zsmalloc: move pages_allocated to zs_pool
[linux-2.6-block.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
c3e3e88a
NC
15 * This allocator is designed for use with zram. Thus, the allocator is
16 * supposed to work well under low memory conditions. In particular, it
17 * never attempts higher order page allocation which is very likely to
18 * fail under memory pressure. On the other hand, if we just use single
19 * (0-order) pages, it would suffer from very high fragmentation --
20 * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
21 * This was one of the major issues with its predecessor (xvmalloc).
2db51dae
NG
22 *
23 * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
24 * and links them together using various 'struct page' fields. These linked
25 * pages act as a single higher-order page i.e. an object can span 0-order
26 * page boundaries. The code refers to these linked pages as a single entity
27 * called zspage.
28 *
c3e3e88a
NC
29 * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
30 * since this satisfies the requirements of all its current users (in the
31 * worst case, page is incompressible and is thus stored "as-is" i.e. in
32 * uncompressed form). For allocation requests larger than this size, failure
33 * is returned (see zs_malloc).
34 *
35 * Additionally, zs_malloc() does not return a dereferenceable pointer.
36 * Instead, it returns an opaque handle (unsigned long) which encodes actual
37 * location of the allocated object. The reason for this indirection is that
38 * zsmalloc does not keep zspages permanently mapped since that would cause
39 * issues on 32-bit systems where the VA region for kernel space mappings
40 * is very small. So, before using the allocating memory, the object has to
41 * be mapped using zs_map_object() to get a usable pointer and subsequently
42 * unmapped using zs_unmap_object().
43 *
2db51dae
NG
44 * Following is how we use various fields and flags of underlying
45 * struct page(s) to form a zspage.
46 *
47 * Usage of struct page fields:
48 * page->first_page: points to the first component (0-order) page
49 * page->index (union with page->freelist): offset of the first object
50 * starting in this page. For the first page, this is
51 * always 0, so we use this field (aka freelist) to point
52 * to the first free object in zspage.
53 * page->lru: links together all component pages (except the first page)
54 * of a zspage
55 *
56 * For _first_ page only:
57 *
58 * page->private (union with page->first_page): refers to the
59 * component page after the first page
60 * page->freelist: points to the first free object in zspage.
61 * Free objects are linked together using in-place
62 * metadata.
63 * page->objects: maximum number of objects we can store in this
64 * zspage (class->zspage_order * PAGE_SIZE / class->size)
65 * page->lru: links together first pages of various zspages.
66 * Basically forming list of zspages in a fullness group.
67 * page->mapping: class index and fullness group of the zspage
68 *
69 * Usage of struct page flags:
70 * PG_private: identifies the first component page
71 * PG_private2: identifies the last component page
72 *
73 */
74
61989a80
NG
75#ifdef CONFIG_ZSMALLOC_DEBUG
76#define DEBUG
77#endif
78
79#include <linux/module.h>
80#include <linux/kernel.h>
81#include <linux/bitops.h>
82#include <linux/errno.h>
83#include <linux/highmem.h>
61989a80
NG
84#include <linux/string.h>
85#include <linux/slab.h>
86#include <asm/tlbflush.h>
87#include <asm/pgtable.h>
88#include <linux/cpumask.h>
89#include <linux/cpu.h>
0cbb613f 90#include <linux/vmalloc.h>
c60369f0 91#include <linux/hardirq.h>
0959c63f
SJ
92#include <linux/spinlock.h>
93#include <linux/types.h>
bcf1647d 94#include <linux/zsmalloc.h>
c795779d 95#include <linux/zpool.h>
0959c63f
SJ
96
97/*
98 * This must be power of 2 and greater than of equal to sizeof(link_free).
99 * These two conditions ensure that any 'struct link_free' itself doesn't
100 * span more than 1 page which avoids complex case of mapping 2 pages simply
101 * to restore link_free pointer values.
102 */
103#define ZS_ALIGN 8
104
105/*
106 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
107 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
108 */
109#define ZS_MAX_ZSPAGE_ORDER 2
110#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
111
112/*
113 * Object location (<PFN>, <obj_idx>) is encoded as
c3e3e88a 114 * as single (unsigned long) handle value.
0959c63f
SJ
115 *
116 * Note that object index <obj_idx> is relative to system
117 * page <PFN> it is stored in, so for each sub-page belonging
118 * to a zspage, obj_idx starts with 0.
119 *
120 * This is made more complicated by various memory models and PAE.
121 */
122
123#ifndef MAX_PHYSMEM_BITS
124#ifdef CONFIG_HIGHMEM64G
125#define MAX_PHYSMEM_BITS 36
126#else /* !CONFIG_HIGHMEM64G */
127/*
128 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
129 * be PAGE_SHIFT
130 */
131#define MAX_PHYSMEM_BITS BITS_PER_LONG
132#endif
133#endif
134#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
135#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
136#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
137
138#define MAX(a, b) ((a) >= (b) ? (a) : (b))
139/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
140#define ZS_MIN_ALLOC_SIZE \
141 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
142#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
143
144/*
7eb52512 145 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
146 * trader-off here:
147 * - Large number of size classes is potentially wasteful as free page are
148 * spread across these classes
149 * - Small number of size classes causes large internal fragmentation
150 * - Probably its better to use specific size classes (empirically
151 * determined). NOTE: all those class sizes must be set as multiple of
152 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
153 *
154 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
155 * (reason above)
156 */
d662b8eb 157#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
0959c63f
SJ
158#define ZS_SIZE_CLASSES ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / \
159 ZS_SIZE_CLASS_DELTA + 1)
160
161/*
162 * We do not maintain any list for completely empty or full pages
163 */
164enum fullness_group {
165 ZS_ALMOST_FULL,
166 ZS_ALMOST_EMPTY,
167 _ZS_NR_FULLNESS_GROUPS,
168
169 ZS_EMPTY,
170 ZS_FULL
171};
172
173/*
174 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
175 * n <= N / f, where
176 * n = number of allocated objects
177 * N = total number of objects zspage can store
178 * f = 1/fullness_threshold_frac
179 *
180 * Similarly, we assign zspage to:
181 * ZS_ALMOST_FULL when n > N / f
182 * ZS_EMPTY when n == 0
183 * ZS_FULL when n == N
184 *
185 * (see: fix_fullness_group())
186 */
187static const int fullness_threshold_frac = 4;
188
189struct size_class {
190 /*
191 * Size of objects stored in this class. Must be multiple
192 * of ZS_ALIGN.
193 */
194 int size;
195 unsigned int index;
196
197 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
198 int pages_per_zspage;
199
200 spinlock_t lock;
201
0959c63f
SJ
202 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
203};
204
205/*
206 * Placed within free objects to form a singly linked list.
207 * For every zspage, first_page->freelist gives head of this list.
208 *
209 * This must be power of 2 and less than or equal to ZS_ALIGN
210 */
211struct link_free {
212 /* Handle of next free chunk (encodes <PFN, obj_idx>) */
213 void *next;
214};
215
216struct zs_pool {
217 struct size_class size_class[ZS_SIZE_CLASSES];
218
219 gfp_t flags; /* allocation flags used when growing pool */
13de8933 220 atomic_long_t pages_allocated;
0959c63f 221};
61989a80
NG
222
223/*
224 * A zspage's class index and fullness group
225 * are encoded in its (first)page->mapping
226 */
227#define CLASS_IDX_BITS 28
228#define FULLNESS_BITS 4
229#define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
230#define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
231
f553646a 232struct mapping_area {
1b945aee 233#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
234 struct vm_struct *vm; /* vm area for mapping object that span pages */
235#else
236 char *vm_buf; /* copy buffer for objects that span pages */
237#endif
238 char *vm_addr; /* address of kmap_atomic()'ed pages */
239 enum zs_mapmode vm_mm; /* mapping mode */
240};
241
c795779d
DS
242/* zpool driver */
243
244#ifdef CONFIG_ZPOOL
245
246static void *zs_zpool_create(gfp_t gfp, struct zpool_ops *zpool_ops)
247{
248 return zs_create_pool(gfp);
249}
250
251static void zs_zpool_destroy(void *pool)
252{
253 zs_destroy_pool(pool);
254}
255
256static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
257 unsigned long *handle)
258{
259 *handle = zs_malloc(pool, size);
260 return *handle ? 0 : -1;
261}
262static void zs_zpool_free(void *pool, unsigned long handle)
263{
264 zs_free(pool, handle);
265}
266
267static int zs_zpool_shrink(void *pool, unsigned int pages,
268 unsigned int *reclaimed)
269{
270 return -EINVAL;
271}
272
273static void *zs_zpool_map(void *pool, unsigned long handle,
274 enum zpool_mapmode mm)
275{
276 enum zs_mapmode zs_mm;
277
278 switch (mm) {
279 case ZPOOL_MM_RO:
280 zs_mm = ZS_MM_RO;
281 break;
282 case ZPOOL_MM_WO:
283 zs_mm = ZS_MM_WO;
284 break;
285 case ZPOOL_MM_RW: /* fallthru */
286 default:
287 zs_mm = ZS_MM_RW;
288 break;
289 }
290
291 return zs_map_object(pool, handle, zs_mm);
292}
293static void zs_zpool_unmap(void *pool, unsigned long handle)
294{
295 zs_unmap_object(pool, handle);
296}
297
298static u64 zs_zpool_total_size(void *pool)
299{
300 return zs_get_total_size_bytes(pool);
301}
302
303static struct zpool_driver zs_zpool_driver = {
304 .type = "zsmalloc",
305 .owner = THIS_MODULE,
306 .create = zs_zpool_create,
307 .destroy = zs_zpool_destroy,
308 .malloc = zs_zpool_malloc,
309 .free = zs_zpool_free,
310 .shrink = zs_zpool_shrink,
311 .map = zs_zpool_map,
312 .unmap = zs_zpool_unmap,
313 .total_size = zs_zpool_total_size,
314};
315
137f8cff 316MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
317#endif /* CONFIG_ZPOOL */
318
61989a80
NG
319/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
320static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
321
322static int is_first_page(struct page *page)
323{
a27545bf 324 return PagePrivate(page);
61989a80
NG
325}
326
327static int is_last_page(struct page *page)
328{
a27545bf 329 return PagePrivate2(page);
61989a80
NG
330}
331
332static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
333 enum fullness_group *fullness)
334{
335 unsigned long m;
336 BUG_ON(!is_first_page(page));
337
338 m = (unsigned long)page->mapping;
339 *fullness = m & FULLNESS_MASK;
340 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
341}
342
343static void set_zspage_mapping(struct page *page, unsigned int class_idx,
344 enum fullness_group fullness)
345{
346 unsigned long m;
347 BUG_ON(!is_first_page(page));
348
349 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
350 (fullness & FULLNESS_MASK);
351 page->mapping = (struct address_space *)m;
352}
353
c3e3e88a
NC
354/*
355 * zsmalloc divides the pool into various size classes where each
356 * class maintains a list of zspages where each zspage is divided
357 * into equal sized chunks. Each allocation falls into one of these
358 * classes depending on its size. This function returns index of the
359 * size class which has chunk size big enough to hold the give size.
360 */
61989a80
NG
361static int get_size_class_index(int size)
362{
363 int idx = 0;
364
365 if (likely(size > ZS_MIN_ALLOC_SIZE))
366 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
367 ZS_SIZE_CLASS_DELTA);
368
369 return idx;
370}
371
c3e3e88a
NC
372/*
373 * For each size class, zspages are divided into different groups
374 * depending on how "full" they are. This was done so that we could
375 * easily find empty or nearly empty zspages when we try to shrink
376 * the pool (not yet implemented). This function returns fullness
377 * status of the given page.
378 */
61989a80
NG
379static enum fullness_group get_fullness_group(struct page *page)
380{
381 int inuse, max_objects;
382 enum fullness_group fg;
383 BUG_ON(!is_first_page(page));
384
385 inuse = page->inuse;
386 max_objects = page->objects;
387
388 if (inuse == 0)
389 fg = ZS_EMPTY;
390 else if (inuse == max_objects)
391 fg = ZS_FULL;
392 else if (inuse <= max_objects / fullness_threshold_frac)
393 fg = ZS_ALMOST_EMPTY;
394 else
395 fg = ZS_ALMOST_FULL;
396
397 return fg;
398}
399
c3e3e88a
NC
400/*
401 * Each size class maintains various freelists and zspages are assigned
402 * to one of these freelists based on the number of live objects they
403 * have. This functions inserts the given zspage into the freelist
404 * identified by <class, fullness_group>.
405 */
61989a80
NG
406static void insert_zspage(struct page *page, struct size_class *class,
407 enum fullness_group fullness)
408{
409 struct page **head;
410
411 BUG_ON(!is_first_page(page));
412
413 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
414 return;
415
416 head = &class->fullness_list[fullness];
417 if (*head)
418 list_add_tail(&page->lru, &(*head)->lru);
419
420 *head = page;
421}
422
c3e3e88a
NC
423/*
424 * This function removes the given zspage from the freelist identified
425 * by <class, fullness_group>.
426 */
61989a80
NG
427static void remove_zspage(struct page *page, struct size_class *class,
428 enum fullness_group fullness)
429{
430 struct page **head;
431
432 BUG_ON(!is_first_page(page));
433
434 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
435 return;
436
437 head = &class->fullness_list[fullness];
438 BUG_ON(!*head);
439 if (list_empty(&(*head)->lru))
440 *head = NULL;
441 else if (*head == page)
442 *head = (struct page *)list_entry((*head)->lru.next,
443 struct page, lru);
444
445 list_del_init(&page->lru);
446}
447
c3e3e88a
NC
448/*
449 * Each size class maintains zspages in different fullness groups depending
450 * on the number of live objects they contain. When allocating or freeing
451 * objects, the fullness status of the page can change, say, from ALMOST_FULL
452 * to ALMOST_EMPTY when freeing an object. This function checks if such
453 * a status change has occurred for the given page and accordingly moves the
454 * page from the freelist of the old fullness group to that of the new
455 * fullness group.
456 */
61989a80
NG
457static enum fullness_group fix_fullness_group(struct zs_pool *pool,
458 struct page *page)
459{
460 int class_idx;
461 struct size_class *class;
462 enum fullness_group currfg, newfg;
463
464 BUG_ON(!is_first_page(page));
465
466 get_zspage_mapping(page, &class_idx, &currfg);
467 newfg = get_fullness_group(page);
468 if (newfg == currfg)
469 goto out;
470
471 class = &pool->size_class[class_idx];
472 remove_zspage(page, class, currfg);
473 insert_zspage(page, class, newfg);
474 set_zspage_mapping(page, class_idx, newfg);
475
476out:
477 return newfg;
478}
479
480/*
481 * We have to decide on how many pages to link together
482 * to form a zspage for each size class. This is important
483 * to reduce wastage due to unusable space left at end of
484 * each zspage which is given as:
485 * wastage = Zp - Zp % size_class
486 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
487 *
488 * For example, for size class of 3/8 * PAGE_SIZE, we should
489 * link together 3 PAGE_SIZE sized pages to form a zspage
490 * since then we can perfectly fit in 8 such objects.
491 */
2e3b6154 492static int get_pages_per_zspage(int class_size)
61989a80
NG
493{
494 int i, max_usedpc = 0;
495 /* zspage order which gives maximum used size per KB */
496 int max_usedpc_order = 1;
497
84d4faab 498 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
499 int zspage_size;
500 int waste, usedpc;
501
502 zspage_size = i * PAGE_SIZE;
503 waste = zspage_size % class_size;
504 usedpc = (zspage_size - waste) * 100 / zspage_size;
505
506 if (usedpc > max_usedpc) {
507 max_usedpc = usedpc;
508 max_usedpc_order = i;
509 }
510 }
511
512 return max_usedpc_order;
513}
514
515/*
516 * A single 'zspage' is composed of many system pages which are
517 * linked together using fields in struct page. This function finds
518 * the first/head page, given any component page of a zspage.
519 */
520static struct page *get_first_page(struct page *page)
521{
522 if (is_first_page(page))
523 return page;
524 else
525 return page->first_page;
526}
527
528static struct page *get_next_page(struct page *page)
529{
530 struct page *next;
531
532 if (is_last_page(page))
533 next = NULL;
534 else if (is_first_page(page))
e842b976 535 next = (struct page *)page_private(page);
61989a80
NG
536 else
537 next = list_entry(page->lru.next, struct page, lru);
538
539 return next;
540}
541
67296874
OH
542/*
543 * Encode <page, obj_idx> as a single handle value.
544 * On hardware platforms with physical memory starting at 0x0 the pfn
545 * could be 0 so we ensure that the handle will never be 0 by adjusting the
546 * encoded obj_idx value before encoding.
547 */
61989a80
NG
548static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
549{
550 unsigned long handle;
551
552 if (!page) {
553 BUG_ON(obj_idx);
554 return NULL;
555 }
556
557 handle = page_to_pfn(page) << OBJ_INDEX_BITS;
67296874 558 handle |= ((obj_idx + 1) & OBJ_INDEX_MASK);
61989a80
NG
559
560 return (void *)handle;
561}
562
67296874
OH
563/*
564 * Decode <page, obj_idx> pair from the given object handle. We adjust the
565 * decoded obj_idx back to its original value since it was adjusted in
566 * obj_location_to_handle().
567 */
c2344348 568static void obj_handle_to_location(unsigned long handle, struct page **page,
61989a80
NG
569 unsigned long *obj_idx)
570{
c2344348 571 *page = pfn_to_page(handle >> OBJ_INDEX_BITS);
67296874 572 *obj_idx = (handle & OBJ_INDEX_MASK) - 1;
61989a80
NG
573}
574
575static unsigned long obj_idx_to_offset(struct page *page,
576 unsigned long obj_idx, int class_size)
577{
578 unsigned long off = 0;
579
580 if (!is_first_page(page))
581 off = page->index;
582
583 return off + obj_idx * class_size;
584}
585
f4477e90
NG
586static void reset_page(struct page *page)
587{
588 clear_bit(PG_private, &page->flags);
589 clear_bit(PG_private_2, &page->flags);
590 set_page_private(page, 0);
591 page->mapping = NULL;
592 page->freelist = NULL;
22b751c3 593 page_mapcount_reset(page);
f4477e90
NG
594}
595
61989a80
NG
596static void free_zspage(struct page *first_page)
597{
f4477e90 598 struct page *nextp, *tmp, *head_extra;
61989a80
NG
599
600 BUG_ON(!is_first_page(first_page));
601 BUG_ON(first_page->inuse);
602
f4477e90 603 head_extra = (struct page *)page_private(first_page);
61989a80 604
f4477e90 605 reset_page(first_page);
61989a80
NG
606 __free_page(first_page);
607
608 /* zspage with only 1 system page */
f4477e90 609 if (!head_extra)
61989a80
NG
610 return;
611
f4477e90 612 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
61989a80 613 list_del(&nextp->lru);
f4477e90 614 reset_page(nextp);
61989a80
NG
615 __free_page(nextp);
616 }
f4477e90
NG
617 reset_page(head_extra);
618 __free_page(head_extra);
61989a80
NG
619}
620
621/* Initialize a newly allocated zspage */
622static void init_zspage(struct page *first_page, struct size_class *class)
623{
624 unsigned long off = 0;
625 struct page *page = first_page;
626
627 BUG_ON(!is_first_page(first_page));
628 while (page) {
629 struct page *next_page;
630 struct link_free *link;
631 unsigned int i, objs_on_page;
632
633 /*
634 * page->index stores offset of first object starting
635 * in the page. For the first page, this is always 0,
636 * so we use first_page->index (aka ->freelist) to store
637 * head of corresponding zspage's freelist.
638 */
639 if (page != first_page)
640 page->index = off;
641
642 link = (struct link_free *)kmap_atomic(page) +
643 off / sizeof(*link);
644 objs_on_page = (PAGE_SIZE - off) / class->size;
645
646 for (i = 1; i <= objs_on_page; i++) {
647 off += class->size;
648 if (off < PAGE_SIZE) {
649 link->next = obj_location_to_handle(page, i);
650 link += class->size / sizeof(*link);
651 }
652 }
653
654 /*
655 * We now come to the last (full or partial) object on this
656 * page, which must point to the first object on the next
657 * page (if present)
658 */
659 next_page = get_next_page(page);
660 link->next = obj_location_to_handle(next_page, 0);
661 kunmap_atomic(link);
662 page = next_page;
663 off = (off + class->size) % PAGE_SIZE;
664 }
665}
666
667/*
668 * Allocate a zspage for the given size class
669 */
670static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
671{
672 int i, error;
b4b700c5 673 struct page *first_page = NULL, *uninitialized_var(prev_page);
61989a80
NG
674
675 /*
676 * Allocate individual pages and link them together as:
677 * 1. first page->private = first sub-page
678 * 2. all sub-pages are linked together using page->lru
679 * 3. each sub-page is linked to the first page using page->first_page
680 *
681 * For each size class, First/Head pages are linked together using
682 * page->lru. Also, we set PG_private to identify the first page
683 * (i.e. no other sub-page has this flag set) and PG_private_2 to
684 * identify the last page.
685 */
686 error = -ENOMEM;
2e3b6154 687 for (i = 0; i < class->pages_per_zspage; i++) {
b4b700c5 688 struct page *page;
61989a80
NG
689
690 page = alloc_page(flags);
691 if (!page)
692 goto cleanup;
693
694 INIT_LIST_HEAD(&page->lru);
695 if (i == 0) { /* first page */
a27545bf 696 SetPagePrivate(page);
61989a80
NG
697 set_page_private(page, 0);
698 first_page = page;
699 first_page->inuse = 0;
700 }
701 if (i == 1)
e842b976 702 set_page_private(first_page, (unsigned long)page);
61989a80
NG
703 if (i >= 1)
704 page->first_page = first_page;
705 if (i >= 2)
706 list_add(&page->lru, &prev_page->lru);
2e3b6154 707 if (i == class->pages_per_zspage - 1) /* last page */
a27545bf 708 SetPagePrivate2(page);
61989a80
NG
709 prev_page = page;
710 }
711
712 init_zspage(first_page, class);
713
714 first_page->freelist = obj_location_to_handle(first_page, 0);
715 /* Maximum number of objects we can store in this zspage */
2e3b6154 716 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
61989a80
NG
717
718 error = 0; /* Success */
719
720cleanup:
721 if (unlikely(error) && first_page) {
722 free_zspage(first_page);
723 first_page = NULL;
724 }
725
726 return first_page;
727}
728
729static struct page *find_get_zspage(struct size_class *class)
730{
731 int i;
732 struct page *page;
733
734 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
735 page = class->fullness_list[i];
736 if (page)
737 break;
738 }
739
740 return page;
741}
742
1b945aee 743#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
744static inline int __zs_cpu_up(struct mapping_area *area)
745{
746 /*
747 * Make sure we don't leak memory if a cpu UP notification
748 * and zs_init() race and both call zs_cpu_up() on the same cpu
749 */
750 if (area->vm)
751 return 0;
752 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
753 if (!area->vm)
754 return -ENOMEM;
755 return 0;
756}
757
758static inline void __zs_cpu_down(struct mapping_area *area)
759{
760 if (area->vm)
761 free_vm_area(area->vm);
762 area->vm = NULL;
763}
764
765static inline void *__zs_map_object(struct mapping_area *area,
766 struct page *pages[2], int off, int size)
767{
f6f8ed47 768 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
f553646a
SJ
769 area->vm_addr = area->vm->addr;
770 return area->vm_addr + off;
771}
772
773static inline void __zs_unmap_object(struct mapping_area *area,
774 struct page *pages[2], int off, int size)
775{
776 unsigned long addr = (unsigned long)area->vm_addr;
f553646a 777
d95abbbb 778 unmap_kernel_range(addr, PAGE_SIZE * 2);
f553646a
SJ
779}
780
1b945aee 781#else /* CONFIG_PGTABLE_MAPPING */
f553646a
SJ
782
783static inline int __zs_cpu_up(struct mapping_area *area)
784{
785 /*
786 * Make sure we don't leak memory if a cpu UP notification
787 * and zs_init() race and both call zs_cpu_up() on the same cpu
788 */
789 if (area->vm_buf)
790 return 0;
791 area->vm_buf = (char *)__get_free_page(GFP_KERNEL);
792 if (!area->vm_buf)
793 return -ENOMEM;
794 return 0;
795}
796
797static inline void __zs_cpu_down(struct mapping_area *area)
798{
799 if (area->vm_buf)
800 free_page((unsigned long)area->vm_buf);
801 area->vm_buf = NULL;
802}
803
804static void *__zs_map_object(struct mapping_area *area,
805 struct page *pages[2], int off, int size)
5f601902 806{
5f601902
SJ
807 int sizes[2];
808 void *addr;
f553646a 809 char *buf = area->vm_buf;
5f601902 810
f553646a
SJ
811 /* disable page faults to match kmap_atomic() return conditions */
812 pagefault_disable();
813
814 /* no read fastpath */
815 if (area->vm_mm == ZS_MM_WO)
816 goto out;
5f601902
SJ
817
818 sizes[0] = PAGE_SIZE - off;
819 sizes[1] = size - sizes[0];
820
5f601902
SJ
821 /* copy object to per-cpu buffer */
822 addr = kmap_atomic(pages[0]);
823 memcpy(buf, addr + off, sizes[0]);
824 kunmap_atomic(addr);
825 addr = kmap_atomic(pages[1]);
826 memcpy(buf + sizes[0], addr, sizes[1]);
827 kunmap_atomic(addr);
f553646a
SJ
828out:
829 return area->vm_buf;
5f601902
SJ
830}
831
f553646a
SJ
832static void __zs_unmap_object(struct mapping_area *area,
833 struct page *pages[2], int off, int size)
5f601902 834{
5f601902
SJ
835 int sizes[2];
836 void *addr;
f553646a 837 char *buf = area->vm_buf;
5f601902 838
f553646a
SJ
839 /* no write fastpath */
840 if (area->vm_mm == ZS_MM_RO)
841 goto out;
5f601902
SJ
842
843 sizes[0] = PAGE_SIZE - off;
844 sizes[1] = size - sizes[0];
845
846 /* copy per-cpu buffer to object */
847 addr = kmap_atomic(pages[0]);
848 memcpy(addr + off, buf, sizes[0]);
849 kunmap_atomic(addr);
850 addr = kmap_atomic(pages[1]);
851 memcpy(addr, buf + sizes[0], sizes[1]);
852 kunmap_atomic(addr);
f553646a
SJ
853
854out:
855 /* enable page faults to match kunmap_atomic() return conditions */
856 pagefault_enable();
5f601902 857}
61989a80 858
1b945aee 859#endif /* CONFIG_PGTABLE_MAPPING */
f553646a 860
61989a80
NG
861static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
862 void *pcpu)
863{
f553646a 864 int ret, cpu = (long)pcpu;
61989a80
NG
865 struct mapping_area *area;
866
867 switch (action) {
868 case CPU_UP_PREPARE:
869 area = &per_cpu(zs_map_area, cpu);
f553646a
SJ
870 ret = __zs_cpu_up(area);
871 if (ret)
872 return notifier_from_errno(ret);
61989a80
NG
873 break;
874 case CPU_DEAD:
875 case CPU_UP_CANCELED:
876 area = &per_cpu(zs_map_area, cpu);
f553646a 877 __zs_cpu_down(area);
61989a80
NG
878 break;
879 }
880
881 return NOTIFY_OK;
882}
883
884static struct notifier_block zs_cpu_nb = {
885 .notifier_call = zs_cpu_notifier
886};
887
888static void zs_exit(void)
889{
890 int cpu;
891
c795779d
DS
892#ifdef CONFIG_ZPOOL
893 zpool_unregister_driver(&zs_zpool_driver);
894#endif
895
f0e71fcd
SB
896 cpu_notifier_register_begin();
897
61989a80
NG
898 for_each_online_cpu(cpu)
899 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
f0e71fcd
SB
900 __unregister_cpu_notifier(&zs_cpu_nb);
901
902 cpu_notifier_register_done();
61989a80
NG
903}
904
905static int zs_init(void)
906{
907 int cpu, ret;
908
f0e71fcd
SB
909 cpu_notifier_register_begin();
910
911 __register_cpu_notifier(&zs_cpu_nb);
61989a80
NG
912 for_each_online_cpu(cpu) {
913 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
f0e71fcd
SB
914 if (notifier_to_errno(ret)) {
915 cpu_notifier_register_done();
61989a80 916 goto fail;
f0e71fcd 917 }
61989a80 918 }
f0e71fcd
SB
919
920 cpu_notifier_register_done();
921
c795779d
DS
922#ifdef CONFIG_ZPOOL
923 zpool_register_driver(&zs_zpool_driver);
924#endif
925
61989a80
NG
926 return 0;
927fail:
928 zs_exit();
929 return notifier_to_errno(ret);
930}
931
4bbc0bc0
DB
932/**
933 * zs_create_pool - Creates an allocation pool to work from.
0d145a50 934 * @flags: allocation flags used to allocate pool metadata
4bbc0bc0
DB
935 *
936 * This function must be called before anything when using
937 * the zsmalloc allocator.
938 *
939 * On success, a pointer to the newly created pool is returned,
940 * otherwise NULL.
941 */
0d145a50 942struct zs_pool *zs_create_pool(gfp_t flags)
61989a80 943{
069f101f 944 int i, ovhd_size;
61989a80
NG
945 struct zs_pool *pool;
946
61989a80
NG
947 ovhd_size = roundup(sizeof(*pool), PAGE_SIZE);
948 pool = kzalloc(ovhd_size, GFP_KERNEL);
949 if (!pool)
950 return NULL;
951
952 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
953 int size;
954 struct size_class *class;
955
956 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
957 if (size > ZS_MAX_ALLOC_SIZE)
958 size = ZS_MAX_ALLOC_SIZE;
959
960 class = &pool->size_class[i];
961 class->size = size;
962 class->index = i;
963 spin_lock_init(&class->lock);
2e3b6154 964 class->pages_per_zspage = get_pages_per_zspage(size);
61989a80
NG
965
966 }
967
61989a80 968 pool->flags = flags;
61989a80 969
61989a80
NG
970 return pool;
971}
972EXPORT_SYMBOL_GPL(zs_create_pool);
973
974void zs_destroy_pool(struct zs_pool *pool)
975{
976 int i;
977
978 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
979 int fg;
980 struct size_class *class = &pool->size_class[i];
981
982 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
983 if (class->fullness_list[fg]) {
93ad5ab5 984 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
61989a80
NG
985 class->size, fg);
986 }
987 }
988 }
989 kfree(pool);
990}
991EXPORT_SYMBOL_GPL(zs_destroy_pool);
992
993/**
994 * zs_malloc - Allocate block of given size from pool.
995 * @pool: pool to allocate from
996 * @size: size of block to allocate
61989a80 997 *
00a61d86 998 * On success, handle to the allocated object is returned,
c2344348 999 * otherwise 0.
61989a80
NG
1000 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1001 */
c2344348 1002unsigned long zs_malloc(struct zs_pool *pool, size_t size)
61989a80 1003{
c2344348 1004 unsigned long obj;
61989a80
NG
1005 struct link_free *link;
1006 int class_idx;
1007 struct size_class *class;
1008
1009 struct page *first_page, *m_page;
1010 unsigned long m_objidx, m_offset;
1011
1012 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
c2344348 1013 return 0;
61989a80
NG
1014
1015 class_idx = get_size_class_index(size);
1016 class = &pool->size_class[class_idx];
1017 BUG_ON(class_idx != class->index);
1018
1019 spin_lock(&class->lock);
1020 first_page = find_get_zspage(class);
1021
1022 if (!first_page) {
1023 spin_unlock(&class->lock);
1024 first_page = alloc_zspage(class, pool->flags);
1025 if (unlikely(!first_page))
c2344348 1026 return 0;
61989a80
NG
1027
1028 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
13de8933
MK
1029 atomic_long_add(class->pages_per_zspage,
1030 &pool->pages_allocated);
61989a80 1031 spin_lock(&class->lock);
61989a80
NG
1032 }
1033
c2344348 1034 obj = (unsigned long)first_page->freelist;
61989a80
NG
1035 obj_handle_to_location(obj, &m_page, &m_objidx);
1036 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1037
1038 link = (struct link_free *)kmap_atomic(m_page) +
1039 m_offset / sizeof(*link);
1040 first_page->freelist = link->next;
1041 memset(link, POISON_INUSE, sizeof(*link));
1042 kunmap_atomic(link);
1043
1044 first_page->inuse++;
1045 /* Now move the zspage to another fullness group, if required */
1046 fix_fullness_group(pool, first_page);
1047 spin_unlock(&class->lock);
1048
1049 return obj;
1050}
1051EXPORT_SYMBOL_GPL(zs_malloc);
1052
c2344348 1053void zs_free(struct zs_pool *pool, unsigned long obj)
61989a80
NG
1054{
1055 struct link_free *link;
1056 struct page *first_page, *f_page;
1057 unsigned long f_objidx, f_offset;
1058
1059 int class_idx;
1060 struct size_class *class;
1061 enum fullness_group fullness;
1062
1063 if (unlikely(!obj))
1064 return;
1065
1066 obj_handle_to_location(obj, &f_page, &f_objidx);
1067 first_page = get_first_page(f_page);
1068
1069 get_zspage_mapping(first_page, &class_idx, &fullness);
1070 class = &pool->size_class[class_idx];
1071 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1072
1073 spin_lock(&class->lock);
1074
1075 /* Insert this object in containing zspage's freelist */
1076 link = (struct link_free *)((unsigned char *)kmap_atomic(f_page)
1077 + f_offset);
1078 link->next = first_page->freelist;
1079 kunmap_atomic(link);
c2344348 1080 first_page->freelist = (void *)obj;
61989a80
NG
1081
1082 first_page->inuse--;
1083 fullness = fix_fullness_group(pool, first_page);
61989a80
NG
1084 spin_unlock(&class->lock);
1085
13de8933
MK
1086 if (fullness == ZS_EMPTY) {
1087 atomic_long_sub(class->pages_per_zspage,
1088 &pool->pages_allocated);
61989a80 1089 free_zspage(first_page);
13de8933 1090 }
61989a80
NG
1091}
1092EXPORT_SYMBOL_GPL(zs_free);
1093
00a61d86
MK
1094/**
1095 * zs_map_object - get address of allocated object from handle.
1096 * @pool: pool from which the object was allocated
1097 * @handle: handle returned from zs_malloc
1098 *
1099 * Before using an object allocated from zs_malloc, it must be mapped using
1100 * this function. When done with the object, it must be unmapped using
166cfda7
SJ
1101 * zs_unmap_object.
1102 *
1103 * Only one object can be mapped per cpu at a time. There is no protection
1104 * against nested mappings.
1105 *
1106 * This function returns with preemption and page faults disabled.
396b7fd6 1107 */
b7418510
SJ
1108void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1109 enum zs_mapmode mm)
61989a80
NG
1110{
1111 struct page *page;
1112 unsigned long obj_idx, off;
1113
1114 unsigned int class_idx;
1115 enum fullness_group fg;
1116 struct size_class *class;
1117 struct mapping_area *area;
f553646a 1118 struct page *pages[2];
61989a80
NG
1119
1120 BUG_ON(!handle);
1121
c60369f0
SJ
1122 /*
1123 * Because we use per-cpu mapping areas shared among the
1124 * pools/users, we can't allow mapping in interrupt context
1125 * because it can corrupt another users mappings.
1126 */
1127 BUG_ON(in_interrupt());
1128
61989a80
NG
1129 obj_handle_to_location(handle, &page, &obj_idx);
1130 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1131 class = &pool->size_class[class_idx];
1132 off = obj_idx_to_offset(page, obj_idx, class->size);
1133
1134 area = &get_cpu_var(zs_map_area);
f553646a 1135 area->vm_mm = mm;
61989a80
NG
1136 if (off + class->size <= PAGE_SIZE) {
1137 /* this object is contained entirely within a page */
1138 area->vm_addr = kmap_atomic(page);
5f601902 1139 return area->vm_addr + off;
61989a80
NG
1140 }
1141
f553646a
SJ
1142 /* this object spans two pages */
1143 pages[0] = page;
1144 pages[1] = get_next_page(page);
1145 BUG_ON(!pages[1]);
b7418510 1146
f553646a 1147 return __zs_map_object(area, pages, off, class->size);
61989a80
NG
1148}
1149EXPORT_SYMBOL_GPL(zs_map_object);
1150
c2344348 1151void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80
NG
1152{
1153 struct page *page;
1154 unsigned long obj_idx, off;
1155
1156 unsigned int class_idx;
1157 enum fullness_group fg;
1158 struct size_class *class;
1159 struct mapping_area *area;
1160
1161 BUG_ON(!handle);
1162
1163 obj_handle_to_location(handle, &page, &obj_idx);
1164 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1165 class = &pool->size_class[class_idx];
1166 off = obj_idx_to_offset(page, obj_idx, class->size);
1167
7c8e0181 1168 area = this_cpu_ptr(&zs_map_area);
f553646a
SJ
1169 if (off + class->size <= PAGE_SIZE)
1170 kunmap_atomic(area->vm_addr);
1171 else {
1172 struct page *pages[2];
1173
1174 pages[0] = page;
1175 pages[1] = get_next_page(page);
1176 BUG_ON(!pages[1]);
b7418510 1177
f553646a
SJ
1178 __zs_unmap_object(area, pages, off, class->size);
1179 }
61989a80
NG
1180 put_cpu_var(zs_map_area);
1181}
1182EXPORT_SYMBOL_GPL(zs_unmap_object);
1183
1184u64 zs_get_total_size_bytes(struct zs_pool *pool)
1185{
13de8933 1186 u64 npages = atomic_long_read(&pool->pages_allocated);
61989a80
NG
1187 return npages << PAGE_SHIFT;
1188}
1189EXPORT_SYMBOL_GPL(zs_get_total_size_bytes);
069f101f
BH
1190
1191module_init(zs_init);
1192module_exit(zs_exit);
1193
1194MODULE_LICENSE("Dual BSD/GPL");
1195MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");