CMA: document cma=0
[linux-2.6-block.git] / mm / vmstat.c
CommitLineData
f6ac2354
CL
1/*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
2244b95a
CL
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
f6ac2354 10 */
8f32f7e5 11#include <linux/fs.h>
f6ac2354 12#include <linux/mm.h>
4e950f6f 13#include <linux/err.h>
2244b95a 14#include <linux/module.h>
5a0e3ad6 15#include <linux/slab.h>
df9ecaba 16#include <linux/cpu.h>
c748e134 17#include <linux/vmstat.h>
e8edc6e0 18#include <linux/sched.h>
f1a5ab12 19#include <linux/math64.h>
79da826a 20#include <linux/writeback.h>
36deb0be 21#include <linux/compaction.h>
6e543d57
LD
22#include <linux/mm_inline.h>
23
24#include "internal.h"
f6ac2354 25
f8891e5e
CL
26#ifdef CONFIG_VM_EVENT_COUNTERS
27DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
28EXPORT_PER_CPU_SYMBOL(vm_event_states);
29
31f961a8 30static void sum_vm_events(unsigned long *ret)
f8891e5e 31{
9eccf2a8 32 int cpu;
f8891e5e
CL
33 int i;
34
35 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
36
31f961a8 37 for_each_online_cpu(cpu) {
f8891e5e
CL
38 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
39
f8891e5e
CL
40 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
41 ret[i] += this->event[i];
42 }
43}
44
45/*
46 * Accumulate the vm event counters across all CPUs.
47 * The result is unavoidably approximate - it can change
48 * during and after execution of this function.
49*/
50void all_vm_events(unsigned long *ret)
51{
b5be1132 52 get_online_cpus();
31f961a8 53 sum_vm_events(ret);
b5be1132 54 put_online_cpus();
f8891e5e 55}
32dd66fc 56EXPORT_SYMBOL_GPL(all_vm_events);
f8891e5e 57
f8891e5e
CL
58/*
59 * Fold the foreign cpu events into our own.
60 *
61 * This is adding to the events on one processor
62 * but keeps the global counts constant.
63 */
64void vm_events_fold_cpu(int cpu)
65{
66 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
67 int i;
68
69 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
70 count_vm_events(i, fold_state->event[i]);
71 fold_state->event[i] = 0;
72 }
73}
f8891e5e
CL
74
75#endif /* CONFIG_VM_EVENT_COUNTERS */
76
2244b95a
CL
77/*
78 * Manage combined zone based / global counters
79 *
80 * vm_stat contains the global counters
81 */
a1cb2c60 82atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
2244b95a
CL
83EXPORT_SYMBOL(vm_stat);
84
85#ifdef CONFIG_SMP
86
b44129b3 87int calculate_pressure_threshold(struct zone *zone)
88f5acf8
MG
88{
89 int threshold;
90 int watermark_distance;
91
92 /*
93 * As vmstats are not up to date, there is drift between the estimated
94 * and real values. For high thresholds and a high number of CPUs, it
95 * is possible for the min watermark to be breached while the estimated
96 * value looks fine. The pressure threshold is a reduced value such
97 * that even the maximum amount of drift will not accidentally breach
98 * the min watermark
99 */
100 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
101 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
102
103 /*
104 * Maximum threshold is 125
105 */
106 threshold = min(125, threshold);
107
108 return threshold;
109}
110
b44129b3 111int calculate_normal_threshold(struct zone *zone)
df9ecaba
CL
112{
113 int threshold;
114 int mem; /* memory in 128 MB units */
115
116 /*
117 * The threshold scales with the number of processors and the amount
118 * of memory per zone. More memory means that we can defer updates for
119 * longer, more processors could lead to more contention.
120 * fls() is used to have a cheap way of logarithmic scaling.
121 *
122 * Some sample thresholds:
123 *
124 * Threshold Processors (fls) Zonesize fls(mem+1)
125 * ------------------------------------------------------------------
126 * 8 1 1 0.9-1 GB 4
127 * 16 2 2 0.9-1 GB 4
128 * 20 2 2 1-2 GB 5
129 * 24 2 2 2-4 GB 6
130 * 28 2 2 4-8 GB 7
131 * 32 2 2 8-16 GB 8
132 * 4 2 2 <128M 1
133 * 30 4 3 2-4 GB 5
134 * 48 4 3 8-16 GB 8
135 * 32 8 4 1-2 GB 4
136 * 32 8 4 0.9-1GB 4
137 * 10 16 5 <128M 1
138 * 40 16 5 900M 4
139 * 70 64 7 2-4 GB 5
140 * 84 64 7 4-8 GB 6
141 * 108 512 9 4-8 GB 6
142 * 125 1024 10 8-16 GB 8
143 * 125 1024 10 16-32 GB 9
144 */
145
b40da049 146 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
df9ecaba
CL
147
148 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
149
150 /*
151 * Maximum threshold is 125
152 */
153 threshold = min(125, threshold);
154
155 return threshold;
156}
2244b95a
CL
157
158/*
df9ecaba 159 * Refresh the thresholds for each zone.
2244b95a 160 */
a6cccdc3 161void refresh_zone_stat_thresholds(void)
2244b95a 162{
df9ecaba
CL
163 struct zone *zone;
164 int cpu;
165 int threshold;
166
ee99c71c 167 for_each_populated_zone(zone) {
aa454840
CL
168 unsigned long max_drift, tolerate_drift;
169
b44129b3 170 threshold = calculate_normal_threshold(zone);
df9ecaba
CL
171
172 for_each_online_cpu(cpu)
99dcc3e5
CL
173 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
174 = threshold;
aa454840
CL
175
176 /*
177 * Only set percpu_drift_mark if there is a danger that
178 * NR_FREE_PAGES reports the low watermark is ok when in fact
179 * the min watermark could be breached by an allocation
180 */
181 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
182 max_drift = num_online_cpus() * threshold;
183 if (max_drift > tolerate_drift)
184 zone->percpu_drift_mark = high_wmark_pages(zone) +
185 max_drift;
df9ecaba 186 }
2244b95a
CL
187}
188
b44129b3
MG
189void set_pgdat_percpu_threshold(pg_data_t *pgdat,
190 int (*calculate_pressure)(struct zone *))
88f5acf8
MG
191{
192 struct zone *zone;
193 int cpu;
194 int threshold;
195 int i;
196
88f5acf8
MG
197 for (i = 0; i < pgdat->nr_zones; i++) {
198 zone = &pgdat->node_zones[i];
199 if (!zone->percpu_drift_mark)
200 continue;
201
b44129b3 202 threshold = (*calculate_pressure)(zone);
bb0b6dff 203 for_each_online_cpu(cpu)
88f5acf8
MG
204 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
205 = threshold;
206 }
88f5acf8
MG
207}
208
2244b95a 209/*
bea04b07
JZ
210 * For use when we know that interrupts are disabled,
211 * or when we know that preemption is disabled and that
212 * particular counter cannot be updated from interrupt context.
2244b95a
CL
213 */
214void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
215 int delta)
216{
12938a92
CL
217 struct per_cpu_pageset __percpu *pcp = zone->pageset;
218 s8 __percpu *p = pcp->vm_stat_diff + item;
2244b95a 219 long x;
12938a92
CL
220 long t;
221
222 x = delta + __this_cpu_read(*p);
2244b95a 223
12938a92 224 t = __this_cpu_read(pcp->stat_threshold);
2244b95a 225
12938a92 226 if (unlikely(x > t || x < -t)) {
2244b95a
CL
227 zone_page_state_add(x, zone, item);
228 x = 0;
229 }
12938a92 230 __this_cpu_write(*p, x);
2244b95a
CL
231}
232EXPORT_SYMBOL(__mod_zone_page_state);
233
2244b95a
CL
234/*
235 * Optimized increment and decrement functions.
236 *
237 * These are only for a single page and therefore can take a struct page *
238 * argument instead of struct zone *. This allows the inclusion of the code
239 * generated for page_zone(page) into the optimized functions.
240 *
241 * No overflow check is necessary and therefore the differential can be
242 * incremented or decremented in place which may allow the compilers to
243 * generate better code.
2244b95a
CL
244 * The increment or decrement is known and therefore one boundary check can
245 * be omitted.
246 *
df9ecaba
CL
247 * NOTE: These functions are very performance sensitive. Change only
248 * with care.
249 *
2244b95a
CL
250 * Some processors have inc/dec instructions that are atomic vs an interrupt.
251 * However, the code must first determine the differential location in a zone
252 * based on the processor number and then inc/dec the counter. There is no
253 * guarantee without disabling preemption that the processor will not change
254 * in between and therefore the atomicity vs. interrupt cannot be exploited
255 * in a useful way here.
256 */
c8785385 257void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
2244b95a 258{
12938a92
CL
259 struct per_cpu_pageset __percpu *pcp = zone->pageset;
260 s8 __percpu *p = pcp->vm_stat_diff + item;
261 s8 v, t;
2244b95a 262
908ee0f1 263 v = __this_cpu_inc_return(*p);
12938a92
CL
264 t = __this_cpu_read(pcp->stat_threshold);
265 if (unlikely(v > t)) {
266 s8 overstep = t >> 1;
df9ecaba 267
12938a92
CL
268 zone_page_state_add(v + overstep, zone, item);
269 __this_cpu_write(*p, -overstep);
2244b95a
CL
270 }
271}
ca889e6c
CL
272
273void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
274{
275 __inc_zone_state(page_zone(page), item);
276}
2244b95a
CL
277EXPORT_SYMBOL(__inc_zone_page_state);
278
c8785385 279void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
2244b95a 280{
12938a92
CL
281 struct per_cpu_pageset __percpu *pcp = zone->pageset;
282 s8 __percpu *p = pcp->vm_stat_diff + item;
283 s8 v, t;
2244b95a 284
908ee0f1 285 v = __this_cpu_dec_return(*p);
12938a92
CL
286 t = __this_cpu_read(pcp->stat_threshold);
287 if (unlikely(v < - t)) {
288 s8 overstep = t >> 1;
2244b95a 289
12938a92
CL
290 zone_page_state_add(v - overstep, zone, item);
291 __this_cpu_write(*p, overstep);
2244b95a
CL
292 }
293}
c8785385
CL
294
295void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
296{
297 __dec_zone_state(page_zone(page), item);
298}
2244b95a
CL
299EXPORT_SYMBOL(__dec_zone_page_state);
300
4156153c 301#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
7c839120
CL
302/*
303 * If we have cmpxchg_local support then we do not need to incur the overhead
304 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
305 *
306 * mod_state() modifies the zone counter state through atomic per cpu
307 * operations.
308 *
309 * Overstep mode specifies how overstep should handled:
310 * 0 No overstepping
311 * 1 Overstepping half of threshold
312 * -1 Overstepping minus half of threshold
313*/
314static inline void mod_state(struct zone *zone,
315 enum zone_stat_item item, int delta, int overstep_mode)
316{
317 struct per_cpu_pageset __percpu *pcp = zone->pageset;
318 s8 __percpu *p = pcp->vm_stat_diff + item;
319 long o, n, t, z;
320
321 do {
322 z = 0; /* overflow to zone counters */
323
324 /*
325 * The fetching of the stat_threshold is racy. We may apply
326 * a counter threshold to the wrong the cpu if we get
d3bc2367
CL
327 * rescheduled while executing here. However, the next
328 * counter update will apply the threshold again and
329 * therefore bring the counter under the threshold again.
330 *
331 * Most of the time the thresholds are the same anyways
332 * for all cpus in a zone.
7c839120
CL
333 */
334 t = this_cpu_read(pcp->stat_threshold);
335
336 o = this_cpu_read(*p);
337 n = delta + o;
338
339 if (n > t || n < -t) {
340 int os = overstep_mode * (t >> 1) ;
341
342 /* Overflow must be added to zone counters */
343 z = n + os;
344 n = -os;
345 }
346 } while (this_cpu_cmpxchg(*p, o, n) != o);
347
348 if (z)
349 zone_page_state_add(z, zone, item);
350}
351
352void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
353 int delta)
354{
355 mod_state(zone, item, delta, 0);
356}
357EXPORT_SYMBOL(mod_zone_page_state);
358
359void inc_zone_state(struct zone *zone, enum zone_stat_item item)
360{
361 mod_state(zone, item, 1, 1);
362}
363
364void inc_zone_page_state(struct page *page, enum zone_stat_item item)
365{
366 mod_state(page_zone(page), item, 1, 1);
367}
368EXPORT_SYMBOL(inc_zone_page_state);
369
370void dec_zone_page_state(struct page *page, enum zone_stat_item item)
371{
372 mod_state(page_zone(page), item, -1, -1);
373}
374EXPORT_SYMBOL(dec_zone_page_state);
375#else
376/*
377 * Use interrupt disable to serialize counter updates
378 */
379void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
380 int delta)
381{
382 unsigned long flags;
383
384 local_irq_save(flags);
385 __mod_zone_page_state(zone, item, delta);
386 local_irq_restore(flags);
387}
388EXPORT_SYMBOL(mod_zone_page_state);
389
ca889e6c
CL
390void inc_zone_state(struct zone *zone, enum zone_stat_item item)
391{
392 unsigned long flags;
393
394 local_irq_save(flags);
395 __inc_zone_state(zone, item);
396 local_irq_restore(flags);
397}
398
2244b95a
CL
399void inc_zone_page_state(struct page *page, enum zone_stat_item item)
400{
401 unsigned long flags;
402 struct zone *zone;
2244b95a
CL
403
404 zone = page_zone(page);
405 local_irq_save(flags);
ca889e6c 406 __inc_zone_state(zone, item);
2244b95a
CL
407 local_irq_restore(flags);
408}
409EXPORT_SYMBOL(inc_zone_page_state);
410
411void dec_zone_page_state(struct page *page, enum zone_stat_item item)
412{
413 unsigned long flags;
2244b95a 414
2244b95a 415 local_irq_save(flags);
a302eb4e 416 __dec_zone_page_state(page, item);
2244b95a
CL
417 local_irq_restore(flags);
418}
419EXPORT_SYMBOL(dec_zone_page_state);
7c839120 420#endif
2244b95a 421
4edb0748
CL
422static inline void fold_diff(int *diff)
423{
424 int i;
425
426 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
427 if (diff[i])
428 atomic_long_add(diff[i], &vm_stat[i]);
429}
430
2244b95a 431/*
2bb921e5 432 * Update the zone counters for the current cpu.
a7f75e25 433 *
4037d452
CL
434 * Note that refresh_cpu_vm_stats strives to only access
435 * node local memory. The per cpu pagesets on remote zones are placed
436 * in the memory local to the processor using that pageset. So the
437 * loop over all zones will access a series of cachelines local to
438 * the processor.
439 *
440 * The call to zone_page_state_add updates the cachelines with the
441 * statistics in the remote zone struct as well as the global cachelines
442 * with the global counters. These could cause remote node cache line
443 * bouncing and will have to be only done when necessary.
2244b95a 444 */
fbc2edb0 445static void refresh_cpu_vm_stats(void)
2244b95a
CL
446{
447 struct zone *zone;
448 int i;
a7f75e25 449 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
2244b95a 450
ee99c71c 451 for_each_populated_zone(zone) {
fbc2edb0 452 struct per_cpu_pageset __percpu *p = zone->pageset;
2244b95a 453
fbc2edb0
CL
454 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
455 int v;
2244b95a 456
fbc2edb0
CL
457 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
458 if (v) {
a7f75e25 459
a7f75e25
CL
460 atomic_long_add(v, &zone->vm_stat[i]);
461 global_diff[i] += v;
4037d452
CL
462#ifdef CONFIG_NUMA
463 /* 3 seconds idle till flush */
fbc2edb0 464 __this_cpu_write(p->expire, 3);
4037d452 465#endif
2244b95a 466 }
fbc2edb0 467 }
468fd62e 468 cond_resched();
4037d452
CL
469#ifdef CONFIG_NUMA
470 /*
471 * Deal with draining the remote pageset of this
472 * processor
473 *
474 * Check if there are pages remaining in this pageset
475 * if not then there is nothing to expire.
476 */
fbc2edb0
CL
477 if (!__this_cpu_read(p->expire) ||
478 !__this_cpu_read(p->pcp.count))
4037d452
CL
479 continue;
480
481 /*
482 * We never drain zones local to this processor.
483 */
484 if (zone_to_nid(zone) == numa_node_id()) {
fbc2edb0 485 __this_cpu_write(p->expire, 0);
4037d452
CL
486 continue;
487 }
488
fbc2edb0
CL
489
490 if (__this_cpu_dec_return(p->expire))
4037d452
CL
491 continue;
492
fbc2edb0 493 if (__this_cpu_read(p->pcp.count))
7c8e0181 494 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
4037d452 495#endif
2244b95a 496 }
4edb0748 497 fold_diff(global_diff);
2244b95a
CL
498}
499
2bb921e5
CL
500/*
501 * Fold the data for an offline cpu into the global array.
502 * There cannot be any access by the offline cpu and therefore
503 * synchronization is simplified.
504 */
505void cpu_vm_stats_fold(int cpu)
506{
507 struct zone *zone;
508 int i;
509 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
510
511 for_each_populated_zone(zone) {
512 struct per_cpu_pageset *p;
513
514 p = per_cpu_ptr(zone->pageset, cpu);
515
516 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
517 if (p->vm_stat_diff[i]) {
518 int v;
519
520 v = p->vm_stat_diff[i];
521 p->vm_stat_diff[i] = 0;
522 atomic_long_add(v, &zone->vm_stat[i]);
523 global_diff[i] += v;
524 }
525 }
526
4edb0748 527 fold_diff(global_diff);
2bb921e5
CL
528}
529
40f4b1ea
CS
530/*
531 * this is only called if !populated_zone(zone), which implies no other users of
532 * pset->vm_stat_diff[] exsist.
533 */
5a883813
MK
534void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
535{
536 int i;
537
538 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
539 if (pset->vm_stat_diff[i]) {
540 int v = pset->vm_stat_diff[i];
541 pset->vm_stat_diff[i] = 0;
542 atomic_long_add(v, &zone->vm_stat[i]);
543 atomic_long_add(v, &vm_stat[i]);
544 }
545}
2244b95a
CL
546#endif
547
ca889e6c
CL
548#ifdef CONFIG_NUMA
549/*
550 * zonelist = the list of zones passed to the allocator
551 * z = the zone from which the allocation occurred.
552 *
553 * Must be called with interrupts disabled.
78afd561
AK
554 *
555 * When __GFP_OTHER_NODE is set assume the node of the preferred
556 * zone is the local node. This is useful for daemons who allocate
557 * memory on behalf of other processes.
ca889e6c 558 */
78afd561 559void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
ca889e6c 560{
18ea7e71 561 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
ca889e6c
CL
562 __inc_zone_state(z, NUMA_HIT);
563 } else {
564 __inc_zone_state(z, NUMA_MISS);
18ea7e71 565 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
ca889e6c 566 }
78afd561
AK
567 if (z->node == ((flags & __GFP_OTHER_NODE) ?
568 preferred_zone->node : numa_node_id()))
ca889e6c
CL
569 __inc_zone_state(z, NUMA_LOCAL);
570 else
571 __inc_zone_state(z, NUMA_OTHER);
572}
573#endif
574
d7a5752c 575#ifdef CONFIG_COMPACTION
36deb0be 576
d7a5752c
MG
577struct contig_page_info {
578 unsigned long free_pages;
579 unsigned long free_blocks_total;
580 unsigned long free_blocks_suitable;
581};
582
583/*
584 * Calculate the number of free pages in a zone, how many contiguous
585 * pages are free and how many are large enough to satisfy an allocation of
586 * the target size. Note that this function makes no attempt to estimate
587 * how many suitable free blocks there *might* be if MOVABLE pages were
588 * migrated. Calculating that is possible, but expensive and can be
589 * figured out from userspace
590 */
591static void fill_contig_page_info(struct zone *zone,
592 unsigned int suitable_order,
593 struct contig_page_info *info)
594{
595 unsigned int order;
596
597 info->free_pages = 0;
598 info->free_blocks_total = 0;
599 info->free_blocks_suitable = 0;
600
601 for (order = 0; order < MAX_ORDER; order++) {
602 unsigned long blocks;
603
604 /* Count number of free blocks */
605 blocks = zone->free_area[order].nr_free;
606 info->free_blocks_total += blocks;
607
608 /* Count free base pages */
609 info->free_pages += blocks << order;
610
611 /* Count the suitable free blocks */
612 if (order >= suitable_order)
613 info->free_blocks_suitable += blocks <<
614 (order - suitable_order);
615 }
616}
f1a5ab12
MG
617
618/*
619 * A fragmentation index only makes sense if an allocation of a requested
620 * size would fail. If that is true, the fragmentation index indicates
621 * whether external fragmentation or a lack of memory was the problem.
622 * The value can be used to determine if page reclaim or compaction
623 * should be used
624 */
56de7263 625static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
f1a5ab12
MG
626{
627 unsigned long requested = 1UL << order;
628
629 if (!info->free_blocks_total)
630 return 0;
631
632 /* Fragmentation index only makes sense when a request would fail */
633 if (info->free_blocks_suitable)
634 return -1000;
635
636 /*
637 * Index is between 0 and 1 so return within 3 decimal places
638 *
639 * 0 => allocation would fail due to lack of memory
640 * 1 => allocation would fail due to fragmentation
641 */
642 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
643}
56de7263
MG
644
645/* Same as __fragmentation index but allocs contig_page_info on stack */
646int fragmentation_index(struct zone *zone, unsigned int order)
647{
648 struct contig_page_info info;
649
650 fill_contig_page_info(zone, order, &info);
651 return __fragmentation_index(order, &info);
652}
d7a5752c
MG
653#endif
654
655#if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
8f32f7e5 656#include <linux/proc_fs.h>
f6ac2354
CL
657#include <linux/seq_file.h>
658
467c996c
MG
659static char * const migratetype_names[MIGRATE_TYPES] = {
660 "Unmovable",
661 "Reclaimable",
662 "Movable",
663 "Reserve",
47118af0
MN
664#ifdef CONFIG_CMA
665 "CMA",
666#endif
194159fb 667#ifdef CONFIG_MEMORY_ISOLATION
91446b06 668 "Isolate",
194159fb 669#endif
467c996c
MG
670};
671
f6ac2354
CL
672static void *frag_start(struct seq_file *m, loff_t *pos)
673{
674 pg_data_t *pgdat;
675 loff_t node = *pos;
676 for (pgdat = first_online_pgdat();
677 pgdat && node;
678 pgdat = next_online_pgdat(pgdat))
679 --node;
680
681 return pgdat;
682}
683
684static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
685{
686 pg_data_t *pgdat = (pg_data_t *)arg;
687
688 (*pos)++;
689 return next_online_pgdat(pgdat);
690}
691
692static void frag_stop(struct seq_file *m, void *arg)
693{
694}
695
467c996c
MG
696/* Walk all the zones in a node and print using a callback */
697static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
698 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
f6ac2354 699{
f6ac2354
CL
700 struct zone *zone;
701 struct zone *node_zones = pgdat->node_zones;
702 unsigned long flags;
f6ac2354
CL
703
704 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
705 if (!populated_zone(zone))
706 continue;
707
708 spin_lock_irqsave(&zone->lock, flags);
467c996c 709 print(m, pgdat, zone);
f6ac2354 710 spin_unlock_irqrestore(&zone->lock, flags);
467c996c
MG
711 }
712}
d7a5752c 713#endif
467c996c 714
0d6617c7 715#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
fa25c503
KM
716#ifdef CONFIG_ZONE_DMA
717#define TEXT_FOR_DMA(xx) xx "_dma",
718#else
719#define TEXT_FOR_DMA(xx)
720#endif
721
722#ifdef CONFIG_ZONE_DMA32
723#define TEXT_FOR_DMA32(xx) xx "_dma32",
724#else
725#define TEXT_FOR_DMA32(xx)
726#endif
727
728#ifdef CONFIG_HIGHMEM
729#define TEXT_FOR_HIGHMEM(xx) xx "_high",
730#else
731#define TEXT_FOR_HIGHMEM(xx)
732#endif
733
734#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
735 TEXT_FOR_HIGHMEM(xx) xx "_movable",
736
737const char * const vmstat_text[] = {
09316c09 738 /* enum zone_stat_item countes */
fa25c503 739 "nr_free_pages",
81c0a2bb 740 "nr_alloc_batch",
fa25c503
KM
741 "nr_inactive_anon",
742 "nr_active_anon",
743 "nr_inactive_file",
744 "nr_active_file",
745 "nr_unevictable",
746 "nr_mlock",
747 "nr_anon_pages",
748 "nr_mapped",
749 "nr_file_pages",
750 "nr_dirty",
751 "nr_writeback",
752 "nr_slab_reclaimable",
753 "nr_slab_unreclaimable",
754 "nr_page_table_pages",
755 "nr_kernel_stack",
756 "nr_unstable",
757 "nr_bounce",
758 "nr_vmscan_write",
49ea7eb6 759 "nr_vmscan_immediate_reclaim",
fa25c503
KM
760 "nr_writeback_temp",
761 "nr_isolated_anon",
762 "nr_isolated_file",
763 "nr_shmem",
764 "nr_dirtied",
765 "nr_written",
0d5d823a 766 "nr_pages_scanned",
fa25c503
KM
767
768#ifdef CONFIG_NUMA
769 "numa_hit",
770 "numa_miss",
771 "numa_foreign",
772 "numa_interleave",
773 "numa_local",
774 "numa_other",
775#endif
a528910e
JW
776 "workingset_refault",
777 "workingset_activate",
449dd698 778 "workingset_nodereclaim",
fa25c503 779 "nr_anon_transparent_hugepages",
d1ce749a 780 "nr_free_cma",
09316c09
KK
781
782 /* enum writeback_stat_item counters */
fa25c503
KM
783 "nr_dirty_threshold",
784 "nr_dirty_background_threshold",
785
786#ifdef CONFIG_VM_EVENT_COUNTERS
09316c09 787 /* enum vm_event_item counters */
fa25c503
KM
788 "pgpgin",
789 "pgpgout",
790 "pswpin",
791 "pswpout",
792
793 TEXTS_FOR_ZONES("pgalloc")
794
795 "pgfree",
796 "pgactivate",
797 "pgdeactivate",
798
799 "pgfault",
800 "pgmajfault",
801
802 TEXTS_FOR_ZONES("pgrefill")
904249aa
YH
803 TEXTS_FOR_ZONES("pgsteal_kswapd")
804 TEXTS_FOR_ZONES("pgsteal_direct")
fa25c503
KM
805 TEXTS_FOR_ZONES("pgscan_kswapd")
806 TEXTS_FOR_ZONES("pgscan_direct")
68243e76 807 "pgscan_direct_throttle",
fa25c503
KM
808
809#ifdef CONFIG_NUMA
810 "zone_reclaim_failed",
811#endif
812 "pginodesteal",
813 "slabs_scanned",
fa25c503
KM
814 "kswapd_inodesteal",
815 "kswapd_low_wmark_hit_quickly",
816 "kswapd_high_wmark_hit_quickly",
fa25c503
KM
817 "pageoutrun",
818 "allocstall",
819
820 "pgrotated",
821
5509a5d2
DH
822 "drop_pagecache",
823 "drop_slab",
824
03c5a6e1
MG
825#ifdef CONFIG_NUMA_BALANCING
826 "numa_pte_updates",
72403b4a 827 "numa_huge_pte_updates",
03c5a6e1
MG
828 "numa_hint_faults",
829 "numa_hint_faults_local",
830 "numa_pages_migrated",
831#endif
5647bc29
MG
832#ifdef CONFIG_MIGRATION
833 "pgmigrate_success",
834 "pgmigrate_fail",
835#endif
fa25c503 836#ifdef CONFIG_COMPACTION
397487db
MG
837 "compact_migrate_scanned",
838 "compact_free_scanned",
839 "compact_isolated",
fa25c503
KM
840 "compact_stall",
841 "compact_fail",
842 "compact_success",
843#endif
844
845#ifdef CONFIG_HUGETLB_PAGE
846 "htlb_buddy_alloc_success",
847 "htlb_buddy_alloc_fail",
848#endif
849 "unevictable_pgs_culled",
850 "unevictable_pgs_scanned",
851 "unevictable_pgs_rescued",
852 "unevictable_pgs_mlocked",
853 "unevictable_pgs_munlocked",
854 "unevictable_pgs_cleared",
855 "unevictable_pgs_stranded",
fa25c503
KM
856
857#ifdef CONFIG_TRANSPARENT_HUGEPAGE
858 "thp_fault_alloc",
859 "thp_fault_fallback",
860 "thp_collapse_alloc",
861 "thp_collapse_alloc_failed",
862 "thp_split",
d8a8e1f0
KS
863 "thp_zero_page_alloc",
864 "thp_zero_page_alloc_failed",
fa25c503 865#endif
09316c09
KK
866#ifdef CONFIG_MEMORY_BALLOON
867 "balloon_inflate",
868 "balloon_deflate",
869#ifdef CONFIG_BALLOON_COMPACTION
870 "balloon_migrate",
871#endif
872#endif /* CONFIG_MEMORY_BALLOON */
ec659934 873#ifdef CONFIG_DEBUG_TLBFLUSH
6df46865 874#ifdef CONFIG_SMP
9824cf97
DH
875 "nr_tlb_remote_flush",
876 "nr_tlb_remote_flush_received",
ec659934 877#endif /* CONFIG_SMP */
9824cf97
DH
878 "nr_tlb_local_flush_all",
879 "nr_tlb_local_flush_one",
ec659934 880#endif /* CONFIG_DEBUG_TLBFLUSH */
fa25c503 881
4f115147
DB
882#ifdef CONFIG_DEBUG_VM_VMACACHE
883 "vmacache_find_calls",
884 "vmacache_find_hits",
885#endif
fa25c503
KM
886#endif /* CONFIG_VM_EVENTS_COUNTERS */
887};
0d6617c7 888#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
fa25c503
KM
889
890
d7a5752c 891#ifdef CONFIG_PROC_FS
467c996c
MG
892static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
893 struct zone *zone)
894{
895 int order;
896
897 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
898 for (order = 0; order < MAX_ORDER; ++order)
899 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
900 seq_putc(m, '\n');
901}
902
903/*
904 * This walks the free areas for each zone.
905 */
906static int frag_show(struct seq_file *m, void *arg)
907{
908 pg_data_t *pgdat = (pg_data_t *)arg;
909 walk_zones_in_node(m, pgdat, frag_show_print);
910 return 0;
911}
912
913static void pagetypeinfo_showfree_print(struct seq_file *m,
914 pg_data_t *pgdat, struct zone *zone)
915{
916 int order, mtype;
917
918 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
919 seq_printf(m, "Node %4d, zone %8s, type %12s ",
920 pgdat->node_id,
921 zone->name,
922 migratetype_names[mtype]);
923 for (order = 0; order < MAX_ORDER; ++order) {
924 unsigned long freecount = 0;
925 struct free_area *area;
926 struct list_head *curr;
927
928 area = &(zone->free_area[order]);
929
930 list_for_each(curr, &area->free_list[mtype])
931 freecount++;
932 seq_printf(m, "%6lu ", freecount);
933 }
f6ac2354
CL
934 seq_putc(m, '\n');
935 }
467c996c
MG
936}
937
938/* Print out the free pages at each order for each migatetype */
939static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
940{
941 int order;
942 pg_data_t *pgdat = (pg_data_t *)arg;
943
944 /* Print header */
945 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
946 for (order = 0; order < MAX_ORDER; ++order)
947 seq_printf(m, "%6d ", order);
948 seq_putc(m, '\n');
949
950 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
951
952 return 0;
953}
954
955static void pagetypeinfo_showblockcount_print(struct seq_file *m,
956 pg_data_t *pgdat, struct zone *zone)
957{
958 int mtype;
959 unsigned long pfn;
960 unsigned long start_pfn = zone->zone_start_pfn;
108bcc96 961 unsigned long end_pfn = zone_end_pfn(zone);
467c996c
MG
962 unsigned long count[MIGRATE_TYPES] = { 0, };
963
964 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
965 struct page *page;
966
967 if (!pfn_valid(pfn))
968 continue;
969
970 page = pfn_to_page(pfn);
eb33575c
MG
971
972 /* Watch for unexpected holes punched in the memmap */
973 if (!memmap_valid_within(pfn, page, zone))
e80d6a24 974 continue;
eb33575c 975
467c996c
MG
976 mtype = get_pageblock_migratetype(page);
977
e80d6a24
MG
978 if (mtype < MIGRATE_TYPES)
979 count[mtype]++;
467c996c
MG
980 }
981
982 /* Print counts */
983 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
984 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
985 seq_printf(m, "%12lu ", count[mtype]);
986 seq_putc(m, '\n');
987}
988
989/* Print out the free pages at each order for each migratetype */
990static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
991{
992 int mtype;
993 pg_data_t *pgdat = (pg_data_t *)arg;
994
995 seq_printf(m, "\n%-23s", "Number of blocks type ");
996 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
997 seq_printf(m, "%12s ", migratetype_names[mtype]);
998 seq_putc(m, '\n');
999 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1000
1001 return 0;
1002}
1003
1004/*
1005 * This prints out statistics in relation to grouping pages by mobility.
1006 * It is expensive to collect so do not constantly read the file.
1007 */
1008static int pagetypeinfo_show(struct seq_file *m, void *arg)
1009{
1010 pg_data_t *pgdat = (pg_data_t *)arg;
1011
41b25a37 1012 /* check memoryless node */
a47b53c5 1013 if (!node_state(pgdat->node_id, N_MEMORY))
41b25a37
KM
1014 return 0;
1015
467c996c
MG
1016 seq_printf(m, "Page block order: %d\n", pageblock_order);
1017 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1018 seq_putc(m, '\n');
1019 pagetypeinfo_showfree(m, pgdat);
1020 pagetypeinfo_showblockcount(m, pgdat);
1021
f6ac2354
CL
1022 return 0;
1023}
1024
8f32f7e5 1025static const struct seq_operations fragmentation_op = {
f6ac2354
CL
1026 .start = frag_start,
1027 .next = frag_next,
1028 .stop = frag_stop,
1029 .show = frag_show,
1030};
1031
8f32f7e5
AD
1032static int fragmentation_open(struct inode *inode, struct file *file)
1033{
1034 return seq_open(file, &fragmentation_op);
1035}
1036
1037static const struct file_operations fragmentation_file_operations = {
1038 .open = fragmentation_open,
1039 .read = seq_read,
1040 .llseek = seq_lseek,
1041 .release = seq_release,
1042};
1043
74e2e8e8 1044static const struct seq_operations pagetypeinfo_op = {
467c996c
MG
1045 .start = frag_start,
1046 .next = frag_next,
1047 .stop = frag_stop,
1048 .show = pagetypeinfo_show,
1049};
1050
74e2e8e8
AD
1051static int pagetypeinfo_open(struct inode *inode, struct file *file)
1052{
1053 return seq_open(file, &pagetypeinfo_op);
1054}
1055
1056static const struct file_operations pagetypeinfo_file_ops = {
1057 .open = pagetypeinfo_open,
1058 .read = seq_read,
1059 .llseek = seq_lseek,
1060 .release = seq_release,
1061};
1062
467c996c
MG
1063static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1064 struct zone *zone)
f6ac2354 1065{
467c996c
MG
1066 int i;
1067 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1068 seq_printf(m,
1069 "\n pages free %lu"
1070 "\n min %lu"
1071 "\n low %lu"
1072 "\n high %lu"
08d9ae7c 1073 "\n scanned %lu"
467c996c 1074 "\n spanned %lu"
9feedc9d
JL
1075 "\n present %lu"
1076 "\n managed %lu",
88f5acf8 1077 zone_page_state(zone, NR_FREE_PAGES),
41858966
MG
1078 min_wmark_pages(zone),
1079 low_wmark_pages(zone),
1080 high_wmark_pages(zone),
0d5d823a 1081 zone_page_state(zone, NR_PAGES_SCANNED),
467c996c 1082 zone->spanned_pages,
9feedc9d
JL
1083 zone->present_pages,
1084 zone->managed_pages);
467c996c
MG
1085
1086 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1087 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1088 zone_page_state(zone, i));
1089
1090 seq_printf(m,
3484b2de 1091 "\n protection: (%ld",
467c996c
MG
1092 zone->lowmem_reserve[0]);
1093 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
3484b2de 1094 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
467c996c
MG
1095 seq_printf(m,
1096 ")"
1097 "\n pagesets");
1098 for_each_online_cpu(i) {
1099 struct per_cpu_pageset *pageset;
467c996c 1100
99dcc3e5 1101 pageset = per_cpu_ptr(zone->pageset, i);
3dfa5721
CL
1102 seq_printf(m,
1103 "\n cpu: %i"
1104 "\n count: %i"
1105 "\n high: %i"
1106 "\n batch: %i",
1107 i,
1108 pageset->pcp.count,
1109 pageset->pcp.high,
1110 pageset->pcp.batch);
df9ecaba 1111#ifdef CONFIG_SMP
467c996c
MG
1112 seq_printf(m, "\n vm stats threshold: %d",
1113 pageset->stat_threshold);
df9ecaba 1114#endif
f6ac2354 1115 }
467c996c
MG
1116 seq_printf(m,
1117 "\n all_unreclaimable: %u"
556adecb
RR
1118 "\n start_pfn: %lu"
1119 "\n inactive_ratio: %u",
6e543d57 1120 !zone_reclaimable(zone),
556adecb
RR
1121 zone->zone_start_pfn,
1122 zone->inactive_ratio);
467c996c
MG
1123 seq_putc(m, '\n');
1124}
1125
1126/*
1127 * Output information about zones in @pgdat.
1128 */
1129static int zoneinfo_show(struct seq_file *m, void *arg)
1130{
1131 pg_data_t *pgdat = (pg_data_t *)arg;
1132 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
f6ac2354
CL
1133 return 0;
1134}
1135
5c9fe628 1136static const struct seq_operations zoneinfo_op = {
f6ac2354
CL
1137 .start = frag_start, /* iterate over all zones. The same as in
1138 * fragmentation. */
1139 .next = frag_next,
1140 .stop = frag_stop,
1141 .show = zoneinfo_show,
1142};
1143
5c9fe628
AD
1144static int zoneinfo_open(struct inode *inode, struct file *file)
1145{
1146 return seq_open(file, &zoneinfo_op);
1147}
1148
1149static const struct file_operations proc_zoneinfo_file_operations = {
1150 .open = zoneinfo_open,
1151 .read = seq_read,
1152 .llseek = seq_lseek,
1153 .release = seq_release,
1154};
1155
79da826a
MR
1156enum writeback_stat_item {
1157 NR_DIRTY_THRESHOLD,
1158 NR_DIRTY_BG_THRESHOLD,
1159 NR_VM_WRITEBACK_STAT_ITEMS,
1160};
1161
f6ac2354
CL
1162static void *vmstat_start(struct seq_file *m, loff_t *pos)
1163{
2244b95a 1164 unsigned long *v;
79da826a 1165 int i, stat_items_size;
f6ac2354
CL
1166
1167 if (*pos >= ARRAY_SIZE(vmstat_text))
1168 return NULL;
79da826a
MR
1169 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1170 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
f6ac2354 1171
f8891e5e 1172#ifdef CONFIG_VM_EVENT_COUNTERS
79da826a 1173 stat_items_size += sizeof(struct vm_event_state);
f8891e5e 1174#endif
79da826a
MR
1175
1176 v = kmalloc(stat_items_size, GFP_KERNEL);
2244b95a
CL
1177 m->private = v;
1178 if (!v)
f6ac2354 1179 return ERR_PTR(-ENOMEM);
2244b95a
CL
1180 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1181 v[i] = global_page_state(i);
79da826a
MR
1182 v += NR_VM_ZONE_STAT_ITEMS;
1183
1184 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1185 v + NR_DIRTY_THRESHOLD);
1186 v += NR_VM_WRITEBACK_STAT_ITEMS;
1187
f8891e5e 1188#ifdef CONFIG_VM_EVENT_COUNTERS
79da826a
MR
1189 all_vm_events(v);
1190 v[PGPGIN] /= 2; /* sectors -> kbytes */
1191 v[PGPGOUT] /= 2;
f8891e5e 1192#endif
ff8b16d7 1193 return (unsigned long *)m->private + *pos;
f6ac2354
CL
1194}
1195
1196static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1197{
1198 (*pos)++;
1199 if (*pos >= ARRAY_SIZE(vmstat_text))
1200 return NULL;
1201 return (unsigned long *)m->private + *pos;
1202}
1203
1204static int vmstat_show(struct seq_file *m, void *arg)
1205{
1206 unsigned long *l = arg;
1207 unsigned long off = l - (unsigned long *)m->private;
1208
1209 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1210 return 0;
1211}
1212
1213static void vmstat_stop(struct seq_file *m, void *arg)
1214{
1215 kfree(m->private);
1216 m->private = NULL;
1217}
1218
b6aa44ab 1219static const struct seq_operations vmstat_op = {
f6ac2354
CL
1220 .start = vmstat_start,
1221 .next = vmstat_next,
1222 .stop = vmstat_stop,
1223 .show = vmstat_show,
1224};
1225
b6aa44ab
AD
1226static int vmstat_open(struct inode *inode, struct file *file)
1227{
1228 return seq_open(file, &vmstat_op);
1229}
1230
1231static const struct file_operations proc_vmstat_file_operations = {
1232 .open = vmstat_open,
1233 .read = seq_read,
1234 .llseek = seq_lseek,
1235 .release = seq_release,
1236};
f6ac2354
CL
1237#endif /* CONFIG_PROC_FS */
1238
df9ecaba 1239#ifdef CONFIG_SMP
d1187ed2 1240static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
77461ab3 1241int sysctl_stat_interval __read_mostly = HZ;
d1187ed2
CL
1242
1243static void vmstat_update(struct work_struct *w)
1244{
fbc2edb0 1245 refresh_cpu_vm_stats();
7c8e0181 1246 schedule_delayed_work(this_cpu_ptr(&vmstat_work),
98f4ebb2 1247 round_jiffies_relative(sysctl_stat_interval));
d1187ed2
CL
1248}
1249
0db0628d 1250static void start_cpu_timer(int cpu)
d1187ed2 1251{
1871e52c 1252 struct delayed_work *work = &per_cpu(vmstat_work, cpu);
d1187ed2 1253
203b42f7 1254 INIT_DEFERRABLE_WORK(work, vmstat_update);
1871e52c 1255 schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
d1187ed2
CL
1256}
1257
807a1bd2
TK
1258static void vmstat_cpu_dead(int node)
1259{
1260 int cpu;
1261
1262 get_online_cpus();
1263 for_each_online_cpu(cpu)
1264 if (cpu_to_node(cpu) == node)
1265 goto end;
1266
1267 node_clear_state(node, N_CPU);
1268end:
1269 put_online_cpus();
1270}
1271
df9ecaba
CL
1272/*
1273 * Use the cpu notifier to insure that the thresholds are recalculated
1274 * when necessary.
1275 */
0db0628d 1276static int vmstat_cpuup_callback(struct notifier_block *nfb,
df9ecaba
CL
1277 unsigned long action,
1278 void *hcpu)
1279{
d1187ed2
CL
1280 long cpu = (long)hcpu;
1281
df9ecaba 1282 switch (action) {
d1187ed2
CL
1283 case CPU_ONLINE:
1284 case CPU_ONLINE_FROZEN:
5ee28a44 1285 refresh_zone_stat_thresholds();
d1187ed2 1286 start_cpu_timer(cpu);
ad596925 1287 node_set_state(cpu_to_node(cpu), N_CPU);
d1187ed2
CL
1288 break;
1289 case CPU_DOWN_PREPARE:
1290 case CPU_DOWN_PREPARE_FROZEN:
afe2c511 1291 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
d1187ed2
CL
1292 per_cpu(vmstat_work, cpu).work.func = NULL;
1293 break;
1294 case CPU_DOWN_FAILED:
1295 case CPU_DOWN_FAILED_FROZEN:
1296 start_cpu_timer(cpu);
1297 break;
ce421c79 1298 case CPU_DEAD:
8bb78442 1299 case CPU_DEAD_FROZEN:
ce421c79 1300 refresh_zone_stat_thresholds();
807a1bd2 1301 vmstat_cpu_dead(cpu_to_node(cpu));
ce421c79
AW
1302 break;
1303 default:
1304 break;
df9ecaba
CL
1305 }
1306 return NOTIFY_OK;
1307}
1308
0db0628d 1309static struct notifier_block vmstat_notifier =
df9ecaba 1310 { &vmstat_cpuup_callback, NULL, 0 };
8f32f7e5 1311#endif
df9ecaba 1312
e2fc88d0 1313static int __init setup_vmstat(void)
df9ecaba 1314{
8f32f7e5 1315#ifdef CONFIG_SMP
d1187ed2
CL
1316 int cpu;
1317
0be94bad
SB
1318 cpu_notifier_register_begin();
1319 __register_cpu_notifier(&vmstat_notifier);
d1187ed2 1320
d7e0b37a 1321 for_each_online_cpu(cpu) {
d1187ed2 1322 start_cpu_timer(cpu);
d7e0b37a
TK
1323 node_set_state(cpu_to_node(cpu), N_CPU);
1324 }
0be94bad 1325 cpu_notifier_register_done();
8f32f7e5
AD
1326#endif
1327#ifdef CONFIG_PROC_FS
1328 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
74e2e8e8 1329 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
b6aa44ab 1330 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
5c9fe628 1331 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
8f32f7e5 1332#endif
df9ecaba
CL
1333 return 0;
1334}
1335module_init(setup_vmstat)
d7a5752c
MG
1336
1337#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1338#include <linux/debugfs.h>
1339
d7a5752c
MG
1340
1341/*
1342 * Return an index indicating how much of the available free memory is
1343 * unusable for an allocation of the requested size.
1344 */
1345static int unusable_free_index(unsigned int order,
1346 struct contig_page_info *info)
1347{
1348 /* No free memory is interpreted as all free memory is unusable */
1349 if (info->free_pages == 0)
1350 return 1000;
1351
1352 /*
1353 * Index should be a value between 0 and 1. Return a value to 3
1354 * decimal places.
1355 *
1356 * 0 => no fragmentation
1357 * 1 => high fragmentation
1358 */
1359 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1360
1361}
1362
1363static void unusable_show_print(struct seq_file *m,
1364 pg_data_t *pgdat, struct zone *zone)
1365{
1366 unsigned int order;
1367 int index;
1368 struct contig_page_info info;
1369
1370 seq_printf(m, "Node %d, zone %8s ",
1371 pgdat->node_id,
1372 zone->name);
1373 for (order = 0; order < MAX_ORDER; ++order) {
1374 fill_contig_page_info(zone, order, &info);
1375 index = unusable_free_index(order, &info);
1376 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1377 }
1378
1379 seq_putc(m, '\n');
1380}
1381
1382/*
1383 * Display unusable free space index
1384 *
1385 * The unusable free space index measures how much of the available free
1386 * memory cannot be used to satisfy an allocation of a given size and is a
1387 * value between 0 and 1. The higher the value, the more of free memory is
1388 * unusable and by implication, the worse the external fragmentation is. This
1389 * can be expressed as a percentage by multiplying by 100.
1390 */
1391static int unusable_show(struct seq_file *m, void *arg)
1392{
1393 pg_data_t *pgdat = (pg_data_t *)arg;
1394
1395 /* check memoryless node */
a47b53c5 1396 if (!node_state(pgdat->node_id, N_MEMORY))
d7a5752c
MG
1397 return 0;
1398
1399 walk_zones_in_node(m, pgdat, unusable_show_print);
1400
1401 return 0;
1402}
1403
1404static const struct seq_operations unusable_op = {
1405 .start = frag_start,
1406 .next = frag_next,
1407 .stop = frag_stop,
1408 .show = unusable_show,
1409};
1410
1411static int unusable_open(struct inode *inode, struct file *file)
1412{
1413 return seq_open(file, &unusable_op);
1414}
1415
1416static const struct file_operations unusable_file_ops = {
1417 .open = unusable_open,
1418 .read = seq_read,
1419 .llseek = seq_lseek,
1420 .release = seq_release,
1421};
1422
f1a5ab12
MG
1423static void extfrag_show_print(struct seq_file *m,
1424 pg_data_t *pgdat, struct zone *zone)
1425{
1426 unsigned int order;
1427 int index;
1428
1429 /* Alloc on stack as interrupts are disabled for zone walk */
1430 struct contig_page_info info;
1431
1432 seq_printf(m, "Node %d, zone %8s ",
1433 pgdat->node_id,
1434 zone->name);
1435 for (order = 0; order < MAX_ORDER; ++order) {
1436 fill_contig_page_info(zone, order, &info);
56de7263 1437 index = __fragmentation_index(order, &info);
f1a5ab12
MG
1438 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1439 }
1440
1441 seq_putc(m, '\n');
1442}
1443
1444/*
1445 * Display fragmentation index for orders that allocations would fail for
1446 */
1447static int extfrag_show(struct seq_file *m, void *arg)
1448{
1449 pg_data_t *pgdat = (pg_data_t *)arg;
1450
1451 walk_zones_in_node(m, pgdat, extfrag_show_print);
1452
1453 return 0;
1454}
1455
1456static const struct seq_operations extfrag_op = {
1457 .start = frag_start,
1458 .next = frag_next,
1459 .stop = frag_stop,
1460 .show = extfrag_show,
1461};
1462
1463static int extfrag_open(struct inode *inode, struct file *file)
1464{
1465 return seq_open(file, &extfrag_op);
1466}
1467
1468static const struct file_operations extfrag_file_ops = {
1469 .open = extfrag_open,
1470 .read = seq_read,
1471 .llseek = seq_lseek,
1472 .release = seq_release,
1473};
1474
d7a5752c
MG
1475static int __init extfrag_debug_init(void)
1476{
bde8bd8a
S
1477 struct dentry *extfrag_debug_root;
1478
d7a5752c
MG
1479 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1480 if (!extfrag_debug_root)
1481 return -ENOMEM;
1482
1483 if (!debugfs_create_file("unusable_index", 0444,
1484 extfrag_debug_root, NULL, &unusable_file_ops))
bde8bd8a 1485 goto fail;
d7a5752c 1486
f1a5ab12
MG
1487 if (!debugfs_create_file("extfrag_index", 0444,
1488 extfrag_debug_root, NULL, &extfrag_file_ops))
bde8bd8a 1489 goto fail;
f1a5ab12 1490
d7a5752c 1491 return 0;
bde8bd8a
S
1492fail:
1493 debugfs_remove_recursive(extfrag_debug_root);
1494 return -ENOMEM;
d7a5752c
MG
1495}
1496
1497module_init(extfrag_debug_init);
1498#endif