zsmalloc: keep max_object in size_class
[linux-2.6-block.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
32e7ba1e 19 * page->private: points to the first component (0-order) page
2db51dae
NG
20 * page->index (union with page->freelist): offset of the first object
21 * starting in this page. For the first page, this is
22 * always 0, so we use this field (aka freelist) to point
23 * to the first free object in zspage.
24 * page->lru: links together all component pages (except the first page)
25 * of a zspage
26 *
27 * For _first_ page only:
28 *
32e7ba1e 29 * page->private: refers to the component page after the first page
7b60a685
MK
30 * If the page is first_page for huge object, it stores handle.
31 * Look at size_class->huge.
2db51dae
NG
32 * page->freelist: points to the first free object in zspage.
33 * Free objects are linked together using in-place
34 * metadata.
2db51dae
NG
35 * page->lru: links together first pages of various zspages.
36 * Basically forming list of zspages in a fullness group.
37 * page->mapping: class index and fullness group of the zspage
8f958c98 38 * page->inuse: the number of objects that are used in this zspage
2db51dae
NG
39 *
40 * Usage of struct page flags:
41 * PG_private: identifies the first component page
42 * PG_private2: identifies the last component page
43 *
44 */
45
4abaac9b
DS
46#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
61989a80
NG
48#include <linux/module.h>
49#include <linux/kernel.h>
312fcae2 50#include <linux/sched.h>
61989a80
NG
51#include <linux/bitops.h>
52#include <linux/errno.h>
53#include <linux/highmem.h>
61989a80
NG
54#include <linux/string.h>
55#include <linux/slab.h>
56#include <asm/tlbflush.h>
57#include <asm/pgtable.h>
58#include <linux/cpumask.h>
59#include <linux/cpu.h>
0cbb613f 60#include <linux/vmalloc.h>
759b26b2 61#include <linux/preempt.h>
0959c63f
SJ
62#include <linux/spinlock.h>
63#include <linux/types.h>
0f050d99 64#include <linux/debugfs.h>
bcf1647d 65#include <linux/zsmalloc.h>
c795779d 66#include <linux/zpool.h>
0959c63f
SJ
67
68/*
69 * This must be power of 2 and greater than of equal to sizeof(link_free).
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
73 */
74#define ZS_ALIGN 8
75
76/*
77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
79 */
80#define ZS_MAX_ZSPAGE_ORDER 2
81#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
82
2e40e163
MK
83#define ZS_HANDLE_SIZE (sizeof(unsigned long))
84
0959c63f
SJ
85/*
86 * Object location (<PFN>, <obj_idx>) is encoded as
c3e3e88a 87 * as single (unsigned long) handle value.
0959c63f
SJ
88 *
89 * Note that object index <obj_idx> is relative to system
90 * page <PFN> it is stored in, so for each sub-page belonging
91 * to a zspage, obj_idx starts with 0.
92 *
93 * This is made more complicated by various memory models and PAE.
94 */
95
96#ifndef MAX_PHYSMEM_BITS
97#ifdef CONFIG_HIGHMEM64G
98#define MAX_PHYSMEM_BITS 36
99#else /* !CONFIG_HIGHMEM64G */
100/*
101 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
102 * be PAGE_SHIFT
103 */
104#define MAX_PHYSMEM_BITS BITS_PER_LONG
105#endif
106#endif
107#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2
MK
108
109/*
110 * Memory for allocating for handle keeps object position by
111 * encoding <page, obj_idx> and the encoded value has a room
112 * in least bit(ie, look at obj_to_location).
113 * We use the bit to synchronize between object access by
114 * user and migration.
115 */
116#define HANDLE_PIN_BIT 0
117
118/*
119 * Head in allocated object should have OBJ_ALLOCATED_TAG
120 * to identify the object was allocated or not.
121 * It's okay to add the status bit in the least bit because
122 * header keeps handle which is 4byte-aligned address so we
123 * have room for two bit at least.
124 */
125#define OBJ_ALLOCATED_TAG 1
126#define OBJ_TAG_BITS 1
127#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
128#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
129
130#define MAX(a, b) ((a) >= (b) ? (a) : (b))
131/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132#define ZS_MIN_ALLOC_SIZE \
133 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 134/* each chunk includes extra space to keep handle */
7b60a685 135#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
136
137/*
7eb52512 138 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
139 * trader-off here:
140 * - Large number of size classes is potentially wasteful as free page are
141 * spread across these classes
142 * - Small number of size classes causes large internal fragmentation
143 * - Probably its better to use specific size classes (empirically
144 * determined). NOTE: all those class sizes must be set as multiple of
145 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146 *
147 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148 * (reason above)
149 */
d662b8eb 150#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
0959c63f
SJ
151
152/*
153 * We do not maintain any list for completely empty or full pages
154 */
155enum fullness_group {
156 ZS_ALMOST_FULL,
157 ZS_ALMOST_EMPTY,
158 _ZS_NR_FULLNESS_GROUPS,
159
160 ZS_EMPTY,
161 ZS_FULL
162};
163
0f050d99
GM
164enum zs_stat_type {
165 OBJ_ALLOCATED,
166 OBJ_USED,
248ca1b0
MK
167 CLASS_ALMOST_FULL,
168 CLASS_ALMOST_EMPTY,
0f050d99
GM
169};
170
6fe5186f
SS
171#ifdef CONFIG_ZSMALLOC_STAT
172#define NR_ZS_STAT_TYPE (CLASS_ALMOST_EMPTY + 1)
173#else
174#define NR_ZS_STAT_TYPE (OBJ_USED + 1)
175#endif
176
0f050d99
GM
177struct zs_size_stat {
178 unsigned long objs[NR_ZS_STAT_TYPE];
179};
180
57244594
SS
181#ifdef CONFIG_ZSMALLOC_STAT
182static struct dentry *zs_stat_root;
0f050d99
GM
183#endif
184
40f9fb8c
MG
185/*
186 * number of size_classes
187 */
188static int zs_size_classes;
189
0959c63f
SJ
190/*
191 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
192 * n <= N / f, where
193 * n = number of allocated objects
194 * N = total number of objects zspage can store
6dd9737e 195 * f = fullness_threshold_frac
0959c63f
SJ
196 *
197 * Similarly, we assign zspage to:
198 * ZS_ALMOST_FULL when n > N / f
199 * ZS_EMPTY when n == 0
200 * ZS_FULL when n == N
201 *
202 * (see: fix_fullness_group())
203 */
204static const int fullness_threshold_frac = 4;
205
206struct size_class {
57244594
SS
207 spinlock_t lock;
208 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
0959c63f
SJ
209 /*
210 * Size of objects stored in this class. Must be multiple
211 * of ZS_ALIGN.
212 */
213 int size;
1fc6e27d 214 int objs_per_zspage;
0959c63f
SJ
215 unsigned int index;
216
0f050d99 217 struct zs_size_stat stats;
0959c63f 218
7dfa4612
WY
219 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
220 int pages_per_zspage;
57244594
SS
221 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
222 bool huge;
0959c63f
SJ
223};
224
225/*
226 * Placed within free objects to form a singly linked list.
227 * For every zspage, first_page->freelist gives head of this list.
228 *
229 * This must be power of 2 and less than or equal to ZS_ALIGN
230 */
231struct link_free {
2e40e163
MK
232 union {
233 /*
234 * Position of next free chunk (encodes <PFN, obj_idx>)
235 * It's valid for non-allocated object
236 */
237 void *next;
238 /*
239 * Handle of allocated object.
240 */
241 unsigned long handle;
242 };
0959c63f
SJ
243};
244
245struct zs_pool {
6f3526d6 246 const char *name;
0f050d99 247
40f9fb8c 248 struct size_class **size_class;
2e40e163 249 struct kmem_cache *handle_cachep;
0959c63f 250
13de8933 251 atomic_long_t pages_allocated;
0f050d99 252
7d3f3938 253 struct zs_pool_stats stats;
ab9d306d
SS
254
255 /* Compact classes */
256 struct shrinker shrinker;
257 /*
258 * To signify that register_shrinker() was successful
259 * and unregister_shrinker() will not Oops.
260 */
261 bool shrinker_enabled;
0f050d99
GM
262#ifdef CONFIG_ZSMALLOC_STAT
263 struct dentry *stat_dentry;
264#endif
0959c63f 265};
61989a80
NG
266
267/*
268 * A zspage's class index and fullness group
269 * are encoded in its (first)page->mapping
270 */
271#define CLASS_IDX_BITS 28
272#define FULLNESS_BITS 4
273#define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
274#define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
275
f553646a 276struct mapping_area {
1b945aee 277#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
278 struct vm_struct *vm; /* vm area for mapping object that span pages */
279#else
280 char *vm_buf; /* copy buffer for objects that span pages */
281#endif
282 char *vm_addr; /* address of kmap_atomic()'ed pages */
283 enum zs_mapmode vm_mm; /* mapping mode */
284};
285
2e40e163
MK
286static int create_handle_cache(struct zs_pool *pool)
287{
288 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
289 0, 0, NULL);
290 return pool->handle_cachep ? 0 : 1;
291}
292
293static void destroy_handle_cache(struct zs_pool *pool)
294{
cd10add0 295 kmem_cache_destroy(pool->handle_cachep);
2e40e163
MK
296}
297
d0d8da2d 298static unsigned long alloc_handle(struct zs_pool *pool, gfp_t gfp)
2e40e163
MK
299{
300 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
d0d8da2d 301 gfp & ~__GFP_HIGHMEM);
2e40e163
MK
302}
303
304static void free_handle(struct zs_pool *pool, unsigned long handle)
305{
306 kmem_cache_free(pool->handle_cachep, (void *)handle);
307}
308
309static void record_obj(unsigned long handle, unsigned long obj)
310{
c102f07c
JL
311 /*
312 * lsb of @obj represents handle lock while other bits
313 * represent object value the handle is pointing so
314 * updating shouldn't do store tearing.
315 */
316 WRITE_ONCE(*(unsigned long *)handle, obj);
2e40e163
MK
317}
318
c795779d
DS
319/* zpool driver */
320
321#ifdef CONFIG_ZPOOL
322
6f3526d6 323static void *zs_zpool_create(const char *name, gfp_t gfp,
78672779 324 const struct zpool_ops *zpool_ops,
479305fd 325 struct zpool *zpool)
c795779d 326{
d0d8da2d
SS
327 /*
328 * Ignore global gfp flags: zs_malloc() may be invoked from
329 * different contexts and its caller must provide a valid
330 * gfp mask.
331 */
332 return zs_create_pool(name);
c795779d
DS
333}
334
335static void zs_zpool_destroy(void *pool)
336{
337 zs_destroy_pool(pool);
338}
339
340static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
341 unsigned long *handle)
342{
d0d8da2d 343 *handle = zs_malloc(pool, size, gfp);
c795779d
DS
344 return *handle ? 0 : -1;
345}
346static void zs_zpool_free(void *pool, unsigned long handle)
347{
348 zs_free(pool, handle);
349}
350
351static int zs_zpool_shrink(void *pool, unsigned int pages,
352 unsigned int *reclaimed)
353{
354 return -EINVAL;
355}
356
357static void *zs_zpool_map(void *pool, unsigned long handle,
358 enum zpool_mapmode mm)
359{
360 enum zs_mapmode zs_mm;
361
362 switch (mm) {
363 case ZPOOL_MM_RO:
364 zs_mm = ZS_MM_RO;
365 break;
366 case ZPOOL_MM_WO:
367 zs_mm = ZS_MM_WO;
368 break;
369 case ZPOOL_MM_RW: /* fallthru */
370 default:
371 zs_mm = ZS_MM_RW;
372 break;
373 }
374
375 return zs_map_object(pool, handle, zs_mm);
376}
377static void zs_zpool_unmap(void *pool, unsigned long handle)
378{
379 zs_unmap_object(pool, handle);
380}
381
382static u64 zs_zpool_total_size(void *pool)
383{
722cdc17 384 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
385}
386
387static struct zpool_driver zs_zpool_driver = {
388 .type = "zsmalloc",
389 .owner = THIS_MODULE,
390 .create = zs_zpool_create,
391 .destroy = zs_zpool_destroy,
392 .malloc = zs_zpool_malloc,
393 .free = zs_zpool_free,
394 .shrink = zs_zpool_shrink,
395 .map = zs_zpool_map,
396 .unmap = zs_zpool_unmap,
397 .total_size = zs_zpool_total_size,
398};
399
137f8cff 400MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
401#endif /* CONFIG_ZPOOL */
402
248ca1b0
MK
403static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
404{
405 return pages_per_zspage * PAGE_SIZE / size;
406}
407
61989a80
NG
408/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
409static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
410
411static int is_first_page(struct page *page)
412{
a27545bf 413 return PagePrivate(page);
61989a80
NG
414}
415
416static int is_last_page(struct page *page)
417{
a27545bf 418 return PagePrivate2(page);
61989a80
NG
419}
420
a4209467
MK
421static void get_zspage_mapping(struct page *first_page,
422 unsigned int *class_idx,
61989a80
NG
423 enum fullness_group *fullness)
424{
425 unsigned long m;
830e4bc5 426 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
61989a80 427
a4209467 428 m = (unsigned long)first_page->mapping;
61989a80
NG
429 *fullness = m & FULLNESS_MASK;
430 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
431}
432
a4209467
MK
433static void set_zspage_mapping(struct page *first_page,
434 unsigned int class_idx,
61989a80
NG
435 enum fullness_group fullness)
436{
437 unsigned long m;
830e4bc5 438 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
61989a80
NG
439
440 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
441 (fullness & FULLNESS_MASK);
a4209467 442 first_page->mapping = (struct address_space *)m;
61989a80
NG
443}
444
c3e3e88a
NC
445/*
446 * zsmalloc divides the pool into various size classes where each
447 * class maintains a list of zspages where each zspage is divided
448 * into equal sized chunks. Each allocation falls into one of these
449 * classes depending on its size. This function returns index of the
450 * size class which has chunk size big enough to hold the give size.
451 */
61989a80
NG
452static int get_size_class_index(int size)
453{
454 int idx = 0;
455
456 if (likely(size > ZS_MIN_ALLOC_SIZE))
457 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
458 ZS_SIZE_CLASS_DELTA);
459
7b60a685 460 return min(zs_size_classes - 1, idx);
61989a80
NG
461}
462
248ca1b0
MK
463static inline void zs_stat_inc(struct size_class *class,
464 enum zs_stat_type type, unsigned long cnt)
465{
6fe5186f
SS
466 if (type < NR_ZS_STAT_TYPE)
467 class->stats.objs[type] += cnt;
248ca1b0
MK
468}
469
470static inline void zs_stat_dec(struct size_class *class,
471 enum zs_stat_type type, unsigned long cnt)
472{
6fe5186f
SS
473 if (type < NR_ZS_STAT_TYPE)
474 class->stats.objs[type] -= cnt;
248ca1b0
MK
475}
476
477static inline unsigned long zs_stat_get(struct size_class *class,
478 enum zs_stat_type type)
479{
6fe5186f
SS
480 if (type < NR_ZS_STAT_TYPE)
481 return class->stats.objs[type];
482 return 0;
248ca1b0
MK
483}
484
57244594
SS
485#ifdef CONFIG_ZSMALLOC_STAT
486
4abaac9b 487static void __init zs_stat_init(void)
248ca1b0 488{
4abaac9b
DS
489 if (!debugfs_initialized()) {
490 pr_warn("debugfs not available, stat dir not created\n");
491 return;
492 }
248ca1b0
MK
493
494 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
495 if (!zs_stat_root)
4abaac9b 496 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
248ca1b0
MK
497}
498
499static void __exit zs_stat_exit(void)
500{
501 debugfs_remove_recursive(zs_stat_root);
502}
503
1120ed54
SS
504static unsigned long zs_can_compact(struct size_class *class);
505
248ca1b0
MK
506static int zs_stats_size_show(struct seq_file *s, void *v)
507{
508 int i;
509 struct zs_pool *pool = s->private;
510 struct size_class *class;
511 int objs_per_zspage;
512 unsigned long class_almost_full, class_almost_empty;
1120ed54 513 unsigned long obj_allocated, obj_used, pages_used, freeable;
248ca1b0
MK
514 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
515 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1120ed54 516 unsigned long total_freeable = 0;
248ca1b0 517
1120ed54 518 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
248ca1b0
MK
519 "class", "size", "almost_full", "almost_empty",
520 "obj_allocated", "obj_used", "pages_used",
1120ed54 521 "pages_per_zspage", "freeable");
248ca1b0
MK
522
523 for (i = 0; i < zs_size_classes; i++) {
524 class = pool->size_class[i];
525
526 if (class->index != i)
527 continue;
528
529 spin_lock(&class->lock);
530 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
531 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
532 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
533 obj_used = zs_stat_get(class, OBJ_USED);
1120ed54 534 freeable = zs_can_compact(class);
248ca1b0
MK
535 spin_unlock(&class->lock);
536
537 objs_per_zspage = get_maxobj_per_zspage(class->size,
538 class->pages_per_zspage);
539 pages_used = obj_allocated / objs_per_zspage *
540 class->pages_per_zspage;
541
1120ed54
SS
542 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
543 " %10lu %10lu %16d %8lu\n",
248ca1b0
MK
544 i, class->size, class_almost_full, class_almost_empty,
545 obj_allocated, obj_used, pages_used,
1120ed54 546 class->pages_per_zspage, freeable);
248ca1b0
MK
547
548 total_class_almost_full += class_almost_full;
549 total_class_almost_empty += class_almost_empty;
550 total_objs += obj_allocated;
551 total_used_objs += obj_used;
552 total_pages += pages_used;
1120ed54 553 total_freeable += freeable;
248ca1b0
MK
554 }
555
556 seq_puts(s, "\n");
1120ed54 557 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
248ca1b0
MK
558 "Total", "", total_class_almost_full,
559 total_class_almost_empty, total_objs,
1120ed54 560 total_used_objs, total_pages, "", total_freeable);
248ca1b0
MK
561
562 return 0;
563}
564
565static int zs_stats_size_open(struct inode *inode, struct file *file)
566{
567 return single_open(file, zs_stats_size_show, inode->i_private);
568}
569
570static const struct file_operations zs_stat_size_ops = {
571 .open = zs_stats_size_open,
572 .read = seq_read,
573 .llseek = seq_lseek,
574 .release = single_release,
575};
576
d34f6157 577static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0
MK
578{
579 struct dentry *entry;
580
4abaac9b
DS
581 if (!zs_stat_root) {
582 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
d34f6157 583 return;
4abaac9b 584 }
248ca1b0
MK
585
586 entry = debugfs_create_dir(name, zs_stat_root);
587 if (!entry) {
588 pr_warn("debugfs dir <%s> creation failed\n", name);
d34f6157 589 return;
248ca1b0
MK
590 }
591 pool->stat_dentry = entry;
592
593 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
594 pool->stat_dentry, pool, &zs_stat_size_ops);
595 if (!entry) {
596 pr_warn("%s: debugfs file entry <%s> creation failed\n",
597 name, "classes");
4abaac9b
DS
598 debugfs_remove_recursive(pool->stat_dentry);
599 pool->stat_dentry = NULL;
248ca1b0 600 }
248ca1b0
MK
601}
602
603static void zs_pool_stat_destroy(struct zs_pool *pool)
604{
605 debugfs_remove_recursive(pool->stat_dentry);
606}
607
608#else /* CONFIG_ZSMALLOC_STAT */
4abaac9b 609static void __init zs_stat_init(void)
248ca1b0 610{
248ca1b0
MK
611}
612
613static void __exit zs_stat_exit(void)
614{
615}
616
d34f6157 617static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 618{
248ca1b0
MK
619}
620
621static inline void zs_pool_stat_destroy(struct zs_pool *pool)
622{
623}
248ca1b0
MK
624#endif
625
c3e3e88a
NC
626/*
627 * For each size class, zspages are divided into different groups
628 * depending on how "full" they are. This was done so that we could
629 * easily find empty or nearly empty zspages when we try to shrink
630 * the pool (not yet implemented). This function returns fullness
631 * status of the given page.
632 */
1fc6e27d
MK
633static enum fullness_group get_fullness_group(struct size_class *class,
634 struct page *first_page)
61989a80 635{
1fc6e27d 636 int inuse, objs_per_zspage;
61989a80 637 enum fullness_group fg;
830e4bc5
MK
638
639 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
61989a80 640
a4209467 641 inuse = first_page->inuse;
1fc6e27d 642 objs_per_zspage = class->objs_per_zspage;
61989a80
NG
643
644 if (inuse == 0)
645 fg = ZS_EMPTY;
1fc6e27d 646 else if (inuse == objs_per_zspage)
61989a80 647 fg = ZS_FULL;
1fc6e27d 648 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
61989a80
NG
649 fg = ZS_ALMOST_EMPTY;
650 else
651 fg = ZS_ALMOST_FULL;
652
653 return fg;
654}
655
c3e3e88a
NC
656/*
657 * Each size class maintains various freelists and zspages are assigned
658 * to one of these freelists based on the number of live objects they
659 * have. This functions inserts the given zspage into the freelist
660 * identified by <class, fullness_group>.
661 */
251cbb95
MK
662static void insert_zspage(struct size_class *class,
663 enum fullness_group fullness,
664 struct page *first_page)
61989a80
NG
665{
666 struct page **head;
667
830e4bc5 668 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
61989a80
NG
669
670 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
671 return;
672
248ca1b0
MK
673 zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
674 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
58f17117
SS
675
676 head = &class->fullness_list[fullness];
677 if (!*head) {
a4209467 678 *head = first_page;
58f17117
SS
679 return;
680 }
681
682 /*
683 * We want to see more ZS_FULL pages and less almost
684 * empty/full. Put pages with higher ->inuse first.
685 */
a4209467
MK
686 list_add_tail(&first_page->lru, &(*head)->lru);
687 if (first_page->inuse >= (*head)->inuse)
688 *head = first_page;
61989a80
NG
689}
690
c3e3e88a
NC
691/*
692 * This function removes the given zspage from the freelist identified
693 * by <class, fullness_group>.
694 */
251cbb95
MK
695static void remove_zspage(struct size_class *class,
696 enum fullness_group fullness,
697 struct page *first_page)
61989a80
NG
698{
699 struct page **head;
700
830e4bc5 701 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
61989a80
NG
702
703 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
704 return;
705
706 head = &class->fullness_list[fullness];
830e4bc5 707 VM_BUG_ON_PAGE(!*head, first_page);
61989a80
NG
708 if (list_empty(&(*head)->lru))
709 *head = NULL;
a4209467 710 else if (*head == first_page)
61989a80
NG
711 *head = (struct page *)list_entry((*head)->lru.next,
712 struct page, lru);
713
a4209467 714 list_del_init(&first_page->lru);
248ca1b0
MK
715 zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
716 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
61989a80
NG
717}
718
c3e3e88a
NC
719/*
720 * Each size class maintains zspages in different fullness groups depending
721 * on the number of live objects they contain. When allocating or freeing
722 * objects, the fullness status of the page can change, say, from ALMOST_FULL
723 * to ALMOST_EMPTY when freeing an object. This function checks if such
724 * a status change has occurred for the given page and accordingly moves the
725 * page from the freelist of the old fullness group to that of the new
726 * fullness group.
727 */
c7806261 728static enum fullness_group fix_fullness_group(struct size_class *class,
a4209467 729 struct page *first_page)
61989a80
NG
730{
731 int class_idx;
61989a80
NG
732 enum fullness_group currfg, newfg;
733
a4209467 734 get_zspage_mapping(first_page, &class_idx, &currfg);
1fc6e27d 735 newfg = get_fullness_group(class, first_page);
61989a80
NG
736 if (newfg == currfg)
737 goto out;
738
251cbb95
MK
739 remove_zspage(class, currfg, first_page);
740 insert_zspage(class, newfg, first_page);
a4209467 741 set_zspage_mapping(first_page, class_idx, newfg);
61989a80
NG
742
743out:
744 return newfg;
745}
746
747/*
748 * We have to decide on how many pages to link together
749 * to form a zspage for each size class. This is important
750 * to reduce wastage due to unusable space left at end of
751 * each zspage which is given as:
888fa374
YX
752 * wastage = Zp % class_size
753 * usage = Zp - wastage
61989a80
NG
754 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
755 *
756 * For example, for size class of 3/8 * PAGE_SIZE, we should
757 * link together 3 PAGE_SIZE sized pages to form a zspage
758 * since then we can perfectly fit in 8 such objects.
759 */
2e3b6154 760static int get_pages_per_zspage(int class_size)
61989a80
NG
761{
762 int i, max_usedpc = 0;
763 /* zspage order which gives maximum used size per KB */
764 int max_usedpc_order = 1;
765
84d4faab 766 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
767 int zspage_size;
768 int waste, usedpc;
769
770 zspage_size = i * PAGE_SIZE;
771 waste = zspage_size % class_size;
772 usedpc = (zspage_size - waste) * 100 / zspage_size;
773
774 if (usedpc > max_usedpc) {
775 max_usedpc = usedpc;
776 max_usedpc_order = i;
777 }
778 }
779
780 return max_usedpc_order;
781}
782
783/*
784 * A single 'zspage' is composed of many system pages which are
785 * linked together using fields in struct page. This function finds
786 * the first/head page, given any component page of a zspage.
787 */
788static struct page *get_first_page(struct page *page)
789{
790 if (is_first_page(page))
791 return page;
792 else
32e7ba1e 793 return (struct page *)page_private(page);
61989a80
NG
794}
795
796static struct page *get_next_page(struct page *page)
797{
798 struct page *next;
799
800 if (is_last_page(page))
801 next = NULL;
802 else if (is_first_page(page))
e842b976 803 next = (struct page *)page_private(page);
61989a80
NG
804 else
805 next = list_entry(page->lru.next, struct page, lru);
806
807 return next;
808}
809
67296874
OH
810/*
811 * Encode <page, obj_idx> as a single handle value.
312fcae2 812 * We use the least bit of handle for tagging.
67296874 813 */
312fcae2 814static void *location_to_obj(struct page *page, unsigned long obj_idx)
61989a80 815{
312fcae2 816 unsigned long obj;
61989a80
NG
817
818 if (!page) {
830e4bc5 819 VM_BUG_ON(obj_idx);
61989a80
NG
820 return NULL;
821 }
822
312fcae2
MK
823 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
824 obj |= ((obj_idx) & OBJ_INDEX_MASK);
825 obj <<= OBJ_TAG_BITS;
61989a80 826
312fcae2 827 return (void *)obj;
61989a80
NG
828}
829
67296874
OH
830/*
831 * Decode <page, obj_idx> pair from the given object handle. We adjust the
832 * decoded obj_idx back to its original value since it was adjusted in
312fcae2 833 * location_to_obj().
67296874 834 */
312fcae2 835static void obj_to_location(unsigned long obj, struct page **page,
61989a80
NG
836 unsigned long *obj_idx)
837{
312fcae2
MK
838 obj >>= OBJ_TAG_BITS;
839 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
840 *obj_idx = (obj & OBJ_INDEX_MASK);
61989a80
NG
841}
842
2e40e163
MK
843static unsigned long handle_to_obj(unsigned long handle)
844{
845 return *(unsigned long *)handle;
846}
847
7b60a685
MK
848static unsigned long obj_to_head(struct size_class *class, struct page *page,
849 void *obj)
312fcae2 850{
7b60a685 851 if (class->huge) {
830e4bc5 852 VM_BUG_ON_PAGE(!is_first_page(page), page);
12a7bfad 853 return page_private(page);
7b60a685
MK
854 } else
855 return *(unsigned long *)obj;
312fcae2
MK
856}
857
61989a80
NG
858static unsigned long obj_idx_to_offset(struct page *page,
859 unsigned long obj_idx, int class_size)
860{
861 unsigned long off = 0;
862
863 if (!is_first_page(page))
864 off = page->index;
865
866 return off + obj_idx * class_size;
867}
868
312fcae2
MK
869static inline int trypin_tag(unsigned long handle)
870{
871 unsigned long *ptr = (unsigned long *)handle;
872
873 return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
874}
875
876static void pin_tag(unsigned long handle)
877{
878 while (!trypin_tag(handle));
879}
880
881static void unpin_tag(unsigned long handle)
882{
883 unsigned long *ptr = (unsigned long *)handle;
884
885 clear_bit_unlock(HANDLE_PIN_BIT, ptr);
886}
887
f4477e90
NG
888static void reset_page(struct page *page)
889{
890 clear_bit(PG_private, &page->flags);
891 clear_bit(PG_private_2, &page->flags);
892 set_page_private(page, 0);
893 page->mapping = NULL;
894 page->freelist = NULL;
22b751c3 895 page_mapcount_reset(page);
f4477e90
NG
896}
897
61989a80
NG
898static void free_zspage(struct page *first_page)
899{
f4477e90 900 struct page *nextp, *tmp, *head_extra;
61989a80 901
830e4bc5
MK
902 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
903 VM_BUG_ON_PAGE(first_page->inuse, first_page);
61989a80 904
f4477e90 905 head_extra = (struct page *)page_private(first_page);
61989a80 906
f4477e90 907 reset_page(first_page);
61989a80
NG
908 __free_page(first_page);
909
910 /* zspage with only 1 system page */
f4477e90 911 if (!head_extra)
61989a80
NG
912 return;
913
f4477e90 914 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
61989a80 915 list_del(&nextp->lru);
f4477e90 916 reset_page(nextp);
61989a80
NG
917 __free_page(nextp);
918 }
f4477e90
NG
919 reset_page(head_extra);
920 __free_page(head_extra);
61989a80
NG
921}
922
923/* Initialize a newly allocated zspage */
251cbb95 924static void init_zspage(struct size_class *class, struct page *first_page)
61989a80
NG
925{
926 unsigned long off = 0;
927 struct page *page = first_page;
928
830e4bc5
MK
929 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
930
61989a80
NG
931 while (page) {
932 struct page *next_page;
933 struct link_free *link;
5538c562 934 unsigned int i = 1;
af4ee5e9 935 void *vaddr;
61989a80
NG
936
937 /*
938 * page->index stores offset of first object starting
939 * in the page. For the first page, this is always 0,
940 * so we use first_page->index (aka ->freelist) to store
941 * head of corresponding zspage's freelist.
942 */
943 if (page != first_page)
944 page->index = off;
945
af4ee5e9
MK
946 vaddr = kmap_atomic(page);
947 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
948
949 while ((off += class->size) < PAGE_SIZE) {
312fcae2 950 link->next = location_to_obj(page, i++);
5538c562 951 link += class->size / sizeof(*link);
61989a80
NG
952 }
953
954 /*
955 * We now come to the last (full or partial) object on this
956 * page, which must point to the first object on the next
957 * page (if present)
958 */
959 next_page = get_next_page(page);
312fcae2 960 link->next = location_to_obj(next_page, 0);
af4ee5e9 961 kunmap_atomic(vaddr);
61989a80 962 page = next_page;
5538c562 963 off %= PAGE_SIZE;
61989a80
NG
964 }
965}
966
967/*
968 * Allocate a zspage for the given size class
969 */
970static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
971{
972 int i, error;
b4b700c5 973 struct page *first_page = NULL, *uninitialized_var(prev_page);
61989a80
NG
974
975 /*
976 * Allocate individual pages and link them together as:
977 * 1. first page->private = first sub-page
978 * 2. all sub-pages are linked together using page->lru
32e7ba1e 979 * 3. each sub-page is linked to the first page using page->private
61989a80
NG
980 *
981 * For each size class, First/Head pages are linked together using
982 * page->lru. Also, we set PG_private to identify the first page
983 * (i.e. no other sub-page has this flag set) and PG_private_2 to
984 * identify the last page.
985 */
986 error = -ENOMEM;
2e3b6154 987 for (i = 0; i < class->pages_per_zspage; i++) {
b4b700c5 988 struct page *page;
61989a80
NG
989
990 page = alloc_page(flags);
991 if (!page)
992 goto cleanup;
993
994 INIT_LIST_HEAD(&page->lru);
995 if (i == 0) { /* first page */
a27545bf 996 SetPagePrivate(page);
61989a80
NG
997 set_page_private(page, 0);
998 first_page = page;
999 first_page->inuse = 0;
1000 }
1001 if (i == 1)
e842b976 1002 set_page_private(first_page, (unsigned long)page);
61989a80 1003 if (i >= 1)
32e7ba1e 1004 set_page_private(page, (unsigned long)first_page);
61989a80
NG
1005 if (i >= 2)
1006 list_add(&page->lru, &prev_page->lru);
2e3b6154 1007 if (i == class->pages_per_zspage - 1) /* last page */
a27545bf 1008 SetPagePrivate2(page);
61989a80
NG
1009 prev_page = page;
1010 }
1011
251cbb95 1012 init_zspage(class, first_page);
61989a80 1013
312fcae2 1014 first_page->freelist = location_to_obj(first_page, 0);
61989a80
NG
1015 error = 0; /* Success */
1016
1017cleanup:
1018 if (unlikely(error) && first_page) {
1019 free_zspage(first_page);
1020 first_page = NULL;
1021 }
1022
1023 return first_page;
1024}
1025
1026static struct page *find_get_zspage(struct size_class *class)
1027{
1028 int i;
1029 struct page *page;
1030
1031 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1032 page = class->fullness_list[i];
1033 if (page)
1034 break;
1035 }
1036
1037 return page;
1038}
1039
1b945aee 1040#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
1041static inline int __zs_cpu_up(struct mapping_area *area)
1042{
1043 /*
1044 * Make sure we don't leak memory if a cpu UP notification
1045 * and zs_init() race and both call zs_cpu_up() on the same cpu
1046 */
1047 if (area->vm)
1048 return 0;
1049 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1050 if (!area->vm)
1051 return -ENOMEM;
1052 return 0;
1053}
1054
1055static inline void __zs_cpu_down(struct mapping_area *area)
1056{
1057 if (area->vm)
1058 free_vm_area(area->vm);
1059 area->vm = NULL;
1060}
1061
1062static inline void *__zs_map_object(struct mapping_area *area,
1063 struct page *pages[2], int off, int size)
1064{
f6f8ed47 1065 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
f553646a
SJ
1066 area->vm_addr = area->vm->addr;
1067 return area->vm_addr + off;
1068}
1069
1070static inline void __zs_unmap_object(struct mapping_area *area,
1071 struct page *pages[2], int off, int size)
1072{
1073 unsigned long addr = (unsigned long)area->vm_addr;
f553646a 1074
d95abbbb 1075 unmap_kernel_range(addr, PAGE_SIZE * 2);
f553646a
SJ
1076}
1077
1b945aee 1078#else /* CONFIG_PGTABLE_MAPPING */
f553646a
SJ
1079
1080static inline int __zs_cpu_up(struct mapping_area *area)
1081{
1082 /*
1083 * Make sure we don't leak memory if a cpu UP notification
1084 * and zs_init() race and both call zs_cpu_up() on the same cpu
1085 */
1086 if (area->vm_buf)
1087 return 0;
40f9fb8c 1088 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1089 if (!area->vm_buf)
1090 return -ENOMEM;
1091 return 0;
1092}
1093
1094static inline void __zs_cpu_down(struct mapping_area *area)
1095{
40f9fb8c 1096 kfree(area->vm_buf);
f553646a
SJ
1097 area->vm_buf = NULL;
1098}
1099
1100static void *__zs_map_object(struct mapping_area *area,
1101 struct page *pages[2], int off, int size)
5f601902 1102{
5f601902
SJ
1103 int sizes[2];
1104 void *addr;
f553646a 1105 char *buf = area->vm_buf;
5f601902 1106
f553646a
SJ
1107 /* disable page faults to match kmap_atomic() return conditions */
1108 pagefault_disable();
1109
1110 /* no read fastpath */
1111 if (area->vm_mm == ZS_MM_WO)
1112 goto out;
5f601902
SJ
1113
1114 sizes[0] = PAGE_SIZE - off;
1115 sizes[1] = size - sizes[0];
1116
5f601902
SJ
1117 /* copy object to per-cpu buffer */
1118 addr = kmap_atomic(pages[0]);
1119 memcpy(buf, addr + off, sizes[0]);
1120 kunmap_atomic(addr);
1121 addr = kmap_atomic(pages[1]);
1122 memcpy(buf + sizes[0], addr, sizes[1]);
1123 kunmap_atomic(addr);
f553646a
SJ
1124out:
1125 return area->vm_buf;
5f601902
SJ
1126}
1127
f553646a
SJ
1128static void __zs_unmap_object(struct mapping_area *area,
1129 struct page *pages[2], int off, int size)
5f601902 1130{
5f601902
SJ
1131 int sizes[2];
1132 void *addr;
2e40e163 1133 char *buf;
5f601902 1134
f553646a
SJ
1135 /* no write fastpath */
1136 if (area->vm_mm == ZS_MM_RO)
1137 goto out;
5f601902 1138
7b60a685 1139 buf = area->vm_buf;
a82cbf07
YX
1140 buf = buf + ZS_HANDLE_SIZE;
1141 size -= ZS_HANDLE_SIZE;
1142 off += ZS_HANDLE_SIZE;
2e40e163 1143
5f601902
SJ
1144 sizes[0] = PAGE_SIZE - off;
1145 sizes[1] = size - sizes[0];
1146
1147 /* copy per-cpu buffer to object */
1148 addr = kmap_atomic(pages[0]);
1149 memcpy(addr + off, buf, sizes[0]);
1150 kunmap_atomic(addr);
1151 addr = kmap_atomic(pages[1]);
1152 memcpy(addr, buf + sizes[0], sizes[1]);
1153 kunmap_atomic(addr);
f553646a
SJ
1154
1155out:
1156 /* enable page faults to match kunmap_atomic() return conditions */
1157 pagefault_enable();
5f601902 1158}
61989a80 1159
1b945aee 1160#endif /* CONFIG_PGTABLE_MAPPING */
f553646a 1161
61989a80
NG
1162static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1163 void *pcpu)
1164{
f553646a 1165 int ret, cpu = (long)pcpu;
61989a80
NG
1166 struct mapping_area *area;
1167
1168 switch (action) {
1169 case CPU_UP_PREPARE:
1170 area = &per_cpu(zs_map_area, cpu);
f553646a
SJ
1171 ret = __zs_cpu_up(area);
1172 if (ret)
1173 return notifier_from_errno(ret);
61989a80
NG
1174 break;
1175 case CPU_DEAD:
1176 case CPU_UP_CANCELED:
1177 area = &per_cpu(zs_map_area, cpu);
f553646a 1178 __zs_cpu_down(area);
61989a80
NG
1179 break;
1180 }
1181
1182 return NOTIFY_OK;
1183}
1184
1185static struct notifier_block zs_cpu_nb = {
1186 .notifier_call = zs_cpu_notifier
1187};
1188
b1b00a5b 1189static int zs_register_cpu_notifier(void)
61989a80 1190{
b1b00a5b 1191 int cpu, uninitialized_var(ret);
61989a80 1192
f0e71fcd
SB
1193 cpu_notifier_register_begin();
1194
1195 __register_cpu_notifier(&zs_cpu_nb);
61989a80
NG
1196 for_each_online_cpu(cpu) {
1197 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
b1b00a5b
SS
1198 if (notifier_to_errno(ret))
1199 break;
61989a80 1200 }
f0e71fcd
SB
1201
1202 cpu_notifier_register_done();
b1b00a5b
SS
1203 return notifier_to_errno(ret);
1204}
f0e71fcd 1205
66cdef66 1206static void zs_unregister_cpu_notifier(void)
40f9fb8c 1207{
66cdef66 1208 int cpu;
40f9fb8c 1209
66cdef66 1210 cpu_notifier_register_begin();
40f9fb8c 1211
66cdef66
GM
1212 for_each_online_cpu(cpu)
1213 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1214 __unregister_cpu_notifier(&zs_cpu_nb);
40f9fb8c 1215
66cdef66 1216 cpu_notifier_register_done();
b1b00a5b
SS
1217}
1218
66cdef66 1219static void init_zs_size_classes(void)
b1b00a5b 1220{
66cdef66 1221 int nr;
c795779d 1222
66cdef66
GM
1223 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1224 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1225 nr += 1;
40f9fb8c 1226
66cdef66 1227 zs_size_classes = nr;
61989a80
NG
1228}
1229
9eec4cd5
JK
1230static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1231{
1232 if (prev->pages_per_zspage != pages_per_zspage)
1233 return false;
1234
1235 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1236 != get_maxobj_per_zspage(size, pages_per_zspage))
1237 return false;
1238
1239 return true;
1240}
1241
1fc6e27d 1242static bool zspage_full(struct size_class *class, struct page *first_page)
312fcae2 1243{
830e4bc5 1244 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
312fcae2 1245
1fc6e27d 1246 return first_page->inuse == class->objs_per_zspage;
312fcae2
MK
1247}
1248
66cdef66
GM
1249unsigned long zs_get_total_pages(struct zs_pool *pool)
1250{
1251 return atomic_long_read(&pool->pages_allocated);
1252}
1253EXPORT_SYMBOL_GPL(zs_get_total_pages);
1254
4bbc0bc0 1255/**
66cdef66
GM
1256 * zs_map_object - get address of allocated object from handle.
1257 * @pool: pool from which the object was allocated
1258 * @handle: handle returned from zs_malloc
4bbc0bc0 1259 *
66cdef66
GM
1260 * Before using an object allocated from zs_malloc, it must be mapped using
1261 * this function. When done with the object, it must be unmapped using
1262 * zs_unmap_object.
4bbc0bc0 1263 *
66cdef66
GM
1264 * Only one object can be mapped per cpu at a time. There is no protection
1265 * against nested mappings.
1266 *
1267 * This function returns with preemption and page faults disabled.
4bbc0bc0 1268 */
66cdef66
GM
1269void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1270 enum zs_mapmode mm)
61989a80 1271{
66cdef66 1272 struct page *page;
2e40e163 1273 unsigned long obj, obj_idx, off;
61989a80 1274
66cdef66
GM
1275 unsigned int class_idx;
1276 enum fullness_group fg;
1277 struct size_class *class;
1278 struct mapping_area *area;
1279 struct page *pages[2];
2e40e163 1280 void *ret;
61989a80 1281
9eec4cd5 1282 /*
66cdef66
GM
1283 * Because we use per-cpu mapping areas shared among the
1284 * pools/users, we can't allow mapping in interrupt context
1285 * because it can corrupt another users mappings.
9eec4cd5 1286 */
830e4bc5 1287 WARN_ON_ONCE(in_interrupt());
61989a80 1288
312fcae2
MK
1289 /* From now on, migration cannot move the object */
1290 pin_tag(handle);
1291
2e40e163
MK
1292 obj = handle_to_obj(handle);
1293 obj_to_location(obj, &page, &obj_idx);
66cdef66
GM
1294 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1295 class = pool->size_class[class_idx];
1296 off = obj_idx_to_offset(page, obj_idx, class->size);
df8b5bb9 1297
66cdef66
GM
1298 area = &get_cpu_var(zs_map_area);
1299 area->vm_mm = mm;
1300 if (off + class->size <= PAGE_SIZE) {
1301 /* this object is contained entirely within a page */
1302 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1303 ret = area->vm_addr + off;
1304 goto out;
61989a80
NG
1305 }
1306
66cdef66
GM
1307 /* this object spans two pages */
1308 pages[0] = page;
1309 pages[1] = get_next_page(page);
1310 BUG_ON(!pages[1]);
9eec4cd5 1311
2e40e163
MK
1312 ret = __zs_map_object(area, pages, off, class->size);
1313out:
7b60a685
MK
1314 if (!class->huge)
1315 ret += ZS_HANDLE_SIZE;
1316
1317 return ret;
61989a80 1318}
66cdef66 1319EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1320
66cdef66 1321void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1322{
66cdef66 1323 struct page *page;
2e40e163 1324 unsigned long obj, obj_idx, off;
61989a80 1325
66cdef66
GM
1326 unsigned int class_idx;
1327 enum fullness_group fg;
1328 struct size_class *class;
1329 struct mapping_area *area;
9eec4cd5 1330
2e40e163
MK
1331 obj = handle_to_obj(handle);
1332 obj_to_location(obj, &page, &obj_idx);
66cdef66
GM
1333 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1334 class = pool->size_class[class_idx];
1335 off = obj_idx_to_offset(page, obj_idx, class->size);
61989a80 1336
66cdef66
GM
1337 area = this_cpu_ptr(&zs_map_area);
1338 if (off + class->size <= PAGE_SIZE)
1339 kunmap_atomic(area->vm_addr);
1340 else {
1341 struct page *pages[2];
40f9fb8c 1342
66cdef66
GM
1343 pages[0] = page;
1344 pages[1] = get_next_page(page);
1345 BUG_ON(!pages[1]);
1346
1347 __zs_unmap_object(area, pages, off, class->size);
1348 }
1349 put_cpu_var(zs_map_area);
312fcae2 1350 unpin_tag(handle);
61989a80 1351}
66cdef66 1352EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1353
251cbb95
MK
1354static unsigned long obj_malloc(struct size_class *class,
1355 struct page *first_page, unsigned long handle)
c7806261
MK
1356{
1357 unsigned long obj;
1358 struct link_free *link;
1359
1360 struct page *m_page;
1361 unsigned long m_objidx, m_offset;
1362 void *vaddr;
1363
312fcae2 1364 handle |= OBJ_ALLOCATED_TAG;
c7806261
MK
1365 obj = (unsigned long)first_page->freelist;
1366 obj_to_location(obj, &m_page, &m_objidx);
1367 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1368
1369 vaddr = kmap_atomic(m_page);
1370 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1371 first_page->freelist = link->next;
7b60a685
MK
1372 if (!class->huge)
1373 /* record handle in the header of allocated chunk */
1374 link->handle = handle;
1375 else
1376 /* record handle in first_page->private */
1377 set_page_private(first_page, handle);
c7806261
MK
1378 kunmap_atomic(vaddr);
1379 first_page->inuse++;
1380 zs_stat_inc(class, OBJ_USED, 1);
1381
1382 return obj;
1383}
1384
1385
61989a80
NG
1386/**
1387 * zs_malloc - Allocate block of given size from pool.
1388 * @pool: pool to allocate from
1389 * @size: size of block to allocate
61989a80 1390 *
00a61d86 1391 * On success, handle to the allocated object is returned,
c2344348 1392 * otherwise 0.
61989a80
NG
1393 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1394 */
d0d8da2d 1395unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
61989a80 1396{
2e40e163 1397 unsigned long handle, obj;
61989a80 1398 struct size_class *class;
c7806261 1399 struct page *first_page;
61989a80 1400
7b60a685 1401 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
2e40e163
MK
1402 return 0;
1403
d0d8da2d 1404 handle = alloc_handle(pool, gfp);
2e40e163 1405 if (!handle)
c2344348 1406 return 0;
61989a80 1407
2e40e163
MK
1408 /* extra space in chunk to keep the handle */
1409 size += ZS_HANDLE_SIZE;
9eec4cd5 1410 class = pool->size_class[get_size_class_index(size)];
61989a80
NG
1411
1412 spin_lock(&class->lock);
1413 first_page = find_get_zspage(class);
1414
1415 if (!first_page) {
1416 spin_unlock(&class->lock);
d0d8da2d 1417 first_page = alloc_zspage(class, gfp);
2e40e163
MK
1418 if (unlikely(!first_page)) {
1419 free_handle(pool, handle);
c2344348 1420 return 0;
2e40e163 1421 }
61989a80
NG
1422
1423 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
13de8933
MK
1424 atomic_long_add(class->pages_per_zspage,
1425 &pool->pages_allocated);
0f050d99 1426
61989a80 1427 spin_lock(&class->lock);
0f050d99
GM
1428 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1429 class->size, class->pages_per_zspage));
61989a80
NG
1430 }
1431
251cbb95 1432 obj = obj_malloc(class, first_page, handle);
61989a80 1433 /* Now move the zspage to another fullness group, if required */
c7806261 1434 fix_fullness_group(class, first_page);
2e40e163 1435 record_obj(handle, obj);
61989a80
NG
1436 spin_unlock(&class->lock);
1437
2e40e163 1438 return handle;
61989a80
NG
1439}
1440EXPORT_SYMBOL_GPL(zs_malloc);
1441
1ee47165 1442static void obj_free(struct size_class *class, unsigned long obj)
61989a80
NG
1443{
1444 struct link_free *link;
1445 struct page *first_page, *f_page;
c7806261 1446 unsigned long f_objidx, f_offset;
af4ee5e9 1447 void *vaddr;
61989a80 1448
312fcae2 1449 obj &= ~OBJ_ALLOCATED_TAG;
2e40e163 1450 obj_to_location(obj, &f_page, &f_objidx);
61989a80
NG
1451 first_page = get_first_page(f_page);
1452
61989a80
NG
1453 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1454
c7806261 1455 vaddr = kmap_atomic(f_page);
61989a80
NG
1456
1457 /* Insert this object in containing zspage's freelist */
af4ee5e9 1458 link = (struct link_free *)(vaddr + f_offset);
61989a80 1459 link->next = first_page->freelist;
7b60a685
MK
1460 if (class->huge)
1461 set_page_private(first_page, 0);
af4ee5e9 1462 kunmap_atomic(vaddr);
c2344348 1463 first_page->freelist = (void *)obj;
61989a80 1464 first_page->inuse--;
0f050d99 1465 zs_stat_dec(class, OBJ_USED, 1);
c7806261
MK
1466}
1467
1468void zs_free(struct zs_pool *pool, unsigned long handle)
1469{
1470 struct page *first_page, *f_page;
1471 unsigned long obj, f_objidx;
1472 int class_idx;
1473 struct size_class *class;
1474 enum fullness_group fullness;
1475
1476 if (unlikely(!handle))
1477 return;
1478
312fcae2 1479 pin_tag(handle);
c7806261 1480 obj = handle_to_obj(handle);
c7806261
MK
1481 obj_to_location(obj, &f_page, &f_objidx);
1482 first_page = get_first_page(f_page);
1483
1484 get_zspage_mapping(first_page, &class_idx, &fullness);
1485 class = pool->size_class[class_idx];
1486
1487 spin_lock(&class->lock);
1ee47165 1488 obj_free(class, obj);
c7806261 1489 fullness = fix_fullness_group(class, first_page);
312fcae2 1490 if (fullness == ZS_EMPTY) {
0f050d99
GM
1491 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1492 class->size, class->pages_per_zspage));
312fcae2
MK
1493 atomic_long_sub(class->pages_per_zspage,
1494 &pool->pages_allocated);
1495 free_zspage(first_page);
1496 }
61989a80 1497 spin_unlock(&class->lock);
312fcae2 1498 unpin_tag(handle);
61989a80 1499
312fcae2
MK
1500 free_handle(pool, handle);
1501}
1502EXPORT_SYMBOL_GPL(zs_free);
1503
251cbb95
MK
1504static void zs_object_copy(struct size_class *class, unsigned long dst,
1505 unsigned long src)
312fcae2
MK
1506{
1507 struct page *s_page, *d_page;
1508 unsigned long s_objidx, d_objidx;
1509 unsigned long s_off, d_off;
1510 void *s_addr, *d_addr;
1511 int s_size, d_size, size;
1512 int written = 0;
1513
1514 s_size = d_size = class->size;
1515
1516 obj_to_location(src, &s_page, &s_objidx);
1517 obj_to_location(dst, &d_page, &d_objidx);
1518
1519 s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1520 d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1521
1522 if (s_off + class->size > PAGE_SIZE)
1523 s_size = PAGE_SIZE - s_off;
1524
1525 if (d_off + class->size > PAGE_SIZE)
1526 d_size = PAGE_SIZE - d_off;
1527
1528 s_addr = kmap_atomic(s_page);
1529 d_addr = kmap_atomic(d_page);
1530
1531 while (1) {
1532 size = min(s_size, d_size);
1533 memcpy(d_addr + d_off, s_addr + s_off, size);
1534 written += size;
1535
1536 if (written == class->size)
1537 break;
1538
495819ea
SS
1539 s_off += size;
1540 s_size -= size;
1541 d_off += size;
1542 d_size -= size;
1543
1544 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1545 kunmap_atomic(d_addr);
1546 kunmap_atomic(s_addr);
1547 s_page = get_next_page(s_page);
312fcae2
MK
1548 s_addr = kmap_atomic(s_page);
1549 d_addr = kmap_atomic(d_page);
1550 s_size = class->size - written;
1551 s_off = 0;
312fcae2
MK
1552 }
1553
495819ea 1554 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1555 kunmap_atomic(d_addr);
1556 d_page = get_next_page(d_page);
312fcae2
MK
1557 d_addr = kmap_atomic(d_page);
1558 d_size = class->size - written;
1559 d_off = 0;
312fcae2
MK
1560 }
1561 }
1562
1563 kunmap_atomic(d_addr);
1564 kunmap_atomic(s_addr);
1565}
1566
1567/*
1568 * Find alloced object in zspage from index object and
1569 * return handle.
1570 */
251cbb95
MK
1571static unsigned long find_alloced_obj(struct size_class *class,
1572 struct page *page, int index)
312fcae2
MK
1573{
1574 unsigned long head;
1575 int offset = 0;
1576 unsigned long handle = 0;
1577 void *addr = kmap_atomic(page);
1578
1579 if (!is_first_page(page))
1580 offset = page->index;
1581 offset += class->size * index;
1582
1583 while (offset < PAGE_SIZE) {
7b60a685 1584 head = obj_to_head(class, page, addr + offset);
312fcae2
MK
1585 if (head & OBJ_ALLOCATED_TAG) {
1586 handle = head & ~OBJ_ALLOCATED_TAG;
1587 if (trypin_tag(handle))
1588 break;
1589 handle = 0;
1590 }
1591
1592 offset += class->size;
1593 index++;
1594 }
1595
1596 kunmap_atomic(addr);
1597 return handle;
1598}
1599
1600struct zs_compact_control {
1601 /* Source page for migration which could be a subpage of zspage. */
1602 struct page *s_page;
1603 /* Destination page for migration which should be a first page
1604 * of zspage. */
1605 struct page *d_page;
1606 /* Starting object index within @s_page which used for live object
1607 * in the subpage. */
1608 int index;
312fcae2
MK
1609};
1610
1611static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1612 struct zs_compact_control *cc)
1613{
1614 unsigned long used_obj, free_obj;
1615 unsigned long handle;
1616 struct page *s_page = cc->s_page;
1617 struct page *d_page = cc->d_page;
1618 unsigned long index = cc->index;
312fcae2
MK
1619 int ret = 0;
1620
1621 while (1) {
251cbb95 1622 handle = find_alloced_obj(class, s_page, index);
312fcae2
MK
1623 if (!handle) {
1624 s_page = get_next_page(s_page);
1625 if (!s_page)
1626 break;
1627 index = 0;
1628 continue;
1629 }
1630
1631 /* Stop if there is no more space */
1fc6e27d 1632 if (zspage_full(class, d_page)) {
312fcae2
MK
1633 unpin_tag(handle);
1634 ret = -ENOMEM;
1635 break;
1636 }
1637
1638 used_obj = handle_to_obj(handle);
251cbb95
MK
1639 free_obj = obj_malloc(class, d_page, handle);
1640 zs_object_copy(class, free_obj, used_obj);
312fcae2 1641 index++;
c102f07c
JL
1642 /*
1643 * record_obj updates handle's value to free_obj and it will
1644 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1645 * breaks synchronization using pin_tag(e,g, zs_free) so
1646 * let's keep the lock bit.
1647 */
1648 free_obj |= BIT(HANDLE_PIN_BIT);
312fcae2
MK
1649 record_obj(handle, free_obj);
1650 unpin_tag(handle);
1ee47165 1651 obj_free(class, used_obj);
312fcae2
MK
1652 }
1653
1654 /* Remember last position in this iteration */
1655 cc->s_page = s_page;
1656 cc->index = index;
312fcae2
MK
1657
1658 return ret;
1659}
1660
0dc63d48 1661static struct page *isolate_target_page(struct size_class *class)
312fcae2
MK
1662{
1663 int i;
1664 struct page *page;
1665
1666 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1667 page = class->fullness_list[i];
1668 if (page) {
251cbb95 1669 remove_zspage(class, i, page);
312fcae2
MK
1670 break;
1671 }
1672 }
1673
1674 return page;
1675}
1676
860c707d
SS
1677/*
1678 * putback_zspage - add @first_page into right class's fullness list
1679 * @pool: target pool
1680 * @class: destination class
1681 * @first_page: target page
1682 *
1683 * Return @fist_page's fullness_group
1684 */
1685static enum fullness_group putback_zspage(struct zs_pool *pool,
1686 struct size_class *class,
1687 struct page *first_page)
312fcae2 1688{
312fcae2
MK
1689 enum fullness_group fullness;
1690
1fc6e27d 1691 fullness = get_fullness_group(class, first_page);
251cbb95 1692 insert_zspage(class, fullness, first_page);
839373e6
MK
1693 set_zspage_mapping(first_page, class->index, fullness);
1694
13de8933 1695 if (fullness == ZS_EMPTY) {
312fcae2
MK
1696 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1697 class->size, class->pages_per_zspage));
13de8933
MK
1698 atomic_long_sub(class->pages_per_zspage,
1699 &pool->pages_allocated);
312fcae2 1700
61989a80 1701 free_zspage(first_page);
13de8933 1702 }
860c707d
SS
1703
1704 return fullness;
61989a80 1705}
312fcae2
MK
1706
1707static struct page *isolate_source_page(struct size_class *class)
1708{
ad9d5e17
MK
1709 int i;
1710 struct page *page = NULL;
1711
1712 for (i = ZS_ALMOST_EMPTY; i >= ZS_ALMOST_FULL; i--) {
1713 page = class->fullness_list[i];
1714 if (!page)
1715 continue;
312fcae2 1716
251cbb95 1717 remove_zspage(class, i, page);
ad9d5e17
MK
1718 break;
1719 }
312fcae2
MK
1720
1721 return page;
1722}
1723
04f05909
SS
1724/*
1725 *
1726 * Based on the number of unused allocated objects calculate
1727 * and return the number of pages that we can free.
04f05909
SS
1728 */
1729static unsigned long zs_can_compact(struct size_class *class)
1730{
1731 unsigned long obj_wasted;
44f43e99
SS
1732 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
1733 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
04f05909 1734
44f43e99
SS
1735 if (obj_allocated <= obj_used)
1736 return 0;
04f05909 1737
44f43e99 1738 obj_wasted = obj_allocated - obj_used;
04f05909
SS
1739 obj_wasted /= get_maxobj_per_zspage(class->size,
1740 class->pages_per_zspage);
1741
6cbf16b3 1742 return obj_wasted * class->pages_per_zspage;
04f05909
SS
1743}
1744
7d3f3938 1745static void __zs_compact(struct zs_pool *pool, struct size_class *class)
312fcae2 1746{
312fcae2
MK
1747 struct zs_compact_control cc;
1748 struct page *src_page;
1749 struct page *dst_page = NULL;
312fcae2 1750
312fcae2
MK
1751 spin_lock(&class->lock);
1752 while ((src_page = isolate_source_page(class))) {
1753
04f05909
SS
1754 if (!zs_can_compact(class))
1755 break;
1756
312fcae2
MK
1757 cc.index = 0;
1758 cc.s_page = src_page;
1759
0dc63d48 1760 while ((dst_page = isolate_target_page(class))) {
312fcae2
MK
1761 cc.d_page = dst_page;
1762 /*
0dc63d48
SS
1763 * If there is no more space in dst_page, resched
1764 * and see if anyone had allocated another zspage.
312fcae2
MK
1765 */
1766 if (!migrate_zspage(pool, class, &cc))
1767 break;
1768
1769 putback_zspage(pool, class, dst_page);
312fcae2
MK
1770 }
1771
1772 /* Stop if we couldn't find slot */
1773 if (dst_page == NULL)
1774 break;
1775
1776 putback_zspage(pool, class, dst_page);
860c707d 1777 if (putback_zspage(pool, class, src_page) == ZS_EMPTY)
6cbf16b3 1778 pool->stats.pages_compacted += class->pages_per_zspage;
312fcae2 1779 spin_unlock(&class->lock);
312fcae2
MK
1780 cond_resched();
1781 spin_lock(&class->lock);
1782 }
1783
1784 if (src_page)
1785 putback_zspage(pool, class, src_page);
1786
7d3f3938 1787 spin_unlock(&class->lock);
312fcae2
MK
1788}
1789
1790unsigned long zs_compact(struct zs_pool *pool)
1791{
1792 int i;
312fcae2
MK
1793 struct size_class *class;
1794
1795 for (i = zs_size_classes - 1; i >= 0; i--) {
1796 class = pool->size_class[i];
1797 if (!class)
1798 continue;
1799 if (class->index != i)
1800 continue;
7d3f3938 1801 __zs_compact(pool, class);
312fcae2
MK
1802 }
1803
860c707d 1804 return pool->stats.pages_compacted;
312fcae2
MK
1805}
1806EXPORT_SYMBOL_GPL(zs_compact);
61989a80 1807
7d3f3938
SS
1808void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
1809{
1810 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
1811}
1812EXPORT_SYMBOL_GPL(zs_pool_stats);
1813
ab9d306d
SS
1814static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
1815 struct shrink_control *sc)
1816{
1817 unsigned long pages_freed;
1818 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1819 shrinker);
1820
1821 pages_freed = pool->stats.pages_compacted;
1822 /*
1823 * Compact classes and calculate compaction delta.
1824 * Can run concurrently with a manually triggered
1825 * (by user) compaction.
1826 */
1827 pages_freed = zs_compact(pool) - pages_freed;
1828
1829 return pages_freed ? pages_freed : SHRINK_STOP;
1830}
1831
1832static unsigned long zs_shrinker_count(struct shrinker *shrinker,
1833 struct shrink_control *sc)
1834{
1835 int i;
1836 struct size_class *class;
1837 unsigned long pages_to_free = 0;
1838 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1839 shrinker);
1840
ab9d306d
SS
1841 for (i = zs_size_classes - 1; i >= 0; i--) {
1842 class = pool->size_class[i];
1843 if (!class)
1844 continue;
1845 if (class->index != i)
1846 continue;
1847
ab9d306d 1848 pages_to_free += zs_can_compact(class);
ab9d306d
SS
1849 }
1850
1851 return pages_to_free;
1852}
1853
1854static void zs_unregister_shrinker(struct zs_pool *pool)
1855{
1856 if (pool->shrinker_enabled) {
1857 unregister_shrinker(&pool->shrinker);
1858 pool->shrinker_enabled = false;
1859 }
1860}
1861
1862static int zs_register_shrinker(struct zs_pool *pool)
1863{
1864 pool->shrinker.scan_objects = zs_shrinker_scan;
1865 pool->shrinker.count_objects = zs_shrinker_count;
1866 pool->shrinker.batch = 0;
1867 pool->shrinker.seeks = DEFAULT_SEEKS;
1868
1869 return register_shrinker(&pool->shrinker);
1870}
1871
00a61d86 1872/**
66cdef66
GM
1873 * zs_create_pool - Creates an allocation pool to work from.
1874 * @flags: allocation flags used to allocate pool metadata
166cfda7 1875 *
66cdef66
GM
1876 * This function must be called before anything when using
1877 * the zsmalloc allocator.
166cfda7 1878 *
66cdef66
GM
1879 * On success, a pointer to the newly created pool is returned,
1880 * otherwise NULL.
396b7fd6 1881 */
d0d8da2d 1882struct zs_pool *zs_create_pool(const char *name)
61989a80 1883{
66cdef66
GM
1884 int i;
1885 struct zs_pool *pool;
1886 struct size_class *prev_class = NULL;
61989a80 1887
66cdef66
GM
1888 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1889 if (!pool)
1890 return NULL;
61989a80 1891
66cdef66
GM
1892 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1893 GFP_KERNEL);
1894 if (!pool->size_class) {
1895 kfree(pool);
1896 return NULL;
1897 }
61989a80 1898
2e40e163
MK
1899 pool->name = kstrdup(name, GFP_KERNEL);
1900 if (!pool->name)
1901 goto err;
1902
1903 if (create_handle_cache(pool))
1904 goto err;
1905
c60369f0 1906 /*
66cdef66
GM
1907 * Iterate reversly, because, size of size_class that we want to use
1908 * for merging should be larger or equal to current size.
c60369f0 1909 */
66cdef66
GM
1910 for (i = zs_size_classes - 1; i >= 0; i--) {
1911 int size;
1912 int pages_per_zspage;
1913 struct size_class *class;
c60369f0 1914
66cdef66
GM
1915 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1916 if (size > ZS_MAX_ALLOC_SIZE)
1917 size = ZS_MAX_ALLOC_SIZE;
1918 pages_per_zspage = get_pages_per_zspage(size);
61989a80 1919
66cdef66
GM
1920 /*
1921 * size_class is used for normal zsmalloc operation such
1922 * as alloc/free for that size. Although it is natural that we
1923 * have one size_class for each size, there is a chance that we
1924 * can get more memory utilization if we use one size_class for
1925 * many different sizes whose size_class have same
1926 * characteristics. So, we makes size_class point to
1927 * previous size_class if possible.
1928 */
1929 if (prev_class) {
1930 if (can_merge(prev_class, size, pages_per_zspage)) {
1931 pool->size_class[i] = prev_class;
1932 continue;
1933 }
1934 }
1935
1936 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1937 if (!class)
1938 goto err;
1939
1940 class->size = size;
1941 class->index = i;
1942 class->pages_per_zspage = pages_per_zspage;
1fc6e27d
MK
1943 class->objs_per_zspage = class->pages_per_zspage *
1944 PAGE_SIZE / class->size;
1945 if (pages_per_zspage == 1 && class->objs_per_zspage == 1)
7b60a685 1946 class->huge = true;
66cdef66
GM
1947 spin_lock_init(&class->lock);
1948 pool->size_class[i] = class;
1949
1950 prev_class = class;
61989a80
NG
1951 }
1952
d34f6157
DS
1953 /* debug only, don't abort if it fails */
1954 zs_pool_stat_create(pool, name);
0f050d99 1955
ab9d306d
SS
1956 /*
1957 * Not critical, we still can use the pool
1958 * and user can trigger compaction manually.
1959 */
1960 if (zs_register_shrinker(pool) == 0)
1961 pool->shrinker_enabled = true;
66cdef66
GM
1962 return pool;
1963
1964err:
1965 zs_destroy_pool(pool);
1966 return NULL;
61989a80 1967}
66cdef66 1968EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 1969
66cdef66 1970void zs_destroy_pool(struct zs_pool *pool)
61989a80 1971{
66cdef66 1972 int i;
61989a80 1973
ab9d306d 1974 zs_unregister_shrinker(pool);
0f050d99
GM
1975 zs_pool_stat_destroy(pool);
1976
66cdef66
GM
1977 for (i = 0; i < zs_size_classes; i++) {
1978 int fg;
1979 struct size_class *class = pool->size_class[i];
61989a80 1980
66cdef66
GM
1981 if (!class)
1982 continue;
61989a80 1983
66cdef66
GM
1984 if (class->index != i)
1985 continue;
61989a80 1986
66cdef66
GM
1987 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1988 if (class->fullness_list[fg]) {
1989 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1990 class->size, fg);
1991 }
1992 }
1993 kfree(class);
1994 }
f553646a 1995
2e40e163 1996 destroy_handle_cache(pool);
66cdef66 1997 kfree(pool->size_class);
0f050d99 1998 kfree(pool->name);
66cdef66
GM
1999 kfree(pool);
2000}
2001EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 2002
66cdef66
GM
2003static int __init zs_init(void)
2004{
2005 int ret = zs_register_cpu_notifier();
2006
0f050d99
GM
2007 if (ret)
2008 goto notifier_fail;
66cdef66
GM
2009
2010 init_zs_size_classes();
2011
2012#ifdef CONFIG_ZPOOL
2013 zpool_register_driver(&zs_zpool_driver);
2014#endif
0f050d99 2015
4abaac9b
DS
2016 zs_stat_init();
2017
66cdef66 2018 return 0;
0f050d99 2019
0f050d99
GM
2020notifier_fail:
2021 zs_unregister_cpu_notifier();
2022
2023 return ret;
61989a80 2024}
61989a80 2025
66cdef66 2026static void __exit zs_exit(void)
61989a80 2027{
66cdef66
GM
2028#ifdef CONFIG_ZPOOL
2029 zpool_unregister_driver(&zs_zpool_driver);
2030#endif
2031 zs_unregister_cpu_notifier();
0f050d99
GM
2032
2033 zs_stat_exit();
61989a80 2034}
069f101f
BH
2035
2036module_init(zs_init);
2037module_exit(zs_exit);
2038
2039MODULE_LICENSE("Dual BSD/GPL");
2040MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");