swap: clean-up #ifdef in page_mapping()
[linux-2.6-block.git] / mm / vmstat.c
CommitLineData
f6ac2354
CL
1/*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
2244b95a
CL
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
f6ac2354 10 */
8f32f7e5 11#include <linux/fs.h>
f6ac2354 12#include <linux/mm.h>
4e950f6f 13#include <linux/err.h>
2244b95a 14#include <linux/module.h>
5a0e3ad6 15#include <linux/slab.h>
df9ecaba 16#include <linux/cpu.h>
c748e134 17#include <linux/vmstat.h>
e8edc6e0 18#include <linux/sched.h>
f1a5ab12 19#include <linux/math64.h>
79da826a 20#include <linux/writeback.h>
36deb0be 21#include <linux/compaction.h>
f6ac2354 22
f8891e5e
CL
23#ifdef CONFIG_VM_EVENT_COUNTERS
24DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
25EXPORT_PER_CPU_SYMBOL(vm_event_states);
26
31f961a8 27static void sum_vm_events(unsigned long *ret)
f8891e5e 28{
9eccf2a8 29 int cpu;
f8891e5e
CL
30 int i;
31
32 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
33
31f961a8 34 for_each_online_cpu(cpu) {
f8891e5e
CL
35 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
36
f8891e5e
CL
37 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
38 ret[i] += this->event[i];
39 }
40}
41
42/*
43 * Accumulate the vm event counters across all CPUs.
44 * The result is unavoidably approximate - it can change
45 * during and after execution of this function.
46*/
47void all_vm_events(unsigned long *ret)
48{
b5be1132 49 get_online_cpus();
31f961a8 50 sum_vm_events(ret);
b5be1132 51 put_online_cpus();
f8891e5e 52}
32dd66fc 53EXPORT_SYMBOL_GPL(all_vm_events);
f8891e5e 54
f8891e5e
CL
55/*
56 * Fold the foreign cpu events into our own.
57 *
58 * This is adding to the events on one processor
59 * but keeps the global counts constant.
60 */
61void vm_events_fold_cpu(int cpu)
62{
63 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
64 int i;
65
66 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
67 count_vm_events(i, fold_state->event[i]);
68 fold_state->event[i] = 0;
69 }
70}
f8891e5e
CL
71
72#endif /* CONFIG_VM_EVENT_COUNTERS */
73
2244b95a
CL
74/*
75 * Manage combined zone based / global counters
76 *
77 * vm_stat contains the global counters
78 */
a1cb2c60 79atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
2244b95a
CL
80EXPORT_SYMBOL(vm_stat);
81
82#ifdef CONFIG_SMP
83
b44129b3 84int calculate_pressure_threshold(struct zone *zone)
88f5acf8
MG
85{
86 int threshold;
87 int watermark_distance;
88
89 /*
90 * As vmstats are not up to date, there is drift between the estimated
91 * and real values. For high thresholds and a high number of CPUs, it
92 * is possible for the min watermark to be breached while the estimated
93 * value looks fine. The pressure threshold is a reduced value such
94 * that even the maximum amount of drift will not accidentally breach
95 * the min watermark
96 */
97 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
98 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
99
100 /*
101 * Maximum threshold is 125
102 */
103 threshold = min(125, threshold);
104
105 return threshold;
106}
107
b44129b3 108int calculate_normal_threshold(struct zone *zone)
df9ecaba
CL
109{
110 int threshold;
111 int mem; /* memory in 128 MB units */
112
113 /*
114 * The threshold scales with the number of processors and the amount
115 * of memory per zone. More memory means that we can defer updates for
116 * longer, more processors could lead to more contention.
117 * fls() is used to have a cheap way of logarithmic scaling.
118 *
119 * Some sample thresholds:
120 *
121 * Threshold Processors (fls) Zonesize fls(mem+1)
122 * ------------------------------------------------------------------
123 * 8 1 1 0.9-1 GB 4
124 * 16 2 2 0.9-1 GB 4
125 * 20 2 2 1-2 GB 5
126 * 24 2 2 2-4 GB 6
127 * 28 2 2 4-8 GB 7
128 * 32 2 2 8-16 GB 8
129 * 4 2 2 <128M 1
130 * 30 4 3 2-4 GB 5
131 * 48 4 3 8-16 GB 8
132 * 32 8 4 1-2 GB 4
133 * 32 8 4 0.9-1GB 4
134 * 10 16 5 <128M 1
135 * 40 16 5 900M 4
136 * 70 64 7 2-4 GB 5
137 * 84 64 7 4-8 GB 6
138 * 108 512 9 4-8 GB 6
139 * 125 1024 10 8-16 GB 8
140 * 125 1024 10 16-32 GB 9
141 */
142
b40da049 143 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
df9ecaba
CL
144
145 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
146
147 /*
148 * Maximum threshold is 125
149 */
150 threshold = min(125, threshold);
151
152 return threshold;
153}
2244b95a
CL
154
155/*
df9ecaba 156 * Refresh the thresholds for each zone.
2244b95a 157 */
a6cccdc3 158void refresh_zone_stat_thresholds(void)
2244b95a 159{
df9ecaba
CL
160 struct zone *zone;
161 int cpu;
162 int threshold;
163
ee99c71c 164 for_each_populated_zone(zone) {
aa454840
CL
165 unsigned long max_drift, tolerate_drift;
166
b44129b3 167 threshold = calculate_normal_threshold(zone);
df9ecaba
CL
168
169 for_each_online_cpu(cpu)
99dcc3e5
CL
170 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
171 = threshold;
aa454840
CL
172
173 /*
174 * Only set percpu_drift_mark if there is a danger that
175 * NR_FREE_PAGES reports the low watermark is ok when in fact
176 * the min watermark could be breached by an allocation
177 */
178 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
179 max_drift = num_online_cpus() * threshold;
180 if (max_drift > tolerate_drift)
181 zone->percpu_drift_mark = high_wmark_pages(zone) +
182 max_drift;
df9ecaba 183 }
2244b95a
CL
184}
185
b44129b3
MG
186void set_pgdat_percpu_threshold(pg_data_t *pgdat,
187 int (*calculate_pressure)(struct zone *))
88f5acf8
MG
188{
189 struct zone *zone;
190 int cpu;
191 int threshold;
192 int i;
193
88f5acf8
MG
194 for (i = 0; i < pgdat->nr_zones; i++) {
195 zone = &pgdat->node_zones[i];
196 if (!zone->percpu_drift_mark)
197 continue;
198
b44129b3
MG
199 threshold = (*calculate_pressure)(zone);
200 for_each_possible_cpu(cpu)
88f5acf8
MG
201 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
202 = threshold;
203 }
88f5acf8
MG
204}
205
2244b95a
CL
206/*
207 * For use when we know that interrupts are disabled.
208 */
209void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
210 int delta)
211{
12938a92
CL
212 struct per_cpu_pageset __percpu *pcp = zone->pageset;
213 s8 __percpu *p = pcp->vm_stat_diff + item;
2244b95a 214 long x;
12938a92
CL
215 long t;
216
217 x = delta + __this_cpu_read(*p);
2244b95a 218
12938a92 219 t = __this_cpu_read(pcp->stat_threshold);
2244b95a 220
12938a92 221 if (unlikely(x > t || x < -t)) {
2244b95a
CL
222 zone_page_state_add(x, zone, item);
223 x = 0;
224 }
12938a92 225 __this_cpu_write(*p, x);
2244b95a
CL
226}
227EXPORT_SYMBOL(__mod_zone_page_state);
228
2244b95a
CL
229/*
230 * Optimized increment and decrement functions.
231 *
232 * These are only for a single page and therefore can take a struct page *
233 * argument instead of struct zone *. This allows the inclusion of the code
234 * generated for page_zone(page) into the optimized functions.
235 *
236 * No overflow check is necessary and therefore the differential can be
237 * incremented or decremented in place which may allow the compilers to
238 * generate better code.
2244b95a
CL
239 * The increment or decrement is known and therefore one boundary check can
240 * be omitted.
241 *
df9ecaba
CL
242 * NOTE: These functions are very performance sensitive. Change only
243 * with care.
244 *
2244b95a
CL
245 * Some processors have inc/dec instructions that are atomic vs an interrupt.
246 * However, the code must first determine the differential location in a zone
247 * based on the processor number and then inc/dec the counter. There is no
248 * guarantee without disabling preemption that the processor will not change
249 * in between and therefore the atomicity vs. interrupt cannot be exploited
250 * in a useful way here.
251 */
c8785385 252void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
2244b95a 253{
12938a92
CL
254 struct per_cpu_pageset __percpu *pcp = zone->pageset;
255 s8 __percpu *p = pcp->vm_stat_diff + item;
256 s8 v, t;
2244b95a 257
908ee0f1 258 v = __this_cpu_inc_return(*p);
12938a92
CL
259 t = __this_cpu_read(pcp->stat_threshold);
260 if (unlikely(v > t)) {
261 s8 overstep = t >> 1;
df9ecaba 262
12938a92
CL
263 zone_page_state_add(v + overstep, zone, item);
264 __this_cpu_write(*p, -overstep);
2244b95a
CL
265 }
266}
ca889e6c
CL
267
268void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
269{
270 __inc_zone_state(page_zone(page), item);
271}
2244b95a
CL
272EXPORT_SYMBOL(__inc_zone_page_state);
273
c8785385 274void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
2244b95a 275{
12938a92
CL
276 struct per_cpu_pageset __percpu *pcp = zone->pageset;
277 s8 __percpu *p = pcp->vm_stat_diff + item;
278 s8 v, t;
2244b95a 279
908ee0f1 280 v = __this_cpu_dec_return(*p);
12938a92
CL
281 t = __this_cpu_read(pcp->stat_threshold);
282 if (unlikely(v < - t)) {
283 s8 overstep = t >> 1;
2244b95a 284
12938a92
CL
285 zone_page_state_add(v - overstep, zone, item);
286 __this_cpu_write(*p, overstep);
2244b95a
CL
287 }
288}
c8785385
CL
289
290void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
291{
292 __dec_zone_state(page_zone(page), item);
293}
2244b95a
CL
294EXPORT_SYMBOL(__dec_zone_page_state);
295
4156153c 296#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
7c839120
CL
297/*
298 * If we have cmpxchg_local support then we do not need to incur the overhead
299 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
300 *
301 * mod_state() modifies the zone counter state through atomic per cpu
302 * operations.
303 *
304 * Overstep mode specifies how overstep should handled:
305 * 0 No overstepping
306 * 1 Overstepping half of threshold
307 * -1 Overstepping minus half of threshold
308*/
309static inline void mod_state(struct zone *zone,
310 enum zone_stat_item item, int delta, int overstep_mode)
311{
312 struct per_cpu_pageset __percpu *pcp = zone->pageset;
313 s8 __percpu *p = pcp->vm_stat_diff + item;
314 long o, n, t, z;
315
316 do {
317 z = 0; /* overflow to zone counters */
318
319 /*
320 * The fetching of the stat_threshold is racy. We may apply
321 * a counter threshold to the wrong the cpu if we get
d3bc2367
CL
322 * rescheduled while executing here. However, the next
323 * counter update will apply the threshold again and
324 * therefore bring the counter under the threshold again.
325 *
326 * Most of the time the thresholds are the same anyways
327 * for all cpus in a zone.
7c839120
CL
328 */
329 t = this_cpu_read(pcp->stat_threshold);
330
331 o = this_cpu_read(*p);
332 n = delta + o;
333
334 if (n > t || n < -t) {
335 int os = overstep_mode * (t >> 1) ;
336
337 /* Overflow must be added to zone counters */
338 z = n + os;
339 n = -os;
340 }
341 } while (this_cpu_cmpxchg(*p, o, n) != o);
342
343 if (z)
344 zone_page_state_add(z, zone, item);
345}
346
347void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
348 int delta)
349{
350 mod_state(zone, item, delta, 0);
351}
352EXPORT_SYMBOL(mod_zone_page_state);
353
354void inc_zone_state(struct zone *zone, enum zone_stat_item item)
355{
356 mod_state(zone, item, 1, 1);
357}
358
359void inc_zone_page_state(struct page *page, enum zone_stat_item item)
360{
361 mod_state(page_zone(page), item, 1, 1);
362}
363EXPORT_SYMBOL(inc_zone_page_state);
364
365void dec_zone_page_state(struct page *page, enum zone_stat_item item)
366{
367 mod_state(page_zone(page), item, -1, -1);
368}
369EXPORT_SYMBOL(dec_zone_page_state);
370#else
371/*
372 * Use interrupt disable to serialize counter updates
373 */
374void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
375 int delta)
376{
377 unsigned long flags;
378
379 local_irq_save(flags);
380 __mod_zone_page_state(zone, item, delta);
381 local_irq_restore(flags);
382}
383EXPORT_SYMBOL(mod_zone_page_state);
384
ca889e6c
CL
385void inc_zone_state(struct zone *zone, enum zone_stat_item item)
386{
387 unsigned long flags;
388
389 local_irq_save(flags);
390 __inc_zone_state(zone, item);
391 local_irq_restore(flags);
392}
393
2244b95a
CL
394void inc_zone_page_state(struct page *page, enum zone_stat_item item)
395{
396 unsigned long flags;
397 struct zone *zone;
2244b95a
CL
398
399 zone = page_zone(page);
400 local_irq_save(flags);
ca889e6c 401 __inc_zone_state(zone, item);
2244b95a
CL
402 local_irq_restore(flags);
403}
404EXPORT_SYMBOL(inc_zone_page_state);
405
406void dec_zone_page_state(struct page *page, enum zone_stat_item item)
407{
408 unsigned long flags;
2244b95a 409
2244b95a 410 local_irq_save(flags);
a302eb4e 411 __dec_zone_page_state(page, item);
2244b95a
CL
412 local_irq_restore(flags);
413}
414EXPORT_SYMBOL(dec_zone_page_state);
7c839120 415#endif
2244b95a
CL
416
417/*
418 * Update the zone counters for one cpu.
4037d452 419 *
a7f75e25
CL
420 * The cpu specified must be either the current cpu or a processor that
421 * is not online. If it is the current cpu then the execution thread must
422 * be pinned to the current cpu.
423 *
4037d452
CL
424 * Note that refresh_cpu_vm_stats strives to only access
425 * node local memory. The per cpu pagesets on remote zones are placed
426 * in the memory local to the processor using that pageset. So the
427 * loop over all zones will access a series of cachelines local to
428 * the processor.
429 *
430 * The call to zone_page_state_add updates the cachelines with the
431 * statistics in the remote zone struct as well as the global cachelines
432 * with the global counters. These could cause remote node cache line
433 * bouncing and will have to be only done when necessary.
2244b95a
CL
434 */
435void refresh_cpu_vm_stats(int cpu)
436{
437 struct zone *zone;
438 int i;
a7f75e25 439 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
2244b95a 440
ee99c71c 441 for_each_populated_zone(zone) {
4037d452 442 struct per_cpu_pageset *p;
2244b95a 443
99dcc3e5 444 p = per_cpu_ptr(zone->pageset, cpu);
2244b95a
CL
445
446 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
4037d452 447 if (p->vm_stat_diff[i]) {
a7f75e25
CL
448 unsigned long flags;
449 int v;
450
2244b95a 451 local_irq_save(flags);
a7f75e25 452 v = p->vm_stat_diff[i];
4037d452 453 p->vm_stat_diff[i] = 0;
a7f75e25
CL
454 local_irq_restore(flags);
455 atomic_long_add(v, &zone->vm_stat[i]);
456 global_diff[i] += v;
4037d452
CL
457#ifdef CONFIG_NUMA
458 /* 3 seconds idle till flush */
459 p->expire = 3;
460#endif
2244b95a 461 }
468fd62e 462 cond_resched();
4037d452
CL
463#ifdef CONFIG_NUMA
464 /*
465 * Deal with draining the remote pageset of this
466 * processor
467 *
468 * Check if there are pages remaining in this pageset
469 * if not then there is nothing to expire.
470 */
3dfa5721 471 if (!p->expire || !p->pcp.count)
4037d452
CL
472 continue;
473
474 /*
475 * We never drain zones local to this processor.
476 */
477 if (zone_to_nid(zone) == numa_node_id()) {
478 p->expire = 0;
479 continue;
480 }
481
482 p->expire--;
483 if (p->expire)
484 continue;
485
3dfa5721
CL
486 if (p->pcp.count)
487 drain_zone_pages(zone, &p->pcp);
4037d452 488#endif
2244b95a 489 }
a7f75e25
CL
490
491 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
492 if (global_diff[i])
493 atomic_long_add(global_diff[i], &vm_stat[i]);
2244b95a
CL
494}
495
40f4b1ea
CS
496/*
497 * this is only called if !populated_zone(zone), which implies no other users of
498 * pset->vm_stat_diff[] exsist.
499 */
5a883813
MK
500void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
501{
502 int i;
503
504 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
505 if (pset->vm_stat_diff[i]) {
506 int v = pset->vm_stat_diff[i];
507 pset->vm_stat_diff[i] = 0;
508 atomic_long_add(v, &zone->vm_stat[i]);
509 atomic_long_add(v, &vm_stat[i]);
510 }
511}
2244b95a
CL
512#endif
513
ca889e6c
CL
514#ifdef CONFIG_NUMA
515/*
516 * zonelist = the list of zones passed to the allocator
517 * z = the zone from which the allocation occurred.
518 *
519 * Must be called with interrupts disabled.
78afd561
AK
520 *
521 * When __GFP_OTHER_NODE is set assume the node of the preferred
522 * zone is the local node. This is useful for daemons who allocate
523 * memory on behalf of other processes.
ca889e6c 524 */
78afd561 525void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
ca889e6c 526{
18ea7e71 527 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
ca889e6c
CL
528 __inc_zone_state(z, NUMA_HIT);
529 } else {
530 __inc_zone_state(z, NUMA_MISS);
18ea7e71 531 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
ca889e6c 532 }
78afd561
AK
533 if (z->node == ((flags & __GFP_OTHER_NODE) ?
534 preferred_zone->node : numa_node_id()))
ca889e6c
CL
535 __inc_zone_state(z, NUMA_LOCAL);
536 else
537 __inc_zone_state(z, NUMA_OTHER);
538}
539#endif
540
d7a5752c 541#ifdef CONFIG_COMPACTION
36deb0be 542
d7a5752c
MG
543struct contig_page_info {
544 unsigned long free_pages;
545 unsigned long free_blocks_total;
546 unsigned long free_blocks_suitable;
547};
548
549/*
550 * Calculate the number of free pages in a zone, how many contiguous
551 * pages are free and how many are large enough to satisfy an allocation of
552 * the target size. Note that this function makes no attempt to estimate
553 * how many suitable free blocks there *might* be if MOVABLE pages were
554 * migrated. Calculating that is possible, but expensive and can be
555 * figured out from userspace
556 */
557static void fill_contig_page_info(struct zone *zone,
558 unsigned int suitable_order,
559 struct contig_page_info *info)
560{
561 unsigned int order;
562
563 info->free_pages = 0;
564 info->free_blocks_total = 0;
565 info->free_blocks_suitable = 0;
566
567 for (order = 0; order < MAX_ORDER; order++) {
568 unsigned long blocks;
569
570 /* Count number of free blocks */
571 blocks = zone->free_area[order].nr_free;
572 info->free_blocks_total += blocks;
573
574 /* Count free base pages */
575 info->free_pages += blocks << order;
576
577 /* Count the suitable free blocks */
578 if (order >= suitable_order)
579 info->free_blocks_suitable += blocks <<
580 (order - suitable_order);
581 }
582}
f1a5ab12
MG
583
584/*
585 * A fragmentation index only makes sense if an allocation of a requested
586 * size would fail. If that is true, the fragmentation index indicates
587 * whether external fragmentation or a lack of memory was the problem.
588 * The value can be used to determine if page reclaim or compaction
589 * should be used
590 */
56de7263 591static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
f1a5ab12
MG
592{
593 unsigned long requested = 1UL << order;
594
595 if (!info->free_blocks_total)
596 return 0;
597
598 /* Fragmentation index only makes sense when a request would fail */
599 if (info->free_blocks_suitable)
600 return -1000;
601
602 /*
603 * Index is between 0 and 1 so return within 3 decimal places
604 *
605 * 0 => allocation would fail due to lack of memory
606 * 1 => allocation would fail due to fragmentation
607 */
608 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
609}
56de7263
MG
610
611/* Same as __fragmentation index but allocs contig_page_info on stack */
612int fragmentation_index(struct zone *zone, unsigned int order)
613{
614 struct contig_page_info info;
615
616 fill_contig_page_info(zone, order, &info);
617 return __fragmentation_index(order, &info);
618}
d7a5752c
MG
619#endif
620
621#if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
8f32f7e5 622#include <linux/proc_fs.h>
f6ac2354
CL
623#include <linux/seq_file.h>
624
467c996c
MG
625static char * const migratetype_names[MIGRATE_TYPES] = {
626 "Unmovable",
627 "Reclaimable",
628 "Movable",
629 "Reserve",
47118af0
MN
630#ifdef CONFIG_CMA
631 "CMA",
632#endif
194159fb 633#ifdef CONFIG_MEMORY_ISOLATION
91446b06 634 "Isolate",
194159fb 635#endif
467c996c
MG
636};
637
f6ac2354
CL
638static void *frag_start(struct seq_file *m, loff_t *pos)
639{
640 pg_data_t *pgdat;
641 loff_t node = *pos;
642 for (pgdat = first_online_pgdat();
643 pgdat && node;
644 pgdat = next_online_pgdat(pgdat))
645 --node;
646
647 return pgdat;
648}
649
650static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
651{
652 pg_data_t *pgdat = (pg_data_t *)arg;
653
654 (*pos)++;
655 return next_online_pgdat(pgdat);
656}
657
658static void frag_stop(struct seq_file *m, void *arg)
659{
660}
661
467c996c
MG
662/* Walk all the zones in a node and print using a callback */
663static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
664 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
f6ac2354 665{
f6ac2354
CL
666 struct zone *zone;
667 struct zone *node_zones = pgdat->node_zones;
668 unsigned long flags;
f6ac2354
CL
669
670 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
671 if (!populated_zone(zone))
672 continue;
673
674 spin_lock_irqsave(&zone->lock, flags);
467c996c 675 print(m, pgdat, zone);
f6ac2354 676 spin_unlock_irqrestore(&zone->lock, flags);
467c996c
MG
677 }
678}
d7a5752c 679#endif
467c996c 680
0d6617c7 681#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
fa25c503
KM
682#ifdef CONFIG_ZONE_DMA
683#define TEXT_FOR_DMA(xx) xx "_dma",
684#else
685#define TEXT_FOR_DMA(xx)
686#endif
687
688#ifdef CONFIG_ZONE_DMA32
689#define TEXT_FOR_DMA32(xx) xx "_dma32",
690#else
691#define TEXT_FOR_DMA32(xx)
692#endif
693
694#ifdef CONFIG_HIGHMEM
695#define TEXT_FOR_HIGHMEM(xx) xx "_high",
696#else
697#define TEXT_FOR_HIGHMEM(xx)
698#endif
699
700#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
701 TEXT_FOR_HIGHMEM(xx) xx "_movable",
702
703const char * const vmstat_text[] = {
704 /* Zoned VM counters */
705 "nr_free_pages",
81c0a2bb 706 "nr_alloc_batch",
fa25c503
KM
707 "nr_inactive_anon",
708 "nr_active_anon",
709 "nr_inactive_file",
710 "nr_active_file",
711 "nr_unevictable",
712 "nr_mlock",
713 "nr_anon_pages",
714 "nr_mapped",
715 "nr_file_pages",
716 "nr_dirty",
717 "nr_writeback",
718 "nr_slab_reclaimable",
719 "nr_slab_unreclaimable",
720 "nr_page_table_pages",
721 "nr_kernel_stack",
722 "nr_unstable",
723 "nr_bounce",
724 "nr_vmscan_write",
49ea7eb6 725 "nr_vmscan_immediate_reclaim",
fa25c503
KM
726 "nr_writeback_temp",
727 "nr_isolated_anon",
728 "nr_isolated_file",
729 "nr_shmem",
730 "nr_dirtied",
731 "nr_written",
732
733#ifdef CONFIG_NUMA
734 "numa_hit",
735 "numa_miss",
736 "numa_foreign",
737 "numa_interleave",
738 "numa_local",
739 "numa_other",
740#endif
741 "nr_anon_transparent_hugepages",
d1ce749a 742 "nr_free_cma",
fa25c503
KM
743 "nr_dirty_threshold",
744 "nr_dirty_background_threshold",
745
746#ifdef CONFIG_VM_EVENT_COUNTERS
747 "pgpgin",
748 "pgpgout",
749 "pswpin",
750 "pswpout",
751
752 TEXTS_FOR_ZONES("pgalloc")
753
754 "pgfree",
755 "pgactivate",
756 "pgdeactivate",
757
758 "pgfault",
759 "pgmajfault",
760
761 TEXTS_FOR_ZONES("pgrefill")
904249aa
YH
762 TEXTS_FOR_ZONES("pgsteal_kswapd")
763 TEXTS_FOR_ZONES("pgsteal_direct")
fa25c503
KM
764 TEXTS_FOR_ZONES("pgscan_kswapd")
765 TEXTS_FOR_ZONES("pgscan_direct")
68243e76 766 "pgscan_direct_throttle",
fa25c503
KM
767
768#ifdef CONFIG_NUMA
769 "zone_reclaim_failed",
770#endif
771 "pginodesteal",
772 "slabs_scanned",
fa25c503
KM
773 "kswapd_inodesteal",
774 "kswapd_low_wmark_hit_quickly",
775 "kswapd_high_wmark_hit_quickly",
fa25c503
KM
776 "pageoutrun",
777 "allocstall",
778
779 "pgrotated",
780
03c5a6e1
MG
781#ifdef CONFIG_NUMA_BALANCING
782 "numa_pte_updates",
783 "numa_hint_faults",
784 "numa_hint_faults_local",
785 "numa_pages_migrated",
786#endif
5647bc29
MG
787#ifdef CONFIG_MIGRATION
788 "pgmigrate_success",
789 "pgmigrate_fail",
790#endif
fa25c503 791#ifdef CONFIG_COMPACTION
397487db
MG
792 "compact_migrate_scanned",
793 "compact_free_scanned",
794 "compact_isolated",
fa25c503
KM
795 "compact_stall",
796 "compact_fail",
797 "compact_success",
798#endif
799
800#ifdef CONFIG_HUGETLB_PAGE
801 "htlb_buddy_alloc_success",
802 "htlb_buddy_alloc_fail",
803#endif
804 "unevictable_pgs_culled",
805 "unevictable_pgs_scanned",
806 "unevictable_pgs_rescued",
807 "unevictable_pgs_mlocked",
808 "unevictable_pgs_munlocked",
809 "unevictable_pgs_cleared",
810 "unevictable_pgs_stranded",
fa25c503
KM
811
812#ifdef CONFIG_TRANSPARENT_HUGEPAGE
813 "thp_fault_alloc",
814 "thp_fault_fallback",
815 "thp_collapse_alloc",
816 "thp_collapse_alloc_failed",
817 "thp_split",
d8a8e1f0
KS
818 "thp_zero_page_alloc",
819 "thp_zero_page_alloc_failed",
fa25c503 820#endif
6df46865 821#ifdef CONFIG_SMP
9824cf97
DH
822 "nr_tlb_remote_flush",
823 "nr_tlb_remote_flush_received",
6df46865 824#endif
9824cf97
DH
825 "nr_tlb_local_flush_all",
826 "nr_tlb_local_flush_one",
fa25c503
KM
827
828#endif /* CONFIG_VM_EVENTS_COUNTERS */
829};
0d6617c7 830#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
fa25c503
KM
831
832
d7a5752c 833#ifdef CONFIG_PROC_FS
467c996c
MG
834static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
835 struct zone *zone)
836{
837 int order;
838
839 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
840 for (order = 0; order < MAX_ORDER; ++order)
841 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
842 seq_putc(m, '\n');
843}
844
845/*
846 * This walks the free areas for each zone.
847 */
848static int frag_show(struct seq_file *m, void *arg)
849{
850 pg_data_t *pgdat = (pg_data_t *)arg;
851 walk_zones_in_node(m, pgdat, frag_show_print);
852 return 0;
853}
854
855static void pagetypeinfo_showfree_print(struct seq_file *m,
856 pg_data_t *pgdat, struct zone *zone)
857{
858 int order, mtype;
859
860 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
861 seq_printf(m, "Node %4d, zone %8s, type %12s ",
862 pgdat->node_id,
863 zone->name,
864 migratetype_names[mtype]);
865 for (order = 0; order < MAX_ORDER; ++order) {
866 unsigned long freecount = 0;
867 struct free_area *area;
868 struct list_head *curr;
869
870 area = &(zone->free_area[order]);
871
872 list_for_each(curr, &area->free_list[mtype])
873 freecount++;
874 seq_printf(m, "%6lu ", freecount);
875 }
f6ac2354
CL
876 seq_putc(m, '\n');
877 }
467c996c
MG
878}
879
880/* Print out the free pages at each order for each migatetype */
881static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
882{
883 int order;
884 pg_data_t *pgdat = (pg_data_t *)arg;
885
886 /* Print header */
887 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
888 for (order = 0; order < MAX_ORDER; ++order)
889 seq_printf(m, "%6d ", order);
890 seq_putc(m, '\n');
891
892 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
893
894 return 0;
895}
896
897static void pagetypeinfo_showblockcount_print(struct seq_file *m,
898 pg_data_t *pgdat, struct zone *zone)
899{
900 int mtype;
901 unsigned long pfn;
902 unsigned long start_pfn = zone->zone_start_pfn;
108bcc96 903 unsigned long end_pfn = zone_end_pfn(zone);
467c996c
MG
904 unsigned long count[MIGRATE_TYPES] = { 0, };
905
906 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
907 struct page *page;
908
909 if (!pfn_valid(pfn))
910 continue;
911
912 page = pfn_to_page(pfn);
eb33575c
MG
913
914 /* Watch for unexpected holes punched in the memmap */
915 if (!memmap_valid_within(pfn, page, zone))
e80d6a24 916 continue;
eb33575c 917
467c996c
MG
918 mtype = get_pageblock_migratetype(page);
919
e80d6a24
MG
920 if (mtype < MIGRATE_TYPES)
921 count[mtype]++;
467c996c
MG
922 }
923
924 /* Print counts */
925 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
926 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
927 seq_printf(m, "%12lu ", count[mtype]);
928 seq_putc(m, '\n');
929}
930
931/* Print out the free pages at each order for each migratetype */
932static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
933{
934 int mtype;
935 pg_data_t *pgdat = (pg_data_t *)arg;
936
937 seq_printf(m, "\n%-23s", "Number of blocks type ");
938 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
939 seq_printf(m, "%12s ", migratetype_names[mtype]);
940 seq_putc(m, '\n');
941 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
942
943 return 0;
944}
945
946/*
947 * This prints out statistics in relation to grouping pages by mobility.
948 * It is expensive to collect so do not constantly read the file.
949 */
950static int pagetypeinfo_show(struct seq_file *m, void *arg)
951{
952 pg_data_t *pgdat = (pg_data_t *)arg;
953
41b25a37 954 /* check memoryless node */
a47b53c5 955 if (!node_state(pgdat->node_id, N_MEMORY))
41b25a37
KM
956 return 0;
957
467c996c
MG
958 seq_printf(m, "Page block order: %d\n", pageblock_order);
959 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
960 seq_putc(m, '\n');
961 pagetypeinfo_showfree(m, pgdat);
962 pagetypeinfo_showblockcount(m, pgdat);
963
f6ac2354
CL
964 return 0;
965}
966
8f32f7e5 967static const struct seq_operations fragmentation_op = {
f6ac2354
CL
968 .start = frag_start,
969 .next = frag_next,
970 .stop = frag_stop,
971 .show = frag_show,
972};
973
8f32f7e5
AD
974static int fragmentation_open(struct inode *inode, struct file *file)
975{
976 return seq_open(file, &fragmentation_op);
977}
978
979static const struct file_operations fragmentation_file_operations = {
980 .open = fragmentation_open,
981 .read = seq_read,
982 .llseek = seq_lseek,
983 .release = seq_release,
984};
985
74e2e8e8 986static const struct seq_operations pagetypeinfo_op = {
467c996c
MG
987 .start = frag_start,
988 .next = frag_next,
989 .stop = frag_stop,
990 .show = pagetypeinfo_show,
991};
992
74e2e8e8
AD
993static int pagetypeinfo_open(struct inode *inode, struct file *file)
994{
995 return seq_open(file, &pagetypeinfo_op);
996}
997
998static const struct file_operations pagetypeinfo_file_ops = {
999 .open = pagetypeinfo_open,
1000 .read = seq_read,
1001 .llseek = seq_lseek,
1002 .release = seq_release,
1003};
1004
467c996c
MG
1005static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1006 struct zone *zone)
f6ac2354 1007{
467c996c
MG
1008 int i;
1009 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1010 seq_printf(m,
1011 "\n pages free %lu"
1012 "\n min %lu"
1013 "\n low %lu"
1014 "\n high %lu"
08d9ae7c 1015 "\n scanned %lu"
467c996c 1016 "\n spanned %lu"
9feedc9d
JL
1017 "\n present %lu"
1018 "\n managed %lu",
88f5acf8 1019 zone_page_state(zone, NR_FREE_PAGES),
41858966
MG
1020 min_wmark_pages(zone),
1021 low_wmark_pages(zone),
1022 high_wmark_pages(zone),
467c996c 1023 zone->pages_scanned,
467c996c 1024 zone->spanned_pages,
9feedc9d
JL
1025 zone->present_pages,
1026 zone->managed_pages);
467c996c
MG
1027
1028 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1029 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1030 zone_page_state(zone, i));
1031
1032 seq_printf(m,
1033 "\n protection: (%lu",
1034 zone->lowmem_reserve[0]);
1035 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1036 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
1037 seq_printf(m,
1038 ")"
1039 "\n pagesets");
1040 for_each_online_cpu(i) {
1041 struct per_cpu_pageset *pageset;
467c996c 1042
99dcc3e5 1043 pageset = per_cpu_ptr(zone->pageset, i);
3dfa5721
CL
1044 seq_printf(m,
1045 "\n cpu: %i"
1046 "\n count: %i"
1047 "\n high: %i"
1048 "\n batch: %i",
1049 i,
1050 pageset->pcp.count,
1051 pageset->pcp.high,
1052 pageset->pcp.batch);
df9ecaba 1053#ifdef CONFIG_SMP
467c996c
MG
1054 seq_printf(m, "\n vm stats threshold: %d",
1055 pageset->stat_threshold);
df9ecaba 1056#endif
f6ac2354 1057 }
467c996c
MG
1058 seq_printf(m,
1059 "\n all_unreclaimable: %u"
556adecb
RR
1060 "\n start_pfn: %lu"
1061 "\n inactive_ratio: %u",
93e4a89a 1062 zone->all_unreclaimable,
556adecb
RR
1063 zone->zone_start_pfn,
1064 zone->inactive_ratio);
467c996c
MG
1065 seq_putc(m, '\n');
1066}
1067
1068/*
1069 * Output information about zones in @pgdat.
1070 */
1071static int zoneinfo_show(struct seq_file *m, void *arg)
1072{
1073 pg_data_t *pgdat = (pg_data_t *)arg;
1074 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
f6ac2354
CL
1075 return 0;
1076}
1077
5c9fe628 1078static const struct seq_operations zoneinfo_op = {
f6ac2354
CL
1079 .start = frag_start, /* iterate over all zones. The same as in
1080 * fragmentation. */
1081 .next = frag_next,
1082 .stop = frag_stop,
1083 .show = zoneinfo_show,
1084};
1085
5c9fe628
AD
1086static int zoneinfo_open(struct inode *inode, struct file *file)
1087{
1088 return seq_open(file, &zoneinfo_op);
1089}
1090
1091static const struct file_operations proc_zoneinfo_file_operations = {
1092 .open = zoneinfo_open,
1093 .read = seq_read,
1094 .llseek = seq_lseek,
1095 .release = seq_release,
1096};
1097
79da826a
MR
1098enum writeback_stat_item {
1099 NR_DIRTY_THRESHOLD,
1100 NR_DIRTY_BG_THRESHOLD,
1101 NR_VM_WRITEBACK_STAT_ITEMS,
1102};
1103
f6ac2354
CL
1104static void *vmstat_start(struct seq_file *m, loff_t *pos)
1105{
2244b95a 1106 unsigned long *v;
79da826a 1107 int i, stat_items_size;
f6ac2354
CL
1108
1109 if (*pos >= ARRAY_SIZE(vmstat_text))
1110 return NULL;
79da826a
MR
1111 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1112 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
f6ac2354 1113
f8891e5e 1114#ifdef CONFIG_VM_EVENT_COUNTERS
79da826a 1115 stat_items_size += sizeof(struct vm_event_state);
f8891e5e 1116#endif
79da826a
MR
1117
1118 v = kmalloc(stat_items_size, GFP_KERNEL);
2244b95a
CL
1119 m->private = v;
1120 if (!v)
f6ac2354 1121 return ERR_PTR(-ENOMEM);
2244b95a
CL
1122 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1123 v[i] = global_page_state(i);
79da826a
MR
1124 v += NR_VM_ZONE_STAT_ITEMS;
1125
1126 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1127 v + NR_DIRTY_THRESHOLD);
1128 v += NR_VM_WRITEBACK_STAT_ITEMS;
1129
f8891e5e 1130#ifdef CONFIG_VM_EVENT_COUNTERS
79da826a
MR
1131 all_vm_events(v);
1132 v[PGPGIN] /= 2; /* sectors -> kbytes */
1133 v[PGPGOUT] /= 2;
f8891e5e 1134#endif
ff8b16d7 1135 return (unsigned long *)m->private + *pos;
f6ac2354
CL
1136}
1137
1138static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1139{
1140 (*pos)++;
1141 if (*pos >= ARRAY_SIZE(vmstat_text))
1142 return NULL;
1143 return (unsigned long *)m->private + *pos;
1144}
1145
1146static int vmstat_show(struct seq_file *m, void *arg)
1147{
1148 unsigned long *l = arg;
1149 unsigned long off = l - (unsigned long *)m->private;
1150
1151 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1152 return 0;
1153}
1154
1155static void vmstat_stop(struct seq_file *m, void *arg)
1156{
1157 kfree(m->private);
1158 m->private = NULL;
1159}
1160
b6aa44ab 1161static const struct seq_operations vmstat_op = {
f6ac2354
CL
1162 .start = vmstat_start,
1163 .next = vmstat_next,
1164 .stop = vmstat_stop,
1165 .show = vmstat_show,
1166};
1167
b6aa44ab
AD
1168static int vmstat_open(struct inode *inode, struct file *file)
1169{
1170 return seq_open(file, &vmstat_op);
1171}
1172
1173static const struct file_operations proc_vmstat_file_operations = {
1174 .open = vmstat_open,
1175 .read = seq_read,
1176 .llseek = seq_lseek,
1177 .release = seq_release,
1178};
f6ac2354
CL
1179#endif /* CONFIG_PROC_FS */
1180
df9ecaba 1181#ifdef CONFIG_SMP
d1187ed2 1182static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
77461ab3 1183int sysctl_stat_interval __read_mostly = HZ;
d1187ed2
CL
1184
1185static void vmstat_update(struct work_struct *w)
1186{
1187 refresh_cpu_vm_stats(smp_processor_id());
77461ab3 1188 schedule_delayed_work(&__get_cpu_var(vmstat_work),
98f4ebb2 1189 round_jiffies_relative(sysctl_stat_interval));
d1187ed2
CL
1190}
1191
0db0628d 1192static void start_cpu_timer(int cpu)
d1187ed2 1193{
1871e52c 1194 struct delayed_work *work = &per_cpu(vmstat_work, cpu);
d1187ed2 1195
203b42f7 1196 INIT_DEFERRABLE_WORK(work, vmstat_update);
1871e52c 1197 schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
d1187ed2
CL
1198}
1199
df9ecaba
CL
1200/*
1201 * Use the cpu notifier to insure that the thresholds are recalculated
1202 * when necessary.
1203 */
0db0628d 1204static int vmstat_cpuup_callback(struct notifier_block *nfb,
df9ecaba
CL
1205 unsigned long action,
1206 void *hcpu)
1207{
d1187ed2
CL
1208 long cpu = (long)hcpu;
1209
df9ecaba 1210 switch (action) {
d1187ed2
CL
1211 case CPU_ONLINE:
1212 case CPU_ONLINE_FROZEN:
5ee28a44 1213 refresh_zone_stat_thresholds();
d1187ed2 1214 start_cpu_timer(cpu);
ad596925 1215 node_set_state(cpu_to_node(cpu), N_CPU);
d1187ed2
CL
1216 break;
1217 case CPU_DOWN_PREPARE:
1218 case CPU_DOWN_PREPARE_FROZEN:
afe2c511 1219 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
d1187ed2
CL
1220 per_cpu(vmstat_work, cpu).work.func = NULL;
1221 break;
1222 case CPU_DOWN_FAILED:
1223 case CPU_DOWN_FAILED_FROZEN:
1224 start_cpu_timer(cpu);
1225 break;
ce421c79 1226 case CPU_DEAD:
8bb78442 1227 case CPU_DEAD_FROZEN:
ce421c79
AW
1228 refresh_zone_stat_thresholds();
1229 break;
1230 default:
1231 break;
df9ecaba
CL
1232 }
1233 return NOTIFY_OK;
1234}
1235
0db0628d 1236static struct notifier_block vmstat_notifier =
df9ecaba 1237 { &vmstat_cpuup_callback, NULL, 0 };
8f32f7e5 1238#endif
df9ecaba 1239
e2fc88d0 1240static int __init setup_vmstat(void)
df9ecaba 1241{
8f32f7e5 1242#ifdef CONFIG_SMP
d1187ed2
CL
1243 int cpu;
1244
df9ecaba 1245 register_cpu_notifier(&vmstat_notifier);
d1187ed2
CL
1246
1247 for_each_online_cpu(cpu)
1248 start_cpu_timer(cpu);
8f32f7e5
AD
1249#endif
1250#ifdef CONFIG_PROC_FS
1251 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
74e2e8e8 1252 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
b6aa44ab 1253 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
5c9fe628 1254 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
8f32f7e5 1255#endif
df9ecaba
CL
1256 return 0;
1257}
1258module_init(setup_vmstat)
d7a5752c
MG
1259
1260#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1261#include <linux/debugfs.h>
1262
d7a5752c
MG
1263
1264/*
1265 * Return an index indicating how much of the available free memory is
1266 * unusable for an allocation of the requested size.
1267 */
1268static int unusable_free_index(unsigned int order,
1269 struct contig_page_info *info)
1270{
1271 /* No free memory is interpreted as all free memory is unusable */
1272 if (info->free_pages == 0)
1273 return 1000;
1274
1275 /*
1276 * Index should be a value between 0 and 1. Return a value to 3
1277 * decimal places.
1278 *
1279 * 0 => no fragmentation
1280 * 1 => high fragmentation
1281 */
1282 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1283
1284}
1285
1286static void unusable_show_print(struct seq_file *m,
1287 pg_data_t *pgdat, struct zone *zone)
1288{
1289 unsigned int order;
1290 int index;
1291 struct contig_page_info info;
1292
1293 seq_printf(m, "Node %d, zone %8s ",
1294 pgdat->node_id,
1295 zone->name);
1296 for (order = 0; order < MAX_ORDER; ++order) {
1297 fill_contig_page_info(zone, order, &info);
1298 index = unusable_free_index(order, &info);
1299 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1300 }
1301
1302 seq_putc(m, '\n');
1303}
1304
1305/*
1306 * Display unusable free space index
1307 *
1308 * The unusable free space index measures how much of the available free
1309 * memory cannot be used to satisfy an allocation of a given size and is a
1310 * value between 0 and 1. The higher the value, the more of free memory is
1311 * unusable and by implication, the worse the external fragmentation is. This
1312 * can be expressed as a percentage by multiplying by 100.
1313 */
1314static int unusable_show(struct seq_file *m, void *arg)
1315{
1316 pg_data_t *pgdat = (pg_data_t *)arg;
1317
1318 /* check memoryless node */
a47b53c5 1319 if (!node_state(pgdat->node_id, N_MEMORY))
d7a5752c
MG
1320 return 0;
1321
1322 walk_zones_in_node(m, pgdat, unusable_show_print);
1323
1324 return 0;
1325}
1326
1327static const struct seq_operations unusable_op = {
1328 .start = frag_start,
1329 .next = frag_next,
1330 .stop = frag_stop,
1331 .show = unusable_show,
1332};
1333
1334static int unusable_open(struct inode *inode, struct file *file)
1335{
1336 return seq_open(file, &unusable_op);
1337}
1338
1339static const struct file_operations unusable_file_ops = {
1340 .open = unusable_open,
1341 .read = seq_read,
1342 .llseek = seq_lseek,
1343 .release = seq_release,
1344};
1345
f1a5ab12
MG
1346static void extfrag_show_print(struct seq_file *m,
1347 pg_data_t *pgdat, struct zone *zone)
1348{
1349 unsigned int order;
1350 int index;
1351
1352 /* Alloc on stack as interrupts are disabled for zone walk */
1353 struct contig_page_info info;
1354
1355 seq_printf(m, "Node %d, zone %8s ",
1356 pgdat->node_id,
1357 zone->name);
1358 for (order = 0; order < MAX_ORDER; ++order) {
1359 fill_contig_page_info(zone, order, &info);
56de7263 1360 index = __fragmentation_index(order, &info);
f1a5ab12
MG
1361 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1362 }
1363
1364 seq_putc(m, '\n');
1365}
1366
1367/*
1368 * Display fragmentation index for orders that allocations would fail for
1369 */
1370static int extfrag_show(struct seq_file *m, void *arg)
1371{
1372 pg_data_t *pgdat = (pg_data_t *)arg;
1373
1374 walk_zones_in_node(m, pgdat, extfrag_show_print);
1375
1376 return 0;
1377}
1378
1379static const struct seq_operations extfrag_op = {
1380 .start = frag_start,
1381 .next = frag_next,
1382 .stop = frag_stop,
1383 .show = extfrag_show,
1384};
1385
1386static int extfrag_open(struct inode *inode, struct file *file)
1387{
1388 return seq_open(file, &extfrag_op);
1389}
1390
1391static const struct file_operations extfrag_file_ops = {
1392 .open = extfrag_open,
1393 .read = seq_read,
1394 .llseek = seq_lseek,
1395 .release = seq_release,
1396};
1397
d7a5752c
MG
1398static int __init extfrag_debug_init(void)
1399{
bde8bd8a
S
1400 struct dentry *extfrag_debug_root;
1401
d7a5752c
MG
1402 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1403 if (!extfrag_debug_root)
1404 return -ENOMEM;
1405
1406 if (!debugfs_create_file("unusable_index", 0444,
1407 extfrag_debug_root, NULL, &unusable_file_ops))
bde8bd8a 1408 goto fail;
d7a5752c 1409
f1a5ab12
MG
1410 if (!debugfs_create_file("extfrag_index", 0444,
1411 extfrag_debug_root, NULL, &extfrag_file_ops))
bde8bd8a 1412 goto fail;
f1a5ab12 1413
d7a5752c 1414 return 0;
bde8bd8a
S
1415fail:
1416 debugfs_remove_recursive(extfrag_debug_root);
1417 return -ENOMEM;
d7a5752c
MG
1418}
1419
1420module_init(extfrag_debug_init);
1421#endif