mm: swap: zswap: maybe_preload & refactoring
[linux-2.6-block.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->first_page: points to the first component (0-order) page
20 * page->index (union with page->freelist): offset of the first object
21 * starting in this page. For the first page, this is
22 * always 0, so we use this field (aka freelist) to point
23 * to the first free object in zspage.
24 * page->lru: links together all component pages (except the first page)
25 * of a zspage
26 *
27 * For _first_ page only:
28 *
29 * page->private (union with page->first_page): refers to the
30 * component page after the first page
7b60a685
MK
31 * If the page is first_page for huge object, it stores handle.
32 * Look at size_class->huge.
2db51dae
NG
33 * page->freelist: points to the first free object in zspage.
34 * Free objects are linked together using in-place
35 * metadata.
36 * page->objects: maximum number of objects we can store in this
37 * zspage (class->zspage_order * PAGE_SIZE / class->size)
38 * page->lru: links together first pages of various zspages.
39 * Basically forming list of zspages in a fullness group.
40 * page->mapping: class index and fullness group of the zspage
41 *
42 * Usage of struct page flags:
43 * PG_private: identifies the first component page
44 * PG_private2: identifies the last component page
45 *
46 */
47
61989a80
NG
48#include <linux/module.h>
49#include <linux/kernel.h>
312fcae2 50#include <linux/sched.h>
61989a80
NG
51#include <linux/bitops.h>
52#include <linux/errno.h>
53#include <linux/highmem.h>
61989a80
NG
54#include <linux/string.h>
55#include <linux/slab.h>
56#include <asm/tlbflush.h>
57#include <asm/pgtable.h>
58#include <linux/cpumask.h>
59#include <linux/cpu.h>
0cbb613f 60#include <linux/vmalloc.h>
c60369f0 61#include <linux/hardirq.h>
0959c63f
SJ
62#include <linux/spinlock.h>
63#include <linux/types.h>
0f050d99 64#include <linux/debugfs.h>
bcf1647d 65#include <linux/zsmalloc.h>
c795779d 66#include <linux/zpool.h>
0959c63f
SJ
67
68/*
69 * This must be power of 2 and greater than of equal to sizeof(link_free).
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
73 */
74#define ZS_ALIGN 8
75
76/*
77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
79 */
80#define ZS_MAX_ZSPAGE_ORDER 2
81#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
82
2e40e163
MK
83#define ZS_HANDLE_SIZE (sizeof(unsigned long))
84
0959c63f
SJ
85/*
86 * Object location (<PFN>, <obj_idx>) is encoded as
c3e3e88a 87 * as single (unsigned long) handle value.
0959c63f
SJ
88 *
89 * Note that object index <obj_idx> is relative to system
90 * page <PFN> it is stored in, so for each sub-page belonging
91 * to a zspage, obj_idx starts with 0.
92 *
93 * This is made more complicated by various memory models and PAE.
94 */
95
96#ifndef MAX_PHYSMEM_BITS
97#ifdef CONFIG_HIGHMEM64G
98#define MAX_PHYSMEM_BITS 36
99#else /* !CONFIG_HIGHMEM64G */
100/*
101 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
102 * be PAGE_SHIFT
103 */
104#define MAX_PHYSMEM_BITS BITS_PER_LONG
105#endif
106#endif
107#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2
MK
108
109/*
110 * Memory for allocating for handle keeps object position by
111 * encoding <page, obj_idx> and the encoded value has a room
112 * in least bit(ie, look at obj_to_location).
113 * We use the bit to synchronize between object access by
114 * user and migration.
115 */
116#define HANDLE_PIN_BIT 0
117
118/*
119 * Head in allocated object should have OBJ_ALLOCATED_TAG
120 * to identify the object was allocated or not.
121 * It's okay to add the status bit in the least bit because
122 * header keeps handle which is 4byte-aligned address so we
123 * have room for two bit at least.
124 */
125#define OBJ_ALLOCATED_TAG 1
126#define OBJ_TAG_BITS 1
127#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
128#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
129
130#define MAX(a, b) ((a) >= (b) ? (a) : (b))
131/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132#define ZS_MIN_ALLOC_SIZE \
133 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 134/* each chunk includes extra space to keep handle */
7b60a685 135#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
136
137/*
7eb52512 138 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
139 * trader-off here:
140 * - Large number of size classes is potentially wasteful as free page are
141 * spread across these classes
142 * - Small number of size classes causes large internal fragmentation
143 * - Probably its better to use specific size classes (empirically
144 * determined). NOTE: all those class sizes must be set as multiple of
145 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146 *
147 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148 * (reason above)
149 */
d662b8eb 150#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
0959c63f
SJ
151
152/*
153 * We do not maintain any list for completely empty or full pages
154 */
155enum fullness_group {
156 ZS_ALMOST_FULL,
157 ZS_ALMOST_EMPTY,
158 _ZS_NR_FULLNESS_GROUPS,
159
160 ZS_EMPTY,
161 ZS_FULL
162};
163
0f050d99
GM
164enum zs_stat_type {
165 OBJ_ALLOCATED,
166 OBJ_USED,
248ca1b0
MK
167 CLASS_ALMOST_FULL,
168 CLASS_ALMOST_EMPTY,
0f050d99
GM
169 NR_ZS_STAT_TYPE,
170};
171
0f050d99
GM
172struct zs_size_stat {
173 unsigned long objs[NR_ZS_STAT_TYPE];
174};
175
57244594
SS
176#ifdef CONFIG_ZSMALLOC_STAT
177static struct dentry *zs_stat_root;
0f050d99
GM
178#endif
179
40f9fb8c
MG
180/*
181 * number of size_classes
182 */
183static int zs_size_classes;
184
0959c63f
SJ
185/*
186 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
187 * n <= N / f, where
188 * n = number of allocated objects
189 * N = total number of objects zspage can store
6dd9737e 190 * f = fullness_threshold_frac
0959c63f
SJ
191 *
192 * Similarly, we assign zspage to:
193 * ZS_ALMOST_FULL when n > N / f
194 * ZS_EMPTY when n == 0
195 * ZS_FULL when n == N
196 *
197 * (see: fix_fullness_group())
198 */
199static const int fullness_threshold_frac = 4;
200
201struct size_class {
57244594
SS
202 spinlock_t lock;
203 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
0959c63f
SJ
204 /*
205 * Size of objects stored in this class. Must be multiple
206 * of ZS_ALIGN.
207 */
208 int size;
209 unsigned int index;
210
211 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
212 int pages_per_zspage;
0f050d99 213 struct zs_size_stat stats;
0959c63f 214
57244594
SS
215 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
216 bool huge;
0959c63f
SJ
217};
218
219/*
220 * Placed within free objects to form a singly linked list.
221 * For every zspage, first_page->freelist gives head of this list.
222 *
223 * This must be power of 2 and less than or equal to ZS_ALIGN
224 */
225struct link_free {
2e40e163
MK
226 union {
227 /*
228 * Position of next free chunk (encodes <PFN, obj_idx>)
229 * It's valid for non-allocated object
230 */
231 void *next;
232 /*
233 * Handle of allocated object.
234 */
235 unsigned long handle;
236 };
0959c63f
SJ
237};
238
239struct zs_pool {
0f050d99
GM
240 char *name;
241
40f9fb8c 242 struct size_class **size_class;
2e40e163 243 struct kmem_cache *handle_cachep;
0959c63f
SJ
244
245 gfp_t flags; /* allocation flags used when growing pool */
13de8933 246 atomic_long_t pages_allocated;
0f050d99 247
7d3f3938 248 struct zs_pool_stats stats;
ab9d306d
SS
249
250 /* Compact classes */
251 struct shrinker shrinker;
252 /*
253 * To signify that register_shrinker() was successful
254 * and unregister_shrinker() will not Oops.
255 */
256 bool shrinker_enabled;
0f050d99
GM
257#ifdef CONFIG_ZSMALLOC_STAT
258 struct dentry *stat_dentry;
259#endif
0959c63f 260};
61989a80
NG
261
262/*
263 * A zspage's class index and fullness group
264 * are encoded in its (first)page->mapping
265 */
266#define CLASS_IDX_BITS 28
267#define FULLNESS_BITS 4
268#define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
269#define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
270
f553646a 271struct mapping_area {
1b945aee 272#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
273 struct vm_struct *vm; /* vm area for mapping object that span pages */
274#else
275 char *vm_buf; /* copy buffer for objects that span pages */
276#endif
277 char *vm_addr; /* address of kmap_atomic()'ed pages */
278 enum zs_mapmode vm_mm; /* mapping mode */
7b60a685 279 bool huge;
f553646a
SJ
280};
281
2e40e163
MK
282static int create_handle_cache(struct zs_pool *pool)
283{
284 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
285 0, 0, NULL);
286 return pool->handle_cachep ? 0 : 1;
287}
288
289static void destroy_handle_cache(struct zs_pool *pool)
290{
cd10add0 291 kmem_cache_destroy(pool->handle_cachep);
2e40e163
MK
292}
293
294static unsigned long alloc_handle(struct zs_pool *pool)
295{
296 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
297 pool->flags & ~__GFP_HIGHMEM);
298}
299
300static void free_handle(struct zs_pool *pool, unsigned long handle)
301{
302 kmem_cache_free(pool->handle_cachep, (void *)handle);
303}
304
305static void record_obj(unsigned long handle, unsigned long obj)
306{
307 *(unsigned long *)handle = obj;
308}
309
c795779d
DS
310/* zpool driver */
311
312#ifdef CONFIG_ZPOOL
313
479305fd
DS
314static void *zs_zpool_create(char *name, gfp_t gfp, struct zpool_ops *zpool_ops,
315 struct zpool *zpool)
c795779d 316{
3eba0c6a 317 return zs_create_pool(name, gfp);
c795779d
DS
318}
319
320static void zs_zpool_destroy(void *pool)
321{
322 zs_destroy_pool(pool);
323}
324
325static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
326 unsigned long *handle)
327{
328 *handle = zs_malloc(pool, size);
329 return *handle ? 0 : -1;
330}
331static void zs_zpool_free(void *pool, unsigned long handle)
332{
333 zs_free(pool, handle);
334}
335
336static int zs_zpool_shrink(void *pool, unsigned int pages,
337 unsigned int *reclaimed)
338{
339 return -EINVAL;
340}
341
342static void *zs_zpool_map(void *pool, unsigned long handle,
343 enum zpool_mapmode mm)
344{
345 enum zs_mapmode zs_mm;
346
347 switch (mm) {
348 case ZPOOL_MM_RO:
349 zs_mm = ZS_MM_RO;
350 break;
351 case ZPOOL_MM_WO:
352 zs_mm = ZS_MM_WO;
353 break;
354 case ZPOOL_MM_RW: /* fallthru */
355 default:
356 zs_mm = ZS_MM_RW;
357 break;
358 }
359
360 return zs_map_object(pool, handle, zs_mm);
361}
362static void zs_zpool_unmap(void *pool, unsigned long handle)
363{
364 zs_unmap_object(pool, handle);
365}
366
367static u64 zs_zpool_total_size(void *pool)
368{
722cdc17 369 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
370}
371
372static struct zpool_driver zs_zpool_driver = {
373 .type = "zsmalloc",
374 .owner = THIS_MODULE,
375 .create = zs_zpool_create,
376 .destroy = zs_zpool_destroy,
377 .malloc = zs_zpool_malloc,
378 .free = zs_zpool_free,
379 .shrink = zs_zpool_shrink,
380 .map = zs_zpool_map,
381 .unmap = zs_zpool_unmap,
382 .total_size = zs_zpool_total_size,
383};
384
137f8cff 385MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
386#endif /* CONFIG_ZPOOL */
387
248ca1b0
MK
388static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
389{
390 return pages_per_zspage * PAGE_SIZE / size;
391}
392
61989a80
NG
393/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
394static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
395
396static int is_first_page(struct page *page)
397{
a27545bf 398 return PagePrivate(page);
61989a80
NG
399}
400
401static int is_last_page(struct page *page)
402{
a27545bf 403 return PagePrivate2(page);
61989a80
NG
404}
405
406static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
407 enum fullness_group *fullness)
408{
409 unsigned long m;
410 BUG_ON(!is_first_page(page));
411
412 m = (unsigned long)page->mapping;
413 *fullness = m & FULLNESS_MASK;
414 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
415}
416
417static void set_zspage_mapping(struct page *page, unsigned int class_idx,
418 enum fullness_group fullness)
419{
420 unsigned long m;
421 BUG_ON(!is_first_page(page));
422
423 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
424 (fullness & FULLNESS_MASK);
425 page->mapping = (struct address_space *)m;
426}
427
c3e3e88a
NC
428/*
429 * zsmalloc divides the pool into various size classes where each
430 * class maintains a list of zspages where each zspage is divided
431 * into equal sized chunks. Each allocation falls into one of these
432 * classes depending on its size. This function returns index of the
433 * size class which has chunk size big enough to hold the give size.
434 */
61989a80
NG
435static int get_size_class_index(int size)
436{
437 int idx = 0;
438
439 if (likely(size > ZS_MIN_ALLOC_SIZE))
440 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
441 ZS_SIZE_CLASS_DELTA);
442
7b60a685 443 return min(zs_size_classes - 1, idx);
61989a80
NG
444}
445
248ca1b0
MK
446static inline void zs_stat_inc(struct size_class *class,
447 enum zs_stat_type type, unsigned long cnt)
448{
449 class->stats.objs[type] += cnt;
450}
451
452static inline void zs_stat_dec(struct size_class *class,
453 enum zs_stat_type type, unsigned long cnt)
454{
455 class->stats.objs[type] -= cnt;
456}
457
458static inline unsigned long zs_stat_get(struct size_class *class,
459 enum zs_stat_type type)
460{
461 return class->stats.objs[type];
462}
463
57244594
SS
464#ifdef CONFIG_ZSMALLOC_STAT
465
248ca1b0
MK
466static int __init zs_stat_init(void)
467{
468 if (!debugfs_initialized())
469 return -ENODEV;
470
471 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
472 if (!zs_stat_root)
473 return -ENOMEM;
474
475 return 0;
476}
477
478static void __exit zs_stat_exit(void)
479{
480 debugfs_remove_recursive(zs_stat_root);
481}
482
483static int zs_stats_size_show(struct seq_file *s, void *v)
484{
485 int i;
486 struct zs_pool *pool = s->private;
487 struct size_class *class;
488 int objs_per_zspage;
489 unsigned long class_almost_full, class_almost_empty;
490 unsigned long obj_allocated, obj_used, pages_used;
491 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
492 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
493
494 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s\n",
495 "class", "size", "almost_full", "almost_empty",
496 "obj_allocated", "obj_used", "pages_used",
497 "pages_per_zspage");
498
499 for (i = 0; i < zs_size_classes; i++) {
500 class = pool->size_class[i];
501
502 if (class->index != i)
503 continue;
504
505 spin_lock(&class->lock);
506 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
507 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
508 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
509 obj_used = zs_stat_get(class, OBJ_USED);
510 spin_unlock(&class->lock);
511
512 objs_per_zspage = get_maxobj_per_zspage(class->size,
513 class->pages_per_zspage);
514 pages_used = obj_allocated / objs_per_zspage *
515 class->pages_per_zspage;
516
517 seq_printf(s, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n",
518 i, class->size, class_almost_full, class_almost_empty,
519 obj_allocated, obj_used, pages_used,
520 class->pages_per_zspage);
521
522 total_class_almost_full += class_almost_full;
523 total_class_almost_empty += class_almost_empty;
524 total_objs += obj_allocated;
525 total_used_objs += obj_used;
526 total_pages += pages_used;
527 }
528
529 seq_puts(s, "\n");
530 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n",
531 "Total", "", total_class_almost_full,
532 total_class_almost_empty, total_objs,
533 total_used_objs, total_pages);
534
535 return 0;
536}
537
538static int zs_stats_size_open(struct inode *inode, struct file *file)
539{
540 return single_open(file, zs_stats_size_show, inode->i_private);
541}
542
543static const struct file_operations zs_stat_size_ops = {
544 .open = zs_stats_size_open,
545 .read = seq_read,
546 .llseek = seq_lseek,
547 .release = single_release,
548};
549
550static int zs_pool_stat_create(char *name, struct zs_pool *pool)
551{
552 struct dentry *entry;
553
554 if (!zs_stat_root)
555 return -ENODEV;
556
557 entry = debugfs_create_dir(name, zs_stat_root);
558 if (!entry) {
559 pr_warn("debugfs dir <%s> creation failed\n", name);
560 return -ENOMEM;
561 }
562 pool->stat_dentry = entry;
563
564 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
565 pool->stat_dentry, pool, &zs_stat_size_ops);
566 if (!entry) {
567 pr_warn("%s: debugfs file entry <%s> creation failed\n",
568 name, "classes");
569 return -ENOMEM;
570 }
571
572 return 0;
573}
574
575static void zs_pool_stat_destroy(struct zs_pool *pool)
576{
577 debugfs_remove_recursive(pool->stat_dentry);
578}
579
580#else /* CONFIG_ZSMALLOC_STAT */
248ca1b0
MK
581static int __init zs_stat_init(void)
582{
583 return 0;
584}
585
586static void __exit zs_stat_exit(void)
587{
588}
589
590static inline int zs_pool_stat_create(char *name, struct zs_pool *pool)
591{
592 return 0;
593}
594
595static inline void zs_pool_stat_destroy(struct zs_pool *pool)
596{
597}
248ca1b0
MK
598#endif
599
600
c3e3e88a
NC
601/*
602 * For each size class, zspages are divided into different groups
603 * depending on how "full" they are. This was done so that we could
604 * easily find empty or nearly empty zspages when we try to shrink
605 * the pool (not yet implemented). This function returns fullness
606 * status of the given page.
607 */
61989a80
NG
608static enum fullness_group get_fullness_group(struct page *page)
609{
610 int inuse, max_objects;
611 enum fullness_group fg;
612 BUG_ON(!is_first_page(page));
613
614 inuse = page->inuse;
615 max_objects = page->objects;
616
617 if (inuse == 0)
618 fg = ZS_EMPTY;
619 else if (inuse == max_objects)
620 fg = ZS_FULL;
d3d07c92 621 else if (inuse <= 3 * max_objects / fullness_threshold_frac)
61989a80
NG
622 fg = ZS_ALMOST_EMPTY;
623 else
624 fg = ZS_ALMOST_FULL;
625
626 return fg;
627}
628
c3e3e88a
NC
629/*
630 * Each size class maintains various freelists and zspages are assigned
631 * to one of these freelists based on the number of live objects they
632 * have. This functions inserts the given zspage into the freelist
633 * identified by <class, fullness_group>.
634 */
61989a80
NG
635static void insert_zspage(struct page *page, struct size_class *class,
636 enum fullness_group fullness)
637{
638 struct page **head;
639
640 BUG_ON(!is_first_page(page));
641
642 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
643 return;
644
248ca1b0
MK
645 zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
646 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
58f17117
SS
647
648 head = &class->fullness_list[fullness];
649 if (!*head) {
650 *head = page;
651 return;
652 }
653
654 /*
655 * We want to see more ZS_FULL pages and less almost
656 * empty/full. Put pages with higher ->inuse first.
657 */
658 list_add_tail(&page->lru, &(*head)->lru);
659 if (page->inuse >= (*head)->inuse)
660 *head = page;
61989a80
NG
661}
662
c3e3e88a
NC
663/*
664 * This function removes the given zspage from the freelist identified
665 * by <class, fullness_group>.
666 */
61989a80
NG
667static void remove_zspage(struct page *page, struct size_class *class,
668 enum fullness_group fullness)
669{
670 struct page **head;
671
672 BUG_ON(!is_first_page(page));
673
674 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
675 return;
676
677 head = &class->fullness_list[fullness];
678 BUG_ON(!*head);
679 if (list_empty(&(*head)->lru))
680 *head = NULL;
681 else if (*head == page)
682 *head = (struct page *)list_entry((*head)->lru.next,
683 struct page, lru);
684
685 list_del_init(&page->lru);
248ca1b0
MK
686 zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
687 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
61989a80
NG
688}
689
c3e3e88a
NC
690/*
691 * Each size class maintains zspages in different fullness groups depending
692 * on the number of live objects they contain. When allocating or freeing
693 * objects, the fullness status of the page can change, say, from ALMOST_FULL
694 * to ALMOST_EMPTY when freeing an object. This function checks if such
695 * a status change has occurred for the given page and accordingly moves the
696 * page from the freelist of the old fullness group to that of the new
697 * fullness group.
698 */
c7806261 699static enum fullness_group fix_fullness_group(struct size_class *class,
61989a80
NG
700 struct page *page)
701{
702 int class_idx;
61989a80
NG
703 enum fullness_group currfg, newfg;
704
705 BUG_ON(!is_first_page(page));
706
707 get_zspage_mapping(page, &class_idx, &currfg);
708 newfg = get_fullness_group(page);
709 if (newfg == currfg)
710 goto out;
711
61989a80
NG
712 remove_zspage(page, class, currfg);
713 insert_zspage(page, class, newfg);
714 set_zspage_mapping(page, class_idx, newfg);
715
716out:
717 return newfg;
718}
719
720/*
721 * We have to decide on how many pages to link together
722 * to form a zspage for each size class. This is important
723 * to reduce wastage due to unusable space left at end of
724 * each zspage which is given as:
888fa374
YX
725 * wastage = Zp % class_size
726 * usage = Zp - wastage
61989a80
NG
727 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
728 *
729 * For example, for size class of 3/8 * PAGE_SIZE, we should
730 * link together 3 PAGE_SIZE sized pages to form a zspage
731 * since then we can perfectly fit in 8 such objects.
732 */
2e3b6154 733static int get_pages_per_zspage(int class_size)
61989a80
NG
734{
735 int i, max_usedpc = 0;
736 /* zspage order which gives maximum used size per KB */
737 int max_usedpc_order = 1;
738
84d4faab 739 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
740 int zspage_size;
741 int waste, usedpc;
742
743 zspage_size = i * PAGE_SIZE;
744 waste = zspage_size % class_size;
745 usedpc = (zspage_size - waste) * 100 / zspage_size;
746
747 if (usedpc > max_usedpc) {
748 max_usedpc = usedpc;
749 max_usedpc_order = i;
750 }
751 }
752
753 return max_usedpc_order;
754}
755
756/*
757 * A single 'zspage' is composed of many system pages which are
758 * linked together using fields in struct page. This function finds
759 * the first/head page, given any component page of a zspage.
760 */
761static struct page *get_first_page(struct page *page)
762{
763 if (is_first_page(page))
764 return page;
765 else
766 return page->first_page;
767}
768
769static struct page *get_next_page(struct page *page)
770{
771 struct page *next;
772
773 if (is_last_page(page))
774 next = NULL;
775 else if (is_first_page(page))
e842b976 776 next = (struct page *)page_private(page);
61989a80
NG
777 else
778 next = list_entry(page->lru.next, struct page, lru);
779
780 return next;
781}
782
67296874
OH
783/*
784 * Encode <page, obj_idx> as a single handle value.
312fcae2 785 * We use the least bit of handle for tagging.
67296874 786 */
312fcae2 787static void *location_to_obj(struct page *page, unsigned long obj_idx)
61989a80 788{
312fcae2 789 unsigned long obj;
61989a80
NG
790
791 if (!page) {
792 BUG_ON(obj_idx);
793 return NULL;
794 }
795
312fcae2
MK
796 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
797 obj |= ((obj_idx) & OBJ_INDEX_MASK);
798 obj <<= OBJ_TAG_BITS;
61989a80 799
312fcae2 800 return (void *)obj;
61989a80
NG
801}
802
67296874
OH
803/*
804 * Decode <page, obj_idx> pair from the given object handle. We adjust the
805 * decoded obj_idx back to its original value since it was adjusted in
312fcae2 806 * location_to_obj().
67296874 807 */
312fcae2 808static void obj_to_location(unsigned long obj, struct page **page,
61989a80
NG
809 unsigned long *obj_idx)
810{
312fcae2
MK
811 obj >>= OBJ_TAG_BITS;
812 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
813 *obj_idx = (obj & OBJ_INDEX_MASK);
61989a80
NG
814}
815
2e40e163
MK
816static unsigned long handle_to_obj(unsigned long handle)
817{
818 return *(unsigned long *)handle;
819}
820
7b60a685
MK
821static unsigned long obj_to_head(struct size_class *class, struct page *page,
822 void *obj)
312fcae2 823{
7b60a685
MK
824 if (class->huge) {
825 VM_BUG_ON(!is_first_page(page));
826 return *(unsigned long *)page_private(page);
827 } else
828 return *(unsigned long *)obj;
312fcae2
MK
829}
830
61989a80
NG
831static unsigned long obj_idx_to_offset(struct page *page,
832 unsigned long obj_idx, int class_size)
833{
834 unsigned long off = 0;
835
836 if (!is_first_page(page))
837 off = page->index;
838
839 return off + obj_idx * class_size;
840}
841
312fcae2
MK
842static inline int trypin_tag(unsigned long handle)
843{
844 unsigned long *ptr = (unsigned long *)handle;
845
846 return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
847}
848
849static void pin_tag(unsigned long handle)
850{
851 while (!trypin_tag(handle));
852}
853
854static void unpin_tag(unsigned long handle)
855{
856 unsigned long *ptr = (unsigned long *)handle;
857
858 clear_bit_unlock(HANDLE_PIN_BIT, ptr);
859}
860
f4477e90
NG
861static void reset_page(struct page *page)
862{
863 clear_bit(PG_private, &page->flags);
864 clear_bit(PG_private_2, &page->flags);
865 set_page_private(page, 0);
866 page->mapping = NULL;
867 page->freelist = NULL;
22b751c3 868 page_mapcount_reset(page);
f4477e90
NG
869}
870
61989a80
NG
871static void free_zspage(struct page *first_page)
872{
f4477e90 873 struct page *nextp, *tmp, *head_extra;
61989a80
NG
874
875 BUG_ON(!is_first_page(first_page));
876 BUG_ON(first_page->inuse);
877
f4477e90 878 head_extra = (struct page *)page_private(first_page);
61989a80 879
f4477e90 880 reset_page(first_page);
61989a80
NG
881 __free_page(first_page);
882
883 /* zspage with only 1 system page */
f4477e90 884 if (!head_extra)
61989a80
NG
885 return;
886
f4477e90 887 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
61989a80 888 list_del(&nextp->lru);
f4477e90 889 reset_page(nextp);
61989a80
NG
890 __free_page(nextp);
891 }
f4477e90
NG
892 reset_page(head_extra);
893 __free_page(head_extra);
61989a80
NG
894}
895
896/* Initialize a newly allocated zspage */
897static void init_zspage(struct page *first_page, struct size_class *class)
898{
899 unsigned long off = 0;
900 struct page *page = first_page;
901
902 BUG_ON(!is_first_page(first_page));
903 while (page) {
904 struct page *next_page;
905 struct link_free *link;
5538c562 906 unsigned int i = 1;
af4ee5e9 907 void *vaddr;
61989a80
NG
908
909 /*
910 * page->index stores offset of first object starting
911 * in the page. For the first page, this is always 0,
912 * so we use first_page->index (aka ->freelist) to store
913 * head of corresponding zspage's freelist.
914 */
915 if (page != first_page)
916 page->index = off;
917
af4ee5e9
MK
918 vaddr = kmap_atomic(page);
919 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
920
921 while ((off += class->size) < PAGE_SIZE) {
312fcae2 922 link->next = location_to_obj(page, i++);
5538c562 923 link += class->size / sizeof(*link);
61989a80
NG
924 }
925
926 /*
927 * We now come to the last (full or partial) object on this
928 * page, which must point to the first object on the next
929 * page (if present)
930 */
931 next_page = get_next_page(page);
312fcae2 932 link->next = location_to_obj(next_page, 0);
af4ee5e9 933 kunmap_atomic(vaddr);
61989a80 934 page = next_page;
5538c562 935 off %= PAGE_SIZE;
61989a80
NG
936 }
937}
938
939/*
940 * Allocate a zspage for the given size class
941 */
942static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
943{
944 int i, error;
b4b700c5 945 struct page *first_page = NULL, *uninitialized_var(prev_page);
61989a80
NG
946
947 /*
948 * Allocate individual pages and link them together as:
949 * 1. first page->private = first sub-page
950 * 2. all sub-pages are linked together using page->lru
951 * 3. each sub-page is linked to the first page using page->first_page
952 *
953 * For each size class, First/Head pages are linked together using
954 * page->lru. Also, we set PG_private to identify the first page
955 * (i.e. no other sub-page has this flag set) and PG_private_2 to
956 * identify the last page.
957 */
958 error = -ENOMEM;
2e3b6154 959 for (i = 0; i < class->pages_per_zspage; i++) {
b4b700c5 960 struct page *page;
61989a80
NG
961
962 page = alloc_page(flags);
963 if (!page)
964 goto cleanup;
965
966 INIT_LIST_HEAD(&page->lru);
967 if (i == 0) { /* first page */
a27545bf 968 SetPagePrivate(page);
61989a80
NG
969 set_page_private(page, 0);
970 first_page = page;
971 first_page->inuse = 0;
972 }
973 if (i == 1)
e842b976 974 set_page_private(first_page, (unsigned long)page);
61989a80
NG
975 if (i >= 1)
976 page->first_page = first_page;
977 if (i >= 2)
978 list_add(&page->lru, &prev_page->lru);
2e3b6154 979 if (i == class->pages_per_zspage - 1) /* last page */
a27545bf 980 SetPagePrivate2(page);
61989a80
NG
981 prev_page = page;
982 }
983
984 init_zspage(first_page, class);
985
312fcae2 986 first_page->freelist = location_to_obj(first_page, 0);
61989a80 987 /* Maximum number of objects we can store in this zspage */
2e3b6154 988 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
61989a80
NG
989
990 error = 0; /* Success */
991
992cleanup:
993 if (unlikely(error) && first_page) {
994 free_zspage(first_page);
995 first_page = NULL;
996 }
997
998 return first_page;
999}
1000
1001static struct page *find_get_zspage(struct size_class *class)
1002{
1003 int i;
1004 struct page *page;
1005
1006 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1007 page = class->fullness_list[i];
1008 if (page)
1009 break;
1010 }
1011
1012 return page;
1013}
1014
1b945aee 1015#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
1016static inline int __zs_cpu_up(struct mapping_area *area)
1017{
1018 /*
1019 * Make sure we don't leak memory if a cpu UP notification
1020 * and zs_init() race and both call zs_cpu_up() on the same cpu
1021 */
1022 if (area->vm)
1023 return 0;
1024 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1025 if (!area->vm)
1026 return -ENOMEM;
1027 return 0;
1028}
1029
1030static inline void __zs_cpu_down(struct mapping_area *area)
1031{
1032 if (area->vm)
1033 free_vm_area(area->vm);
1034 area->vm = NULL;
1035}
1036
1037static inline void *__zs_map_object(struct mapping_area *area,
1038 struct page *pages[2], int off, int size)
1039{
f6f8ed47 1040 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
f553646a
SJ
1041 area->vm_addr = area->vm->addr;
1042 return area->vm_addr + off;
1043}
1044
1045static inline void __zs_unmap_object(struct mapping_area *area,
1046 struct page *pages[2], int off, int size)
1047{
1048 unsigned long addr = (unsigned long)area->vm_addr;
f553646a 1049
d95abbbb 1050 unmap_kernel_range(addr, PAGE_SIZE * 2);
f553646a
SJ
1051}
1052
1b945aee 1053#else /* CONFIG_PGTABLE_MAPPING */
f553646a
SJ
1054
1055static inline int __zs_cpu_up(struct mapping_area *area)
1056{
1057 /*
1058 * Make sure we don't leak memory if a cpu UP notification
1059 * and zs_init() race and both call zs_cpu_up() on the same cpu
1060 */
1061 if (area->vm_buf)
1062 return 0;
40f9fb8c 1063 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1064 if (!area->vm_buf)
1065 return -ENOMEM;
1066 return 0;
1067}
1068
1069static inline void __zs_cpu_down(struct mapping_area *area)
1070{
40f9fb8c 1071 kfree(area->vm_buf);
f553646a
SJ
1072 area->vm_buf = NULL;
1073}
1074
1075static void *__zs_map_object(struct mapping_area *area,
1076 struct page *pages[2], int off, int size)
5f601902 1077{
5f601902
SJ
1078 int sizes[2];
1079 void *addr;
f553646a 1080 char *buf = area->vm_buf;
5f601902 1081
f553646a
SJ
1082 /* disable page faults to match kmap_atomic() return conditions */
1083 pagefault_disable();
1084
1085 /* no read fastpath */
1086 if (area->vm_mm == ZS_MM_WO)
1087 goto out;
5f601902
SJ
1088
1089 sizes[0] = PAGE_SIZE - off;
1090 sizes[1] = size - sizes[0];
1091
5f601902
SJ
1092 /* copy object to per-cpu buffer */
1093 addr = kmap_atomic(pages[0]);
1094 memcpy(buf, addr + off, sizes[0]);
1095 kunmap_atomic(addr);
1096 addr = kmap_atomic(pages[1]);
1097 memcpy(buf + sizes[0], addr, sizes[1]);
1098 kunmap_atomic(addr);
f553646a
SJ
1099out:
1100 return area->vm_buf;
5f601902
SJ
1101}
1102
f553646a
SJ
1103static void __zs_unmap_object(struct mapping_area *area,
1104 struct page *pages[2], int off, int size)
5f601902 1105{
5f601902
SJ
1106 int sizes[2];
1107 void *addr;
2e40e163 1108 char *buf;
5f601902 1109
f553646a
SJ
1110 /* no write fastpath */
1111 if (area->vm_mm == ZS_MM_RO)
1112 goto out;
5f601902 1113
7b60a685
MK
1114 buf = area->vm_buf;
1115 if (!area->huge) {
1116 buf = buf + ZS_HANDLE_SIZE;
1117 size -= ZS_HANDLE_SIZE;
1118 off += ZS_HANDLE_SIZE;
1119 }
2e40e163 1120
5f601902
SJ
1121 sizes[0] = PAGE_SIZE - off;
1122 sizes[1] = size - sizes[0];
1123
1124 /* copy per-cpu buffer to object */
1125 addr = kmap_atomic(pages[0]);
1126 memcpy(addr + off, buf, sizes[0]);
1127 kunmap_atomic(addr);
1128 addr = kmap_atomic(pages[1]);
1129 memcpy(addr, buf + sizes[0], sizes[1]);
1130 kunmap_atomic(addr);
f553646a
SJ
1131
1132out:
1133 /* enable page faults to match kunmap_atomic() return conditions */
1134 pagefault_enable();
5f601902 1135}
61989a80 1136
1b945aee 1137#endif /* CONFIG_PGTABLE_MAPPING */
f553646a 1138
61989a80
NG
1139static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1140 void *pcpu)
1141{
f553646a 1142 int ret, cpu = (long)pcpu;
61989a80
NG
1143 struct mapping_area *area;
1144
1145 switch (action) {
1146 case CPU_UP_PREPARE:
1147 area = &per_cpu(zs_map_area, cpu);
f553646a
SJ
1148 ret = __zs_cpu_up(area);
1149 if (ret)
1150 return notifier_from_errno(ret);
61989a80
NG
1151 break;
1152 case CPU_DEAD:
1153 case CPU_UP_CANCELED:
1154 area = &per_cpu(zs_map_area, cpu);
f553646a 1155 __zs_cpu_down(area);
61989a80
NG
1156 break;
1157 }
1158
1159 return NOTIFY_OK;
1160}
1161
1162static struct notifier_block zs_cpu_nb = {
1163 .notifier_call = zs_cpu_notifier
1164};
1165
b1b00a5b 1166static int zs_register_cpu_notifier(void)
61989a80 1167{
b1b00a5b 1168 int cpu, uninitialized_var(ret);
61989a80 1169
f0e71fcd
SB
1170 cpu_notifier_register_begin();
1171
1172 __register_cpu_notifier(&zs_cpu_nb);
61989a80
NG
1173 for_each_online_cpu(cpu) {
1174 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
b1b00a5b
SS
1175 if (notifier_to_errno(ret))
1176 break;
61989a80 1177 }
f0e71fcd
SB
1178
1179 cpu_notifier_register_done();
b1b00a5b
SS
1180 return notifier_to_errno(ret);
1181}
f0e71fcd 1182
66cdef66 1183static void zs_unregister_cpu_notifier(void)
40f9fb8c 1184{
66cdef66 1185 int cpu;
40f9fb8c 1186
66cdef66 1187 cpu_notifier_register_begin();
40f9fb8c 1188
66cdef66
GM
1189 for_each_online_cpu(cpu)
1190 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1191 __unregister_cpu_notifier(&zs_cpu_nb);
40f9fb8c 1192
66cdef66 1193 cpu_notifier_register_done();
b1b00a5b
SS
1194}
1195
66cdef66 1196static void init_zs_size_classes(void)
b1b00a5b 1197{
66cdef66 1198 int nr;
c795779d 1199
66cdef66
GM
1200 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1201 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1202 nr += 1;
40f9fb8c 1203
66cdef66 1204 zs_size_classes = nr;
61989a80
NG
1205}
1206
9eec4cd5
JK
1207static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1208{
1209 if (prev->pages_per_zspage != pages_per_zspage)
1210 return false;
1211
1212 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1213 != get_maxobj_per_zspage(size, pages_per_zspage))
1214 return false;
1215
1216 return true;
1217}
1218
312fcae2
MK
1219static bool zspage_full(struct page *page)
1220{
1221 BUG_ON(!is_first_page(page));
1222
1223 return page->inuse == page->objects;
1224}
1225
66cdef66
GM
1226unsigned long zs_get_total_pages(struct zs_pool *pool)
1227{
1228 return atomic_long_read(&pool->pages_allocated);
1229}
1230EXPORT_SYMBOL_GPL(zs_get_total_pages);
1231
4bbc0bc0 1232/**
66cdef66
GM
1233 * zs_map_object - get address of allocated object from handle.
1234 * @pool: pool from which the object was allocated
1235 * @handle: handle returned from zs_malloc
4bbc0bc0 1236 *
66cdef66
GM
1237 * Before using an object allocated from zs_malloc, it must be mapped using
1238 * this function. When done with the object, it must be unmapped using
1239 * zs_unmap_object.
4bbc0bc0 1240 *
66cdef66
GM
1241 * Only one object can be mapped per cpu at a time. There is no protection
1242 * against nested mappings.
1243 *
1244 * This function returns with preemption and page faults disabled.
4bbc0bc0 1245 */
66cdef66
GM
1246void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1247 enum zs_mapmode mm)
61989a80 1248{
66cdef66 1249 struct page *page;
2e40e163 1250 unsigned long obj, obj_idx, off;
61989a80 1251
66cdef66
GM
1252 unsigned int class_idx;
1253 enum fullness_group fg;
1254 struct size_class *class;
1255 struct mapping_area *area;
1256 struct page *pages[2];
2e40e163 1257 void *ret;
61989a80 1258
66cdef66 1259 BUG_ON(!handle);
40f9fb8c 1260
9eec4cd5 1261 /*
66cdef66
GM
1262 * Because we use per-cpu mapping areas shared among the
1263 * pools/users, we can't allow mapping in interrupt context
1264 * because it can corrupt another users mappings.
9eec4cd5 1265 */
66cdef66 1266 BUG_ON(in_interrupt());
61989a80 1267
312fcae2
MK
1268 /* From now on, migration cannot move the object */
1269 pin_tag(handle);
1270
2e40e163
MK
1271 obj = handle_to_obj(handle);
1272 obj_to_location(obj, &page, &obj_idx);
66cdef66
GM
1273 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1274 class = pool->size_class[class_idx];
1275 off = obj_idx_to_offset(page, obj_idx, class->size);
df8b5bb9 1276
66cdef66
GM
1277 area = &get_cpu_var(zs_map_area);
1278 area->vm_mm = mm;
1279 if (off + class->size <= PAGE_SIZE) {
1280 /* this object is contained entirely within a page */
1281 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1282 ret = area->vm_addr + off;
1283 goto out;
61989a80
NG
1284 }
1285
66cdef66
GM
1286 /* this object spans two pages */
1287 pages[0] = page;
1288 pages[1] = get_next_page(page);
1289 BUG_ON(!pages[1]);
9eec4cd5 1290
2e40e163
MK
1291 ret = __zs_map_object(area, pages, off, class->size);
1292out:
7b60a685
MK
1293 if (!class->huge)
1294 ret += ZS_HANDLE_SIZE;
1295
1296 return ret;
61989a80 1297}
66cdef66 1298EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1299
66cdef66 1300void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1301{
66cdef66 1302 struct page *page;
2e40e163 1303 unsigned long obj, obj_idx, off;
61989a80 1304
66cdef66
GM
1305 unsigned int class_idx;
1306 enum fullness_group fg;
1307 struct size_class *class;
1308 struct mapping_area *area;
9eec4cd5 1309
66cdef66 1310 BUG_ON(!handle);
9eec4cd5 1311
2e40e163
MK
1312 obj = handle_to_obj(handle);
1313 obj_to_location(obj, &page, &obj_idx);
66cdef66
GM
1314 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1315 class = pool->size_class[class_idx];
1316 off = obj_idx_to_offset(page, obj_idx, class->size);
61989a80 1317
66cdef66
GM
1318 area = this_cpu_ptr(&zs_map_area);
1319 if (off + class->size <= PAGE_SIZE)
1320 kunmap_atomic(area->vm_addr);
1321 else {
1322 struct page *pages[2];
40f9fb8c 1323
66cdef66
GM
1324 pages[0] = page;
1325 pages[1] = get_next_page(page);
1326 BUG_ON(!pages[1]);
1327
1328 __zs_unmap_object(area, pages, off, class->size);
1329 }
1330 put_cpu_var(zs_map_area);
312fcae2 1331 unpin_tag(handle);
61989a80 1332}
66cdef66 1333EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1334
c7806261
MK
1335static unsigned long obj_malloc(struct page *first_page,
1336 struct size_class *class, unsigned long handle)
1337{
1338 unsigned long obj;
1339 struct link_free *link;
1340
1341 struct page *m_page;
1342 unsigned long m_objidx, m_offset;
1343 void *vaddr;
1344
312fcae2 1345 handle |= OBJ_ALLOCATED_TAG;
c7806261
MK
1346 obj = (unsigned long)first_page->freelist;
1347 obj_to_location(obj, &m_page, &m_objidx);
1348 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1349
1350 vaddr = kmap_atomic(m_page);
1351 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1352 first_page->freelist = link->next;
7b60a685
MK
1353 if (!class->huge)
1354 /* record handle in the header of allocated chunk */
1355 link->handle = handle;
1356 else
1357 /* record handle in first_page->private */
1358 set_page_private(first_page, handle);
c7806261
MK
1359 kunmap_atomic(vaddr);
1360 first_page->inuse++;
1361 zs_stat_inc(class, OBJ_USED, 1);
1362
1363 return obj;
1364}
1365
1366
61989a80
NG
1367/**
1368 * zs_malloc - Allocate block of given size from pool.
1369 * @pool: pool to allocate from
1370 * @size: size of block to allocate
61989a80 1371 *
00a61d86 1372 * On success, handle to the allocated object is returned,
c2344348 1373 * otherwise 0.
61989a80
NG
1374 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1375 */
c2344348 1376unsigned long zs_malloc(struct zs_pool *pool, size_t size)
61989a80 1377{
2e40e163 1378 unsigned long handle, obj;
61989a80 1379 struct size_class *class;
c7806261 1380 struct page *first_page;
61989a80 1381
7b60a685 1382 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
2e40e163
MK
1383 return 0;
1384
1385 handle = alloc_handle(pool);
1386 if (!handle)
c2344348 1387 return 0;
61989a80 1388
2e40e163
MK
1389 /* extra space in chunk to keep the handle */
1390 size += ZS_HANDLE_SIZE;
9eec4cd5 1391 class = pool->size_class[get_size_class_index(size)];
61989a80
NG
1392
1393 spin_lock(&class->lock);
1394 first_page = find_get_zspage(class);
1395
1396 if (!first_page) {
1397 spin_unlock(&class->lock);
1398 first_page = alloc_zspage(class, pool->flags);
2e40e163
MK
1399 if (unlikely(!first_page)) {
1400 free_handle(pool, handle);
c2344348 1401 return 0;
2e40e163 1402 }
61989a80
NG
1403
1404 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
13de8933
MK
1405 atomic_long_add(class->pages_per_zspage,
1406 &pool->pages_allocated);
0f050d99 1407
61989a80 1408 spin_lock(&class->lock);
0f050d99
GM
1409 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1410 class->size, class->pages_per_zspage));
61989a80
NG
1411 }
1412
c7806261 1413 obj = obj_malloc(first_page, class, handle);
61989a80 1414 /* Now move the zspage to another fullness group, if required */
c7806261 1415 fix_fullness_group(class, first_page);
2e40e163 1416 record_obj(handle, obj);
61989a80
NG
1417 spin_unlock(&class->lock);
1418
2e40e163 1419 return handle;
61989a80
NG
1420}
1421EXPORT_SYMBOL_GPL(zs_malloc);
1422
c7806261
MK
1423static void obj_free(struct zs_pool *pool, struct size_class *class,
1424 unsigned long obj)
61989a80
NG
1425{
1426 struct link_free *link;
1427 struct page *first_page, *f_page;
c7806261 1428 unsigned long f_objidx, f_offset;
af4ee5e9 1429 void *vaddr;
61989a80 1430 int class_idx;
61989a80
NG
1431 enum fullness_group fullness;
1432
c7806261 1433 BUG_ON(!obj);
61989a80 1434
312fcae2 1435 obj &= ~OBJ_ALLOCATED_TAG;
2e40e163 1436 obj_to_location(obj, &f_page, &f_objidx);
61989a80
NG
1437 first_page = get_first_page(f_page);
1438
1439 get_zspage_mapping(first_page, &class_idx, &fullness);
61989a80
NG
1440 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1441
c7806261 1442 vaddr = kmap_atomic(f_page);
61989a80
NG
1443
1444 /* Insert this object in containing zspage's freelist */
af4ee5e9 1445 link = (struct link_free *)(vaddr + f_offset);
61989a80 1446 link->next = first_page->freelist;
7b60a685
MK
1447 if (class->huge)
1448 set_page_private(first_page, 0);
af4ee5e9 1449 kunmap_atomic(vaddr);
c2344348 1450 first_page->freelist = (void *)obj;
61989a80 1451 first_page->inuse--;
0f050d99 1452 zs_stat_dec(class, OBJ_USED, 1);
c7806261
MK
1453}
1454
1455void zs_free(struct zs_pool *pool, unsigned long handle)
1456{
1457 struct page *first_page, *f_page;
1458 unsigned long obj, f_objidx;
1459 int class_idx;
1460 struct size_class *class;
1461 enum fullness_group fullness;
1462
1463 if (unlikely(!handle))
1464 return;
1465
312fcae2 1466 pin_tag(handle);
c7806261 1467 obj = handle_to_obj(handle);
c7806261
MK
1468 obj_to_location(obj, &f_page, &f_objidx);
1469 first_page = get_first_page(f_page);
1470
1471 get_zspage_mapping(first_page, &class_idx, &fullness);
1472 class = pool->size_class[class_idx];
1473
1474 spin_lock(&class->lock);
1475 obj_free(pool, class, obj);
1476 fullness = fix_fullness_group(class, first_page);
312fcae2 1477 if (fullness == ZS_EMPTY) {
0f050d99
GM
1478 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1479 class->size, class->pages_per_zspage));
312fcae2
MK
1480 atomic_long_sub(class->pages_per_zspage,
1481 &pool->pages_allocated);
1482 free_zspage(first_page);
1483 }
61989a80 1484 spin_unlock(&class->lock);
312fcae2 1485 unpin_tag(handle);
61989a80 1486
312fcae2
MK
1487 free_handle(pool, handle);
1488}
1489EXPORT_SYMBOL_GPL(zs_free);
1490
0dc63d48 1491static void zs_object_copy(unsigned long dst, unsigned long src,
312fcae2
MK
1492 struct size_class *class)
1493{
1494 struct page *s_page, *d_page;
1495 unsigned long s_objidx, d_objidx;
1496 unsigned long s_off, d_off;
1497 void *s_addr, *d_addr;
1498 int s_size, d_size, size;
1499 int written = 0;
1500
1501 s_size = d_size = class->size;
1502
1503 obj_to_location(src, &s_page, &s_objidx);
1504 obj_to_location(dst, &d_page, &d_objidx);
1505
1506 s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1507 d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1508
1509 if (s_off + class->size > PAGE_SIZE)
1510 s_size = PAGE_SIZE - s_off;
1511
1512 if (d_off + class->size > PAGE_SIZE)
1513 d_size = PAGE_SIZE - d_off;
1514
1515 s_addr = kmap_atomic(s_page);
1516 d_addr = kmap_atomic(d_page);
1517
1518 while (1) {
1519 size = min(s_size, d_size);
1520 memcpy(d_addr + d_off, s_addr + s_off, size);
1521 written += size;
1522
1523 if (written == class->size)
1524 break;
1525
495819ea
SS
1526 s_off += size;
1527 s_size -= size;
1528 d_off += size;
1529 d_size -= size;
1530
1531 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1532 kunmap_atomic(d_addr);
1533 kunmap_atomic(s_addr);
1534 s_page = get_next_page(s_page);
1535 BUG_ON(!s_page);
1536 s_addr = kmap_atomic(s_page);
1537 d_addr = kmap_atomic(d_page);
1538 s_size = class->size - written;
1539 s_off = 0;
312fcae2
MK
1540 }
1541
495819ea 1542 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1543 kunmap_atomic(d_addr);
1544 d_page = get_next_page(d_page);
1545 BUG_ON(!d_page);
1546 d_addr = kmap_atomic(d_page);
1547 d_size = class->size - written;
1548 d_off = 0;
312fcae2
MK
1549 }
1550 }
1551
1552 kunmap_atomic(d_addr);
1553 kunmap_atomic(s_addr);
1554}
1555
1556/*
1557 * Find alloced object in zspage from index object and
1558 * return handle.
1559 */
1560static unsigned long find_alloced_obj(struct page *page, int index,
1561 struct size_class *class)
1562{
1563 unsigned long head;
1564 int offset = 0;
1565 unsigned long handle = 0;
1566 void *addr = kmap_atomic(page);
1567
1568 if (!is_first_page(page))
1569 offset = page->index;
1570 offset += class->size * index;
1571
1572 while (offset < PAGE_SIZE) {
7b60a685 1573 head = obj_to_head(class, page, addr + offset);
312fcae2
MK
1574 if (head & OBJ_ALLOCATED_TAG) {
1575 handle = head & ~OBJ_ALLOCATED_TAG;
1576 if (trypin_tag(handle))
1577 break;
1578 handle = 0;
1579 }
1580
1581 offset += class->size;
1582 index++;
1583 }
1584
1585 kunmap_atomic(addr);
1586 return handle;
1587}
1588
1589struct zs_compact_control {
1590 /* Source page for migration which could be a subpage of zspage. */
1591 struct page *s_page;
1592 /* Destination page for migration which should be a first page
1593 * of zspage. */
1594 struct page *d_page;
1595 /* Starting object index within @s_page which used for live object
1596 * in the subpage. */
1597 int index;
312fcae2
MK
1598};
1599
1600static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1601 struct zs_compact_control *cc)
1602{
1603 unsigned long used_obj, free_obj;
1604 unsigned long handle;
1605 struct page *s_page = cc->s_page;
1606 struct page *d_page = cc->d_page;
1607 unsigned long index = cc->index;
312fcae2
MK
1608 int ret = 0;
1609
1610 while (1) {
1611 handle = find_alloced_obj(s_page, index, class);
1612 if (!handle) {
1613 s_page = get_next_page(s_page);
1614 if (!s_page)
1615 break;
1616 index = 0;
1617 continue;
1618 }
1619
1620 /* Stop if there is no more space */
1621 if (zspage_full(d_page)) {
1622 unpin_tag(handle);
1623 ret = -ENOMEM;
1624 break;
1625 }
1626
1627 used_obj = handle_to_obj(handle);
1628 free_obj = obj_malloc(d_page, class, handle);
0dc63d48 1629 zs_object_copy(free_obj, used_obj, class);
312fcae2
MK
1630 index++;
1631 record_obj(handle, free_obj);
1632 unpin_tag(handle);
1633 obj_free(pool, class, used_obj);
312fcae2
MK
1634 }
1635
1636 /* Remember last position in this iteration */
1637 cc->s_page = s_page;
1638 cc->index = index;
312fcae2
MK
1639
1640 return ret;
1641}
1642
0dc63d48 1643static struct page *isolate_target_page(struct size_class *class)
312fcae2
MK
1644{
1645 int i;
1646 struct page *page;
1647
1648 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1649 page = class->fullness_list[i];
1650 if (page) {
1651 remove_zspage(page, class, i);
1652 break;
1653 }
1654 }
1655
1656 return page;
1657}
1658
860c707d
SS
1659/*
1660 * putback_zspage - add @first_page into right class's fullness list
1661 * @pool: target pool
1662 * @class: destination class
1663 * @first_page: target page
1664 *
1665 * Return @fist_page's fullness_group
1666 */
1667static enum fullness_group putback_zspage(struct zs_pool *pool,
1668 struct size_class *class,
1669 struct page *first_page)
312fcae2 1670{
312fcae2
MK
1671 enum fullness_group fullness;
1672
1673 BUG_ON(!is_first_page(first_page));
1674
839373e6 1675 fullness = get_fullness_group(first_page);
312fcae2 1676 insert_zspage(first_page, class, fullness);
839373e6
MK
1677 set_zspage_mapping(first_page, class->index, fullness);
1678
13de8933 1679 if (fullness == ZS_EMPTY) {
312fcae2
MK
1680 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1681 class->size, class->pages_per_zspage));
13de8933
MK
1682 atomic_long_sub(class->pages_per_zspage,
1683 &pool->pages_allocated);
312fcae2 1684
61989a80 1685 free_zspage(first_page);
13de8933 1686 }
860c707d
SS
1687
1688 return fullness;
61989a80 1689}
312fcae2
MK
1690
1691static struct page *isolate_source_page(struct size_class *class)
1692{
ad9d5e17
MK
1693 int i;
1694 struct page *page = NULL;
1695
1696 for (i = ZS_ALMOST_EMPTY; i >= ZS_ALMOST_FULL; i--) {
1697 page = class->fullness_list[i];
1698 if (!page)
1699 continue;
312fcae2 1700
ad9d5e17
MK
1701 remove_zspage(page, class, i);
1702 break;
1703 }
312fcae2
MK
1704
1705 return page;
1706}
1707
04f05909
SS
1708/*
1709 *
1710 * Based on the number of unused allocated objects calculate
1711 * and return the number of pages that we can free.
04f05909
SS
1712 */
1713static unsigned long zs_can_compact(struct size_class *class)
1714{
1715 unsigned long obj_wasted;
1716
04f05909
SS
1717 obj_wasted = zs_stat_get(class, OBJ_ALLOCATED) -
1718 zs_stat_get(class, OBJ_USED);
1719
1720 obj_wasted /= get_maxobj_per_zspage(class->size,
1721 class->pages_per_zspage);
1722
6cbf16b3 1723 return obj_wasted * class->pages_per_zspage;
04f05909
SS
1724}
1725
7d3f3938 1726static void __zs_compact(struct zs_pool *pool, struct size_class *class)
312fcae2 1727{
312fcae2
MK
1728 struct zs_compact_control cc;
1729 struct page *src_page;
1730 struct page *dst_page = NULL;
312fcae2 1731
312fcae2
MK
1732 spin_lock(&class->lock);
1733 while ((src_page = isolate_source_page(class))) {
1734
1735 BUG_ON(!is_first_page(src_page));
1736
04f05909
SS
1737 if (!zs_can_compact(class))
1738 break;
1739
312fcae2
MK
1740 cc.index = 0;
1741 cc.s_page = src_page;
1742
0dc63d48 1743 while ((dst_page = isolate_target_page(class))) {
312fcae2
MK
1744 cc.d_page = dst_page;
1745 /*
0dc63d48
SS
1746 * If there is no more space in dst_page, resched
1747 * and see if anyone had allocated another zspage.
312fcae2
MK
1748 */
1749 if (!migrate_zspage(pool, class, &cc))
1750 break;
1751
1752 putback_zspage(pool, class, dst_page);
312fcae2
MK
1753 }
1754
1755 /* Stop if we couldn't find slot */
1756 if (dst_page == NULL)
1757 break;
1758
1759 putback_zspage(pool, class, dst_page);
860c707d 1760 if (putback_zspage(pool, class, src_page) == ZS_EMPTY)
6cbf16b3 1761 pool->stats.pages_compacted += class->pages_per_zspage;
312fcae2 1762 spin_unlock(&class->lock);
312fcae2
MK
1763 cond_resched();
1764 spin_lock(&class->lock);
1765 }
1766
1767 if (src_page)
1768 putback_zspage(pool, class, src_page);
1769
7d3f3938 1770 spin_unlock(&class->lock);
312fcae2
MK
1771}
1772
1773unsigned long zs_compact(struct zs_pool *pool)
1774{
1775 int i;
312fcae2
MK
1776 struct size_class *class;
1777
1778 for (i = zs_size_classes - 1; i >= 0; i--) {
1779 class = pool->size_class[i];
1780 if (!class)
1781 continue;
1782 if (class->index != i)
1783 continue;
7d3f3938 1784 __zs_compact(pool, class);
312fcae2
MK
1785 }
1786
860c707d 1787 return pool->stats.pages_compacted;
312fcae2
MK
1788}
1789EXPORT_SYMBOL_GPL(zs_compact);
61989a80 1790
7d3f3938
SS
1791void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
1792{
1793 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
1794}
1795EXPORT_SYMBOL_GPL(zs_pool_stats);
1796
ab9d306d
SS
1797static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
1798 struct shrink_control *sc)
1799{
1800 unsigned long pages_freed;
1801 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1802 shrinker);
1803
1804 pages_freed = pool->stats.pages_compacted;
1805 /*
1806 * Compact classes and calculate compaction delta.
1807 * Can run concurrently with a manually triggered
1808 * (by user) compaction.
1809 */
1810 pages_freed = zs_compact(pool) - pages_freed;
1811
1812 return pages_freed ? pages_freed : SHRINK_STOP;
1813}
1814
1815static unsigned long zs_shrinker_count(struct shrinker *shrinker,
1816 struct shrink_control *sc)
1817{
1818 int i;
1819 struct size_class *class;
1820 unsigned long pages_to_free = 0;
1821 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1822 shrinker);
1823
1824 if (!pool->shrinker_enabled)
1825 return 0;
1826
1827 for (i = zs_size_classes - 1; i >= 0; i--) {
1828 class = pool->size_class[i];
1829 if (!class)
1830 continue;
1831 if (class->index != i)
1832 continue;
1833
ab9d306d 1834 pages_to_free += zs_can_compact(class);
ab9d306d
SS
1835 }
1836
1837 return pages_to_free;
1838}
1839
1840static void zs_unregister_shrinker(struct zs_pool *pool)
1841{
1842 if (pool->shrinker_enabled) {
1843 unregister_shrinker(&pool->shrinker);
1844 pool->shrinker_enabled = false;
1845 }
1846}
1847
1848static int zs_register_shrinker(struct zs_pool *pool)
1849{
1850 pool->shrinker.scan_objects = zs_shrinker_scan;
1851 pool->shrinker.count_objects = zs_shrinker_count;
1852 pool->shrinker.batch = 0;
1853 pool->shrinker.seeks = DEFAULT_SEEKS;
1854
1855 return register_shrinker(&pool->shrinker);
1856}
1857
00a61d86 1858/**
66cdef66
GM
1859 * zs_create_pool - Creates an allocation pool to work from.
1860 * @flags: allocation flags used to allocate pool metadata
166cfda7 1861 *
66cdef66
GM
1862 * This function must be called before anything when using
1863 * the zsmalloc allocator.
166cfda7 1864 *
66cdef66
GM
1865 * On success, a pointer to the newly created pool is returned,
1866 * otherwise NULL.
396b7fd6 1867 */
3eba0c6a 1868struct zs_pool *zs_create_pool(char *name, gfp_t flags)
61989a80 1869{
66cdef66
GM
1870 int i;
1871 struct zs_pool *pool;
1872 struct size_class *prev_class = NULL;
61989a80 1873
66cdef66
GM
1874 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1875 if (!pool)
1876 return NULL;
61989a80 1877
66cdef66
GM
1878 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1879 GFP_KERNEL);
1880 if (!pool->size_class) {
1881 kfree(pool);
1882 return NULL;
1883 }
61989a80 1884
2e40e163
MK
1885 pool->name = kstrdup(name, GFP_KERNEL);
1886 if (!pool->name)
1887 goto err;
1888
1889 if (create_handle_cache(pool))
1890 goto err;
1891
c60369f0 1892 /*
66cdef66
GM
1893 * Iterate reversly, because, size of size_class that we want to use
1894 * for merging should be larger or equal to current size.
c60369f0 1895 */
66cdef66
GM
1896 for (i = zs_size_classes - 1; i >= 0; i--) {
1897 int size;
1898 int pages_per_zspage;
1899 struct size_class *class;
c60369f0 1900
66cdef66
GM
1901 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1902 if (size > ZS_MAX_ALLOC_SIZE)
1903 size = ZS_MAX_ALLOC_SIZE;
1904 pages_per_zspage = get_pages_per_zspage(size);
61989a80 1905
66cdef66
GM
1906 /*
1907 * size_class is used for normal zsmalloc operation such
1908 * as alloc/free for that size. Although it is natural that we
1909 * have one size_class for each size, there is a chance that we
1910 * can get more memory utilization if we use one size_class for
1911 * many different sizes whose size_class have same
1912 * characteristics. So, we makes size_class point to
1913 * previous size_class if possible.
1914 */
1915 if (prev_class) {
1916 if (can_merge(prev_class, size, pages_per_zspage)) {
1917 pool->size_class[i] = prev_class;
1918 continue;
1919 }
1920 }
1921
1922 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1923 if (!class)
1924 goto err;
1925
1926 class->size = size;
1927 class->index = i;
1928 class->pages_per_zspage = pages_per_zspage;
7b60a685
MK
1929 if (pages_per_zspage == 1 &&
1930 get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1931 class->huge = true;
66cdef66
GM
1932 spin_lock_init(&class->lock);
1933 pool->size_class[i] = class;
1934
1935 prev_class = class;
61989a80
NG
1936 }
1937
66cdef66 1938 pool->flags = flags;
b7418510 1939
0f050d99
GM
1940 if (zs_pool_stat_create(name, pool))
1941 goto err;
1942
ab9d306d
SS
1943 /*
1944 * Not critical, we still can use the pool
1945 * and user can trigger compaction manually.
1946 */
1947 if (zs_register_shrinker(pool) == 0)
1948 pool->shrinker_enabled = true;
66cdef66
GM
1949 return pool;
1950
1951err:
1952 zs_destroy_pool(pool);
1953 return NULL;
61989a80 1954}
66cdef66 1955EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 1956
66cdef66 1957void zs_destroy_pool(struct zs_pool *pool)
61989a80 1958{
66cdef66 1959 int i;
61989a80 1960
ab9d306d 1961 zs_unregister_shrinker(pool);
0f050d99
GM
1962 zs_pool_stat_destroy(pool);
1963
66cdef66
GM
1964 for (i = 0; i < zs_size_classes; i++) {
1965 int fg;
1966 struct size_class *class = pool->size_class[i];
61989a80 1967
66cdef66
GM
1968 if (!class)
1969 continue;
61989a80 1970
66cdef66
GM
1971 if (class->index != i)
1972 continue;
61989a80 1973
66cdef66
GM
1974 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1975 if (class->fullness_list[fg]) {
1976 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1977 class->size, fg);
1978 }
1979 }
1980 kfree(class);
1981 }
f553646a 1982
2e40e163 1983 destroy_handle_cache(pool);
66cdef66 1984 kfree(pool->size_class);
0f050d99 1985 kfree(pool->name);
66cdef66
GM
1986 kfree(pool);
1987}
1988EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 1989
66cdef66
GM
1990static int __init zs_init(void)
1991{
1992 int ret = zs_register_cpu_notifier();
1993
0f050d99
GM
1994 if (ret)
1995 goto notifier_fail;
66cdef66
GM
1996
1997 init_zs_size_classes();
1998
1999#ifdef CONFIG_ZPOOL
2000 zpool_register_driver(&zs_zpool_driver);
2001#endif
0f050d99
GM
2002
2003 ret = zs_stat_init();
2004 if (ret) {
2005 pr_err("zs stat initialization failed\n");
2006 goto stat_fail;
2007 }
66cdef66 2008 return 0;
0f050d99
GM
2009
2010stat_fail:
2011#ifdef CONFIG_ZPOOL
2012 zpool_unregister_driver(&zs_zpool_driver);
2013#endif
2014notifier_fail:
2015 zs_unregister_cpu_notifier();
2016
2017 return ret;
61989a80 2018}
61989a80 2019
66cdef66 2020static void __exit zs_exit(void)
61989a80 2021{
66cdef66
GM
2022#ifdef CONFIG_ZPOOL
2023 zpool_unregister_driver(&zs_zpool_driver);
2024#endif
2025 zs_unregister_cpu_notifier();
0f050d99
GM
2026
2027 zs_stat_exit();
61989a80 2028}
069f101f
BH
2029
2030module_init(zs_init);
2031module_exit(zs_exit);
2032
2033MODULE_LICENSE("Dual BSD/GPL");
2034MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");