mm/mempolicy.c: cleanups
[linux-2.6-block.git] / mm / vmstat.c
CommitLineData
f6ac2354
CL
1/*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
2244b95a
CL
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
f6ac2354
CL
10 */
11
f6ac2354 12#include <linux/mm.h>
4e950f6f 13#include <linux/err.h>
2244b95a 14#include <linux/module.h>
df9ecaba 15#include <linux/cpu.h>
e8edc6e0 16#include <linux/sched.h>
f6ac2354 17
f8891e5e
CL
18#ifdef CONFIG_VM_EVENT_COUNTERS
19DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
20EXPORT_PER_CPU_SYMBOL(vm_event_states);
21
22static void sum_vm_events(unsigned long *ret, cpumask_t *cpumask)
23{
24 int cpu = 0;
25 int i;
26
27 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
28
29 cpu = first_cpu(*cpumask);
30 while (cpu < NR_CPUS) {
31 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
32
33 cpu = next_cpu(cpu, *cpumask);
34
35 if (cpu < NR_CPUS)
36 prefetch(&per_cpu(vm_event_states, cpu));
37
38
39 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
40 ret[i] += this->event[i];
41 }
42}
43
44/*
45 * Accumulate the vm event counters across all CPUs.
46 * The result is unavoidably approximate - it can change
47 * during and after execution of this function.
48*/
49void all_vm_events(unsigned long *ret)
50{
51 sum_vm_events(ret, &cpu_online_map);
52}
32dd66fc 53EXPORT_SYMBOL_GPL(all_vm_events);
f8891e5e
CL
54
55#ifdef CONFIG_HOTPLUG
56/*
57 * Fold the foreign cpu events into our own.
58 *
59 * This is adding to the events on one processor
60 * but keeps the global counts constant.
61 */
62void vm_events_fold_cpu(int cpu)
63{
64 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
65 int i;
66
67 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
68 count_vm_events(i, fold_state->event[i]);
69 fold_state->event[i] = 0;
70 }
71}
72#endif /* CONFIG_HOTPLUG */
73
74#endif /* CONFIG_VM_EVENT_COUNTERS */
75
2244b95a
CL
76/*
77 * Manage combined zone based / global counters
78 *
79 * vm_stat contains the global counters
80 */
81atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
82EXPORT_SYMBOL(vm_stat);
83
84#ifdef CONFIG_SMP
85
df9ecaba
CL
86static int calculate_threshold(struct zone *zone)
87{
88 int threshold;
89 int mem; /* memory in 128 MB units */
90
91 /*
92 * The threshold scales with the number of processors and the amount
93 * of memory per zone. More memory means that we can defer updates for
94 * longer, more processors could lead to more contention.
95 * fls() is used to have a cheap way of logarithmic scaling.
96 *
97 * Some sample thresholds:
98 *
99 * Threshold Processors (fls) Zonesize fls(mem+1)
100 * ------------------------------------------------------------------
101 * 8 1 1 0.9-1 GB 4
102 * 16 2 2 0.9-1 GB 4
103 * 20 2 2 1-2 GB 5
104 * 24 2 2 2-4 GB 6
105 * 28 2 2 4-8 GB 7
106 * 32 2 2 8-16 GB 8
107 * 4 2 2 <128M 1
108 * 30 4 3 2-4 GB 5
109 * 48 4 3 8-16 GB 8
110 * 32 8 4 1-2 GB 4
111 * 32 8 4 0.9-1GB 4
112 * 10 16 5 <128M 1
113 * 40 16 5 900M 4
114 * 70 64 7 2-4 GB 5
115 * 84 64 7 4-8 GB 6
116 * 108 512 9 4-8 GB 6
117 * 125 1024 10 8-16 GB 8
118 * 125 1024 10 16-32 GB 9
119 */
120
121 mem = zone->present_pages >> (27 - PAGE_SHIFT);
122
123 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
124
125 /*
126 * Maximum threshold is 125
127 */
128 threshold = min(125, threshold);
129
130 return threshold;
131}
2244b95a
CL
132
133/*
df9ecaba 134 * Refresh the thresholds for each zone.
2244b95a 135 */
df9ecaba 136static void refresh_zone_stat_thresholds(void)
2244b95a 137{
df9ecaba
CL
138 struct zone *zone;
139 int cpu;
140 int threshold;
141
142 for_each_zone(zone) {
143
144 if (!zone->present_pages)
145 continue;
146
147 threshold = calculate_threshold(zone);
148
149 for_each_online_cpu(cpu)
150 zone_pcp(zone, cpu)->stat_threshold = threshold;
151 }
2244b95a
CL
152}
153
154/*
155 * For use when we know that interrupts are disabled.
156 */
157void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
158 int delta)
159{
df9ecaba
CL
160 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
161 s8 *p = pcp->vm_stat_diff + item;
2244b95a
CL
162 long x;
163
2244b95a
CL
164 x = delta + *p;
165
df9ecaba 166 if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
2244b95a
CL
167 zone_page_state_add(x, zone, item);
168 x = 0;
169 }
2244b95a
CL
170 *p = x;
171}
172EXPORT_SYMBOL(__mod_zone_page_state);
173
174/*
175 * For an unknown interrupt state
176 */
177void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
178 int delta)
179{
180 unsigned long flags;
181
182 local_irq_save(flags);
183 __mod_zone_page_state(zone, item, delta);
184 local_irq_restore(flags);
185}
186EXPORT_SYMBOL(mod_zone_page_state);
187
188/*
189 * Optimized increment and decrement functions.
190 *
191 * These are only for a single page and therefore can take a struct page *
192 * argument instead of struct zone *. This allows the inclusion of the code
193 * generated for page_zone(page) into the optimized functions.
194 *
195 * No overflow check is necessary and therefore the differential can be
196 * incremented or decremented in place which may allow the compilers to
197 * generate better code.
2244b95a
CL
198 * The increment or decrement is known and therefore one boundary check can
199 * be omitted.
200 *
df9ecaba
CL
201 * NOTE: These functions are very performance sensitive. Change only
202 * with care.
203 *
2244b95a
CL
204 * Some processors have inc/dec instructions that are atomic vs an interrupt.
205 * However, the code must first determine the differential location in a zone
206 * based on the processor number and then inc/dec the counter. There is no
207 * guarantee without disabling preemption that the processor will not change
208 * in between and therefore the atomicity vs. interrupt cannot be exploited
209 * in a useful way here.
210 */
c8785385 211void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
2244b95a 212{
df9ecaba
CL
213 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
214 s8 *p = pcp->vm_stat_diff + item;
2244b95a
CL
215
216 (*p)++;
217
df9ecaba
CL
218 if (unlikely(*p > pcp->stat_threshold)) {
219 int overstep = pcp->stat_threshold / 2;
220
221 zone_page_state_add(*p + overstep, zone, item);
222 *p = -overstep;
2244b95a
CL
223 }
224}
ca889e6c
CL
225
226void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
227{
228 __inc_zone_state(page_zone(page), item);
229}
2244b95a
CL
230EXPORT_SYMBOL(__inc_zone_page_state);
231
c8785385 232void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
2244b95a 233{
df9ecaba
CL
234 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
235 s8 *p = pcp->vm_stat_diff + item;
2244b95a
CL
236
237 (*p)--;
238
df9ecaba
CL
239 if (unlikely(*p < - pcp->stat_threshold)) {
240 int overstep = pcp->stat_threshold / 2;
241
242 zone_page_state_add(*p - overstep, zone, item);
243 *p = overstep;
2244b95a
CL
244 }
245}
c8785385
CL
246
247void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
248{
249 __dec_zone_state(page_zone(page), item);
250}
2244b95a
CL
251EXPORT_SYMBOL(__dec_zone_page_state);
252
ca889e6c
CL
253void inc_zone_state(struct zone *zone, enum zone_stat_item item)
254{
255 unsigned long flags;
256
257 local_irq_save(flags);
258 __inc_zone_state(zone, item);
259 local_irq_restore(flags);
260}
261
2244b95a
CL
262void inc_zone_page_state(struct page *page, enum zone_stat_item item)
263{
264 unsigned long flags;
265 struct zone *zone;
2244b95a
CL
266
267 zone = page_zone(page);
268 local_irq_save(flags);
ca889e6c 269 __inc_zone_state(zone, item);
2244b95a
CL
270 local_irq_restore(flags);
271}
272EXPORT_SYMBOL(inc_zone_page_state);
273
274void dec_zone_page_state(struct page *page, enum zone_stat_item item)
275{
276 unsigned long flags;
2244b95a 277
2244b95a 278 local_irq_save(flags);
a302eb4e 279 __dec_zone_page_state(page, item);
2244b95a
CL
280 local_irq_restore(flags);
281}
282EXPORT_SYMBOL(dec_zone_page_state);
283
284/*
285 * Update the zone counters for one cpu.
4037d452
CL
286 *
287 * Note that refresh_cpu_vm_stats strives to only access
288 * node local memory. The per cpu pagesets on remote zones are placed
289 * in the memory local to the processor using that pageset. So the
290 * loop over all zones will access a series of cachelines local to
291 * the processor.
292 *
293 * The call to zone_page_state_add updates the cachelines with the
294 * statistics in the remote zone struct as well as the global cachelines
295 * with the global counters. These could cause remote node cache line
296 * bouncing and will have to be only done when necessary.
2244b95a
CL
297 */
298void refresh_cpu_vm_stats(int cpu)
299{
300 struct zone *zone;
301 int i;
302 unsigned long flags;
303
304 for_each_zone(zone) {
4037d452 305 struct per_cpu_pageset *p;
2244b95a 306
39bbcb8f
CL
307 if (!populated_zone(zone))
308 continue;
309
4037d452 310 p = zone_pcp(zone, cpu);
2244b95a
CL
311
312 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
4037d452 313 if (p->vm_stat_diff[i]) {
2244b95a 314 local_irq_save(flags);
4037d452 315 zone_page_state_add(p->vm_stat_diff[i],
2244b95a 316 zone, i);
4037d452
CL
317 p->vm_stat_diff[i] = 0;
318#ifdef CONFIG_NUMA
319 /* 3 seconds idle till flush */
320 p->expire = 3;
321#endif
2244b95a
CL
322 local_irq_restore(flags);
323 }
4037d452
CL
324#ifdef CONFIG_NUMA
325 /*
326 * Deal with draining the remote pageset of this
327 * processor
328 *
329 * Check if there are pages remaining in this pageset
330 * if not then there is nothing to expire.
331 */
332 if (!p->expire || (!p->pcp[0].count && !p->pcp[1].count))
333 continue;
334
335 /*
336 * We never drain zones local to this processor.
337 */
338 if (zone_to_nid(zone) == numa_node_id()) {
339 p->expire = 0;
340 continue;
341 }
342
343 p->expire--;
344 if (p->expire)
345 continue;
346
347 if (p->pcp[0].count)
348 drain_zone_pages(zone, p->pcp + 0);
349
350 if (p->pcp[1].count)
351 drain_zone_pages(zone, p->pcp + 1);
352#endif
2244b95a
CL
353 }
354}
355
356static void __refresh_cpu_vm_stats(void *dummy)
357{
358 refresh_cpu_vm_stats(smp_processor_id());
359}
360
361/*
362 * Consolidate all counters.
363 *
364 * Note that the result is less inaccurate but still inaccurate
365 * if concurrent processes are allowed to run.
366 */
367void refresh_vm_stats(void)
368{
369 on_each_cpu(__refresh_cpu_vm_stats, NULL, 0, 1);
370}
371EXPORT_SYMBOL(refresh_vm_stats);
372
373#endif
374
ca889e6c
CL
375#ifdef CONFIG_NUMA
376/*
377 * zonelist = the list of zones passed to the allocator
378 * z = the zone from which the allocation occurred.
379 *
380 * Must be called with interrupts disabled.
381 */
382void zone_statistics(struct zonelist *zonelist, struct zone *z)
383{
384 if (z->zone_pgdat == zonelist->zones[0]->zone_pgdat) {
385 __inc_zone_state(z, NUMA_HIT);
386 } else {
387 __inc_zone_state(z, NUMA_MISS);
388 __inc_zone_state(zonelist->zones[0], NUMA_FOREIGN);
389 }
5d292343 390 if (z->node == numa_node_id())
ca889e6c
CL
391 __inc_zone_state(z, NUMA_LOCAL);
392 else
393 __inc_zone_state(z, NUMA_OTHER);
394}
395#endif
396
f6ac2354
CL
397#ifdef CONFIG_PROC_FS
398
399#include <linux/seq_file.h>
400
467c996c
MG
401static char * const migratetype_names[MIGRATE_TYPES] = {
402 "Unmovable",
403 "Reclaimable",
404 "Movable",
405 "Reserve",
406};
407
f6ac2354
CL
408static void *frag_start(struct seq_file *m, loff_t *pos)
409{
410 pg_data_t *pgdat;
411 loff_t node = *pos;
412 for (pgdat = first_online_pgdat();
413 pgdat && node;
414 pgdat = next_online_pgdat(pgdat))
415 --node;
416
417 return pgdat;
418}
419
420static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
421{
422 pg_data_t *pgdat = (pg_data_t *)arg;
423
424 (*pos)++;
425 return next_online_pgdat(pgdat);
426}
427
428static void frag_stop(struct seq_file *m, void *arg)
429{
430}
431
467c996c
MG
432/* Walk all the zones in a node and print using a callback */
433static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
434 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
f6ac2354 435{
f6ac2354
CL
436 struct zone *zone;
437 struct zone *node_zones = pgdat->node_zones;
438 unsigned long flags;
f6ac2354
CL
439
440 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
441 if (!populated_zone(zone))
442 continue;
443
444 spin_lock_irqsave(&zone->lock, flags);
467c996c 445 print(m, pgdat, zone);
f6ac2354 446 spin_unlock_irqrestore(&zone->lock, flags);
467c996c
MG
447 }
448}
449
450static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
451 struct zone *zone)
452{
453 int order;
454
455 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
456 for (order = 0; order < MAX_ORDER; ++order)
457 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
458 seq_putc(m, '\n');
459}
460
461/*
462 * This walks the free areas for each zone.
463 */
464static int frag_show(struct seq_file *m, void *arg)
465{
466 pg_data_t *pgdat = (pg_data_t *)arg;
467 walk_zones_in_node(m, pgdat, frag_show_print);
468 return 0;
469}
470
471static void pagetypeinfo_showfree_print(struct seq_file *m,
472 pg_data_t *pgdat, struct zone *zone)
473{
474 int order, mtype;
475
476 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
477 seq_printf(m, "Node %4d, zone %8s, type %12s ",
478 pgdat->node_id,
479 zone->name,
480 migratetype_names[mtype]);
481 for (order = 0; order < MAX_ORDER; ++order) {
482 unsigned long freecount = 0;
483 struct free_area *area;
484 struct list_head *curr;
485
486 area = &(zone->free_area[order]);
487
488 list_for_each(curr, &area->free_list[mtype])
489 freecount++;
490 seq_printf(m, "%6lu ", freecount);
491 }
f6ac2354
CL
492 seq_putc(m, '\n');
493 }
467c996c
MG
494}
495
496/* Print out the free pages at each order for each migatetype */
497static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
498{
499 int order;
500 pg_data_t *pgdat = (pg_data_t *)arg;
501
502 /* Print header */
503 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
504 for (order = 0; order < MAX_ORDER; ++order)
505 seq_printf(m, "%6d ", order);
506 seq_putc(m, '\n');
507
508 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
509
510 return 0;
511}
512
513static void pagetypeinfo_showblockcount_print(struct seq_file *m,
514 pg_data_t *pgdat, struct zone *zone)
515{
516 int mtype;
517 unsigned long pfn;
518 unsigned long start_pfn = zone->zone_start_pfn;
519 unsigned long end_pfn = start_pfn + zone->spanned_pages;
520 unsigned long count[MIGRATE_TYPES] = { 0, };
521
522 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
523 struct page *page;
524
525 if (!pfn_valid(pfn))
526 continue;
527
528 page = pfn_to_page(pfn);
529 mtype = get_pageblock_migratetype(page);
530
531 count[mtype]++;
532 }
533
534 /* Print counts */
535 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
536 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
537 seq_printf(m, "%12lu ", count[mtype]);
538 seq_putc(m, '\n');
539}
540
541/* Print out the free pages at each order for each migratetype */
542static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
543{
544 int mtype;
545 pg_data_t *pgdat = (pg_data_t *)arg;
546
547 seq_printf(m, "\n%-23s", "Number of blocks type ");
548 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
549 seq_printf(m, "%12s ", migratetype_names[mtype]);
550 seq_putc(m, '\n');
551 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
552
553 return 0;
554}
555
556/*
557 * This prints out statistics in relation to grouping pages by mobility.
558 * It is expensive to collect so do not constantly read the file.
559 */
560static int pagetypeinfo_show(struct seq_file *m, void *arg)
561{
562 pg_data_t *pgdat = (pg_data_t *)arg;
563
564 seq_printf(m, "Page block order: %d\n", pageblock_order);
565 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
566 seq_putc(m, '\n');
567 pagetypeinfo_showfree(m, pgdat);
568 pagetypeinfo_showblockcount(m, pgdat);
569
f6ac2354
CL
570 return 0;
571}
572
15ad7cdc 573const struct seq_operations fragmentation_op = {
f6ac2354
CL
574 .start = frag_start,
575 .next = frag_next,
576 .stop = frag_stop,
577 .show = frag_show,
578};
579
467c996c
MG
580const struct seq_operations pagetypeinfo_op = {
581 .start = frag_start,
582 .next = frag_next,
583 .stop = frag_stop,
584 .show = pagetypeinfo_show,
585};
586
4b51d669
CL
587#ifdef CONFIG_ZONE_DMA
588#define TEXT_FOR_DMA(xx) xx "_dma",
589#else
590#define TEXT_FOR_DMA(xx)
591#endif
592
27bf71c2
CL
593#ifdef CONFIG_ZONE_DMA32
594#define TEXT_FOR_DMA32(xx) xx "_dma32",
595#else
596#define TEXT_FOR_DMA32(xx)
597#endif
598
599#ifdef CONFIG_HIGHMEM
600#define TEXT_FOR_HIGHMEM(xx) xx "_high",
601#else
602#define TEXT_FOR_HIGHMEM(xx)
603#endif
604
4b51d669 605#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
2a1e274a 606 TEXT_FOR_HIGHMEM(xx) xx "_movable",
27bf71c2 607
15ad7cdc 608static const char * const vmstat_text[] = {
2244b95a 609 /* Zoned VM counters */
d23ad423 610 "nr_free_pages",
c8785385 611 "nr_inactive",
23c1fb52 612 "nr_active",
f3dbd344 613 "nr_anon_pages",
65ba55f5 614 "nr_mapped",
347ce434 615 "nr_file_pages",
51ed4491
CL
616 "nr_dirty",
617 "nr_writeback",
972d1a7b
CL
618 "nr_slab_reclaimable",
619 "nr_slab_unreclaimable",
df849a15 620 "nr_page_table_pages",
f6ac2354 621 "nr_unstable",
d2c5e30c 622 "nr_bounce",
e129b5c2 623 "nr_vmscan_write",
f6ac2354 624
ca889e6c
CL
625#ifdef CONFIG_NUMA
626 "numa_hit",
627 "numa_miss",
628 "numa_foreign",
629 "numa_interleave",
630 "numa_local",
631 "numa_other",
632#endif
633
f8891e5e 634#ifdef CONFIG_VM_EVENT_COUNTERS
f6ac2354
CL
635 "pgpgin",
636 "pgpgout",
637 "pswpin",
638 "pswpout",
639
27bf71c2 640 TEXTS_FOR_ZONES("pgalloc")
f6ac2354
CL
641
642 "pgfree",
643 "pgactivate",
644 "pgdeactivate",
645
646 "pgfault",
647 "pgmajfault",
648
27bf71c2
CL
649 TEXTS_FOR_ZONES("pgrefill")
650 TEXTS_FOR_ZONES("pgsteal")
651 TEXTS_FOR_ZONES("pgscan_kswapd")
652 TEXTS_FOR_ZONES("pgscan_direct")
f6ac2354
CL
653
654 "pginodesteal",
655 "slabs_scanned",
656 "kswapd_steal",
657 "kswapd_inodesteal",
658 "pageoutrun",
659 "allocstall",
660
661 "pgrotated",
f8891e5e 662#endif
f6ac2354
CL
663};
664
467c996c
MG
665static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
666 struct zone *zone)
f6ac2354 667{
467c996c
MG
668 int i;
669 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
670 seq_printf(m,
671 "\n pages free %lu"
672 "\n min %lu"
673 "\n low %lu"
674 "\n high %lu"
675 "\n scanned %lu (a: %lu i: %lu)"
676 "\n spanned %lu"
677 "\n present %lu",
678 zone_page_state(zone, NR_FREE_PAGES),
679 zone->pages_min,
680 zone->pages_low,
681 zone->pages_high,
682 zone->pages_scanned,
683 zone->nr_scan_active, zone->nr_scan_inactive,
684 zone->spanned_pages,
685 zone->present_pages);
686
687 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
688 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
689 zone_page_state(zone, i));
690
691 seq_printf(m,
692 "\n protection: (%lu",
693 zone->lowmem_reserve[0]);
694 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
695 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
696 seq_printf(m,
697 ")"
698 "\n pagesets");
699 for_each_online_cpu(i) {
700 struct per_cpu_pageset *pageset;
701 int j;
702
703 pageset = zone_pcp(zone, i);
704 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
705 seq_printf(m,
706 "\n cpu: %i pcp: %i"
707 "\n count: %i"
708 "\n high: %i"
709 "\n batch: %i",
710 i, j,
711 pageset->pcp[j].count,
712 pageset->pcp[j].high,
713 pageset->pcp[j].batch);
f6ac2354 714 }
df9ecaba 715#ifdef CONFIG_SMP
467c996c
MG
716 seq_printf(m, "\n vm stats threshold: %d",
717 pageset->stat_threshold);
df9ecaba 718#endif
f6ac2354 719 }
467c996c
MG
720 seq_printf(m,
721 "\n all_unreclaimable: %u"
722 "\n prev_priority: %i"
723 "\n start_pfn: %lu",
724 zone->all_unreclaimable,
725 zone->prev_priority,
726 zone->zone_start_pfn);
727 seq_putc(m, '\n');
728}
729
730/*
731 * Output information about zones in @pgdat.
732 */
733static int zoneinfo_show(struct seq_file *m, void *arg)
734{
735 pg_data_t *pgdat = (pg_data_t *)arg;
736 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
f6ac2354
CL
737 return 0;
738}
739
15ad7cdc 740const struct seq_operations zoneinfo_op = {
f6ac2354
CL
741 .start = frag_start, /* iterate over all zones. The same as in
742 * fragmentation. */
743 .next = frag_next,
744 .stop = frag_stop,
745 .show = zoneinfo_show,
746};
747
748static void *vmstat_start(struct seq_file *m, loff_t *pos)
749{
2244b95a 750 unsigned long *v;
f8891e5e
CL
751#ifdef CONFIG_VM_EVENT_COUNTERS
752 unsigned long *e;
753#endif
2244b95a 754 int i;
f6ac2354
CL
755
756 if (*pos >= ARRAY_SIZE(vmstat_text))
757 return NULL;
758
f8891e5e 759#ifdef CONFIG_VM_EVENT_COUNTERS
2244b95a 760 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
f8891e5e
CL
761 + sizeof(struct vm_event_state), GFP_KERNEL);
762#else
763 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
764 GFP_KERNEL);
765#endif
2244b95a
CL
766 m->private = v;
767 if (!v)
f6ac2354 768 return ERR_PTR(-ENOMEM);
2244b95a
CL
769 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
770 v[i] = global_page_state(i);
f8891e5e
CL
771#ifdef CONFIG_VM_EVENT_COUNTERS
772 e = v + NR_VM_ZONE_STAT_ITEMS;
773 all_vm_events(e);
774 e[PGPGIN] /= 2; /* sectors -> kbytes */
775 e[PGPGOUT] /= 2;
776#endif
2244b95a 777 return v + *pos;
f6ac2354
CL
778}
779
780static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
781{
782 (*pos)++;
783 if (*pos >= ARRAY_SIZE(vmstat_text))
784 return NULL;
785 return (unsigned long *)m->private + *pos;
786}
787
788static int vmstat_show(struct seq_file *m, void *arg)
789{
790 unsigned long *l = arg;
791 unsigned long off = l - (unsigned long *)m->private;
792
793 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
794 return 0;
795}
796
797static void vmstat_stop(struct seq_file *m, void *arg)
798{
799 kfree(m->private);
800 m->private = NULL;
801}
802
15ad7cdc 803const struct seq_operations vmstat_op = {
f6ac2354
CL
804 .start = vmstat_start,
805 .next = vmstat_next,
806 .stop = vmstat_stop,
807 .show = vmstat_show,
808};
809
810#endif /* CONFIG_PROC_FS */
811
df9ecaba 812#ifdef CONFIG_SMP
d1187ed2 813static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
77461ab3 814int sysctl_stat_interval __read_mostly = HZ;
d1187ed2
CL
815
816static void vmstat_update(struct work_struct *w)
817{
818 refresh_cpu_vm_stats(smp_processor_id());
77461ab3
CL
819 schedule_delayed_work(&__get_cpu_var(vmstat_work),
820 sysctl_stat_interval);
d1187ed2
CL
821}
822
823static void __devinit start_cpu_timer(int cpu)
824{
825 struct delayed_work *vmstat_work = &per_cpu(vmstat_work, cpu);
826
39bf6270 827 INIT_DELAYED_WORK_DEFERRABLE(vmstat_work, vmstat_update);
d1187ed2
CL
828 schedule_delayed_work_on(cpu, vmstat_work, HZ + cpu);
829}
830
df9ecaba
CL
831/*
832 * Use the cpu notifier to insure that the thresholds are recalculated
833 * when necessary.
834 */
835static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
836 unsigned long action,
837 void *hcpu)
838{
d1187ed2
CL
839 long cpu = (long)hcpu;
840
df9ecaba 841 switch (action) {
d1187ed2
CL
842 case CPU_ONLINE:
843 case CPU_ONLINE_FROZEN:
844 start_cpu_timer(cpu);
845 break;
846 case CPU_DOWN_PREPARE:
847 case CPU_DOWN_PREPARE_FROZEN:
848 cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
849 per_cpu(vmstat_work, cpu).work.func = NULL;
850 break;
851 case CPU_DOWN_FAILED:
852 case CPU_DOWN_FAILED_FROZEN:
853 start_cpu_timer(cpu);
854 break;
ce421c79 855 case CPU_DEAD:
8bb78442 856 case CPU_DEAD_FROZEN:
ce421c79
AW
857 refresh_zone_stat_thresholds();
858 break;
859 default:
860 break;
df9ecaba
CL
861 }
862 return NOTIFY_OK;
863}
864
865static struct notifier_block __cpuinitdata vmstat_notifier =
866 { &vmstat_cpuup_callback, NULL, 0 };
867
868int __init setup_vmstat(void)
869{
d1187ed2
CL
870 int cpu;
871
df9ecaba
CL
872 refresh_zone_stat_thresholds();
873 register_cpu_notifier(&vmstat_notifier);
d1187ed2
CL
874
875 for_each_online_cpu(cpu)
876 start_cpu_timer(cpu);
df9ecaba
CL
877 return 0;
878}
879module_init(setup_vmstat)
880#endif