Merge branch 'apm_xgene'
[linux-2.6-block.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4
LT
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
1da177e4 100#include <linux/stat.h>
1da177e4
LT
101#include <net/dst.h>
102#include <net/pkt_sched.h>
103#include <net/checksum.h>
44540960 104#include <net/xfrm.h>
1da177e4
LT
105#include <linux/highmem.h>
106#include <linux/init.h>
1da177e4 107#include <linux/module.h>
1da177e4
LT
108#include <linux/netpoll.h>
109#include <linux/rcupdate.h>
110#include <linux/delay.h>
1da177e4 111#include <net/iw_handler.h>
1da177e4 112#include <asm/current.h>
5bdb9886 113#include <linux/audit.h>
db217334 114#include <linux/dmaengine.h>
f6a78bfc 115#include <linux/err.h>
c7fa9d18 116#include <linux/ctype.h>
723e98b7 117#include <linux/if_arp.h>
6de329e2 118#include <linux/if_vlan.h>
8f0f2223 119#include <linux/ip.h>
ad55dcaf 120#include <net/ip.h>
8f0f2223
DM
121#include <linux/ipv6.h>
122#include <linux/in.h>
b6b2fed1
DM
123#include <linux/jhash.h>
124#include <linux/random.h>
9cbc1cb8 125#include <trace/events/napi.h>
cf66ba58 126#include <trace/events/net.h>
07dc22e7 127#include <trace/events/skb.h>
5acbbd42 128#include <linux/pci.h>
caeda9b9 129#include <linux/inetdevice.h>
c445477d 130#include <linux/cpu_rmap.h>
c5905afb 131#include <linux/static_key.h>
af12fa6e 132#include <linux/hashtable.h>
60877a32 133#include <linux/vmalloc.h>
529d0489 134#include <linux/if_macvlan.h>
e7fd2885 135#include <linux/errqueue.h>
1da177e4 136
342709ef
PE
137#include "net-sysfs.h"
138
d565b0a1
HX
139/* Instead of increasing this, you should create a hash table. */
140#define MAX_GRO_SKBS 8
141
5d38a079
HX
142/* This should be increased if a protocol with a bigger head is added. */
143#define GRO_MAX_HEAD (MAX_HEADER + 128)
144
1da177e4 145static DEFINE_SPINLOCK(ptype_lock);
62532da9 146static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
147struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
148struct list_head ptype_all __read_mostly; /* Taps */
62532da9 149static struct list_head offload_base __read_mostly;
1da177e4 150
ae78dbfa 151static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
152static int call_netdevice_notifiers_info(unsigned long val,
153 struct net_device *dev,
154 struct netdev_notifier_info *info);
ae78dbfa 155
1da177e4 156/*
7562f876 157 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
158 * semaphore.
159 *
c6d14c84 160 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
161 *
162 * Writers must hold the rtnl semaphore while they loop through the
7562f876 163 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
164 * actual updates. This allows pure readers to access the list even
165 * while a writer is preparing to update it.
166 *
167 * To put it another way, dev_base_lock is held for writing only to
168 * protect against pure readers; the rtnl semaphore provides the
169 * protection against other writers.
170 *
171 * See, for example usages, register_netdevice() and
172 * unregister_netdevice(), which must be called with the rtnl
173 * semaphore held.
174 */
1da177e4 175DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
176EXPORT_SYMBOL(dev_base_lock);
177
af12fa6e
ET
178/* protects napi_hash addition/deletion and napi_gen_id */
179static DEFINE_SPINLOCK(napi_hash_lock);
180
181static unsigned int napi_gen_id;
182static DEFINE_HASHTABLE(napi_hash, 8);
183
18afa4b0 184static seqcount_t devnet_rename_seq;
c91f6df2 185
4e985ada
TG
186static inline void dev_base_seq_inc(struct net *net)
187{
188 while (++net->dev_base_seq == 0);
189}
190
881d966b 191static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 192{
95c96174
ED
193 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
194
08e9897d 195 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
196}
197
881d966b 198static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 199{
7c28bd0b 200 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
201}
202
e36fa2f7 203static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
204{
205#ifdef CONFIG_RPS
e36fa2f7 206 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
207#endif
208}
209
e36fa2f7 210static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
211{
212#ifdef CONFIG_RPS
e36fa2f7 213 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
214#endif
215}
216
ce286d32 217/* Device list insertion */
53759be9 218static void list_netdevice(struct net_device *dev)
ce286d32 219{
c346dca1 220 struct net *net = dev_net(dev);
ce286d32
EB
221
222 ASSERT_RTNL();
223
224 write_lock_bh(&dev_base_lock);
c6d14c84 225 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 226 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
227 hlist_add_head_rcu(&dev->index_hlist,
228 dev_index_hash(net, dev->ifindex));
ce286d32 229 write_unlock_bh(&dev_base_lock);
4e985ada
TG
230
231 dev_base_seq_inc(net);
ce286d32
EB
232}
233
fb699dfd
ED
234/* Device list removal
235 * caller must respect a RCU grace period before freeing/reusing dev
236 */
ce286d32
EB
237static void unlist_netdevice(struct net_device *dev)
238{
239 ASSERT_RTNL();
240
241 /* Unlink dev from the device chain */
242 write_lock_bh(&dev_base_lock);
c6d14c84 243 list_del_rcu(&dev->dev_list);
72c9528b 244 hlist_del_rcu(&dev->name_hlist);
fb699dfd 245 hlist_del_rcu(&dev->index_hlist);
ce286d32 246 write_unlock_bh(&dev_base_lock);
4e985ada
TG
247
248 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
249}
250
1da177e4
LT
251/*
252 * Our notifier list
253 */
254
f07d5b94 255static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
256
257/*
258 * Device drivers call our routines to queue packets here. We empty the
259 * queue in the local softnet handler.
260 */
bea3348e 261
9958da05 262DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 263EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 264
cf508b12 265#ifdef CONFIG_LOCKDEP
723e98b7 266/*
c773e847 267 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
268 * according to dev->type
269 */
270static const unsigned short netdev_lock_type[] =
271 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
283 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
284 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
285 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 286
36cbd3dc 287static const char *const netdev_lock_name[] =
723e98b7
JP
288 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
300 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
301 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
302 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
303
304static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 305static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
306
307static inline unsigned short netdev_lock_pos(unsigned short dev_type)
308{
309 int i;
310
311 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312 if (netdev_lock_type[i] == dev_type)
313 return i;
314 /* the last key is used by default */
315 return ARRAY_SIZE(netdev_lock_type) - 1;
316}
317
cf508b12
DM
318static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319 unsigned short dev_type)
723e98b7
JP
320{
321 int i;
322
323 i = netdev_lock_pos(dev_type);
324 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325 netdev_lock_name[i]);
326}
cf508b12
DM
327
328static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329{
330 int i;
331
332 i = netdev_lock_pos(dev->type);
333 lockdep_set_class_and_name(&dev->addr_list_lock,
334 &netdev_addr_lock_key[i],
335 netdev_lock_name[i]);
336}
723e98b7 337#else
cf508b12
DM
338static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340{
341}
342static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
343{
344}
345#endif
1da177e4
LT
346
347/*******************************************************************************
348
349 Protocol management and registration routines
350
351*******************************************************************************/
352
1da177e4
LT
353/*
354 * Add a protocol ID to the list. Now that the input handler is
355 * smarter we can dispense with all the messy stuff that used to be
356 * here.
357 *
358 * BEWARE!!! Protocol handlers, mangling input packets,
359 * MUST BE last in hash buckets and checking protocol handlers
360 * MUST start from promiscuous ptype_all chain in net_bh.
361 * It is true now, do not change it.
362 * Explanation follows: if protocol handler, mangling packet, will
363 * be the first on list, it is not able to sense, that packet
364 * is cloned and should be copied-on-write, so that it will
365 * change it and subsequent readers will get broken packet.
366 * --ANK (980803)
367 */
368
c07b68e8
ED
369static inline struct list_head *ptype_head(const struct packet_type *pt)
370{
371 if (pt->type == htons(ETH_P_ALL))
372 return &ptype_all;
373 else
374 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
375}
376
1da177e4
LT
377/**
378 * dev_add_pack - add packet handler
379 * @pt: packet type declaration
380 *
381 * Add a protocol handler to the networking stack. The passed &packet_type
382 * is linked into kernel lists and may not be freed until it has been
383 * removed from the kernel lists.
384 *
4ec93edb 385 * This call does not sleep therefore it can not
1da177e4
LT
386 * guarantee all CPU's that are in middle of receiving packets
387 * will see the new packet type (until the next received packet).
388 */
389
390void dev_add_pack(struct packet_type *pt)
391{
c07b68e8 392 struct list_head *head = ptype_head(pt);
1da177e4 393
c07b68e8
ED
394 spin_lock(&ptype_lock);
395 list_add_rcu(&pt->list, head);
396 spin_unlock(&ptype_lock);
1da177e4 397}
d1b19dff 398EXPORT_SYMBOL(dev_add_pack);
1da177e4 399
1da177e4
LT
400/**
401 * __dev_remove_pack - remove packet handler
402 * @pt: packet type declaration
403 *
404 * Remove a protocol handler that was previously added to the kernel
405 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
406 * from the kernel lists and can be freed or reused once this function
4ec93edb 407 * returns.
1da177e4
LT
408 *
409 * The packet type might still be in use by receivers
410 * and must not be freed until after all the CPU's have gone
411 * through a quiescent state.
412 */
413void __dev_remove_pack(struct packet_type *pt)
414{
c07b68e8 415 struct list_head *head = ptype_head(pt);
1da177e4
LT
416 struct packet_type *pt1;
417
c07b68e8 418 spin_lock(&ptype_lock);
1da177e4
LT
419
420 list_for_each_entry(pt1, head, list) {
421 if (pt == pt1) {
422 list_del_rcu(&pt->list);
423 goto out;
424 }
425 }
426
7b6cd1ce 427 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 428out:
c07b68e8 429 spin_unlock(&ptype_lock);
1da177e4 430}
d1b19dff
ED
431EXPORT_SYMBOL(__dev_remove_pack);
432
1da177e4
LT
433/**
434 * dev_remove_pack - remove packet handler
435 * @pt: packet type declaration
436 *
437 * Remove a protocol handler that was previously added to the kernel
438 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
439 * from the kernel lists and can be freed or reused once this function
440 * returns.
441 *
442 * This call sleeps to guarantee that no CPU is looking at the packet
443 * type after return.
444 */
445void dev_remove_pack(struct packet_type *pt)
446{
447 __dev_remove_pack(pt);
4ec93edb 448
1da177e4
LT
449 synchronize_net();
450}
d1b19dff 451EXPORT_SYMBOL(dev_remove_pack);
1da177e4 452
62532da9
VY
453
454/**
455 * dev_add_offload - register offload handlers
456 * @po: protocol offload declaration
457 *
458 * Add protocol offload handlers to the networking stack. The passed
459 * &proto_offload is linked into kernel lists and may not be freed until
460 * it has been removed from the kernel lists.
461 *
462 * This call does not sleep therefore it can not
463 * guarantee all CPU's that are in middle of receiving packets
464 * will see the new offload handlers (until the next received packet).
465 */
466void dev_add_offload(struct packet_offload *po)
467{
468 struct list_head *head = &offload_base;
469
470 spin_lock(&offload_lock);
471 list_add_rcu(&po->list, head);
472 spin_unlock(&offload_lock);
473}
474EXPORT_SYMBOL(dev_add_offload);
475
476/**
477 * __dev_remove_offload - remove offload handler
478 * @po: packet offload declaration
479 *
480 * Remove a protocol offload handler that was previously added to the
481 * kernel offload handlers by dev_add_offload(). The passed &offload_type
482 * is removed from the kernel lists and can be freed or reused once this
483 * function returns.
484 *
485 * The packet type might still be in use by receivers
486 * and must not be freed until after all the CPU's have gone
487 * through a quiescent state.
488 */
1d143d9f 489static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
490{
491 struct list_head *head = &offload_base;
492 struct packet_offload *po1;
493
c53aa505 494 spin_lock(&offload_lock);
62532da9
VY
495
496 list_for_each_entry(po1, head, list) {
497 if (po == po1) {
498 list_del_rcu(&po->list);
499 goto out;
500 }
501 }
502
503 pr_warn("dev_remove_offload: %p not found\n", po);
504out:
c53aa505 505 spin_unlock(&offload_lock);
62532da9 506}
62532da9
VY
507
508/**
509 * dev_remove_offload - remove packet offload handler
510 * @po: packet offload declaration
511 *
512 * Remove a packet offload handler that was previously added to the kernel
513 * offload handlers by dev_add_offload(). The passed &offload_type is
514 * removed from the kernel lists and can be freed or reused once this
515 * function returns.
516 *
517 * This call sleeps to guarantee that no CPU is looking at the packet
518 * type after return.
519 */
520void dev_remove_offload(struct packet_offload *po)
521{
522 __dev_remove_offload(po);
523
524 synchronize_net();
525}
526EXPORT_SYMBOL(dev_remove_offload);
527
1da177e4
LT
528/******************************************************************************
529
530 Device Boot-time Settings Routines
531
532*******************************************************************************/
533
534/* Boot time configuration table */
535static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
536
537/**
538 * netdev_boot_setup_add - add new setup entry
539 * @name: name of the device
540 * @map: configured settings for the device
541 *
542 * Adds new setup entry to the dev_boot_setup list. The function
543 * returns 0 on error and 1 on success. This is a generic routine to
544 * all netdevices.
545 */
546static int netdev_boot_setup_add(char *name, struct ifmap *map)
547{
548 struct netdev_boot_setup *s;
549 int i;
550
551 s = dev_boot_setup;
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
553 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
554 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 555 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
556 memcpy(&s[i].map, map, sizeof(s[i].map));
557 break;
558 }
559 }
560
561 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
562}
563
564/**
565 * netdev_boot_setup_check - check boot time settings
566 * @dev: the netdevice
567 *
568 * Check boot time settings for the device.
569 * The found settings are set for the device to be used
570 * later in the device probing.
571 * Returns 0 if no settings found, 1 if they are.
572 */
573int netdev_boot_setup_check(struct net_device *dev)
574{
575 struct netdev_boot_setup *s = dev_boot_setup;
576 int i;
577
578 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
579 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 580 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
581 dev->irq = s[i].map.irq;
582 dev->base_addr = s[i].map.base_addr;
583 dev->mem_start = s[i].map.mem_start;
584 dev->mem_end = s[i].map.mem_end;
585 return 1;
586 }
587 }
588 return 0;
589}
d1b19dff 590EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
591
592
593/**
594 * netdev_boot_base - get address from boot time settings
595 * @prefix: prefix for network device
596 * @unit: id for network device
597 *
598 * Check boot time settings for the base address of device.
599 * The found settings are set for the device to be used
600 * later in the device probing.
601 * Returns 0 if no settings found.
602 */
603unsigned long netdev_boot_base(const char *prefix, int unit)
604{
605 const struct netdev_boot_setup *s = dev_boot_setup;
606 char name[IFNAMSIZ];
607 int i;
608
609 sprintf(name, "%s%d", prefix, unit);
610
611 /*
612 * If device already registered then return base of 1
613 * to indicate not to probe for this interface
614 */
881d966b 615 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
616 return 1;
617
618 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
619 if (!strcmp(name, s[i].name))
620 return s[i].map.base_addr;
621 return 0;
622}
623
624/*
625 * Saves at boot time configured settings for any netdevice.
626 */
627int __init netdev_boot_setup(char *str)
628{
629 int ints[5];
630 struct ifmap map;
631
632 str = get_options(str, ARRAY_SIZE(ints), ints);
633 if (!str || !*str)
634 return 0;
635
636 /* Save settings */
637 memset(&map, 0, sizeof(map));
638 if (ints[0] > 0)
639 map.irq = ints[1];
640 if (ints[0] > 1)
641 map.base_addr = ints[2];
642 if (ints[0] > 2)
643 map.mem_start = ints[3];
644 if (ints[0] > 3)
645 map.mem_end = ints[4];
646
647 /* Add new entry to the list */
648 return netdev_boot_setup_add(str, &map);
649}
650
651__setup("netdev=", netdev_boot_setup);
652
653/*******************************************************************************
654
655 Device Interface Subroutines
656
657*******************************************************************************/
658
659/**
660 * __dev_get_by_name - find a device by its name
c4ea43c5 661 * @net: the applicable net namespace
1da177e4
LT
662 * @name: name to find
663 *
664 * Find an interface by name. Must be called under RTNL semaphore
665 * or @dev_base_lock. If the name is found a pointer to the device
666 * is returned. If the name is not found then %NULL is returned. The
667 * reference counters are not incremented so the caller must be
668 * careful with locks.
669 */
670
881d966b 671struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 672{
0bd8d536
ED
673 struct net_device *dev;
674 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 675
b67bfe0d 676 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
677 if (!strncmp(dev->name, name, IFNAMSIZ))
678 return dev;
0bd8d536 679
1da177e4
LT
680 return NULL;
681}
d1b19dff 682EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 683
72c9528b
ED
684/**
685 * dev_get_by_name_rcu - find a device by its name
686 * @net: the applicable net namespace
687 * @name: name to find
688 *
689 * Find an interface by name.
690 * If the name is found a pointer to the device is returned.
691 * If the name is not found then %NULL is returned.
692 * The reference counters are not incremented so the caller must be
693 * careful with locks. The caller must hold RCU lock.
694 */
695
696struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
697{
72c9528b
ED
698 struct net_device *dev;
699 struct hlist_head *head = dev_name_hash(net, name);
700
b67bfe0d 701 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
702 if (!strncmp(dev->name, name, IFNAMSIZ))
703 return dev;
704
705 return NULL;
706}
707EXPORT_SYMBOL(dev_get_by_name_rcu);
708
1da177e4
LT
709/**
710 * dev_get_by_name - find a device by its name
c4ea43c5 711 * @net: the applicable net namespace
1da177e4
LT
712 * @name: name to find
713 *
714 * Find an interface by name. This can be called from any
715 * context and does its own locking. The returned handle has
716 * the usage count incremented and the caller must use dev_put() to
717 * release it when it is no longer needed. %NULL is returned if no
718 * matching device is found.
719 */
720
881d966b 721struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
722{
723 struct net_device *dev;
724
72c9528b
ED
725 rcu_read_lock();
726 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
727 if (dev)
728 dev_hold(dev);
72c9528b 729 rcu_read_unlock();
1da177e4
LT
730 return dev;
731}
d1b19dff 732EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
733
734/**
735 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 736 * @net: the applicable net namespace
1da177e4
LT
737 * @ifindex: index of device
738 *
739 * Search for an interface by index. Returns %NULL if the device
740 * is not found or a pointer to the device. The device has not
741 * had its reference counter increased so the caller must be careful
742 * about locking. The caller must hold either the RTNL semaphore
743 * or @dev_base_lock.
744 */
745
881d966b 746struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 747{
0bd8d536
ED
748 struct net_device *dev;
749 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 750
b67bfe0d 751 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
752 if (dev->ifindex == ifindex)
753 return dev;
0bd8d536 754
1da177e4
LT
755 return NULL;
756}
d1b19dff 757EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 758
fb699dfd
ED
759/**
760 * dev_get_by_index_rcu - find a device by its ifindex
761 * @net: the applicable net namespace
762 * @ifindex: index of device
763 *
764 * Search for an interface by index. Returns %NULL if the device
765 * is not found or a pointer to the device. The device has not
766 * had its reference counter increased so the caller must be careful
767 * about locking. The caller must hold RCU lock.
768 */
769
770struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
771{
fb699dfd
ED
772 struct net_device *dev;
773 struct hlist_head *head = dev_index_hash(net, ifindex);
774
b67bfe0d 775 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
776 if (dev->ifindex == ifindex)
777 return dev;
778
779 return NULL;
780}
781EXPORT_SYMBOL(dev_get_by_index_rcu);
782
1da177e4
LT
783
784/**
785 * dev_get_by_index - find a device by its ifindex
c4ea43c5 786 * @net: the applicable net namespace
1da177e4
LT
787 * @ifindex: index of device
788 *
789 * Search for an interface by index. Returns NULL if the device
790 * is not found or a pointer to the device. The device returned has
791 * had a reference added and the pointer is safe until the user calls
792 * dev_put to indicate they have finished with it.
793 */
794
881d966b 795struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
796{
797 struct net_device *dev;
798
fb699dfd
ED
799 rcu_read_lock();
800 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
801 if (dev)
802 dev_hold(dev);
fb699dfd 803 rcu_read_unlock();
1da177e4
LT
804 return dev;
805}
d1b19dff 806EXPORT_SYMBOL(dev_get_by_index);
1da177e4 807
5dbe7c17
NS
808/**
809 * netdev_get_name - get a netdevice name, knowing its ifindex.
810 * @net: network namespace
811 * @name: a pointer to the buffer where the name will be stored.
812 * @ifindex: the ifindex of the interface to get the name from.
813 *
814 * The use of raw_seqcount_begin() and cond_resched() before
815 * retrying is required as we want to give the writers a chance
816 * to complete when CONFIG_PREEMPT is not set.
817 */
818int netdev_get_name(struct net *net, char *name, int ifindex)
819{
820 struct net_device *dev;
821 unsigned int seq;
822
823retry:
824 seq = raw_seqcount_begin(&devnet_rename_seq);
825 rcu_read_lock();
826 dev = dev_get_by_index_rcu(net, ifindex);
827 if (!dev) {
828 rcu_read_unlock();
829 return -ENODEV;
830 }
831
832 strcpy(name, dev->name);
833 rcu_read_unlock();
834 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
835 cond_resched();
836 goto retry;
837 }
838
839 return 0;
840}
841
1da177e4 842/**
941666c2 843 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 844 * @net: the applicable net namespace
1da177e4
LT
845 * @type: media type of device
846 * @ha: hardware address
847 *
848 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
849 * is not found or a pointer to the device.
850 * The caller must hold RCU or RTNL.
941666c2 851 * The returned device has not had its ref count increased
1da177e4
LT
852 * and the caller must therefore be careful about locking
853 *
1da177e4
LT
854 */
855
941666c2
ED
856struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
857 const char *ha)
1da177e4
LT
858{
859 struct net_device *dev;
860
941666c2 861 for_each_netdev_rcu(net, dev)
1da177e4
LT
862 if (dev->type == type &&
863 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
864 return dev;
865
866 return NULL;
1da177e4 867}
941666c2 868EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 869
881d966b 870struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
871{
872 struct net_device *dev;
873
4e9cac2b 874 ASSERT_RTNL();
881d966b 875 for_each_netdev(net, dev)
4e9cac2b 876 if (dev->type == type)
7562f876
PE
877 return dev;
878
879 return NULL;
4e9cac2b 880}
4e9cac2b
PM
881EXPORT_SYMBOL(__dev_getfirstbyhwtype);
882
881d966b 883struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 884{
99fe3c39 885 struct net_device *dev, *ret = NULL;
4e9cac2b 886
99fe3c39
ED
887 rcu_read_lock();
888 for_each_netdev_rcu(net, dev)
889 if (dev->type == type) {
890 dev_hold(dev);
891 ret = dev;
892 break;
893 }
894 rcu_read_unlock();
895 return ret;
1da177e4 896}
1da177e4
LT
897EXPORT_SYMBOL(dev_getfirstbyhwtype);
898
899/**
bb69ae04 900 * dev_get_by_flags_rcu - find any device with given flags
c4ea43c5 901 * @net: the applicable net namespace
1da177e4
LT
902 * @if_flags: IFF_* values
903 * @mask: bitmask of bits in if_flags to check
904 *
905 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04
ED
906 * is not found or a pointer to the device. Must be called inside
907 * rcu_read_lock(), and result refcount is unchanged.
1da177e4
LT
908 */
909
bb69ae04 910struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
d1b19dff 911 unsigned short mask)
1da177e4 912{
7562f876 913 struct net_device *dev, *ret;
1da177e4 914
7562f876 915 ret = NULL;
c6d14c84 916 for_each_netdev_rcu(net, dev) {
1da177e4 917 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 918 ret = dev;
1da177e4
LT
919 break;
920 }
921 }
7562f876 922 return ret;
1da177e4 923}
bb69ae04 924EXPORT_SYMBOL(dev_get_by_flags_rcu);
1da177e4
LT
925
926/**
927 * dev_valid_name - check if name is okay for network device
928 * @name: name string
929 *
930 * Network device names need to be valid file names to
c7fa9d18
DM
931 * to allow sysfs to work. We also disallow any kind of
932 * whitespace.
1da177e4 933 */
95f050bf 934bool dev_valid_name(const char *name)
1da177e4 935{
c7fa9d18 936 if (*name == '\0')
95f050bf 937 return false;
b6fe17d6 938 if (strlen(name) >= IFNAMSIZ)
95f050bf 939 return false;
c7fa9d18 940 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 941 return false;
c7fa9d18
DM
942
943 while (*name) {
944 if (*name == '/' || isspace(*name))
95f050bf 945 return false;
c7fa9d18
DM
946 name++;
947 }
95f050bf 948 return true;
1da177e4 949}
d1b19dff 950EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
951
952/**
b267b179
EB
953 * __dev_alloc_name - allocate a name for a device
954 * @net: network namespace to allocate the device name in
1da177e4 955 * @name: name format string
b267b179 956 * @buf: scratch buffer and result name string
1da177e4
LT
957 *
958 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
959 * id. It scans list of devices to build up a free map, then chooses
960 * the first empty slot. The caller must hold the dev_base or rtnl lock
961 * while allocating the name and adding the device in order to avoid
962 * duplicates.
963 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
964 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
965 */
966
b267b179 967static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
968{
969 int i = 0;
1da177e4
LT
970 const char *p;
971 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 972 unsigned long *inuse;
1da177e4
LT
973 struct net_device *d;
974
975 p = strnchr(name, IFNAMSIZ-1, '%');
976 if (p) {
977 /*
978 * Verify the string as this thing may have come from
979 * the user. There must be either one "%d" and no other "%"
980 * characters.
981 */
982 if (p[1] != 'd' || strchr(p + 2, '%'))
983 return -EINVAL;
984
985 /* Use one page as a bit array of possible slots */
cfcabdcc 986 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
987 if (!inuse)
988 return -ENOMEM;
989
881d966b 990 for_each_netdev(net, d) {
1da177e4
LT
991 if (!sscanf(d->name, name, &i))
992 continue;
993 if (i < 0 || i >= max_netdevices)
994 continue;
995
996 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 997 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
998 if (!strncmp(buf, d->name, IFNAMSIZ))
999 set_bit(i, inuse);
1000 }
1001
1002 i = find_first_zero_bit(inuse, max_netdevices);
1003 free_page((unsigned long) inuse);
1004 }
1005
d9031024
OP
1006 if (buf != name)
1007 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1008 if (!__dev_get_by_name(net, buf))
1da177e4 1009 return i;
1da177e4
LT
1010
1011 /* It is possible to run out of possible slots
1012 * when the name is long and there isn't enough space left
1013 * for the digits, or if all bits are used.
1014 */
1015 return -ENFILE;
1016}
1017
b267b179
EB
1018/**
1019 * dev_alloc_name - allocate a name for a device
1020 * @dev: device
1021 * @name: name format string
1022 *
1023 * Passed a format string - eg "lt%d" it will try and find a suitable
1024 * id. It scans list of devices to build up a free map, then chooses
1025 * the first empty slot. The caller must hold the dev_base or rtnl lock
1026 * while allocating the name and adding the device in order to avoid
1027 * duplicates.
1028 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1029 * Returns the number of the unit assigned or a negative errno code.
1030 */
1031
1032int dev_alloc_name(struct net_device *dev, const char *name)
1033{
1034 char buf[IFNAMSIZ];
1035 struct net *net;
1036 int ret;
1037
c346dca1
YH
1038 BUG_ON(!dev_net(dev));
1039 net = dev_net(dev);
b267b179
EB
1040 ret = __dev_alloc_name(net, name, buf);
1041 if (ret >= 0)
1042 strlcpy(dev->name, buf, IFNAMSIZ);
1043 return ret;
1044}
d1b19dff 1045EXPORT_SYMBOL(dev_alloc_name);
b267b179 1046
828de4f6
G
1047static int dev_alloc_name_ns(struct net *net,
1048 struct net_device *dev,
1049 const char *name)
d9031024 1050{
828de4f6
G
1051 char buf[IFNAMSIZ];
1052 int ret;
8ce6cebc 1053
828de4f6
G
1054 ret = __dev_alloc_name(net, name, buf);
1055 if (ret >= 0)
1056 strlcpy(dev->name, buf, IFNAMSIZ);
1057 return ret;
1058}
1059
1060static int dev_get_valid_name(struct net *net,
1061 struct net_device *dev,
1062 const char *name)
1063{
1064 BUG_ON(!net);
8ce6cebc 1065
d9031024
OP
1066 if (!dev_valid_name(name))
1067 return -EINVAL;
1068
1c5cae81 1069 if (strchr(name, '%'))
828de4f6 1070 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1071 else if (__dev_get_by_name(net, name))
1072 return -EEXIST;
8ce6cebc
DL
1073 else if (dev->name != name)
1074 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1075
1076 return 0;
1077}
1da177e4
LT
1078
1079/**
1080 * dev_change_name - change name of a device
1081 * @dev: device
1082 * @newname: name (or format string) must be at least IFNAMSIZ
1083 *
1084 * Change name of a device, can pass format strings "eth%d".
1085 * for wildcarding.
1086 */
cf04a4c7 1087int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1088{
238fa362 1089 unsigned char old_assign_type;
fcc5a03a 1090 char oldname[IFNAMSIZ];
1da177e4 1091 int err = 0;
fcc5a03a 1092 int ret;
881d966b 1093 struct net *net;
1da177e4
LT
1094
1095 ASSERT_RTNL();
c346dca1 1096 BUG_ON(!dev_net(dev));
1da177e4 1097
c346dca1 1098 net = dev_net(dev);
1da177e4
LT
1099 if (dev->flags & IFF_UP)
1100 return -EBUSY;
1101
30e6c9fa 1102 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1103
1104 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1105 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1106 return 0;
c91f6df2 1107 }
c8d90dca 1108
fcc5a03a
HX
1109 memcpy(oldname, dev->name, IFNAMSIZ);
1110
828de4f6 1111 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1112 if (err < 0) {
30e6c9fa 1113 write_seqcount_end(&devnet_rename_seq);
d9031024 1114 return err;
c91f6df2 1115 }
1da177e4 1116
6fe82a39
VF
1117 if (oldname[0] && !strchr(oldname, '%'))
1118 netdev_info(dev, "renamed from %s\n", oldname);
1119
238fa362
TG
1120 old_assign_type = dev->name_assign_type;
1121 dev->name_assign_type = NET_NAME_RENAMED;
1122
fcc5a03a 1123rollback:
a1b3f594
EB
1124 ret = device_rename(&dev->dev, dev->name);
1125 if (ret) {
1126 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1127 dev->name_assign_type = old_assign_type;
30e6c9fa 1128 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1129 return ret;
dcc99773 1130 }
7f988eab 1131
30e6c9fa 1132 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1133
5bb025fa
VF
1134 netdev_adjacent_rename_links(dev, oldname);
1135
7f988eab 1136 write_lock_bh(&dev_base_lock);
372b2312 1137 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1138 write_unlock_bh(&dev_base_lock);
1139
1140 synchronize_rcu();
1141
1142 write_lock_bh(&dev_base_lock);
1143 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1144 write_unlock_bh(&dev_base_lock);
1145
056925ab 1146 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1147 ret = notifier_to_errno(ret);
1148
1149 if (ret) {
91e9c07b
ED
1150 /* err >= 0 after dev_alloc_name() or stores the first errno */
1151 if (err >= 0) {
fcc5a03a 1152 err = ret;
30e6c9fa 1153 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1154 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1155 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1156 dev->name_assign_type = old_assign_type;
1157 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1158 goto rollback;
91e9c07b 1159 } else {
7b6cd1ce 1160 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1161 dev->name, ret);
fcc5a03a
HX
1162 }
1163 }
1da177e4
LT
1164
1165 return err;
1166}
1167
0b815a1a
SH
1168/**
1169 * dev_set_alias - change ifalias of a device
1170 * @dev: device
1171 * @alias: name up to IFALIASZ
f0db275a 1172 * @len: limit of bytes to copy from info
0b815a1a
SH
1173 *
1174 * Set ifalias for a device,
1175 */
1176int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1177{
7364e445
AK
1178 char *new_ifalias;
1179
0b815a1a
SH
1180 ASSERT_RTNL();
1181
1182 if (len >= IFALIASZ)
1183 return -EINVAL;
1184
96ca4a2c 1185 if (!len) {
388dfc2d
SK
1186 kfree(dev->ifalias);
1187 dev->ifalias = NULL;
96ca4a2c
OH
1188 return 0;
1189 }
1190
7364e445
AK
1191 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1192 if (!new_ifalias)
0b815a1a 1193 return -ENOMEM;
7364e445 1194 dev->ifalias = new_ifalias;
0b815a1a
SH
1195
1196 strlcpy(dev->ifalias, alias, len+1);
1197 return len;
1198}
1199
1200
d8a33ac4 1201/**
3041a069 1202 * netdev_features_change - device changes features
d8a33ac4
SH
1203 * @dev: device to cause notification
1204 *
1205 * Called to indicate a device has changed features.
1206 */
1207void netdev_features_change(struct net_device *dev)
1208{
056925ab 1209 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1210}
1211EXPORT_SYMBOL(netdev_features_change);
1212
1da177e4
LT
1213/**
1214 * netdev_state_change - device changes state
1215 * @dev: device to cause notification
1216 *
1217 * Called to indicate a device has changed state. This function calls
1218 * the notifier chains for netdev_chain and sends a NEWLINK message
1219 * to the routing socket.
1220 */
1221void netdev_state_change(struct net_device *dev)
1222{
1223 if (dev->flags & IFF_UP) {
54951194
LP
1224 struct netdev_notifier_change_info change_info;
1225
1226 change_info.flags_changed = 0;
1227 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1228 &change_info.info);
7f294054 1229 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1230 }
1231}
d1b19dff 1232EXPORT_SYMBOL(netdev_state_change);
1da177e4 1233
ee89bab1
AW
1234/**
1235 * netdev_notify_peers - notify network peers about existence of @dev
1236 * @dev: network device
1237 *
1238 * Generate traffic such that interested network peers are aware of
1239 * @dev, such as by generating a gratuitous ARP. This may be used when
1240 * a device wants to inform the rest of the network about some sort of
1241 * reconfiguration such as a failover event or virtual machine
1242 * migration.
1243 */
1244void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1245{
ee89bab1
AW
1246 rtnl_lock();
1247 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1248 rtnl_unlock();
c1da4ac7 1249}
ee89bab1 1250EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1251
bd380811 1252static int __dev_open(struct net_device *dev)
1da177e4 1253{
d314774c 1254 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1255 int ret;
1da177e4 1256
e46b66bc
BH
1257 ASSERT_RTNL();
1258
1da177e4
LT
1259 if (!netif_device_present(dev))
1260 return -ENODEV;
1261
ca99ca14
NH
1262 /* Block netpoll from trying to do any rx path servicing.
1263 * If we don't do this there is a chance ndo_poll_controller
1264 * or ndo_poll may be running while we open the device
1265 */
66b5552f 1266 netpoll_poll_disable(dev);
ca99ca14 1267
3b8bcfd5
JB
1268 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1269 ret = notifier_to_errno(ret);
1270 if (ret)
1271 return ret;
1272
1da177e4 1273 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1274
d314774c
SH
1275 if (ops->ndo_validate_addr)
1276 ret = ops->ndo_validate_addr(dev);
bada339b 1277
d314774c
SH
1278 if (!ret && ops->ndo_open)
1279 ret = ops->ndo_open(dev);
1da177e4 1280
66b5552f 1281 netpoll_poll_enable(dev);
ca99ca14 1282
bada339b
JG
1283 if (ret)
1284 clear_bit(__LINK_STATE_START, &dev->state);
1285 else {
1da177e4 1286 dev->flags |= IFF_UP;
b4bd07c2 1287 net_dmaengine_get();
4417da66 1288 dev_set_rx_mode(dev);
1da177e4 1289 dev_activate(dev);
7bf23575 1290 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1291 }
bada339b 1292
1da177e4
LT
1293 return ret;
1294}
1295
1296/**
bd380811
PM
1297 * dev_open - prepare an interface for use.
1298 * @dev: device to open
1da177e4 1299 *
bd380811
PM
1300 * Takes a device from down to up state. The device's private open
1301 * function is invoked and then the multicast lists are loaded. Finally
1302 * the device is moved into the up state and a %NETDEV_UP message is
1303 * sent to the netdev notifier chain.
1304 *
1305 * Calling this function on an active interface is a nop. On a failure
1306 * a negative errno code is returned.
1da177e4 1307 */
bd380811
PM
1308int dev_open(struct net_device *dev)
1309{
1310 int ret;
1311
bd380811
PM
1312 if (dev->flags & IFF_UP)
1313 return 0;
1314
bd380811
PM
1315 ret = __dev_open(dev);
1316 if (ret < 0)
1317 return ret;
1318
7f294054 1319 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1320 call_netdevice_notifiers(NETDEV_UP, dev);
1321
1322 return ret;
1323}
1324EXPORT_SYMBOL(dev_open);
1325
44345724 1326static int __dev_close_many(struct list_head *head)
1da177e4 1327{
44345724 1328 struct net_device *dev;
e46b66bc 1329
bd380811 1330 ASSERT_RTNL();
9d5010db
DM
1331 might_sleep();
1332
5cde2829 1333 list_for_each_entry(dev, head, close_list) {
3f4df206 1334 /* Temporarily disable netpoll until the interface is down */
66b5552f 1335 netpoll_poll_disable(dev);
3f4df206 1336
44345724 1337 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1338
44345724 1339 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1340
44345724
OP
1341 /* Synchronize to scheduled poll. We cannot touch poll list, it
1342 * can be even on different cpu. So just clear netif_running().
1343 *
1344 * dev->stop() will invoke napi_disable() on all of it's
1345 * napi_struct instances on this device.
1346 */
4e857c58 1347 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1348 }
1da177e4 1349
44345724 1350 dev_deactivate_many(head);
d8b2a4d2 1351
5cde2829 1352 list_for_each_entry(dev, head, close_list) {
44345724 1353 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1354
44345724
OP
1355 /*
1356 * Call the device specific close. This cannot fail.
1357 * Only if device is UP
1358 *
1359 * We allow it to be called even after a DETACH hot-plug
1360 * event.
1361 */
1362 if (ops->ndo_stop)
1363 ops->ndo_stop(dev);
1364
44345724 1365 dev->flags &= ~IFF_UP;
44345724 1366 net_dmaengine_put();
66b5552f 1367 netpoll_poll_enable(dev);
44345724
OP
1368 }
1369
1370 return 0;
1371}
1372
1373static int __dev_close(struct net_device *dev)
1374{
f87e6f47 1375 int retval;
44345724
OP
1376 LIST_HEAD(single);
1377
5cde2829 1378 list_add(&dev->close_list, &single);
f87e6f47
LT
1379 retval = __dev_close_many(&single);
1380 list_del(&single);
ca99ca14 1381
f87e6f47 1382 return retval;
44345724
OP
1383}
1384
3fbd8758 1385static int dev_close_many(struct list_head *head)
44345724
OP
1386{
1387 struct net_device *dev, *tmp;
1da177e4 1388
5cde2829
EB
1389 /* Remove the devices that don't need to be closed */
1390 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1391 if (!(dev->flags & IFF_UP))
5cde2829 1392 list_del_init(&dev->close_list);
44345724
OP
1393
1394 __dev_close_many(head);
1da177e4 1395
5cde2829 1396 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1397 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1398 call_netdevice_notifiers(NETDEV_DOWN, dev);
5cde2829 1399 list_del_init(&dev->close_list);
44345724 1400 }
bd380811
PM
1401
1402 return 0;
1403}
1404
1405/**
1406 * dev_close - shutdown an interface.
1407 * @dev: device to shutdown
1408 *
1409 * This function moves an active device into down state. A
1410 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1411 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1412 * chain.
1413 */
1414int dev_close(struct net_device *dev)
1415{
e14a5993
ED
1416 if (dev->flags & IFF_UP) {
1417 LIST_HEAD(single);
1da177e4 1418
5cde2829 1419 list_add(&dev->close_list, &single);
e14a5993
ED
1420 dev_close_many(&single);
1421 list_del(&single);
1422 }
da6e378b 1423 return 0;
1da177e4 1424}
d1b19dff 1425EXPORT_SYMBOL(dev_close);
1da177e4
LT
1426
1427
0187bdfb
BH
1428/**
1429 * dev_disable_lro - disable Large Receive Offload on a device
1430 * @dev: device
1431 *
1432 * Disable Large Receive Offload (LRO) on a net device. Must be
1433 * called under RTNL. This is needed if received packets may be
1434 * forwarded to another interface.
1435 */
1436void dev_disable_lro(struct net_device *dev)
1437{
f11970e3
NH
1438 /*
1439 * If we're trying to disable lro on a vlan device
1440 * use the underlying physical device instead
1441 */
1442 if (is_vlan_dev(dev))
1443 dev = vlan_dev_real_dev(dev);
1444
529d0489
MK
1445 /* the same for macvlan devices */
1446 if (netif_is_macvlan(dev))
1447 dev = macvlan_dev_real_dev(dev);
1448
bc5787c6
MM
1449 dev->wanted_features &= ~NETIF_F_LRO;
1450 netdev_update_features(dev);
27660515 1451
22d5969f
MM
1452 if (unlikely(dev->features & NETIF_F_LRO))
1453 netdev_WARN(dev, "failed to disable LRO!\n");
0187bdfb
BH
1454}
1455EXPORT_SYMBOL(dev_disable_lro);
1456
351638e7
JP
1457static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1458 struct net_device *dev)
1459{
1460 struct netdev_notifier_info info;
1461
1462 netdev_notifier_info_init(&info, dev);
1463 return nb->notifier_call(nb, val, &info);
1464}
0187bdfb 1465
881d966b
EB
1466static int dev_boot_phase = 1;
1467
1da177e4
LT
1468/**
1469 * register_netdevice_notifier - register a network notifier block
1470 * @nb: notifier
1471 *
1472 * Register a notifier to be called when network device events occur.
1473 * The notifier passed is linked into the kernel structures and must
1474 * not be reused until it has been unregistered. A negative errno code
1475 * is returned on a failure.
1476 *
1477 * When registered all registration and up events are replayed
4ec93edb 1478 * to the new notifier to allow device to have a race free
1da177e4
LT
1479 * view of the network device list.
1480 */
1481
1482int register_netdevice_notifier(struct notifier_block *nb)
1483{
1484 struct net_device *dev;
fcc5a03a 1485 struct net_device *last;
881d966b 1486 struct net *net;
1da177e4
LT
1487 int err;
1488
1489 rtnl_lock();
f07d5b94 1490 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1491 if (err)
1492 goto unlock;
881d966b
EB
1493 if (dev_boot_phase)
1494 goto unlock;
1495 for_each_net(net) {
1496 for_each_netdev(net, dev) {
351638e7 1497 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1498 err = notifier_to_errno(err);
1499 if (err)
1500 goto rollback;
1501
1502 if (!(dev->flags & IFF_UP))
1503 continue;
1da177e4 1504
351638e7 1505 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1506 }
1da177e4 1507 }
fcc5a03a
HX
1508
1509unlock:
1da177e4
LT
1510 rtnl_unlock();
1511 return err;
fcc5a03a
HX
1512
1513rollback:
1514 last = dev;
881d966b
EB
1515 for_each_net(net) {
1516 for_each_netdev(net, dev) {
1517 if (dev == last)
8f891489 1518 goto outroll;
fcc5a03a 1519
881d966b 1520 if (dev->flags & IFF_UP) {
351638e7
JP
1521 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1522 dev);
1523 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1524 }
351638e7 1525 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1526 }
fcc5a03a 1527 }
c67625a1 1528
8f891489 1529outroll:
c67625a1 1530 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1531 goto unlock;
1da177e4 1532}
d1b19dff 1533EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1534
1535/**
1536 * unregister_netdevice_notifier - unregister a network notifier block
1537 * @nb: notifier
1538 *
1539 * Unregister a notifier previously registered by
1540 * register_netdevice_notifier(). The notifier is unlinked into the
1541 * kernel structures and may then be reused. A negative errno code
1542 * is returned on a failure.
7d3d43da
EB
1543 *
1544 * After unregistering unregister and down device events are synthesized
1545 * for all devices on the device list to the removed notifier to remove
1546 * the need for special case cleanup code.
1da177e4
LT
1547 */
1548
1549int unregister_netdevice_notifier(struct notifier_block *nb)
1550{
7d3d43da
EB
1551 struct net_device *dev;
1552 struct net *net;
9f514950
HX
1553 int err;
1554
1555 rtnl_lock();
f07d5b94 1556 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1557 if (err)
1558 goto unlock;
1559
1560 for_each_net(net) {
1561 for_each_netdev(net, dev) {
1562 if (dev->flags & IFF_UP) {
351638e7
JP
1563 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1564 dev);
1565 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1566 }
351638e7 1567 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1568 }
1569 }
1570unlock:
9f514950
HX
1571 rtnl_unlock();
1572 return err;
1da177e4 1573}
d1b19dff 1574EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1575
351638e7
JP
1576/**
1577 * call_netdevice_notifiers_info - call all network notifier blocks
1578 * @val: value passed unmodified to notifier function
1579 * @dev: net_device pointer passed unmodified to notifier function
1580 * @info: notifier information data
1581 *
1582 * Call all network notifier blocks. Parameters and return value
1583 * are as for raw_notifier_call_chain().
1584 */
1585
1d143d9f 1586static int call_netdevice_notifiers_info(unsigned long val,
1587 struct net_device *dev,
1588 struct netdev_notifier_info *info)
351638e7
JP
1589{
1590 ASSERT_RTNL();
1591 netdev_notifier_info_init(info, dev);
1592 return raw_notifier_call_chain(&netdev_chain, val, info);
1593}
351638e7 1594
1da177e4
LT
1595/**
1596 * call_netdevice_notifiers - call all network notifier blocks
1597 * @val: value passed unmodified to notifier function
c4ea43c5 1598 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1599 *
1600 * Call all network notifier blocks. Parameters and return value
f07d5b94 1601 * are as for raw_notifier_call_chain().
1da177e4
LT
1602 */
1603
ad7379d4 1604int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1605{
351638e7
JP
1606 struct netdev_notifier_info info;
1607
1608 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1609}
edf947f1 1610EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1611
c5905afb 1612static struct static_key netstamp_needed __read_mostly;
b90e5794 1613#ifdef HAVE_JUMP_LABEL
c5905afb 1614/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1615 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1616 * static_key_slow_dec() calls.
b90e5794
ED
1617 */
1618static atomic_t netstamp_needed_deferred;
1619#endif
1da177e4
LT
1620
1621void net_enable_timestamp(void)
1622{
b90e5794
ED
1623#ifdef HAVE_JUMP_LABEL
1624 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1625
1626 if (deferred) {
1627 while (--deferred)
c5905afb 1628 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1629 return;
1630 }
1631#endif
c5905afb 1632 static_key_slow_inc(&netstamp_needed);
1da177e4 1633}
d1b19dff 1634EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1635
1636void net_disable_timestamp(void)
1637{
b90e5794
ED
1638#ifdef HAVE_JUMP_LABEL
1639 if (in_interrupt()) {
1640 atomic_inc(&netstamp_needed_deferred);
1641 return;
1642 }
1643#endif
c5905afb 1644 static_key_slow_dec(&netstamp_needed);
1da177e4 1645}
d1b19dff 1646EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1647
3b098e2d 1648static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1649{
588f0330 1650 skb->tstamp.tv64 = 0;
c5905afb 1651 if (static_key_false(&netstamp_needed))
a61bbcf2 1652 __net_timestamp(skb);
1da177e4
LT
1653}
1654
588f0330 1655#define net_timestamp_check(COND, SKB) \
c5905afb 1656 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1657 if ((COND) && !(SKB)->tstamp.tv64) \
1658 __net_timestamp(SKB); \
1659 } \
3b098e2d 1660
1ee481fb 1661bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
79b569f0
DL
1662{
1663 unsigned int len;
1664
1665 if (!(dev->flags & IFF_UP))
1666 return false;
1667
1668 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1669 if (skb->len <= len)
1670 return true;
1671
1672 /* if TSO is enabled, we don't care about the length as the packet
1673 * could be forwarded without being segmented before
1674 */
1675 if (skb_is_gso(skb))
1676 return true;
1677
1678 return false;
1679}
1ee481fb 1680EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1681
a0265d28
HX
1682int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1683{
1684 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1685 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1686 atomic_long_inc(&dev->rx_dropped);
1687 kfree_skb(skb);
1688 return NET_RX_DROP;
1689 }
1690 }
1691
1692 if (unlikely(!is_skb_forwardable(dev, skb))) {
1693 atomic_long_inc(&dev->rx_dropped);
1694 kfree_skb(skb);
1695 return NET_RX_DROP;
1696 }
1697
1698 skb_scrub_packet(skb, true);
1699 skb->protocol = eth_type_trans(skb, dev);
1700
1701 return 0;
1702}
1703EXPORT_SYMBOL_GPL(__dev_forward_skb);
1704
44540960
AB
1705/**
1706 * dev_forward_skb - loopback an skb to another netif
1707 *
1708 * @dev: destination network device
1709 * @skb: buffer to forward
1710 *
1711 * return values:
1712 * NET_RX_SUCCESS (no congestion)
6ec82562 1713 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1714 *
1715 * dev_forward_skb can be used for injecting an skb from the
1716 * start_xmit function of one device into the receive queue
1717 * of another device.
1718 *
1719 * The receiving device may be in another namespace, so
1720 * we have to clear all information in the skb that could
1721 * impact namespace isolation.
1722 */
1723int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1724{
a0265d28 1725 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1726}
1727EXPORT_SYMBOL_GPL(dev_forward_skb);
1728
71d9dec2
CG
1729static inline int deliver_skb(struct sk_buff *skb,
1730 struct packet_type *pt_prev,
1731 struct net_device *orig_dev)
1732{
1080e512
MT
1733 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1734 return -ENOMEM;
71d9dec2
CG
1735 atomic_inc(&skb->users);
1736 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1737}
1738
c0de08d0
EL
1739static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1740{
a3d744e9 1741 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1742 return false;
1743
1744 if (ptype->id_match)
1745 return ptype->id_match(ptype, skb->sk);
1746 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1747 return true;
1748
1749 return false;
1750}
1751
1da177e4
LT
1752/*
1753 * Support routine. Sends outgoing frames to any network
1754 * taps currently in use.
1755 */
1756
f6a78bfc 1757static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1758{
1759 struct packet_type *ptype;
71d9dec2
CG
1760 struct sk_buff *skb2 = NULL;
1761 struct packet_type *pt_prev = NULL;
a61bbcf2 1762
1da177e4
LT
1763 rcu_read_lock();
1764 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1765 /* Never send packets back to the socket
1766 * they originated from - MvS (miquels@drinkel.ow.org)
1767 */
1768 if ((ptype->dev == dev || !ptype->dev) &&
c0de08d0 1769 (!skb_loop_sk(ptype, skb))) {
71d9dec2
CG
1770 if (pt_prev) {
1771 deliver_skb(skb2, pt_prev, skb->dev);
1772 pt_prev = ptype;
1773 continue;
1774 }
1775
1776 skb2 = skb_clone(skb, GFP_ATOMIC);
1da177e4
LT
1777 if (!skb2)
1778 break;
1779
70978182
ED
1780 net_timestamp_set(skb2);
1781
1da177e4
LT
1782 /* skb->nh should be correctly
1783 set by sender, so that the second statement is
1784 just protection against buggy protocols.
1785 */
459a98ed 1786 skb_reset_mac_header(skb2);
1da177e4 1787
d56f90a7 1788 if (skb_network_header(skb2) < skb2->data ||
ced14f68 1789 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
e87cc472
JP
1790 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1791 ntohs(skb2->protocol),
1792 dev->name);
c1d2bbe1 1793 skb_reset_network_header(skb2);
1da177e4
LT
1794 }
1795
b0e380b1 1796 skb2->transport_header = skb2->network_header;
1da177e4 1797 skb2->pkt_type = PACKET_OUTGOING;
71d9dec2 1798 pt_prev = ptype;
1da177e4
LT
1799 }
1800 }
71d9dec2
CG
1801 if (pt_prev)
1802 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1803 rcu_read_unlock();
1804}
1805
2c53040f
BH
1806/**
1807 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1808 * @dev: Network device
1809 * @txq: number of queues available
1810 *
1811 * If real_num_tx_queues is changed the tc mappings may no longer be
1812 * valid. To resolve this verify the tc mapping remains valid and if
1813 * not NULL the mapping. With no priorities mapping to this
1814 * offset/count pair it will no longer be used. In the worst case TC0
1815 * is invalid nothing can be done so disable priority mappings. If is
1816 * expected that drivers will fix this mapping if they can before
1817 * calling netif_set_real_num_tx_queues.
1818 */
bb134d22 1819static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1820{
1821 int i;
1822 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1823
1824 /* If TC0 is invalidated disable TC mapping */
1825 if (tc->offset + tc->count > txq) {
7b6cd1ce 1826 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1827 dev->num_tc = 0;
1828 return;
1829 }
1830
1831 /* Invalidated prio to tc mappings set to TC0 */
1832 for (i = 1; i < TC_BITMASK + 1; i++) {
1833 int q = netdev_get_prio_tc_map(dev, i);
1834
1835 tc = &dev->tc_to_txq[q];
1836 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1837 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1838 i, q);
4f57c087
JF
1839 netdev_set_prio_tc_map(dev, i, 0);
1840 }
1841 }
1842}
1843
537c00de
AD
1844#ifdef CONFIG_XPS
1845static DEFINE_MUTEX(xps_map_mutex);
1846#define xmap_dereference(P) \
1847 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1848
10cdc3f3
AD
1849static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1850 int cpu, u16 index)
537c00de 1851{
10cdc3f3
AD
1852 struct xps_map *map = NULL;
1853 int pos;
537c00de 1854
10cdc3f3
AD
1855 if (dev_maps)
1856 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1857
10cdc3f3
AD
1858 for (pos = 0; map && pos < map->len; pos++) {
1859 if (map->queues[pos] == index) {
537c00de
AD
1860 if (map->len > 1) {
1861 map->queues[pos] = map->queues[--map->len];
1862 } else {
10cdc3f3 1863 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1864 kfree_rcu(map, rcu);
1865 map = NULL;
1866 }
10cdc3f3 1867 break;
537c00de 1868 }
537c00de
AD
1869 }
1870
10cdc3f3
AD
1871 return map;
1872}
1873
024e9679 1874static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1875{
1876 struct xps_dev_maps *dev_maps;
024e9679 1877 int cpu, i;
10cdc3f3
AD
1878 bool active = false;
1879
1880 mutex_lock(&xps_map_mutex);
1881 dev_maps = xmap_dereference(dev->xps_maps);
1882
1883 if (!dev_maps)
1884 goto out_no_maps;
1885
1886 for_each_possible_cpu(cpu) {
024e9679
AD
1887 for (i = index; i < dev->num_tx_queues; i++) {
1888 if (!remove_xps_queue(dev_maps, cpu, i))
1889 break;
1890 }
1891 if (i == dev->num_tx_queues)
10cdc3f3
AD
1892 active = true;
1893 }
1894
1895 if (!active) {
537c00de
AD
1896 RCU_INIT_POINTER(dev->xps_maps, NULL);
1897 kfree_rcu(dev_maps, rcu);
1898 }
1899
024e9679
AD
1900 for (i = index; i < dev->num_tx_queues; i++)
1901 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1902 NUMA_NO_NODE);
1903
537c00de
AD
1904out_no_maps:
1905 mutex_unlock(&xps_map_mutex);
1906}
1907
01c5f864
AD
1908static struct xps_map *expand_xps_map(struct xps_map *map,
1909 int cpu, u16 index)
1910{
1911 struct xps_map *new_map;
1912 int alloc_len = XPS_MIN_MAP_ALLOC;
1913 int i, pos;
1914
1915 for (pos = 0; map && pos < map->len; pos++) {
1916 if (map->queues[pos] != index)
1917 continue;
1918 return map;
1919 }
1920
1921 /* Need to add queue to this CPU's existing map */
1922 if (map) {
1923 if (pos < map->alloc_len)
1924 return map;
1925
1926 alloc_len = map->alloc_len * 2;
1927 }
1928
1929 /* Need to allocate new map to store queue on this CPU's map */
1930 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1931 cpu_to_node(cpu));
1932 if (!new_map)
1933 return NULL;
1934
1935 for (i = 0; i < pos; i++)
1936 new_map->queues[i] = map->queues[i];
1937 new_map->alloc_len = alloc_len;
1938 new_map->len = pos;
1939
1940 return new_map;
1941}
1942
3573540c
MT
1943int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1944 u16 index)
537c00de 1945{
01c5f864 1946 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 1947 struct xps_map *map, *new_map;
537c00de 1948 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
1949 int cpu, numa_node_id = -2;
1950 bool active = false;
537c00de
AD
1951
1952 mutex_lock(&xps_map_mutex);
1953
1954 dev_maps = xmap_dereference(dev->xps_maps);
1955
01c5f864
AD
1956 /* allocate memory for queue storage */
1957 for_each_online_cpu(cpu) {
1958 if (!cpumask_test_cpu(cpu, mask))
1959 continue;
1960
1961 if (!new_dev_maps)
1962 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
1963 if (!new_dev_maps) {
1964 mutex_unlock(&xps_map_mutex);
01c5f864 1965 return -ENOMEM;
2bb60cb9 1966 }
01c5f864
AD
1967
1968 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1969 NULL;
1970
1971 map = expand_xps_map(map, cpu, index);
1972 if (!map)
1973 goto error;
1974
1975 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1976 }
1977
1978 if (!new_dev_maps)
1979 goto out_no_new_maps;
1980
537c00de 1981 for_each_possible_cpu(cpu) {
01c5f864
AD
1982 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1983 /* add queue to CPU maps */
1984 int pos = 0;
1985
1986 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1987 while ((pos < map->len) && (map->queues[pos] != index))
1988 pos++;
1989
1990 if (pos == map->len)
1991 map->queues[map->len++] = index;
537c00de 1992#ifdef CONFIG_NUMA
537c00de
AD
1993 if (numa_node_id == -2)
1994 numa_node_id = cpu_to_node(cpu);
1995 else if (numa_node_id != cpu_to_node(cpu))
1996 numa_node_id = -1;
537c00de 1997#endif
01c5f864
AD
1998 } else if (dev_maps) {
1999 /* fill in the new device map from the old device map */
2000 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2001 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2002 }
01c5f864 2003
537c00de
AD
2004 }
2005
01c5f864
AD
2006 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2007
537c00de 2008 /* Cleanup old maps */
01c5f864
AD
2009 if (dev_maps) {
2010 for_each_possible_cpu(cpu) {
2011 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2012 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2013 if (map && map != new_map)
2014 kfree_rcu(map, rcu);
2015 }
537c00de 2016
01c5f864 2017 kfree_rcu(dev_maps, rcu);
537c00de
AD
2018 }
2019
01c5f864
AD
2020 dev_maps = new_dev_maps;
2021 active = true;
537c00de 2022
01c5f864
AD
2023out_no_new_maps:
2024 /* update Tx queue numa node */
537c00de
AD
2025 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2026 (numa_node_id >= 0) ? numa_node_id :
2027 NUMA_NO_NODE);
2028
01c5f864
AD
2029 if (!dev_maps)
2030 goto out_no_maps;
2031
2032 /* removes queue from unused CPUs */
2033 for_each_possible_cpu(cpu) {
2034 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2035 continue;
2036
2037 if (remove_xps_queue(dev_maps, cpu, index))
2038 active = true;
2039 }
2040
2041 /* free map if not active */
2042 if (!active) {
2043 RCU_INIT_POINTER(dev->xps_maps, NULL);
2044 kfree_rcu(dev_maps, rcu);
2045 }
2046
2047out_no_maps:
537c00de
AD
2048 mutex_unlock(&xps_map_mutex);
2049
2050 return 0;
2051error:
01c5f864
AD
2052 /* remove any maps that we added */
2053 for_each_possible_cpu(cpu) {
2054 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2055 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056 NULL;
2057 if (new_map && new_map != map)
2058 kfree(new_map);
2059 }
2060
537c00de
AD
2061 mutex_unlock(&xps_map_mutex);
2062
537c00de
AD
2063 kfree(new_dev_maps);
2064 return -ENOMEM;
2065}
2066EXPORT_SYMBOL(netif_set_xps_queue);
2067
2068#endif
f0796d5c
JF
2069/*
2070 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2071 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2072 */
e6484930 2073int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2074{
1d24eb48
TH
2075 int rc;
2076
e6484930
TH
2077 if (txq < 1 || txq > dev->num_tx_queues)
2078 return -EINVAL;
f0796d5c 2079
5c56580b
BH
2080 if (dev->reg_state == NETREG_REGISTERED ||
2081 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2082 ASSERT_RTNL();
2083
1d24eb48
TH
2084 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2085 txq);
bf264145
TH
2086 if (rc)
2087 return rc;
2088
4f57c087
JF
2089 if (dev->num_tc)
2090 netif_setup_tc(dev, txq);
2091
024e9679 2092 if (txq < dev->real_num_tx_queues) {
e6484930 2093 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2094#ifdef CONFIG_XPS
2095 netif_reset_xps_queues_gt(dev, txq);
2096#endif
2097 }
f0796d5c 2098 }
e6484930
TH
2099
2100 dev->real_num_tx_queues = txq;
2101 return 0;
f0796d5c
JF
2102}
2103EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2104
a953be53 2105#ifdef CONFIG_SYSFS
62fe0b40
BH
2106/**
2107 * netif_set_real_num_rx_queues - set actual number of RX queues used
2108 * @dev: Network device
2109 * @rxq: Actual number of RX queues
2110 *
2111 * This must be called either with the rtnl_lock held or before
2112 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2113 * negative error code. If called before registration, it always
2114 * succeeds.
62fe0b40
BH
2115 */
2116int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2117{
2118 int rc;
2119
bd25fa7b
TH
2120 if (rxq < 1 || rxq > dev->num_rx_queues)
2121 return -EINVAL;
2122
62fe0b40
BH
2123 if (dev->reg_state == NETREG_REGISTERED) {
2124 ASSERT_RTNL();
2125
62fe0b40
BH
2126 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2127 rxq);
2128 if (rc)
2129 return rc;
62fe0b40
BH
2130 }
2131
2132 dev->real_num_rx_queues = rxq;
2133 return 0;
2134}
2135EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2136#endif
2137
2c53040f
BH
2138/**
2139 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2140 *
2141 * This routine should set an upper limit on the number of RSS queues
2142 * used by default by multiqueue devices.
2143 */
a55b138b 2144int netif_get_num_default_rss_queues(void)
16917b87
YM
2145{
2146 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2147}
2148EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2149
def82a1d 2150static inline void __netif_reschedule(struct Qdisc *q)
56079431 2151{
def82a1d
JP
2152 struct softnet_data *sd;
2153 unsigned long flags;
56079431 2154
def82a1d
JP
2155 local_irq_save(flags);
2156 sd = &__get_cpu_var(softnet_data);
a9cbd588
CG
2157 q->next_sched = NULL;
2158 *sd->output_queue_tailp = q;
2159 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2160 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2161 local_irq_restore(flags);
2162}
2163
2164void __netif_schedule(struct Qdisc *q)
2165{
2166 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2167 __netif_reschedule(q);
56079431
DV
2168}
2169EXPORT_SYMBOL(__netif_schedule);
2170
e6247027
ED
2171struct dev_kfree_skb_cb {
2172 enum skb_free_reason reason;
2173};
2174
2175static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2176{
e6247027
ED
2177 return (struct dev_kfree_skb_cb *)skb->cb;
2178}
2179
2180void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2181{
e6247027 2182 unsigned long flags;
56079431 2183
e6247027
ED
2184 if (likely(atomic_read(&skb->users) == 1)) {
2185 smp_rmb();
2186 atomic_set(&skb->users, 0);
2187 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2188 return;
bea3348e 2189 }
e6247027
ED
2190 get_kfree_skb_cb(skb)->reason = reason;
2191 local_irq_save(flags);
2192 skb->next = __this_cpu_read(softnet_data.completion_queue);
2193 __this_cpu_write(softnet_data.completion_queue, skb);
2194 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2195 local_irq_restore(flags);
56079431 2196}
e6247027 2197EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2198
e6247027 2199void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2200{
2201 if (in_irq() || irqs_disabled())
e6247027 2202 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2203 else
2204 dev_kfree_skb(skb);
2205}
e6247027 2206EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2207
2208
bea3348e
SH
2209/**
2210 * netif_device_detach - mark device as removed
2211 * @dev: network device
2212 *
2213 * Mark device as removed from system and therefore no longer available.
2214 */
56079431
DV
2215void netif_device_detach(struct net_device *dev)
2216{
2217 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2218 netif_running(dev)) {
d543103a 2219 netif_tx_stop_all_queues(dev);
56079431
DV
2220 }
2221}
2222EXPORT_SYMBOL(netif_device_detach);
2223
bea3348e
SH
2224/**
2225 * netif_device_attach - mark device as attached
2226 * @dev: network device
2227 *
2228 * Mark device as attached from system and restart if needed.
2229 */
56079431
DV
2230void netif_device_attach(struct net_device *dev)
2231{
2232 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2233 netif_running(dev)) {
d543103a 2234 netif_tx_wake_all_queues(dev);
4ec93edb 2235 __netdev_watchdog_up(dev);
56079431
DV
2236 }
2237}
2238EXPORT_SYMBOL(netif_device_attach);
2239
36c92474
BH
2240static void skb_warn_bad_offload(const struct sk_buff *skb)
2241{
65e9d2fa 2242 static const netdev_features_t null_features = 0;
36c92474
BH
2243 struct net_device *dev = skb->dev;
2244 const char *driver = "";
2245
c846ad9b
BG
2246 if (!net_ratelimit())
2247 return;
2248
36c92474
BH
2249 if (dev && dev->dev.parent)
2250 driver = dev_driver_string(dev->dev.parent);
2251
2252 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2253 "gso_type=%d ip_summed=%d\n",
65e9d2fa
MM
2254 driver, dev ? &dev->features : &null_features,
2255 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2256 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2257 skb_shinfo(skb)->gso_type, skb->ip_summed);
2258}
2259
1da177e4
LT
2260/*
2261 * Invalidate hardware checksum when packet is to be mangled, and
2262 * complete checksum manually on outgoing path.
2263 */
84fa7933 2264int skb_checksum_help(struct sk_buff *skb)
1da177e4 2265{
d3bc23e7 2266 __wsum csum;
663ead3b 2267 int ret = 0, offset;
1da177e4 2268
84fa7933 2269 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2270 goto out_set_summed;
2271
2272 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2273 skb_warn_bad_offload(skb);
2274 return -EINVAL;
1da177e4
LT
2275 }
2276
cef401de
ED
2277 /* Before computing a checksum, we should make sure no frag could
2278 * be modified by an external entity : checksum could be wrong.
2279 */
2280 if (skb_has_shared_frag(skb)) {
2281 ret = __skb_linearize(skb);
2282 if (ret)
2283 goto out;
2284 }
2285
55508d60 2286 offset = skb_checksum_start_offset(skb);
a030847e
HX
2287 BUG_ON(offset >= skb_headlen(skb));
2288 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2289
2290 offset += skb->csum_offset;
2291 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2292
2293 if (skb_cloned(skb) &&
2294 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2295 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2296 if (ret)
2297 goto out;
2298 }
2299
a030847e 2300 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2301out_set_summed:
1da177e4 2302 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2303out:
1da177e4
LT
2304 return ret;
2305}
d1b19dff 2306EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2307
53d6471c 2308__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2309{
4b9b1cdf 2310 unsigned int vlan_depth = skb->mac_len;
252e3346 2311 __be16 type = skb->protocol;
f6a78bfc 2312
19acc327
PS
2313 /* Tunnel gso handlers can set protocol to ethernet. */
2314 if (type == htons(ETH_P_TEB)) {
2315 struct ethhdr *eth;
2316
2317 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2318 return 0;
2319
2320 eth = (struct ethhdr *)skb_mac_header(skb);
2321 type = eth->h_proto;
2322 }
2323
4b9b1cdf
NA
2324 /* if skb->protocol is 802.1Q/AD then the header should already be
2325 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2326 * ETH_HLEN otherwise
2327 */
2328 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2329 if (vlan_depth) {
80019d31 2330 if (WARN_ON(vlan_depth < VLAN_HLEN))
4b9b1cdf
NA
2331 return 0;
2332 vlan_depth -= VLAN_HLEN;
2333 } else {
2334 vlan_depth = ETH_HLEN;
2335 }
2336 do {
2337 struct vlan_hdr *vh;
2338
2339 if (unlikely(!pskb_may_pull(skb,
2340 vlan_depth + VLAN_HLEN)))
2341 return 0;
2342
2343 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2344 type = vh->h_vlan_encapsulated_proto;
2345 vlan_depth += VLAN_HLEN;
2346 } while (type == htons(ETH_P_8021Q) ||
2347 type == htons(ETH_P_8021AD));
7b9c6090
JG
2348 }
2349
53d6471c
VY
2350 *depth = vlan_depth;
2351
ec5f0615
PS
2352 return type;
2353}
2354
2355/**
2356 * skb_mac_gso_segment - mac layer segmentation handler.
2357 * @skb: buffer to segment
2358 * @features: features for the output path (see dev->features)
2359 */
2360struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2361 netdev_features_t features)
2362{
2363 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2364 struct packet_offload *ptype;
53d6471c
VY
2365 int vlan_depth = skb->mac_len;
2366 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2367
2368 if (unlikely(!type))
2369 return ERR_PTR(-EINVAL);
2370
53d6471c 2371 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2372
2373 rcu_read_lock();
22061d80 2374 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2375 if (ptype->type == type && ptype->callbacks.gso_segment) {
84fa7933 2376 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
05e8ef4a
PS
2377 int err;
2378
f191a1d1 2379 err = ptype->callbacks.gso_send_check(skb);
a430a43d
HX
2380 segs = ERR_PTR(err);
2381 if (err || skb_gso_ok(skb, features))
2382 break;
d56f90a7
ACM
2383 __skb_push(skb, (skb->data -
2384 skb_network_header(skb)));
a430a43d 2385 }
f191a1d1 2386 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2387 break;
2388 }
2389 }
2390 rcu_read_unlock();
2391
98e399f8 2392 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2393
f6a78bfc
HX
2394 return segs;
2395}
05e8ef4a
PS
2396EXPORT_SYMBOL(skb_mac_gso_segment);
2397
2398
2399/* openvswitch calls this on rx path, so we need a different check.
2400 */
2401static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2402{
2403 if (tx_path)
2404 return skb->ip_summed != CHECKSUM_PARTIAL;
2405 else
2406 return skb->ip_summed == CHECKSUM_NONE;
2407}
2408
2409/**
2410 * __skb_gso_segment - Perform segmentation on skb.
2411 * @skb: buffer to segment
2412 * @features: features for the output path (see dev->features)
2413 * @tx_path: whether it is called in TX path
2414 *
2415 * This function segments the given skb and returns a list of segments.
2416 *
2417 * It may return NULL if the skb requires no segmentation. This is
2418 * only possible when GSO is used for verifying header integrity.
2419 */
2420struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2421 netdev_features_t features, bool tx_path)
2422{
2423 if (unlikely(skb_needs_check(skb, tx_path))) {
2424 int err;
2425
2426 skb_warn_bad_offload(skb);
2427
a40e0a66 2428 err = skb_cow_head(skb, 0);
2429 if (err < 0)
05e8ef4a
PS
2430 return ERR_PTR(err);
2431 }
2432
68c33163 2433 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2434 SKB_GSO_CB(skb)->encap_level = 0;
2435
05e8ef4a
PS
2436 skb_reset_mac_header(skb);
2437 skb_reset_mac_len(skb);
2438
2439 return skb_mac_gso_segment(skb, features);
2440}
12b0004d 2441EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2442
fb286bb2
HX
2443/* Take action when hardware reception checksum errors are detected. */
2444#ifdef CONFIG_BUG
2445void netdev_rx_csum_fault(struct net_device *dev)
2446{
2447 if (net_ratelimit()) {
7b6cd1ce 2448 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2449 dump_stack();
2450 }
2451}
2452EXPORT_SYMBOL(netdev_rx_csum_fault);
2453#endif
2454
1da177e4
LT
2455/* Actually, we should eliminate this check as soon as we know, that:
2456 * 1. IOMMU is present and allows to map all the memory.
2457 * 2. No high memory really exists on this machine.
2458 */
2459
c1e756bf 2460static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2461{
3d3a8533 2462#ifdef CONFIG_HIGHMEM
1da177e4 2463 int i;
5acbbd42 2464 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2465 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2466 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2467 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2468 return 1;
ea2ab693 2469 }
5acbbd42 2470 }
1da177e4 2471
5acbbd42
FT
2472 if (PCI_DMA_BUS_IS_PHYS) {
2473 struct device *pdev = dev->dev.parent;
1da177e4 2474
9092c658
ED
2475 if (!pdev)
2476 return 0;
5acbbd42 2477 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2478 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2479 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2480 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2481 return 1;
2482 }
2483 }
3d3a8533 2484#endif
1da177e4
LT
2485 return 0;
2486}
1da177e4 2487
f6a78bfc
HX
2488struct dev_gso_cb {
2489 void (*destructor)(struct sk_buff *skb);
2490};
2491
2492#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2493
2494static void dev_gso_skb_destructor(struct sk_buff *skb)
2495{
2496 struct dev_gso_cb *cb;
2497
289dccbe
ED
2498 kfree_skb_list(skb->next);
2499 skb->next = NULL;
f6a78bfc
HX
2500
2501 cb = DEV_GSO_CB(skb);
2502 if (cb->destructor)
2503 cb->destructor(skb);
2504}
2505
2506/**
2507 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2508 * @skb: buffer to segment
91ecb63c 2509 * @features: device features as applicable to this skb
f6a78bfc
HX
2510 *
2511 * This function segments the given skb and stores the list of segments
2512 * in skb->next.
2513 */
c8f44aff 2514static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
f6a78bfc 2515{
f6a78bfc 2516 struct sk_buff *segs;
576a30eb
HX
2517
2518 segs = skb_gso_segment(skb, features);
2519
2520 /* Verifying header integrity only. */
2521 if (!segs)
2522 return 0;
f6a78bfc 2523
801678c5 2524 if (IS_ERR(segs))
f6a78bfc
HX
2525 return PTR_ERR(segs);
2526
2527 skb->next = segs;
2528 DEV_GSO_CB(skb)->destructor = skb->destructor;
2529 skb->destructor = dev_gso_skb_destructor;
2530
2531 return 0;
2532}
2533
3b392ddb
SH
2534/* If MPLS offload request, verify we are testing hardware MPLS features
2535 * instead of standard features for the netdev.
2536 */
2537#ifdef CONFIG_NET_MPLS_GSO
2538static netdev_features_t net_mpls_features(struct sk_buff *skb,
2539 netdev_features_t features,
2540 __be16 type)
2541{
2542 if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC))
2543 features &= skb->dev->mpls_features;
2544
2545 return features;
2546}
2547#else
2548static netdev_features_t net_mpls_features(struct sk_buff *skb,
2549 netdev_features_t features,
2550 __be16 type)
2551{
2552 return features;
2553}
2554#endif
2555
c8f44aff 2556static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2557 netdev_features_t features)
f01a5236 2558{
53d6471c 2559 int tmp;
3b392ddb
SH
2560 __be16 type;
2561
2562 type = skb_network_protocol(skb, &tmp);
2563 features = net_mpls_features(skb, features, type);
53d6471c 2564
c0d680e5 2565 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2566 !can_checksum_protocol(features, type)) {
f01a5236 2567 features &= ~NETIF_F_ALL_CSUM;
c1e756bf 2568 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2569 features &= ~NETIF_F_SG;
2570 }
2571
2572 return features;
2573}
2574
c1e756bf 2575netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6
JG
2576{
2577 __be16 protocol = skb->protocol;
c1e756bf 2578 netdev_features_t features = skb->dev->features;
58e998c6 2579
c1e756bf 2580 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
30b678d8
BH
2581 features &= ~NETIF_F_GSO_MASK;
2582
8ad227ff 2583 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
58e998c6
JG
2584 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2585 protocol = veh->h_vlan_encapsulated_proto;
f01a5236 2586 } else if (!vlan_tx_tag_present(skb)) {
c1e756bf 2587 return harmonize_features(skb, features);
f01a5236 2588 }
58e998c6 2589
c1e756bf 2590 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
8ad227ff 2591 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2592
cdbaa0bb 2593 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
f01a5236 2594 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
8ad227ff
PM
2595 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2596 NETIF_F_HW_VLAN_STAG_TX;
cdbaa0bb 2597
c1e756bf 2598 return harmonize_features(skb, features);
58e998c6 2599}
c1e756bf 2600EXPORT_SYMBOL(netif_skb_features);
58e998c6 2601
fd2ea0a7 2602int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
f663dd9a 2603 struct netdev_queue *txq)
f6a78bfc 2604{
00829823 2605 const struct net_device_ops *ops = dev->netdev_ops;
572a9d7b 2606 int rc = NETDEV_TX_OK;
ec764bf0 2607 unsigned int skb_len;
00829823 2608
f6a78bfc 2609 if (likely(!skb->next)) {
c8f44aff 2610 netdev_features_t features;
fc741216 2611
93f154b5 2612 /*
25985edc 2613 * If device doesn't need skb->dst, release it right now while
93f154b5
ED
2614 * its hot in this cpu cache
2615 */
adf30907
ED
2616 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2617 skb_dst_drop(skb);
2618
fc741216
JG
2619 features = netif_skb_features(skb);
2620
7b9c6090 2621 if (vlan_tx_tag_present(skb) &&
86a9bad3
PM
2622 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2623 skb = __vlan_put_tag(skb, skb->vlan_proto,
2624 vlan_tx_tag_get(skb));
7b9c6090
JG
2625 if (unlikely(!skb))
2626 goto out;
2627
2628 skb->vlan_tci = 0;
2629 }
2630
fc70fb64
AD
2631 /* If encapsulation offload request, verify we are testing
2632 * hardware encapsulation features instead of standard
2633 * features for the netdev
2634 */
2635 if (skb->encapsulation)
2636 features &= dev->hw_enc_features;
2637
fc741216 2638 if (netif_needs_gso(skb, features)) {
91ecb63c 2639 if (unlikely(dev_gso_segment(skb, features)))
9ccb8975
DM
2640 goto out_kfree_skb;
2641 if (skb->next)
2642 goto gso;
6afff0ca 2643 } else {
02932ce9 2644 if (skb_needs_linearize(skb, features) &&
6afff0ca
JF
2645 __skb_linearize(skb))
2646 goto out_kfree_skb;
2647
2648 /* If packet is not checksummed and device does not
2649 * support checksumming for this protocol, complete
2650 * checksumming here.
2651 */
2652 if (skb->ip_summed == CHECKSUM_PARTIAL) {
fc70fb64
AD
2653 if (skb->encapsulation)
2654 skb_set_inner_transport_header(skb,
2655 skb_checksum_start_offset(skb));
2656 else
2657 skb_set_transport_header(skb,
2658 skb_checksum_start_offset(skb));
03634668 2659 if (!(features & NETIF_F_ALL_CSUM) &&
6afff0ca
JF
2660 skb_checksum_help(skb))
2661 goto out_kfree_skb;
2662 }
9ccb8975
DM
2663 }
2664
b40863c6
ED
2665 if (!list_empty(&ptype_all))
2666 dev_queue_xmit_nit(skb, dev);
2667
ec764bf0 2668 skb_len = skb->len;
d87d04a7 2669 trace_net_dev_start_xmit(skb, dev);
20567661 2670 rc = ops->ndo_start_xmit(skb, dev);
ec764bf0 2671 trace_net_dev_xmit(skb, rc, dev, skb_len);
f663dd9a 2672 if (rc == NETDEV_TX_OK)
08baf561 2673 txq_trans_update(txq);
ac45f602 2674 return rc;
f6a78bfc
HX
2675 }
2676
576a30eb 2677gso:
f6a78bfc
HX
2678 do {
2679 struct sk_buff *nskb = skb->next;
f6a78bfc
HX
2680
2681 skb->next = nskb->next;
2682 nskb->next = NULL;
068a2de5 2683
b40863c6
ED
2684 if (!list_empty(&ptype_all))
2685 dev_queue_xmit_nit(nskb, dev);
2686
ec764bf0 2687 skb_len = nskb->len;
d87d04a7 2688 trace_net_dev_start_xmit(nskb, dev);
f663dd9a 2689 rc = ops->ndo_start_xmit(nskb, dev);
ec764bf0 2690 trace_net_dev_xmit(nskb, rc, dev, skb_len);
ec634fe3 2691 if (unlikely(rc != NETDEV_TX_OK)) {
572a9d7b
PM
2692 if (rc & ~NETDEV_TX_MASK)
2693 goto out_kfree_gso_skb;
f54d9e8d 2694 nskb->next = skb->next;
f6a78bfc
HX
2695 skb->next = nskb;
2696 return rc;
2697 }
08baf561 2698 txq_trans_update(txq);
73466498 2699 if (unlikely(netif_xmit_stopped(txq) && skb->next))
f54d9e8d 2700 return NETDEV_TX_BUSY;
f6a78bfc 2701 } while (skb->next);
4ec93edb 2702
572a9d7b 2703out_kfree_gso_skb:
0c772159 2704 if (likely(skb->next == NULL)) {
572a9d7b 2705 skb->destructor = DEV_GSO_CB(skb)->destructor;
0c772159
SS
2706 consume_skb(skb);
2707 return rc;
2708 }
f6a78bfc
HX
2709out_kfree_skb:
2710 kfree_skb(skb);
7b9c6090 2711out:
572a9d7b 2712 return rc;
f6a78bfc 2713}
a6cc0cfa 2714EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
f6a78bfc 2715
1def9238
ED
2716static void qdisc_pkt_len_init(struct sk_buff *skb)
2717{
2718 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2719
2720 qdisc_skb_cb(skb)->pkt_len = skb->len;
2721
2722 /* To get more precise estimation of bytes sent on wire,
2723 * we add to pkt_len the headers size of all segments
2724 */
2725 if (shinfo->gso_size) {
757b8b1d 2726 unsigned int hdr_len;
15e5a030 2727 u16 gso_segs = shinfo->gso_segs;
1def9238 2728
757b8b1d
ED
2729 /* mac layer + network layer */
2730 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2731
2732 /* + transport layer */
1def9238
ED
2733 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2734 hdr_len += tcp_hdrlen(skb);
2735 else
2736 hdr_len += sizeof(struct udphdr);
15e5a030
JW
2737
2738 if (shinfo->gso_type & SKB_GSO_DODGY)
2739 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2740 shinfo->gso_size);
2741
2742 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
2743 }
2744}
2745
bbd8a0d3
KK
2746static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2747 struct net_device *dev,
2748 struct netdev_queue *txq)
2749{
2750 spinlock_t *root_lock = qdisc_lock(q);
a2da570d 2751 bool contended;
bbd8a0d3
KK
2752 int rc;
2753
1def9238 2754 qdisc_pkt_len_init(skb);
a2da570d 2755 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
2756 /*
2757 * Heuristic to force contended enqueues to serialize on a
2758 * separate lock before trying to get qdisc main lock.
9bf2b8c2
YX
2759 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2760 * often and dequeue packets faster.
79640a4c 2761 */
a2da570d 2762 contended = qdisc_is_running(q);
79640a4c
ED
2763 if (unlikely(contended))
2764 spin_lock(&q->busylock);
2765
bbd8a0d3
KK
2766 spin_lock(root_lock);
2767 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2768 kfree_skb(skb);
2769 rc = NET_XMIT_DROP;
2770 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 2771 qdisc_run_begin(q)) {
bbd8a0d3
KK
2772 /*
2773 * This is a work-conserving queue; there are no old skbs
2774 * waiting to be sent out; and the qdisc is not running -
2775 * xmit the skb directly.
2776 */
7fee226a
ED
2777 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2778 skb_dst_force(skb);
bfe0d029 2779
bfe0d029
ED
2780 qdisc_bstats_update(q, skb);
2781
79640a4c
ED
2782 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2783 if (unlikely(contended)) {
2784 spin_unlock(&q->busylock);
2785 contended = false;
2786 }
bbd8a0d3 2787 __qdisc_run(q);
79640a4c 2788 } else
bc135b23 2789 qdisc_run_end(q);
bbd8a0d3
KK
2790
2791 rc = NET_XMIT_SUCCESS;
2792 } else {
7fee226a 2793 skb_dst_force(skb);
a2da570d 2794 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
79640a4c
ED
2795 if (qdisc_run_begin(q)) {
2796 if (unlikely(contended)) {
2797 spin_unlock(&q->busylock);
2798 contended = false;
2799 }
2800 __qdisc_run(q);
2801 }
bbd8a0d3
KK
2802 }
2803 spin_unlock(root_lock);
79640a4c
ED
2804 if (unlikely(contended))
2805 spin_unlock(&q->busylock);
bbd8a0d3
KK
2806 return rc;
2807}
2808
86f8515f 2809#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
2810static void skb_update_prio(struct sk_buff *skb)
2811{
6977a79d 2812 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 2813
91c68ce2
ED
2814 if (!skb->priority && skb->sk && map) {
2815 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2816
2817 if (prioidx < map->priomap_len)
2818 skb->priority = map->priomap[prioidx];
2819 }
5bc1421e
NH
2820}
2821#else
2822#define skb_update_prio(skb)
2823#endif
2824
745e20f1 2825static DEFINE_PER_CPU(int, xmit_recursion);
11a766ce 2826#define RECURSION_LIMIT 10
745e20f1 2827
95603e22
MM
2828/**
2829 * dev_loopback_xmit - loop back @skb
2830 * @skb: buffer to transmit
2831 */
2832int dev_loopback_xmit(struct sk_buff *skb)
2833{
2834 skb_reset_mac_header(skb);
2835 __skb_pull(skb, skb_network_offset(skb));
2836 skb->pkt_type = PACKET_LOOPBACK;
2837 skb->ip_summed = CHECKSUM_UNNECESSARY;
2838 WARN_ON(!skb_dst(skb));
2839 skb_dst_force(skb);
2840 netif_rx_ni(skb);
2841 return 0;
2842}
2843EXPORT_SYMBOL(dev_loopback_xmit);
2844
d29f749e 2845/**
9d08dd3d 2846 * __dev_queue_xmit - transmit a buffer
d29f749e 2847 * @skb: buffer to transmit
9d08dd3d 2848 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
2849 *
2850 * Queue a buffer for transmission to a network device. The caller must
2851 * have set the device and priority and built the buffer before calling
2852 * this function. The function can be called from an interrupt.
2853 *
2854 * A negative errno code is returned on a failure. A success does not
2855 * guarantee the frame will be transmitted as it may be dropped due
2856 * to congestion or traffic shaping.
2857 *
2858 * -----------------------------------------------------------------------------------
2859 * I notice this method can also return errors from the queue disciplines,
2860 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2861 * be positive.
2862 *
2863 * Regardless of the return value, the skb is consumed, so it is currently
2864 * difficult to retry a send to this method. (You can bump the ref count
2865 * before sending to hold a reference for retry if you are careful.)
2866 *
2867 * When calling this method, interrupts MUST be enabled. This is because
2868 * the BH enable code must have IRQs enabled so that it will not deadlock.
2869 * --BLG
2870 */
0a59f3a9 2871static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
2872{
2873 struct net_device *dev = skb->dev;
dc2b4847 2874 struct netdev_queue *txq;
1da177e4
LT
2875 struct Qdisc *q;
2876 int rc = -ENOMEM;
2877
6d1ccff6
ED
2878 skb_reset_mac_header(skb);
2879
e7fd2885
WB
2880 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2881 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2882
4ec93edb
YH
2883 /* Disable soft irqs for various locks below. Also
2884 * stops preemption for RCU.
1da177e4 2885 */
4ec93edb 2886 rcu_read_lock_bh();
1da177e4 2887
5bc1421e
NH
2888 skb_update_prio(skb);
2889
f663dd9a 2890 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 2891 q = rcu_dereference_bh(txq->qdisc);
37437bb2 2892
1da177e4 2893#ifdef CONFIG_NET_CLS_ACT
d1b19dff 2894 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
1da177e4 2895#endif
cf66ba58 2896 trace_net_dev_queue(skb);
1da177e4 2897 if (q->enqueue) {
bbd8a0d3 2898 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 2899 goto out;
1da177e4
LT
2900 }
2901
2902 /* The device has no queue. Common case for software devices:
2903 loopback, all the sorts of tunnels...
2904
932ff279
HX
2905 Really, it is unlikely that netif_tx_lock protection is necessary
2906 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
2907 counters.)
2908 However, it is possible, that they rely on protection
2909 made by us here.
2910
2911 Check this and shot the lock. It is not prone from deadlocks.
2912 Either shot noqueue qdisc, it is even simpler 8)
2913 */
2914 if (dev->flags & IFF_UP) {
2915 int cpu = smp_processor_id(); /* ok because BHs are off */
2916
c773e847 2917 if (txq->xmit_lock_owner != cpu) {
1da177e4 2918
745e20f1
ED
2919 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2920 goto recursion_alert;
2921
c773e847 2922 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 2923
73466498 2924 if (!netif_xmit_stopped(txq)) {
745e20f1 2925 __this_cpu_inc(xmit_recursion);
f663dd9a 2926 rc = dev_hard_start_xmit(skb, dev, txq);
745e20f1 2927 __this_cpu_dec(xmit_recursion);
572a9d7b 2928 if (dev_xmit_complete(rc)) {
c773e847 2929 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
2930 goto out;
2931 }
2932 }
c773e847 2933 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
2934 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2935 dev->name);
1da177e4
LT
2936 } else {
2937 /* Recursion is detected! It is possible,
745e20f1
ED
2938 * unfortunately
2939 */
2940recursion_alert:
e87cc472
JP
2941 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2942 dev->name);
1da177e4
LT
2943 }
2944 }
2945
2946 rc = -ENETDOWN;
d4828d85 2947 rcu_read_unlock_bh();
1da177e4 2948
015f0688 2949 atomic_long_inc(&dev->tx_dropped);
1da177e4
LT
2950 kfree_skb(skb);
2951 return rc;
2952out:
d4828d85 2953 rcu_read_unlock_bh();
1da177e4
LT
2954 return rc;
2955}
f663dd9a
JW
2956
2957int dev_queue_xmit(struct sk_buff *skb)
2958{
2959 return __dev_queue_xmit(skb, NULL);
2960}
d1b19dff 2961EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 2962
f663dd9a
JW
2963int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2964{
2965 return __dev_queue_xmit(skb, accel_priv);
2966}
2967EXPORT_SYMBOL(dev_queue_xmit_accel);
2968
1da177e4
LT
2969
2970/*=======================================================================
2971 Receiver routines
2972 =======================================================================*/
2973
6b2bedc3 2974int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
2975EXPORT_SYMBOL(netdev_max_backlog);
2976
3b098e2d 2977int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
2978int netdev_budget __read_mostly = 300;
2979int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 2980
eecfd7c4
ED
2981/* Called with irq disabled */
2982static inline void ____napi_schedule(struct softnet_data *sd,
2983 struct napi_struct *napi)
2984{
2985 list_add_tail(&napi->poll_list, &sd->poll_list);
2986 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2987}
2988
bfb564e7
KK
2989#ifdef CONFIG_RPS
2990
2991/* One global table that all flow-based protocols share. */
6e3f7faf 2992struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7
KK
2993EXPORT_SYMBOL(rps_sock_flow_table);
2994
c5905afb 2995struct static_key rps_needed __read_mostly;
adc9300e 2996
c445477d
BH
2997static struct rps_dev_flow *
2998set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2999 struct rps_dev_flow *rflow, u16 next_cpu)
3000{
09994d1b 3001 if (next_cpu != RPS_NO_CPU) {
c445477d
BH
3002#ifdef CONFIG_RFS_ACCEL
3003 struct netdev_rx_queue *rxqueue;
3004 struct rps_dev_flow_table *flow_table;
3005 struct rps_dev_flow *old_rflow;
3006 u32 flow_id;
3007 u16 rxq_index;
3008 int rc;
3009
3010 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3011 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3012 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3013 goto out;
3014 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3015 if (rxq_index == skb_get_rx_queue(skb))
3016 goto out;
3017
3018 rxqueue = dev->_rx + rxq_index;
3019 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3020 if (!flow_table)
3021 goto out;
61b905da 3022 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3023 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3024 rxq_index, flow_id);
3025 if (rc < 0)
3026 goto out;
3027 old_rflow = rflow;
3028 rflow = &flow_table->flows[flow_id];
c445477d
BH
3029 rflow->filter = rc;
3030 if (old_rflow->filter == rflow->filter)
3031 old_rflow->filter = RPS_NO_FILTER;
3032 out:
3033#endif
3034 rflow->last_qtail =
09994d1b 3035 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3036 }
3037
09994d1b 3038 rflow->cpu = next_cpu;
c445477d
BH
3039 return rflow;
3040}
3041
bfb564e7
KK
3042/*
3043 * get_rps_cpu is called from netif_receive_skb and returns the target
3044 * CPU from the RPS map of the receiving queue for a given skb.
3045 * rcu_read_lock must be held on entry.
3046 */
3047static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3048 struct rps_dev_flow **rflowp)
3049{
3050 struct netdev_rx_queue *rxqueue;
6e3f7faf 3051 struct rps_map *map;
bfb564e7
KK
3052 struct rps_dev_flow_table *flow_table;
3053 struct rps_sock_flow_table *sock_flow_table;
3054 int cpu = -1;
3055 u16 tcpu;
61b905da 3056 u32 hash;
bfb564e7
KK
3057
3058 if (skb_rx_queue_recorded(skb)) {
3059 u16 index = skb_get_rx_queue(skb);
62fe0b40
BH
3060 if (unlikely(index >= dev->real_num_rx_queues)) {
3061 WARN_ONCE(dev->real_num_rx_queues > 1,
3062 "%s received packet on queue %u, but number "
3063 "of RX queues is %u\n",
3064 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3065 goto done;
3066 }
3067 rxqueue = dev->_rx + index;
3068 } else
3069 rxqueue = dev->_rx;
3070
6e3f7faf
ED
3071 map = rcu_dereference(rxqueue->rps_map);
3072 if (map) {
85875236 3073 if (map->len == 1 &&
33d480ce 3074 !rcu_access_pointer(rxqueue->rps_flow_table)) {
6febfca9
CG
3075 tcpu = map->cpus[0];
3076 if (cpu_online(tcpu))
3077 cpu = tcpu;
3078 goto done;
3079 }
33d480ce 3080 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
bfb564e7 3081 goto done;
6febfca9 3082 }
bfb564e7 3083
2d47b459 3084 skb_reset_network_header(skb);
61b905da
TH
3085 hash = skb_get_hash(skb);
3086 if (!hash)
bfb564e7
KK
3087 goto done;
3088
fec5e652
TH
3089 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3090 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3091 if (flow_table && sock_flow_table) {
3092 u16 next_cpu;
3093 struct rps_dev_flow *rflow;
3094
61b905da 3095 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3096 tcpu = rflow->cpu;
3097
61b905da 3098 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
fec5e652
TH
3099
3100 /*
3101 * If the desired CPU (where last recvmsg was done) is
3102 * different from current CPU (one in the rx-queue flow
3103 * table entry), switch if one of the following holds:
3104 * - Current CPU is unset (equal to RPS_NO_CPU).
3105 * - Current CPU is offline.
3106 * - The current CPU's queue tail has advanced beyond the
3107 * last packet that was enqueued using this table entry.
3108 * This guarantees that all previous packets for the flow
3109 * have been dequeued, thus preserving in order delivery.
3110 */
3111 if (unlikely(tcpu != next_cpu) &&
3112 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3113 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3114 rflow->last_qtail)) >= 0)) {
3115 tcpu = next_cpu;
c445477d 3116 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3117 }
c445477d 3118
fec5e652
TH
3119 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3120 *rflowp = rflow;
3121 cpu = tcpu;
3122 goto done;
3123 }
3124 }
3125
0a9627f2 3126 if (map) {
61b905da 3127 tcpu = map->cpus[((u64) hash * map->len) >> 32];
0a9627f2
TH
3128
3129 if (cpu_online(tcpu)) {
3130 cpu = tcpu;
3131 goto done;
3132 }
3133 }
3134
3135done:
0a9627f2
TH
3136 return cpu;
3137}
3138
c445477d
BH
3139#ifdef CONFIG_RFS_ACCEL
3140
3141/**
3142 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3143 * @dev: Device on which the filter was set
3144 * @rxq_index: RX queue index
3145 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3146 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3147 *
3148 * Drivers that implement ndo_rx_flow_steer() should periodically call
3149 * this function for each installed filter and remove the filters for
3150 * which it returns %true.
3151 */
3152bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3153 u32 flow_id, u16 filter_id)
3154{
3155 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3156 struct rps_dev_flow_table *flow_table;
3157 struct rps_dev_flow *rflow;
3158 bool expire = true;
3159 int cpu;
3160
3161 rcu_read_lock();
3162 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3163 if (flow_table && flow_id <= flow_table->mask) {
3164 rflow = &flow_table->flows[flow_id];
3165 cpu = ACCESS_ONCE(rflow->cpu);
3166 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3167 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3168 rflow->last_qtail) <
3169 (int)(10 * flow_table->mask)))
3170 expire = false;
3171 }
3172 rcu_read_unlock();
3173 return expire;
3174}
3175EXPORT_SYMBOL(rps_may_expire_flow);
3176
3177#endif /* CONFIG_RFS_ACCEL */
3178
0a9627f2 3179/* Called from hardirq (IPI) context */
e36fa2f7 3180static void rps_trigger_softirq(void *data)
0a9627f2 3181{
e36fa2f7
ED
3182 struct softnet_data *sd = data;
3183
eecfd7c4 3184 ____napi_schedule(sd, &sd->backlog);
dee42870 3185 sd->received_rps++;
0a9627f2 3186}
e36fa2f7 3187
fec5e652 3188#endif /* CONFIG_RPS */
0a9627f2 3189
e36fa2f7
ED
3190/*
3191 * Check if this softnet_data structure is another cpu one
3192 * If yes, queue it to our IPI list and return 1
3193 * If no, return 0
3194 */
3195static int rps_ipi_queued(struct softnet_data *sd)
3196{
3197#ifdef CONFIG_RPS
3198 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3199
3200 if (sd != mysd) {
3201 sd->rps_ipi_next = mysd->rps_ipi_list;
3202 mysd->rps_ipi_list = sd;
3203
3204 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3205 return 1;
3206 }
3207#endif /* CONFIG_RPS */
3208 return 0;
3209}
3210
99bbc707
WB
3211#ifdef CONFIG_NET_FLOW_LIMIT
3212int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3213#endif
3214
3215static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3216{
3217#ifdef CONFIG_NET_FLOW_LIMIT
3218 struct sd_flow_limit *fl;
3219 struct softnet_data *sd;
3220 unsigned int old_flow, new_flow;
3221
3222 if (qlen < (netdev_max_backlog >> 1))
3223 return false;
3224
3225 sd = &__get_cpu_var(softnet_data);
3226
3227 rcu_read_lock();
3228 fl = rcu_dereference(sd->flow_limit);
3229 if (fl) {
3958afa1 3230 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3231 old_flow = fl->history[fl->history_head];
3232 fl->history[fl->history_head] = new_flow;
3233
3234 fl->history_head++;
3235 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3236
3237 if (likely(fl->buckets[old_flow]))
3238 fl->buckets[old_flow]--;
3239
3240 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3241 fl->count++;
3242 rcu_read_unlock();
3243 return true;
3244 }
3245 }
3246 rcu_read_unlock();
3247#endif
3248 return false;
3249}
3250
0a9627f2
TH
3251/*
3252 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3253 * queue (may be a remote CPU queue).
3254 */
fec5e652
TH
3255static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3256 unsigned int *qtail)
0a9627f2 3257{
e36fa2f7 3258 struct softnet_data *sd;
0a9627f2 3259 unsigned long flags;
99bbc707 3260 unsigned int qlen;
0a9627f2 3261
e36fa2f7 3262 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3263
3264 local_irq_save(flags);
0a9627f2 3265
e36fa2f7 3266 rps_lock(sd);
99bbc707
WB
3267 qlen = skb_queue_len(&sd->input_pkt_queue);
3268 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
6e7676c1 3269 if (skb_queue_len(&sd->input_pkt_queue)) {
0a9627f2 3270enqueue:
e36fa2f7 3271 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3272 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3273 rps_unlock(sd);
152102c7 3274 local_irq_restore(flags);
0a9627f2
TH
3275 return NET_RX_SUCCESS;
3276 }
3277
ebda37c2
ED
3278 /* Schedule NAPI for backlog device
3279 * We can use non atomic operation since we own the queue lock
3280 */
3281 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3282 if (!rps_ipi_queued(sd))
eecfd7c4 3283 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3284 }
3285 goto enqueue;
3286 }
3287
dee42870 3288 sd->dropped++;
e36fa2f7 3289 rps_unlock(sd);
0a9627f2 3290
0a9627f2
TH
3291 local_irq_restore(flags);
3292
caf586e5 3293 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3294 kfree_skb(skb);
3295 return NET_RX_DROP;
3296}
1da177e4 3297
ae78dbfa 3298static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3299{
b0e28f1e 3300 int ret;
1da177e4 3301
588f0330 3302 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3303
cf66ba58 3304 trace_netif_rx(skb);
df334545 3305#ifdef CONFIG_RPS
c5905afb 3306 if (static_key_false(&rps_needed)) {
fec5e652 3307 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3308 int cpu;
3309
cece1945 3310 preempt_disable();
b0e28f1e 3311 rcu_read_lock();
fec5e652
TH
3312
3313 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3314 if (cpu < 0)
3315 cpu = smp_processor_id();
fec5e652
TH
3316
3317 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3318
b0e28f1e 3319 rcu_read_unlock();
cece1945 3320 preempt_enable();
adc9300e
ED
3321 } else
3322#endif
fec5e652
TH
3323 {
3324 unsigned int qtail;
3325 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3326 put_cpu();
3327 }
b0e28f1e 3328 return ret;
1da177e4 3329}
ae78dbfa
BH
3330
3331/**
3332 * netif_rx - post buffer to the network code
3333 * @skb: buffer to post
3334 *
3335 * This function receives a packet from a device driver and queues it for
3336 * the upper (protocol) levels to process. It always succeeds. The buffer
3337 * may be dropped during processing for congestion control or by the
3338 * protocol layers.
3339 *
3340 * return values:
3341 * NET_RX_SUCCESS (no congestion)
3342 * NET_RX_DROP (packet was dropped)
3343 *
3344 */
3345
3346int netif_rx(struct sk_buff *skb)
3347{
3348 trace_netif_rx_entry(skb);
3349
3350 return netif_rx_internal(skb);
3351}
d1b19dff 3352EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3353
3354int netif_rx_ni(struct sk_buff *skb)
3355{
3356 int err;
3357
ae78dbfa
BH
3358 trace_netif_rx_ni_entry(skb);
3359
1da177e4 3360 preempt_disable();
ae78dbfa 3361 err = netif_rx_internal(skb);
1da177e4
LT
3362 if (local_softirq_pending())
3363 do_softirq();
3364 preempt_enable();
3365
3366 return err;
3367}
1da177e4
LT
3368EXPORT_SYMBOL(netif_rx_ni);
3369
1da177e4
LT
3370static void net_tx_action(struct softirq_action *h)
3371{
3372 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3373
3374 if (sd->completion_queue) {
3375 struct sk_buff *clist;
3376
3377 local_irq_disable();
3378 clist = sd->completion_queue;
3379 sd->completion_queue = NULL;
3380 local_irq_enable();
3381
3382 while (clist) {
3383 struct sk_buff *skb = clist;
3384 clist = clist->next;
3385
547b792c 3386 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3387 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3388 trace_consume_skb(skb);
3389 else
3390 trace_kfree_skb(skb, net_tx_action);
1da177e4
LT
3391 __kfree_skb(skb);
3392 }
3393 }
3394
3395 if (sd->output_queue) {
37437bb2 3396 struct Qdisc *head;
1da177e4
LT
3397
3398 local_irq_disable();
3399 head = sd->output_queue;
3400 sd->output_queue = NULL;
a9cbd588 3401 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3402 local_irq_enable();
3403
3404 while (head) {
37437bb2
DM
3405 struct Qdisc *q = head;
3406 spinlock_t *root_lock;
3407
1da177e4
LT
3408 head = head->next_sched;
3409
5fb66229 3410 root_lock = qdisc_lock(q);
37437bb2 3411 if (spin_trylock(root_lock)) {
4e857c58 3412 smp_mb__before_atomic();
def82a1d
JP
3413 clear_bit(__QDISC_STATE_SCHED,
3414 &q->state);
37437bb2
DM
3415 qdisc_run(q);
3416 spin_unlock(root_lock);
1da177e4 3417 } else {
195648bb 3418 if (!test_bit(__QDISC_STATE_DEACTIVATED,
e8a83e10 3419 &q->state)) {
195648bb 3420 __netif_reschedule(q);
e8a83e10 3421 } else {
4e857c58 3422 smp_mb__before_atomic();
e8a83e10
JP
3423 clear_bit(__QDISC_STATE_SCHED,
3424 &q->state);
3425 }
1da177e4
LT
3426 }
3427 }
3428 }
3429}
3430
ab95bfe0
JP
3431#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3432 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
da678292
MM
3433/* This hook is defined here for ATM LANE */
3434int (*br_fdb_test_addr_hook)(struct net_device *dev,
3435 unsigned char *addr) __read_mostly;
4fb019a0 3436EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3437#endif
1da177e4 3438
1da177e4
LT
3439#ifdef CONFIG_NET_CLS_ACT
3440/* TODO: Maybe we should just force sch_ingress to be compiled in
3441 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3442 * a compare and 2 stores extra right now if we dont have it on
3443 * but have CONFIG_NET_CLS_ACT
25985edc
LDM
3444 * NOTE: This doesn't stop any functionality; if you dont have
3445 * the ingress scheduler, you just can't add policies on ingress.
1da177e4
LT
3446 *
3447 */
24824a09 3448static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
1da177e4 3449{
1da177e4 3450 struct net_device *dev = skb->dev;
f697c3e8 3451 u32 ttl = G_TC_RTTL(skb->tc_verd);
555353cf
DM
3452 int result = TC_ACT_OK;
3453 struct Qdisc *q;
4ec93edb 3454
de384830 3455 if (unlikely(MAX_RED_LOOP < ttl++)) {
e87cc472
JP
3456 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3457 skb->skb_iif, dev->ifindex);
f697c3e8
HX
3458 return TC_ACT_SHOT;
3459 }
1da177e4 3460
f697c3e8
HX
3461 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3462 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1da177e4 3463
83874000 3464 q = rxq->qdisc;
8d50b53d 3465 if (q != &noop_qdisc) {
83874000 3466 spin_lock(qdisc_lock(q));
a9312ae8
DM
3467 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3468 result = qdisc_enqueue_root(skb, q);
83874000
DM
3469 spin_unlock(qdisc_lock(q));
3470 }
f697c3e8
HX
3471
3472 return result;
3473}
86e65da9 3474
f697c3e8
HX
3475static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3476 struct packet_type **pt_prev,
3477 int *ret, struct net_device *orig_dev)
3478{
24824a09
ED
3479 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3480
3481 if (!rxq || rxq->qdisc == &noop_qdisc)
f697c3e8 3482 goto out;
1da177e4 3483
f697c3e8
HX
3484 if (*pt_prev) {
3485 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3486 *pt_prev = NULL;
1da177e4
LT
3487 }
3488
24824a09 3489 switch (ing_filter(skb, rxq)) {
f697c3e8
HX
3490 case TC_ACT_SHOT:
3491 case TC_ACT_STOLEN:
3492 kfree_skb(skb);
3493 return NULL;
3494 }
3495
3496out:
3497 skb->tc_verd = 0;
3498 return skb;
1da177e4
LT
3499}
3500#endif
3501
ab95bfe0
JP
3502/**
3503 * netdev_rx_handler_register - register receive handler
3504 * @dev: device to register a handler for
3505 * @rx_handler: receive handler to register
93e2c32b 3506 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3507 *
e227867f 3508 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3509 * called from __netif_receive_skb. A negative errno code is returned
3510 * on a failure.
3511 *
3512 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3513 *
3514 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3515 */
3516int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3517 rx_handler_func_t *rx_handler,
3518 void *rx_handler_data)
ab95bfe0
JP
3519{
3520 ASSERT_RTNL();
3521
3522 if (dev->rx_handler)
3523 return -EBUSY;
3524
00cfec37 3525 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 3526 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
3527 rcu_assign_pointer(dev->rx_handler, rx_handler);
3528
3529 return 0;
3530}
3531EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3532
3533/**
3534 * netdev_rx_handler_unregister - unregister receive handler
3535 * @dev: device to unregister a handler from
3536 *
166ec369 3537 * Unregister a receive handler from a device.
ab95bfe0
JP
3538 *
3539 * The caller must hold the rtnl_mutex.
3540 */
3541void netdev_rx_handler_unregister(struct net_device *dev)
3542{
3543
3544 ASSERT_RTNL();
a9b3cd7f 3545 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
3546 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3547 * section has a guarantee to see a non NULL rx_handler_data
3548 * as well.
3549 */
3550 synchronize_net();
a9b3cd7f 3551 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
3552}
3553EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3554
b4b9e355
MG
3555/*
3556 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3557 * the special handling of PFMEMALLOC skbs.
3558 */
3559static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3560{
3561 switch (skb->protocol) {
2b8837ae
JP
3562 case htons(ETH_P_ARP):
3563 case htons(ETH_P_IP):
3564 case htons(ETH_P_IPV6):
3565 case htons(ETH_P_8021Q):
3566 case htons(ETH_P_8021AD):
b4b9e355
MG
3567 return true;
3568 default:
3569 return false;
3570 }
3571}
3572
9754e293 3573static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
3574{
3575 struct packet_type *ptype, *pt_prev;
ab95bfe0 3576 rx_handler_func_t *rx_handler;
f2ccd8fa 3577 struct net_device *orig_dev;
63d8ea7f 3578 struct net_device *null_or_dev;
8a4eb573 3579 bool deliver_exact = false;
1da177e4 3580 int ret = NET_RX_DROP;
252e3346 3581 __be16 type;
1da177e4 3582
588f0330 3583 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 3584
cf66ba58 3585 trace_netif_receive_skb(skb);
9b22ea56 3586
cc9bd5ce 3587 orig_dev = skb->dev;
8f903c70 3588
c1d2bbe1 3589 skb_reset_network_header(skb);
fda55eca
ED
3590 if (!skb_transport_header_was_set(skb))
3591 skb_reset_transport_header(skb);
0b5c9db1 3592 skb_reset_mac_len(skb);
1da177e4
LT
3593
3594 pt_prev = NULL;
3595
3596 rcu_read_lock();
3597
63d8ea7f 3598another_round:
b6858177 3599 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
3600
3601 __this_cpu_inc(softnet_data.processed);
3602
8ad227ff
PM
3603 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3604 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
bcc6d479
JP
3605 skb = vlan_untag(skb);
3606 if (unlikely(!skb))
b4b9e355 3607 goto unlock;
bcc6d479
JP
3608 }
3609
1da177e4
LT
3610#ifdef CONFIG_NET_CLS_ACT
3611 if (skb->tc_verd & TC_NCLS) {
3612 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3613 goto ncls;
3614 }
3615#endif
3616
9754e293 3617 if (pfmemalloc)
b4b9e355
MG
3618 goto skip_taps;
3619
1da177e4 3620 list_for_each_entry_rcu(ptype, &ptype_all, list) {
63d8ea7f 3621 if (!ptype->dev || ptype->dev == skb->dev) {
4ec93edb 3622 if (pt_prev)
f2ccd8fa 3623 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
3624 pt_prev = ptype;
3625 }
3626 }
3627
b4b9e355 3628skip_taps:
1da177e4 3629#ifdef CONFIG_NET_CLS_ACT
f697c3e8
HX
3630 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3631 if (!skb)
b4b9e355 3632 goto unlock;
1da177e4
LT
3633ncls:
3634#endif
3635
9754e293 3636 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
3637 goto drop;
3638
2425717b
JF
3639 if (vlan_tx_tag_present(skb)) {
3640 if (pt_prev) {
3641 ret = deliver_skb(skb, pt_prev, orig_dev);
3642 pt_prev = NULL;
3643 }
48cc32d3 3644 if (vlan_do_receive(&skb))
2425717b
JF
3645 goto another_round;
3646 else if (unlikely(!skb))
b4b9e355 3647 goto unlock;
2425717b
JF
3648 }
3649
48cc32d3 3650 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
3651 if (rx_handler) {
3652 if (pt_prev) {
3653 ret = deliver_skb(skb, pt_prev, orig_dev);
3654 pt_prev = NULL;
3655 }
8a4eb573
JP
3656 switch (rx_handler(&skb)) {
3657 case RX_HANDLER_CONSUMED:
3bc1b1ad 3658 ret = NET_RX_SUCCESS;
b4b9e355 3659 goto unlock;
8a4eb573 3660 case RX_HANDLER_ANOTHER:
63d8ea7f 3661 goto another_round;
8a4eb573
JP
3662 case RX_HANDLER_EXACT:
3663 deliver_exact = true;
3664 case RX_HANDLER_PASS:
3665 break;
3666 default:
3667 BUG();
3668 }
ab95bfe0 3669 }
1da177e4 3670
d4b812de
ED
3671 if (unlikely(vlan_tx_tag_present(skb))) {
3672 if (vlan_tx_tag_get_id(skb))
3673 skb->pkt_type = PACKET_OTHERHOST;
3674 /* Note: we might in the future use prio bits
3675 * and set skb->priority like in vlan_do_receive()
3676 * For the time being, just ignore Priority Code Point
3677 */
3678 skb->vlan_tci = 0;
3679 }
48cc32d3 3680
63d8ea7f 3681 /* deliver only exact match when indicated */
8a4eb573 3682 null_or_dev = deliver_exact ? skb->dev : NULL;
1f3c8804 3683
1da177e4 3684 type = skb->protocol;
82d8a867
PE
3685 list_for_each_entry_rcu(ptype,
3686 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
63d8ea7f 3687 if (ptype->type == type &&
e3f48d37
JP
3688 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3689 ptype->dev == orig_dev)) {
4ec93edb 3690 if (pt_prev)
f2ccd8fa 3691 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
3692 pt_prev = ptype;
3693 }
3694 }
3695
3696 if (pt_prev) {
1080e512 3697 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 3698 goto drop;
1080e512
MT
3699 else
3700 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 3701 } else {
b4b9e355 3702drop:
caf586e5 3703 atomic_long_inc(&skb->dev->rx_dropped);
1da177e4
LT
3704 kfree_skb(skb);
3705 /* Jamal, now you will not able to escape explaining
3706 * me how you were going to use this. :-)
3707 */
3708 ret = NET_RX_DROP;
3709 }
3710
b4b9e355 3711unlock:
1da177e4 3712 rcu_read_unlock();
9754e293
DM
3713 return ret;
3714}
3715
3716static int __netif_receive_skb(struct sk_buff *skb)
3717{
3718 int ret;
3719
3720 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3721 unsigned long pflags = current->flags;
3722
3723 /*
3724 * PFMEMALLOC skbs are special, they should
3725 * - be delivered to SOCK_MEMALLOC sockets only
3726 * - stay away from userspace
3727 * - have bounded memory usage
3728 *
3729 * Use PF_MEMALLOC as this saves us from propagating the allocation
3730 * context down to all allocation sites.
3731 */
3732 current->flags |= PF_MEMALLOC;
3733 ret = __netif_receive_skb_core(skb, true);
3734 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3735 } else
3736 ret = __netif_receive_skb_core(skb, false);
3737
1da177e4
LT
3738 return ret;
3739}
0a9627f2 3740
ae78dbfa 3741static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 3742{
588f0330 3743 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 3744
c1f19b51
RC
3745 if (skb_defer_rx_timestamp(skb))
3746 return NET_RX_SUCCESS;
3747
df334545 3748#ifdef CONFIG_RPS
c5905afb 3749 if (static_key_false(&rps_needed)) {
3b098e2d
ED
3750 struct rps_dev_flow voidflow, *rflow = &voidflow;
3751 int cpu, ret;
fec5e652 3752
3b098e2d
ED
3753 rcu_read_lock();
3754
3755 cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 3756
3b098e2d
ED
3757 if (cpu >= 0) {
3758 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3759 rcu_read_unlock();
adc9300e 3760 return ret;
3b098e2d 3761 }
adc9300e 3762 rcu_read_unlock();
fec5e652 3763 }
1e94d72f 3764#endif
adc9300e 3765 return __netif_receive_skb(skb);
0a9627f2 3766}
ae78dbfa
BH
3767
3768/**
3769 * netif_receive_skb - process receive buffer from network
3770 * @skb: buffer to process
3771 *
3772 * netif_receive_skb() is the main receive data processing function.
3773 * It always succeeds. The buffer may be dropped during processing
3774 * for congestion control or by the protocol layers.
3775 *
3776 * This function may only be called from softirq context and interrupts
3777 * should be enabled.
3778 *
3779 * Return values (usually ignored):
3780 * NET_RX_SUCCESS: no congestion
3781 * NET_RX_DROP: packet was dropped
3782 */
3783int netif_receive_skb(struct sk_buff *skb)
3784{
3785 trace_netif_receive_skb_entry(skb);
3786
3787 return netif_receive_skb_internal(skb);
3788}
d1b19dff 3789EXPORT_SYMBOL(netif_receive_skb);
1da177e4 3790
88751275
ED
3791/* Network device is going away, flush any packets still pending
3792 * Called with irqs disabled.
3793 */
152102c7 3794static void flush_backlog(void *arg)
6e583ce5 3795{
152102c7 3796 struct net_device *dev = arg;
e36fa2f7 3797 struct softnet_data *sd = &__get_cpu_var(softnet_data);
6e583ce5
SH
3798 struct sk_buff *skb, *tmp;
3799
e36fa2f7 3800 rps_lock(sd);
6e7676c1 3801 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6e583ce5 3802 if (skb->dev == dev) {
e36fa2f7 3803 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 3804 kfree_skb(skb);
76cc8b13 3805 input_queue_head_incr(sd);
6e583ce5 3806 }
6e7676c1 3807 }
e36fa2f7 3808 rps_unlock(sd);
6e7676c1
CG
3809
3810 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3811 if (skb->dev == dev) {
3812 __skb_unlink(skb, &sd->process_queue);
3813 kfree_skb(skb);
76cc8b13 3814 input_queue_head_incr(sd);
6e7676c1
CG
3815 }
3816 }
6e583ce5
SH
3817}
3818
d565b0a1
HX
3819static int napi_gro_complete(struct sk_buff *skb)
3820{
22061d80 3821 struct packet_offload *ptype;
d565b0a1 3822 __be16 type = skb->protocol;
22061d80 3823 struct list_head *head = &offload_base;
d565b0a1
HX
3824 int err = -ENOENT;
3825
c3c7c254
ED
3826 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3827
fc59f9a3
HX
3828 if (NAPI_GRO_CB(skb)->count == 1) {
3829 skb_shinfo(skb)->gso_size = 0;
d565b0a1 3830 goto out;
fc59f9a3 3831 }
d565b0a1
HX
3832
3833 rcu_read_lock();
3834 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 3835 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
3836 continue;
3837
299603e8 3838 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
3839 break;
3840 }
3841 rcu_read_unlock();
3842
3843 if (err) {
3844 WARN_ON(&ptype->list == head);
3845 kfree_skb(skb);
3846 return NET_RX_SUCCESS;
3847 }
3848
3849out:
ae78dbfa 3850 return netif_receive_skb_internal(skb);
d565b0a1
HX
3851}
3852
2e71a6f8
ED
3853/* napi->gro_list contains packets ordered by age.
3854 * youngest packets at the head of it.
3855 * Complete skbs in reverse order to reduce latencies.
3856 */
3857void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 3858{
2e71a6f8 3859 struct sk_buff *skb, *prev = NULL;
d565b0a1 3860
2e71a6f8
ED
3861 /* scan list and build reverse chain */
3862 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3863 skb->prev = prev;
3864 prev = skb;
3865 }
3866
3867 for (skb = prev; skb; skb = prev) {
d565b0a1 3868 skb->next = NULL;
2e71a6f8
ED
3869
3870 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3871 return;
3872
3873 prev = skb->prev;
d565b0a1 3874 napi_gro_complete(skb);
2e71a6f8 3875 napi->gro_count--;
d565b0a1
HX
3876 }
3877
3878 napi->gro_list = NULL;
3879}
86cac58b 3880EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 3881
89c5fa33
ED
3882static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3883{
3884 struct sk_buff *p;
3885 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 3886 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
3887
3888 for (p = napi->gro_list; p; p = p->next) {
3889 unsigned long diffs;
3890
0b4cec8c
TH
3891 NAPI_GRO_CB(p)->flush = 0;
3892
3893 if (hash != skb_get_hash_raw(p)) {
3894 NAPI_GRO_CB(p)->same_flow = 0;
3895 continue;
3896 }
3897
89c5fa33
ED
3898 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3899 diffs |= p->vlan_tci ^ skb->vlan_tci;
3900 if (maclen == ETH_HLEN)
3901 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 3902 skb_mac_header(skb));
89c5fa33
ED
3903 else if (!diffs)
3904 diffs = memcmp(skb_mac_header(p),
a50e233c 3905 skb_mac_header(skb),
89c5fa33
ED
3906 maclen);
3907 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
3908 }
3909}
3910
299603e8
JC
3911static void skb_gro_reset_offset(struct sk_buff *skb)
3912{
3913 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3914 const skb_frag_t *frag0 = &pinfo->frags[0];
3915
3916 NAPI_GRO_CB(skb)->data_offset = 0;
3917 NAPI_GRO_CB(skb)->frag0 = NULL;
3918 NAPI_GRO_CB(skb)->frag0_len = 0;
3919
3920 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3921 pinfo->nr_frags &&
3922 !PageHighMem(skb_frag_page(frag0))) {
3923 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3924 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
3925 }
3926}
3927
a50e233c
ED
3928static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3929{
3930 struct skb_shared_info *pinfo = skb_shinfo(skb);
3931
3932 BUG_ON(skb->end - skb->tail < grow);
3933
3934 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3935
3936 skb->data_len -= grow;
3937 skb->tail += grow;
3938
3939 pinfo->frags[0].page_offset += grow;
3940 skb_frag_size_sub(&pinfo->frags[0], grow);
3941
3942 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3943 skb_frag_unref(skb, 0);
3944 memmove(pinfo->frags, pinfo->frags + 1,
3945 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3946 }
3947}
3948
bb728820 3949static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
3950{
3951 struct sk_buff **pp = NULL;
22061d80 3952 struct packet_offload *ptype;
d565b0a1 3953 __be16 type = skb->protocol;
22061d80 3954 struct list_head *head = &offload_base;
0da2afd5 3955 int same_flow;
5b252f0c 3956 enum gro_result ret;
a50e233c 3957 int grow;
d565b0a1 3958
9c62a68d 3959 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
3960 goto normal;
3961
21dc3301 3962 if (skb_is_gso(skb) || skb_has_frag_list(skb))
f17f5c91
HX
3963 goto normal;
3964
89c5fa33 3965 gro_list_prepare(napi, skb);
bf5a755f 3966 NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */
89c5fa33 3967
d565b0a1
HX
3968 rcu_read_lock();
3969 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 3970 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
3971 continue;
3972
86911732 3973 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 3974 skb_reset_mac_len(skb);
d565b0a1
HX
3975 NAPI_GRO_CB(skb)->same_flow = 0;
3976 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 3977 NAPI_GRO_CB(skb)->free = 0;
b582ef09 3978 NAPI_GRO_CB(skb)->udp_mark = 0;
d565b0a1 3979
f191a1d1 3980 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
3981 break;
3982 }
3983 rcu_read_unlock();
3984
3985 if (&ptype->list == head)
3986 goto normal;
3987
0da2afd5 3988 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 3989 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 3990
d565b0a1
HX
3991 if (pp) {
3992 struct sk_buff *nskb = *pp;
3993
3994 *pp = nskb->next;
3995 nskb->next = NULL;
3996 napi_gro_complete(nskb);
4ae5544f 3997 napi->gro_count--;
d565b0a1
HX
3998 }
3999
0da2afd5 4000 if (same_flow)
d565b0a1
HX
4001 goto ok;
4002
600adc18 4003 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4004 goto normal;
d565b0a1 4005
600adc18
ED
4006 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4007 struct sk_buff *nskb = napi->gro_list;
4008
4009 /* locate the end of the list to select the 'oldest' flow */
4010 while (nskb->next) {
4011 pp = &nskb->next;
4012 nskb = *pp;
4013 }
4014 *pp = NULL;
4015 nskb->next = NULL;
4016 napi_gro_complete(nskb);
4017 } else {
4018 napi->gro_count++;
4019 }
d565b0a1 4020 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4021 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4022 NAPI_GRO_CB(skb)->last = skb;
86911732 4023 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4024 skb->next = napi->gro_list;
4025 napi->gro_list = skb;
5d0d9be8 4026 ret = GRO_HELD;
d565b0a1 4027
ad0f9904 4028pull:
a50e233c
ED
4029 grow = skb_gro_offset(skb) - skb_headlen(skb);
4030 if (grow > 0)
4031 gro_pull_from_frag0(skb, grow);
d565b0a1 4032ok:
5d0d9be8 4033 return ret;
d565b0a1
HX
4034
4035normal:
ad0f9904
HX
4036 ret = GRO_NORMAL;
4037 goto pull;
5d38a079 4038}
96e93eab 4039
bf5a755f
JC
4040struct packet_offload *gro_find_receive_by_type(__be16 type)
4041{
4042 struct list_head *offload_head = &offload_base;
4043 struct packet_offload *ptype;
4044
4045 list_for_each_entry_rcu(ptype, offload_head, list) {
4046 if (ptype->type != type || !ptype->callbacks.gro_receive)
4047 continue;
4048 return ptype;
4049 }
4050 return NULL;
4051}
e27a2f83 4052EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4053
4054struct packet_offload *gro_find_complete_by_type(__be16 type)
4055{
4056 struct list_head *offload_head = &offload_base;
4057 struct packet_offload *ptype;
4058
4059 list_for_each_entry_rcu(ptype, offload_head, list) {
4060 if (ptype->type != type || !ptype->callbacks.gro_complete)
4061 continue;
4062 return ptype;
4063 }
4064 return NULL;
4065}
e27a2f83 4066EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4067
bb728820 4068static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4069{
5d0d9be8
HX
4070 switch (ret) {
4071 case GRO_NORMAL:
ae78dbfa 4072 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4073 ret = GRO_DROP;
4074 break;
5d38a079 4075
5d0d9be8 4076 case GRO_DROP:
5d38a079
HX
4077 kfree_skb(skb);
4078 break;
5b252f0c 4079
daa86548 4080 case GRO_MERGED_FREE:
d7e8883c
ED
4081 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4082 kmem_cache_free(skbuff_head_cache, skb);
4083 else
4084 __kfree_skb(skb);
daa86548
ED
4085 break;
4086
5b252f0c
BH
4087 case GRO_HELD:
4088 case GRO_MERGED:
4089 break;
5d38a079
HX
4090 }
4091
c7c4b3b6 4092 return ret;
5d0d9be8 4093}
5d0d9be8 4094
c7c4b3b6 4095gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4096{
ae78dbfa 4097 trace_napi_gro_receive_entry(skb);
86911732 4098
a50e233c
ED
4099 skb_gro_reset_offset(skb);
4100
89c5fa33 4101 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4102}
4103EXPORT_SYMBOL(napi_gro_receive);
4104
d0c2b0d2 4105static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4106{
96e93eab 4107 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4108 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4109 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4110 skb->vlan_tci = 0;
66c46d74 4111 skb->dev = napi->dev;
6d152e23 4112 skb->skb_iif = 0;
c3caf119
JC
4113 skb->encapsulation = 0;
4114 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4115 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4116
4117 napi->skb = skb;
4118}
96e93eab 4119
76620aaf 4120struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4121{
5d38a079 4122 struct sk_buff *skb = napi->skb;
5d38a079
HX
4123
4124 if (!skb) {
89d71a66 4125 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
84b9cd63 4126 napi->skb = skb;
80595d59 4127 }
96e93eab
HX
4128 return skb;
4129}
76620aaf 4130EXPORT_SYMBOL(napi_get_frags);
96e93eab 4131
a50e233c
ED
4132static gro_result_t napi_frags_finish(struct napi_struct *napi,
4133 struct sk_buff *skb,
4134 gro_result_t ret)
96e93eab 4135{
5d0d9be8
HX
4136 switch (ret) {
4137 case GRO_NORMAL:
a50e233c
ED
4138 case GRO_HELD:
4139 __skb_push(skb, ETH_HLEN);
4140 skb->protocol = eth_type_trans(skb, skb->dev);
4141 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4142 ret = GRO_DROP;
86911732 4143 break;
5d38a079 4144
5d0d9be8 4145 case GRO_DROP:
5d0d9be8
HX
4146 case GRO_MERGED_FREE:
4147 napi_reuse_skb(napi, skb);
4148 break;
5b252f0c
BH
4149
4150 case GRO_MERGED:
4151 break;
5d0d9be8 4152 }
5d38a079 4153
c7c4b3b6 4154 return ret;
5d38a079 4155}
5d0d9be8 4156
a50e233c
ED
4157/* Upper GRO stack assumes network header starts at gro_offset=0
4158 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4159 * We copy ethernet header into skb->data to have a common layout.
4160 */
4adb9c4a 4161static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4162{
4163 struct sk_buff *skb = napi->skb;
a50e233c
ED
4164 const struct ethhdr *eth;
4165 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4166
4167 napi->skb = NULL;
4168
a50e233c
ED
4169 skb_reset_mac_header(skb);
4170 skb_gro_reset_offset(skb);
4171
4172 eth = skb_gro_header_fast(skb, 0);
4173 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4174 eth = skb_gro_header_slow(skb, hlen, 0);
4175 if (unlikely(!eth)) {
4176 napi_reuse_skb(napi, skb);
4177 return NULL;
4178 }
4179 } else {
4180 gro_pull_from_frag0(skb, hlen);
4181 NAPI_GRO_CB(skb)->frag0 += hlen;
4182 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4183 }
a50e233c
ED
4184 __skb_pull(skb, hlen);
4185
4186 /*
4187 * This works because the only protocols we care about don't require
4188 * special handling.
4189 * We'll fix it up properly in napi_frags_finish()
4190 */
4191 skb->protocol = eth->h_proto;
76620aaf 4192
76620aaf
HX
4193 return skb;
4194}
76620aaf 4195
c7c4b3b6 4196gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4197{
76620aaf 4198 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4199
4200 if (!skb)
c7c4b3b6 4201 return GRO_DROP;
5d0d9be8 4202
ae78dbfa
BH
4203 trace_napi_gro_frags_entry(skb);
4204
89c5fa33 4205 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4206}
5d38a079
HX
4207EXPORT_SYMBOL(napi_gro_frags);
4208
e326bed2 4209/*
855abcf0 4210 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4211 * Note: called with local irq disabled, but exits with local irq enabled.
4212 */
4213static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4214{
4215#ifdef CONFIG_RPS
4216 struct softnet_data *remsd = sd->rps_ipi_list;
4217
4218 if (remsd) {
4219 sd->rps_ipi_list = NULL;
4220
4221 local_irq_enable();
4222
4223 /* Send pending IPI's to kick RPS processing on remote cpus. */
4224 while (remsd) {
4225 struct softnet_data *next = remsd->rps_ipi_next;
4226
4227 if (cpu_online(remsd->cpu))
c46fff2a 4228 smp_call_function_single_async(remsd->cpu,
fce8ad15 4229 &remsd->csd);
e326bed2
ED
4230 remsd = next;
4231 }
4232 } else
4233#endif
4234 local_irq_enable();
4235}
4236
bea3348e 4237static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
4238{
4239 int work = 0;
eecfd7c4 4240 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
1da177e4 4241
e326bed2
ED
4242#ifdef CONFIG_RPS
4243 /* Check if we have pending ipi, its better to send them now,
4244 * not waiting net_rx_action() end.
4245 */
4246 if (sd->rps_ipi_list) {
4247 local_irq_disable();
4248 net_rps_action_and_irq_enable(sd);
4249 }
4250#endif
bea3348e 4251 napi->weight = weight_p;
6e7676c1 4252 local_irq_disable();
11ef7a89 4253 while (1) {
1da177e4 4254 struct sk_buff *skb;
6e7676c1
CG
4255
4256 while ((skb = __skb_dequeue(&sd->process_queue))) {
4257 local_irq_enable();
4258 __netif_receive_skb(skb);
6e7676c1 4259 local_irq_disable();
76cc8b13
TH
4260 input_queue_head_incr(sd);
4261 if (++work >= quota) {
4262 local_irq_enable();
4263 return work;
4264 }
6e7676c1 4265 }
1da177e4 4266
e36fa2f7 4267 rps_lock(sd);
11ef7a89 4268 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4269 /*
4270 * Inline a custom version of __napi_complete().
4271 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4272 * and NAPI_STATE_SCHED is the only possible flag set
4273 * on backlog.
4274 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4275 * and we dont need an smp_mb() memory barrier.
4276 */
4277 list_del(&napi->poll_list);
4278 napi->state = 0;
11ef7a89 4279 rps_unlock(sd);
eecfd7c4 4280
11ef7a89 4281 break;
bea3348e 4282 }
11ef7a89
TH
4283
4284 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4285 &sd->process_queue);
e36fa2f7 4286 rps_unlock(sd);
6e7676c1
CG
4287 }
4288 local_irq_enable();
1da177e4 4289
bea3348e
SH
4290 return work;
4291}
1da177e4 4292
bea3348e
SH
4293/**
4294 * __napi_schedule - schedule for receive
c4ea43c5 4295 * @n: entry to schedule
bea3348e
SH
4296 *
4297 * The entry's receive function will be scheduled to run
4298 */
b5606c2d 4299void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4300{
4301 unsigned long flags;
1da177e4 4302
bea3348e 4303 local_irq_save(flags);
eecfd7c4 4304 ____napi_schedule(&__get_cpu_var(softnet_data), n);
bea3348e 4305 local_irq_restore(flags);
1da177e4 4306}
bea3348e
SH
4307EXPORT_SYMBOL(__napi_schedule);
4308
d565b0a1
HX
4309void __napi_complete(struct napi_struct *n)
4310{
4311 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4312 BUG_ON(n->gro_list);
4313
4314 list_del(&n->poll_list);
4e857c58 4315 smp_mb__before_atomic();
d565b0a1
HX
4316 clear_bit(NAPI_STATE_SCHED, &n->state);
4317}
4318EXPORT_SYMBOL(__napi_complete);
4319
4320void napi_complete(struct napi_struct *n)
4321{
4322 unsigned long flags;
4323
4324 /*
4325 * don't let napi dequeue from the cpu poll list
4326 * just in case its running on a different cpu
4327 */
4328 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4329 return;
4330
2e71a6f8 4331 napi_gro_flush(n, false);
d565b0a1
HX
4332 local_irq_save(flags);
4333 __napi_complete(n);
4334 local_irq_restore(flags);
4335}
4336EXPORT_SYMBOL(napi_complete);
4337
af12fa6e
ET
4338/* must be called under rcu_read_lock(), as we dont take a reference */
4339struct napi_struct *napi_by_id(unsigned int napi_id)
4340{
4341 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4342 struct napi_struct *napi;
4343
4344 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4345 if (napi->napi_id == napi_id)
4346 return napi;
4347
4348 return NULL;
4349}
4350EXPORT_SYMBOL_GPL(napi_by_id);
4351
4352void napi_hash_add(struct napi_struct *napi)
4353{
4354 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4355
4356 spin_lock(&napi_hash_lock);
4357
4358 /* 0 is not a valid id, we also skip an id that is taken
4359 * we expect both events to be extremely rare
4360 */
4361 napi->napi_id = 0;
4362 while (!napi->napi_id) {
4363 napi->napi_id = ++napi_gen_id;
4364 if (napi_by_id(napi->napi_id))
4365 napi->napi_id = 0;
4366 }
4367
4368 hlist_add_head_rcu(&napi->napi_hash_node,
4369 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4370
4371 spin_unlock(&napi_hash_lock);
4372 }
4373}
4374EXPORT_SYMBOL_GPL(napi_hash_add);
4375
4376/* Warning : caller is responsible to make sure rcu grace period
4377 * is respected before freeing memory containing @napi
4378 */
4379void napi_hash_del(struct napi_struct *napi)
4380{
4381 spin_lock(&napi_hash_lock);
4382
4383 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4384 hlist_del_rcu(&napi->napi_hash_node);
4385
4386 spin_unlock(&napi_hash_lock);
4387}
4388EXPORT_SYMBOL_GPL(napi_hash_del);
4389
d565b0a1
HX
4390void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4391 int (*poll)(struct napi_struct *, int), int weight)
4392{
4393 INIT_LIST_HEAD(&napi->poll_list);
4ae5544f 4394 napi->gro_count = 0;
d565b0a1 4395 napi->gro_list = NULL;
5d38a079 4396 napi->skb = NULL;
d565b0a1 4397 napi->poll = poll;
82dc3c63
ED
4398 if (weight > NAPI_POLL_WEIGHT)
4399 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4400 weight, dev->name);
d565b0a1
HX
4401 napi->weight = weight;
4402 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 4403 napi->dev = dev;
5d38a079 4404#ifdef CONFIG_NETPOLL
d565b0a1
HX
4405 spin_lock_init(&napi->poll_lock);
4406 napi->poll_owner = -1;
4407#endif
4408 set_bit(NAPI_STATE_SCHED, &napi->state);
4409}
4410EXPORT_SYMBOL(netif_napi_add);
4411
4412void netif_napi_del(struct napi_struct *napi)
4413{
d7b06636 4414 list_del_init(&napi->dev_list);
76620aaf 4415 napi_free_frags(napi);
d565b0a1 4416
289dccbe 4417 kfree_skb_list(napi->gro_list);
d565b0a1 4418 napi->gro_list = NULL;
4ae5544f 4419 napi->gro_count = 0;
d565b0a1
HX
4420}
4421EXPORT_SYMBOL(netif_napi_del);
4422
1da177e4
LT
4423static void net_rx_action(struct softirq_action *h)
4424{
e326bed2 4425 struct softnet_data *sd = &__get_cpu_var(softnet_data);
24f8b238 4426 unsigned long time_limit = jiffies + 2;
51b0bded 4427 int budget = netdev_budget;
53fb95d3
MM
4428 void *have;
4429
1da177e4
LT
4430 local_irq_disable();
4431
e326bed2 4432 while (!list_empty(&sd->poll_list)) {
bea3348e
SH
4433 struct napi_struct *n;
4434 int work, weight;
1da177e4 4435
bea3348e 4436 /* If softirq window is exhuasted then punt.
24f8b238
SH
4437 * Allow this to run for 2 jiffies since which will allow
4438 * an average latency of 1.5/HZ.
bea3348e 4439 */
d1f41b67 4440 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
1da177e4
LT
4441 goto softnet_break;
4442
4443 local_irq_enable();
4444
bea3348e
SH
4445 /* Even though interrupts have been re-enabled, this
4446 * access is safe because interrupts can only add new
4447 * entries to the tail of this list, and only ->poll()
4448 * calls can remove this head entry from the list.
4449 */
e326bed2 4450 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
1da177e4 4451
bea3348e
SH
4452 have = netpoll_poll_lock(n);
4453
4454 weight = n->weight;
4455
0a7606c1
DM
4456 /* This NAPI_STATE_SCHED test is for avoiding a race
4457 * with netpoll's poll_napi(). Only the entity which
4458 * obtains the lock and sees NAPI_STATE_SCHED set will
4459 * actually make the ->poll() call. Therefore we avoid
25985edc 4460 * accidentally calling ->poll() when NAPI is not scheduled.
0a7606c1
DM
4461 */
4462 work = 0;
4ea7e386 4463 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
0a7606c1 4464 work = n->poll(n, weight);
4ea7e386
NH
4465 trace_napi_poll(n);
4466 }
bea3348e
SH
4467
4468 WARN_ON_ONCE(work > weight);
4469
4470 budget -= work;
4471
4472 local_irq_disable();
4473
4474 /* Drivers must not modify the NAPI state if they
4475 * consume the entire weight. In such cases this code
4476 * still "owns" the NAPI instance and therefore can
4477 * move the instance around on the list at-will.
4478 */
fed17f30 4479 if (unlikely(work == weight)) {
ff780cd8
HX
4480 if (unlikely(napi_disable_pending(n))) {
4481 local_irq_enable();
4482 napi_complete(n);
4483 local_irq_disable();
2e71a6f8
ED
4484 } else {
4485 if (n->gro_list) {
4486 /* flush too old packets
4487 * If HZ < 1000, flush all packets.
4488 */
4489 local_irq_enable();
4490 napi_gro_flush(n, HZ >= 1000);
4491 local_irq_disable();
4492 }
e326bed2 4493 list_move_tail(&n->poll_list, &sd->poll_list);
2e71a6f8 4494 }
fed17f30 4495 }
bea3348e
SH
4496
4497 netpoll_poll_unlock(have);
1da177e4
LT
4498 }
4499out:
e326bed2 4500 net_rps_action_and_irq_enable(sd);
0a9627f2 4501
db217334
CL
4502#ifdef CONFIG_NET_DMA
4503 /*
4504 * There may not be any more sk_buffs coming right now, so push
4505 * any pending DMA copies to hardware
4506 */
2ba05622 4507 dma_issue_pending_all();
db217334 4508#endif
bea3348e 4509
1da177e4
LT
4510 return;
4511
4512softnet_break:
dee42870 4513 sd->time_squeeze++;
1da177e4
LT
4514 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4515 goto out;
4516}
4517
aa9d8560 4518struct netdev_adjacent {
9ff162a8 4519 struct net_device *dev;
5d261913
VF
4520
4521 /* upper master flag, there can only be one master device per list */
9ff162a8 4522 bool master;
5d261913 4523
5d261913
VF
4524 /* counter for the number of times this device was added to us */
4525 u16 ref_nr;
4526
402dae96
VF
4527 /* private field for the users */
4528 void *private;
4529
9ff162a8
JP
4530 struct list_head list;
4531 struct rcu_head rcu;
9ff162a8
JP
4532};
4533
5d261913
VF
4534static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4535 struct net_device *adj_dev,
2f268f12 4536 struct list_head *adj_list)
9ff162a8 4537{
5d261913 4538 struct netdev_adjacent *adj;
5d261913 4539
2f268f12 4540 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
4541 if (adj->dev == adj_dev)
4542 return adj;
9ff162a8
JP
4543 }
4544 return NULL;
4545}
4546
4547/**
4548 * netdev_has_upper_dev - Check if device is linked to an upper device
4549 * @dev: device
4550 * @upper_dev: upper device to check
4551 *
4552 * Find out if a device is linked to specified upper device and return true
4553 * in case it is. Note that this checks only immediate upper device,
4554 * not through a complete stack of devices. The caller must hold the RTNL lock.
4555 */
4556bool netdev_has_upper_dev(struct net_device *dev,
4557 struct net_device *upper_dev)
4558{
4559 ASSERT_RTNL();
4560
2f268f12 4561 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
4562}
4563EXPORT_SYMBOL(netdev_has_upper_dev);
4564
4565/**
4566 * netdev_has_any_upper_dev - Check if device is linked to some device
4567 * @dev: device
4568 *
4569 * Find out if a device is linked to an upper device and return true in case
4570 * it is. The caller must hold the RTNL lock.
4571 */
1d143d9f 4572static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
4573{
4574 ASSERT_RTNL();
4575
2f268f12 4576 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 4577}
9ff162a8
JP
4578
4579/**
4580 * netdev_master_upper_dev_get - Get master upper device
4581 * @dev: device
4582 *
4583 * Find a master upper device and return pointer to it or NULL in case
4584 * it's not there. The caller must hold the RTNL lock.
4585 */
4586struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4587{
aa9d8560 4588 struct netdev_adjacent *upper;
9ff162a8
JP
4589
4590 ASSERT_RTNL();
4591
2f268f12 4592 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
4593 return NULL;
4594
2f268f12 4595 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 4596 struct netdev_adjacent, list);
9ff162a8
JP
4597 if (likely(upper->master))
4598 return upper->dev;
4599 return NULL;
4600}
4601EXPORT_SYMBOL(netdev_master_upper_dev_get);
4602
b6ccba4c
VF
4603void *netdev_adjacent_get_private(struct list_head *adj_list)
4604{
4605 struct netdev_adjacent *adj;
4606
4607 adj = list_entry(adj_list, struct netdev_adjacent, list);
4608
4609 return adj->private;
4610}
4611EXPORT_SYMBOL(netdev_adjacent_get_private);
4612
44a40855
VY
4613/**
4614 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4615 * @dev: device
4616 * @iter: list_head ** of the current position
4617 *
4618 * Gets the next device from the dev's upper list, starting from iter
4619 * position. The caller must hold RCU read lock.
4620 */
4621struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4622 struct list_head **iter)
4623{
4624 struct netdev_adjacent *upper;
4625
4626 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4627
4628 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4629
4630 if (&upper->list == &dev->adj_list.upper)
4631 return NULL;
4632
4633 *iter = &upper->list;
4634
4635 return upper->dev;
4636}
4637EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4638
31088a11
VF
4639/**
4640 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
4641 * @dev: device
4642 * @iter: list_head ** of the current position
4643 *
4644 * Gets the next device from the dev's upper list, starting from iter
4645 * position. The caller must hold RCU read lock.
4646 */
2f268f12
VF
4647struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4648 struct list_head **iter)
48311f46
VF
4649{
4650 struct netdev_adjacent *upper;
4651
85328240 4652 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
4653
4654 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4655
2f268f12 4656 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
4657 return NULL;
4658
4659 *iter = &upper->list;
4660
4661 return upper->dev;
4662}
2f268f12 4663EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 4664
31088a11
VF
4665/**
4666 * netdev_lower_get_next_private - Get the next ->private from the
4667 * lower neighbour list
4668 * @dev: device
4669 * @iter: list_head ** of the current position
4670 *
4671 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4672 * list, starting from iter position. The caller must hold either hold the
4673 * RTNL lock or its own locking that guarantees that the neighbour lower
4674 * list will remain unchainged.
4675 */
4676void *netdev_lower_get_next_private(struct net_device *dev,
4677 struct list_head **iter)
4678{
4679 struct netdev_adjacent *lower;
4680
4681 lower = list_entry(*iter, struct netdev_adjacent, list);
4682
4683 if (&lower->list == &dev->adj_list.lower)
4684 return NULL;
4685
6859e7df 4686 *iter = lower->list.next;
31088a11
VF
4687
4688 return lower->private;
4689}
4690EXPORT_SYMBOL(netdev_lower_get_next_private);
4691
4692/**
4693 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4694 * lower neighbour list, RCU
4695 * variant
4696 * @dev: device
4697 * @iter: list_head ** of the current position
4698 *
4699 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4700 * list, starting from iter position. The caller must hold RCU read lock.
4701 */
4702void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4703 struct list_head **iter)
4704{
4705 struct netdev_adjacent *lower;
4706
4707 WARN_ON_ONCE(!rcu_read_lock_held());
4708
4709 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4710
4711 if (&lower->list == &dev->adj_list.lower)
4712 return NULL;
4713
6859e7df 4714 *iter = &lower->list;
31088a11
VF
4715
4716 return lower->private;
4717}
4718EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4719
4085ebe8
VY
4720/**
4721 * netdev_lower_get_next - Get the next device from the lower neighbour
4722 * list
4723 * @dev: device
4724 * @iter: list_head ** of the current position
4725 *
4726 * Gets the next netdev_adjacent from the dev's lower neighbour
4727 * list, starting from iter position. The caller must hold RTNL lock or
4728 * its own locking that guarantees that the neighbour lower
4729 * list will remain unchainged.
4730 */
4731void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4732{
4733 struct netdev_adjacent *lower;
4734
4735 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4736
4737 if (&lower->list == &dev->adj_list.lower)
4738 return NULL;
4739
4740 *iter = &lower->list;
4741
4742 return lower->dev;
4743}
4744EXPORT_SYMBOL(netdev_lower_get_next);
4745
e001bfad 4746/**
4747 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4748 * lower neighbour list, RCU
4749 * variant
4750 * @dev: device
4751 *
4752 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4753 * list. The caller must hold RCU read lock.
4754 */
4755void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4756{
4757 struct netdev_adjacent *lower;
4758
4759 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4760 struct netdev_adjacent, list);
4761 if (lower)
4762 return lower->private;
4763 return NULL;
4764}
4765EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4766
9ff162a8
JP
4767/**
4768 * netdev_master_upper_dev_get_rcu - Get master upper device
4769 * @dev: device
4770 *
4771 * Find a master upper device and return pointer to it or NULL in case
4772 * it's not there. The caller must hold the RCU read lock.
4773 */
4774struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4775{
aa9d8560 4776 struct netdev_adjacent *upper;
9ff162a8 4777
2f268f12 4778 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 4779 struct netdev_adjacent, list);
9ff162a8
JP
4780 if (upper && likely(upper->master))
4781 return upper->dev;
4782 return NULL;
4783}
4784EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4785
0a59f3a9 4786static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
4787 struct net_device *adj_dev,
4788 struct list_head *dev_list)
4789{
4790 char linkname[IFNAMSIZ+7];
4791 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4792 "upper_%s" : "lower_%s", adj_dev->name);
4793 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4794 linkname);
4795}
0a59f3a9 4796static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
4797 char *name,
4798 struct list_head *dev_list)
4799{
4800 char linkname[IFNAMSIZ+7];
4801 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4802 "upper_%s" : "lower_%s", name);
4803 sysfs_remove_link(&(dev->dev.kobj), linkname);
4804}
4805
4806#define netdev_adjacent_is_neigh_list(dev, dev_list) \
4807 (dev_list == &dev->adj_list.upper || \
4808 dev_list == &dev->adj_list.lower)
4809
5d261913
VF
4810static int __netdev_adjacent_dev_insert(struct net_device *dev,
4811 struct net_device *adj_dev,
7863c054 4812 struct list_head *dev_list,
402dae96 4813 void *private, bool master)
5d261913
VF
4814{
4815 struct netdev_adjacent *adj;
842d67a7 4816 int ret;
5d261913 4817
7863c054 4818 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5d261913
VF
4819
4820 if (adj) {
5d261913
VF
4821 adj->ref_nr++;
4822 return 0;
4823 }
4824
4825 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4826 if (!adj)
4827 return -ENOMEM;
4828
4829 adj->dev = adj_dev;
4830 adj->master = master;
5d261913 4831 adj->ref_nr = 1;
402dae96 4832 adj->private = private;
5d261913 4833 dev_hold(adj_dev);
2f268f12
VF
4834
4835 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4836 adj_dev->name, dev->name, adj_dev->name);
5d261913 4837
3ee32707
VF
4838 if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4839 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
4840 if (ret)
4841 goto free_adj;
4842 }
4843
7863c054 4844 /* Ensure that master link is always the first item in list. */
842d67a7
VF
4845 if (master) {
4846 ret = sysfs_create_link(&(dev->dev.kobj),
4847 &(adj_dev->dev.kobj), "master");
4848 if (ret)
5831d66e 4849 goto remove_symlinks;
842d67a7 4850
7863c054 4851 list_add_rcu(&adj->list, dev_list);
842d67a7 4852 } else {
7863c054 4853 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 4854 }
5d261913
VF
4855
4856 return 0;
842d67a7 4857
5831d66e 4858remove_symlinks:
3ee32707
VF
4859 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4860 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
4861free_adj:
4862 kfree(adj);
974daef7 4863 dev_put(adj_dev);
842d67a7
VF
4864
4865 return ret;
5d261913
VF
4866}
4867
1d143d9f 4868static void __netdev_adjacent_dev_remove(struct net_device *dev,
4869 struct net_device *adj_dev,
4870 struct list_head *dev_list)
5d261913
VF
4871{
4872 struct netdev_adjacent *adj;
4873
7863c054 4874 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5d261913 4875
2f268f12
VF
4876 if (!adj) {
4877 pr_err("tried to remove device %s from %s\n",
4878 dev->name, adj_dev->name);
5d261913 4879 BUG();
2f268f12 4880 }
5d261913
VF
4881
4882 if (adj->ref_nr > 1) {
2f268f12
VF
4883 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4884 adj->ref_nr-1);
5d261913
VF
4885 adj->ref_nr--;
4886 return;
4887 }
4888
842d67a7
VF
4889 if (adj->master)
4890 sysfs_remove_link(&(dev->dev.kobj), "master");
4891
3ee32707
VF
4892 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4893 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 4894
5d261913 4895 list_del_rcu(&adj->list);
2f268f12
VF
4896 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4897 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
4898 dev_put(adj_dev);
4899 kfree_rcu(adj, rcu);
4900}
4901
1d143d9f 4902static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4903 struct net_device *upper_dev,
4904 struct list_head *up_list,
4905 struct list_head *down_list,
4906 void *private, bool master)
5d261913
VF
4907{
4908 int ret;
4909
402dae96
VF
4910 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4911 master);
5d261913
VF
4912 if (ret)
4913 return ret;
4914
402dae96
VF
4915 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4916 false);
5d261913 4917 if (ret) {
2f268f12 4918 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5d261913
VF
4919 return ret;
4920 }
4921
4922 return 0;
4923}
4924
1d143d9f 4925static int __netdev_adjacent_dev_link(struct net_device *dev,
4926 struct net_device *upper_dev)
5d261913 4927{
2f268f12
VF
4928 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4929 &dev->all_adj_list.upper,
4930 &upper_dev->all_adj_list.lower,
402dae96 4931 NULL, false);
5d261913
VF
4932}
4933
1d143d9f 4934static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4935 struct net_device *upper_dev,
4936 struct list_head *up_list,
4937 struct list_head *down_list)
5d261913 4938{
2f268f12
VF
4939 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4940 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5d261913
VF
4941}
4942
1d143d9f 4943static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4944 struct net_device *upper_dev)
5d261913 4945{
2f268f12
VF
4946 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4947 &dev->all_adj_list.upper,
4948 &upper_dev->all_adj_list.lower);
4949}
4950
1d143d9f 4951static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4952 struct net_device *upper_dev,
4953 void *private, bool master)
2f268f12
VF
4954{
4955 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4956
4957 if (ret)
4958 return ret;
4959
4960 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4961 &dev->adj_list.upper,
4962 &upper_dev->adj_list.lower,
402dae96 4963 private, master);
2f268f12
VF
4964 if (ret) {
4965 __netdev_adjacent_dev_unlink(dev, upper_dev);
4966 return ret;
4967 }
4968
4969 return 0;
5d261913
VF
4970}
4971
1d143d9f 4972static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4973 struct net_device *upper_dev)
2f268f12
VF
4974{
4975 __netdev_adjacent_dev_unlink(dev, upper_dev);
4976 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4977 &dev->adj_list.upper,
4978 &upper_dev->adj_list.lower);
4979}
5d261913 4980
9ff162a8 4981static int __netdev_upper_dev_link(struct net_device *dev,
402dae96
VF
4982 struct net_device *upper_dev, bool master,
4983 void *private)
9ff162a8 4984{
5d261913
VF
4985 struct netdev_adjacent *i, *j, *to_i, *to_j;
4986 int ret = 0;
9ff162a8
JP
4987
4988 ASSERT_RTNL();
4989
4990 if (dev == upper_dev)
4991 return -EBUSY;
4992
4993 /* To prevent loops, check if dev is not upper device to upper_dev. */
2f268f12 4994 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
4995 return -EBUSY;
4996
2f268f12 4997 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
9ff162a8
JP
4998 return -EEXIST;
4999
5000 if (master && netdev_master_upper_dev_get(dev))
5001 return -EBUSY;
5002
402dae96
VF
5003 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5004 master);
5d261913
VF
5005 if (ret)
5006 return ret;
9ff162a8 5007
5d261913 5008 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5009 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5010 * versa, and don't forget the devices itself. All of these
5011 * links are non-neighbours.
5012 */
2f268f12
VF
5013 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5014 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5015 pr_debug("Interlinking %s with %s, non-neighbour\n",
5016 i->dev->name, j->dev->name);
5d261913
VF
5017 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5018 if (ret)
5019 goto rollback_mesh;
5020 }
5021 }
5022
5023 /* add dev to every upper_dev's upper device */
2f268f12
VF
5024 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5025 pr_debug("linking %s's upper device %s with %s\n",
5026 upper_dev->name, i->dev->name, dev->name);
5d261913
VF
5027 ret = __netdev_adjacent_dev_link(dev, i->dev);
5028 if (ret)
5029 goto rollback_upper_mesh;
5030 }
5031
5032 /* add upper_dev to every dev's lower device */
2f268f12
VF
5033 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5034 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5035 i->dev->name, upper_dev->name);
5d261913
VF
5036 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5037 if (ret)
5038 goto rollback_lower_mesh;
5039 }
9ff162a8 5040
42e52bf9 5041 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
9ff162a8 5042 return 0;
5d261913
VF
5043
5044rollback_lower_mesh:
5045 to_i = i;
2f268f12 5046 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5047 if (i == to_i)
5048 break;
5049 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5050 }
5051
5052 i = NULL;
5053
5054rollback_upper_mesh:
5055 to_i = i;
2f268f12 5056 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5057 if (i == to_i)
5058 break;
5059 __netdev_adjacent_dev_unlink(dev, i->dev);
5060 }
5061
5062 i = j = NULL;
5063
5064rollback_mesh:
5065 to_i = i;
5066 to_j = j;
2f268f12
VF
5067 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5068 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5069 if (i == to_i && j == to_j)
5070 break;
5071 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5072 }
5073 if (i == to_i)
5074 break;
5075 }
5076
2f268f12 5077 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5078
5079 return ret;
9ff162a8
JP
5080}
5081
5082/**
5083 * netdev_upper_dev_link - Add a link to the upper device
5084 * @dev: device
5085 * @upper_dev: new upper device
5086 *
5087 * Adds a link to device which is upper to this one. The caller must hold
5088 * the RTNL lock. On a failure a negative errno code is returned.
5089 * On success the reference counts are adjusted and the function
5090 * returns zero.
5091 */
5092int netdev_upper_dev_link(struct net_device *dev,
5093 struct net_device *upper_dev)
5094{
402dae96 5095 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
9ff162a8
JP
5096}
5097EXPORT_SYMBOL(netdev_upper_dev_link);
5098
5099/**
5100 * netdev_master_upper_dev_link - Add a master link to the upper device
5101 * @dev: device
5102 * @upper_dev: new upper device
5103 *
5104 * Adds a link to device which is upper to this one. In this case, only
5105 * one master upper device can be linked, although other non-master devices
5106 * might be linked as well. The caller must hold the RTNL lock.
5107 * On a failure a negative errno code is returned. On success the reference
5108 * counts are adjusted and the function returns zero.
5109 */
5110int netdev_master_upper_dev_link(struct net_device *dev,
5111 struct net_device *upper_dev)
5112{
402dae96 5113 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
9ff162a8
JP
5114}
5115EXPORT_SYMBOL(netdev_master_upper_dev_link);
5116
402dae96
VF
5117int netdev_master_upper_dev_link_private(struct net_device *dev,
5118 struct net_device *upper_dev,
5119 void *private)
5120{
5121 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5122}
5123EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5124
9ff162a8
JP
5125/**
5126 * netdev_upper_dev_unlink - Removes a link to upper device
5127 * @dev: device
5128 * @upper_dev: new upper device
5129 *
5130 * Removes a link to device which is upper to this one. The caller must hold
5131 * the RTNL lock.
5132 */
5133void netdev_upper_dev_unlink(struct net_device *dev,
5134 struct net_device *upper_dev)
5135{
5d261913 5136 struct netdev_adjacent *i, *j;
9ff162a8
JP
5137 ASSERT_RTNL();
5138
2f268f12 5139 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5140
5141 /* Here is the tricky part. We must remove all dev's lower
5142 * devices from all upper_dev's upper devices and vice
5143 * versa, to maintain the graph relationship.
5144 */
2f268f12
VF
5145 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5146 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5147 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5148
5149 /* remove also the devices itself from lower/upper device
5150 * list
5151 */
2f268f12 5152 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5d261913
VF
5153 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5154
2f268f12 5155 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5156 __netdev_adjacent_dev_unlink(dev, i->dev);
5157
42e52bf9 5158 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
9ff162a8
JP
5159}
5160EXPORT_SYMBOL(netdev_upper_dev_unlink);
5161
5bb025fa 5162void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 5163{
5bb025fa 5164 struct netdev_adjacent *iter;
402dae96 5165
5bb025fa
VF
5166 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5167 netdev_adjacent_sysfs_del(iter->dev, oldname,
5168 &iter->dev->adj_list.lower);
5169 netdev_adjacent_sysfs_add(iter->dev, dev,
5170 &iter->dev->adj_list.lower);
5171 }
402dae96 5172
5bb025fa
VF
5173 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5174 netdev_adjacent_sysfs_del(iter->dev, oldname,
5175 &iter->dev->adj_list.upper);
5176 netdev_adjacent_sysfs_add(iter->dev, dev,
5177 &iter->dev->adj_list.upper);
5178 }
402dae96 5179}
402dae96
VF
5180
5181void *netdev_lower_dev_get_private(struct net_device *dev,
5182 struct net_device *lower_dev)
5183{
5184 struct netdev_adjacent *lower;
5185
5186 if (!lower_dev)
5187 return NULL;
5188 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5189 if (!lower)
5190 return NULL;
5191
5192 return lower->private;
5193}
5194EXPORT_SYMBOL(netdev_lower_dev_get_private);
5195
4085ebe8
VY
5196
5197int dev_get_nest_level(struct net_device *dev,
5198 bool (*type_check)(struct net_device *dev))
5199{
5200 struct net_device *lower = NULL;
5201 struct list_head *iter;
5202 int max_nest = -1;
5203 int nest;
5204
5205 ASSERT_RTNL();
5206
5207 netdev_for_each_lower_dev(dev, lower, iter) {
5208 nest = dev_get_nest_level(lower, type_check);
5209 if (max_nest < nest)
5210 max_nest = nest;
5211 }
5212
5213 if (type_check(dev))
5214 max_nest++;
5215
5216 return max_nest;
5217}
5218EXPORT_SYMBOL(dev_get_nest_level);
5219
b6c40d68
PM
5220static void dev_change_rx_flags(struct net_device *dev, int flags)
5221{
d314774c
SH
5222 const struct net_device_ops *ops = dev->netdev_ops;
5223
d2615bf4 5224 if (ops->ndo_change_rx_flags)
d314774c 5225 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
5226}
5227
991fb3f7 5228static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 5229{
b536db93 5230 unsigned int old_flags = dev->flags;
d04a48b0
EB
5231 kuid_t uid;
5232 kgid_t gid;
1da177e4 5233
24023451
PM
5234 ASSERT_RTNL();
5235
dad9b335
WC
5236 dev->flags |= IFF_PROMISC;
5237 dev->promiscuity += inc;
5238 if (dev->promiscuity == 0) {
5239 /*
5240 * Avoid overflow.
5241 * If inc causes overflow, untouch promisc and return error.
5242 */
5243 if (inc < 0)
5244 dev->flags &= ~IFF_PROMISC;
5245 else {
5246 dev->promiscuity -= inc;
7b6cd1ce
JP
5247 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5248 dev->name);
dad9b335
WC
5249 return -EOVERFLOW;
5250 }
5251 }
52609c0b 5252 if (dev->flags != old_flags) {
7b6cd1ce
JP
5253 pr_info("device %s %s promiscuous mode\n",
5254 dev->name,
5255 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
5256 if (audit_enabled) {
5257 current_uid_gid(&uid, &gid);
7759db82
KHK
5258 audit_log(current->audit_context, GFP_ATOMIC,
5259 AUDIT_ANOM_PROMISCUOUS,
5260 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5261 dev->name, (dev->flags & IFF_PROMISC),
5262 (old_flags & IFF_PROMISC),
e1760bd5 5263 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
5264 from_kuid(&init_user_ns, uid),
5265 from_kgid(&init_user_ns, gid),
7759db82 5266 audit_get_sessionid(current));
8192b0c4 5267 }
24023451 5268
b6c40d68 5269 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 5270 }
991fb3f7
ND
5271 if (notify)
5272 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 5273 return 0;
1da177e4
LT
5274}
5275
4417da66
PM
5276/**
5277 * dev_set_promiscuity - update promiscuity count on a device
5278 * @dev: device
5279 * @inc: modifier
5280 *
5281 * Add or remove promiscuity from a device. While the count in the device
5282 * remains above zero the interface remains promiscuous. Once it hits zero
5283 * the device reverts back to normal filtering operation. A negative inc
5284 * value is used to drop promiscuity on the device.
dad9b335 5285 * Return 0 if successful or a negative errno code on error.
4417da66 5286 */
dad9b335 5287int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 5288{
b536db93 5289 unsigned int old_flags = dev->flags;
dad9b335 5290 int err;
4417da66 5291
991fb3f7 5292 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 5293 if (err < 0)
dad9b335 5294 return err;
4417da66
PM
5295 if (dev->flags != old_flags)
5296 dev_set_rx_mode(dev);
dad9b335 5297 return err;
4417da66 5298}
d1b19dff 5299EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 5300
991fb3f7 5301static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 5302{
991fb3f7 5303 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 5304
24023451
PM
5305 ASSERT_RTNL();
5306
1da177e4 5307 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
5308 dev->allmulti += inc;
5309 if (dev->allmulti == 0) {
5310 /*
5311 * Avoid overflow.
5312 * If inc causes overflow, untouch allmulti and return error.
5313 */
5314 if (inc < 0)
5315 dev->flags &= ~IFF_ALLMULTI;
5316 else {
5317 dev->allmulti -= inc;
7b6cd1ce
JP
5318 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5319 dev->name);
dad9b335
WC
5320 return -EOVERFLOW;
5321 }
5322 }
24023451 5323 if (dev->flags ^ old_flags) {
b6c40d68 5324 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 5325 dev_set_rx_mode(dev);
991fb3f7
ND
5326 if (notify)
5327 __dev_notify_flags(dev, old_flags,
5328 dev->gflags ^ old_gflags);
24023451 5329 }
dad9b335 5330 return 0;
4417da66 5331}
991fb3f7
ND
5332
5333/**
5334 * dev_set_allmulti - update allmulti count on a device
5335 * @dev: device
5336 * @inc: modifier
5337 *
5338 * Add or remove reception of all multicast frames to a device. While the
5339 * count in the device remains above zero the interface remains listening
5340 * to all interfaces. Once it hits zero the device reverts back to normal
5341 * filtering operation. A negative @inc value is used to drop the counter
5342 * when releasing a resource needing all multicasts.
5343 * Return 0 if successful or a negative errno code on error.
5344 */
5345
5346int dev_set_allmulti(struct net_device *dev, int inc)
5347{
5348 return __dev_set_allmulti(dev, inc, true);
5349}
d1b19dff 5350EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
5351
5352/*
5353 * Upload unicast and multicast address lists to device and
5354 * configure RX filtering. When the device doesn't support unicast
53ccaae1 5355 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
5356 * are present.
5357 */
5358void __dev_set_rx_mode(struct net_device *dev)
5359{
d314774c
SH
5360 const struct net_device_ops *ops = dev->netdev_ops;
5361
4417da66
PM
5362 /* dev_open will call this function so the list will stay sane. */
5363 if (!(dev->flags&IFF_UP))
5364 return;
5365
5366 if (!netif_device_present(dev))
40b77c94 5367 return;
4417da66 5368
01789349 5369 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
5370 /* Unicast addresses changes may only happen under the rtnl,
5371 * therefore calling __dev_set_promiscuity here is safe.
5372 */
32e7bfc4 5373 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 5374 __dev_set_promiscuity(dev, 1, false);
2d348d1f 5375 dev->uc_promisc = true;
32e7bfc4 5376 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 5377 __dev_set_promiscuity(dev, -1, false);
2d348d1f 5378 dev->uc_promisc = false;
4417da66 5379 }
4417da66 5380 }
01789349
JP
5381
5382 if (ops->ndo_set_rx_mode)
5383 ops->ndo_set_rx_mode(dev);
4417da66
PM
5384}
5385
5386void dev_set_rx_mode(struct net_device *dev)
5387{
b9e40857 5388 netif_addr_lock_bh(dev);
4417da66 5389 __dev_set_rx_mode(dev);
b9e40857 5390 netif_addr_unlock_bh(dev);
1da177e4
LT
5391}
5392
f0db275a
SH
5393/**
5394 * dev_get_flags - get flags reported to userspace
5395 * @dev: device
5396 *
5397 * Get the combination of flag bits exported through APIs to userspace.
5398 */
95c96174 5399unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 5400{
95c96174 5401 unsigned int flags;
1da177e4
LT
5402
5403 flags = (dev->flags & ~(IFF_PROMISC |
5404 IFF_ALLMULTI |
b00055aa
SR
5405 IFF_RUNNING |
5406 IFF_LOWER_UP |
5407 IFF_DORMANT)) |
1da177e4
LT
5408 (dev->gflags & (IFF_PROMISC |
5409 IFF_ALLMULTI));
5410
b00055aa
SR
5411 if (netif_running(dev)) {
5412 if (netif_oper_up(dev))
5413 flags |= IFF_RUNNING;
5414 if (netif_carrier_ok(dev))
5415 flags |= IFF_LOWER_UP;
5416 if (netif_dormant(dev))
5417 flags |= IFF_DORMANT;
5418 }
1da177e4
LT
5419
5420 return flags;
5421}
d1b19dff 5422EXPORT_SYMBOL(dev_get_flags);
1da177e4 5423
bd380811 5424int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 5425{
b536db93 5426 unsigned int old_flags = dev->flags;
bd380811 5427 int ret;
1da177e4 5428
24023451
PM
5429 ASSERT_RTNL();
5430
1da177e4
LT
5431 /*
5432 * Set the flags on our device.
5433 */
5434
5435 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5436 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5437 IFF_AUTOMEDIA)) |
5438 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5439 IFF_ALLMULTI));
5440
5441 /*
5442 * Load in the correct multicast list now the flags have changed.
5443 */
5444
b6c40d68
PM
5445 if ((old_flags ^ flags) & IFF_MULTICAST)
5446 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 5447
4417da66 5448 dev_set_rx_mode(dev);
1da177e4
LT
5449
5450 /*
5451 * Have we downed the interface. We handle IFF_UP ourselves
5452 * according to user attempts to set it, rather than blindly
5453 * setting it.
5454 */
5455
5456 ret = 0;
d215d10f 5457 if ((old_flags ^ flags) & IFF_UP)
bd380811 5458 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 5459
1da177e4 5460 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 5461 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 5462 unsigned int old_flags = dev->flags;
d1b19dff 5463
1da177e4 5464 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
5465
5466 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5467 if (dev->flags != old_flags)
5468 dev_set_rx_mode(dev);
1da177e4
LT
5469 }
5470
5471 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5472 is important. Some (broken) drivers set IFF_PROMISC, when
5473 IFF_ALLMULTI is requested not asking us and not reporting.
5474 */
5475 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
5476 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5477
1da177e4 5478 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 5479 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
5480 }
5481
bd380811
PM
5482 return ret;
5483}
5484
a528c219
ND
5485void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5486 unsigned int gchanges)
bd380811
PM
5487{
5488 unsigned int changes = dev->flags ^ old_flags;
5489
a528c219 5490 if (gchanges)
7f294054 5491 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 5492
bd380811
PM
5493 if (changes & IFF_UP) {
5494 if (dev->flags & IFF_UP)
5495 call_netdevice_notifiers(NETDEV_UP, dev);
5496 else
5497 call_netdevice_notifiers(NETDEV_DOWN, dev);
5498 }
5499
5500 if (dev->flags & IFF_UP &&
be9efd36
JP
5501 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5502 struct netdev_notifier_change_info change_info;
5503
5504 change_info.flags_changed = changes;
5505 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5506 &change_info.info);
5507 }
bd380811
PM
5508}
5509
5510/**
5511 * dev_change_flags - change device settings
5512 * @dev: device
5513 * @flags: device state flags
5514 *
5515 * Change settings on device based state flags. The flags are
5516 * in the userspace exported format.
5517 */
b536db93 5518int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 5519{
b536db93 5520 int ret;
991fb3f7 5521 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
5522
5523 ret = __dev_change_flags(dev, flags);
5524 if (ret < 0)
5525 return ret;
5526
991fb3f7 5527 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 5528 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
5529 return ret;
5530}
d1b19dff 5531EXPORT_SYMBOL(dev_change_flags);
1da177e4 5532
2315dc91
VF
5533static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5534{
5535 const struct net_device_ops *ops = dev->netdev_ops;
5536
5537 if (ops->ndo_change_mtu)
5538 return ops->ndo_change_mtu(dev, new_mtu);
5539
5540 dev->mtu = new_mtu;
5541 return 0;
5542}
5543
f0db275a
SH
5544/**
5545 * dev_set_mtu - Change maximum transfer unit
5546 * @dev: device
5547 * @new_mtu: new transfer unit
5548 *
5549 * Change the maximum transfer size of the network device.
5550 */
1da177e4
LT
5551int dev_set_mtu(struct net_device *dev, int new_mtu)
5552{
2315dc91 5553 int err, orig_mtu;
1da177e4
LT
5554
5555 if (new_mtu == dev->mtu)
5556 return 0;
5557
5558 /* MTU must be positive. */
5559 if (new_mtu < 0)
5560 return -EINVAL;
5561
5562 if (!netif_device_present(dev))
5563 return -ENODEV;
5564
1d486bfb
VF
5565 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5566 err = notifier_to_errno(err);
5567 if (err)
5568 return err;
d314774c 5569
2315dc91
VF
5570 orig_mtu = dev->mtu;
5571 err = __dev_set_mtu(dev, new_mtu);
d314774c 5572
2315dc91
VF
5573 if (!err) {
5574 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5575 err = notifier_to_errno(err);
5576 if (err) {
5577 /* setting mtu back and notifying everyone again,
5578 * so that they have a chance to revert changes.
5579 */
5580 __dev_set_mtu(dev, orig_mtu);
5581 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5582 }
5583 }
1da177e4
LT
5584 return err;
5585}
d1b19dff 5586EXPORT_SYMBOL(dev_set_mtu);
1da177e4 5587
cbda10fa
VD
5588/**
5589 * dev_set_group - Change group this device belongs to
5590 * @dev: device
5591 * @new_group: group this device should belong to
5592 */
5593void dev_set_group(struct net_device *dev, int new_group)
5594{
5595 dev->group = new_group;
5596}
5597EXPORT_SYMBOL(dev_set_group);
5598
f0db275a
SH
5599/**
5600 * dev_set_mac_address - Change Media Access Control Address
5601 * @dev: device
5602 * @sa: new address
5603 *
5604 * Change the hardware (MAC) address of the device
5605 */
1da177e4
LT
5606int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5607{
d314774c 5608 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
5609 int err;
5610
d314774c 5611 if (!ops->ndo_set_mac_address)
1da177e4
LT
5612 return -EOPNOTSUPP;
5613 if (sa->sa_family != dev->type)
5614 return -EINVAL;
5615 if (!netif_device_present(dev))
5616 return -ENODEV;
d314774c 5617 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
5618 if (err)
5619 return err;
fbdeca2d 5620 dev->addr_assign_type = NET_ADDR_SET;
f6521516 5621 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 5622 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 5623 return 0;
1da177e4 5624}
d1b19dff 5625EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 5626
4bf84c35
JP
5627/**
5628 * dev_change_carrier - Change device carrier
5629 * @dev: device
691b3b7e 5630 * @new_carrier: new value
4bf84c35
JP
5631 *
5632 * Change device carrier
5633 */
5634int dev_change_carrier(struct net_device *dev, bool new_carrier)
5635{
5636 const struct net_device_ops *ops = dev->netdev_ops;
5637
5638 if (!ops->ndo_change_carrier)
5639 return -EOPNOTSUPP;
5640 if (!netif_device_present(dev))
5641 return -ENODEV;
5642 return ops->ndo_change_carrier(dev, new_carrier);
5643}
5644EXPORT_SYMBOL(dev_change_carrier);
5645
66b52b0d
JP
5646/**
5647 * dev_get_phys_port_id - Get device physical port ID
5648 * @dev: device
5649 * @ppid: port ID
5650 *
5651 * Get device physical port ID
5652 */
5653int dev_get_phys_port_id(struct net_device *dev,
5654 struct netdev_phys_port_id *ppid)
5655{
5656 const struct net_device_ops *ops = dev->netdev_ops;
5657
5658 if (!ops->ndo_get_phys_port_id)
5659 return -EOPNOTSUPP;
5660 return ops->ndo_get_phys_port_id(dev, ppid);
5661}
5662EXPORT_SYMBOL(dev_get_phys_port_id);
5663
1da177e4
LT
5664/**
5665 * dev_new_index - allocate an ifindex
c4ea43c5 5666 * @net: the applicable net namespace
1da177e4
LT
5667 *
5668 * Returns a suitable unique value for a new device interface
5669 * number. The caller must hold the rtnl semaphore or the
5670 * dev_base_lock to be sure it remains unique.
5671 */
881d966b 5672static int dev_new_index(struct net *net)
1da177e4 5673{
aa79e66e 5674 int ifindex = net->ifindex;
1da177e4
LT
5675 for (;;) {
5676 if (++ifindex <= 0)
5677 ifindex = 1;
881d966b 5678 if (!__dev_get_by_index(net, ifindex))
aa79e66e 5679 return net->ifindex = ifindex;
1da177e4
LT
5680 }
5681}
5682
1da177e4 5683/* Delayed registration/unregisteration */
3b5b34fd 5684static LIST_HEAD(net_todo_list);
200b916f 5685DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 5686
6f05f629 5687static void net_set_todo(struct net_device *dev)
1da177e4 5688{
1da177e4 5689 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 5690 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
5691}
5692
9b5e383c 5693static void rollback_registered_many(struct list_head *head)
93ee31f1 5694{
e93737b0 5695 struct net_device *dev, *tmp;
5cde2829 5696 LIST_HEAD(close_head);
9b5e383c 5697
93ee31f1
DL
5698 BUG_ON(dev_boot_phase);
5699 ASSERT_RTNL();
5700
e93737b0 5701 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 5702 /* Some devices call without registering
e93737b0
KK
5703 * for initialization unwind. Remove those
5704 * devices and proceed with the remaining.
9b5e383c
ED
5705 */
5706 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
5707 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5708 dev->name, dev);
93ee31f1 5709
9b5e383c 5710 WARN_ON(1);
e93737b0
KK
5711 list_del(&dev->unreg_list);
5712 continue;
9b5e383c 5713 }
449f4544 5714 dev->dismantle = true;
9b5e383c 5715 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 5716 }
93ee31f1 5717
44345724 5718 /* If device is running, close it first. */
5cde2829
EB
5719 list_for_each_entry(dev, head, unreg_list)
5720 list_add_tail(&dev->close_list, &close_head);
5721 dev_close_many(&close_head);
93ee31f1 5722
44345724 5723 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
5724 /* And unlink it from device chain. */
5725 unlist_netdevice(dev);
93ee31f1 5726
9b5e383c
ED
5727 dev->reg_state = NETREG_UNREGISTERING;
5728 }
93ee31f1
DL
5729
5730 synchronize_net();
5731
9b5e383c
ED
5732 list_for_each_entry(dev, head, unreg_list) {
5733 /* Shutdown queueing discipline. */
5734 dev_shutdown(dev);
93ee31f1
DL
5735
5736
9b5e383c
ED
5737 /* Notify protocols, that we are about to destroy
5738 this device. They should clean all the things.
5739 */
5740 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 5741
9b5e383c
ED
5742 /*
5743 * Flush the unicast and multicast chains
5744 */
a748ee24 5745 dev_uc_flush(dev);
22bedad3 5746 dev_mc_flush(dev);
93ee31f1 5747
9b5e383c
ED
5748 if (dev->netdev_ops->ndo_uninit)
5749 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 5750
56bfa7ee
RP
5751 if (!dev->rtnl_link_ops ||
5752 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5753 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5754
9ff162a8
JP
5755 /* Notifier chain MUST detach us all upper devices. */
5756 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 5757
9b5e383c
ED
5758 /* Remove entries from kobject tree */
5759 netdev_unregister_kobject(dev);
024e9679
AD
5760#ifdef CONFIG_XPS
5761 /* Remove XPS queueing entries */
5762 netif_reset_xps_queues_gt(dev, 0);
5763#endif
9b5e383c 5764 }
93ee31f1 5765
850a545b 5766 synchronize_net();
395264d5 5767
a5ee1551 5768 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
5769 dev_put(dev);
5770}
5771
5772static void rollback_registered(struct net_device *dev)
5773{
5774 LIST_HEAD(single);
5775
5776 list_add(&dev->unreg_list, &single);
5777 rollback_registered_many(&single);
ceaaec98 5778 list_del(&single);
93ee31f1
DL
5779}
5780
c8f44aff
MM
5781static netdev_features_t netdev_fix_features(struct net_device *dev,
5782 netdev_features_t features)
b63365a2 5783{
57422dc5
MM
5784 /* Fix illegal checksum combinations */
5785 if ((features & NETIF_F_HW_CSUM) &&
5786 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 5787 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
5788 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5789 }
5790
b63365a2 5791 /* TSO requires that SG is present as well. */
ea2d3688 5792 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 5793 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 5794 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
5795 }
5796
ec5f0615
PS
5797 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5798 !(features & NETIF_F_IP_CSUM)) {
5799 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5800 features &= ~NETIF_F_TSO;
5801 features &= ~NETIF_F_TSO_ECN;
5802 }
5803
5804 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5805 !(features & NETIF_F_IPV6_CSUM)) {
5806 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5807 features &= ~NETIF_F_TSO6;
5808 }
5809
31d8b9e0
BH
5810 /* TSO ECN requires that TSO is present as well. */
5811 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5812 features &= ~NETIF_F_TSO_ECN;
5813
212b573f
MM
5814 /* Software GSO depends on SG. */
5815 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 5816 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
5817 features &= ~NETIF_F_GSO;
5818 }
5819
acd1130e 5820 /* UFO needs SG and checksumming */
b63365a2 5821 if (features & NETIF_F_UFO) {
79032644
MM
5822 /* maybe split UFO into V4 and V6? */
5823 if (!((features & NETIF_F_GEN_CSUM) ||
5824 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5825 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 5826 netdev_dbg(dev,
acd1130e 5827 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
5828 features &= ~NETIF_F_UFO;
5829 }
5830
5831 if (!(features & NETIF_F_SG)) {
6f404e44 5832 netdev_dbg(dev,
acd1130e 5833 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
5834 features &= ~NETIF_F_UFO;
5835 }
5836 }
5837
d0290214
JP
5838#ifdef CONFIG_NET_RX_BUSY_POLL
5839 if (dev->netdev_ops->ndo_busy_poll)
5840 features |= NETIF_F_BUSY_POLL;
5841 else
5842#endif
5843 features &= ~NETIF_F_BUSY_POLL;
5844
b63365a2
HX
5845 return features;
5846}
b63365a2 5847
6cb6a27c 5848int __netdev_update_features(struct net_device *dev)
5455c699 5849{
c8f44aff 5850 netdev_features_t features;
5455c699
MM
5851 int err = 0;
5852
87267485
MM
5853 ASSERT_RTNL();
5854
5455c699
MM
5855 features = netdev_get_wanted_features(dev);
5856
5857 if (dev->netdev_ops->ndo_fix_features)
5858 features = dev->netdev_ops->ndo_fix_features(dev, features);
5859
5860 /* driver might be less strict about feature dependencies */
5861 features = netdev_fix_features(dev, features);
5862
5863 if (dev->features == features)
6cb6a27c 5864 return 0;
5455c699 5865
c8f44aff
MM
5866 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5867 &dev->features, &features);
5455c699
MM
5868
5869 if (dev->netdev_ops->ndo_set_features)
5870 err = dev->netdev_ops->ndo_set_features(dev, features);
5871
6cb6a27c 5872 if (unlikely(err < 0)) {
5455c699 5873 netdev_err(dev,
c8f44aff
MM
5874 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5875 err, &features, &dev->features);
6cb6a27c
MM
5876 return -1;
5877 }
5878
5879 if (!err)
5880 dev->features = features;
5881
5882 return 1;
5883}
5884
afe12cc8
MM
5885/**
5886 * netdev_update_features - recalculate device features
5887 * @dev: the device to check
5888 *
5889 * Recalculate dev->features set and send notifications if it
5890 * has changed. Should be called after driver or hardware dependent
5891 * conditions might have changed that influence the features.
5892 */
6cb6a27c
MM
5893void netdev_update_features(struct net_device *dev)
5894{
5895 if (__netdev_update_features(dev))
5896 netdev_features_change(dev);
5455c699
MM
5897}
5898EXPORT_SYMBOL(netdev_update_features);
5899
afe12cc8
MM
5900/**
5901 * netdev_change_features - recalculate device features
5902 * @dev: the device to check
5903 *
5904 * Recalculate dev->features set and send notifications even
5905 * if they have not changed. Should be called instead of
5906 * netdev_update_features() if also dev->vlan_features might
5907 * have changed to allow the changes to be propagated to stacked
5908 * VLAN devices.
5909 */
5910void netdev_change_features(struct net_device *dev)
5911{
5912 __netdev_update_features(dev);
5913 netdev_features_change(dev);
5914}
5915EXPORT_SYMBOL(netdev_change_features);
5916
fc4a7489
PM
5917/**
5918 * netif_stacked_transfer_operstate - transfer operstate
5919 * @rootdev: the root or lower level device to transfer state from
5920 * @dev: the device to transfer operstate to
5921 *
5922 * Transfer operational state from root to device. This is normally
5923 * called when a stacking relationship exists between the root
5924 * device and the device(a leaf device).
5925 */
5926void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5927 struct net_device *dev)
5928{
5929 if (rootdev->operstate == IF_OPER_DORMANT)
5930 netif_dormant_on(dev);
5931 else
5932 netif_dormant_off(dev);
5933
5934 if (netif_carrier_ok(rootdev)) {
5935 if (!netif_carrier_ok(dev))
5936 netif_carrier_on(dev);
5937 } else {
5938 if (netif_carrier_ok(dev))
5939 netif_carrier_off(dev);
5940 }
5941}
5942EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5943
a953be53 5944#ifdef CONFIG_SYSFS
1b4bf461
ED
5945static int netif_alloc_rx_queues(struct net_device *dev)
5946{
1b4bf461 5947 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 5948 struct netdev_rx_queue *rx;
1b4bf461 5949
bd25fa7b 5950 BUG_ON(count < 1);
1b4bf461 5951
bd25fa7b 5952 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
62b5942a 5953 if (!rx)
bd25fa7b 5954 return -ENOMEM;
62b5942a 5955
bd25fa7b
TH
5956 dev->_rx = rx;
5957
bd25fa7b 5958 for (i = 0; i < count; i++)
fe822240 5959 rx[i].dev = dev;
1b4bf461
ED
5960 return 0;
5961}
bf264145 5962#endif
1b4bf461 5963
aa942104
CG
5964static void netdev_init_one_queue(struct net_device *dev,
5965 struct netdev_queue *queue, void *_unused)
5966{
5967 /* Initialize queue lock */
5968 spin_lock_init(&queue->_xmit_lock);
5969 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5970 queue->xmit_lock_owner = -1;
b236da69 5971 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 5972 queue->dev = dev;
114cf580
TH
5973#ifdef CONFIG_BQL
5974 dql_init(&queue->dql, HZ);
5975#endif
aa942104
CG
5976}
5977
60877a32
ED
5978static void netif_free_tx_queues(struct net_device *dev)
5979{
4cb28970 5980 kvfree(dev->_tx);
60877a32
ED
5981}
5982
e6484930
TH
5983static int netif_alloc_netdev_queues(struct net_device *dev)
5984{
5985 unsigned int count = dev->num_tx_queues;
5986 struct netdev_queue *tx;
60877a32 5987 size_t sz = count * sizeof(*tx);
e6484930 5988
60877a32 5989 BUG_ON(count < 1 || count > 0xffff);
62b5942a 5990
60877a32
ED
5991 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5992 if (!tx) {
5993 tx = vzalloc(sz);
5994 if (!tx)
5995 return -ENOMEM;
5996 }
e6484930 5997 dev->_tx = tx;
1d24eb48 5998
e6484930
TH
5999 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6000 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
6001
6002 return 0;
e6484930
TH
6003}
6004
1da177e4
LT
6005/**
6006 * register_netdevice - register a network device
6007 * @dev: device to register
6008 *
6009 * Take a completed network device structure and add it to the kernel
6010 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6011 * chain. 0 is returned on success. A negative errno code is returned
6012 * on a failure to set up the device, or if the name is a duplicate.
6013 *
6014 * Callers must hold the rtnl semaphore. You may want
6015 * register_netdev() instead of this.
6016 *
6017 * BUGS:
6018 * The locking appears insufficient to guarantee two parallel registers
6019 * will not get the same name.
6020 */
6021
6022int register_netdevice(struct net_device *dev)
6023{
1da177e4 6024 int ret;
d314774c 6025 struct net *net = dev_net(dev);
1da177e4
LT
6026
6027 BUG_ON(dev_boot_phase);
6028 ASSERT_RTNL();
6029
b17a7c17
SH
6030 might_sleep();
6031
1da177e4
LT
6032 /* When net_device's are persistent, this will be fatal. */
6033 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 6034 BUG_ON(!net);
1da177e4 6035
f1f28aa3 6036 spin_lock_init(&dev->addr_list_lock);
cf508b12 6037 netdev_set_addr_lockdep_class(dev);
1da177e4 6038
1da177e4
LT
6039 dev->iflink = -1;
6040
828de4f6 6041 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
6042 if (ret < 0)
6043 goto out;
6044
1da177e4 6045 /* Init, if this function is available */
d314774c
SH
6046 if (dev->netdev_ops->ndo_init) {
6047 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
6048 if (ret) {
6049 if (ret > 0)
6050 ret = -EIO;
90833aa4 6051 goto out;
1da177e4
LT
6052 }
6053 }
4ec93edb 6054
f646968f
PM
6055 if (((dev->hw_features | dev->features) &
6056 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
6057 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6058 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6059 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6060 ret = -EINVAL;
6061 goto err_uninit;
6062 }
6063
9c7dafbf
PE
6064 ret = -EBUSY;
6065 if (!dev->ifindex)
6066 dev->ifindex = dev_new_index(net);
6067 else if (__dev_get_by_index(net, dev->ifindex))
6068 goto err_uninit;
6069
1da177e4
LT
6070 if (dev->iflink == -1)
6071 dev->iflink = dev->ifindex;
6072
5455c699
MM
6073 /* Transfer changeable features to wanted_features and enable
6074 * software offloads (GSO and GRO).
6075 */
6076 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
6077 dev->features |= NETIF_F_SOFT_FEATURES;
6078 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 6079
34324dc2
MM
6080 if (!(dev->flags & IFF_LOOPBACK)) {
6081 dev->hw_features |= NETIF_F_NOCACHE_COPY;
c6e1a0d1
TH
6082 }
6083
1180e7d6 6084 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 6085 */
1180e7d6 6086 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 6087
ee579677
PS
6088 /* Make NETIF_F_SG inheritable to tunnel devices.
6089 */
6090 dev->hw_enc_features |= NETIF_F_SG;
6091
0d89d203
SH
6092 /* Make NETIF_F_SG inheritable to MPLS.
6093 */
6094 dev->mpls_features |= NETIF_F_SG;
6095
7ffbe3fd
JB
6096 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6097 ret = notifier_to_errno(ret);
6098 if (ret)
6099 goto err_uninit;
6100
8b41d188 6101 ret = netdev_register_kobject(dev);
b17a7c17 6102 if (ret)
7ce1b0ed 6103 goto err_uninit;
b17a7c17
SH
6104 dev->reg_state = NETREG_REGISTERED;
6105
6cb6a27c 6106 __netdev_update_features(dev);
8e9b59b2 6107
1da177e4
LT
6108 /*
6109 * Default initial state at registry is that the
6110 * device is present.
6111 */
6112
6113 set_bit(__LINK_STATE_PRESENT, &dev->state);
6114
8f4cccbb
BH
6115 linkwatch_init_dev(dev);
6116
1da177e4 6117 dev_init_scheduler(dev);
1da177e4 6118 dev_hold(dev);
ce286d32 6119 list_netdevice(dev);
7bf23575 6120 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 6121
948b337e
JP
6122 /* If the device has permanent device address, driver should
6123 * set dev_addr and also addr_assign_type should be set to
6124 * NET_ADDR_PERM (default value).
6125 */
6126 if (dev->addr_assign_type == NET_ADDR_PERM)
6127 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6128
1da177e4 6129 /* Notify protocols, that a new device appeared. */
056925ab 6130 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 6131 ret = notifier_to_errno(ret);
93ee31f1
DL
6132 if (ret) {
6133 rollback_registered(dev);
6134 dev->reg_state = NETREG_UNREGISTERED;
6135 }
d90a909e
EB
6136 /*
6137 * Prevent userspace races by waiting until the network
6138 * device is fully setup before sending notifications.
6139 */
a2835763
PM
6140 if (!dev->rtnl_link_ops ||
6141 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 6142 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
6143
6144out:
6145 return ret;
7ce1b0ed
HX
6146
6147err_uninit:
d314774c
SH
6148 if (dev->netdev_ops->ndo_uninit)
6149 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 6150 goto out;
1da177e4 6151}
d1b19dff 6152EXPORT_SYMBOL(register_netdevice);
1da177e4 6153
937f1ba5
BH
6154/**
6155 * init_dummy_netdev - init a dummy network device for NAPI
6156 * @dev: device to init
6157 *
6158 * This takes a network device structure and initialize the minimum
6159 * amount of fields so it can be used to schedule NAPI polls without
6160 * registering a full blown interface. This is to be used by drivers
6161 * that need to tie several hardware interfaces to a single NAPI
6162 * poll scheduler due to HW limitations.
6163 */
6164int init_dummy_netdev(struct net_device *dev)
6165{
6166 /* Clear everything. Note we don't initialize spinlocks
6167 * are they aren't supposed to be taken by any of the
6168 * NAPI code and this dummy netdev is supposed to be
6169 * only ever used for NAPI polls
6170 */
6171 memset(dev, 0, sizeof(struct net_device));
6172
6173 /* make sure we BUG if trying to hit standard
6174 * register/unregister code path
6175 */
6176 dev->reg_state = NETREG_DUMMY;
6177
937f1ba5
BH
6178 /* NAPI wants this */
6179 INIT_LIST_HEAD(&dev->napi_list);
6180
6181 /* a dummy interface is started by default */
6182 set_bit(__LINK_STATE_PRESENT, &dev->state);
6183 set_bit(__LINK_STATE_START, &dev->state);
6184
29b4433d
ED
6185 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6186 * because users of this 'device' dont need to change
6187 * its refcount.
6188 */
6189
937f1ba5
BH
6190 return 0;
6191}
6192EXPORT_SYMBOL_GPL(init_dummy_netdev);
6193
6194
1da177e4
LT
6195/**
6196 * register_netdev - register a network device
6197 * @dev: device to register
6198 *
6199 * Take a completed network device structure and add it to the kernel
6200 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6201 * chain. 0 is returned on success. A negative errno code is returned
6202 * on a failure to set up the device, or if the name is a duplicate.
6203 *
38b4da38 6204 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
6205 * and expands the device name if you passed a format string to
6206 * alloc_netdev.
6207 */
6208int register_netdev(struct net_device *dev)
6209{
6210 int err;
6211
6212 rtnl_lock();
1da177e4 6213 err = register_netdevice(dev);
1da177e4
LT
6214 rtnl_unlock();
6215 return err;
6216}
6217EXPORT_SYMBOL(register_netdev);
6218
29b4433d
ED
6219int netdev_refcnt_read(const struct net_device *dev)
6220{
6221 int i, refcnt = 0;
6222
6223 for_each_possible_cpu(i)
6224 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6225 return refcnt;
6226}
6227EXPORT_SYMBOL(netdev_refcnt_read);
6228
2c53040f 6229/**
1da177e4 6230 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 6231 * @dev: target net_device
1da177e4
LT
6232 *
6233 * This is called when unregistering network devices.
6234 *
6235 * Any protocol or device that holds a reference should register
6236 * for netdevice notification, and cleanup and put back the
6237 * reference if they receive an UNREGISTER event.
6238 * We can get stuck here if buggy protocols don't correctly
4ec93edb 6239 * call dev_put.
1da177e4
LT
6240 */
6241static void netdev_wait_allrefs(struct net_device *dev)
6242{
6243 unsigned long rebroadcast_time, warning_time;
29b4433d 6244 int refcnt;
1da177e4 6245
e014debe
ED
6246 linkwatch_forget_dev(dev);
6247
1da177e4 6248 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
6249 refcnt = netdev_refcnt_read(dev);
6250
6251 while (refcnt != 0) {
1da177e4 6252 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 6253 rtnl_lock();
1da177e4
LT
6254
6255 /* Rebroadcast unregister notification */
056925ab 6256 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 6257
748e2d93 6258 __rtnl_unlock();
0115e8e3 6259 rcu_barrier();
748e2d93
ED
6260 rtnl_lock();
6261
0115e8e3 6262 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
6263 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6264 &dev->state)) {
6265 /* We must not have linkwatch events
6266 * pending on unregister. If this
6267 * happens, we simply run the queue
6268 * unscheduled, resulting in a noop
6269 * for this device.
6270 */
6271 linkwatch_run_queue();
6272 }
6273
6756ae4b 6274 __rtnl_unlock();
1da177e4
LT
6275
6276 rebroadcast_time = jiffies;
6277 }
6278
6279 msleep(250);
6280
29b4433d
ED
6281 refcnt = netdev_refcnt_read(dev);
6282
1da177e4 6283 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
6284 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6285 dev->name, refcnt);
1da177e4
LT
6286 warning_time = jiffies;
6287 }
6288 }
6289}
6290
6291/* The sequence is:
6292 *
6293 * rtnl_lock();
6294 * ...
6295 * register_netdevice(x1);
6296 * register_netdevice(x2);
6297 * ...
6298 * unregister_netdevice(y1);
6299 * unregister_netdevice(y2);
6300 * ...
6301 * rtnl_unlock();
6302 * free_netdev(y1);
6303 * free_netdev(y2);
6304 *
58ec3b4d 6305 * We are invoked by rtnl_unlock().
1da177e4 6306 * This allows us to deal with problems:
b17a7c17 6307 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
6308 * without deadlocking with linkwatch via keventd.
6309 * 2) Since we run with the RTNL semaphore not held, we can sleep
6310 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
6311 *
6312 * We must not return until all unregister events added during
6313 * the interval the lock was held have been completed.
1da177e4 6314 */
1da177e4
LT
6315void netdev_run_todo(void)
6316{
626ab0e6 6317 struct list_head list;
1da177e4 6318
1da177e4 6319 /* Snapshot list, allow later requests */
626ab0e6 6320 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
6321
6322 __rtnl_unlock();
626ab0e6 6323
0115e8e3
ED
6324
6325 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
6326 if (!list_empty(&list))
6327 rcu_barrier();
6328
1da177e4
LT
6329 while (!list_empty(&list)) {
6330 struct net_device *dev
e5e26d75 6331 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
6332 list_del(&dev->todo_list);
6333
748e2d93 6334 rtnl_lock();
0115e8e3 6335 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 6336 __rtnl_unlock();
0115e8e3 6337
b17a7c17 6338 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 6339 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
6340 dev->name, dev->reg_state);
6341 dump_stack();
6342 continue;
6343 }
1da177e4 6344
b17a7c17 6345 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 6346
152102c7 6347 on_each_cpu(flush_backlog, dev, 1);
6e583ce5 6348
b17a7c17 6349 netdev_wait_allrefs(dev);
1da177e4 6350
b17a7c17 6351 /* paranoia */
29b4433d 6352 BUG_ON(netdev_refcnt_read(dev));
33d480ce
ED
6353 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6354 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 6355 WARN_ON(dev->dn_ptr);
1da177e4 6356
b17a7c17
SH
6357 if (dev->destructor)
6358 dev->destructor(dev);
9093bbb2 6359
50624c93
EB
6360 /* Report a network device has been unregistered */
6361 rtnl_lock();
6362 dev_net(dev)->dev_unreg_count--;
6363 __rtnl_unlock();
6364 wake_up(&netdev_unregistering_wq);
6365
9093bbb2
SH
6366 /* Free network device */
6367 kobject_put(&dev->dev.kobj);
1da177e4 6368 }
1da177e4
LT
6369}
6370
3cfde79c
BH
6371/* Convert net_device_stats to rtnl_link_stats64. They have the same
6372 * fields in the same order, with only the type differing.
6373 */
77a1abf5
ED
6374void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6375 const struct net_device_stats *netdev_stats)
3cfde79c
BH
6376{
6377#if BITS_PER_LONG == 64
77a1abf5
ED
6378 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6379 memcpy(stats64, netdev_stats, sizeof(*stats64));
3cfde79c
BH
6380#else
6381 size_t i, n = sizeof(*stats64) / sizeof(u64);
6382 const unsigned long *src = (const unsigned long *)netdev_stats;
6383 u64 *dst = (u64 *)stats64;
6384
6385 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6386 sizeof(*stats64) / sizeof(u64));
6387 for (i = 0; i < n; i++)
6388 dst[i] = src[i];
6389#endif
6390}
77a1abf5 6391EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 6392
eeda3fd6
SH
6393/**
6394 * dev_get_stats - get network device statistics
6395 * @dev: device to get statistics from
28172739 6396 * @storage: place to store stats
eeda3fd6 6397 *
d7753516
BH
6398 * Get network statistics from device. Return @storage.
6399 * The device driver may provide its own method by setting
6400 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6401 * otherwise the internal statistics structure is used.
eeda3fd6 6402 */
d7753516
BH
6403struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6404 struct rtnl_link_stats64 *storage)
7004bf25 6405{
eeda3fd6
SH
6406 const struct net_device_ops *ops = dev->netdev_ops;
6407
28172739
ED
6408 if (ops->ndo_get_stats64) {
6409 memset(storage, 0, sizeof(*storage));
caf586e5
ED
6410 ops->ndo_get_stats64(dev, storage);
6411 } else if (ops->ndo_get_stats) {
3cfde79c 6412 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
6413 } else {
6414 netdev_stats_to_stats64(storage, &dev->stats);
28172739 6415 }
caf586e5 6416 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 6417 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
28172739 6418 return storage;
c45d286e 6419}
eeda3fd6 6420EXPORT_SYMBOL(dev_get_stats);
c45d286e 6421
24824a09 6422struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 6423{
24824a09 6424 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 6425
24824a09
ED
6426#ifdef CONFIG_NET_CLS_ACT
6427 if (queue)
6428 return queue;
6429 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6430 if (!queue)
6431 return NULL;
6432 netdev_init_one_queue(dev, queue, NULL);
24824a09
ED
6433 queue->qdisc = &noop_qdisc;
6434 queue->qdisc_sleeping = &noop_qdisc;
6435 rcu_assign_pointer(dev->ingress_queue, queue);
6436#endif
6437 return queue;
bb949fbd
DM
6438}
6439
2c60db03
ED
6440static const struct ethtool_ops default_ethtool_ops;
6441
d07d7507
SG
6442void netdev_set_default_ethtool_ops(struct net_device *dev,
6443 const struct ethtool_ops *ops)
6444{
6445 if (dev->ethtool_ops == &default_ethtool_ops)
6446 dev->ethtool_ops = ops;
6447}
6448EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6449
74d332c1
ED
6450void netdev_freemem(struct net_device *dev)
6451{
6452 char *addr = (char *)dev - dev->padded;
6453
4cb28970 6454 kvfree(addr);
74d332c1
ED
6455}
6456
1da177e4 6457/**
36909ea4 6458 * alloc_netdev_mqs - allocate network device
c835a677
TG
6459 * @sizeof_priv: size of private data to allocate space for
6460 * @name: device name format string
6461 * @name_assign_type: origin of device name
6462 * @setup: callback to initialize device
6463 * @txqs: the number of TX subqueues to allocate
6464 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
6465 *
6466 * Allocates a struct net_device with private data area for driver use
90e51adf 6467 * and performs basic initialization. Also allocates subqueue structs
36909ea4 6468 * for each queue on the device.
1da177e4 6469 */
36909ea4 6470struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 6471 unsigned char name_assign_type,
36909ea4
TH
6472 void (*setup)(struct net_device *),
6473 unsigned int txqs, unsigned int rxqs)
1da177e4 6474{
1da177e4 6475 struct net_device *dev;
7943986c 6476 size_t alloc_size;
1ce8e7b5 6477 struct net_device *p;
1da177e4 6478
b6fe17d6
SH
6479 BUG_ON(strlen(name) >= sizeof(dev->name));
6480
36909ea4 6481 if (txqs < 1) {
7b6cd1ce 6482 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
6483 return NULL;
6484 }
6485
a953be53 6486#ifdef CONFIG_SYSFS
36909ea4 6487 if (rxqs < 1) {
7b6cd1ce 6488 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
6489 return NULL;
6490 }
6491#endif
6492
fd2ea0a7 6493 alloc_size = sizeof(struct net_device);
d1643d24
AD
6494 if (sizeof_priv) {
6495 /* ensure 32-byte alignment of private area */
1ce8e7b5 6496 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
6497 alloc_size += sizeof_priv;
6498 }
6499 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 6500 alloc_size += NETDEV_ALIGN - 1;
1da177e4 6501
74d332c1
ED
6502 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6503 if (!p)
6504 p = vzalloc(alloc_size);
62b5942a 6505 if (!p)
1da177e4 6506 return NULL;
1da177e4 6507
1ce8e7b5 6508 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 6509 dev->padded = (char *)dev - (char *)p;
ab9c73cc 6510
29b4433d
ED
6511 dev->pcpu_refcnt = alloc_percpu(int);
6512 if (!dev->pcpu_refcnt)
74d332c1 6513 goto free_dev;
ab9c73cc 6514
ab9c73cc 6515 if (dev_addr_init(dev))
29b4433d 6516 goto free_pcpu;
ab9c73cc 6517
22bedad3 6518 dev_mc_init(dev);
a748ee24 6519 dev_uc_init(dev);
ccffad25 6520
c346dca1 6521 dev_net_set(dev, &init_net);
1da177e4 6522
8d3bdbd5 6523 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 6524 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 6525
8d3bdbd5
DM
6526 INIT_LIST_HEAD(&dev->napi_list);
6527 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 6528 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 6529 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
6530 INIT_LIST_HEAD(&dev->adj_list.upper);
6531 INIT_LIST_HEAD(&dev->adj_list.lower);
6532 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6533 INIT_LIST_HEAD(&dev->all_adj_list.lower);
8d3bdbd5
DM
6534 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6535 setup(dev);
6536
36909ea4
TH
6537 dev->num_tx_queues = txqs;
6538 dev->real_num_tx_queues = txqs;
ed9af2e8 6539 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 6540 goto free_all;
e8a0464c 6541
a953be53 6542#ifdef CONFIG_SYSFS
36909ea4
TH
6543 dev->num_rx_queues = rxqs;
6544 dev->real_num_rx_queues = rxqs;
fe822240 6545 if (netif_alloc_rx_queues(dev))
8d3bdbd5 6546 goto free_all;
df334545 6547#endif
0a9627f2 6548
1da177e4 6549 strcpy(dev->name, name);
c835a677 6550 dev->name_assign_type = name_assign_type;
cbda10fa 6551 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
6552 if (!dev->ethtool_ops)
6553 dev->ethtool_ops = &default_ethtool_ops;
1da177e4 6554 return dev;
ab9c73cc 6555
8d3bdbd5
DM
6556free_all:
6557 free_netdev(dev);
6558 return NULL;
6559
29b4433d
ED
6560free_pcpu:
6561 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
6562free_dev:
6563 netdev_freemem(dev);
ab9c73cc 6564 return NULL;
1da177e4 6565}
36909ea4 6566EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
6567
6568/**
6569 * free_netdev - free network device
6570 * @dev: device
6571 *
4ec93edb
YH
6572 * This function does the last stage of destroying an allocated device
6573 * interface. The reference to the device object is released.
1da177e4
LT
6574 * If this is the last reference then it will be freed.
6575 */
6576void free_netdev(struct net_device *dev)
6577{
d565b0a1
HX
6578 struct napi_struct *p, *n;
6579
f3005d7f
DL
6580 release_net(dev_net(dev));
6581
60877a32 6582 netif_free_tx_queues(dev);
a953be53 6583#ifdef CONFIG_SYSFS
fe822240
TH
6584 kfree(dev->_rx);
6585#endif
e8a0464c 6586
33d480ce 6587 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 6588
f001fde5
JP
6589 /* Flush device addresses */
6590 dev_addr_flush(dev);
6591
d565b0a1
HX
6592 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6593 netif_napi_del(p);
6594
29b4433d
ED
6595 free_percpu(dev->pcpu_refcnt);
6596 dev->pcpu_refcnt = NULL;
6597
3041a069 6598 /* Compatibility with error handling in drivers */
1da177e4 6599 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 6600 netdev_freemem(dev);
1da177e4
LT
6601 return;
6602 }
6603
6604 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6605 dev->reg_state = NETREG_RELEASED;
6606
43cb76d9
GKH
6607 /* will free via device release */
6608 put_device(&dev->dev);
1da177e4 6609}
d1b19dff 6610EXPORT_SYMBOL(free_netdev);
4ec93edb 6611
f0db275a
SH
6612/**
6613 * synchronize_net - Synchronize with packet receive processing
6614 *
6615 * Wait for packets currently being received to be done.
6616 * Does not block later packets from starting.
6617 */
4ec93edb 6618void synchronize_net(void)
1da177e4
LT
6619{
6620 might_sleep();
be3fc413
ED
6621 if (rtnl_is_locked())
6622 synchronize_rcu_expedited();
6623 else
6624 synchronize_rcu();
1da177e4 6625}
d1b19dff 6626EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
6627
6628/**
44a0873d 6629 * unregister_netdevice_queue - remove device from the kernel
1da177e4 6630 * @dev: device
44a0873d 6631 * @head: list
6ebfbc06 6632 *
1da177e4 6633 * This function shuts down a device interface and removes it
d59b54b1 6634 * from the kernel tables.
44a0873d 6635 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
6636 *
6637 * Callers must hold the rtnl semaphore. You may want
6638 * unregister_netdev() instead of this.
6639 */
6640
44a0873d 6641void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 6642{
a6620712
HX
6643 ASSERT_RTNL();
6644
44a0873d 6645 if (head) {
9fdce099 6646 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
6647 } else {
6648 rollback_registered(dev);
6649 /* Finish processing unregister after unlock */
6650 net_set_todo(dev);
6651 }
1da177e4 6652}
44a0873d 6653EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 6654
9b5e383c
ED
6655/**
6656 * unregister_netdevice_many - unregister many devices
6657 * @head: list of devices
87757a91
ED
6658 *
6659 * Note: As most callers use a stack allocated list_head,
6660 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
6661 */
6662void unregister_netdevice_many(struct list_head *head)
6663{
6664 struct net_device *dev;
6665
6666 if (!list_empty(head)) {
6667 rollback_registered_many(head);
6668 list_for_each_entry(dev, head, unreg_list)
6669 net_set_todo(dev);
87757a91 6670 list_del(head);
9b5e383c
ED
6671 }
6672}
63c8099d 6673EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 6674
1da177e4
LT
6675/**
6676 * unregister_netdev - remove device from the kernel
6677 * @dev: device
6678 *
6679 * This function shuts down a device interface and removes it
d59b54b1 6680 * from the kernel tables.
1da177e4
LT
6681 *
6682 * This is just a wrapper for unregister_netdevice that takes
6683 * the rtnl semaphore. In general you want to use this and not
6684 * unregister_netdevice.
6685 */
6686void unregister_netdev(struct net_device *dev)
6687{
6688 rtnl_lock();
6689 unregister_netdevice(dev);
6690 rtnl_unlock();
6691}
1da177e4
LT
6692EXPORT_SYMBOL(unregister_netdev);
6693
ce286d32
EB
6694/**
6695 * dev_change_net_namespace - move device to different nethost namespace
6696 * @dev: device
6697 * @net: network namespace
6698 * @pat: If not NULL name pattern to try if the current device name
6699 * is already taken in the destination network namespace.
6700 *
6701 * This function shuts down a device interface and moves it
6702 * to a new network namespace. On success 0 is returned, on
6703 * a failure a netagive errno code is returned.
6704 *
6705 * Callers must hold the rtnl semaphore.
6706 */
6707
6708int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6709{
ce286d32
EB
6710 int err;
6711
6712 ASSERT_RTNL();
6713
6714 /* Don't allow namespace local devices to be moved. */
6715 err = -EINVAL;
6716 if (dev->features & NETIF_F_NETNS_LOCAL)
6717 goto out;
6718
6719 /* Ensure the device has been registrered */
ce286d32
EB
6720 if (dev->reg_state != NETREG_REGISTERED)
6721 goto out;
6722
6723 /* Get out if there is nothing todo */
6724 err = 0;
878628fb 6725 if (net_eq(dev_net(dev), net))
ce286d32
EB
6726 goto out;
6727
6728 /* Pick the destination device name, and ensure
6729 * we can use it in the destination network namespace.
6730 */
6731 err = -EEXIST;
d9031024 6732 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
6733 /* We get here if we can't use the current device name */
6734 if (!pat)
6735 goto out;
828de4f6 6736 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
6737 goto out;
6738 }
6739
6740 /*
6741 * And now a mini version of register_netdevice unregister_netdevice.
6742 */
6743
6744 /* If device is running close it first. */
9b772652 6745 dev_close(dev);
ce286d32
EB
6746
6747 /* And unlink it from device chain */
6748 err = -ENODEV;
6749 unlist_netdevice(dev);
6750
6751 synchronize_net();
6752
6753 /* Shutdown queueing discipline. */
6754 dev_shutdown(dev);
6755
6756 /* Notify protocols, that we are about to destroy
6757 this device. They should clean all the things.
3b27e105
DL
6758
6759 Note that dev->reg_state stays at NETREG_REGISTERED.
6760 This is wanted because this way 8021q and macvlan know
6761 the device is just moving and can keep their slaves up.
ce286d32
EB
6762 */
6763 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
6764 rcu_barrier();
6765 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 6766 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
6767
6768 /*
6769 * Flush the unicast and multicast chains
6770 */
a748ee24 6771 dev_uc_flush(dev);
22bedad3 6772 dev_mc_flush(dev);
ce286d32 6773
4e66ae2e
SH
6774 /* Send a netdev-removed uevent to the old namespace */
6775 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6776
ce286d32 6777 /* Actually switch the network namespace */
c346dca1 6778 dev_net_set(dev, net);
ce286d32 6779
ce286d32
EB
6780 /* If there is an ifindex conflict assign a new one */
6781 if (__dev_get_by_index(net, dev->ifindex)) {
6782 int iflink = (dev->iflink == dev->ifindex);
6783 dev->ifindex = dev_new_index(net);
6784 if (iflink)
6785 dev->iflink = dev->ifindex;
6786 }
6787
4e66ae2e
SH
6788 /* Send a netdev-add uevent to the new namespace */
6789 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6790
8b41d188 6791 /* Fixup kobjects */
a1b3f594 6792 err = device_rename(&dev->dev, dev->name);
8b41d188 6793 WARN_ON(err);
ce286d32
EB
6794
6795 /* Add the device back in the hashes */
6796 list_netdevice(dev);
6797
6798 /* Notify protocols, that a new device appeared. */
6799 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6800
d90a909e
EB
6801 /*
6802 * Prevent userspace races by waiting until the network
6803 * device is fully setup before sending notifications.
6804 */
7f294054 6805 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 6806
ce286d32
EB
6807 synchronize_net();
6808 err = 0;
6809out:
6810 return err;
6811}
463d0183 6812EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 6813
1da177e4
LT
6814static int dev_cpu_callback(struct notifier_block *nfb,
6815 unsigned long action,
6816 void *ocpu)
6817{
6818 struct sk_buff **list_skb;
1da177e4
LT
6819 struct sk_buff *skb;
6820 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6821 struct softnet_data *sd, *oldsd;
6822
8bb78442 6823 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
6824 return NOTIFY_OK;
6825
6826 local_irq_disable();
6827 cpu = smp_processor_id();
6828 sd = &per_cpu(softnet_data, cpu);
6829 oldsd = &per_cpu(softnet_data, oldcpu);
6830
6831 /* Find end of our completion_queue. */
6832 list_skb = &sd->completion_queue;
6833 while (*list_skb)
6834 list_skb = &(*list_skb)->next;
6835 /* Append completion queue from offline CPU. */
6836 *list_skb = oldsd->completion_queue;
6837 oldsd->completion_queue = NULL;
6838
1da177e4 6839 /* Append output queue from offline CPU. */
a9cbd588
CG
6840 if (oldsd->output_queue) {
6841 *sd->output_queue_tailp = oldsd->output_queue;
6842 sd->output_queue_tailp = oldsd->output_queue_tailp;
6843 oldsd->output_queue = NULL;
6844 oldsd->output_queue_tailp = &oldsd->output_queue;
6845 }
264524d5
HC
6846 /* Append NAPI poll list from offline CPU. */
6847 if (!list_empty(&oldsd->poll_list)) {
6848 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6849 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6850 }
1da177e4
LT
6851
6852 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6853 local_irq_enable();
6854
6855 /* Process offline CPU's input_pkt_queue */
76cc8b13 6856 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
ae78dbfa 6857 netif_rx_internal(skb);
76cc8b13 6858 input_queue_head_incr(oldsd);
fec5e652 6859 }
76cc8b13 6860 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
ae78dbfa 6861 netif_rx_internal(skb);
76cc8b13
TH
6862 input_queue_head_incr(oldsd);
6863 }
1da177e4
LT
6864
6865 return NOTIFY_OK;
6866}
1da177e4
LT
6867
6868
7f353bf2 6869/**
b63365a2
HX
6870 * netdev_increment_features - increment feature set by one
6871 * @all: current feature set
6872 * @one: new feature set
6873 * @mask: mask feature set
7f353bf2
HX
6874 *
6875 * Computes a new feature set after adding a device with feature set
b63365a2
HX
6876 * @one to the master device with current feature set @all. Will not
6877 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 6878 */
c8f44aff
MM
6879netdev_features_t netdev_increment_features(netdev_features_t all,
6880 netdev_features_t one, netdev_features_t mask)
b63365a2 6881{
1742f183
MM
6882 if (mask & NETIF_F_GEN_CSUM)
6883 mask |= NETIF_F_ALL_CSUM;
6884 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 6885
1742f183
MM
6886 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6887 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 6888
1742f183
MM
6889 /* If one device supports hw checksumming, set for all. */
6890 if (all & NETIF_F_GEN_CSUM)
6891 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7f353bf2
HX
6892
6893 return all;
6894}
b63365a2 6895EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 6896
430f03cd 6897static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
6898{
6899 int i;
6900 struct hlist_head *hash;
6901
6902 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6903 if (hash != NULL)
6904 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6905 INIT_HLIST_HEAD(&hash[i]);
6906
6907 return hash;
6908}
6909
881d966b 6910/* Initialize per network namespace state */
4665079c 6911static int __net_init netdev_init(struct net *net)
881d966b 6912{
734b6541
RM
6913 if (net != &init_net)
6914 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 6915
30d97d35
PE
6916 net->dev_name_head = netdev_create_hash();
6917 if (net->dev_name_head == NULL)
6918 goto err_name;
881d966b 6919
30d97d35
PE
6920 net->dev_index_head = netdev_create_hash();
6921 if (net->dev_index_head == NULL)
6922 goto err_idx;
881d966b
EB
6923
6924 return 0;
30d97d35
PE
6925
6926err_idx:
6927 kfree(net->dev_name_head);
6928err_name:
6929 return -ENOMEM;
881d966b
EB
6930}
6931
f0db275a
SH
6932/**
6933 * netdev_drivername - network driver for the device
6934 * @dev: network device
f0db275a
SH
6935 *
6936 * Determine network driver for device.
6937 */
3019de12 6938const char *netdev_drivername(const struct net_device *dev)
6579e57b 6939{
cf04a4c7
SH
6940 const struct device_driver *driver;
6941 const struct device *parent;
3019de12 6942 const char *empty = "";
6579e57b
AV
6943
6944 parent = dev->dev.parent;
6579e57b 6945 if (!parent)
3019de12 6946 return empty;
6579e57b
AV
6947
6948 driver = parent->driver;
6949 if (driver && driver->name)
3019de12
DM
6950 return driver->name;
6951 return empty;
6579e57b
AV
6952}
6953
b004ff49 6954static int __netdev_printk(const char *level, const struct net_device *dev,
256df2f3
JP
6955 struct va_format *vaf)
6956{
6957 int r;
6958
b004ff49 6959 if (dev && dev->dev.parent) {
666f355f
JP
6960 r = dev_printk_emit(level[1] - '0',
6961 dev->dev.parent,
ccc7f496 6962 "%s %s %s%s: %pV",
666f355f
JP
6963 dev_driver_string(dev->dev.parent),
6964 dev_name(dev->dev.parent),
ccc7f496
VF
6965 netdev_name(dev), netdev_reg_state(dev),
6966 vaf);
b004ff49 6967 } else if (dev) {
ccc7f496
VF
6968 r = printk("%s%s%s: %pV", level, netdev_name(dev),
6969 netdev_reg_state(dev), vaf);
b004ff49 6970 } else {
256df2f3 6971 r = printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 6972 }
256df2f3
JP
6973
6974 return r;
6975}
6976
6977int netdev_printk(const char *level, const struct net_device *dev,
6978 const char *format, ...)
6979{
6980 struct va_format vaf;
6981 va_list args;
6982 int r;
6983
6984 va_start(args, format);
6985
6986 vaf.fmt = format;
6987 vaf.va = &args;
6988
6989 r = __netdev_printk(level, dev, &vaf);
b004ff49 6990
256df2f3
JP
6991 va_end(args);
6992
6993 return r;
6994}
6995EXPORT_SYMBOL(netdev_printk);
6996
6997#define define_netdev_printk_level(func, level) \
6998int func(const struct net_device *dev, const char *fmt, ...) \
6999{ \
7000 int r; \
7001 struct va_format vaf; \
7002 va_list args; \
7003 \
7004 va_start(args, fmt); \
7005 \
7006 vaf.fmt = fmt; \
7007 vaf.va = &args; \
7008 \
7009 r = __netdev_printk(level, dev, &vaf); \
b004ff49 7010 \
256df2f3
JP
7011 va_end(args); \
7012 \
7013 return r; \
7014} \
7015EXPORT_SYMBOL(func);
7016
7017define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7018define_netdev_printk_level(netdev_alert, KERN_ALERT);
7019define_netdev_printk_level(netdev_crit, KERN_CRIT);
7020define_netdev_printk_level(netdev_err, KERN_ERR);
7021define_netdev_printk_level(netdev_warn, KERN_WARNING);
7022define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7023define_netdev_printk_level(netdev_info, KERN_INFO);
7024
4665079c 7025static void __net_exit netdev_exit(struct net *net)
881d966b
EB
7026{
7027 kfree(net->dev_name_head);
7028 kfree(net->dev_index_head);
7029}
7030
022cbae6 7031static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
7032 .init = netdev_init,
7033 .exit = netdev_exit,
7034};
7035
4665079c 7036static void __net_exit default_device_exit(struct net *net)
ce286d32 7037{
e008b5fc 7038 struct net_device *dev, *aux;
ce286d32 7039 /*
e008b5fc 7040 * Push all migratable network devices back to the
ce286d32
EB
7041 * initial network namespace
7042 */
7043 rtnl_lock();
e008b5fc 7044 for_each_netdev_safe(net, dev, aux) {
ce286d32 7045 int err;
aca51397 7046 char fb_name[IFNAMSIZ];
ce286d32
EB
7047
7048 /* Ignore unmoveable devices (i.e. loopback) */
7049 if (dev->features & NETIF_F_NETNS_LOCAL)
7050 continue;
7051
e008b5fc
EB
7052 /* Leave virtual devices for the generic cleanup */
7053 if (dev->rtnl_link_ops)
7054 continue;
d0c082ce 7055
25985edc 7056 /* Push remaining network devices to init_net */
aca51397
PE
7057 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7058 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 7059 if (err) {
7b6cd1ce
JP
7060 pr_emerg("%s: failed to move %s to init_net: %d\n",
7061 __func__, dev->name, err);
aca51397 7062 BUG();
ce286d32
EB
7063 }
7064 }
7065 rtnl_unlock();
7066}
7067
50624c93
EB
7068static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7069{
7070 /* Return with the rtnl_lock held when there are no network
7071 * devices unregistering in any network namespace in net_list.
7072 */
7073 struct net *net;
7074 bool unregistering;
7075 DEFINE_WAIT(wait);
7076
7077 for (;;) {
7078 prepare_to_wait(&netdev_unregistering_wq, &wait,
7079 TASK_UNINTERRUPTIBLE);
7080 unregistering = false;
7081 rtnl_lock();
7082 list_for_each_entry(net, net_list, exit_list) {
7083 if (net->dev_unreg_count > 0) {
7084 unregistering = true;
7085 break;
7086 }
7087 }
7088 if (!unregistering)
7089 break;
7090 __rtnl_unlock();
7091 schedule();
7092 }
7093 finish_wait(&netdev_unregistering_wq, &wait);
7094}
7095
04dc7f6b
EB
7096static void __net_exit default_device_exit_batch(struct list_head *net_list)
7097{
7098 /* At exit all network devices most be removed from a network
b595076a 7099 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
7100 * Do this across as many network namespaces as possible to
7101 * improve batching efficiency.
7102 */
7103 struct net_device *dev;
7104 struct net *net;
7105 LIST_HEAD(dev_kill_list);
7106
50624c93
EB
7107 /* To prevent network device cleanup code from dereferencing
7108 * loopback devices or network devices that have been freed
7109 * wait here for all pending unregistrations to complete,
7110 * before unregistring the loopback device and allowing the
7111 * network namespace be freed.
7112 *
7113 * The netdev todo list containing all network devices
7114 * unregistrations that happen in default_device_exit_batch
7115 * will run in the rtnl_unlock() at the end of
7116 * default_device_exit_batch.
7117 */
7118 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
7119 list_for_each_entry(net, net_list, exit_list) {
7120 for_each_netdev_reverse(net, dev) {
b0ab2fab 7121 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
7122 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7123 else
7124 unregister_netdevice_queue(dev, &dev_kill_list);
7125 }
7126 }
7127 unregister_netdevice_many(&dev_kill_list);
7128 rtnl_unlock();
7129}
7130
022cbae6 7131static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 7132 .exit = default_device_exit,
04dc7f6b 7133 .exit_batch = default_device_exit_batch,
ce286d32
EB
7134};
7135
1da177e4
LT
7136/*
7137 * Initialize the DEV module. At boot time this walks the device list and
7138 * unhooks any devices that fail to initialise (normally hardware not
7139 * present) and leaves us with a valid list of present and active devices.
7140 *
7141 */
7142
7143/*
7144 * This is called single threaded during boot, so no need
7145 * to take the rtnl semaphore.
7146 */
7147static int __init net_dev_init(void)
7148{
7149 int i, rc = -ENOMEM;
7150
7151 BUG_ON(!dev_boot_phase);
7152
1da177e4
LT
7153 if (dev_proc_init())
7154 goto out;
7155
8b41d188 7156 if (netdev_kobject_init())
1da177e4
LT
7157 goto out;
7158
7159 INIT_LIST_HEAD(&ptype_all);
82d8a867 7160 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
7161 INIT_LIST_HEAD(&ptype_base[i]);
7162
62532da9
VY
7163 INIT_LIST_HEAD(&offload_base);
7164
881d966b
EB
7165 if (register_pernet_subsys(&netdev_net_ops))
7166 goto out;
1da177e4
LT
7167
7168 /*
7169 * Initialise the packet receive queues.
7170 */
7171
6f912042 7172 for_each_possible_cpu(i) {
e36fa2f7 7173 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 7174
e36fa2f7 7175 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 7176 skb_queue_head_init(&sd->process_queue);
e36fa2f7 7177 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 7178 sd->output_queue_tailp = &sd->output_queue;
df334545 7179#ifdef CONFIG_RPS
e36fa2f7
ED
7180 sd->csd.func = rps_trigger_softirq;
7181 sd->csd.info = sd;
e36fa2f7 7182 sd->cpu = i;
1e94d72f 7183#endif
0a9627f2 7184
e36fa2f7
ED
7185 sd->backlog.poll = process_backlog;
7186 sd->backlog.weight = weight_p;
1da177e4
LT
7187 }
7188
1da177e4
LT
7189 dev_boot_phase = 0;
7190
505d4f73
EB
7191 /* The loopback device is special if any other network devices
7192 * is present in a network namespace the loopback device must
7193 * be present. Since we now dynamically allocate and free the
7194 * loopback device ensure this invariant is maintained by
7195 * keeping the loopback device as the first device on the
7196 * list of network devices. Ensuring the loopback devices
7197 * is the first device that appears and the last network device
7198 * that disappears.
7199 */
7200 if (register_pernet_device(&loopback_net_ops))
7201 goto out;
7202
7203 if (register_pernet_device(&default_device_ops))
7204 goto out;
7205
962cf36c
CM
7206 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7207 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
7208
7209 hotcpu_notifier(dev_cpu_callback, 0);
7210 dst_init();
1da177e4
LT
7211 rc = 0;
7212out:
7213 return rc;
7214}
7215
7216subsys_initcall(net_dev_init);