dev_add_pack - add packet handler
383 * @pt: packet type declaration
384 *
385 * Add a protocol handler to the networking stack. The passed &packet_type
386 * is linked into kernel lists and may not be freed until it has been
387 * removed from the kernel lists.
388 *
4ec93edb 389 * This call does not sleep therefore it can not
1da177e4
LT
390 * guarantee all CPU's that are in middle of receiving packets
391 * will see the new packet type (until the next received packet).
392 */
393
394void dev_add_pack(struct packet_type *pt)
395{
c07b68e8 396 struct list_head *head = ptype_head(pt);
1da177e4 397
c07b68e8
ED
398 spin_lock(&ptype_lock);
399 list_add_rcu(&pt->list, head);
400 spin_unlock(&ptype_lock);
1da177e4 401}
d1b19dff 402EXPORT_SYMBOL(dev_add_pack);
1da177e4 403
1da177e4
LT
404/**
405 * __dev_remove_pack - remove packet handler
406 * @pt: packet type declaration
407 *
408 * Remove a protocol handler that was previously added to the kernel
409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
410 * from the kernel lists and can be freed or reused once this function
4ec93edb 411 * returns.
1da177e4
LT
412 *
413 * The packet type might still be in use by receivers
414 * and must not be freed until after all the CPU's have gone
415 * through a quiescent state.
416 */
417void __dev_remove_pack(struct packet_type *pt)
418{
c07b68e8 419 struct list_head *head = ptype_head(pt);
1da177e4
LT
420 struct packet_type *pt1;
421
c07b68e8 422 spin_lock(&ptype_lock);
1da177e4
LT
423
424 list_for_each_entry(pt1, head, list) {
425 if (pt == pt1) {
426 list_del_rcu(&pt->list);
427 goto out;
428 }
429 }
430
7b6cd1ce 431 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 432out:
c07b68e8 433 spin_unlock(&ptype_lock);
1da177e4 434}
d1b19dff
ED
435EXPORT_SYMBOL(__dev_remove_pack);
436
1da177e4
LT
437/**
438 * dev_remove_pack - remove packet handler
439 * @pt: packet type declaration
440 *
441 * Remove a protocol handler that was previously added to the kernel
442 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
443 * from the kernel lists and can be freed or reused once this function
444 * returns.
445 *
446 * This call sleeps to guarantee that no CPU is looking at the packet
447 * type after return.
448 */
449void dev_remove_pack(struct packet_type *pt)
450{
451 __dev_remove_pack(pt);
4ec93edb 452
1da177e4
LT
453 synchronize_net();
454}
d1b19dff 455EXPORT_SYMBOL(dev_remove_pack);
1da177e4 456
62532da9
VY
457
458/**
459 * dev_add_offload - register offload handlers
460 * @po: protocol offload declaration
461 *
462 * Add protocol offload handlers to the networking stack. The passed
463 * &proto_offload is linked into kernel lists and may not be freed until
464 * it has been removed from the kernel lists.
465 *
466 * This call does not sleep therefore it can not
467 * guarantee all CPU's that are in middle of receiving packets
468 * will see the new offload handlers (until the next received packet).
469 */
470void dev_add_offload(struct packet_offload *po)
471{
bdef7de4 472 struct packet_offload *elem;
62532da9
VY
473
474 spin_lock(&offload_lock);
bdef7de4
DM
475 list_for_each_entry(elem, &offload_base, list) {
476 if (po->priority < elem->priority)
477 break;
478 }
479 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
480 spin_unlock(&offload_lock);
481}
482EXPORT_SYMBOL(dev_add_offload);
483
484/**
485 * __dev_remove_offload - remove offload handler
486 * @po: packet offload declaration
487 *
488 * Remove a protocol offload handler that was previously added to the
489 * kernel offload handlers by dev_add_offload(). The passed &offload_type
490 * is removed from the kernel lists and can be freed or reused once this
491 * function returns.
492 *
493 * The packet type might still be in use by receivers
494 * and must not be freed until after all the CPU's have gone
495 * through a quiescent state.
496 */
1d143d9f 497static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
498{
499 struct list_head *head = &offload_base;
500 struct packet_offload *po1;
501
c53aa505 502 spin_lock(&offload_lock);
62532da9
VY
503
504 list_for_each_entry(po1, head, list) {
505 if (po == po1) {
506 list_del_rcu(&po->list);
507 goto out;
508 }
509 }
510
511 pr_warn("dev_remove_offload: %p not found\n", po);
512out:
c53aa505 513 spin_unlock(&offload_lock);
62532da9 514}
62532da9
VY
515
516/**
517 * dev_remove_offload - remove packet offload handler
518 * @po: packet offload declaration
519 *
520 * Remove a packet offload handler that was previously added to the kernel
521 * offload handlers by dev_add_offload(). The passed &offload_type is
522 * removed from the kernel lists and can be freed or reused once this
523 * function returns.
524 *
525 * This call sleeps to guarantee that no CPU is looking at the packet
526 * type after return.
527 */
528void dev_remove_offload(struct packet_offload *po)
529{
530 __dev_remove_offload(po);
531
532 synchronize_net();
533}
534EXPORT_SYMBOL(dev_remove_offload);
535
1da177e4
LT
536/******************************************************************************
537
538 Device Boot-time Settings Routines
539
540*******************************************************************************/
541
542/* Boot time configuration table */
543static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
544
545/**
546 * netdev_boot_setup_add - add new setup entry
547 * @name: name of the device
548 * @map: configured settings for the device
549 *
550 * Adds new setup entry to the dev_boot_setup list. The function
551 * returns 0 on error and 1 on success. This is a generic routine to
552 * all netdevices.
553 */
554static int netdev_boot_setup_add(char *name, struct ifmap *map)
555{
556 struct netdev_boot_setup *s;
557 int i;
558
559 s = dev_boot_setup;
560 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
561 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
562 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 563 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
564 memcpy(&s[i].map, map, sizeof(s[i].map));
565 break;
566 }
567 }
568
569 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
570}
571
572/**
573 * netdev_boot_setup_check - check boot time settings
574 * @dev: the netdevice
575 *
576 * Check boot time settings for the device.
577 * The found settings are set for the device to be used
578 * later in the device probing.
579 * Returns 0 if no settings found, 1 if they are.
580 */
581int netdev_boot_setup_check(struct net_device *dev)
582{
583 struct netdev_boot_setup *s = dev_boot_setup;
584 int i;
585
586 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
587 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 588 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
589 dev->irq = s[i].map.irq;
590 dev->base_addr = s[i].map.base_addr;
591 dev->mem_start = s[i].map.mem_start;
592 dev->mem_end = s[i].map.mem_end;
593 return 1;
594 }
595 }
596 return 0;
597}
d1b19dff 598EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
599
600
601/**
602 * netdev_boot_base - get address from boot time settings
603 * @prefix: prefix for network device
604 * @unit: id for network device
605 *
606 * Check boot time settings for the base address of device.
607 * The found settings are set for the device to be used
608 * later in the device probing.
609 * Returns 0 if no settings found.
610 */
611unsigned long netdev_boot_base(const char *prefix, int unit)
612{
613 const struct netdev_boot_setup *s = dev_boot_setup;
614 char name[IFNAMSIZ];
615 int i;
616
617 sprintf(name, "%s%d", prefix, unit);
618
619 /*
620 * If device already registered then return base of 1
621 * to indicate not to probe for this interface
622 */
881d966b 623 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
624 return 1;
625
626 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
627 if (!strcmp(name, s[i].name))
628 return s[i].map.base_addr;
629 return 0;
630}
631
632/*
633 * Saves at boot time configured settings for any netdevice.
634 */
635int __init netdev_boot_setup(char *str)
636{
637 int ints[5];
638 struct ifmap map;
639
640 str = get_options(str, ARRAY_SIZE(ints), ints);
641 if (!str || !*str)
642 return 0;
643
644 /* Save settings */
645 memset(&map, 0, sizeof(map));
646 if (ints[0] > 0)
647 map.irq = ints[1];
648 if (ints[0] > 1)
649 map.base_addr = ints[2];
650 if (ints[0] > 2)
651 map.mem_start = ints[3];
652 if (ints[0] > 3)
653 map.mem_end = ints[4];
654
655 /* Add new entry to the list */
656 return netdev_boot_setup_add(str, &map);
657}
658
659__setup("netdev=", netdev_boot_setup);
660
661/*******************************************************************************
662
663 Device Interface Subroutines
664
665*******************************************************************************/
666
a54acb3a
ND
667/**
668 * dev_get_iflink - get 'iflink' value of a interface
669 * @dev: targeted interface
670 *
671 * Indicates the ifindex the interface is linked to.
672 * Physical interfaces have the same 'ifindex' and 'iflink' values.
673 */
674
675int dev_get_iflink(const struct net_device *dev)
676{
677 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
678 return dev->netdev_ops->ndo_get_iflink(dev);
679
7a66bbc9 680 return dev->ifindex;
a54acb3a
ND
681}
682EXPORT_SYMBOL(dev_get_iflink);
683
1da177e4
LT
684/**
685 * __dev_get_by_name - find a device by its name
c4ea43c5 686 * @net: the applicable net namespace
1da177e4
LT
687 * @name: name to find
688 *
689 * Find an interface by name. Must be called under RTNL semaphore
690 * or @dev_base_lock. If the name is found a pointer to the device
691 * is returned. If the name is not found then %NULL is returned. The
692 * reference counters are not incremented so the caller must be
693 * careful with locks.
694 */
695
881d966b 696struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 697{
0bd8d536
ED
698 struct net_device *dev;
699 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 700
b67bfe0d 701 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
702 if (!strncmp(dev->name, name, IFNAMSIZ))
703 return dev;
0bd8d536 704
1da177e4
LT
705 return NULL;
706}
d1b19dff 707EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 708
72c9528b
ED
709/**
710 * dev_get_by_name_rcu - find a device by its name
711 * @net: the applicable net namespace
712 * @name: name to find
713 *
714 * Find an interface by name.
715 * If the name is found a pointer to the device is returned.
716 * If the name is not found then %NULL is returned.
717 * The reference counters are not incremented so the caller must be
718 * careful with locks. The caller must hold RCU lock.
719 */
720
721struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
722{
72c9528b
ED
723 struct net_device *dev;
724 struct hlist_head *head = dev_name_hash(net, name);
725
b67bfe0d 726 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
727 if (!strncmp(dev->name, name, IFNAMSIZ))
728 return dev;
729
730 return NULL;
731}
732EXPORT_SYMBOL(dev_get_by_name_rcu);
733
1da177e4
LT
734/**
735 * dev_get_by_name - find a device by its name
c4ea43c5 736 * @net: the applicable net namespace
1da177e4
LT
737 * @name: name to find
738 *
739 * Find an interface by name. This can be called from any
740 * context and does its own locking. The returned handle has
741 * the usage count incremented and the caller must use dev_put() to
742 * release it when it is no longer needed. %NULL is returned if no
743 * matching device is found.
744 */
745
881d966b 746struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
747{
748 struct net_device *dev;
749
72c9528b
ED
750 rcu_read_lock();
751 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
752 if (dev)
753 dev_hold(dev);
72c9528b 754 rcu_read_unlock();
1da177e4
LT
755 return dev;
756}
d1b19dff 757EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
758
759/**
760 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 761 * @net: the applicable net namespace
1da177e4
LT
762 * @ifindex: index of device
763 *
764 * Search for an interface by index. Returns %NULL if the device
765 * is not found or a pointer to the device. The device has not
766 * had its reference counter increased so the caller must be careful
767 * about locking. The caller must hold either the RTNL semaphore
768 * or @dev_base_lock.
769 */
770
881d966b 771struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 772{
0bd8d536
ED
773 struct net_device *dev;
774 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 775
b67bfe0d 776 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
777 if (dev->ifindex == ifindex)
778 return dev;
0bd8d536 779
1da177e4
LT
780 return NULL;
781}
d1b19dff 782EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 783
fb699dfd
ED
784/**
785 * dev_get_by_index_rcu - find a device by its ifindex
786 * @net: the applicable net namespace
787 * @ifindex: index of device
788 *
789 * Search for an interface by index. Returns %NULL if the device
790 * is not found or a pointer to the device. The device has not
791 * had its reference counter increased so the caller must be careful
792 * about locking. The caller must hold RCU lock.
793 */
794
795struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
796{
fb699dfd
ED
797 struct net_device *dev;
798 struct hlist_head *head = dev_index_hash(net, ifindex);
799
b67bfe0d 800 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
801 if (dev->ifindex == ifindex)
802 return dev;
803
804 return NULL;
805}
806EXPORT_SYMBOL(dev_get_by_index_rcu);
807
1da177e4
LT
808
809/**
810 * dev_get_by_index - find a device by its ifindex
c4ea43c5 811 * @net: the applicable net namespace
1da177e4
LT
812 * @ifindex: index of device
813 *
814 * Search for an interface by index. Returns NULL if the device
815 * is not found or a pointer to the device. The device returned has
816 * had a reference added and the pointer is safe until the user calls
817 * dev_put to indicate they have finished with it.
818 */
819
881d966b 820struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
821{
822 struct net_device *dev;
823
fb699dfd
ED
824 rcu_read_lock();
825 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
826 if (dev)
827 dev_hold(dev);
fb699dfd 828 rcu_read_unlock();
1da177e4
LT
829 return dev;
830}
d1b19dff 831EXPORT_SYMBOL(dev_get_by_index);
1da177e4 832
5dbe7c17
NS
833/**
834 * netdev_get_name - get a netdevice name, knowing its ifindex.
835 * @net: network namespace
836 * @name: a pointer to the buffer where the name will be stored.
837 * @ifindex: the ifindex of the interface to get the name from.
838 *
839 * The use of raw_seqcount_begin() and cond_resched() before
840 * retrying is required as we want to give the writers a chance
841 * to complete when CONFIG_PREEMPT is not set.
842 */
843int netdev_get_name(struct net *net, char *name, int ifindex)
844{
845 struct net_device *dev;
846 unsigned int seq;
847
848retry:
849 seq = raw_seqcount_begin(&devnet_rename_seq);
850 rcu_read_lock();
851 dev = dev_get_by_index_rcu(net, ifindex);
852 if (!dev) {
853 rcu_read_unlock();
854 return -ENODEV;
855 }
856
857 strcpy(name, dev->name);
858 rcu_read_unlock();
859 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
860 cond_resched();
861 goto retry;
862 }
863
864 return 0;
865}
866
1da177e4 867/**
941666c2 868 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 869 * @net: the applicable net namespace
1da177e4
LT
870 * @type: media type of device
871 * @ha: hardware address
872 *
873 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
874 * is not found or a pointer to the device.
875 * The caller must hold RCU or RTNL.
941666c2 876 * The returned device has not had its ref count increased
1da177e4
LT
877 * and the caller must therefore be careful about locking
878 *
1da177e4
LT
879 */
880
941666c2
ED
881struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
882 const char *ha)
1da177e4
LT
883{
884 struct net_device *dev;
885
941666c2 886 for_each_netdev_rcu(net, dev)
1da177e4
LT
887 if (dev->type == type &&
888 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
889 return dev;
890
891 return NULL;
1da177e4 892}
941666c2 893EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 894
881d966b 895struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
896{
897 struct net_device *dev;
898
4e9cac2b 899 ASSERT_RTNL();
881d966b 900 for_each_netdev(net, dev)
4e9cac2b 901 if (dev->type == type)
7562f876
PE
902 return dev;
903
904 return NULL;
4e9cac2b 905}
4e9cac2b
PM
906EXPORT_SYMBOL(__dev_getfirstbyhwtype);
907
881d966b 908struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 909{
99fe3c39 910 struct net_device *dev, *ret = NULL;
4e9cac2b 911
99fe3c39
ED
912 rcu_read_lock();
913 for_each_netdev_rcu(net, dev)
914 if (dev->type == type) {
915 dev_hold(dev);
916 ret = dev;
917 break;
918 }
919 rcu_read_unlock();
920 return ret;
1da177e4 921}
1da177e4
LT
922EXPORT_SYMBOL(dev_getfirstbyhwtype);
923
924/**
6c555490 925 * __dev_get_by_flags - find any device with given flags
c4ea43c5 926 * @net: the applicable net namespace
1da177e4
LT
927 * @if_flags: IFF_* values
928 * @mask: bitmask of bits in if_flags to check
929 *
930 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 931 * is not found or a pointer to the device. Must be called inside
6c555490 932 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
933 */
934
6c555490
WC
935struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
936 unsigned short mask)
1da177e4 937{
7562f876 938 struct net_device *dev, *ret;
1da177e4 939
6c555490
WC
940 ASSERT_RTNL();
941
7562f876 942 ret = NULL;
6c555490 943 for_each_netdev(net, dev) {
1da177e4 944 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 945 ret = dev;
1da177e4
LT
946 break;
947 }
948 }
7562f876 949 return ret;
1da177e4 950}
6c555490 951EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
952
953/**
954 * dev_valid_name - check if name is okay for network device
955 * @name: name string
956 *
957 * Network device names need to be valid file names to
c7fa9d18
DM
958 * to allow sysfs to work. We also disallow any kind of
959 * whitespace.
1da177e4 960 */
95f050bf 961bool dev_valid_name(const char *name)
1da177e4 962{
c7fa9d18 963 if (*name == '\0')
95f050bf 964 return false;
b6fe17d6 965 if (strlen(name) >= IFNAMSIZ)
95f050bf 966 return false;
c7fa9d18 967 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 968 return false;
c7fa9d18
DM
969
970 while (*name) {
a4176a93 971 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 972 return false;
c7fa9d18
DM
973 name++;
974 }
95f050bf 975 return true;
1da177e4 976}
d1b19dff 977EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
978
979/**
b267b179
EB
980 * __dev_alloc_name - allocate a name for a device
981 * @net: network namespace to allocate the device name in
1da177e4 982 * @name: name format string
b267b179 983 * @buf: scratch buffer and result name string
1da177e4
LT
984 *
985 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
986 * id. It scans list of devices to build up a free map, then chooses
987 * the first empty slot. The caller must hold the dev_base or rtnl lock
988 * while allocating the name and adding the device in order to avoid
989 * duplicates.
990 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
991 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
992 */
993
b267b179 994static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
995{
996 int i = 0;
1da177e4
LT
997 const char *p;
998 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 999 unsigned long *inuse;
1da177e4
LT
1000 struct net_device *d;
1001
1002 p = strnchr(name, IFNAMSIZ-1, '%');
1003 if (p) {
1004 /*
1005 * Verify the string as this thing may have come from
1006 * the user. There must be either one "%d" and no other "%"
1007 * characters.
1008 */
1009 if (p[1] != 'd' || strchr(p + 2, '%'))
1010 return -EINVAL;
1011
1012 /* Use one page as a bit array of possible slots */
cfcabdcc 1013 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1014 if (!inuse)
1015 return -ENOMEM;
1016
881d966b 1017 for_each_netdev(net, d) {
1da177e4
LT
1018 if (!sscanf(d->name, name, &i))
1019 continue;
1020 if (i < 0 || i >= max_netdevices)
1021 continue;
1022
1023 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1024 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1025 if (!strncmp(buf, d->name, IFNAMSIZ))
1026 set_bit(i, inuse);
1027 }
1028
1029 i = find_first_zero_bit(inuse, max_netdevices);
1030 free_page((unsigned long) inuse);
1031 }
1032
d9031024
OP
1033 if (buf != name)
1034 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1035 if (!__dev_get_by_name(net, buf))
1da177e4 1036 return i;
1da177e4
LT
1037
1038 /* It is possible to run out of possible slots
1039 * when the name is long and there isn't enough space left
1040 * for the digits, or if all bits are used.
1041 */
1042 return -ENFILE;
1043}
1044
b267b179
EB
1045/**
1046 * dev_alloc_name - allocate a name for a device
1047 * @dev: device
1048 * @name: name format string
1049 *
1050 * Passed a format string - eg "lt%d" it will try and find a suitable
1051 * id. It scans list of devices to build up a free map, then chooses
1052 * the first empty slot. The caller must hold the dev_base or rtnl lock
1053 * while allocating the name and adding the device in order to avoid
1054 * duplicates.
1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 * Returns the number of the unit assigned or a negative errno code.
1057 */
1058
1059int dev_alloc_name(struct net_device *dev, const char *name)
1060{
1061 char buf[IFNAMSIZ];
1062 struct net *net;
1063 int ret;
1064
c346dca1
YH
1065 BUG_ON(!dev_net(dev));
1066 net = dev_net(dev);
b267b179
EB
1067 ret = __dev_alloc_name(net, name, buf);
1068 if (ret >= 0)
1069 strlcpy(dev->name, buf, IFNAMSIZ);
1070 return ret;
1071}
d1b19dff 1072EXPORT_SYMBOL(dev_alloc_name);
b267b179 1073
828de4f6
G
1074static int dev_alloc_name_ns(struct net *net,
1075 struct net_device *dev,
1076 const char *name)
d9031024 1077{
828de4f6
G
1078 char buf[IFNAMSIZ];
1079 int ret;
8ce6cebc 1080
828de4f6
G
1081 ret = __dev_alloc_name(net, name, buf);
1082 if (ret >= 0)
1083 strlcpy(dev->name, buf, IFNAMSIZ);
1084 return ret;
1085}
1086
1087static int dev_get_valid_name(struct net *net,
1088 struct net_device *dev,
1089 const char *name)
1090{
1091 BUG_ON(!net);
8ce6cebc 1092
d9031024
OP
1093 if (!dev_valid_name(name))
1094 return -EINVAL;
1095
1c5cae81 1096 if (strchr(name, '%'))
828de4f6 1097 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1098 else if (__dev_get_by_name(net, name))
1099 return -EEXIST;
8ce6cebc
DL
1100 else if (dev->name != name)
1101 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1102
1103 return 0;
1104}
1da177e4
LT
1105
1106/**
1107 * dev_change_name - change name of a device
1108 * @dev: device
1109 * @newname: name (or format string) must be at least IFNAMSIZ
1110 *
1111 * Change name of a device, can pass format strings "eth%d".
1112 * for wildcarding.
1113 */
cf04a4c7 1114int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1115{
238fa362 1116 unsigned char old_assign_type;
fcc5a03a 1117 char oldname[IFNAMSIZ];
1da177e4 1118 int err = 0;
fcc5a03a 1119 int ret;
881d966b 1120 struct net *net;
1da177e4
LT
1121
1122 ASSERT_RTNL();
c346dca1 1123 BUG_ON(!dev_net(dev));
1da177e4 1124
c346dca1 1125 net = dev_net(dev);
1da177e4
LT
1126 if (dev->flags & IFF_UP)
1127 return -EBUSY;
1128
30e6c9fa 1129 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1130
1131 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1132 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1133 return 0;
c91f6df2 1134 }
c8d90dca 1135
fcc5a03a
HX
1136 memcpy(oldname, dev->name, IFNAMSIZ);
1137
828de4f6 1138 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1139 if (err < 0) {
30e6c9fa 1140 write_seqcount_end(&devnet_rename_seq);
d9031024 1141 return err;
c91f6df2 1142 }
1da177e4 1143
6fe82a39
VF
1144 if (oldname[0] && !strchr(oldname, '%'))
1145 netdev_info(dev, "renamed from %s\n", oldname);
1146
238fa362
TG
1147 old_assign_type = dev->name_assign_type;
1148 dev->name_assign_type = NET_NAME_RENAMED;
1149
fcc5a03a 1150rollback:
a1b3f594
EB
1151 ret = device_rename(&dev->dev, dev->name);
1152 if (ret) {
1153 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1154 dev->name_assign_type = old_assign_type;
30e6c9fa 1155 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1156 return ret;
dcc99773 1157 }
7f988eab 1158
30e6c9fa 1159 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1160
5bb025fa
VF
1161 netdev_adjacent_rename_links(dev, oldname);
1162
7f988eab 1163 write_lock_bh(&dev_base_lock);
372b2312 1164 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1165 write_unlock_bh(&dev_base_lock);
1166
1167 synchronize_rcu();
1168
1169 write_lock_bh(&dev_base_lock);
1170 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1171 write_unlock_bh(&dev_base_lock);
1172
056925ab 1173 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1174 ret = notifier_to_errno(ret);
1175
1176 if (ret) {
91e9c07b
ED
1177 /* err >= 0 after dev_alloc_name() or stores the first errno */
1178 if (err >= 0) {
fcc5a03a 1179 err = ret;
30e6c9fa 1180 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1181 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1182 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1183 dev->name_assign_type = old_assign_type;
1184 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1185 goto rollback;
91e9c07b 1186 } else {
7b6cd1ce 1187 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1188 dev->name, ret);
fcc5a03a
HX
1189 }
1190 }
1da177e4
LT
1191
1192 return err;
1193}
1194
0b815a1a
SH
1195/**
1196 * dev_set_alias - change ifalias of a device
1197 * @dev: device
1198 * @alias: name up to IFALIASZ
f0db275a 1199 * @len: limit of bytes to copy from info
0b815a1a
SH
1200 *
1201 * Set ifalias for a device,
1202 */
1203int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1204{
7364e445
AK
1205 char *new_ifalias;
1206
0b815a1a
SH
1207 ASSERT_RTNL();
1208
1209 if (len >= IFALIASZ)
1210 return -EINVAL;
1211
96ca4a2c 1212 if (!len) {
388dfc2d
SK
1213 kfree(dev->ifalias);
1214 dev->ifalias = NULL;
96ca4a2c
OH
1215 return 0;
1216 }
1217
7364e445
AK
1218 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1219 if (!new_ifalias)
0b815a1a 1220 return -ENOMEM;
7364e445 1221 dev->ifalias = new_ifalias;
0b815a1a
SH
1222
1223 strlcpy(dev->ifalias, alias, len+1);
1224 return len;
1225}
1226
1227
d8a33ac4 1228/**
3041a069 1229 * netdev_features_change - device changes features
d8a33ac4
SH
1230 * @dev: device to cause notification
1231 *
1232 * Called to indicate a device has changed features.
1233 */
1234void netdev_features_change(struct net_device *dev)
1235{
056925ab 1236 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1237}
1238EXPORT_SYMBOL(netdev_features_change);
1239
1da177e4
LT
1240/**
1241 * netdev_state_change - device changes state
1242 * @dev: device to cause notification
1243 *
1244 * Called to indicate a device has changed state. This function calls
1245 * the notifier chains for netdev_chain and sends a NEWLINK message
1246 * to the routing socket.
1247 */
1248void netdev_state_change(struct net_device *dev)
1249{
1250 if (dev->flags & IFF_UP) {
54951194
LP
1251 struct netdev_notifier_change_info change_info;
1252
1253 change_info.flags_changed = 0;
1254 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1255 &change_info.info);
7f294054 1256 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1257 }
1258}
d1b19dff 1259EXPORT_SYMBOL(netdev_state_change);
1da177e4 1260
ee89bab1
AW
1261/**
1262 * netdev_notify_peers - notify network peers about existence of @dev
1263 * @dev: network device
1264 *
1265 * Generate traffic such that interested network peers are aware of
1266 * @dev, such as by generating a gratuitous ARP. This may be used when
1267 * a device wants to inform the rest of the network about some sort of
1268 * reconfiguration such as a failover event or virtual machine
1269 * migration.
1270 */
1271void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1272{
ee89bab1
AW
1273 rtnl_lock();
1274 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1275 rtnl_unlock();
c1da4ac7 1276}
ee89bab1 1277EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1278
bd380811 1279static int __dev_open(struct net_device *dev)
1da177e4 1280{
d314774c 1281 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1282 int ret;
1da177e4 1283
e46b66bc
BH
1284 ASSERT_RTNL();
1285
1da177e4
LT
1286 if (!netif_device_present(dev))
1287 return -ENODEV;
1288
ca99ca14
NH
1289 /* Block netpoll from trying to do any rx path servicing.
1290 * If we don't do this there is a chance ndo_poll_controller
1291 * or ndo_poll may be running while we open the device
1292 */
66b5552f 1293 netpoll_poll_disable(dev);
ca99ca14 1294
3b8bcfd5
JB
1295 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1296 ret = notifier_to_errno(ret);
1297 if (ret)
1298 return ret;
1299
1da177e4 1300 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1301
d314774c
SH
1302 if (ops->ndo_validate_addr)
1303 ret = ops->ndo_validate_addr(dev);
bada339b 1304
d314774c
SH
1305 if (!ret && ops->ndo_open)
1306 ret = ops->ndo_open(dev);
1da177e4 1307
66b5552f 1308 netpoll_poll_enable(dev);
ca99ca14 1309
bada339b
JG
1310 if (ret)
1311 clear_bit(__LINK_STATE_START, &dev->state);
1312 else {
1da177e4 1313 dev->flags |= IFF_UP;
4417da66 1314 dev_set_rx_mode(dev);
1da177e4 1315 dev_activate(dev);
7bf23575 1316 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1317 }
bada339b 1318
1da177e4
LT
1319 return ret;
1320}
1321
1322/**
bd380811
PM
1323 * dev_open - prepare an interface for use.
1324 * @dev: device to open
1da177e4 1325 *
bd380811
PM
1326 * Takes a device from down to up state. The device's private open
1327 * function is invoked and then the multicast lists are loaded. Finally
1328 * the device is moved into the up state and a %NETDEV_UP message is
1329 * sent to the netdev notifier chain.
1330 *
1331 * Calling this function on an active interface is a nop. On a failure
1332 * a negative errno code is returned.
1da177e4 1333 */
bd380811
PM
1334int dev_open(struct net_device *dev)
1335{
1336 int ret;
1337
bd380811
PM
1338 if (dev->flags & IFF_UP)
1339 return 0;
1340
bd380811
PM
1341 ret = __dev_open(dev);
1342 if (ret < 0)
1343 return ret;
1344
7f294054 1345 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1346 call_netdevice_notifiers(NETDEV_UP, dev);
1347
1348 return ret;
1349}
1350EXPORT_SYMBOL(dev_open);
1351
44345724 1352static int __dev_close_many(struct list_head *head)
1da177e4 1353{
44345724 1354 struct net_device *dev;
e46b66bc 1355
bd380811 1356 ASSERT_RTNL();
9d5010db
DM
1357 might_sleep();
1358
5cde2829 1359 list_for_each_entry(dev, head, close_list) {
3f4df206 1360 /* Temporarily disable netpoll until the interface is down */
66b5552f 1361 netpoll_poll_disable(dev);
3f4df206 1362
44345724 1363 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1364
44345724 1365 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1366
44345724
OP
1367 /* Synchronize to scheduled poll. We cannot touch poll list, it
1368 * can be even on different cpu. So just clear netif_running().
1369 *
1370 * dev->stop() will invoke napi_disable() on all of it's
1371 * napi_struct instances on this device.
1372 */
4e857c58 1373 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1374 }
1da177e4 1375
44345724 1376 dev_deactivate_many(head);
d8b2a4d2 1377
5cde2829 1378 list_for_each_entry(dev, head, close_list) {
44345724 1379 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1380
44345724
OP
1381 /*
1382 * Call the device specific close. This cannot fail.
1383 * Only if device is UP
1384 *
1385 * We allow it to be called even after a DETACH hot-plug
1386 * event.
1387 */
1388 if (ops->ndo_stop)
1389 ops->ndo_stop(dev);
1390
44345724 1391 dev->flags &= ~IFF_UP;
66b5552f 1392 netpoll_poll_enable(dev);
44345724
OP
1393 }
1394
1395 return 0;
1396}
1397
1398static int __dev_close(struct net_device *dev)
1399{
f87e6f47 1400 int retval;
44345724
OP
1401 LIST_HEAD(single);
1402
5cde2829 1403 list_add(&dev->close_list, &single);
f87e6f47
LT
1404 retval = __dev_close_many(&single);
1405 list_del(&single);
ca99ca14 1406
f87e6f47 1407 return retval;
44345724
OP
1408}
1409
99c4a26a 1410int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1411{
1412 struct net_device *dev, *tmp;
1da177e4 1413
5cde2829
EB
1414 /* Remove the devices that don't need to be closed */
1415 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1416 if (!(dev->flags & IFF_UP))
5cde2829 1417 list_del_init(&dev->close_list);
44345724
OP
1418
1419 __dev_close_many(head);
1da177e4 1420
5cde2829 1421 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1422 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1423 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1424 if (unlink)
1425 list_del_init(&dev->close_list);
44345724 1426 }
bd380811
PM
1427
1428 return 0;
1429}
99c4a26a 1430EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1431
1432/**
1433 * dev_close - shutdown an interface.
1434 * @dev: device to shutdown
1435 *
1436 * This function moves an active device into down state. A
1437 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1438 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1439 * chain.
1440 */
1441int dev_close(struct net_device *dev)
1442{
e14a5993
ED
1443 if (dev->flags & IFF_UP) {
1444 LIST_HEAD(single);
1da177e4 1445
5cde2829 1446 list_add(&dev->close_list, &single);
99c4a26a 1447 dev_close_many(&single, true);
e14a5993
ED
1448 list_del(&single);
1449 }
da6e378b 1450 return 0;
1da177e4 1451}
d1b19dff 1452EXPORT_SYMBOL(dev_close);
1da177e4
LT
1453
1454
0187bdfb
BH
1455/**
1456 * dev_disable_lro - disable Large Receive Offload on a device
1457 * @dev: device
1458 *
1459 * Disable Large Receive Offload (LRO) on a net device. Must be
1460 * called under RTNL. This is needed if received packets may be
1461 * forwarded to another interface.
1462 */
1463void dev_disable_lro(struct net_device *dev)
1464{
fbe168ba
MK
1465 struct net_device *lower_dev;
1466 struct list_head *iter;
529d0489 1467
bc5787c6
MM
1468 dev->wanted_features &= ~NETIF_F_LRO;
1469 netdev_update_features(dev);
27660515 1470
22d5969f
MM
1471 if (unlikely(dev->features & NETIF_F_LRO))
1472 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1473
1474 netdev_for_each_lower_dev(dev, lower_dev, iter)
1475 dev_disable_lro(lower_dev);
0187bdfb
BH
1476}
1477EXPORT_SYMBOL(dev_disable_lro);
1478
351638e7
JP
1479static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1480 struct net_device *dev)
1481{
1482 struct netdev_notifier_info info;
1483
1484 netdev_notifier_info_init(&info, dev);
1485 return nb->notifier_call(nb, val, &info);
1486}
0187bdfb 1487
881d966b
EB
1488static int dev_boot_phase = 1;
1489
1da177e4
LT
1490/**
1491 * register_netdevice_notifier - register a network notifier block
1492 * @nb: notifier
1493 *
1494 * Register a notifier to be called when network device events occur.
1495 * The notifier passed is linked into the kernel structures and must
1496 * not be reused until it has been unregistered. A negative errno code
1497 * is returned on a failure.
1498 *
1499 * When registered all registration and up events are replayed
4ec93edb 1500 * to the new notifier to allow device to have a race free
1da177e4
LT
1501 * view of the network device list.
1502 */
1503
1504int register_netdevice_notifier(struct notifier_block *nb)
1505{
1506 struct net_device *dev;
fcc5a03a 1507 struct net_device *last;
881d966b 1508 struct net *net;
1da177e4
LT
1509 int err;
1510
1511 rtnl_lock();
f07d5b94 1512 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1513 if (err)
1514 goto unlock;
881d966b
EB
1515 if (dev_boot_phase)
1516 goto unlock;
1517 for_each_net(net) {
1518 for_each_netdev(net, dev) {
351638e7 1519 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1520 err = notifier_to_errno(err);
1521 if (err)
1522 goto rollback;
1523
1524 if (!(dev->flags & IFF_UP))
1525 continue;
1da177e4 1526
351638e7 1527 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1528 }
1da177e4 1529 }
fcc5a03a
HX
1530
1531unlock:
1da177e4
LT
1532 rtnl_unlock();
1533 return err;
fcc5a03a
HX
1534
1535rollback:
1536 last = dev;
881d966b
EB
1537 for_each_net(net) {
1538 for_each_netdev(net, dev) {
1539 if (dev == last)
8f891489 1540 goto outroll;
fcc5a03a 1541
881d966b 1542 if (dev->flags & IFF_UP) {
351638e7
JP
1543 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1544 dev);
1545 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1546 }
351638e7 1547 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1548 }
fcc5a03a 1549 }
c67625a1 1550
8f891489 1551outroll:
c67625a1 1552 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1553 goto unlock;
1da177e4 1554}
d1b19dff 1555EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1556
1557/**
1558 * unregister_netdevice_notifier - unregister a network notifier block
1559 * @nb: notifier
1560 *
1561 * Unregister a notifier previously registered by
1562 * register_netdevice_notifier(). The notifier is unlinked into the
1563 * kernel structures and may then be reused. A negative errno code
1564 * is returned on a failure.
7d3d43da
EB
1565 *
1566 * After unregistering unregister and down device events are synthesized
1567 * for all devices on the device list to the removed notifier to remove
1568 * the need for special case cleanup code.
1da177e4
LT
1569 */
1570
1571int unregister_netdevice_notifier(struct notifier_block *nb)
1572{
7d3d43da
EB
1573 struct net_device *dev;
1574 struct net *net;
9f514950
HX
1575 int err;
1576
1577 rtnl_lock();
f07d5b94 1578 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1579 if (err)
1580 goto unlock;
1581
1582 for_each_net(net) {
1583 for_each_netdev(net, dev) {
1584 if (dev->flags & IFF_UP) {
351638e7
JP
1585 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1586 dev);
1587 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1588 }
351638e7 1589 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1590 }
1591 }
1592unlock:
9f514950
HX
1593 rtnl_unlock();
1594 return err;
1da177e4 1595}
d1b19dff 1596EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1597
351638e7
JP
1598/**
1599 * call_netdevice_notifiers_info - call all network notifier blocks
1600 * @val: value passed unmodified to notifier function
1601 * @dev: net_device pointer passed unmodified to notifier function
1602 * @info: notifier information data
1603 *
1604 * Call all network notifier blocks. Parameters and return value
1605 * are as for raw_notifier_call_chain().
1606 */
1607
1d143d9f 1608static int call_netdevice_notifiers_info(unsigned long val,
1609 struct net_device *dev,
1610 struct netdev_notifier_info *info)
351638e7
JP
1611{
1612 ASSERT_RTNL();
1613 netdev_notifier_info_init(info, dev);
1614 return raw_notifier_call_chain(&netdev_chain, val, info);
1615}
351638e7 1616
1da177e4
LT
1617/**
1618 * call_netdevice_notifiers - call all network notifier blocks
1619 * @val: value passed unmodified to notifier function
c4ea43c5 1620 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1621 *
1622 * Call all network notifier blocks. Parameters and return value
f07d5b94 1623 * are as for raw_notifier_call_chain().
1da177e4
LT
1624 */
1625
ad7379d4 1626int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1627{
351638e7
JP
1628 struct netdev_notifier_info info;
1629
1630 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1631}
edf947f1 1632EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1633
1cf51900 1634#ifdef CONFIG_NET_INGRESS
4577139b
DB
1635static struct static_key ingress_needed __read_mostly;
1636
1637void net_inc_ingress_queue(void)
1638{
1639 static_key_slow_inc(&ingress_needed);
1640}
1641EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1642
1643void net_dec_ingress_queue(void)
1644{
1645 static_key_slow_dec(&ingress_needed);
1646}
1647EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1648#endif
1649
c5905afb 1650static struct static_key netstamp_needed __read_mostly;
b90e5794 1651#ifdef HAVE_JUMP_LABEL
c5905afb 1652/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1653 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1654 * static_key_slow_dec() calls.
b90e5794
ED
1655 */
1656static atomic_t netstamp_needed_deferred;
1657#endif
1da177e4
LT
1658
1659void net_enable_timestamp(void)
1660{
b90e5794
ED
1661#ifdef HAVE_JUMP_LABEL
1662 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1663
1664 if (deferred) {
1665 while (--deferred)
c5905afb 1666 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1667 return;
1668 }
1669#endif
c5905afb 1670 static_key_slow_inc(&netstamp_needed);
1da177e4 1671}
d1b19dff 1672EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1673
1674void net_disable_timestamp(void)
1675{
b90e5794
ED
1676#ifdef HAVE_JUMP_LABEL
1677 if (in_interrupt()) {
1678 atomic_inc(&netstamp_needed_deferred);
1679 return;
1680 }
1681#endif
c5905afb 1682 static_key_slow_dec(&netstamp_needed);
1da177e4 1683}
d1b19dff 1684EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1685
3b098e2d 1686static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1687{
588f0330 1688 skb->tstamp.tv64 = 0;
c5905afb 1689 if (static_key_false(&netstamp_needed))
a61bbcf2 1690 __net_timestamp(skb);
1da177e4
LT
1691}
1692
588f0330 1693#define net_timestamp_check(COND, SKB) \
c5905afb 1694 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1695 if ((COND) && !(SKB)->tstamp.tv64) \
1696 __net_timestamp(SKB); \
1697 } \
3b098e2d 1698
1ee481fb 1699bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
79b569f0
DL
1700{
1701 unsigned int len;
1702
1703 if (!(dev->flags & IFF_UP))
1704 return false;
1705
1706 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1707 if (skb->len <= len)
1708 return true;
1709
1710 /* if TSO is enabled, we don't care about the length as the packet
1711 * could be forwarded without being segmented before
1712 */
1713 if (skb_is_gso(skb))
1714 return true;
1715
1716 return false;
1717}
1ee481fb 1718EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1719
a0265d28
HX
1720int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1721{
bbbf2df0
WB
1722 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1723 unlikely(!is_skb_forwardable(dev, skb))) {
a0265d28
HX
1724 atomic_long_inc(&dev->rx_dropped);
1725 kfree_skb(skb);
1726 return NET_RX_DROP;
1727 }
1728
1729 skb_scrub_packet(skb, true);
08b4b8ea 1730 skb->priority = 0;
a0265d28 1731 skb->protocol = eth_type_trans(skb, dev);
2c26d34b 1732 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
a0265d28
HX
1733
1734 return 0;
1735}
1736EXPORT_SYMBOL_GPL(__dev_forward_skb);
1737
44540960
AB
1738/**
1739 * dev_forward_skb - loopback an skb to another netif
1740 *
1741 * @dev: destination network device
1742 * @skb: buffer to forward
1743 *
1744 * return values:
1745 * NET_RX_SUCCESS (no congestion)
6ec82562 1746 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1747 *
1748 * dev_forward_skb can be used for injecting an skb from the
1749 * start_xmit function of one device into the receive queue
1750 * of another device.
1751 *
1752 * The receiving device may be in another namespace, so
1753 * we have to clear all information in the skb that could
1754 * impact namespace isolation.
1755 */
1756int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1757{
a0265d28 1758 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1759}
1760EXPORT_SYMBOL_GPL(dev_forward_skb);
1761
71d9dec2
CG
1762static inline int deliver_skb(struct sk_buff *skb,
1763 struct packet_type *pt_prev,
1764 struct net_device *orig_dev)
1765{
1080e512
MT
1766 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1767 return -ENOMEM;
71d9dec2
CG
1768 atomic_inc(&skb->users);
1769 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1770}
1771
7866a621
SN
1772static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1773 struct packet_type **pt,
fbcb2170
JP
1774 struct net_device *orig_dev,
1775 __be16 type,
7866a621
SN
1776 struct list_head *ptype_list)
1777{
1778 struct packet_type *ptype, *pt_prev = *pt;
1779
1780 list_for_each_entry_rcu(ptype, ptype_list, list) {
1781 if (ptype->type != type)
1782 continue;
1783 if (pt_prev)
fbcb2170 1784 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1785 pt_prev = ptype;
1786 }
1787 *pt = pt_prev;
1788}
1789
c0de08d0
EL
1790static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1791{
a3d744e9 1792 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1793 return false;
1794
1795 if (ptype->id_match)
1796 return ptype->id_match(ptype, skb->sk);
1797 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1798 return true;
1799
1800 return false;
1801}
1802
1da177e4
LT
1803/*
1804 * Support routine. Sends outgoing frames to any network
1805 * taps currently in use.
1806 */
1807
f6a78bfc 1808static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1809{
1810 struct packet_type *ptype;
71d9dec2
CG
1811 struct sk_buff *skb2 = NULL;
1812 struct packet_type *pt_prev = NULL;
7866a621 1813 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1814
1da177e4 1815 rcu_read_lock();
7866a621
SN
1816again:
1817 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1818 /* Never send packets back to the socket
1819 * they originated from - MvS (miquels@drinkel.ow.org)
1820 */
7866a621
SN
1821 if (skb_loop_sk(ptype, skb))
1822 continue;
71d9dec2 1823
7866a621
SN
1824 if (pt_prev) {
1825 deliver_skb(skb2, pt_prev, skb->dev);
1826 pt_prev = ptype;
1827 continue;
1828 }
1da177e4 1829
7866a621
SN
1830 /* need to clone skb, done only once */
1831 skb2 = skb_clone(skb, GFP_ATOMIC);
1832 if (!skb2)
1833 goto out_unlock;
70978182 1834
7866a621 1835 net_timestamp_set(skb2);
1da177e4 1836
7866a621
SN
1837 /* skb->nh should be correctly
1838 * set by sender, so that the second statement is
1839 * just protection against buggy protocols.
1840 */
1841 skb_reset_mac_header(skb2);
1842
1843 if (skb_network_header(skb2) < skb2->data ||
1844 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1845 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1846 ntohs(skb2->protocol),
1847 dev->name);
1848 skb_reset_network_header(skb2);
1da177e4 1849 }
7866a621
SN
1850
1851 skb2->transport_header = skb2->network_header;
1852 skb2->pkt_type = PACKET_OUTGOING;
1853 pt_prev = ptype;
1854 }
1855
1856 if (ptype_list == &ptype_all) {
1857 ptype_list = &dev->ptype_all;
1858 goto again;
1da177e4 1859 }
7866a621 1860out_unlock:
71d9dec2
CG
1861 if (pt_prev)
1862 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1863 rcu_read_unlock();
1864}
1865
2c53040f
BH
1866/**
1867 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1868 * @dev: Network device
1869 * @txq: number of queues available
1870 *
1871 * If real_num_tx_queues is changed the tc mappings may no longer be
1872 * valid. To resolve this verify the tc mapping remains valid and if
1873 * not NULL the mapping. With no priorities mapping to this
1874 * offset/count pair it will no longer be used. In the worst case TC0
1875 * is invalid nothing can be done so disable priority mappings. If is
1876 * expected that drivers will fix this mapping if they can before
1877 * calling netif_set_real_num_tx_queues.
1878 */
bb134d22 1879static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1880{
1881 int i;
1882 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1883
1884 /* If TC0 is invalidated disable TC mapping */
1885 if (tc->offset + tc->count > txq) {
7b6cd1ce 1886 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1887 dev->num_tc = 0;
1888 return;
1889 }
1890
1891 /* Invalidated prio to tc mappings set to TC0 */
1892 for (i = 1; i < TC_BITMASK + 1; i++) {
1893 int q = netdev_get_prio_tc_map(dev, i);
1894
1895 tc = &dev->tc_to_txq[q];
1896 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1897 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1898 i, q);
4f57c087
JF
1899 netdev_set_prio_tc_map(dev, i, 0);
1900 }
1901 }
1902}
1903
537c00de
AD
1904#ifdef CONFIG_XPS
1905static DEFINE_MUTEX(xps_map_mutex);
1906#define xmap_dereference(P) \
1907 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1908
10cdc3f3
AD
1909static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1910 int cpu, u16 index)
537c00de 1911{
10cdc3f3
AD
1912 struct xps_map *map = NULL;
1913 int pos;
537c00de 1914
10cdc3f3
AD
1915 if (dev_maps)
1916 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1917
10cdc3f3
AD
1918 for (pos = 0; map && pos < map->len; pos++) {
1919 if (map->queues[pos] == index) {
537c00de
AD
1920 if (map->len > 1) {
1921 map->queues[pos] = map->queues[--map->len];
1922 } else {
10cdc3f3 1923 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1924 kfree_rcu(map, rcu);
1925 map = NULL;
1926 }
10cdc3f3 1927 break;
537c00de 1928 }
537c00de
AD
1929 }
1930
10cdc3f3
AD
1931 return map;
1932}
1933
024e9679 1934static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1935{
1936 struct xps_dev_maps *dev_maps;
024e9679 1937 int cpu, i;
10cdc3f3
AD
1938 bool active = false;
1939
1940 mutex_lock(&xps_map_mutex);
1941 dev_maps = xmap_dereference(dev->xps_maps);
1942
1943 if (!dev_maps)
1944 goto out_no_maps;
1945
1946 for_each_possible_cpu(cpu) {
024e9679
AD
1947 for (i = index; i < dev->num_tx_queues; i++) {
1948 if (!remove_xps_queue(dev_maps, cpu, i))
1949 break;
1950 }
1951 if (i == dev->num_tx_queues)
10cdc3f3
AD
1952 active = true;
1953 }
1954
1955 if (!active) {
537c00de
AD
1956 RCU_INIT_POINTER(dev->xps_maps, NULL);
1957 kfree_rcu(dev_maps, rcu);
1958 }
1959
024e9679
AD
1960 for (i = index; i < dev->num_tx_queues; i++)
1961 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1962 NUMA_NO_NODE);
1963
537c00de
AD
1964out_no_maps:
1965 mutex_unlock(&xps_map_mutex);
1966}
1967
01c5f864
AD
1968static struct xps_map *expand_xps_map(struct xps_map *map,
1969 int cpu, u16 index)
1970{
1971 struct xps_map *new_map;
1972 int alloc_len = XPS_MIN_MAP_ALLOC;
1973 int i, pos;
1974
1975 for (pos = 0; map && pos < map->len; pos++) {
1976 if (map->queues[pos] != index)
1977 continue;
1978 return map;
1979 }
1980
1981 /* Need to add queue to this CPU's existing map */
1982 if (map) {
1983 if (pos < map->alloc_len)
1984 return map;
1985
1986 alloc_len = map->alloc_len * 2;
1987 }
1988
1989 /* Need to allocate new map to store queue on this CPU's map */
1990 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1991 cpu_to_node(cpu));
1992 if (!new_map)
1993 return NULL;
1994
1995 for (i = 0; i < pos; i++)
1996 new_map->queues[i] = map->queues[i];
1997 new_map->alloc_len = alloc_len;
1998 new_map->len = pos;
1999
2000 return new_map;
2001}
2002
3573540c
MT
2003int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2004 u16 index)
537c00de 2005{
01c5f864 2006 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 2007 struct xps_map *map, *new_map;
537c00de 2008 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
2009 int cpu, numa_node_id = -2;
2010 bool active = false;
537c00de
AD
2011
2012 mutex_lock(&xps_map_mutex);
2013
2014 dev_maps = xmap_dereference(dev->xps_maps);
2015
01c5f864
AD
2016 /* allocate memory for queue storage */
2017 for_each_online_cpu(cpu) {
2018 if (!cpumask_test_cpu(cpu, mask))
2019 continue;
2020
2021 if (!new_dev_maps)
2022 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2023 if (!new_dev_maps) {
2024 mutex_unlock(&xps_map_mutex);
01c5f864 2025 return -ENOMEM;
2bb60cb9 2026 }
01c5f864
AD
2027
2028 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2029 NULL;
2030
2031 map = expand_xps_map(map, cpu, index);
2032 if (!map)
2033 goto error;
2034
2035 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2036 }
2037
2038 if (!new_dev_maps)
2039 goto out_no_new_maps;
2040
537c00de 2041 for_each_possible_cpu(cpu) {
01c5f864
AD
2042 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2043 /* add queue to CPU maps */
2044 int pos = 0;
2045
2046 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2047 while ((pos < map->len) && (map->queues[pos] != index))
2048 pos++;
2049
2050 if (pos == map->len)
2051 map->queues[map->len++] = index;
537c00de 2052#ifdef CONFIG_NUMA
537c00de
AD
2053 if (numa_node_id == -2)
2054 numa_node_id = cpu_to_node(cpu);
2055 else if (numa_node_id != cpu_to_node(cpu))
2056 numa_node_id = -1;
537c00de 2057#endif
01c5f864
AD
2058 } else if (dev_maps) {
2059 /* fill in the new device map from the old device map */
2060 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2061 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2062 }
01c5f864 2063
537c00de
AD
2064 }
2065
01c5f864
AD
2066 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2067
537c00de 2068 /* Cleanup old maps */
01c5f864
AD
2069 if (dev_maps) {
2070 for_each_possible_cpu(cpu) {
2071 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2072 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2073 if (map && map != new_map)
2074 kfree_rcu(map, rcu);
2075 }
537c00de 2076
01c5f864 2077 kfree_rcu(dev_maps, rcu);
537c00de
AD
2078 }
2079
01c5f864
AD
2080 dev_maps = new_dev_maps;
2081 active = true;
537c00de 2082
01c5f864
AD
2083out_no_new_maps:
2084 /* update Tx queue numa node */
537c00de
AD
2085 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2086 (numa_node_id >= 0) ? numa_node_id :
2087 NUMA_NO_NODE);
2088
01c5f864
AD
2089 if (!dev_maps)
2090 goto out_no_maps;
2091
2092 /* removes queue from unused CPUs */
2093 for_each_possible_cpu(cpu) {
2094 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2095 continue;
2096
2097 if (remove_xps_queue(dev_maps, cpu, index))
2098 active = true;
2099 }
2100
2101 /* free map if not active */
2102 if (!active) {
2103 RCU_INIT_POINTER(dev->xps_maps, NULL);
2104 kfree_rcu(dev_maps, rcu);
2105 }
2106
2107out_no_maps:
537c00de
AD
2108 mutex_unlock(&xps_map_mutex);
2109
2110 return 0;
2111error:
01c5f864
AD
2112 /* remove any maps that we added */
2113 for_each_possible_cpu(cpu) {
2114 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2115 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2116 NULL;
2117 if (new_map && new_map != map)
2118 kfree(new_map);
2119 }
2120
537c00de
AD
2121 mutex_unlock(&xps_map_mutex);
2122
537c00de
AD
2123 kfree(new_dev_maps);
2124 return -ENOMEM;
2125}
2126EXPORT_SYMBOL(netif_set_xps_queue);
2127
2128#endif
f0796d5c
JF
2129/*
2130 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2131 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2132 */
e6484930 2133int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2134{
1d24eb48
TH
2135 int rc;
2136
e6484930
TH
2137 if (txq < 1 || txq > dev->num_tx_queues)
2138 return -EINVAL;
f0796d5c 2139
5c56580b
BH
2140 if (dev->reg_state == NETREG_REGISTERED ||
2141 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2142 ASSERT_RTNL();
2143
1d24eb48
TH
2144 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2145 txq);
bf264145
TH
2146 if (rc)
2147 return rc;
2148
4f57c087
JF
2149 if (dev->num_tc)
2150 netif_setup_tc(dev, txq);
2151
024e9679 2152 if (txq < dev->real_num_tx_queues) {
e6484930 2153 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2154#ifdef CONFIG_XPS
2155 netif_reset_xps_queues_gt(dev, txq);
2156#endif
2157 }
f0796d5c 2158 }
e6484930
TH
2159
2160 dev->real_num_tx_queues = txq;
2161 return 0;
f0796d5c
JF
2162}
2163EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2164
a953be53 2165#ifdef CONFIG_SYSFS
62fe0b40
BH
2166/**
2167 * netif_set_real_num_rx_queues - set actual number of RX queues used
2168 * @dev: Network device
2169 * @rxq: Actual number of RX queues
2170 *
2171 * This must be called either with the rtnl_lock held or before
2172 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2173 * negative error code. If called before registration, it always
2174 * succeeds.
62fe0b40
BH
2175 */
2176int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2177{
2178 int rc;
2179
bd25fa7b
TH
2180 if (rxq < 1 || rxq > dev->num_rx_queues)
2181 return -EINVAL;
2182
62fe0b40
BH
2183 if (dev->reg_state == NETREG_REGISTERED) {
2184 ASSERT_RTNL();
2185
62fe0b40
BH
2186 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2187 rxq);
2188 if (rc)
2189 return rc;
62fe0b40
BH
2190 }
2191
2192 dev->real_num_rx_queues = rxq;
2193 return 0;
2194}
2195EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2196#endif
2197
2c53040f
BH
2198/**
2199 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2200 *
2201 * This routine should set an upper limit on the number of RSS queues
2202 * used by default by multiqueue devices.
2203 */
a55b138b 2204int netif_get_num_default_rss_queues(void)
16917b87
YM
2205{
2206 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2207}
2208EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2209
def82a1d 2210static inline void __netif_reschedule(struct Qdisc *q)
56079431 2211{
def82a1d
JP
2212 struct softnet_data *sd;
2213 unsigned long flags;
56079431 2214
def82a1d 2215 local_irq_save(flags);
903ceff7 2216 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2217 q->next_sched = NULL;
2218 *sd->output_queue_tailp = q;
2219 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2220 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2221 local_irq_restore(flags);
2222}
2223
2224void __netif_schedule(struct Qdisc *q)
2225{
2226 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2227 __netif_reschedule(q);
56079431
DV
2228}
2229EXPORT_SYMBOL(__netif_schedule);
2230
e6247027
ED
2231struct dev_kfree_skb_cb {
2232 enum skb_free_reason reason;
2233};
2234
2235static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2236{
e6247027
ED
2237 return (struct dev_kfree_skb_cb *)skb->cb;
2238}
2239
46e5da40
JF
2240void netif_schedule_queue(struct netdev_queue *txq)
2241{
2242 rcu_read_lock();
2243 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2244 struct Qdisc *q = rcu_dereference(txq->qdisc);
2245
2246 __netif_schedule(q);
2247 }
2248 rcu_read_unlock();
2249}
2250EXPORT_SYMBOL(netif_schedule_queue);
2251
2252/**
2253 * netif_wake_subqueue - allow sending packets on subqueue
2254 * @dev: network device
2255 * @queue_index: sub queue index
2256 *
2257 * Resume individual transmit queue of a device with multiple transmit queues.
2258 */
2259void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2260{
2261 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2262
2263 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2264 struct Qdisc *q;
2265
2266 rcu_read_lock();
2267 q = rcu_dereference(txq->qdisc);
2268 __netif_schedule(q);
2269 rcu_read_unlock();
2270 }
2271}
2272EXPORT_SYMBOL(netif_wake_subqueue);
2273
2274void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2275{
2276 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2277 struct Qdisc *q;
2278
2279 rcu_read_lock();
2280 q = rcu_dereference(dev_queue->qdisc);
2281 __netif_schedule(q);
2282 rcu_read_unlock();
2283 }
2284}
2285EXPORT_SYMBOL(netif_tx_wake_queue);
2286
e6247027 2287void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2288{
e6247027 2289 unsigned long flags;
56079431 2290
e6247027
ED
2291 if (likely(atomic_read(&skb->users) == 1)) {
2292 smp_rmb();
2293 atomic_set(&skb->users, 0);
2294 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2295 return;
bea3348e 2296 }
e6247027
ED
2297 get_kfree_skb_cb(skb)->reason = reason;
2298 local_irq_save(flags);
2299 skb->next = __this_cpu_read(softnet_data.completion_queue);
2300 __this_cpu_write(softnet_data.completion_queue, skb);
2301 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2302 local_irq_restore(flags);
56079431 2303}
e6247027 2304EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2305
e6247027 2306void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2307{
2308 if (in_irq() || irqs_disabled())
e6247027 2309 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2310 else
2311 dev_kfree_skb(skb);
2312}
e6247027 2313EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2314
2315
bea3348e
SH
2316/**
2317 * netif_device_detach - mark device as removed
2318 * @dev: network device
2319 *
2320 * Mark device as removed from system and therefore no longer available.
2321 */
56079431
DV
2322void netif_device_detach(struct net_device *dev)
2323{
2324 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2325 netif_running(dev)) {
d543103a 2326 netif_tx_stop_all_queues(dev);
56079431
DV
2327 }
2328}
2329EXPORT_SYMBOL(netif_device_detach);
2330
bea3348e
SH
2331/**
2332 * netif_device_attach - mark device as attached
2333 * @dev: network device
2334 *
2335 * Mark device as attached from system and restart if needed.
2336 */
56079431
DV
2337void netif_device_attach(struct net_device *dev)
2338{
2339 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2340 netif_running(dev)) {
d543103a 2341 netif_tx_wake_all_queues(dev);
4ec93edb 2342 __netdev_watchdog_up(dev);
56079431
DV
2343 }
2344}
2345EXPORT_SYMBOL(netif_device_attach);
2346
5605c762
JP
2347/*
2348 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2349 * to be used as a distribution range.
2350 */
2351u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2352 unsigned int num_tx_queues)
2353{
2354 u32 hash;
2355 u16 qoffset = 0;
2356 u16 qcount = num_tx_queues;
2357
2358 if (skb_rx_queue_recorded(skb)) {
2359 hash = skb_get_rx_queue(skb);
2360 while (unlikely(hash >= num_tx_queues))
2361 hash -= num_tx_queues;
2362 return hash;
2363 }
2364
2365 if (dev->num_tc) {
2366 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2367 qoffset = dev->tc_to_txq[tc].offset;
2368 qcount = dev->tc_to_txq[tc].count;
2369 }
2370
2371 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2372}
2373EXPORT_SYMBOL(__skb_tx_hash);
2374
36c92474
BH
2375static void skb_warn_bad_offload(const struct sk_buff *skb)
2376{
65e9d2fa 2377 static const netdev_features_t null_features = 0;
36c92474
BH
2378 struct net_device *dev = skb->dev;
2379 const char *driver = "";
2380
c846ad9b
BG
2381 if (!net_ratelimit())
2382 return;
2383
36c92474
BH
2384 if (dev && dev->dev.parent)
2385 driver = dev_driver_string(dev->dev.parent);
2386
2387 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2388 "gso_type=%d ip_summed=%d\n",
65e9d2fa
MM
2389 driver, dev ? &dev->features : &null_features,
2390 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2391 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2392 skb_shinfo(skb)->gso_type, skb->ip_summed);
2393}
2394
1da177e4
LT
2395/*
2396 * Invalidate hardware checksum when packet is to be mangled, and
2397 * complete checksum manually on outgoing path.
2398 */
84fa7933 2399int skb_checksum_help(struct sk_buff *skb)
1da177e4 2400{
d3bc23e7 2401 __wsum csum;
663ead3b 2402 int ret = 0, offset;
1da177e4 2403
84fa7933 2404 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2405 goto out_set_summed;
2406
2407 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2408 skb_warn_bad_offload(skb);
2409 return -EINVAL;
1da177e4
LT
2410 }
2411
cef401de
ED
2412 /* Before computing a checksum, we should make sure no frag could
2413 * be modified by an external entity : checksum could be wrong.
2414 */
2415 if (skb_has_shared_frag(skb)) {
2416 ret = __skb_linearize(skb);
2417 if (ret)
2418 goto out;
2419 }
2420
55508d60 2421 offset = skb_checksum_start_offset(skb);
a030847e
HX
2422 BUG_ON(offset >= skb_headlen(skb));
2423 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2424
2425 offset += skb->csum_offset;
2426 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2427
2428 if (skb_cloned(skb) &&
2429 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2430 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2431 if (ret)
2432 goto out;
2433 }
2434
a030847e 2435 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2436out_set_summed:
1da177e4 2437 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2438out:
1da177e4
LT
2439 return ret;
2440}
d1b19dff 2441EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2442
53d6471c 2443__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2444{
252e3346 2445 __be16 type = skb->protocol;
f6a78bfc 2446
19acc327
PS
2447 /* Tunnel gso handlers can set protocol to ethernet. */
2448 if (type == htons(ETH_P_TEB)) {
2449 struct ethhdr *eth;
2450
2451 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2452 return 0;
2453
2454 eth = (struct ethhdr *)skb_mac_header(skb);
2455 type = eth->h_proto;
2456 }
2457
d4bcef3f 2458 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2459}
2460
2461/**
2462 * skb_mac_gso_segment - mac layer segmentation handler.
2463 * @skb: buffer to segment
2464 * @features: features for the output path (see dev->features)
2465 */
2466struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2467 netdev_features_t features)
2468{
2469 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2470 struct packet_offload *ptype;
53d6471c
VY
2471 int vlan_depth = skb->mac_len;
2472 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2473
2474 if (unlikely(!type))
2475 return ERR_PTR(-EINVAL);
2476
53d6471c 2477 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2478
2479 rcu_read_lock();
22061d80 2480 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2481 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2482 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2483 break;
2484 }
2485 }
2486 rcu_read_unlock();
2487
98e399f8 2488 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2489
f6a78bfc
HX
2490 return segs;
2491}
05e8ef4a
PS
2492EXPORT_SYMBOL(skb_mac_gso_segment);
2493
2494
2495/* openvswitch calls this on rx path, so we need a different check.
2496 */
2497static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2498{
2499 if (tx_path)
2500 return skb->ip_summed != CHECKSUM_PARTIAL;
2501 else
2502 return skb->ip_summed == CHECKSUM_NONE;
2503}
2504
2505/**
2506 * __skb_gso_segment - Perform segmentation on skb.
2507 * @skb: buffer to segment
2508 * @features: features for the output path (see dev->features)
2509 * @tx_path: whether it is called in TX path
2510 *
2511 * This function segments the given skb and returns a list of segments.
2512 *
2513 * It may return NULL if the skb requires no segmentation. This is
2514 * only possible when GSO is used for verifying header integrity.
2515 */
2516struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2517 netdev_features_t features, bool tx_path)
2518{
2519 if (unlikely(skb_needs_check(skb, tx_path))) {
2520 int err;
2521
2522 skb_warn_bad_offload(skb);
2523
a40e0a66 2524 err = skb_cow_head(skb, 0);
2525 if (err < 0)
05e8ef4a
PS
2526 return ERR_PTR(err);
2527 }
2528
68c33163 2529 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2530 SKB_GSO_CB(skb)->encap_level = 0;
2531
05e8ef4a
PS
2532 skb_reset_mac_header(skb);
2533 skb_reset_mac_len(skb);
2534
2535 return skb_mac_gso_segment(skb, features);
2536}
12b0004d 2537EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2538
fb286bb2
HX
2539/* Take action when hardware reception checksum errors are detected. */
2540#ifdef CONFIG_BUG
2541void netdev_rx_csum_fault(struct net_device *dev)
2542{
2543 if (net_ratelimit()) {
7b6cd1ce 2544 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2545 dump_stack();
2546 }
2547}
2548EXPORT_SYMBOL(netdev_rx_csum_fault);
2549#endif
2550
1da177e4
LT
2551/* Actually, we should eliminate this check as soon as we know, that:
2552 * 1. IOMMU is present and allows to map all the memory.
2553 * 2. No high memory really exists on this machine.
2554 */
2555
c1e756bf 2556static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2557{
3d3a8533 2558#ifdef CONFIG_HIGHMEM
1da177e4 2559 int i;
5acbbd42 2560 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2561 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2562 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2563 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2564 return 1;
ea2ab693 2565 }
5acbbd42 2566 }
1da177e4 2567
5acbbd42
FT
2568 if (PCI_DMA_BUS_IS_PHYS) {
2569 struct device *pdev = dev->dev.parent;
1da177e4 2570
9092c658
ED
2571 if (!pdev)
2572 return 0;
5acbbd42 2573 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2574 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2575 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2576 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2577 return 1;
2578 }
2579 }
3d3a8533 2580#endif
1da177e4
LT
2581 return 0;
2582}
1da177e4 2583
3b392ddb
SH
2584/* If MPLS offload request, verify we are testing hardware MPLS features
2585 * instead of standard features for the netdev.
2586 */
d0edc7bf 2587#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2588static netdev_features_t net_mpls_features(struct sk_buff *skb,
2589 netdev_features_t features,
2590 __be16 type)
2591{
25cd9ba0 2592 if (eth_p_mpls(type))
3b392ddb
SH
2593 features &= skb->dev->mpls_features;
2594
2595 return features;
2596}
2597#else
2598static netdev_features_t net_mpls_features(struct sk_buff *skb,
2599 netdev_features_t features,
2600 __be16 type)
2601{
2602 return features;
2603}
2604#endif
2605
c8f44aff 2606static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2607 netdev_features_t features)
f01a5236 2608{
53d6471c 2609 int tmp;
3b392ddb
SH
2610 __be16 type;
2611
2612 type = skb_network_protocol(skb, &tmp);
2613 features = net_mpls_features(skb, features, type);
53d6471c 2614
c0d680e5 2615 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2616 !can_checksum_protocol(features, type)) {
f01a5236 2617 features &= ~NETIF_F_ALL_CSUM;
c1e756bf 2618 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2619 features &= ~NETIF_F_SG;
2620 }
2621
2622 return features;
2623}
2624
e38f3025
TM
2625netdev_features_t passthru_features_check(struct sk_buff *skb,
2626 struct net_device *dev,
2627 netdev_features_t features)
2628{
2629 return features;
2630}
2631EXPORT_SYMBOL(passthru_features_check);
2632
8cb65d00
TM
2633static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2634 struct net_device *dev,
2635 netdev_features_t features)
2636{
2637 return vlan_features_check(skb, features);
2638}
2639
c1e756bf 2640netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2641{
5f35227e 2642 struct net_device *dev = skb->dev;
fcbeb976
ED
2643 netdev_features_t features = dev->features;
2644 u16 gso_segs = skb_shinfo(skb)->gso_segs;
58e998c6 2645
fcbeb976 2646 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
30b678d8
BH
2647 features &= ~NETIF_F_GSO_MASK;
2648
5f35227e
JG
2649 /* If encapsulation offload request, verify we are testing
2650 * hardware encapsulation features instead of standard
2651 * features for the netdev
2652 */
2653 if (skb->encapsulation)
2654 features &= dev->hw_enc_features;
2655
f5a7fb88
TM
2656 if (skb_vlan_tagged(skb))
2657 features = netdev_intersect_features(features,
2658 dev->vlan_features |
2659 NETIF_F_HW_VLAN_CTAG_TX |
2660 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2661
5f35227e
JG
2662 if (dev->netdev_ops->ndo_features_check)
2663 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2664 features);
8cb65d00
TM
2665 else
2666 features &= dflt_features_check(skb, dev, features);
5f35227e 2667
c1e756bf 2668 return harmonize_features(skb, features);
58e998c6 2669}
c1e756bf 2670EXPORT_SYMBOL(netif_skb_features);
58e998c6 2671
2ea25513 2672static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2673 struct netdev_queue *txq, bool more)
f6a78bfc 2674{
2ea25513
DM
2675 unsigned int len;
2676 int rc;
00829823 2677
7866a621 2678 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2679 dev_queue_xmit_nit(skb, dev);
fc741216 2680
2ea25513
DM
2681 len = skb->len;
2682 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2683 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2684 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2685
2ea25513
DM
2686 return rc;
2687}
7b9c6090 2688
8dcda22a
DM
2689struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2690 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2691{
2692 struct sk_buff *skb = first;
2693 int rc = NETDEV_TX_OK;
7b9c6090 2694
7f2e870f
DM
2695 while (skb) {
2696 struct sk_buff *next = skb->next;
fc70fb64 2697
7f2e870f 2698 skb->next = NULL;
95f6b3dd 2699 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2700 if (unlikely(!dev_xmit_complete(rc))) {
2701 skb->next = next;
2702 goto out;
2703 }
6afff0ca 2704
7f2e870f
DM
2705 skb = next;
2706 if (netif_xmit_stopped(txq) && skb) {
2707 rc = NETDEV_TX_BUSY;
2708 break;
9ccb8975 2709 }
7f2e870f 2710 }
9ccb8975 2711
7f2e870f
DM
2712out:
2713 *ret = rc;
2714 return skb;
2715}
b40863c6 2716
1ff0dc94
ED
2717static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2718 netdev_features_t features)
f6a78bfc 2719{
df8a39de 2720 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2721 !vlan_hw_offload_capable(features, skb->vlan_proto))
2722 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2723 return skb;
2724}
f6a78bfc 2725
55a93b3e 2726static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2727{
2728 netdev_features_t features;
f6a78bfc 2729
eae3f88e
DM
2730 if (skb->next)
2731 return skb;
068a2de5 2732
eae3f88e
DM
2733 features = netif_skb_features(skb);
2734 skb = validate_xmit_vlan(skb, features);
2735 if (unlikely(!skb))
2736 goto out_null;
7b9c6090 2737
8b86a61d 2738 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2739 struct sk_buff *segs;
2740
2741 segs = skb_gso_segment(skb, features);
cecda693 2742 if (IS_ERR(segs)) {
af6dabc9 2743 goto out_kfree_skb;
cecda693
JW
2744 } else if (segs) {
2745 consume_skb(skb);
2746 skb = segs;
f6a78bfc 2747 }
eae3f88e
DM
2748 } else {
2749 if (skb_needs_linearize(skb, features) &&
2750 __skb_linearize(skb))
2751 goto out_kfree_skb;
4ec93edb 2752
eae3f88e
DM
2753 /* If packet is not checksummed and device does not
2754 * support checksumming for this protocol, complete
2755 * checksumming here.
2756 */
2757 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2758 if (skb->encapsulation)
2759 skb_set_inner_transport_header(skb,
2760 skb_checksum_start_offset(skb));
2761 else
2762 skb_set_transport_header(skb,
2763 skb_checksum_start_offset(skb));
2764 if (!(features & NETIF_F_ALL_CSUM) &&
2765 skb_checksum_help(skb))
2766 goto out_kfree_skb;
7b9c6090 2767 }
0c772159 2768 }
7b9c6090 2769
eae3f88e 2770 return skb;
fc70fb64 2771
f6a78bfc
HX
2772out_kfree_skb:
2773 kfree_skb(skb);
eae3f88e
DM
2774out_null:
2775 return NULL;
2776}
6afff0ca 2777
55a93b3e
ED
2778struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2779{
2780 struct sk_buff *next, *head = NULL, *tail;
2781
bec3cfdc 2782 for (; skb != NULL; skb = next) {
55a93b3e
ED
2783 next = skb->next;
2784 skb->next = NULL;
bec3cfdc
ED
2785
2786 /* in case skb wont be segmented, point to itself */
2787 skb->prev = skb;
2788
55a93b3e 2789 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
2790 if (!skb)
2791 continue;
55a93b3e 2792
bec3cfdc
ED
2793 if (!head)
2794 head = skb;
2795 else
2796 tail->next = skb;
2797 /* If skb was segmented, skb->prev points to
2798 * the last segment. If not, it still contains skb.
2799 */
2800 tail = skb->prev;
55a93b3e
ED
2801 }
2802 return head;
f6a78bfc
HX
2803}
2804
1def9238
ED
2805static void qdisc_pkt_len_init(struct sk_buff *skb)
2806{
2807 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2808
2809 qdisc_skb_cb(skb)->pkt_len = skb->len;
2810
2811 /* To get more precise estimation of bytes sent on wire,
2812 * we add to pkt_len the headers size of all segments
2813 */
2814 if (shinfo->gso_size) {
757b8b1d 2815 unsigned int hdr_len;
15e5a030 2816 u16 gso_segs = shinfo->gso_segs;
1def9238 2817
757b8b1d
ED
2818 /* mac layer + network layer */
2819 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2820
2821 /* + transport layer */
1def9238
ED
2822 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2823 hdr_len += tcp_hdrlen(skb);
2824 else
2825 hdr_len += sizeof(struct udphdr);
15e5a030
JW
2826
2827 if (shinfo->gso_type & SKB_GSO_DODGY)
2828 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2829 shinfo->gso_size);
2830
2831 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
2832 }
2833}
2834
bbd8a0d3
KK
2835static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2836 struct net_device *dev,
2837 struct netdev_queue *txq)
2838{
2839 spinlock_t *root_lock = qdisc_lock(q);
a2da570d 2840 bool contended;
bbd8a0d3
KK
2841 int rc;
2842
1def9238 2843 qdisc_pkt_len_init(skb);
a2da570d 2844 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
2845 /*
2846 * Heuristic to force contended enqueues to serialize on a
2847 * separate lock before trying to get qdisc main lock.
9bf2b8c2
YX
2848 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2849 * often and dequeue packets faster.
79640a4c 2850 */
a2da570d 2851 contended = qdisc_is_running(q);
79640a4c
ED
2852 if (unlikely(contended))
2853 spin_lock(&q->busylock);
2854
bbd8a0d3
KK
2855 spin_lock(root_lock);
2856 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2857 kfree_skb(skb);
2858 rc = NET_XMIT_DROP;
2859 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 2860 qdisc_run_begin(q)) {
bbd8a0d3
KK
2861 /*
2862 * This is a work-conserving queue; there are no old skbs
2863 * waiting to be sent out; and the qdisc is not running -
2864 * xmit the skb directly.
2865 */
bfe0d029 2866
bfe0d029
ED
2867 qdisc_bstats_update(q, skb);
2868
55a93b3e 2869 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
2870 if (unlikely(contended)) {
2871 spin_unlock(&q->busylock);
2872 contended = false;
2873 }
bbd8a0d3 2874 __qdisc_run(q);
79640a4c 2875 } else
bc135b23 2876 qdisc_run_end(q);
bbd8a0d3
KK
2877
2878 rc = NET_XMIT_SUCCESS;
2879 } else {
a2da570d 2880 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
79640a4c
ED
2881 if (qdisc_run_begin(q)) {
2882 if (unlikely(contended)) {
2883 spin_unlock(&q->busylock);
2884 contended = false;
2885 }
2886 __qdisc_run(q);
2887 }
bbd8a0d3
KK
2888 }
2889 spin_unlock(root_lock);
79640a4c
ED
2890 if (unlikely(contended))
2891 spin_unlock(&q->busylock);
bbd8a0d3
KK
2892 return rc;
2893}
2894
86f8515f 2895#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
2896static void skb_update_prio(struct sk_buff *skb)
2897{
6977a79d 2898 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 2899
91c68ce2
ED
2900 if (!skb->priority && skb->sk && map) {
2901 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2902
2903 if (prioidx < map->priomap_len)
2904 skb->priority = map->priomap[prioidx];
2905 }
5bc1421e
NH
2906}
2907#else
2908#define skb_update_prio(skb)
2909#endif
2910
f60e5990 2911DEFINE_PER_CPU(int, xmit_recursion);
2912EXPORT_SYMBOL(xmit_recursion);
2913
11a766ce 2914#define RECURSION_LIMIT 10
745e20f1 2915
95603e22
MM
2916/**
2917 * dev_loopback_xmit - loop back @skb
2918 * @skb: buffer to transmit
2919 */
7026b1dd 2920int dev_loopback_xmit(struct sock *sk, struct sk_buff *skb)
95603e22
MM
2921{
2922 skb_reset_mac_header(skb);
2923 __skb_pull(skb, skb_network_offset(skb));
2924 skb->pkt_type = PACKET_LOOPBACK;
2925 skb->ip_summed = CHECKSUM_UNNECESSARY;
2926 WARN_ON(!skb_dst(skb));
2927 skb_dst_force(skb);
2928 netif_rx_ni(skb);
2929 return 0;
2930}
2931EXPORT_SYMBOL(dev_loopback_xmit);
2932
638b2a69
JP
2933static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2934{
2935#ifdef CONFIG_XPS
2936 struct xps_dev_maps *dev_maps;
2937 struct xps_map *map;
2938 int queue_index = -1;
2939
2940 rcu_read_lock();
2941 dev_maps = rcu_dereference(dev->xps_maps);
2942 if (dev_maps) {
2943 map = rcu_dereference(
2944 dev_maps->cpu_map[skb->sender_cpu - 1]);
2945 if (map) {
2946 if (map->len == 1)
2947 queue_index = map->queues[0];
2948 else
2949 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2950 map->len)];
2951 if (unlikely(queue_index >= dev->real_num_tx_queues))
2952 queue_index = -1;
2953 }
2954 }
2955 rcu_read_unlock();
2956
2957 return queue_index;
2958#else
2959 return -1;
2960#endif
2961}
2962
2963static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
2964{
2965 struct sock *sk = skb->sk;
2966 int queue_index = sk_tx_queue_get(sk);
2967
2968 if (queue_index < 0 || skb->ooo_okay ||
2969 queue_index >= dev->real_num_tx_queues) {
2970 int new_index = get_xps_queue(dev, skb);
2971 if (new_index < 0)
2972 new_index = skb_tx_hash(dev, skb);
2973
2974 if (queue_index != new_index && sk &&
2975 rcu_access_pointer(sk->sk_dst_cache))
2976 sk_tx_queue_set(sk, new_index);
2977
2978 queue_index = new_index;
2979 }
2980
2981 return queue_index;
2982}
2983
2984struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2985 struct sk_buff *skb,
2986 void *accel_priv)
2987{
2988 int queue_index = 0;
2989
2990#ifdef CONFIG_XPS
2991 if (skb->sender_cpu == 0)
2992 skb->sender_cpu = raw_smp_processor_id() + 1;
2993#endif
2994
2995 if (dev->real_num_tx_queues != 1) {
2996 const struct net_device_ops *ops = dev->netdev_ops;
2997 if (ops->ndo_select_queue)
2998 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
2999 __netdev_pick_tx);
3000 else
3001 queue_index = __netdev_pick_tx(dev, skb);
3002
3003 if (!accel_priv)
3004 queue_index = netdev_cap_txqueue(dev, queue_index);
3005 }
3006
3007 skb_set_queue_mapping(skb, queue_index);
3008 return netdev_get_tx_queue(dev, queue_index);
3009}
3010
d29f749e 3011/**
9d08dd3d 3012 * __dev_queue_xmit - transmit a buffer
d29f749e 3013 * @skb: buffer to transmit
9d08dd3d 3014 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3015 *
3016 * Queue a buffer for transmission to a network device. The caller must
3017 * have set the device and priority and built the buffer before calling
3018 * this function. The function can be called from an interrupt.
3019 *
3020 * A negative errno code is returned on a failure. A success does not
3021 * guarantee the frame will be transmitted as it may be dropped due
3022 * to congestion or traffic shaping.
3023 *
3024 * -----------------------------------------------------------------------------------
3025 * I notice this method can also return errors from the queue disciplines,
3026 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3027 * be positive.
3028 *
3029 * Regardless of the return value, the skb is consumed, so it is currently
3030 * difficult to retry a send to this method. (You can bump the ref count
3031 * before sending to hold a reference for retry if you are careful.)
3032 *
3033 * When calling this method, interrupts MUST be enabled. This is because
3034 * the BH enable code must have IRQs enabled so that it will not deadlock.
3035 * --BLG
3036 */
0a59f3a9 3037static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3038{
3039 struct net_device *dev = skb->dev;
dc2b4847 3040 struct netdev_queue *txq;
1da177e4
LT
3041 struct Qdisc *q;
3042 int rc = -ENOMEM;
3043
6d1ccff6
ED
3044 skb_reset_mac_header(skb);
3045
e7fd2885
WB
3046 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3047 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3048
4ec93edb
YH
3049 /* Disable soft irqs for various locks below. Also
3050 * stops preemption for RCU.
1da177e4 3051 */
4ec93edb 3052 rcu_read_lock_bh();
1da177e4 3053
5bc1421e
NH
3054 skb_update_prio(skb);
3055
02875878
ED
3056 /* If device/qdisc don't need skb->dst, release it right now while
3057 * its hot in this cpu cache.
3058 */
3059 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3060 skb_dst_drop(skb);
3061 else
3062 skb_dst_force(skb);
3063
0c4f691f
SF
3064#ifdef CONFIG_NET_SWITCHDEV
3065 /* Don't forward if offload device already forwarded */
3066 if (skb->offload_fwd_mark &&
3067 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3068 consume_skb(skb);
3069 rc = NET_XMIT_SUCCESS;
3070 goto out;
3071 }
3072#endif
3073
f663dd9a 3074 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3075 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3076
1da177e4 3077#ifdef CONFIG_NET_CLS_ACT
d1b19dff 3078 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
1da177e4 3079#endif
cf66ba58 3080 trace_net_dev_queue(skb);
1da177e4 3081 if (q->enqueue) {
bbd8a0d3 3082 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3083 goto out;
1da177e4
LT
3084 }
3085
3086 /* The device has no queue. Common case for software devices:
3087 loopback, all the sorts of tunnels...
3088
932ff279
HX
3089 Really, it is unlikely that netif_tx_lock protection is necessary
3090 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
3091 counters.)
3092 However, it is possible, that they rely on protection
3093 made by us here.
3094
3095 Check this and shot the lock. It is not prone from deadlocks.
3096 Either shot noqueue qdisc, it is even simpler 8)
3097 */
3098 if (dev->flags & IFF_UP) {
3099 int cpu = smp_processor_id(); /* ok because BHs are off */
3100
c773e847 3101 if (txq->xmit_lock_owner != cpu) {
1da177e4 3102
745e20f1
ED
3103 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3104 goto recursion_alert;
3105
1f59533f
JDB
3106 skb = validate_xmit_skb(skb, dev);
3107 if (!skb)
3108 goto drop;
3109
c773e847 3110 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3111
73466498 3112 if (!netif_xmit_stopped(txq)) {
745e20f1 3113 __this_cpu_inc(xmit_recursion);
ce93718f 3114 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3115 __this_cpu_dec(xmit_recursion);
572a9d7b 3116 if (dev_xmit_complete(rc)) {
c773e847 3117 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3118 goto out;
3119 }
3120 }
c773e847 3121 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3122 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3123 dev->name);
1da177e4
LT
3124 } else {
3125 /* Recursion is detected! It is possible,
745e20f1
ED
3126 * unfortunately
3127 */
3128recursion_alert:
e87cc472
JP
3129 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3130 dev->name);
1da177e4
LT
3131 }
3132 }
3133
3134 rc = -ENETDOWN;
1f59533f 3135drop:
d4828d85 3136 rcu_read_unlock_bh();
1da177e4 3137
015f0688 3138 atomic_long_inc(&dev->tx_dropped);
1f59533f 3139 kfree_skb_list(skb);
1da177e4
LT
3140 return rc;
3141out:
d4828d85 3142 rcu_read_unlock_bh();
1da177e4
LT
3143 return rc;
3144}
f663dd9a 3145
7026b1dd 3146int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb)
f663dd9a
JW
3147{
3148 return __dev_queue_xmit(skb, NULL);
3149}
7026b1dd 3150EXPORT_SYMBOL(dev_queue_xmit_sk);
1da177e4 3151
f663dd9a
JW
3152int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3153{
3154 return __dev_queue_xmit(skb, accel_priv);
3155}
3156EXPORT_SYMBOL(dev_queue_xmit_accel);
3157
1da177e4
LT
3158
3159/*=======================================================================
3160 Receiver routines
3161 =======================================================================*/
3162
6b2bedc3 3163int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3164EXPORT_SYMBOL(netdev_max_backlog);
3165
3b098e2d 3166int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3167int netdev_budget __read_mostly = 300;
3168int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3169
eecfd7c4
ED
3170/* Called with irq disabled */
3171static inline void ____napi_schedule(struct softnet_data *sd,
3172 struct napi_struct *napi)
3173{
3174 list_add_tail(&napi->poll_list, &sd->poll_list);
3175 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3176}
3177
bfb564e7
KK
3178#ifdef CONFIG_RPS
3179
3180/* One global table that all flow-based protocols share. */
6e3f7faf 3181struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3182EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3183u32 rps_cpu_mask __read_mostly;
3184EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3185
c5905afb 3186struct static_key rps_needed __read_mostly;
adc9300e 3187
c445477d
BH
3188static struct rps_dev_flow *
3189set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3190 struct rps_dev_flow *rflow, u16 next_cpu)
3191{
a31196b0 3192 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3193#ifdef CONFIG_RFS_ACCEL
3194 struct netdev_rx_queue *rxqueue;
3195 struct rps_dev_flow_table *flow_table;
3196 struct rps_dev_flow *old_rflow;
3197 u32 flow_id;
3198 u16 rxq_index;
3199 int rc;
3200
3201 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3202 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3203 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3204 goto out;
3205 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3206 if (rxq_index == skb_get_rx_queue(skb))
3207 goto out;
3208
3209 rxqueue = dev->_rx + rxq_index;
3210 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3211 if (!flow_table)
3212 goto out;
61b905da 3213 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3214 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3215 rxq_index, flow_id);
3216 if (rc < 0)
3217 goto out;
3218 old_rflow = rflow;
3219 rflow = &flow_table->flows[flow_id];
c445477d
BH
3220 rflow->filter = rc;
3221 if (old_rflow->filter == rflow->filter)
3222 old_rflow->filter = RPS_NO_FILTER;
3223 out:
3224#endif
3225 rflow->last_qtail =
09994d1b 3226 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3227 }
3228
09994d1b 3229 rflow->cpu = next_cpu;
c445477d
BH
3230 return rflow;
3231}
3232
bfb564e7
KK
3233/*
3234 * get_rps_cpu is called from netif_receive_skb and returns the target
3235 * CPU from the RPS map of the receiving queue for a given skb.
3236 * rcu_read_lock must be held on entry.
3237 */
3238static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3239 struct rps_dev_flow **rflowp)
3240{
567e4b79
ED
3241 const struct rps_sock_flow_table *sock_flow_table;
3242 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3243 struct rps_dev_flow_table *flow_table;
567e4b79 3244 struct rps_map *map;
bfb564e7 3245 int cpu = -1;
567e4b79 3246 u32 tcpu;
61b905da 3247 u32 hash;
bfb564e7
KK
3248
3249 if (skb_rx_queue_recorded(skb)) {
3250 u16 index = skb_get_rx_queue(skb);
567e4b79 3251
62fe0b40
BH
3252 if (unlikely(index >= dev->real_num_rx_queues)) {
3253 WARN_ONCE(dev->real_num_rx_queues > 1,
3254 "%s received packet on queue %u, but number "
3255 "of RX queues is %u\n",
3256 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3257 goto done;
3258 }
567e4b79
ED
3259 rxqueue += index;
3260 }
bfb564e7 3261
567e4b79
ED
3262 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3263
3264 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3265 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3266 if (!flow_table && !map)
bfb564e7
KK
3267 goto done;
3268
2d47b459 3269 skb_reset_network_header(skb);
61b905da
TH
3270 hash = skb_get_hash(skb);
3271 if (!hash)
bfb564e7
KK
3272 goto done;
3273
fec5e652
TH
3274 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3275 if (flow_table && sock_flow_table) {
fec5e652 3276 struct rps_dev_flow *rflow;
567e4b79
ED
3277 u32 next_cpu;
3278 u32 ident;
3279
3280 /* First check into global flow table if there is a match */
3281 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3282 if ((ident ^ hash) & ~rps_cpu_mask)
3283 goto try_rps;
fec5e652 3284
567e4b79
ED
3285 next_cpu = ident & rps_cpu_mask;
3286
3287 /* OK, now we know there is a match,
3288 * we can look at the local (per receive queue) flow table
3289 */
61b905da 3290 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3291 tcpu = rflow->cpu;
3292
fec5e652
TH
3293 /*
3294 * If the desired CPU (where last recvmsg was done) is
3295 * different from current CPU (one in the rx-queue flow
3296 * table entry), switch if one of the following holds:
a31196b0 3297 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3298 * - Current CPU is offline.
3299 * - The current CPU's queue tail has advanced beyond the
3300 * last packet that was enqueued using this table entry.
3301 * This guarantees that all previous packets for the flow
3302 * have been dequeued, thus preserving in order delivery.
3303 */
3304 if (unlikely(tcpu != next_cpu) &&
a31196b0 3305 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3306 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3307 rflow->last_qtail)) >= 0)) {
3308 tcpu = next_cpu;
c445477d 3309 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3310 }
c445477d 3311
a31196b0 3312 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3313 *rflowp = rflow;
3314 cpu = tcpu;
3315 goto done;
3316 }
3317 }
3318
567e4b79
ED
3319try_rps:
3320
0a9627f2 3321 if (map) {
8fc54f68 3322 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3323 if (cpu_online(tcpu)) {
3324 cpu = tcpu;
3325 goto done;
3326 }
3327 }
3328
3329done:
0a9627f2
TH
3330 return cpu;
3331}
3332
c445477d
BH
3333#ifdef CONFIG_RFS_ACCEL
3334
3335/**
3336 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3337 * @dev: Device on which the filter was set
3338 * @rxq_index: RX queue index
3339 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3340 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3341 *
3342 * Drivers that implement ndo_rx_flow_steer() should periodically call
3343 * this function for each installed filter and remove the filters for
3344 * which it returns %true.
3345 */
3346bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3347 u32 flow_id, u16 filter_id)
3348{
3349 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3350 struct rps_dev_flow_table *flow_table;
3351 struct rps_dev_flow *rflow;
3352 bool expire = true;
a31196b0 3353 unsigned int cpu;
c445477d
BH
3354
3355 rcu_read_lock();
3356 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3357 if (flow_table && flow_id <= flow_table->mask) {
3358 rflow = &flow_table->flows[flow_id];
3359 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3360 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3361 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3362 rflow->last_qtail) <
3363 (int)(10 * flow_table->mask)))
3364 expire = false;
3365 }
3366 rcu_read_unlock();
3367 return expire;
3368}
3369EXPORT_SYMBOL(rps_may_expire_flow);
3370
3371#endif /* CONFIG_RFS_ACCEL */
3372
0a9627f2 3373/* Called from hardirq (IPI) context */
e36fa2f7 3374static void rps_trigger_softirq(void *data)
0a9627f2 3375{
e36fa2f7
ED
3376 struct softnet_data *sd = data;
3377
eecfd7c4 3378 ____napi_schedule(sd, &sd->backlog);
dee42870 3379 sd->received_rps++;
0a9627f2 3380}
e36fa2f7 3381
fec5e652 3382#endif /* CONFIG_RPS */
0a9627f2 3383
e36fa2f7
ED
3384/*
3385 * Check if this softnet_data structure is another cpu one
3386 * If yes, queue it to our IPI list and return 1
3387 * If no, return 0
3388 */
3389static int rps_ipi_queued(struct softnet_data *sd)
3390{
3391#ifdef CONFIG_RPS
903ceff7 3392 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3393
3394 if (sd != mysd) {
3395 sd->rps_ipi_next = mysd->rps_ipi_list;
3396 mysd->rps_ipi_list = sd;
3397
3398 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3399 return 1;
3400 }
3401#endif /* CONFIG_RPS */
3402 return 0;
3403}
3404
99bbc707
WB
3405#ifdef CONFIG_NET_FLOW_LIMIT
3406int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3407#endif
3408
3409static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3410{
3411#ifdef CONFIG_NET_FLOW_LIMIT
3412 struct sd_flow_limit *fl;
3413 struct softnet_data *sd;
3414 unsigned int old_flow, new_flow;
3415
3416 if (qlen < (netdev_max_backlog >> 1))
3417 return false;
3418
903ceff7 3419 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3420
3421 rcu_read_lock();
3422 fl = rcu_dereference(sd->flow_limit);
3423 if (fl) {
3958afa1 3424 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3425 old_flow = fl->history[fl->history_head];
3426 fl->history[fl->history_head] = new_flow;
3427
3428 fl->history_head++;
3429 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3430
3431 if (likely(fl->buckets[old_flow]))
3432 fl->buckets[old_flow]--;
3433
3434 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3435 fl->count++;
3436 rcu_read_unlock();
3437 return true;
3438 }
3439 }
3440 rcu_read_unlock();
3441#endif
3442 return false;
3443}
3444
0a9627f2
TH
3445/*
3446 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3447 * queue (may be a remote CPU queue).
3448 */
fec5e652
TH
3449static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3450 unsigned int *qtail)
0a9627f2 3451{
e36fa2f7 3452 struct softnet_data *sd;
0a9627f2 3453 unsigned long flags;
99bbc707 3454 unsigned int qlen;
0a9627f2 3455
e36fa2f7 3456 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3457
3458 local_irq_save(flags);
0a9627f2 3459
e36fa2f7 3460 rps_lock(sd);
e9e4dd32
JA
3461 if (!netif_running(skb->dev))
3462 goto drop;
99bbc707
WB
3463 qlen = skb_queue_len(&sd->input_pkt_queue);
3464 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3465 if (qlen) {
0a9627f2 3466enqueue:
e36fa2f7 3467 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3468 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3469 rps_unlock(sd);
152102c7 3470 local_irq_restore(flags);
0a9627f2
TH
3471 return NET_RX_SUCCESS;
3472 }
3473
ebda37c2
ED
3474 /* Schedule NAPI for backlog device
3475 * We can use non atomic operation since we own the queue lock
3476 */
3477 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3478 if (!rps_ipi_queued(sd))
eecfd7c4 3479 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3480 }
3481 goto enqueue;
3482 }
3483
e9e4dd32 3484drop:
dee42870 3485 sd->dropped++;
e36fa2f7 3486 rps_unlock(sd);
0a9627f2 3487
0a9627f2
TH
3488 local_irq_restore(flags);
3489
caf586e5 3490 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3491 kfree_skb(skb);
3492 return NET_RX_DROP;
3493}
1da177e4 3494
ae78dbfa 3495static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3496{
b0e28f1e 3497 int ret;
1da177e4 3498
588f0330 3499 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3500
cf66ba58 3501 trace_netif_rx(skb);
df334545 3502#ifdef CONFIG_RPS
c5905afb 3503 if (static_key_false(&rps_needed)) {
fec5e652 3504 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3505 int cpu;
3506
cece1945 3507 preempt_disable();
b0e28f1e 3508 rcu_read_lock();
fec5e652
TH
3509
3510 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3511 if (cpu < 0)
3512 cpu = smp_processor_id();
fec5e652
TH
3513
3514 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3515
b0e28f1e 3516 rcu_read_unlock();
cece1945 3517 preempt_enable();
adc9300e
ED
3518 } else
3519#endif
fec5e652
TH
3520 {
3521 unsigned int qtail;
3522 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3523 put_cpu();
3524 }
b0e28f1e 3525 return ret;
1da177e4 3526}
ae78dbfa
BH
3527
3528/**
3529 * netif_rx - post buffer to the network code
3530 * @skb: buffer to post
3531 *
3532 * This function receives a packet from a device driver and queues it for
3533 * the upper (protocol) levels to process. It always succeeds. The buffer
3534 * may be dropped during processing for congestion control or by the
3535 * protocol layers.
3536 *
3537 * return values:
3538 * NET_RX_SUCCESS (no congestion)
3539 * NET_RX_DROP (packet was dropped)
3540 *
3541 */
3542
3543int netif_rx(struct sk_buff *skb)
3544{
3545 trace_netif_rx_entry(skb);
3546
3547 return netif_rx_internal(skb);
3548}
d1b19dff 3549EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3550
3551int netif_rx_ni(struct sk_buff *skb)
3552{
3553 int err;
3554
ae78dbfa
BH
3555 trace_netif_rx_ni_entry(skb);
3556
1da177e4 3557 preempt_disable();
ae78dbfa 3558 err = netif_rx_internal(skb);
1da177e4
LT
3559 if (local_softirq_pending())
3560 do_softirq();
3561 preempt_enable();
3562
3563 return err;
3564}
1da177e4
LT
3565EXPORT_SYMBOL(netif_rx_ni);
3566
1da177e4
LT
3567static void net_tx_action(struct softirq_action *h)
3568{
903ceff7 3569 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3570
3571 if (sd->completion_queue) {
3572 struct sk_buff *clist;
3573
3574 local_irq_disable();
3575 clist = sd->completion_queue;
3576 sd->completion_queue = NULL;
3577 local_irq_enable();
3578
3579 while (clist) {
3580 struct sk_buff *skb = clist;
3581 clist = clist->next;
3582
547b792c 3583 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3584 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3585 trace_consume_skb(skb);
3586 else
3587 trace_kfree_skb(skb, net_tx_action);
1da177e4
LT
3588 __kfree_skb(skb);
3589 }
3590 }
3591
3592 if (sd->output_queue) {
37437bb2 3593 struct Qdisc *head;
1da177e4
LT
3594
3595 local_irq_disable();
3596 head = sd->output_queue;
3597 sd->output_queue = NULL;
a9cbd588 3598 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3599 local_irq_enable();
3600
3601 while (head) {
37437bb2
DM
3602 struct Qdisc *q = head;
3603 spinlock_t *root_lock;
3604
1da177e4
LT
3605 head = head->next_sched;
3606
5fb66229 3607 root_lock = qdisc_lock(q);
37437bb2 3608 if (spin_trylock(root_lock)) {
4e857c58 3609 smp_mb__before_atomic();
def82a1d
JP
3610 clear_bit(__QDISC_STATE_SCHED,
3611 &q->state);
37437bb2
DM
3612 qdisc_run(q);
3613 spin_unlock(root_lock);
1da177e4 3614 } else {
195648bb 3615 if (!test_bit(__QDISC_STATE_DEACTIVATED,
e8a83e10 3616 &q->state)) {
195648bb 3617 __netif_reschedule(q);
e8a83e10 3618 } else {
4e857c58 3619 smp_mb__before_atomic();
e8a83e10
JP
3620 clear_bit(__QDISC_STATE_SCHED,
3621 &q->state);
3622 }
1da177e4
LT
3623 }
3624 }
3625 }
3626}
3627
ab95bfe0
JP
3628#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3629 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
da678292
MM
3630/* This hook is defined here for ATM LANE */
3631int (*br_fdb_test_addr_hook)(struct net_device *dev,
3632 unsigned char *addr) __read_mostly;
4fb019a0 3633EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3634#endif
1da177e4 3635
f697c3e8
HX
3636static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3637 struct packet_type **pt_prev,
3638 int *ret, struct net_device *orig_dev)
3639{
e7582bab 3640#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3641 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3642 struct tcf_result cl_res;
24824a09 3643
c9e99fd0
DB
3644 /* If there's at least one ingress present somewhere (so
3645 * we get here via enabled static key), remaining devices
3646 * that are not configured with an ingress qdisc will bail
d2788d34 3647 * out here.
c9e99fd0 3648 */
d2788d34 3649 if (!cl)
4577139b 3650 return skb;
f697c3e8
HX
3651 if (*pt_prev) {
3652 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3653 *pt_prev = NULL;
1da177e4
LT
3654 }
3655
3365495c 3656 qdisc_skb_cb(skb)->pkt_len = skb->len;
c9e99fd0 3657 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
24ea591d 3658 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3659
3b3ae880 3660 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3661 case TC_ACT_OK:
3662 case TC_ACT_RECLASSIFY:
3663 skb->tc_index = TC_H_MIN(cl_res.classid);
3664 break;
3665 case TC_ACT_SHOT:
24ea591d 3666 qdisc_qstats_cpu_drop(cl->q);
d2788d34
DB
3667 case TC_ACT_STOLEN:
3668 case TC_ACT_QUEUED:
3669 kfree_skb(skb);
3670 return NULL;
3671 default:
3672 break;
f697c3e8 3673 }
e7582bab 3674#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3675 return skb;
3676}
1da177e4 3677
ab95bfe0
JP
3678/**
3679 * netdev_rx_handler_register - register receive handler
3680 * @dev: device to register a handler for
3681 * @rx_handler: receive handler to register
93e2c32b 3682 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3683 *
e227867f 3684 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3685 * called from __netif_receive_skb. A negative errno code is returned
3686 * on a failure.
3687 *
3688 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3689 *
3690 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3691 */
3692int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3693 rx_handler_func_t *rx_handler,
3694 void *rx_handler_data)
ab95bfe0
JP
3695{
3696 ASSERT_RTNL();
3697
3698 if (dev->rx_handler)
3699 return -EBUSY;
3700
00cfec37 3701 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 3702 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
3703 rcu_assign_pointer(dev->rx_handler, rx_handler);
3704
3705 return 0;
3706}
3707EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3708
3709/**
3710 * netdev_rx_handler_unregister - unregister receive handler
3711 * @dev: device to unregister a handler from
3712 *
166ec369 3713 * Unregister a receive handler from a device.
ab95bfe0
JP
3714 *
3715 * The caller must hold the rtnl_mutex.
3716 */
3717void netdev_rx_handler_unregister(struct net_device *dev)
3718{
3719
3720 ASSERT_RTNL();
a9b3cd7f 3721 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
3722 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3723 * section has a guarantee to see a non NULL rx_handler_data
3724 * as well.
3725 */
3726 synchronize_net();
a9b3cd7f 3727 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
3728}
3729EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3730
b4b9e355
MG
3731/*
3732 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3733 * the special handling of PFMEMALLOC skbs.
3734 */
3735static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3736{
3737 switch (skb->protocol) {
2b8837ae
JP
3738 case htons(ETH_P_ARP):
3739 case htons(ETH_P_IP):
3740 case htons(ETH_P_IPV6):
3741 case htons(ETH_P_8021Q):
3742 case htons(ETH_P_8021AD):
b4b9e355
MG
3743 return true;
3744 default:
3745 return false;
3746 }
3747}
3748
e687ad60
PN
3749static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3750 int *ret, struct net_device *orig_dev)
3751{
e7582bab 3752#ifdef CONFIG_NETFILTER_INGRESS
e687ad60
PN
3753 if (nf_hook_ingress_active(skb)) {
3754 if (*pt_prev) {
3755 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3756 *pt_prev = NULL;
3757 }
3758
3759 return nf_hook_ingress(skb);
3760 }
e7582bab 3761#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
3762 return 0;
3763}
e687ad60 3764
9754e293 3765static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
3766{
3767 struct packet_type *ptype, *pt_prev;
ab95bfe0 3768 rx_handler_func_t *rx_handler;
f2ccd8fa 3769 struct net_device *orig_dev;
8a4eb573 3770 bool deliver_exact = false;
1da177e4 3771 int ret = NET_RX_DROP;
252e3346 3772 __be16 type;
1da177e4 3773
588f0330 3774 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 3775
cf66ba58 3776 trace_netif_receive_skb(skb);
9b22ea56 3777
cc9bd5ce 3778 orig_dev = skb->dev;
8f903c70 3779
c1d2bbe1 3780 skb_reset_network_header(skb);
fda55eca
ED
3781 if (!skb_transport_header_was_set(skb))
3782 skb_reset_transport_header(skb);
0b5c9db1 3783 skb_reset_mac_len(skb);
1da177e4
LT
3784
3785 pt_prev = NULL;
3786
63d8ea7f 3787another_round:
b6858177 3788 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
3789
3790 __this_cpu_inc(softnet_data.processed);
3791
8ad227ff
PM
3792 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3793 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 3794 skb = skb_vlan_untag(skb);
bcc6d479 3795 if (unlikely(!skb))
2c17d27c 3796 goto out;
bcc6d479
JP
3797 }
3798
1da177e4
LT
3799#ifdef CONFIG_NET_CLS_ACT
3800 if (skb->tc_verd & TC_NCLS) {
3801 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3802 goto ncls;
3803 }
3804#endif
3805
9754e293 3806 if (pfmemalloc)
b4b9e355
MG
3807 goto skip_taps;
3808
1da177e4 3809 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
3810 if (pt_prev)
3811 ret = deliver_skb(skb, pt_prev, orig_dev);
3812 pt_prev = ptype;
3813 }
3814
3815 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3816 if (pt_prev)
3817 ret = deliver_skb(skb, pt_prev, orig_dev);
3818 pt_prev = ptype;
1da177e4
LT
3819 }
3820
b4b9e355 3821skip_taps:
1cf51900 3822#ifdef CONFIG_NET_INGRESS
4577139b
DB
3823 if (static_key_false(&ingress_needed)) {
3824 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3825 if (!skb)
2c17d27c 3826 goto out;
e687ad60
PN
3827
3828 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 3829 goto out;
4577139b 3830 }
1cf51900
PN
3831#endif
3832#ifdef CONFIG_NET_CLS_ACT
4577139b 3833 skb->tc_verd = 0;
1da177e4
LT
3834ncls:
3835#endif
9754e293 3836 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
3837 goto drop;
3838
df8a39de 3839 if (skb_vlan_tag_present(skb)) {
2425717b
JF
3840 if (pt_prev) {
3841 ret = deliver_skb(skb, pt_prev, orig_dev);
3842 pt_prev = NULL;
3843 }
48cc32d3 3844 if (vlan_do_receive(&skb))
2425717b
JF
3845 goto another_round;
3846 else if (unlikely(!skb))
2c17d27c 3847 goto out;
2425717b
JF
3848 }
3849
48cc32d3 3850 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
3851 if (rx_handler) {
3852 if (pt_prev) {
3853 ret = deliver_skb(skb, pt_prev, orig_dev);
3854 pt_prev = NULL;
3855 }
8a4eb573
JP
3856 switch (rx_handler(&skb)) {
3857 case RX_HANDLER_CONSUMED:
3bc1b1ad 3858 ret = NET_RX_SUCCESS;
2c17d27c 3859 goto out;
8a4eb573 3860 case RX_HANDLER_ANOTHER:
63d8ea7f 3861 goto another_round;
8a4eb573
JP
3862 case RX_HANDLER_EXACT:
3863 deliver_exact = true;
3864 case RX_HANDLER_PASS:
3865 break;
3866 default:
3867 BUG();
3868 }
ab95bfe0 3869 }
1da177e4 3870
df8a39de
JP
3871 if (unlikely(skb_vlan_tag_present(skb))) {
3872 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
3873 skb->pkt_type = PACKET_OTHERHOST;
3874 /* Note: we might in the future use prio bits
3875 * and set skb->priority like in vlan_do_receive()
3876 * For the time being, just ignore Priority Code Point
3877 */
3878 skb->vlan_tci = 0;
3879 }
48cc32d3 3880
7866a621
SN
3881 type = skb->protocol;
3882
63d8ea7f 3883 /* deliver only exact match when indicated */
7866a621
SN
3884 if (likely(!deliver_exact)) {
3885 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3886 &ptype_base[ntohs(type) &
3887 PTYPE_HASH_MASK]);
3888 }
1f3c8804 3889
7866a621
SN
3890 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3891 &orig_dev->ptype_specific);
3892
3893 if (unlikely(skb->dev != orig_dev)) {
3894 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3895 &skb->dev->ptype_specific);
1da177e4
LT
3896 }
3897
3898 if (pt_prev) {
1080e512 3899 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 3900 goto drop;
1080e512
MT
3901 else
3902 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 3903 } else {
b4b9e355 3904drop:
caf586e5 3905 atomic_long_inc(&skb->dev->rx_dropped);
1da177e4
LT
3906 kfree_skb(skb);
3907 /* Jamal, now you will not able to escape explaining
3908 * me how you were going to use this. :-)
3909 */
3910 ret = NET_RX_DROP;
3911 }
3912
2c17d27c 3913out:
9754e293
DM
3914 return ret;
3915}
3916
3917static int __netif_receive_skb(struct sk_buff *skb)
3918{
3919 int ret;
3920
3921 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3922 unsigned long pflags = current->flags;
3923
3924 /*
3925 * PFMEMALLOC skbs are special, they should
3926 * - be delivered to SOCK_MEMALLOC sockets only
3927 * - stay away from userspace
3928 * - have bounded memory usage
3929 *
3930 * Use PF_MEMALLOC as this saves us from propagating the allocation
3931 * context down to all allocation sites.
3932 */
3933 current->flags |= PF_MEMALLOC;
3934 ret = __netif_receive_skb_core(skb, true);
3935 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3936 } else
3937 ret = __netif_receive_skb_core(skb, false);
3938
1da177e4
LT
3939 return ret;
3940}
0a9627f2 3941
ae78dbfa 3942static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 3943{
2c17d27c
JA
3944 int ret;
3945
588f0330 3946 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 3947
c1f19b51
RC
3948 if (skb_defer_rx_timestamp(skb))
3949 return NET_RX_SUCCESS;
3950
2c17d27c
JA
3951 rcu_read_lock();
3952
df334545 3953#ifdef CONFIG_RPS
c5905afb 3954 if (static_key_false(&rps_needed)) {
3b098e2d 3955 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 3956 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 3957
3b098e2d
ED
3958 if (cpu >= 0) {
3959 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3960 rcu_read_unlock();
adc9300e 3961 return ret;
3b098e2d 3962 }
fec5e652 3963 }
1e94d72f 3964#endif
2c17d27c
JA
3965 ret = __netif_receive_skb(skb);
3966 rcu_read_unlock();
3967 return ret;
0a9627f2 3968}
ae78dbfa
BH
3969
3970/**
3971 * netif_receive_skb - process receive buffer from network
3972 * @skb: buffer to process
3973 *
3974 * netif_receive_skb() is the main receive data processing function.
3975 * It always succeeds. The buffer may be dropped during processing
3976 * for congestion control or by the protocol layers.
3977 *
3978 * This function may only be called from softirq context and interrupts
3979 * should be enabled.
3980 *
3981 * Return values (usually ignored):
3982 * NET_RX_SUCCESS: no congestion
3983 * NET_RX_DROP: packet was dropped
3984 */
7026b1dd 3985int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb)
ae78dbfa
BH
3986{
3987 trace_netif_receive_skb_entry(skb);
3988
3989 return netif_receive_skb_internal(skb);
3990}
7026b1dd 3991EXPORT_SYMBOL(netif_receive_skb_sk);
1da177e4 3992
88751275
ED
3993/* Network device is going away, flush any packets still pending
3994 * Called with irqs disabled.
3995 */
152102c7 3996static void flush_backlog(void *arg)
6e583ce5 3997{
152102c7 3998 struct net_device *dev = arg;
903ceff7 3999 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6e583ce5
SH
4000 struct sk_buff *skb, *tmp;
4001
e36fa2f7 4002 rps_lock(sd);
6e7676c1 4003 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6e583ce5 4004 if (skb->dev == dev) {
e36fa2f7 4005 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4006 kfree_skb(skb);
76cc8b13 4007 input_queue_head_incr(sd);
6e583ce5 4008 }
6e7676c1 4009 }
e36fa2f7 4010 rps_unlock(sd);
6e7676c1
CG
4011
4012 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4013 if (skb->dev == dev) {
4014 __skb_unlink(skb, &sd->process_queue);
4015 kfree_skb(skb);
76cc8b13 4016 input_queue_head_incr(sd);
6e7676c1
CG
4017 }
4018 }
6e583ce5
SH
4019}
4020
d565b0a1
HX
4021static int napi_gro_complete(struct sk_buff *skb)
4022{
22061d80 4023 struct packet_offload *ptype;
d565b0a1 4024 __be16 type = skb->protocol;
22061d80 4025 struct list_head *head = &offload_base;
d565b0a1
HX
4026 int err = -ENOENT;
4027
c3c7c254
ED
4028 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4029
fc59f9a3
HX
4030 if (NAPI_GRO_CB(skb)->count == 1) {
4031 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4032 goto out;
fc59f9a3 4033 }
d565b0a1
HX
4034
4035 rcu_read_lock();
4036 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4037 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4038 continue;
4039
299603e8 4040 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4041 break;
4042 }
4043 rcu_read_unlock();
4044
4045 if (err) {
4046 WARN_ON(&ptype->list == head);
4047 kfree_skb(skb);
4048 return NET_RX_SUCCESS;
4049 }
4050
4051out:
ae78dbfa 4052 return netif_receive_skb_internal(skb);
d565b0a1
HX
4053}
4054
2e71a6f8
ED
4055/* napi->gro_list contains packets ordered by age.
4056 * youngest packets at the head of it.
4057 * Complete skbs in reverse order to reduce latencies.
4058 */
4059void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4060{
2e71a6f8 4061 struct sk_buff *skb, *prev = NULL;
d565b0a1 4062
2e71a6f8
ED
4063 /* scan list and build reverse chain */
4064 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4065 skb->prev = prev;
4066 prev = skb;
4067 }
4068
4069 for (skb = prev; skb; skb = prev) {
d565b0a1 4070 skb->next = NULL;
2e71a6f8
ED
4071
4072 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4073 return;
4074
4075 prev = skb->prev;
d565b0a1 4076 napi_gro_complete(skb);
2e71a6f8 4077 napi->gro_count--;
d565b0a1
HX
4078 }
4079
4080 napi->gro_list = NULL;
4081}
86cac58b 4082EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4083
89c5fa33
ED
4084static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4085{
4086 struct sk_buff *p;
4087 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4088 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4089
4090 for (p = napi->gro_list; p; p = p->next) {
4091 unsigned long diffs;
4092
0b4cec8c
TH
4093 NAPI_GRO_CB(p)->flush = 0;
4094
4095 if (hash != skb_get_hash_raw(p)) {
4096 NAPI_GRO_CB(p)->same_flow = 0;
4097 continue;
4098 }
4099
89c5fa33
ED
4100 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4101 diffs |= p->vlan_tci ^ skb->vlan_tci;
4102 if (maclen == ETH_HLEN)
4103 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4104 skb_mac_header(skb));
89c5fa33
ED
4105 else if (!diffs)
4106 diffs = memcmp(skb_mac_header(p),
a50e233c 4107 skb_mac_header(skb),
89c5fa33
ED
4108 maclen);
4109 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4110 }
4111}
4112
299603e8
JC
4113static void skb_gro_reset_offset(struct sk_buff *skb)
4114{
4115 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4116 const skb_frag_t *frag0 = &pinfo->frags[0];
4117
4118 NAPI_GRO_CB(skb)->data_offset = 0;
4119 NAPI_GRO_CB(skb)->frag0 = NULL;
4120 NAPI_GRO_CB(skb)->frag0_len = 0;
4121
4122 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4123 pinfo->nr_frags &&
4124 !PageHighMem(skb_frag_page(frag0))) {
4125 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4126 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
4127 }
4128}
4129
a50e233c
ED
4130static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4131{
4132 struct skb_shared_info *pinfo = skb_shinfo(skb);
4133
4134 BUG_ON(skb->end - skb->tail < grow);
4135
4136 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4137
4138 skb->data_len -= grow;
4139 skb->tail += grow;
4140
4141 pinfo->frags[0].page_offset += grow;
4142 skb_frag_size_sub(&pinfo->frags[0], grow);
4143
4144 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4145 skb_frag_unref(skb, 0);
4146 memmove(pinfo->frags, pinfo->frags + 1,
4147 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4148 }
4149}
4150
bb728820 4151static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4152{
4153 struct sk_buff **pp = NULL;
22061d80 4154 struct packet_offload *ptype;
d565b0a1 4155 __be16 type = skb->protocol;
22061d80 4156 struct list_head *head = &offload_base;
0da2afd5 4157 int same_flow;
5b252f0c 4158 enum gro_result ret;
a50e233c 4159 int grow;
d565b0a1 4160
9c62a68d 4161 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4162 goto normal;
4163
5a212329 4164 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
4165 goto normal;
4166
89c5fa33
ED
4167 gro_list_prepare(napi, skb);
4168
d565b0a1
HX
4169 rcu_read_lock();
4170 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4171 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4172 continue;
4173
86911732 4174 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4175 skb_reset_mac_len(skb);
d565b0a1
HX
4176 NAPI_GRO_CB(skb)->same_flow = 0;
4177 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4178 NAPI_GRO_CB(skb)->free = 0;
b582ef09 4179 NAPI_GRO_CB(skb)->udp_mark = 0;
15e2396d 4180 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4181
662880f4
TH
4182 /* Setup for GRO checksum validation */
4183 switch (skb->ip_summed) {
4184 case CHECKSUM_COMPLETE:
4185 NAPI_GRO_CB(skb)->csum = skb->csum;
4186 NAPI_GRO_CB(skb)->csum_valid = 1;
4187 NAPI_GRO_CB(skb)->csum_cnt = 0;
4188 break;
4189 case CHECKSUM_UNNECESSARY:
4190 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4191 NAPI_GRO_CB(skb)->csum_valid = 0;
4192 break;
4193 default:
4194 NAPI_GRO_CB(skb)->csum_cnt = 0;
4195 NAPI_GRO_CB(skb)->csum_valid = 0;
4196 }
d565b0a1 4197
f191a1d1 4198 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4199 break;
4200 }
4201 rcu_read_unlock();
4202
4203 if (&ptype->list == head)
4204 goto normal;
4205
0da2afd5 4206 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4207 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4208
d565b0a1
HX
4209 if (pp) {
4210 struct sk_buff *nskb = *pp;
4211
4212 *pp = nskb->next;
4213 nskb->next = NULL;
4214 napi_gro_complete(nskb);
4ae5544f 4215 napi->gro_count--;
d565b0a1
HX
4216 }
4217
0da2afd5 4218 if (same_flow)
d565b0a1
HX
4219 goto ok;
4220
600adc18 4221 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4222 goto normal;
d565b0a1 4223
600adc18
ED
4224 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4225 struct sk_buff *nskb = napi->gro_list;
4226
4227 /* locate the end of the list to select the 'oldest' flow */
4228 while (nskb->next) {
4229 pp = &nskb->next;
4230 nskb = *pp;
4231 }
4232 *pp = NULL;
4233 nskb->next = NULL;
4234 napi_gro_complete(nskb);
4235 } else {
4236 napi->gro_count++;
4237 }
d565b0a1 4238 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4239 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4240 NAPI_GRO_CB(skb)->last = skb;
86911732 4241 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4242 skb->next = napi->gro_list;
4243 napi->gro_list = skb;
5d0d9be8 4244 ret = GRO_HELD;
d565b0a1 4245
ad0f9904 4246pull:
a50e233c
ED
4247 grow = skb_gro_offset(skb) - skb_headlen(skb);
4248 if (grow > 0)
4249 gro_pull_from_frag0(skb, grow);
d565b0a1 4250ok:
5d0d9be8 4251 return ret;
d565b0a1
HX
4252
4253normal:
ad0f9904
HX
4254 ret = GRO_NORMAL;
4255 goto pull;
5d38a079 4256}
96e93eab 4257
bf5a755f
JC
4258struct packet_offload *gro_find_receive_by_type(__be16 type)
4259{
4260 struct list_head *offload_head = &offload_base;
4261 struct packet_offload *ptype;
4262
4263 list_for_each_entry_rcu(ptype, offload_head, list) {
4264 if (ptype->type != type || !ptype->callbacks.gro_receive)
4265 continue;
4266 return ptype;
4267 }
4268 return NULL;
4269}
e27a2f83 4270EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4271
4272struct packet_offload *gro_find_complete_by_type(__be16 type)
4273{
4274 struct list_head *offload_head = &offload_base;
4275 struct packet_offload *ptype;
4276
4277 list_for_each_entry_rcu(ptype, offload_head, list) {
4278 if (ptype->type != type || !ptype->callbacks.gro_complete)
4279 continue;
4280 return ptype;
4281 }
4282 return NULL;
4283}
e27a2f83 4284EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4285
bb728820 4286static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4287{
5d0d9be8
HX
4288 switch (ret) {
4289 case GRO_NORMAL:
ae78dbfa 4290 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4291 ret = GRO_DROP;
4292 break;
5d38a079 4293
5d0d9be8 4294 case GRO_DROP:
5d38a079
HX
4295 kfree_skb(skb);
4296 break;
5b252f0c 4297
daa86548 4298 case GRO_MERGED_FREE:
d7e8883c
ED
4299 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4300 kmem_cache_free(skbuff_head_cache, skb);
4301 else
4302 __kfree_skb(skb);
daa86548
ED
4303 break;
4304
5b252f0c
BH
4305 case GRO_HELD:
4306 case GRO_MERGED:
4307 break;
5d38a079
HX
4308 }
4309
c7c4b3b6 4310 return ret;
5d0d9be8 4311}
5d0d9be8 4312
c7c4b3b6 4313gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4314{
ae78dbfa 4315 trace_napi_gro_receive_entry(skb);
86911732 4316
a50e233c
ED
4317 skb_gro_reset_offset(skb);
4318
89c5fa33 4319 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4320}
4321EXPORT_SYMBOL(napi_gro_receive);
4322
d0c2b0d2 4323static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4324{
93a35f59
ED
4325 if (unlikely(skb->pfmemalloc)) {
4326 consume_skb(skb);
4327 return;
4328 }
96e93eab 4329 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4330 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4331 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4332 skb->vlan_tci = 0;
66c46d74 4333 skb->dev = napi->dev;
6d152e23 4334 skb->skb_iif = 0;
c3caf119
JC
4335 skb->encapsulation = 0;
4336 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4337 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4338
4339 napi->skb = skb;
4340}
96e93eab 4341
76620aaf 4342struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4343{
5d38a079 4344 struct sk_buff *skb = napi->skb;
5d38a079
HX
4345
4346 if (!skb) {
fd11a83d 4347 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
84b9cd63 4348 napi->skb = skb;
80595d59 4349 }
96e93eab
HX
4350 return skb;
4351}
76620aaf 4352EXPORT_SYMBOL(napi_get_frags);
96e93eab 4353
a50e233c
ED
4354static gro_result_t napi_frags_finish(struct napi_struct *napi,
4355 struct sk_buff *skb,
4356 gro_result_t ret)
96e93eab 4357{
5d0d9be8
HX
4358 switch (ret) {
4359 case GRO_NORMAL:
a50e233c
ED
4360 case GRO_HELD:
4361 __skb_push(skb, ETH_HLEN);
4362 skb->protocol = eth_type_trans(skb, skb->dev);
4363 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4364 ret = GRO_DROP;
86911732 4365 break;
5d38a079 4366
5d0d9be8 4367 case GRO_DROP:
5d0d9be8
HX
4368 case GRO_MERGED_FREE:
4369 napi_reuse_skb(napi, skb);
4370 break;
5b252f0c
BH
4371
4372 case GRO_MERGED:
4373 break;
5d0d9be8 4374 }
5d38a079 4375
c7c4b3b6 4376 return ret;
5d38a079 4377}
5d0d9be8 4378
a50e233c
ED
4379/* Upper GRO stack assumes network header starts at gro_offset=0
4380 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4381 * We copy ethernet header into skb->data to have a common layout.
4382 */
4adb9c4a 4383static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4384{
4385 struct sk_buff *skb = napi->skb;
a50e233c
ED
4386 const struct ethhdr *eth;
4387 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4388
4389 napi->skb = NULL;
4390
a50e233c
ED
4391 skb_reset_mac_header(skb);
4392 skb_gro_reset_offset(skb);
4393
4394 eth = skb_gro_header_fast(skb, 0);
4395 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4396 eth = skb_gro_header_slow(skb, hlen, 0);
4397 if (unlikely(!eth)) {
4398 napi_reuse_skb(napi, skb);
4399 return NULL;
4400 }
4401 } else {
4402 gro_pull_from_frag0(skb, hlen);
4403 NAPI_GRO_CB(skb)->frag0 += hlen;
4404 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4405 }
a50e233c
ED
4406 __skb_pull(skb, hlen);
4407
4408 /*
4409 * This works because the only protocols we care about don't require
4410 * special handling.
4411 * We'll fix it up properly in napi_frags_finish()
4412 */
4413 skb->protocol = eth->h_proto;
76620aaf 4414
76620aaf
HX
4415 return skb;
4416}
76620aaf 4417
c7c4b3b6 4418gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4419{
76620aaf 4420 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4421
4422 if (!skb)
c7c4b3b6 4423 return GRO_DROP;
5d0d9be8 4424
ae78dbfa
BH
4425 trace_napi_gro_frags_entry(skb);
4426
89c5fa33 4427 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4428}
5d38a079
HX
4429EXPORT_SYMBOL(napi_gro_frags);
4430
573e8fca
TH
4431/* Compute the checksum from gro_offset and return the folded value
4432 * after adding in any pseudo checksum.
4433 */
4434__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4435{
4436 __wsum wsum;
4437 __sum16 sum;
4438
4439 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4440
4441 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4442 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4443 if (likely(!sum)) {
4444 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4445 !skb->csum_complete_sw)
4446 netdev_rx_csum_fault(skb->dev);
4447 }
4448
4449 NAPI_GRO_CB(skb)->csum = wsum;
4450 NAPI_GRO_CB(skb)->csum_valid = 1;
4451
4452 return sum;
4453}
4454EXPORT_SYMBOL(__skb_gro_checksum_complete);
4455
e326bed2 4456/*
855abcf0 4457 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4458 * Note: called with local irq disabled, but exits with local irq enabled.
4459 */
4460static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4461{
4462#ifdef CONFIG_RPS
4463 struct softnet_data *remsd = sd->rps_ipi_list;
4464
4465 if (remsd) {
4466 sd->rps_ipi_list = NULL;
4467
4468 local_irq_enable();
4469
4470 /* Send pending IPI's to kick RPS processing on remote cpus. */
4471 while (remsd) {
4472 struct softnet_data *next = remsd->rps_ipi_next;
4473
4474 if (cpu_online(remsd->cpu))
c46fff2a 4475 smp_call_function_single_async(remsd->cpu,
fce8ad15 4476 &remsd->csd);
e326bed2
ED
4477 remsd = next;
4478 }
4479 } else
4480#endif
4481 local_irq_enable();
4482}
4483
d75b1ade
ED
4484static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4485{
4486#ifdef CONFIG_RPS
4487 return sd->rps_ipi_list != NULL;
4488#else
4489 return false;
4490#endif
4491}
4492
bea3348e 4493static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
4494{
4495 int work = 0;
eecfd7c4 4496 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
1da177e4 4497
e326bed2
ED
4498 /* Check if we have pending ipi, its better to send them now,
4499 * not waiting net_rx_action() end.
4500 */
d75b1ade 4501 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4502 local_irq_disable();
4503 net_rps_action_and_irq_enable(sd);
4504 }
d75b1ade 4505
bea3348e 4506 napi->weight = weight_p;
6e7676c1 4507 local_irq_disable();
11ef7a89 4508 while (1) {
1da177e4 4509 struct sk_buff *skb;
6e7676c1
CG
4510
4511 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4512 rcu_read_lock();
6e7676c1
CG
4513 local_irq_enable();
4514 __netif_receive_skb(skb);
2c17d27c 4515 rcu_read_unlock();
6e7676c1 4516 local_irq_disable();
76cc8b13
TH
4517 input_queue_head_incr(sd);
4518 if (++work >= quota) {
4519 local_irq_enable();
4520 return work;
4521 }
6e7676c1 4522 }
1da177e4 4523
e36fa2f7 4524 rps_lock(sd);
11ef7a89 4525 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4526 /*
4527 * Inline a custom version of __napi_complete().
4528 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4529 * and NAPI_STATE_SCHED is the only possible flag set
4530 * on backlog.
4531 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4532 * and we dont need an smp_mb() memory barrier.
4533 */
eecfd7c4 4534 napi->state = 0;
11ef7a89 4535 rps_unlock(sd);
eecfd7c4 4536
11ef7a89 4537 break;
bea3348e 4538 }
11ef7a89
TH
4539
4540 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4541 &sd->process_queue);
e36fa2f7 4542 rps_unlock(sd);
6e7676c1
CG
4543 }
4544 local_irq_enable();
1da177e4 4545
bea3348e
SH
4546 return work;
4547}
1da177e4 4548
bea3348e
SH
4549/**
4550 * __napi_schedule - schedule for receive
c4ea43c5 4551 * @n: entry to schedule
bea3348e 4552 *
bc9ad166
ED
4553 * The entry's receive function will be scheduled to run.
4554 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4555 */
b5606c2d 4556void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4557{
4558 unsigned long flags;
1da177e4 4559
bea3348e 4560 local_irq_save(flags);
903ceff7 4561 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4562 local_irq_restore(flags);
1da177e4 4563}
bea3348e
SH
4564EXPORT_SYMBOL(__napi_schedule);
4565
bc9ad166
ED
4566/**
4567 * __napi_schedule_irqoff - schedule for receive
4568 * @n: entry to schedule
4569 *
4570 * Variant of __napi_schedule() assuming hard irqs are masked
4571 */
4572void __napi_schedule_irqoff(struct napi_struct *n)
4573{
4574 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4575}
4576EXPORT_SYMBOL(__napi_schedule_irqoff);
4577
d565b0a1
HX
4578void __napi_complete(struct napi_struct *n)
4579{
4580 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4581
d75b1ade 4582 list_del_init(&n->poll_list);
4e857c58 4583 smp_mb__before_atomic();
d565b0a1
HX
4584 clear_bit(NAPI_STATE_SCHED, &n->state);
4585}
4586EXPORT_SYMBOL(__napi_complete);
4587
3b47d303 4588void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4589{
4590 unsigned long flags;
4591
4592 /*
4593 * don't let napi dequeue from the cpu poll list
4594 * just in case its running on a different cpu
4595 */
4596 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4597 return;
4598
3b47d303
ED
4599 if (n->gro_list) {
4600 unsigned long timeout = 0;
d75b1ade 4601
3b47d303
ED
4602 if (work_done)
4603 timeout = n->dev->gro_flush_timeout;
4604
4605 if (timeout)
4606 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4607 HRTIMER_MODE_REL_PINNED);
4608 else
4609 napi_gro_flush(n, false);
4610 }
d75b1ade
ED
4611 if (likely(list_empty(&n->poll_list))) {
4612 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4613 } else {
4614 /* If n->poll_list is not empty, we need to mask irqs */
4615 local_irq_save(flags);
4616 __napi_complete(n);
4617 local_irq_restore(flags);
4618 }
d565b0a1 4619}
3b47d303 4620EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4621
af12fa6e
ET
4622/* must be called under rcu_read_lock(), as we dont take a reference */
4623struct napi_struct *napi_by_id(unsigned int napi_id)
4624{
4625 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4626 struct napi_struct *napi;
4627
4628 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4629 if (napi->napi_id == napi_id)
4630 return napi;
4631
4632 return NULL;
4633}
4634EXPORT_SYMBOL_GPL(napi_by_id);
4635
4636void napi_hash_add(struct napi_struct *napi)
4637{
4638 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4639
4640 spin_lock(&napi_hash_lock);
4641
4642 /* 0 is not a valid id, we also skip an id that is taken
4643 * we expect both events to be extremely rare
4644 */
4645 napi->napi_id = 0;
4646 while (!napi->napi_id) {
4647 napi->napi_id = ++napi_gen_id;
4648 if (napi_by_id(napi->napi_id))
4649 napi->napi_id = 0;
4650 }
4651
4652 hlist_add_head_rcu(&napi->napi_hash_node,
4653 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4654
4655 spin_unlock(&napi_hash_lock);
4656 }
4657}
4658EXPORT_SYMBOL_GPL(napi_hash_add);
4659
4660/* Warning : caller is responsible to make sure rcu grace period
4661 * is respected before freeing memory containing @napi
4662 */
4663void napi_hash_del(struct napi_struct *napi)
4664{
4665 spin_lock(&napi_hash_lock);
4666
4667 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4668 hlist_del_rcu(&napi->napi_hash_node);
4669
4670 spin_unlock(&napi_hash_lock);
4671}
4672EXPORT_SYMBOL_GPL(napi_hash_del);
4673
3b47d303
ED
4674static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4675{
4676 struct napi_struct *napi;
4677
4678 napi = container_of(timer, struct napi_struct, timer);
4679 if (napi->gro_list)
4680 napi_schedule(napi);
4681
4682 return HRTIMER_NORESTART;
4683}
4684
d565b0a1
HX
4685void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4686 int (*poll)(struct napi_struct *, int), int weight)
4687{
4688 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
4689 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4690 napi->timer.function = napi_watchdog;
4ae5544f 4691 napi->gro_count = 0;
d565b0a1 4692 napi->gro_list = NULL;
5d38a079 4693 napi->skb = NULL;
d565b0a1 4694 napi->poll = poll;
82dc3c63
ED
4695 if (weight > NAPI_POLL_WEIGHT)
4696 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4697 weight, dev->name);
d565b0a1
HX
4698 napi->weight = weight;
4699 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 4700 napi->dev = dev;
5d38a079 4701#ifdef CONFIG_NETPOLL
d565b0a1
HX
4702 spin_lock_init(&napi->poll_lock);
4703 napi->poll_owner = -1;
4704#endif
4705 set_bit(NAPI_STATE_SCHED, &napi->state);
4706}
4707EXPORT_SYMBOL(netif_napi_add);
4708
3b47d303
ED
4709void napi_disable(struct napi_struct *n)
4710{
4711 might_sleep();
4712 set_bit(NAPI_STATE_DISABLE, &n->state);
4713
4714 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4715 msleep(1);
4716
4717 hrtimer_cancel(&n->timer);
4718
4719 clear_bit(NAPI_STATE_DISABLE, &n->state);
4720}
4721EXPORT_SYMBOL(napi_disable);
4722
d565b0a1
HX
4723void netif_napi_del(struct napi_struct *napi)
4724{
d7b06636 4725 list_del_init(&napi->dev_list);
76620aaf 4726 napi_free_frags(napi);
d565b0a1 4727
289dccbe 4728 kfree_skb_list(napi->gro_list);
d565b0a1 4729 napi->gro_list = NULL;
4ae5544f 4730 napi->gro_count = 0;
d565b0a1
HX
4731}
4732EXPORT_SYMBOL(netif_napi_del);
4733
726ce70e
HX
4734static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4735{
4736 void *have;
4737 int work, weight;
4738
4739 list_del_init(&n->poll_list);
4740
4741 have = netpoll_poll_lock(n);
4742
4743 weight = n->weight;
4744
4745 /* This NAPI_STATE_SCHED test is for avoiding a race
4746 * with netpoll's poll_napi(). Only the entity which
4747 * obtains the lock and sees NAPI_STATE_SCHED set will
4748 * actually make the ->poll() call. Therefore we avoid
4749 * accidentally calling ->poll() when NAPI is not scheduled.
4750 */
4751 work = 0;
4752 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4753 work = n->poll(n, weight);
4754 trace_napi_poll(n);
4755 }
4756
4757 WARN_ON_ONCE(work > weight);
4758
4759 if (likely(work < weight))
4760 goto out_unlock;
4761
4762 /* Drivers must not modify the NAPI state if they
4763 * consume the entire weight. In such cases this code
4764 * still "owns" the NAPI instance and therefore can
4765 * move the instance around on the list at-will.
4766 */
4767 if (unlikely(napi_disable_pending(n))) {
4768 napi_complete(n);
4769 goto out_unlock;
4770 }
4771
4772 if (n->gro_list) {
4773 /* flush too old packets
4774 * If HZ < 1000, flush all packets.
4775 */
4776 napi_gro_flush(n, HZ >= 1000);
4777 }
4778
001ce546
HX
4779 /* Some drivers may have called napi_schedule
4780 * prior to exhausting their budget.
4781 */
4782 if (unlikely(!list_empty(&n->poll_list))) {
4783 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4784 n->dev ? n->dev->name : "backlog");
4785 goto out_unlock;
4786 }
4787
726ce70e
HX
4788 list_add_tail(&n->poll_list, repoll);
4789
4790out_unlock:
4791 netpoll_poll_unlock(have);
4792
4793 return work;
4794}
4795
1da177e4
LT
4796static void net_rx_action(struct softirq_action *h)
4797{
903ceff7 4798 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 4799 unsigned long time_limit = jiffies + 2;
51b0bded 4800 int budget = netdev_budget;
d75b1ade
ED
4801 LIST_HEAD(list);
4802 LIST_HEAD(repoll);
53fb95d3 4803
1da177e4 4804 local_irq_disable();
d75b1ade
ED
4805 list_splice_init(&sd->poll_list, &list);
4806 local_irq_enable();
1da177e4 4807
ceb8d5bf 4808 for (;;) {
bea3348e 4809 struct napi_struct *n;
1da177e4 4810
ceb8d5bf
HX
4811 if (list_empty(&list)) {
4812 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4813 return;
4814 break;
4815 }
4816
6bd373eb
HX
4817 n = list_first_entry(&list, struct napi_struct, poll_list);
4818 budget -= napi_poll(n, &repoll);
4819
d75b1ade 4820 /* If softirq window is exhausted then punt.
24f8b238
SH
4821 * Allow this to run for 2 jiffies since which will allow
4822 * an average latency of 1.5/HZ.
bea3348e 4823 */
ceb8d5bf
HX
4824 if (unlikely(budget <= 0 ||
4825 time_after_eq(jiffies, time_limit))) {
4826 sd->time_squeeze++;
4827 break;
4828 }
1da177e4 4829 }
d75b1ade 4830
d75b1ade
ED
4831 local_irq_disable();
4832
4833 list_splice_tail_init(&sd->poll_list, &list);
4834 list_splice_tail(&repoll, &list);
4835 list_splice(&list, &sd->poll_list);
4836 if (!list_empty(&sd->poll_list))
4837 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4838
e326bed2 4839 net_rps_action_and_irq_enable(sd);
1da177e4
LT
4840}
4841
aa9d8560 4842struct netdev_adjacent {
9ff162a8 4843 struct net_device *dev;
5d261913
VF
4844
4845 /* upper master flag, there can only be one master device per list */
9ff162a8 4846 bool master;
5d261913 4847
5d261913
VF
4848 /* counter for the number of times this device was added to us */
4849 u16 ref_nr;
4850
402dae96
VF
4851 /* private field for the users */
4852 void *private;
4853
9ff162a8
JP
4854 struct list_head list;
4855 struct rcu_head rcu;
9ff162a8
JP
4856};
4857
5d261913
VF
4858static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4859 struct net_device *adj_dev,
2f268f12 4860 struct list_head *adj_list)
9ff162a8 4861{
5d261913 4862 struct netdev_adjacent *adj;
5d261913 4863
2f268f12 4864 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
4865 if (adj->dev == adj_dev)
4866 return adj;
9ff162a8
JP
4867 }
4868 return NULL;
4869}
4870
4871/**
4872 * netdev_has_upper_dev - Check if device is linked to an upper device
4873 * @dev: device
4874 * @upper_dev: upper device to check
4875 *
4876 * Find out if a device is linked to specified upper device and return true
4877 * in case it is. Note that this checks only immediate upper device,
4878 * not through a complete stack of devices. The caller must hold the RTNL lock.
4879 */
4880bool netdev_has_upper_dev(struct net_device *dev,
4881 struct net_device *upper_dev)
4882{
4883 ASSERT_RTNL();
4884
2f268f12 4885 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
4886}
4887EXPORT_SYMBOL(netdev_has_upper_dev);
4888
4889/**
4890 * netdev_has_any_upper_dev - Check if device is linked to some device
4891 * @dev: device
4892 *
4893 * Find out if a device is linked to an upper device and return true in case
4894 * it is. The caller must hold the RTNL lock.
4895 */
1d143d9f 4896static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
4897{
4898 ASSERT_RTNL();
4899
2f268f12 4900 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 4901}
9ff162a8
JP
4902
4903/**
4904 * netdev_master_upper_dev_get - Get master upper device
4905 * @dev: device
4906 *
4907 * Find a master upper device and return pointer to it or NULL in case
4908 * it's not there. The caller must hold the RTNL lock.
4909 */
4910struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4911{
aa9d8560 4912 struct netdev_adjacent *upper;
9ff162a8
JP
4913
4914 ASSERT_RTNL();
4915
2f268f12 4916 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
4917 return NULL;
4918
2f268f12 4919 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 4920 struct netdev_adjacent, list);
9ff162a8
JP
4921 if (likely(upper->master))
4922 return upper->dev;
4923 return NULL;
4924}
4925EXPORT_SYMBOL(netdev_master_upper_dev_get);
4926
b6ccba4c
VF
4927void *netdev_adjacent_get_private(struct list_head *adj_list)
4928{
4929 struct netdev_adjacent *adj;
4930
4931 adj = list_entry(adj_list, struct netdev_adjacent, list);
4932
4933 return adj->private;
4934}
4935EXPORT_SYMBOL(netdev_adjacent_get_private);
4936
44a40855
VY
4937/**
4938 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4939 * @dev: device
4940 * @iter: list_head ** of the current position
4941 *
4942 * Gets the next device from the dev's upper list, starting from iter
4943 * position. The caller must hold RCU read lock.
4944 */
4945struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4946 struct list_head **iter)
4947{
4948 struct netdev_adjacent *upper;
4949
4950 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4951
4952 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4953
4954 if (&upper->list == &dev->adj_list.upper)
4955 return NULL;
4956
4957 *iter = &upper->list;
4958
4959 return upper->dev;
4960}
4961EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4962
31088a11
VF
4963/**
4964 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
4965 * @dev: device
4966 * @iter: list_head ** of the current position
4967 *
4968 * Gets the next device from the dev's upper list, starting from iter
4969 * position. The caller must hold RCU read lock.
4970 */
2f268f12
VF
4971struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4972 struct list_head **iter)
48311f46
VF
4973{
4974 struct netdev_adjacent *upper;
4975
85328240 4976 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
4977
4978 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4979
2f268f12 4980 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
4981 return NULL;
4982
4983 *iter = &upper->list;
4984
4985 return upper->dev;
4986}
2f268f12 4987EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 4988
31088a11
VF
4989/**
4990 * netdev_lower_get_next_private - Get the next ->private from the
4991 * lower neighbour list
4992 * @dev: device
4993 * @iter: list_head ** of the current position
4994 *
4995 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4996 * list, starting from iter position. The caller must hold either hold the
4997 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 4998 * list will remain unchanged.
31088a11
VF
4999 */
5000void *netdev_lower_get_next_private(struct net_device *dev,
5001 struct list_head **iter)
5002{
5003 struct netdev_adjacent *lower;
5004
5005 lower = list_entry(*iter, struct netdev_adjacent, list);
5006
5007 if (&lower->list == &dev->adj_list.lower)
5008 return NULL;
5009
6859e7df 5010 *iter = lower->list.next;
31088a11
VF
5011
5012 return lower->private;
5013}
5014EXPORT_SYMBOL(netdev_lower_get_next_private);
5015
5016/**
5017 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5018 * lower neighbour list, RCU
5019 * variant
5020 * @dev: device
5021 * @iter: list_head ** of the current position
5022 *
5023 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5024 * list, starting from iter position. The caller must hold RCU read lock.
5025 */
5026void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5027 struct list_head **iter)
5028{
5029 struct netdev_adjacent *lower;
5030
5031 WARN_ON_ONCE(!rcu_read_lock_held());
5032
5033 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5034
5035 if (&lower->list == &dev->adj_list.lower)
5036 return NULL;
5037
6859e7df 5038 *iter = &lower->list;
31088a11
VF
5039
5040 return lower->private;
5041}
5042EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5043
4085ebe8
VY
5044/**
5045 * netdev_lower_get_next - Get the next device from the lower neighbour
5046 * list
5047 * @dev: device
5048 * @iter: list_head ** of the current position
5049 *
5050 * Gets the next netdev_adjacent from the dev's lower neighbour
5051 * list, starting from iter position. The caller must hold RTNL lock or
5052 * its own locking that guarantees that the neighbour lower
b469139e 5053 * list will remain unchanged.
4085ebe8
VY
5054 */
5055void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5056{
5057 struct netdev_adjacent *lower;
5058
5059 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5060
5061 if (&lower->list == &dev->adj_list.lower)
5062 return NULL;
5063
5064 *iter = &lower->list;
5065
5066 return lower->dev;
5067}
5068EXPORT_SYMBOL(netdev_lower_get_next);
5069
e001bfad 5070/**
5071 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5072 * lower neighbour list, RCU
5073 * variant
5074 * @dev: device
5075 *
5076 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5077 * list. The caller must hold RCU read lock.
5078 */
5079void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5080{
5081 struct netdev_adjacent *lower;
5082
5083 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5084 struct netdev_adjacent, list);
5085 if (lower)
5086 return lower->private;
5087 return NULL;
5088}
5089EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5090
9ff162a8
JP
5091/**
5092 * netdev_master_upper_dev_get_rcu - Get master upper device
5093 * @dev: device
5094 *
5095 * Find a master upper device and return pointer to it or NULL in case
5096 * it's not there. The caller must hold the RCU read lock.
5097 */
5098struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5099{
aa9d8560 5100 struct netdev_adjacent *upper;
9ff162a8 5101
2f268f12 5102 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5103 struct netdev_adjacent, list);
9ff162a8
JP
5104 if (upper && likely(upper->master))
5105 return upper->dev;
5106 return NULL;
5107}
5108EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5109
0a59f3a9 5110static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5111 struct net_device *adj_dev,
5112 struct list_head *dev_list)
5113{
5114 char linkname[IFNAMSIZ+7];
5115 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5116 "upper_%s" : "lower_%s", adj_dev->name);
5117 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5118 linkname);
5119}
0a59f3a9 5120static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5121 char *name,
5122 struct list_head *dev_list)
5123{
5124 char linkname[IFNAMSIZ+7];
5125 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5126 "upper_%s" : "lower_%s", name);
5127 sysfs_remove_link(&(dev->dev.kobj), linkname);
5128}
5129
7ce64c79
AF
5130static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5131 struct net_device *adj_dev,
5132 struct list_head *dev_list)
5133{
5134 return (dev_list == &dev->adj_list.upper ||
5135 dev_list == &dev->adj_list.lower) &&
5136 net_eq(dev_net(dev), dev_net(adj_dev));
5137}
3ee32707 5138
5d261913
VF
5139static int __netdev_adjacent_dev_insert(struct net_device *dev,
5140 struct net_device *adj_dev,
7863c054 5141 struct list_head *dev_list,
402dae96 5142 void *private, bool master)
5d261913
VF
5143{
5144 struct netdev_adjacent *adj;
842d67a7 5145 int ret;
5d261913 5146
7863c054 5147 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5d261913
VF
5148
5149 if (adj) {
5d261913
VF
5150 adj->ref_nr++;
5151 return 0;
5152 }
5153
5154 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5155 if (!adj)
5156 return -ENOMEM;
5157
5158 adj->dev = adj_dev;
5159 adj->master = master;
5d261913 5160 adj->ref_nr = 1;
402dae96 5161 adj->private = private;
5d261913 5162 dev_hold(adj_dev);
2f268f12
VF
5163
5164 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5165 adj_dev->name, dev->name, adj_dev->name);
5d261913 5166
7ce64c79 5167 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5168 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5169 if (ret)
5170 goto free_adj;
5171 }
5172
7863c054 5173 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5174 if (master) {
5175 ret = sysfs_create_link(&(dev->dev.kobj),
5176 &(adj_dev->dev.kobj), "master");
5177 if (ret)
5831d66e 5178 goto remove_symlinks;
842d67a7 5179
7863c054 5180 list_add_rcu(&adj->list, dev_list);
842d67a7 5181 } else {
7863c054 5182 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5183 }
5d261913
VF
5184
5185 return 0;
842d67a7 5186
5831d66e 5187remove_symlinks:
7ce64c79 5188 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5189 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5190free_adj:
5191 kfree(adj);
974daef7 5192 dev_put(adj_dev);
842d67a7
VF
5193
5194 return ret;
5d261913
VF
5195}
5196
1d143d9f 5197static void __netdev_adjacent_dev_remove(struct net_device *dev,
5198 struct net_device *adj_dev,
5199 struct list_head *dev_list)
5d261913
VF
5200{
5201 struct netdev_adjacent *adj;
5202
7863c054 5203 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5d261913 5204
2f268f12
VF
5205 if (!adj) {
5206 pr_err("tried to remove device %s from %s\n",
5207 dev->name, adj_dev->name);
5d261913 5208 BUG();
2f268f12 5209 }
5d261913
VF
5210
5211 if (adj->ref_nr > 1) {
2f268f12
VF
5212 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5213 adj->ref_nr-1);
5d261913
VF
5214 adj->ref_nr--;
5215 return;
5216 }
5217
842d67a7
VF
5218 if (adj->master)
5219 sysfs_remove_link(&(dev->dev.kobj), "master");
5220
7ce64c79 5221 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5222 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5223
5d261913 5224 list_del_rcu(&adj->list);
2f268f12
VF
5225 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5226 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5227 dev_put(adj_dev);
5228 kfree_rcu(adj, rcu);
5229}
5230
1d143d9f 5231static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5232 struct net_device *upper_dev,
5233 struct list_head *up_list,
5234 struct list_head *down_list,
5235 void *private, bool master)
5d261913
VF
5236{
5237 int ret;
5238
402dae96
VF
5239 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5240 master);
5d261913
VF
5241 if (ret)
5242 return ret;
5243
402dae96
VF
5244 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5245 false);
5d261913 5246 if (ret) {
2f268f12 5247 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5d261913
VF
5248 return ret;
5249 }
5250
5251 return 0;
5252}
5253
1d143d9f 5254static int __netdev_adjacent_dev_link(struct net_device *dev,
5255 struct net_device *upper_dev)
5d261913 5256{
2f268f12
VF
5257 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5258 &dev->all_adj_list.upper,
5259 &upper_dev->all_adj_list.lower,
402dae96 5260 NULL, false);
5d261913
VF
5261}
5262
1d143d9f 5263static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5264 struct net_device *upper_dev,
5265 struct list_head *up_list,
5266 struct list_head *down_list)
5d261913 5267{
2f268f12
VF
5268 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5269 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5d261913
VF
5270}
5271
1d143d9f 5272static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5273 struct net_device *upper_dev)
5d261913 5274{
2f268f12
VF
5275 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5276 &dev->all_adj_list.upper,
5277 &upper_dev->all_adj_list.lower);
5278}
5279
1d143d9f 5280static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5281 struct net_device *upper_dev,
5282 void *private, bool master)
2f268f12
VF
5283{
5284 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5285
5286 if (ret)
5287 return ret;
5288
5289 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5290 &dev->adj_list.upper,
5291 &upper_dev->adj_list.lower,
402dae96 5292 private, master);
2f268f12
VF
5293 if (ret) {
5294 __netdev_adjacent_dev_unlink(dev, upper_dev);
5295 return ret;
5296 }
5297
5298 return 0;
5d261913
VF
5299}
5300
1d143d9f 5301static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5302 struct net_device *upper_dev)
2f268f12
VF
5303{
5304 __netdev_adjacent_dev_unlink(dev, upper_dev);
5305 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5306 &dev->adj_list.upper,
5307 &upper_dev->adj_list.lower);
5308}
5d261913 5309
9ff162a8 5310static int __netdev_upper_dev_link(struct net_device *dev,
402dae96
VF
5311 struct net_device *upper_dev, bool master,
5312 void *private)
9ff162a8 5313{
0e4ead9d 5314 struct netdev_notifier_changeupper_info changeupper_info;
5d261913
VF
5315 struct netdev_adjacent *i, *j, *to_i, *to_j;
5316 int ret = 0;
9ff162a8
JP
5317
5318 ASSERT_RTNL();
5319
5320 if (dev == upper_dev)
5321 return -EBUSY;
5322
5323 /* To prevent loops, check if dev is not upper device to upper_dev. */
2f268f12 5324 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
5325 return -EBUSY;
5326
d66bf7dd 5327 if (__netdev_find_adj(dev, upper_dev, &dev->adj_list.upper))
9ff162a8
JP
5328 return -EEXIST;
5329
5330 if (master && netdev_master_upper_dev_get(dev))
5331 return -EBUSY;
5332
0e4ead9d
JP
5333 changeupper_info.upper_dev = upper_dev;
5334 changeupper_info.master = master;
5335 changeupper_info.linking = true;
5336
402dae96
VF
5337 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5338 master);
5d261913
VF
5339 if (ret)
5340 return ret;
9ff162a8 5341
5d261913 5342 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5343 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5344 * versa, and don't forget the devices itself. All of these
5345 * links are non-neighbours.
5346 */
2f268f12
VF
5347 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5348 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5349 pr_debug("Interlinking %s with %s, non-neighbour\n",
5350 i->dev->name, j->dev->name);
5d261913
VF
5351 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5352 if (ret)
5353 goto rollback_mesh;
5354 }
5355 }
5356
5357 /* add dev to every upper_dev's upper device */
2f268f12
VF
5358 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5359 pr_debug("linking %s's upper device %s with %s\n",
5360 upper_dev->name, i->dev->name, dev->name);
5d261913
VF
5361 ret = __netdev_adjacent_dev_link(dev, i->dev);
5362 if (ret)
5363 goto rollback_upper_mesh;
5364 }
5365
5366 /* add upper_dev to every dev's lower device */
2f268f12
VF
5367 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5368 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5369 i->dev->name, upper_dev->name);
5d261913
VF
5370 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5371 if (ret)
5372 goto rollback_lower_mesh;
5373 }
9ff162a8 5374
0e4ead9d
JP
5375 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5376 &changeupper_info.info);
9ff162a8 5377 return 0;
5d261913
VF
5378
5379rollback_lower_mesh:
5380 to_i = i;
2f268f12 5381 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5382 if (i == to_i)
5383 break;
5384 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5385 }
5386
5387 i = NULL;
5388
5389rollback_upper_mesh:
5390 to_i = i;
2f268f12 5391 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5392 if (i == to_i)
5393 break;
5394 __netdev_adjacent_dev_unlink(dev, i->dev);
5395 }
5396
5397 i = j = NULL;
5398
5399rollback_mesh:
5400 to_i = i;
5401 to_j = j;
2f268f12
VF
5402 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5403 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5404 if (i == to_i && j == to_j)
5405 break;
5406 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5407 }
5408 if (i == to_i)
5409 break;
5410 }
5411
2f268f12 5412 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5413
5414 return ret;
9ff162a8
JP
5415}
5416
5417/**
5418 * netdev_upper_dev_link - Add a link to the upper device
5419 * @dev: device
5420 * @upper_dev: new upper device
5421 *
5422 * Adds a link to device which is upper to this one. The caller must hold
5423 * the RTNL lock. On a failure a negative errno code is returned.
5424 * On success the reference counts are adjusted and the function
5425 * returns zero.
5426 */
5427int netdev_upper_dev_link(struct net_device *dev,
5428 struct net_device *upper_dev)
5429{
402dae96 5430 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
9ff162a8
JP
5431}
5432EXPORT_SYMBOL(netdev_upper_dev_link);
5433
5434/**
5435 * netdev_master_upper_dev_link - Add a master link to the upper device
5436 * @dev: device
5437 * @upper_dev: new upper device
5438 *
5439 * Adds a link to device which is upper to this one. In this case, only
5440 * one master upper device can be linked, although other non-master devices
5441 * might be linked as well. The caller must hold the RTNL lock.
5442 * On a failure a negative errno code is returned. On success the reference
5443 * counts are adjusted and the function returns zero.
5444 */
5445int netdev_master_upper_dev_link(struct net_device *dev,
5446 struct net_device *upper_dev)
5447{
402dae96 5448 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
9ff162a8
JP
5449}
5450EXPORT_SYMBOL(netdev_master_upper_dev_link);
5451
402dae96
VF
5452int netdev_master_upper_dev_link_private(struct net_device *dev,
5453 struct net_device *upper_dev,
5454 void *private)
5455{
5456 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5457}
5458EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5459
9ff162a8
JP
5460/**
5461 * netdev_upper_dev_unlink - Removes a link to upper device
5462 * @dev: device
5463 * @upper_dev: new upper device
5464 *
5465 * Removes a link to device which is upper to this one. The caller must hold
5466 * the RTNL lock.
5467 */
5468void netdev_upper_dev_unlink(struct net_device *dev,
5469 struct net_device *upper_dev)
5470{
0e4ead9d 5471 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5472 struct netdev_adjacent *i, *j;
9ff162a8
JP
5473 ASSERT_RTNL();
5474
0e4ead9d
JP
5475 changeupper_info.upper_dev = upper_dev;
5476 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5477 changeupper_info.linking = false;
5478
2f268f12 5479 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5480
5481 /* Here is the tricky part. We must remove all dev's lower
5482 * devices from all upper_dev's upper devices and vice
5483 * versa, to maintain the graph relationship.
5484 */
2f268f12
VF
5485 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5486 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5487 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5488
5489 /* remove also the devices itself from lower/upper device
5490 * list
5491 */
2f268f12 5492 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5d261913
VF
5493 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5494
2f268f12 5495 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5496 __netdev_adjacent_dev_unlink(dev, i->dev);
5497
0e4ead9d
JP
5498 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5499 &changeupper_info.info);
9ff162a8
JP
5500}
5501EXPORT_SYMBOL(netdev_upper_dev_unlink);
5502
61bd3857
MS
5503/**
5504 * netdev_bonding_info_change - Dispatch event about slave change
5505 * @dev: device
4a26e453 5506 * @bonding_info: info to dispatch
61bd3857
MS
5507 *
5508 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5509 * The caller must hold the RTNL lock.
5510 */
5511void netdev_bonding_info_change(struct net_device *dev,
5512 struct netdev_bonding_info *bonding_info)
5513{
5514 struct netdev_notifier_bonding_info info;
5515
5516 memcpy(&info.bonding_info, bonding_info,
5517 sizeof(struct netdev_bonding_info));
5518 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5519 &info.info);
5520}
5521EXPORT_SYMBOL(netdev_bonding_info_change);
5522
2ce1ee17 5523static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5524{
5525 struct netdev_adjacent *iter;
5526
5527 struct net *net = dev_net(dev);
5528
5529 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5530 if (!net_eq(net,dev_net(iter->dev)))
5531 continue;
5532 netdev_adjacent_sysfs_add(iter->dev, dev,
5533 &iter->dev->adj_list.lower);
5534 netdev_adjacent_sysfs_add(dev, iter->dev,
5535 &dev->adj_list.upper);
5536 }
5537
5538 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5539 if (!net_eq(net,dev_net(iter->dev)))
5540 continue;
5541 netdev_adjacent_sysfs_add(iter->dev, dev,
5542 &iter->dev->adj_list.upper);
5543 netdev_adjacent_sysfs_add(dev, iter->dev,
5544 &dev->adj_list.lower);
5545 }
5546}
5547
2ce1ee17 5548static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
5549{
5550 struct netdev_adjacent *iter;
5551
5552 struct net *net = dev_net(dev);
5553
5554 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5555 if (!net_eq(net,dev_net(iter->dev)))
5556 continue;
5557 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5558 &iter->dev->adj_list.lower);
5559 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5560 &dev->adj_list.upper);
5561 }
5562
5563 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5564 if (!net_eq(net,dev_net(iter->dev)))
5565 continue;
5566 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5567 &iter->dev->adj_list.upper);
5568 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5569 &dev->adj_list.lower);
5570 }
5571}
5572
5bb025fa 5573void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 5574{
5bb025fa 5575 struct netdev_adjacent *iter;
402dae96 5576
4c75431a
AF
5577 struct net *net = dev_net(dev);
5578
5bb025fa 5579 list_for_each_entry(iter, &dev->adj_list.upper, list) {
4c75431a
AF
5580 if (!net_eq(net,dev_net(iter->dev)))
5581 continue;
5bb025fa
VF
5582 netdev_adjacent_sysfs_del(iter->dev, oldname,
5583 &iter->dev->adj_list.lower);
5584 netdev_adjacent_sysfs_add(iter->dev, dev,
5585 &iter->dev->adj_list.lower);
5586 }
402dae96 5587
5bb025fa 5588 list_for_each_entry(iter, &dev->adj_list.lower, list) {
4c75431a
AF
5589 if (!net_eq(net,dev_net(iter->dev)))
5590 continue;
5bb025fa
VF
5591 netdev_adjacent_sysfs_del(iter->dev, oldname,
5592 &iter->dev->adj_list.upper);
5593 netdev_adjacent_sysfs_add(iter->dev, dev,
5594 &iter->dev->adj_list.upper);
5595 }
402dae96 5596}
402dae96
VF
5597
5598void *netdev_lower_dev_get_private(struct net_device *dev,
5599 struct net_device *lower_dev)
5600{
5601 struct netdev_adjacent *lower;
5602
5603 if (!lower_dev)
5604 return NULL;
5605 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5606 if (!lower)
5607 return NULL;
5608
5609 return lower->private;
5610}
5611EXPORT_SYMBOL(netdev_lower_dev_get_private);
5612
4085ebe8
VY
5613
5614int dev_get_nest_level(struct net_device *dev,
5615 bool (*type_check)(struct net_device *dev))
5616{
5617 struct net_device *lower = NULL;
5618 struct list_head *iter;
5619 int max_nest = -1;
5620 int nest;
5621
5622 ASSERT_RTNL();
5623
5624 netdev_for_each_lower_dev(dev, lower, iter) {
5625 nest = dev_get_nest_level(lower, type_check);
5626 if (max_nest < nest)
5627 max_nest = nest;
5628 }
5629
5630 if (type_check(dev))
5631 max_nest++;
5632
5633 return max_nest;
5634}
5635EXPORT_SYMBOL(dev_get_nest_level);
5636
b6c40d68
PM
5637static void dev_change_rx_flags(struct net_device *dev, int flags)
5638{
d314774c
SH
5639 const struct net_device_ops *ops = dev->netdev_ops;
5640
d2615bf4 5641 if (ops->ndo_change_rx_flags)
d314774c 5642 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
5643}
5644
991fb3f7 5645static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 5646{
b536db93 5647 unsigned int old_flags = dev->flags;
d04a48b0
EB
5648 kuid_t uid;
5649 kgid_t gid;
1da177e4 5650
24023451
PM
5651 ASSERT_RTNL();
5652
dad9b335
WC
5653 dev->flags |= IFF_PROMISC;
5654 dev->promiscuity += inc;
5655 if (dev->promiscuity == 0) {
5656 /*
5657 * Avoid overflow.
5658 * If inc causes overflow, untouch promisc and return error.
5659 */
5660 if (inc < 0)
5661 dev->flags &= ~IFF_PROMISC;
5662 else {
5663 dev->promiscuity -= inc;
7b6cd1ce
JP
5664 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5665 dev->name);
dad9b335
WC
5666 return -EOVERFLOW;
5667 }
5668 }
52609c0b 5669 if (dev->flags != old_flags) {
7b6cd1ce
JP
5670 pr_info("device %s %s promiscuous mode\n",
5671 dev->name,
5672 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
5673 if (audit_enabled) {
5674 current_uid_gid(&uid, &gid);
7759db82
KHK
5675 audit_log(current->audit_context, GFP_ATOMIC,
5676 AUDIT_ANOM_PROMISCUOUS,
5677 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5678 dev->name, (dev->flags & IFF_PROMISC),
5679 (old_flags & IFF_PROMISC),
e1760bd5 5680 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
5681 from_kuid(&init_user_ns, uid),
5682 from_kgid(&init_user_ns, gid),
7759db82 5683 audit_get_sessionid(current));
8192b0c4 5684 }
24023451 5685
b6c40d68 5686 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 5687 }
991fb3f7
ND
5688 if (notify)
5689 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 5690 return 0;
1da177e4
LT
5691}
5692
4417da66
PM
5693/**
5694 * dev_set_promiscuity - update promiscuity count on a device
5695 * @dev: device
5696 * @inc: modifier
5697 *
5698 * Add or remove promiscuity from a device. While the count in the device
5699 * remains above zero the interface remains promiscuous. Once it hits zero
5700 * the device reverts back to normal filtering operation. A negative inc
5701 * value is used to drop promiscuity on the device.
dad9b335 5702 * Return 0 if successful or a negative errno code on error.
4417da66 5703 */
dad9b335 5704int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 5705{
b536db93 5706 unsigned int old_flags = dev->flags;
dad9b335 5707 int err;
4417da66 5708
991fb3f7 5709 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 5710 if (err < 0)
dad9b335 5711 return err;
4417da66
PM
5712 if (dev->flags != old_flags)
5713 dev_set_rx_mode(dev);
dad9b335 5714 return err;
4417da66 5715}
d1b19dff 5716EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 5717
991fb3f7 5718static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 5719{
991fb3f7 5720 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 5721
24023451
PM
5722 ASSERT_RTNL();
5723
1da177e4 5724 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
5725 dev->allmulti += inc;
5726 if (dev->allmulti == 0) {
5727 /*
5728 * Avoid overflow.
5729 * If inc causes overflow, untouch allmulti and return error.
5730 */
5731 if (inc < 0)
5732 dev->flags &= ~IFF_ALLMULTI;
5733 else {
5734 dev->allmulti -= inc;
7b6cd1ce
JP
5735 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5736 dev->name);
dad9b335
WC
5737 return -EOVERFLOW;
5738 }
5739 }
24023451 5740 if (dev->flags ^ old_flags) {
b6c40d68 5741 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 5742 dev_set_rx_mode(dev);
991fb3f7
ND
5743 if (notify)
5744 __dev_notify_flags(dev, old_flags,
5745 dev->gflags ^ old_gflags);
24023451 5746 }
dad9b335 5747 return 0;
4417da66 5748}
991fb3f7
ND
5749
5750/**
5751 * dev_set_allmulti - update allmulti count on a device
5752 * @dev: device
5753 * @inc: modifier
5754 *
5755 * Add or remove reception of all multicast frames to a device. While the
5756 * count in the device remains above zero the interface remains listening
5757 * to all interfaces. Once it hits zero the device reverts back to normal
5758 * filtering operation. A negative @inc value is used to drop the counter
5759 * when releasing a resource needing all multicasts.
5760 * Return 0 if successful or a negative errno code on error.
5761 */
5762
5763int dev_set_allmulti(struct net_device *dev, int inc)
5764{
5765 return __dev_set_allmulti(dev, inc, true);
5766}
d1b19dff 5767EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
5768
5769/*
5770 * Upload unicast and multicast address lists to device and
5771 * configure RX filtering. When the device doesn't support unicast
53ccaae1 5772 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
5773 * are present.
5774 */
5775void __dev_set_rx_mode(struct net_device *dev)
5776{
d314774c
SH
5777 const struct net_device_ops *ops = dev->netdev_ops;
5778
4417da66
PM
5779 /* dev_open will call this function so the list will stay sane. */
5780 if (!(dev->flags&IFF_UP))
5781 return;
5782
5783 if (!netif_device_present(dev))
40b77c94 5784 return;
4417da66 5785
01789349 5786 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
5787 /* Unicast addresses changes may only happen under the rtnl,
5788 * therefore calling __dev_set_promiscuity here is safe.
5789 */
32e7bfc4 5790 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 5791 __dev_set_promiscuity(dev, 1, false);
2d348d1f 5792 dev->uc_promisc = true;
32e7bfc4 5793 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 5794 __dev_set_promiscuity(dev, -1, false);
2d348d1f 5795 dev->uc_promisc = false;
4417da66 5796 }
4417da66 5797 }
01789349
JP
5798
5799 if (ops->ndo_set_rx_mode)
5800 ops->ndo_set_rx_mode(dev);
4417da66
PM
5801}
5802
5803void dev_set_rx_mode(struct net_device *dev)
5804{
b9e40857 5805 netif_addr_lock_bh(dev);
4417da66 5806 __dev_set_rx_mode(dev);
b9e40857 5807 netif_addr_unlock_bh(dev);
1da177e4
LT
5808}
5809
f0db275a
SH
5810/**
5811 * dev_get_flags - get flags reported to userspace
5812 * @dev: device
5813 *
5814 * Get the combination of flag bits exported through APIs to userspace.
5815 */
95c96174 5816unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 5817{
95c96174 5818 unsigned int flags;
1da177e4
LT
5819
5820 flags = (dev->flags & ~(IFF_PROMISC |
5821 IFF_ALLMULTI |
b00055aa
SR
5822 IFF_RUNNING |
5823 IFF_LOWER_UP |
5824 IFF_DORMANT)) |
1da177e4
LT
5825 (dev->gflags & (IFF_PROMISC |
5826 IFF_ALLMULTI));
5827
b00055aa
SR
5828 if (netif_running(dev)) {
5829 if (netif_oper_up(dev))
5830 flags |= IFF_RUNNING;
5831 if (netif_carrier_ok(dev))
5832 flags |= IFF_LOWER_UP;
5833 if (netif_dormant(dev))
5834 flags |= IFF_DORMANT;
5835 }
1da177e4
LT
5836
5837 return flags;
5838}
d1b19dff 5839EXPORT_SYMBOL(dev_get_flags);
1da177e4 5840
bd380811 5841int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 5842{
b536db93 5843 unsigned int old_flags = dev->flags;
bd380811 5844 int ret;
1da177e4 5845
24023451
PM
5846 ASSERT_RTNL();
5847
1da177e4
LT
5848 /*
5849 * Set the flags on our device.
5850 */
5851
5852 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5853 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5854 IFF_AUTOMEDIA)) |
5855 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5856 IFF_ALLMULTI));
5857
5858 /*
5859 * Load in the correct multicast list now the flags have changed.
5860 */
5861
b6c40d68
PM
5862 if ((old_flags ^ flags) & IFF_MULTICAST)
5863 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 5864
4417da66 5865 dev_set_rx_mode(dev);
1da177e4
LT
5866
5867 /*
5868 * Have we downed the interface. We handle IFF_UP ourselves
5869 * according to user attempts to set it, rather than blindly
5870 * setting it.
5871 */
5872
5873 ret = 0;
d215d10f 5874 if ((old_flags ^ flags) & IFF_UP)
bd380811 5875 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 5876
1da177e4 5877 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 5878 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 5879 unsigned int old_flags = dev->flags;
d1b19dff 5880
1da177e4 5881 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
5882
5883 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5884 if (dev->flags != old_flags)
5885 dev_set_rx_mode(dev);
1da177e4
LT
5886 }
5887
5888 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5889 is important. Some (broken) drivers set IFF_PROMISC, when
5890 IFF_ALLMULTI is requested not asking us and not reporting.
5891 */
5892 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
5893 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5894
1da177e4 5895 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 5896 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
5897 }
5898
bd380811
PM
5899 return ret;
5900}
5901
a528c219
ND
5902void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5903 unsigned int gchanges)
bd380811
PM
5904{
5905 unsigned int changes = dev->flags ^ old_flags;
5906
a528c219 5907 if (gchanges)
7f294054 5908 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 5909
bd380811
PM
5910 if (changes & IFF_UP) {
5911 if (dev->flags & IFF_UP)
5912 call_netdevice_notifiers(NETDEV_UP, dev);
5913 else
5914 call_netdevice_notifiers(NETDEV_DOWN, dev);
5915 }
5916
5917 if (dev->flags & IFF_UP &&
be9efd36
JP
5918 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5919 struct netdev_notifier_change_info change_info;
5920
5921 change_info.flags_changed = changes;
5922 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5923 &change_info.info);
5924 }
bd380811
PM
5925}
5926
5927/**
5928 * dev_change_flags - change device settings
5929 * @dev: device
5930 * @flags: device state flags
5931 *
5932 * Change settings on device based state flags. The flags are
5933 * in the userspace exported format.
5934 */
b536db93 5935int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 5936{
b536db93 5937 int ret;
991fb3f7 5938 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
5939
5940 ret = __dev_change_flags(dev, flags);
5941 if (ret < 0)
5942 return ret;
5943
991fb3f7 5944 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 5945 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
5946 return ret;
5947}
d1b19dff 5948EXPORT_SYMBOL(dev_change_flags);
1da177e4 5949
2315dc91
VF
5950static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5951{
5952 const struct net_device_ops *ops = dev->netdev_ops;
5953
5954 if (ops->ndo_change_mtu)
5955 return ops->ndo_change_mtu(dev, new_mtu);
5956
5957 dev->mtu = new_mtu;
5958 return 0;
5959}
5960
f0db275a
SH
5961/**
5962 * dev_set_mtu - Change maximum transfer unit
5963 * @dev: device
5964 * @new_mtu: new transfer unit
5965 *
5966 * Change the maximum transfer size of the network device.
5967 */
1da177e4
LT
5968int dev_set_mtu(struct net_device *dev, int new_mtu)
5969{
2315dc91 5970 int err, orig_mtu;
1da177e4
LT
5971
5972 if (new_mtu == dev->mtu)
5973 return 0;
5974
5975 /* MTU must be positive. */
5976 if (new_mtu < 0)
5977 return -EINVAL;
5978
5979 if (!netif_device_present(dev))
5980 return -ENODEV;
5981
1d486bfb
VF
5982 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5983 err = notifier_to_errno(err);
5984 if (err)
5985 return err;
d314774c 5986
2315dc91
VF
5987 orig_mtu = dev->mtu;
5988 err = __dev_set_mtu(dev, new_mtu);
d314774c 5989
2315dc91
VF
5990 if (!err) {
5991 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5992 err = notifier_to_errno(err);
5993 if (err) {
5994 /* setting mtu back and notifying everyone again,
5995 * so that they have a chance to revert changes.
5996 */
5997 __dev_set_mtu(dev, orig_mtu);
5998 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5999 }
6000 }
1da177e4
LT
6001 return err;
6002}
d1b19dff 6003EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6004
cbda10fa
VD
6005/**
6006 * dev_set_group - Change group this device belongs to
6007 * @dev: device
6008 * @new_group: group this device should belong to
6009 */
6010void dev_set_group(struct net_device *dev, int new_group)
6011{
6012 dev->group = new_group;
6013}
6014EXPORT_SYMBOL(dev_set_group);
6015
f0db275a
SH
6016/**
6017 * dev_set_mac_address - Change Media Access Control Address
6018 * @dev: device
6019 * @sa: new address
6020 *
6021 * Change the hardware (MAC) address of the device
6022 */
1da177e4
LT
6023int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6024{
d314774c 6025 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6026 int err;
6027
d314774c 6028 if (!ops->ndo_set_mac_address)
1da177e4
LT
6029 return -EOPNOTSUPP;
6030 if (sa->sa_family != dev->type)
6031 return -EINVAL;
6032 if (!netif_device_present(dev))
6033 return -ENODEV;
d314774c 6034 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6035 if (err)
6036 return err;
fbdeca2d 6037 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6038 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6039 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6040 return 0;
1da177e4 6041}
d1b19dff 6042EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6043
4bf84c35
JP
6044/**
6045 * dev_change_carrier - Change device carrier
6046 * @dev: device
691b3b7e 6047 * @new_carrier: new value
4bf84c35
JP
6048 *
6049 * Change device carrier
6050 */
6051int dev_change_carrier(struct net_device *dev, bool new_carrier)
6052{
6053 const struct net_device_ops *ops = dev->netdev_ops;
6054
6055 if (!ops->ndo_change_carrier)
6056 return -EOPNOTSUPP;
6057 if (!netif_device_present(dev))
6058 return -ENODEV;
6059 return ops->ndo_change_carrier(dev, new_carrier);
6060}
6061EXPORT_SYMBOL(dev_change_carrier);
6062
66b52b0d
JP
6063/**
6064 * dev_get_phys_port_id - Get device physical port ID
6065 * @dev: device
6066 * @ppid: port ID
6067 *
6068 * Get device physical port ID
6069 */
6070int dev_get_phys_port_id(struct net_device *dev,
02637fce 6071 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6072{
6073 const struct net_device_ops *ops = dev->netdev_ops;
6074
6075 if (!ops->ndo_get_phys_port_id)
6076 return -EOPNOTSUPP;
6077 return ops->ndo_get_phys_port_id(dev, ppid);
6078}
6079EXPORT_SYMBOL(dev_get_phys_port_id);
6080
db24a904
DA
6081/**
6082 * dev_get_phys_port_name - Get device physical port name
6083 * @dev: device
6084 * @name: port name
6085 *
6086 * Get device physical port name
6087 */
6088int dev_get_phys_port_name(struct net_device *dev,
6089 char *name, size_t len)
6090{
6091 const struct net_device_ops *ops = dev->netdev_ops;
6092
6093 if (!ops->ndo_get_phys_port_name)
6094 return -EOPNOTSUPP;
6095 return ops->ndo_get_phys_port_name(dev, name, len);
6096}
6097EXPORT_SYMBOL(dev_get_phys_port_name);
6098
d746d707
AK
6099/**
6100 * dev_change_proto_down - update protocol port state information
6101 * @dev: device
6102 * @proto_down: new value
6103 *
6104 * This info can be used by switch drivers to set the phys state of the
6105 * port.
6106 */
6107int dev_change_proto_down(struct net_device *dev, bool proto_down)
6108{
6109 const struct net_device_ops *ops = dev->netdev_ops;
6110
6111 if (!ops->ndo_change_proto_down)
6112 return -EOPNOTSUPP;
6113 if (!netif_device_present(dev))
6114 return -ENODEV;
6115 return ops->ndo_change_proto_down(dev, proto_down);
6116}
6117EXPORT_SYMBOL(dev_change_proto_down);
6118
1da177e4
LT
6119/**
6120 * dev_new_index - allocate an ifindex
c4ea43c5 6121 * @net: the applicable net namespace
1da177e4
LT
6122 *
6123 * Returns a suitable unique value for a new device interface
6124 * number. The caller must hold the rtnl semaphore or the
6125 * dev_base_lock to be sure it remains unique.
6126 */
881d966b 6127static int dev_new_index(struct net *net)
1da177e4 6128{
aa79e66e 6129 int ifindex = net->ifindex;
1da177e4
LT
6130 for (;;) {
6131 if (++ifindex <= 0)
6132 ifindex = 1;
881d966b 6133 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6134 return net->ifindex = ifindex;
1da177e4
LT
6135 }
6136}
6137
1da177e4 6138/* Delayed registration/unregisteration */
3b5b34fd 6139static LIST_HEAD(net_todo_list);
200b916f 6140DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6141
6f05f629 6142static void net_set_todo(struct net_device *dev)
1da177e4 6143{
1da177e4 6144 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6145 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6146}
6147
9b5e383c 6148static void rollback_registered_many(struct list_head *head)
93ee31f1 6149{
e93737b0 6150 struct net_device *dev, *tmp;
5cde2829 6151 LIST_HEAD(close_head);
9b5e383c 6152
93ee31f1
DL
6153 BUG_ON(dev_boot_phase);
6154 ASSERT_RTNL();
6155
e93737b0 6156 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6157 /* Some devices call without registering
e93737b0
KK
6158 * for initialization unwind. Remove those
6159 * devices and proceed with the remaining.
9b5e383c
ED
6160 */
6161 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6162 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6163 dev->name, dev);
93ee31f1 6164
9b5e383c 6165 WARN_ON(1);
e93737b0
KK
6166 list_del(&dev->unreg_list);
6167 continue;
9b5e383c 6168 }
449f4544 6169 dev->dismantle = true;
9b5e383c 6170 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6171 }
93ee31f1 6172
44345724 6173 /* If device is running, close it first. */
5cde2829
EB
6174 list_for_each_entry(dev, head, unreg_list)
6175 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6176 dev_close_many(&close_head, true);
93ee31f1 6177
44345724 6178 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6179 /* And unlink it from device chain. */
6180 unlist_netdevice(dev);
93ee31f1 6181
9b5e383c 6182 dev->reg_state = NETREG_UNREGISTERING;
e9e4dd32 6183 on_each_cpu(flush_backlog, dev, 1);
9b5e383c 6184 }
93ee31f1
DL
6185
6186 synchronize_net();
6187
9b5e383c 6188 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6189 struct sk_buff *skb = NULL;
6190
9b5e383c
ED
6191 /* Shutdown queueing discipline. */
6192 dev_shutdown(dev);
93ee31f1
DL
6193
6194
9b5e383c
ED
6195 /* Notify protocols, that we are about to destroy
6196 this device. They should clean all the things.
6197 */
6198 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6199
395eea6c
MB
6200 if (!dev->rtnl_link_ops ||
6201 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6202 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6203 GFP_KERNEL);
6204
9b5e383c
ED
6205 /*
6206 * Flush the unicast and multicast chains
6207 */
a748ee24 6208 dev_uc_flush(dev);
22bedad3 6209 dev_mc_flush(dev);
93ee31f1 6210
9b5e383c
ED
6211 if (dev->netdev_ops->ndo_uninit)
6212 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6213
395eea6c
MB
6214 if (skb)
6215 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6216
9ff162a8
JP
6217 /* Notifier chain MUST detach us all upper devices. */
6218 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 6219
9b5e383c
ED
6220 /* Remove entries from kobject tree */
6221 netdev_unregister_kobject(dev);
024e9679
AD
6222#ifdef CONFIG_XPS
6223 /* Remove XPS queueing entries */
6224 netif_reset_xps_queues_gt(dev, 0);
6225#endif
9b5e383c 6226 }
93ee31f1 6227
850a545b 6228 synchronize_net();
395264d5 6229
a5ee1551 6230 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6231 dev_put(dev);
6232}
6233
6234static void rollback_registered(struct net_device *dev)
6235{
6236 LIST_HEAD(single);
6237
6238 list_add(&dev->unreg_list, &single);
6239 rollback_registered_many(&single);
ceaaec98 6240 list_del(&single);
93ee31f1
DL
6241}
6242
c8f44aff
MM
6243static netdev_features_t netdev_fix_features(struct net_device *dev,
6244 netdev_features_t features)
b63365a2 6245{
57422dc5
MM
6246 /* Fix illegal checksum combinations */
6247 if ((features & NETIF_F_HW_CSUM) &&
6248 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6249 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6250 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6251 }
6252
b63365a2 6253 /* TSO requires that SG is present as well. */
ea2d3688 6254 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6255 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6256 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6257 }
6258
ec5f0615
PS
6259 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6260 !(features & NETIF_F_IP_CSUM)) {
6261 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6262 features &= ~NETIF_F_TSO;
6263 features &= ~NETIF_F_TSO_ECN;
6264 }
6265
6266 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6267 !(features & NETIF_F_IPV6_CSUM)) {
6268 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6269 features &= ~NETIF_F_TSO6;
6270 }
6271
31d8b9e0
BH
6272 /* TSO ECN requires that TSO is present as well. */
6273 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6274 features &= ~NETIF_F_TSO_ECN;
6275
212b573f
MM
6276 /* Software GSO depends on SG. */
6277 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6278 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6279 features &= ~NETIF_F_GSO;
6280 }
6281
acd1130e 6282 /* UFO needs SG and checksumming */
b63365a2 6283 if (features & NETIF_F_UFO) {
79032644
MM
6284 /* maybe split UFO into V4 and V6? */
6285 if (!((features & NETIF_F_GEN_CSUM) ||
6286 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6287 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6288 netdev_dbg(dev,
acd1130e 6289 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6290 features &= ~NETIF_F_UFO;
6291 }
6292
6293 if (!(features & NETIF_F_SG)) {
6f404e44 6294 netdev_dbg(dev,
acd1130e 6295 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6296 features &= ~NETIF_F_UFO;
6297 }
6298 }
6299
d0290214
JP
6300#ifdef CONFIG_NET_RX_BUSY_POLL
6301 if (dev->netdev_ops->ndo_busy_poll)
6302 features |= NETIF_F_BUSY_POLL;
6303 else
6304#endif
6305 features &= ~NETIF_F_BUSY_POLL;
6306
b63365a2
HX
6307 return features;
6308}
b63365a2 6309
6cb6a27c 6310int __netdev_update_features(struct net_device *dev)
5455c699 6311{
c8f44aff 6312 netdev_features_t features;
5455c699
MM
6313 int err = 0;
6314
87267485
MM
6315 ASSERT_RTNL();
6316
5455c699
MM
6317 features = netdev_get_wanted_features(dev);
6318
6319 if (dev->netdev_ops->ndo_fix_features)
6320 features = dev->netdev_ops->ndo_fix_features(dev, features);
6321
6322 /* driver might be less strict about feature dependencies */
6323 features = netdev_fix_features(dev, features);
6324
6325 if (dev->features == features)
6cb6a27c 6326 return 0;
5455c699 6327
c8f44aff
MM
6328 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6329 &dev->features, &features);
5455c699
MM
6330
6331 if (dev->netdev_ops->ndo_set_features)
6332 err = dev->netdev_ops->ndo_set_features(dev, features);
6333
6cb6a27c 6334 if (unlikely(err < 0)) {
5455c699 6335 netdev_err(dev,
c8f44aff
MM
6336 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6337 err, &features, &dev->features);
6cb6a27c
MM
6338 return -1;
6339 }
6340
6341 if (!err)
6342 dev->features = features;
6343
6344 return 1;
6345}
6346
afe12cc8
MM
6347/**
6348 * netdev_update_features - recalculate device features
6349 * @dev: the device to check
6350 *
6351 * Recalculate dev->features set and send notifications if it
6352 * has changed. Should be called after driver or hardware dependent
6353 * conditions might have changed that influence the features.
6354 */
6cb6a27c
MM
6355void netdev_update_features(struct net_device *dev)
6356{
6357 if (__netdev_update_features(dev))
6358 netdev_features_change(dev);
5455c699
MM
6359}
6360EXPORT_SYMBOL(netdev_update_features);
6361
afe12cc8
MM
6362/**
6363 * netdev_change_features - recalculate device features
6364 * @dev: the device to check
6365 *
6366 * Recalculate dev->features set and send notifications even
6367 * if they have not changed. Should be called instead of
6368 * netdev_update_features() if also dev->vlan_features might
6369 * have changed to allow the changes to be propagated to stacked
6370 * VLAN devices.
6371 */
6372void netdev_change_features(struct net_device *dev)
6373{
6374 __netdev_update_features(dev);
6375 netdev_features_change(dev);
6376}
6377EXPORT_SYMBOL(netdev_change_features);
6378
fc4a7489
PM
6379/**
6380 * netif_stacked_transfer_operstate - transfer operstate
6381 * @rootdev: the root or lower level device to transfer state from
6382 * @dev: the device to transfer operstate to
6383 *
6384 * Transfer operational state from root to device. This is normally
6385 * called when a stacking relationship exists between the root
6386 * device and the device(a leaf device).
6387 */
6388void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6389 struct net_device *dev)
6390{
6391 if (rootdev->operstate == IF_OPER_DORMANT)
6392 netif_dormant_on(dev);
6393 else
6394 netif_dormant_off(dev);
6395
6396 if (netif_carrier_ok(rootdev)) {
6397 if (!netif_carrier_ok(dev))
6398 netif_carrier_on(dev);
6399 } else {
6400 if (netif_carrier_ok(dev))
6401 netif_carrier_off(dev);
6402 }
6403}
6404EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6405
a953be53 6406#ifdef CONFIG_SYSFS
1b4bf461
ED
6407static int netif_alloc_rx_queues(struct net_device *dev)
6408{
1b4bf461 6409 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 6410 struct netdev_rx_queue *rx;
10595902 6411 size_t sz = count * sizeof(*rx);
1b4bf461 6412
bd25fa7b 6413 BUG_ON(count < 1);
1b4bf461 6414
10595902
PG
6415 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6416 if (!rx) {
6417 rx = vzalloc(sz);
6418 if (!rx)
6419 return -ENOMEM;
6420 }
bd25fa7b
TH
6421 dev->_rx = rx;
6422
bd25fa7b 6423 for (i = 0; i < count; i++)
fe822240 6424 rx[i].dev = dev;
1b4bf461
ED
6425 return 0;
6426}
bf264145 6427#endif
1b4bf461 6428
aa942104
CG
6429static void netdev_init_one_queue(struct net_device *dev,
6430 struct netdev_queue *queue, void *_unused)
6431{
6432 /* Initialize queue lock */
6433 spin_lock_init(&queue->_xmit_lock);
6434 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6435 queue->xmit_lock_owner = -1;
b236da69 6436 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 6437 queue->dev = dev;
114cf580
TH
6438#ifdef CONFIG_BQL
6439 dql_init(&queue->dql, HZ);
6440#endif
aa942104
CG
6441}
6442
60877a32
ED
6443static void netif_free_tx_queues(struct net_device *dev)
6444{
4cb28970 6445 kvfree(dev->_tx);
60877a32
ED
6446}
6447
e6484930
TH
6448static int netif_alloc_netdev_queues(struct net_device *dev)
6449{
6450 unsigned int count = dev->num_tx_queues;
6451 struct netdev_queue *tx;
60877a32 6452 size_t sz = count * sizeof(*tx);
e6484930 6453
d339727c
ED
6454 if (count < 1 || count > 0xffff)
6455 return -EINVAL;
62b5942a 6456
60877a32
ED
6457 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6458 if (!tx) {
6459 tx = vzalloc(sz);
6460 if (!tx)
6461 return -ENOMEM;
6462 }
e6484930 6463 dev->_tx = tx;
1d24eb48 6464
e6484930
TH
6465 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6466 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
6467
6468 return 0;
e6484930
TH
6469}
6470
a2029240
DV
6471void netif_tx_stop_all_queues(struct net_device *dev)
6472{
6473 unsigned int i;
6474
6475 for (i = 0; i < dev->num_tx_queues; i++) {
6476 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6477 netif_tx_stop_queue(txq);
6478 }
6479}
6480EXPORT_SYMBOL(netif_tx_stop_all_queues);
6481
1da177e4
LT
6482/**
6483 * register_netdevice - register a network device
6484 * @dev: device to register
6485 *
6486 * Take a completed network device structure and add it to the kernel
6487 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6488 * chain. 0 is returned on success. A negative errno code is returned
6489 * on a failure to set up the device, or if the name is a duplicate.
6490 *
6491 * Callers must hold the rtnl semaphore. You may want
6492 * register_netdev() instead of this.
6493 *
6494 * BUGS:
6495 * The locking appears insufficient to guarantee two parallel registers
6496 * will not get the same name.
6497 */
6498
6499int register_netdevice(struct net_device *dev)
6500{
1da177e4 6501 int ret;
d314774c 6502 struct net *net = dev_net(dev);
1da177e4
LT
6503
6504 BUG_ON(dev_boot_phase);
6505 ASSERT_RTNL();
6506
b17a7c17
SH
6507 might_sleep();
6508
1da177e4
LT
6509 /* When net_device's are persistent, this will be fatal. */
6510 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 6511 BUG_ON(!net);
1da177e4 6512
f1f28aa3 6513 spin_lock_init(&dev->addr_list_lock);
cf508b12 6514 netdev_set_addr_lockdep_class(dev);
1da177e4 6515
828de4f6 6516 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
6517 if (ret < 0)
6518 goto out;
6519
1da177e4 6520 /* Init, if this function is available */
d314774c
SH
6521 if (dev->netdev_ops->ndo_init) {
6522 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
6523 if (ret) {
6524 if (ret > 0)
6525 ret = -EIO;
90833aa4 6526 goto out;
1da177e4
LT
6527 }
6528 }
4ec93edb 6529
f646968f
PM
6530 if (((dev->hw_features | dev->features) &
6531 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
6532 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6533 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6534 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6535 ret = -EINVAL;
6536 goto err_uninit;
6537 }
6538
9c7dafbf
PE
6539 ret = -EBUSY;
6540 if (!dev->ifindex)
6541 dev->ifindex = dev_new_index(net);
6542 else if (__dev_get_by_index(net, dev->ifindex))
6543 goto err_uninit;
6544
5455c699
MM
6545 /* Transfer changeable features to wanted_features and enable
6546 * software offloads (GSO and GRO).
6547 */
6548 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
6549 dev->features |= NETIF_F_SOFT_FEATURES;
6550 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 6551
34324dc2
MM
6552 if (!(dev->flags & IFF_LOOPBACK)) {
6553 dev->hw_features |= NETIF_F_NOCACHE_COPY;
c6e1a0d1
TH
6554 }
6555
1180e7d6 6556 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 6557 */
1180e7d6 6558 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 6559
ee579677
PS
6560 /* Make NETIF_F_SG inheritable to tunnel devices.
6561 */
6562 dev->hw_enc_features |= NETIF_F_SG;
6563
0d89d203
SH
6564 /* Make NETIF_F_SG inheritable to MPLS.
6565 */
6566 dev->mpls_features |= NETIF_F_SG;
6567
7ffbe3fd
JB
6568 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6569 ret = notifier_to_errno(ret);
6570 if (ret)
6571 goto err_uninit;
6572
8b41d188 6573 ret = netdev_register_kobject(dev);
b17a7c17 6574 if (ret)
7ce1b0ed 6575 goto err_uninit;
b17a7c17
SH
6576 dev->reg_state = NETREG_REGISTERED;
6577
6cb6a27c 6578 __netdev_update_features(dev);
8e9b59b2 6579
1da177e4
LT
6580 /*
6581 * Default initial state at registry is that the
6582 * device is present.
6583 */
6584
6585 set_bit(__LINK_STATE_PRESENT, &dev->state);
6586
8f4cccbb
BH
6587 linkwatch_init_dev(dev);
6588
1da177e4 6589 dev_init_scheduler(dev);
1da177e4 6590 dev_hold(dev);
ce286d32 6591 list_netdevice(dev);
7bf23575 6592 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 6593
948b337e
JP
6594 /* If the device has permanent device address, driver should
6595 * set dev_addr and also addr_assign_type should be set to
6596 * NET_ADDR_PERM (default value).
6597 */
6598 if (dev->addr_assign_type == NET_ADDR_PERM)
6599 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6600
1da177e4 6601 /* Notify protocols, that a new device appeared. */
056925ab 6602 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 6603 ret = notifier_to_errno(ret);
93ee31f1
DL
6604 if (ret) {
6605 rollback_registered(dev);
6606 dev->reg_state = NETREG_UNREGISTERED;
6607 }
d90a909e
EB
6608 /*
6609 * Prevent userspace races by waiting until the network
6610 * device is fully setup before sending notifications.
6611 */
a2835763
PM
6612 if (!dev->rtnl_link_ops ||
6613 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 6614 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
6615
6616out:
6617 return ret;
7ce1b0ed
HX
6618
6619err_uninit:
d314774c
SH
6620 if (dev->netdev_ops->ndo_uninit)
6621 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 6622 goto out;
1da177e4 6623}
d1b19dff 6624EXPORT_SYMBOL(register_netdevice);
1da177e4 6625
937f1ba5
BH
6626/**
6627 * init_dummy_netdev - init a dummy network device for NAPI
6628 * @dev: device to init
6629 *
6630 * This takes a network device structure and initialize the minimum
6631 * amount of fields so it can be used to schedule NAPI polls without
6632 * registering a full blown interface. This is to be used by drivers
6633 * that need to tie several hardware interfaces to a single NAPI
6634 * poll scheduler due to HW limitations.
6635 */
6636int init_dummy_netdev(struct net_device *dev)
6637{
6638 /* Clear everything. Note we don't initialize spinlocks
6639 * are they aren't supposed to be taken by any of the
6640 * NAPI code and this dummy netdev is supposed to be
6641 * only ever used for NAPI polls
6642 */
6643 memset(dev, 0, sizeof(struct net_device));
6644
6645 /* make sure we BUG if trying to hit standard
6646 * register/unregister code path
6647 */
6648 dev->reg_state = NETREG_DUMMY;
6649
937f1ba5
BH
6650 /* NAPI wants this */
6651 INIT_LIST_HEAD(&dev->napi_list);
6652
6653 /* a dummy interface is started by default */
6654 set_bit(__LINK_STATE_PRESENT, &dev->state);
6655 set_bit(__LINK_STATE_START, &dev->state);
6656
29b4433d
ED
6657 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6658 * because users of this 'device' dont need to change
6659 * its refcount.
6660 */
6661
937f1ba5
BH
6662 return 0;
6663}
6664EXPORT_SYMBOL_GPL(init_dummy_netdev);
6665
6666
1da177e4
LT
6667/**
6668 * register_netdev - register a network device
6669 * @dev: device to register
6670 *
6671 * Take a completed network device structure and add it to the kernel
6672 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6673 * chain. 0 is returned on success. A negative errno code is returned
6674 * on a failure to set up the device, or if the name is a duplicate.
6675 *
38b4da38 6676 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
6677 * and expands the device name if you passed a format string to
6678 * alloc_netdev.
6679 */
6680int register_netdev(struct net_device *dev)
6681{
6682 int err;
6683
6684 rtnl_lock();
1da177e4 6685 err = register_netdevice(dev);
1da177e4
LT
6686 rtnl_unlock();
6687 return err;
6688}
6689EXPORT_SYMBOL(register_netdev);
6690
29b4433d
ED
6691int netdev_refcnt_read(const struct net_device *dev)
6692{
6693 int i, refcnt = 0;
6694
6695 for_each_possible_cpu(i)
6696 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6697 return refcnt;
6698}
6699EXPORT_SYMBOL(netdev_refcnt_read);
6700
2c53040f 6701/**
1da177e4 6702 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 6703 * @dev: target net_device
1da177e4
LT
6704 *
6705 * This is called when unregistering network devices.
6706 *
6707 * Any protocol or device that holds a reference should register
6708 * for netdevice notification, and cleanup and put back the
6709 * reference if they receive an UNREGISTER event.
6710 * We can get stuck here if buggy protocols don't correctly
4ec93edb 6711 * call dev_put.
1da177e4
LT
6712 */
6713static void netdev_wait_allrefs(struct net_device *dev)
6714{
6715 unsigned long rebroadcast_time, warning_time;
29b4433d 6716 int refcnt;
1da177e4 6717
e014debe
ED
6718 linkwatch_forget_dev(dev);
6719
1da177e4 6720 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
6721 refcnt = netdev_refcnt_read(dev);
6722
6723 while (refcnt != 0) {
1da177e4 6724 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 6725 rtnl_lock();
1da177e4
LT
6726
6727 /* Rebroadcast unregister notification */
056925ab 6728 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 6729
748e2d93 6730 __rtnl_unlock();
0115e8e3 6731 rcu_barrier();
748e2d93
ED
6732 rtnl_lock();
6733
0115e8e3 6734 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
6735 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6736 &dev->state)) {
6737 /* We must not have linkwatch events
6738 * pending on unregister. If this
6739 * happens, we simply run the queue
6740 * unscheduled, resulting in a noop
6741 * for this device.
6742 */
6743 linkwatch_run_queue();
6744 }
6745
6756ae4b 6746 __rtnl_unlock();
1da177e4
LT
6747
6748 rebroadcast_time = jiffies;
6749 }
6750
6751 msleep(250);
6752
29b4433d
ED
6753 refcnt = netdev_refcnt_read(dev);
6754
1da177e4 6755 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
6756 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6757 dev->name, refcnt);
1da177e4
LT
6758 warning_time = jiffies;
6759 }
6760 }
6761}
6762
6763/* The sequence is:
6764 *
6765 * rtnl_lock();
6766 * ...
6767 * register_netdevice(x1);
6768 * register_netdevice(x2);
6769 * ...
6770 * unregister_netdevice(y1);
6771 * unregister_netdevice(y2);
6772 * ...
6773 * rtnl_unlock();
6774 * free_netdev(y1);
6775 * free_netdev(y2);
6776 *
58ec3b4d 6777 * We are invoked by rtnl_unlock().
1da177e4 6778 * This allows us to deal with problems:
b17a7c17 6779 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
6780 * without deadlocking with linkwatch via keventd.
6781 * 2) Since we run with the RTNL semaphore not held, we can sleep
6782 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
6783 *
6784 * We must not return until all unregister events added during
6785 * the interval the lock was held have been completed.
1da177e4 6786 */
1da177e4
LT
6787void netdev_run_todo(void)
6788{
626ab0e6 6789 struct list_head list;
1da177e4 6790
1da177e4 6791 /* Snapshot list, allow later requests */
626ab0e6 6792 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
6793
6794 __rtnl_unlock();
626ab0e6 6795
0115e8e3
ED
6796
6797 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
6798 if (!list_empty(&list))
6799 rcu_barrier();
6800
1da177e4
LT
6801 while (!list_empty(&list)) {
6802 struct net_device *dev
e5e26d75 6803 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
6804 list_del(&dev->todo_list);
6805
748e2d93 6806 rtnl_lock();
0115e8e3 6807 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 6808 __rtnl_unlock();
0115e8e3 6809
b17a7c17 6810 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 6811 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
6812 dev->name, dev->reg_state);
6813 dump_stack();
6814 continue;
6815 }
1da177e4 6816
b17a7c17 6817 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 6818
b17a7c17 6819 netdev_wait_allrefs(dev);
1da177e4 6820
b17a7c17 6821 /* paranoia */
29b4433d 6822 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
6823 BUG_ON(!list_empty(&dev->ptype_all));
6824 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
6825 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6826 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 6827 WARN_ON(dev->dn_ptr);
1da177e4 6828
b17a7c17
SH
6829 if (dev->destructor)
6830 dev->destructor(dev);
9093bbb2 6831
50624c93
EB
6832 /* Report a network device has been unregistered */
6833 rtnl_lock();
6834 dev_net(dev)->dev_unreg_count--;
6835 __rtnl_unlock();
6836 wake_up(&netdev_unregistering_wq);
6837
9093bbb2
SH
6838 /* Free network device */
6839 kobject_put(&dev->dev.kobj);
1da177e4 6840 }
1da177e4
LT
6841}
6842
3cfde79c
BH
6843/* Convert net_device_stats to rtnl_link_stats64. They have the same
6844 * fields in the same order, with only the type differing.
6845 */
77a1abf5
ED
6846void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6847 const struct net_device_stats *netdev_stats)
3cfde79c
BH
6848{
6849#if BITS_PER_LONG == 64
77a1abf5
ED
6850 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6851 memcpy(stats64, netdev_stats, sizeof(*stats64));
3cfde79c
BH
6852#else
6853 size_t i, n = sizeof(*stats64) / sizeof(u64);
6854 const unsigned long *src = (const unsigned long *)netdev_stats;
6855 u64 *dst = (u64 *)stats64;
6856
6857 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6858 sizeof(*stats64) / sizeof(u64));
6859 for (i = 0; i < n; i++)
6860 dst[i] = src[i];
6861#endif
6862}
77a1abf5 6863EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 6864
eeda3fd6
SH
6865/**
6866 * dev_get_stats - get network device statistics
6867 * @dev: device to get statistics from
28172739 6868 * @storage: place to store stats
eeda3fd6 6869 *
d7753516
BH
6870 * Get network statistics from device. Return @storage.
6871 * The device driver may provide its own method by setting
6872 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6873 * otherwise the internal statistics structure is used.
eeda3fd6 6874 */
d7753516
BH
6875struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6876 struct rtnl_link_stats64 *storage)
7004bf25 6877{
eeda3fd6
SH
6878 const struct net_device_ops *ops = dev->netdev_ops;
6879
28172739
ED
6880 if (ops->ndo_get_stats64) {
6881 memset(storage, 0, sizeof(*storage));
caf586e5
ED
6882 ops->ndo_get_stats64(dev, storage);
6883 } else if (ops->ndo_get_stats) {
3cfde79c 6884 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
6885 } else {
6886 netdev_stats_to_stats64(storage, &dev->stats);
28172739 6887 }
caf586e5 6888 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 6889 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
28172739 6890 return storage;
c45d286e 6891}
eeda3fd6 6892EXPORT_SYMBOL(dev_get_stats);
c45d286e 6893
24824a09 6894struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 6895{
24824a09 6896 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 6897
24824a09
ED
6898#ifdef CONFIG_NET_CLS_ACT
6899 if (queue)
6900 return queue;
6901 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6902 if (!queue)
6903 return NULL;
6904 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 6905 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
6906 queue->qdisc_sleeping = &noop_qdisc;
6907 rcu_assign_pointer(dev->ingress_queue, queue);
6908#endif
6909 return queue;
bb949fbd
DM
6910}
6911
2c60db03
ED
6912static const struct ethtool_ops default_ethtool_ops;
6913
d07d7507
SG
6914void netdev_set_default_ethtool_ops(struct net_device *dev,
6915 const struct ethtool_ops *ops)
6916{
6917 if (dev->ethtool_ops == &default_ethtool_ops)
6918 dev->ethtool_ops = ops;
6919}
6920EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6921
74d332c1
ED
6922void netdev_freemem(struct net_device *dev)
6923{
6924 char *addr = (char *)dev - dev->padded;
6925
4cb28970 6926 kvfree(addr);
74d332c1
ED
6927}
6928
1da177e4 6929/**
36909ea4 6930 * alloc_netdev_mqs - allocate network device
c835a677
TG
6931 * @sizeof_priv: size of private data to allocate space for
6932 * @name: device name format string
6933 * @name_assign_type: origin of device name
6934 * @setup: callback to initialize device
6935 * @txqs: the number of TX subqueues to allocate
6936 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
6937 *
6938 * Allocates a struct net_device with private data area for driver use
90e51adf 6939 * and performs basic initialization. Also allocates subqueue structs
36909ea4 6940 * for each queue on the device.
1da177e4 6941 */
36909ea4 6942struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 6943 unsigned char name_assign_type,
36909ea4
TH
6944 void (*setup)(struct net_device *),
6945 unsigned int txqs, unsigned int rxqs)
1da177e4 6946{
1da177e4 6947 struct net_device *dev;
7943986c 6948 size_t alloc_size;
1ce8e7b5 6949 struct net_device *p;
1da177e4 6950
b6fe17d6
SH
6951 BUG_ON(strlen(name) >= sizeof(dev->name));
6952
36909ea4 6953 if (txqs < 1) {
7b6cd1ce 6954 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
6955 return NULL;
6956 }
6957
a953be53 6958#ifdef CONFIG_SYSFS
36909ea4 6959 if (rxqs < 1) {
7b6cd1ce 6960 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
6961 return NULL;
6962 }
6963#endif
6964
fd2ea0a7 6965 alloc_size = sizeof(struct net_device);
d1643d24
AD
6966 if (sizeof_priv) {
6967 /* ensure 32-byte alignment of private area */
1ce8e7b5 6968 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
6969 alloc_size += sizeof_priv;
6970 }
6971 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 6972 alloc_size += NETDEV_ALIGN - 1;
1da177e4 6973
74d332c1
ED
6974 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6975 if (!p)
6976 p = vzalloc(alloc_size);
62b5942a 6977 if (!p)
1da177e4 6978 return NULL;
1da177e4 6979
1ce8e7b5 6980 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 6981 dev->padded = (char *)dev - (char *)p;
ab9c73cc 6982
29b4433d
ED
6983 dev->pcpu_refcnt = alloc_percpu(int);
6984 if (!dev->pcpu_refcnt)
74d332c1 6985 goto free_dev;
ab9c73cc 6986
ab9c73cc 6987 if (dev_addr_init(dev))
29b4433d 6988 goto free_pcpu;
ab9c73cc 6989
22bedad3 6990 dev_mc_init(dev);
a748ee24 6991 dev_uc_init(dev);
ccffad25 6992
c346dca1 6993 dev_net_set(dev, &init_net);
1da177e4 6994
8d3bdbd5 6995 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 6996 dev->gso_max_segs = GSO_MAX_SEGS;
fcbeb976 6997 dev->gso_min_segs = 0;
8d3bdbd5 6998
8d3bdbd5
DM
6999 INIT_LIST_HEAD(&dev->napi_list);
7000 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7001 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7002 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7003 INIT_LIST_HEAD(&dev->adj_list.upper);
7004 INIT_LIST_HEAD(&dev->adj_list.lower);
7005 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7006 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7866a621
SN
7007 INIT_LIST_HEAD(&dev->ptype_all);
7008 INIT_LIST_HEAD(&dev->ptype_specific);
02875878 7009 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7010 setup(dev);
7011
906470c1 7012 if (!dev->tx_queue_len)
f84bb1ea 7013 dev->priv_flags |= IFF_NO_QUEUE;
906470c1 7014
36909ea4
TH
7015 dev->num_tx_queues = txqs;
7016 dev->real_num_tx_queues = txqs;
ed9af2e8 7017 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7018 goto free_all;
e8a0464c 7019
a953be53 7020#ifdef CONFIG_SYSFS
36909ea4
TH
7021 dev->num_rx_queues = rxqs;
7022 dev->real_num_rx_queues = rxqs;
fe822240 7023 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7024 goto free_all;
df334545 7025#endif
0a9627f2 7026
1da177e4 7027 strcpy(dev->name, name);
c835a677 7028 dev->name_assign_type = name_assign_type;
cbda10fa 7029 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7030 if (!dev->ethtool_ops)
7031 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7032
7033 nf_hook_ingress_init(dev);
7034
1da177e4 7035 return dev;
ab9c73cc 7036
8d3bdbd5
DM
7037free_all:
7038 free_netdev(dev);
7039 return NULL;
7040
29b4433d
ED
7041free_pcpu:
7042 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7043free_dev:
7044 netdev_freemem(dev);
ab9c73cc 7045 return NULL;
1da177e4 7046}
36909ea4 7047EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7048
7049/**
7050 * free_netdev - free network device
7051 * @dev: device
7052 *
4ec93edb
YH
7053 * This function does the last stage of destroying an allocated device
7054 * interface. The reference to the device object is released.
1da177e4
LT
7055 * If this is the last reference then it will be freed.
7056 */
7057void free_netdev(struct net_device *dev)
7058{
d565b0a1
HX
7059 struct napi_struct *p, *n;
7060
60877a32 7061 netif_free_tx_queues(dev);
a953be53 7062#ifdef CONFIG_SYSFS
10595902 7063 kvfree(dev->_rx);
fe822240 7064#endif
e8a0464c 7065
33d480ce 7066 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7067
f001fde5
JP
7068 /* Flush device addresses */
7069 dev_addr_flush(dev);
7070
d565b0a1
HX
7071 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7072 netif_napi_del(p);
7073
29b4433d
ED
7074 free_percpu(dev->pcpu_refcnt);
7075 dev->pcpu_refcnt = NULL;
7076
3041a069 7077 /* Compatibility with error handling in drivers */
1da177e4 7078 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7079 netdev_freemem(dev);
1da177e4
LT
7080 return;
7081 }
7082
7083 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7084 dev->reg_state = NETREG_RELEASED;
7085
43cb76d9
GKH
7086 /* will free via device release */
7087 put_device(&dev->dev);
1da177e4 7088}
d1b19dff 7089EXPORT_SYMBOL(free_netdev);
4ec93edb 7090
f0db275a
SH
7091/**
7092 * synchronize_net - Synchronize with packet receive processing
7093 *
7094 * Wait for packets currently being received to be done.
7095 * Does not block later packets from starting.
7096 */
4ec93edb 7097void synchronize_net(void)
1da177e4
LT
7098{
7099 might_sleep();
be3fc413
ED
7100 if (rtnl_is_locked())
7101 synchronize_rcu_expedited();
7102 else
7103 synchronize_rcu();
1da177e4 7104}
d1b19dff 7105EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7106
7107/**
44a0873d 7108 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7109 * @dev: device
44a0873d 7110 * @head: list
6ebfbc06 7111 *
1da177e4 7112 * This function shuts down a device interface and removes it
d59b54b1 7113 * from the kernel tables.
44a0873d 7114 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7115 *
7116 * Callers must hold the rtnl semaphore. You may want
7117 * unregister_netdev() instead of this.
7118 */
7119
44a0873d 7120void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7121{
a6620712
HX
7122 ASSERT_RTNL();
7123
44a0873d 7124 if (head) {
9fdce099 7125 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7126 } else {
7127 rollback_registered(dev);
7128 /* Finish processing unregister after unlock */
7129 net_set_todo(dev);
7130 }
1da177e4 7131}
44a0873d 7132EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7133
9b5e383c
ED
7134/**
7135 * unregister_netdevice_many - unregister many devices
7136 * @head: list of devices
87757a91
ED
7137 *
7138 * Note: As most callers use a stack allocated list_head,
7139 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7140 */
7141void unregister_netdevice_many(struct list_head *head)
7142{
7143 struct net_device *dev;
7144
7145 if (!list_empty(head)) {
7146 rollback_registered_many(head);
7147 list_for_each_entry(dev, head, unreg_list)
7148 net_set_todo(dev);
87757a91 7149 list_del(head);
9b5e383c
ED
7150 }
7151}
63c8099d 7152EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7153
1da177e4
LT
7154/**
7155 * unregister_netdev - remove device from the kernel
7156 * @dev: device
7157 *
7158 * This function shuts down a device interface and removes it
d59b54b1 7159 * from the kernel tables.
1da177e4
LT
7160 *
7161 * This is just a wrapper for unregister_netdevice that takes
7162 * the rtnl semaphore. In general you want to use this and not
7163 * unregister_netdevice.
7164 */
7165void unregister_netdev(struct net_device *dev)
7166{
7167 rtnl_lock();
7168 unregister_netdevice(dev);
7169 rtnl_unlock();
7170}
1da177e4
LT
7171EXPORT_SYMBOL(unregister_netdev);
7172
ce286d32
EB
7173/**
7174 * dev_change_net_namespace - move device to different nethost namespace
7175 * @dev: device
7176 * @net: network namespace
7177 * @pat: If not NULL name pattern to try if the current device name
7178 * is already taken in the destination network namespace.
7179 *
7180 * This function shuts down a device interface and moves it
7181 * to a new network namespace. On success 0 is returned, on
7182 * a failure a netagive errno code is returned.
7183 *
7184 * Callers must hold the rtnl semaphore.
7185 */
7186
7187int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7188{
ce286d32
EB
7189 int err;
7190
7191 ASSERT_RTNL();
7192
7193 /* Don't allow namespace local devices to be moved. */
7194 err = -EINVAL;
7195 if (dev->features & NETIF_F_NETNS_LOCAL)
7196 goto out;
7197
7198 /* Ensure the device has been registrered */
ce286d32
EB
7199 if (dev->reg_state != NETREG_REGISTERED)
7200 goto out;
7201
7202 /* Get out if there is nothing todo */
7203 err = 0;
878628fb 7204 if (net_eq(dev_net(dev), net))
ce286d32
EB
7205 goto out;
7206
7207 /* Pick the destination device name, and ensure
7208 * we can use it in the destination network namespace.
7209 */
7210 err = -EEXIST;
d9031024 7211 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7212 /* We get here if we can't use the current device name */
7213 if (!pat)
7214 goto out;
828de4f6 7215 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7216 goto out;
7217 }
7218
7219 /*
7220 * And now a mini version of register_netdevice unregister_netdevice.
7221 */
7222
7223 /* If device is running close it first. */
9b772652 7224 dev_close(dev);
ce286d32
EB
7225
7226 /* And unlink it from device chain */
7227 err = -ENODEV;
7228 unlist_netdevice(dev);
7229
7230 synchronize_net();
7231
7232 /* Shutdown queueing discipline. */
7233 dev_shutdown(dev);
7234
7235 /* Notify protocols, that we are about to destroy
7236 this device. They should clean all the things.
3b27e105
DL
7237
7238 Note that dev->reg_state stays at NETREG_REGISTERED.
7239 This is wanted because this way 8021q and macvlan know
7240 the device is just moving and can keep their slaves up.
ce286d32
EB
7241 */
7242 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7243 rcu_barrier();
7244 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7245 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7246
7247 /*
7248 * Flush the unicast and multicast chains
7249 */
a748ee24 7250 dev_uc_flush(dev);
22bedad3 7251 dev_mc_flush(dev);
ce286d32 7252
4e66ae2e
SH
7253 /* Send a netdev-removed uevent to the old namespace */
7254 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7255 netdev_adjacent_del_links(dev);
4e66ae2e 7256
ce286d32 7257 /* Actually switch the network namespace */
c346dca1 7258 dev_net_set(dev, net);
ce286d32 7259
ce286d32 7260 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7261 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7262 dev->ifindex = dev_new_index(net);
ce286d32 7263
4e66ae2e
SH
7264 /* Send a netdev-add uevent to the new namespace */
7265 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7266 netdev_adjacent_add_links(dev);
4e66ae2e 7267
8b41d188 7268 /* Fixup kobjects */
a1b3f594 7269 err = device_rename(&dev->dev, dev->name);
8b41d188 7270 WARN_ON(err);
ce286d32
EB
7271
7272 /* Add the device back in the hashes */
7273 list_netdevice(dev);
7274
7275 /* Notify protocols, that a new device appeared. */
7276 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7277
d90a909e
EB
7278 /*
7279 * Prevent userspace races by waiting until the network
7280 * device is fully setup before sending notifications.
7281 */
7f294054 7282 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7283
ce286d32
EB
7284 synchronize_net();
7285 err = 0;
7286out:
7287 return err;
7288}
463d0183 7289EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7290
1da177e4
LT
7291static int dev_cpu_callback(struct notifier_block *nfb,
7292 unsigned long action,
7293 void *ocpu)
7294{
7295 struct sk_buff **list_skb;
1da177e4
LT
7296 struct sk_buff *skb;
7297 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7298 struct softnet_data *sd, *oldsd;
7299
8bb78442 7300 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
7301 return NOTIFY_OK;
7302
7303 local_irq_disable();
7304 cpu = smp_processor_id();
7305 sd = &per_cpu(softnet_data, cpu);
7306 oldsd = &per_cpu(softnet_data, oldcpu);
7307
7308 /* Find end of our completion_queue. */
7309 list_skb = &sd->completion_queue;
7310 while (*list_skb)
7311 list_skb = &(*list_skb)->next;
7312 /* Append completion queue from offline CPU. */
7313 *list_skb = oldsd->completion_queue;
7314 oldsd->completion_queue = NULL;
7315
1da177e4 7316 /* Append output queue from offline CPU. */
a9cbd588
CG
7317 if (oldsd->output_queue) {
7318 *sd->output_queue_tailp = oldsd->output_queue;
7319 sd->output_queue_tailp = oldsd->output_queue_tailp;
7320 oldsd->output_queue = NULL;
7321 oldsd->output_queue_tailp = &oldsd->output_queue;
7322 }
ac64da0b
ED
7323 /* Append NAPI poll list from offline CPU, with one exception :
7324 * process_backlog() must be called by cpu owning percpu backlog.
7325 * We properly handle process_queue & input_pkt_queue later.
7326 */
7327 while (!list_empty(&oldsd->poll_list)) {
7328 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7329 struct napi_struct,
7330 poll_list);
7331
7332 list_del_init(&napi->poll_list);
7333 if (napi->poll == process_backlog)
7334 napi->state = 0;
7335 else
7336 ____napi_schedule(sd, napi);
264524d5 7337 }
1da177e4
LT
7338
7339 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7340 local_irq_enable();
7341
7342 /* Process offline CPU's input_pkt_queue */
76cc8b13 7343 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 7344 netif_rx_ni(skb);
76cc8b13 7345 input_queue_head_incr(oldsd);
fec5e652 7346 }
ac64da0b 7347 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 7348 netif_rx_ni(skb);
76cc8b13
TH
7349 input_queue_head_incr(oldsd);
7350 }
1da177e4
LT
7351
7352 return NOTIFY_OK;
7353}
1da177e4
LT
7354
7355
7f353bf2 7356/**
b63365a2
HX
7357 * netdev_increment_features - increment feature set by one
7358 * @all: current feature set
7359 * @one: new feature set
7360 * @mask: mask feature set
7f353bf2
HX
7361 *
7362 * Computes a new feature set after adding a device with feature set
b63365a2
HX
7363 * @one to the master device with current feature set @all. Will not
7364 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 7365 */
c8f44aff
MM
7366netdev_features_t netdev_increment_features(netdev_features_t all,
7367 netdev_features_t one, netdev_features_t mask)
b63365a2 7368{
1742f183
MM
7369 if (mask & NETIF_F_GEN_CSUM)
7370 mask |= NETIF_F_ALL_CSUM;
7371 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 7372
1742f183
MM
7373 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7374 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 7375
1742f183
MM
7376 /* If one device supports hw checksumming, set for all. */
7377 if (all & NETIF_F_GEN_CSUM)
7378 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7f353bf2
HX
7379
7380 return all;
7381}
b63365a2 7382EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 7383
430f03cd 7384static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
7385{
7386 int i;
7387 struct hlist_head *hash;
7388
7389 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7390 if (hash != NULL)
7391 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7392 INIT_HLIST_HEAD(&hash[i]);
7393
7394 return hash;
7395}
7396
881d966b 7397/* Initialize per network namespace state */
4665079c 7398static int __net_init netdev_init(struct net *net)
881d966b 7399{
734b6541
RM
7400 if (net != &init_net)
7401 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 7402
30d97d35
PE
7403 net->dev_name_head = netdev_create_hash();
7404 if (net->dev_name_head == NULL)
7405 goto err_name;
881d966b 7406
30d97d35
PE
7407 net->dev_index_head = netdev_create_hash();
7408 if (net->dev_index_head == NULL)
7409 goto err_idx;
881d966b
EB
7410
7411 return 0;
30d97d35
PE
7412
7413err_idx:
7414 kfree(net->dev_name_head);
7415err_name:
7416 return -ENOMEM;
881d966b
EB
7417}
7418
f0db275a
SH
7419/**
7420 * netdev_drivername - network driver for the device
7421 * @dev: network device
f0db275a
SH
7422 *
7423 * Determine network driver for device.
7424 */
3019de12 7425const char *netdev_drivername(const struct net_device *dev)
6579e57b 7426{
cf04a4c7
SH
7427 const struct device_driver *driver;
7428 const struct device *parent;
3019de12 7429 const char *empty = "";
6579e57b
AV
7430
7431 parent = dev->dev.parent;
6579e57b 7432 if (!parent)
3019de12 7433 return empty;
6579e57b
AV
7434
7435 driver = parent->driver;
7436 if (driver && driver->name)
3019de12
DM
7437 return driver->name;
7438 return empty;
6579e57b
AV
7439}
7440
6ea754eb
JP
7441static void __netdev_printk(const char *level, const struct net_device *dev,
7442 struct va_format *vaf)
256df2f3 7443{
b004ff49 7444 if (dev && dev->dev.parent) {
6ea754eb
JP
7445 dev_printk_emit(level[1] - '0',
7446 dev->dev.parent,
7447 "%s %s %s%s: %pV",
7448 dev_driver_string(dev->dev.parent),
7449 dev_name(dev->dev.parent),
7450 netdev_name(dev), netdev_reg_state(dev),
7451 vaf);
b004ff49 7452 } else if (dev) {
6ea754eb
JP
7453 printk("%s%s%s: %pV",
7454 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 7455 } else {
6ea754eb 7456 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 7457 }
256df2f3
JP
7458}
7459
6ea754eb
JP
7460void netdev_printk(const char *level, const struct net_device *dev,
7461 const char *format, ...)
256df2f3
JP
7462{
7463 struct va_format vaf;
7464 va_list args;
256df2f3
JP
7465
7466 va_start(args, format);
7467
7468 vaf.fmt = format;
7469 vaf.va = &args;
7470
6ea754eb 7471 __netdev_printk(level, dev, &vaf);
b004ff49 7472
256df2f3 7473 va_end(args);
256df2f3
JP
7474}
7475EXPORT_SYMBOL(netdev_printk);
7476
7477#define define_netdev_printk_level(func, level) \
6ea754eb 7478void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 7479{ \
256df2f3
JP
7480 struct va_format vaf; \
7481 va_list args; \
7482 \
7483 va_start(args, fmt); \
7484 \
7485 vaf.fmt = fmt; \
7486 vaf.va = &args; \
7487 \
6ea754eb 7488 __netdev_printk(level, dev, &vaf); \
b004ff49 7489 \
256df2f3 7490 va_end(args); \
256df2f3
JP
7491} \
7492EXPORT_SYMBOL(func);
7493
7494define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7495define_netdev_printk_level(netdev_alert, KERN_ALERT);
7496define_netdev_printk_level(netdev_crit, KERN_CRIT);
7497define_netdev_printk_level(netdev_err, KERN_ERR);
7498define_netdev_printk_level(netdev_warn, KERN_WARNING);
7499define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7500define_netdev_printk_level(netdev_info, KERN_INFO);
7501
4665079c 7502static void __net_exit netdev_exit(struct net *net)
881d966b
EB
7503{
7504 kfree(net->dev_name_head);
7505 kfree(net->dev_index_head);
7506}
7507
022cbae6 7508static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
7509 .init = netdev_init,
7510 .exit = netdev_exit,
7511};
7512
4665079c 7513static void __net_exit default_device_exit(struct net *net)
ce286d32 7514{
e008b5fc 7515 struct net_device *dev, *aux;
ce286d32 7516 /*
e008b5fc 7517 * Push all migratable network devices back to the
ce286d32
EB
7518 * initial network namespace
7519 */
7520 rtnl_lock();
e008b5fc 7521 for_each_netdev_safe(net, dev, aux) {
ce286d32 7522 int err;
aca51397 7523 char fb_name[IFNAMSIZ];
ce286d32
EB
7524
7525 /* Ignore unmoveable devices (i.e. loopback) */
7526 if (dev->features & NETIF_F_NETNS_LOCAL)
7527 continue;
7528
e008b5fc
EB
7529 /* Leave virtual devices for the generic cleanup */
7530 if (dev->rtnl_link_ops)
7531 continue;
d0c082ce 7532
25985edc 7533 /* Push remaining network devices to init_net */
aca51397
PE
7534 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7535 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 7536 if (err) {
7b6cd1ce
JP
7537 pr_emerg("%s: failed to move %s to init_net: %d\n",
7538 __func__, dev->name, err);
aca51397 7539 BUG();
ce286d32
EB
7540 }
7541 }
7542 rtnl_unlock();
7543}
7544
50624c93
EB
7545static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7546{
7547 /* Return with the rtnl_lock held when there are no network
7548 * devices unregistering in any network namespace in net_list.
7549 */
7550 struct net *net;
7551 bool unregistering;
ff960a73 7552 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 7553
ff960a73 7554 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 7555 for (;;) {
50624c93
EB
7556 unregistering = false;
7557 rtnl_lock();
7558 list_for_each_entry(net, net_list, exit_list) {
7559 if (net->dev_unreg_count > 0) {
7560 unregistering = true;
7561 break;
7562 }
7563 }
7564 if (!unregistering)
7565 break;
7566 __rtnl_unlock();
ff960a73
PZ
7567
7568 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 7569 }
ff960a73 7570 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
7571}
7572
04dc7f6b
EB
7573static void __net_exit default_device_exit_batch(struct list_head *net_list)
7574{
7575 /* At exit all network devices most be removed from a network
b595076a 7576 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
7577 * Do this across as many network namespaces as possible to
7578 * improve batching efficiency.
7579 */
7580 struct net_device *dev;
7581 struct net *net;
7582 LIST_HEAD(dev_kill_list);
7583
50624c93
EB
7584 /* To prevent network device cleanup code from dereferencing
7585 * loopback devices or network devices that have been freed
7586 * wait here for all pending unregistrations to complete,
7587 * before unregistring the loopback device and allowing the
7588 * network namespace be freed.
7589 *
7590 * The netdev todo list containing all network devices
7591 * unregistrations that happen in default_device_exit_batch
7592 * will run in the rtnl_unlock() at the end of
7593 * default_device_exit_batch.
7594 */
7595 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
7596 list_for_each_entry(net, net_list, exit_list) {
7597 for_each_netdev_reverse(net, dev) {
b0ab2fab 7598 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
7599 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7600 else
7601 unregister_netdevice_queue(dev, &dev_kill_list);
7602 }
7603 }
7604 unregister_netdevice_many(&dev_kill_list);
7605 rtnl_unlock();
7606}
7607
022cbae6 7608static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 7609 .exit = default_device_exit,
04dc7f6b 7610 .exit_batch = default_device_exit_batch,
ce286d32
EB
7611};
7612
1da177e4
LT
7613/*
7614 * Initialize the DEV module. At boot time this walks the device list and
7615 * unhooks any devices that fail to initialise (normally hardware not
7616 * present) and leaves us with a valid list of present and active devices.
7617 *
7618 */
7619
7620/*
7621 * This is called single threaded during boot, so no need
7622 * to take the rtnl semaphore.
7623 */
7624static int __init net_dev_init(void)
7625{
7626 int i, rc = -ENOMEM;
7627
7628 BUG_ON(!dev_boot_phase);
7629
1da177e4
LT
7630 if (dev_proc_init())
7631 goto out;
7632
8b41d188 7633 if (netdev_kobject_init())
1da177e4
LT
7634 goto out;
7635
7636 INIT_LIST_HEAD(&ptype_all);
82d8a867 7637 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
7638 INIT_LIST_HEAD(&ptype_base[i]);
7639
62532da9
VY
7640 INIT_LIST_HEAD(&offload_base);
7641
881d966b
EB
7642 if (register_pernet_subsys(&netdev_net_ops))
7643 goto out;
1da177e4
LT
7644
7645 /*
7646 * Initialise the packet receive queues.
7647 */
7648
6f912042 7649 for_each_possible_cpu(i) {
e36fa2f7 7650 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 7651
e36fa2f7 7652 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 7653 skb_queue_head_init(&sd->process_queue);
e36fa2f7 7654 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 7655 sd->output_queue_tailp = &sd->output_queue;
df334545 7656#ifdef CONFIG_RPS
e36fa2f7
ED
7657 sd->csd.func = rps_trigger_softirq;
7658 sd->csd.info = sd;
e36fa2f7 7659 sd->cpu = i;
1e94d72f 7660#endif
0a9627f2 7661
e36fa2f7
ED
7662 sd->backlog.poll = process_backlog;
7663 sd->backlog.weight = weight_p;
1da177e4
LT
7664 }
7665
1da177e4
LT
7666 dev_boot_phase = 0;
7667
505d4f73
EB
7668 /* The loopback device is special if any other network devices
7669 * is present in a network namespace the loopback device must
7670 * be present. Since we now dynamically allocate and free the
7671 * loopback device ensure this invariant is maintained by
7672 * keeping the loopback device as the first device on the
7673 * list of network devices. Ensuring the loopback devices
7674 * is the first device that appears and the last network device
7675 * that disappears.
7676 */
7677 if (register_pernet_device(&loopback_net_ops))
7678 goto out;
7679
7680 if (register_pernet_device(&default_device_ops))
7681 goto out;
7682
962cf36c
CM
7683 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7684 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
7685
7686 hotcpu_notifier(dev_cpu_callback, 0);
f38a9eb1 7687 dst_subsys_init();
1da177e4
LT
7688 rc = 0;
7689out:
7690 return rc;
7691}
7692
7693subsys_initcall(net_dev_init);