mm, vmscan: move lru_lock to the node
[linux-2.6-block.git] / mm / vmstat.c
CommitLineData
f6ac2354
CL
1/*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
2244b95a
CL
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
7cc36bbd 10 * Copyright (C) 2008-2014 Christoph Lameter
f6ac2354 11 */
8f32f7e5 12#include <linux/fs.h>
f6ac2354 13#include <linux/mm.h>
4e950f6f 14#include <linux/err.h>
2244b95a 15#include <linux/module.h>
5a0e3ad6 16#include <linux/slab.h>
df9ecaba 17#include <linux/cpu.h>
7cc36bbd 18#include <linux/cpumask.h>
c748e134 19#include <linux/vmstat.h>
3c486871
AM
20#include <linux/proc_fs.h>
21#include <linux/seq_file.h>
22#include <linux/debugfs.h>
e8edc6e0 23#include <linux/sched.h>
f1a5ab12 24#include <linux/math64.h>
79da826a 25#include <linux/writeback.h>
36deb0be 26#include <linux/compaction.h>
6e543d57 27#include <linux/mm_inline.h>
48c96a36
JK
28#include <linux/page_ext.h>
29#include <linux/page_owner.h>
6e543d57
LD
30
31#include "internal.h"
f6ac2354 32
f8891e5e
CL
33#ifdef CONFIG_VM_EVENT_COUNTERS
34DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35EXPORT_PER_CPU_SYMBOL(vm_event_states);
36
31f961a8 37static void sum_vm_events(unsigned long *ret)
f8891e5e 38{
9eccf2a8 39 int cpu;
f8891e5e
CL
40 int i;
41
42 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
43
31f961a8 44 for_each_online_cpu(cpu) {
f8891e5e
CL
45 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
46
f8891e5e
CL
47 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48 ret[i] += this->event[i];
49 }
50}
51
52/*
53 * Accumulate the vm event counters across all CPUs.
54 * The result is unavoidably approximate - it can change
55 * during and after execution of this function.
56*/
57void all_vm_events(unsigned long *ret)
58{
b5be1132 59 get_online_cpus();
31f961a8 60 sum_vm_events(ret);
b5be1132 61 put_online_cpus();
f8891e5e 62}
32dd66fc 63EXPORT_SYMBOL_GPL(all_vm_events);
f8891e5e 64
f8891e5e
CL
65/*
66 * Fold the foreign cpu events into our own.
67 *
68 * This is adding to the events on one processor
69 * but keeps the global counts constant.
70 */
71void vm_events_fold_cpu(int cpu)
72{
73 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
74 int i;
75
76 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77 count_vm_events(i, fold_state->event[i]);
78 fold_state->event[i] = 0;
79 }
80}
f8891e5e
CL
81
82#endif /* CONFIG_VM_EVENT_COUNTERS */
83
2244b95a
CL
84/*
85 * Manage combined zone based / global counters
86 *
87 * vm_stat contains the global counters
88 */
75ef7184
MG
89atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
90atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
91EXPORT_SYMBOL(vm_zone_stat);
92EXPORT_SYMBOL(vm_node_stat);
2244b95a
CL
93
94#ifdef CONFIG_SMP
95
b44129b3 96int calculate_pressure_threshold(struct zone *zone)
88f5acf8
MG
97{
98 int threshold;
99 int watermark_distance;
100
101 /*
102 * As vmstats are not up to date, there is drift between the estimated
103 * and real values. For high thresholds and a high number of CPUs, it
104 * is possible for the min watermark to be breached while the estimated
105 * value looks fine. The pressure threshold is a reduced value such
106 * that even the maximum amount of drift will not accidentally breach
107 * the min watermark
108 */
109 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
110 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
111
112 /*
113 * Maximum threshold is 125
114 */
115 threshold = min(125, threshold);
116
117 return threshold;
118}
119
b44129b3 120int calculate_normal_threshold(struct zone *zone)
df9ecaba
CL
121{
122 int threshold;
123 int mem; /* memory in 128 MB units */
124
125 /*
126 * The threshold scales with the number of processors and the amount
127 * of memory per zone. More memory means that we can defer updates for
128 * longer, more processors could lead to more contention.
129 * fls() is used to have a cheap way of logarithmic scaling.
130 *
131 * Some sample thresholds:
132 *
133 * Threshold Processors (fls) Zonesize fls(mem+1)
134 * ------------------------------------------------------------------
135 * 8 1 1 0.9-1 GB 4
136 * 16 2 2 0.9-1 GB 4
137 * 20 2 2 1-2 GB 5
138 * 24 2 2 2-4 GB 6
139 * 28 2 2 4-8 GB 7
140 * 32 2 2 8-16 GB 8
141 * 4 2 2 <128M 1
142 * 30 4 3 2-4 GB 5
143 * 48 4 3 8-16 GB 8
144 * 32 8 4 1-2 GB 4
145 * 32 8 4 0.9-1GB 4
146 * 10 16 5 <128M 1
147 * 40 16 5 900M 4
148 * 70 64 7 2-4 GB 5
149 * 84 64 7 4-8 GB 6
150 * 108 512 9 4-8 GB 6
151 * 125 1024 10 8-16 GB 8
152 * 125 1024 10 16-32 GB 9
153 */
154
b40da049 155 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
df9ecaba
CL
156
157 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
158
159 /*
160 * Maximum threshold is 125
161 */
162 threshold = min(125, threshold);
163
164 return threshold;
165}
2244b95a
CL
166
167/*
df9ecaba 168 * Refresh the thresholds for each zone.
2244b95a 169 */
a6cccdc3 170void refresh_zone_stat_thresholds(void)
2244b95a 171{
75ef7184 172 struct pglist_data *pgdat;
df9ecaba
CL
173 struct zone *zone;
174 int cpu;
175 int threshold;
176
75ef7184
MG
177 /* Zero current pgdat thresholds */
178 for_each_online_pgdat(pgdat) {
179 for_each_online_cpu(cpu) {
180 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
181 }
182 }
183
ee99c71c 184 for_each_populated_zone(zone) {
75ef7184 185 struct pglist_data *pgdat = zone->zone_pgdat;
aa454840
CL
186 unsigned long max_drift, tolerate_drift;
187
b44129b3 188 threshold = calculate_normal_threshold(zone);
df9ecaba 189
75ef7184
MG
190 for_each_online_cpu(cpu) {
191 int pgdat_threshold;
192
99dcc3e5
CL
193 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
194 = threshold;
aa454840 195
75ef7184
MG
196 /* Base nodestat threshold on the largest populated zone. */
197 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
198 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
199 = max(threshold, pgdat_threshold);
200 }
201
aa454840
CL
202 /*
203 * Only set percpu_drift_mark if there is a danger that
204 * NR_FREE_PAGES reports the low watermark is ok when in fact
205 * the min watermark could be breached by an allocation
206 */
207 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
208 max_drift = num_online_cpus() * threshold;
209 if (max_drift > tolerate_drift)
210 zone->percpu_drift_mark = high_wmark_pages(zone) +
211 max_drift;
df9ecaba 212 }
2244b95a
CL
213}
214
b44129b3
MG
215void set_pgdat_percpu_threshold(pg_data_t *pgdat,
216 int (*calculate_pressure)(struct zone *))
88f5acf8
MG
217{
218 struct zone *zone;
219 int cpu;
220 int threshold;
221 int i;
222
88f5acf8
MG
223 for (i = 0; i < pgdat->nr_zones; i++) {
224 zone = &pgdat->node_zones[i];
225 if (!zone->percpu_drift_mark)
226 continue;
227
b44129b3 228 threshold = (*calculate_pressure)(zone);
bb0b6dff 229 for_each_online_cpu(cpu)
88f5acf8
MG
230 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
231 = threshold;
232 }
88f5acf8
MG
233}
234
2244b95a 235/*
bea04b07
JZ
236 * For use when we know that interrupts are disabled,
237 * or when we know that preemption is disabled and that
238 * particular counter cannot be updated from interrupt context.
2244b95a
CL
239 */
240void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
6cdb18ad 241 long delta)
2244b95a 242{
12938a92
CL
243 struct per_cpu_pageset __percpu *pcp = zone->pageset;
244 s8 __percpu *p = pcp->vm_stat_diff + item;
2244b95a 245 long x;
12938a92
CL
246 long t;
247
248 x = delta + __this_cpu_read(*p);
2244b95a 249
12938a92 250 t = __this_cpu_read(pcp->stat_threshold);
2244b95a 251
12938a92 252 if (unlikely(x > t || x < -t)) {
2244b95a
CL
253 zone_page_state_add(x, zone, item);
254 x = 0;
255 }
12938a92 256 __this_cpu_write(*p, x);
2244b95a
CL
257}
258EXPORT_SYMBOL(__mod_zone_page_state);
259
75ef7184
MG
260void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
261 long delta)
262{
263 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
264 s8 __percpu *p = pcp->vm_node_stat_diff + item;
265 long x;
266 long t;
267
268 x = delta + __this_cpu_read(*p);
269
270 t = __this_cpu_read(pcp->stat_threshold);
271
272 if (unlikely(x > t || x < -t)) {
273 node_page_state_add(x, pgdat, item);
274 x = 0;
275 }
276 __this_cpu_write(*p, x);
277}
278EXPORT_SYMBOL(__mod_node_page_state);
279
2244b95a
CL
280/*
281 * Optimized increment and decrement functions.
282 *
283 * These are only for a single page and therefore can take a struct page *
284 * argument instead of struct zone *. This allows the inclusion of the code
285 * generated for page_zone(page) into the optimized functions.
286 *
287 * No overflow check is necessary and therefore the differential can be
288 * incremented or decremented in place which may allow the compilers to
289 * generate better code.
2244b95a
CL
290 * The increment or decrement is known and therefore one boundary check can
291 * be omitted.
292 *
df9ecaba
CL
293 * NOTE: These functions are very performance sensitive. Change only
294 * with care.
295 *
2244b95a
CL
296 * Some processors have inc/dec instructions that are atomic vs an interrupt.
297 * However, the code must first determine the differential location in a zone
298 * based on the processor number and then inc/dec the counter. There is no
299 * guarantee without disabling preemption that the processor will not change
300 * in between and therefore the atomicity vs. interrupt cannot be exploited
301 * in a useful way here.
302 */
c8785385 303void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
2244b95a 304{
12938a92
CL
305 struct per_cpu_pageset __percpu *pcp = zone->pageset;
306 s8 __percpu *p = pcp->vm_stat_diff + item;
307 s8 v, t;
2244b95a 308
908ee0f1 309 v = __this_cpu_inc_return(*p);
12938a92
CL
310 t = __this_cpu_read(pcp->stat_threshold);
311 if (unlikely(v > t)) {
312 s8 overstep = t >> 1;
df9ecaba 313
12938a92
CL
314 zone_page_state_add(v + overstep, zone, item);
315 __this_cpu_write(*p, -overstep);
2244b95a
CL
316 }
317}
ca889e6c 318
75ef7184
MG
319void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
320{
321 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
322 s8 __percpu *p = pcp->vm_node_stat_diff + item;
323 s8 v, t;
324
325 v = __this_cpu_inc_return(*p);
326 t = __this_cpu_read(pcp->stat_threshold);
327 if (unlikely(v > t)) {
328 s8 overstep = t >> 1;
329
330 node_page_state_add(v + overstep, pgdat, item);
331 __this_cpu_write(*p, -overstep);
332 }
333}
334
ca889e6c
CL
335void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
336{
337 __inc_zone_state(page_zone(page), item);
338}
2244b95a
CL
339EXPORT_SYMBOL(__inc_zone_page_state);
340
75ef7184
MG
341void __inc_node_page_state(struct page *page, enum node_stat_item item)
342{
343 __inc_node_state(page_pgdat(page), item);
344}
345EXPORT_SYMBOL(__inc_node_page_state);
346
c8785385 347void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
2244b95a 348{
12938a92
CL
349 struct per_cpu_pageset __percpu *pcp = zone->pageset;
350 s8 __percpu *p = pcp->vm_stat_diff + item;
351 s8 v, t;
2244b95a 352
908ee0f1 353 v = __this_cpu_dec_return(*p);
12938a92
CL
354 t = __this_cpu_read(pcp->stat_threshold);
355 if (unlikely(v < - t)) {
356 s8 overstep = t >> 1;
2244b95a 357
12938a92
CL
358 zone_page_state_add(v - overstep, zone, item);
359 __this_cpu_write(*p, overstep);
2244b95a
CL
360 }
361}
c8785385 362
75ef7184
MG
363void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
364{
365 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
366 s8 __percpu *p = pcp->vm_node_stat_diff + item;
367 s8 v, t;
368
369 v = __this_cpu_dec_return(*p);
370 t = __this_cpu_read(pcp->stat_threshold);
371 if (unlikely(v < - t)) {
372 s8 overstep = t >> 1;
373
374 node_page_state_add(v - overstep, pgdat, item);
375 __this_cpu_write(*p, overstep);
376 }
377}
378
c8785385
CL
379void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
380{
381 __dec_zone_state(page_zone(page), item);
382}
2244b95a
CL
383EXPORT_SYMBOL(__dec_zone_page_state);
384
75ef7184
MG
385void __dec_node_page_state(struct page *page, enum node_stat_item item)
386{
387 __dec_node_state(page_pgdat(page), item);
388}
389EXPORT_SYMBOL(__dec_node_page_state);
390
4156153c 391#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
7c839120
CL
392/*
393 * If we have cmpxchg_local support then we do not need to incur the overhead
394 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
395 *
396 * mod_state() modifies the zone counter state through atomic per cpu
397 * operations.
398 *
399 * Overstep mode specifies how overstep should handled:
400 * 0 No overstepping
401 * 1 Overstepping half of threshold
402 * -1 Overstepping minus half of threshold
403*/
75ef7184
MG
404static inline void mod_zone_state(struct zone *zone,
405 enum zone_stat_item item, long delta, int overstep_mode)
7c839120
CL
406{
407 struct per_cpu_pageset __percpu *pcp = zone->pageset;
408 s8 __percpu *p = pcp->vm_stat_diff + item;
409 long o, n, t, z;
410
411 do {
412 z = 0; /* overflow to zone counters */
413
414 /*
415 * The fetching of the stat_threshold is racy. We may apply
416 * a counter threshold to the wrong the cpu if we get
d3bc2367
CL
417 * rescheduled while executing here. However, the next
418 * counter update will apply the threshold again and
419 * therefore bring the counter under the threshold again.
420 *
421 * Most of the time the thresholds are the same anyways
422 * for all cpus in a zone.
7c839120
CL
423 */
424 t = this_cpu_read(pcp->stat_threshold);
425
426 o = this_cpu_read(*p);
427 n = delta + o;
428
429 if (n > t || n < -t) {
430 int os = overstep_mode * (t >> 1) ;
431
432 /* Overflow must be added to zone counters */
433 z = n + os;
434 n = -os;
435 }
436 } while (this_cpu_cmpxchg(*p, o, n) != o);
437
438 if (z)
439 zone_page_state_add(z, zone, item);
440}
441
442void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
6cdb18ad 443 long delta)
7c839120 444{
75ef7184 445 mod_zone_state(zone, item, delta, 0);
7c839120
CL
446}
447EXPORT_SYMBOL(mod_zone_page_state);
448
449void inc_zone_state(struct zone *zone, enum zone_stat_item item)
450{
75ef7184 451 mod_zone_state(zone, item, 1, 1);
7c839120
CL
452}
453
454void inc_zone_page_state(struct page *page, enum zone_stat_item item)
455{
75ef7184 456 mod_zone_state(page_zone(page), item, 1, 1);
7c839120
CL
457}
458EXPORT_SYMBOL(inc_zone_page_state);
459
460void dec_zone_page_state(struct page *page, enum zone_stat_item item)
461{
75ef7184 462 mod_zone_state(page_zone(page), item, -1, -1);
7c839120
CL
463}
464EXPORT_SYMBOL(dec_zone_page_state);
75ef7184
MG
465
466static inline void mod_node_state(struct pglist_data *pgdat,
467 enum node_stat_item item, int delta, int overstep_mode)
468{
469 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
470 s8 __percpu *p = pcp->vm_node_stat_diff + item;
471 long o, n, t, z;
472
473 do {
474 z = 0; /* overflow to node counters */
475
476 /*
477 * The fetching of the stat_threshold is racy. We may apply
478 * a counter threshold to the wrong the cpu if we get
479 * rescheduled while executing here. However, the next
480 * counter update will apply the threshold again and
481 * therefore bring the counter under the threshold again.
482 *
483 * Most of the time the thresholds are the same anyways
484 * for all cpus in a node.
485 */
486 t = this_cpu_read(pcp->stat_threshold);
487
488 o = this_cpu_read(*p);
489 n = delta + o;
490
491 if (n > t || n < -t) {
492 int os = overstep_mode * (t >> 1) ;
493
494 /* Overflow must be added to node counters */
495 z = n + os;
496 n = -os;
497 }
498 } while (this_cpu_cmpxchg(*p, o, n) != o);
499
500 if (z)
501 node_page_state_add(z, pgdat, item);
502}
503
504void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
505 long delta)
506{
507 mod_node_state(pgdat, item, delta, 0);
508}
509EXPORT_SYMBOL(mod_node_page_state);
510
511void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
512{
513 mod_node_state(pgdat, item, 1, 1);
514}
515
516void inc_node_page_state(struct page *page, enum node_stat_item item)
517{
518 mod_node_state(page_pgdat(page), item, 1, 1);
519}
520EXPORT_SYMBOL(inc_node_page_state);
521
522void dec_node_page_state(struct page *page, enum node_stat_item item)
523{
524 mod_node_state(page_pgdat(page), item, -1, -1);
525}
526EXPORT_SYMBOL(dec_node_page_state);
7c839120
CL
527#else
528/*
529 * Use interrupt disable to serialize counter updates
530 */
531void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
6cdb18ad 532 long delta)
7c839120
CL
533{
534 unsigned long flags;
535
536 local_irq_save(flags);
537 __mod_zone_page_state(zone, item, delta);
538 local_irq_restore(flags);
539}
540EXPORT_SYMBOL(mod_zone_page_state);
541
ca889e6c
CL
542void inc_zone_state(struct zone *zone, enum zone_stat_item item)
543{
544 unsigned long flags;
545
546 local_irq_save(flags);
547 __inc_zone_state(zone, item);
548 local_irq_restore(flags);
549}
550
2244b95a
CL
551void inc_zone_page_state(struct page *page, enum zone_stat_item item)
552{
553 unsigned long flags;
554 struct zone *zone;
2244b95a
CL
555
556 zone = page_zone(page);
557 local_irq_save(flags);
ca889e6c 558 __inc_zone_state(zone, item);
2244b95a
CL
559 local_irq_restore(flags);
560}
561EXPORT_SYMBOL(inc_zone_page_state);
562
563void dec_zone_page_state(struct page *page, enum zone_stat_item item)
564{
565 unsigned long flags;
2244b95a 566
2244b95a 567 local_irq_save(flags);
a302eb4e 568 __dec_zone_page_state(page, item);
2244b95a
CL
569 local_irq_restore(flags);
570}
571EXPORT_SYMBOL(dec_zone_page_state);
572
75ef7184
MG
573void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
574{
575 unsigned long flags;
576
577 local_irq_save(flags);
578 __inc_node_state(pgdat, item);
579 local_irq_restore(flags);
580}
581EXPORT_SYMBOL(inc_node_state);
582
583void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
584 long delta)
585{
586 unsigned long flags;
587
588 local_irq_save(flags);
589 __mod_node_page_state(pgdat, item, delta);
590 local_irq_restore(flags);
591}
592EXPORT_SYMBOL(mod_node_page_state);
593
594void inc_node_page_state(struct page *page, enum node_stat_item item)
595{
596 unsigned long flags;
597 struct pglist_data *pgdat;
598
599 pgdat = page_pgdat(page);
600 local_irq_save(flags);
601 __inc_node_state(pgdat, item);
602 local_irq_restore(flags);
603}
604EXPORT_SYMBOL(inc_node_page_state);
605
606void dec_node_page_state(struct page *page, enum node_stat_item item)
607{
608 unsigned long flags;
609
610 local_irq_save(flags);
611 __dec_node_page_state(page, item);
612 local_irq_restore(flags);
613}
614EXPORT_SYMBOL(dec_node_page_state);
615#endif
7cc36bbd
CL
616
617/*
618 * Fold a differential into the global counters.
619 * Returns the number of counters updated.
620 */
75ef7184 621static int fold_diff(int *zone_diff, int *node_diff)
4edb0748
CL
622{
623 int i;
7cc36bbd 624 int changes = 0;
4edb0748
CL
625
626 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
75ef7184
MG
627 if (zone_diff[i]) {
628 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
629 changes++;
630 }
631
632 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
633 if (node_diff[i]) {
634 atomic_long_add(node_diff[i], &vm_node_stat[i]);
7cc36bbd
CL
635 changes++;
636 }
637 return changes;
4edb0748
CL
638}
639
2244b95a 640/*
2bb921e5 641 * Update the zone counters for the current cpu.
a7f75e25 642 *
4037d452
CL
643 * Note that refresh_cpu_vm_stats strives to only access
644 * node local memory. The per cpu pagesets on remote zones are placed
645 * in the memory local to the processor using that pageset. So the
646 * loop over all zones will access a series of cachelines local to
647 * the processor.
648 *
649 * The call to zone_page_state_add updates the cachelines with the
650 * statistics in the remote zone struct as well as the global cachelines
651 * with the global counters. These could cause remote node cache line
652 * bouncing and will have to be only done when necessary.
7cc36bbd
CL
653 *
654 * The function returns the number of global counters updated.
2244b95a 655 */
0eb77e98 656static int refresh_cpu_vm_stats(bool do_pagesets)
2244b95a 657{
75ef7184 658 struct pglist_data *pgdat;
2244b95a
CL
659 struct zone *zone;
660 int i;
75ef7184
MG
661 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
662 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
7cc36bbd 663 int changes = 0;
2244b95a 664
ee99c71c 665 for_each_populated_zone(zone) {
fbc2edb0 666 struct per_cpu_pageset __percpu *p = zone->pageset;
2244b95a 667
fbc2edb0
CL
668 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
669 int v;
2244b95a 670
fbc2edb0
CL
671 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
672 if (v) {
a7f75e25 673
a7f75e25 674 atomic_long_add(v, &zone->vm_stat[i]);
75ef7184 675 global_zone_diff[i] += v;
4037d452
CL
676#ifdef CONFIG_NUMA
677 /* 3 seconds idle till flush */
fbc2edb0 678 __this_cpu_write(p->expire, 3);
4037d452 679#endif
2244b95a 680 }
fbc2edb0 681 }
4037d452 682#ifdef CONFIG_NUMA
0eb77e98
CL
683 if (do_pagesets) {
684 cond_resched();
685 /*
686 * Deal with draining the remote pageset of this
687 * processor
688 *
689 * Check if there are pages remaining in this pageset
690 * if not then there is nothing to expire.
691 */
692 if (!__this_cpu_read(p->expire) ||
fbc2edb0 693 !__this_cpu_read(p->pcp.count))
0eb77e98 694 continue;
4037d452 695
0eb77e98
CL
696 /*
697 * We never drain zones local to this processor.
698 */
699 if (zone_to_nid(zone) == numa_node_id()) {
700 __this_cpu_write(p->expire, 0);
701 continue;
702 }
4037d452 703
0eb77e98
CL
704 if (__this_cpu_dec_return(p->expire))
705 continue;
4037d452 706
0eb77e98
CL
707 if (__this_cpu_read(p->pcp.count)) {
708 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
709 changes++;
710 }
7cc36bbd 711 }
4037d452 712#endif
2244b95a 713 }
75ef7184
MG
714
715 for_each_online_pgdat(pgdat) {
716 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
717
718 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
719 int v;
720
721 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
722 if (v) {
723 atomic_long_add(v, &pgdat->vm_stat[i]);
724 global_node_diff[i] += v;
725 }
726 }
727 }
728
729 changes += fold_diff(global_zone_diff, global_node_diff);
7cc36bbd 730 return changes;
2244b95a
CL
731}
732
2bb921e5
CL
733/*
734 * Fold the data for an offline cpu into the global array.
735 * There cannot be any access by the offline cpu and therefore
736 * synchronization is simplified.
737 */
738void cpu_vm_stats_fold(int cpu)
739{
75ef7184 740 struct pglist_data *pgdat;
2bb921e5
CL
741 struct zone *zone;
742 int i;
75ef7184
MG
743 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
744 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
2bb921e5
CL
745
746 for_each_populated_zone(zone) {
747 struct per_cpu_pageset *p;
748
749 p = per_cpu_ptr(zone->pageset, cpu);
750
751 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
752 if (p->vm_stat_diff[i]) {
753 int v;
754
755 v = p->vm_stat_diff[i];
756 p->vm_stat_diff[i] = 0;
757 atomic_long_add(v, &zone->vm_stat[i]);
75ef7184 758 global_zone_diff[i] += v;
2bb921e5
CL
759 }
760 }
761
75ef7184
MG
762 for_each_online_pgdat(pgdat) {
763 struct per_cpu_nodestat *p;
764
765 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
766
767 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
768 if (p->vm_node_stat_diff[i]) {
769 int v;
770
771 v = p->vm_node_stat_diff[i];
772 p->vm_node_stat_diff[i] = 0;
773 atomic_long_add(v, &pgdat->vm_stat[i]);
774 global_node_diff[i] += v;
775 }
776 }
777
778 fold_diff(global_zone_diff, global_node_diff);
2bb921e5
CL
779}
780
40f4b1ea
CS
781/*
782 * this is only called if !populated_zone(zone), which implies no other users of
783 * pset->vm_stat_diff[] exsist.
784 */
5a883813
MK
785void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
786{
787 int i;
788
789 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
790 if (pset->vm_stat_diff[i]) {
791 int v = pset->vm_stat_diff[i];
792 pset->vm_stat_diff[i] = 0;
793 atomic_long_add(v, &zone->vm_stat[i]);
75ef7184 794 atomic_long_add(v, &vm_zone_stat[i]);
5a883813
MK
795 }
796}
2244b95a
CL
797#endif
798
ca889e6c 799#ifdef CONFIG_NUMA
c2d42c16 800/*
75ef7184
MG
801 * Determine the per node value of a stat item. This function
802 * is called frequently in a NUMA machine, so try to be as
803 * frugal as possible.
c2d42c16 804 */
75ef7184
MG
805unsigned long sum_zone_node_page_state(int node,
806 enum zone_stat_item item)
c2d42c16
AM
807{
808 struct zone *zones = NODE_DATA(node)->node_zones;
e87d59f7
JK
809 int i;
810 unsigned long count = 0;
c2d42c16 811
e87d59f7
JK
812 for (i = 0; i < MAX_NR_ZONES; i++)
813 count += zone_page_state(zones + i, item);
814
815 return count;
c2d42c16
AM
816}
817
75ef7184
MG
818/*
819 * Determine the per node value of a stat item.
820 */
821unsigned long node_page_state(struct pglist_data *pgdat,
822 enum node_stat_item item)
823{
824 long x = atomic_long_read(&pgdat->vm_stat[item]);
825#ifdef CONFIG_SMP
826 if (x < 0)
827 x = 0;
828#endif
829 return x;
830}
ca889e6c
CL
831#endif
832
d7a5752c 833#ifdef CONFIG_COMPACTION
36deb0be 834
d7a5752c
MG
835struct contig_page_info {
836 unsigned long free_pages;
837 unsigned long free_blocks_total;
838 unsigned long free_blocks_suitable;
839};
840
841/*
842 * Calculate the number of free pages in a zone, how many contiguous
843 * pages are free and how many are large enough to satisfy an allocation of
844 * the target size. Note that this function makes no attempt to estimate
845 * how many suitable free blocks there *might* be if MOVABLE pages were
846 * migrated. Calculating that is possible, but expensive and can be
847 * figured out from userspace
848 */
849static void fill_contig_page_info(struct zone *zone,
850 unsigned int suitable_order,
851 struct contig_page_info *info)
852{
853 unsigned int order;
854
855 info->free_pages = 0;
856 info->free_blocks_total = 0;
857 info->free_blocks_suitable = 0;
858
859 for (order = 0; order < MAX_ORDER; order++) {
860 unsigned long blocks;
861
862 /* Count number of free blocks */
863 blocks = zone->free_area[order].nr_free;
864 info->free_blocks_total += blocks;
865
866 /* Count free base pages */
867 info->free_pages += blocks << order;
868
869 /* Count the suitable free blocks */
870 if (order >= suitable_order)
871 info->free_blocks_suitable += blocks <<
872 (order - suitable_order);
873 }
874}
f1a5ab12
MG
875
876/*
877 * A fragmentation index only makes sense if an allocation of a requested
878 * size would fail. If that is true, the fragmentation index indicates
879 * whether external fragmentation or a lack of memory was the problem.
880 * The value can be used to determine if page reclaim or compaction
881 * should be used
882 */
56de7263 883static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
f1a5ab12
MG
884{
885 unsigned long requested = 1UL << order;
886
887 if (!info->free_blocks_total)
888 return 0;
889
890 /* Fragmentation index only makes sense when a request would fail */
891 if (info->free_blocks_suitable)
892 return -1000;
893
894 /*
895 * Index is between 0 and 1 so return within 3 decimal places
896 *
897 * 0 => allocation would fail due to lack of memory
898 * 1 => allocation would fail due to fragmentation
899 */
900 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
901}
56de7263
MG
902
903/* Same as __fragmentation index but allocs contig_page_info on stack */
904int fragmentation_index(struct zone *zone, unsigned int order)
905{
906 struct contig_page_info info;
907
908 fill_contig_page_info(zone, order, &info);
909 return __fragmentation_index(order, &info);
910}
d7a5752c
MG
911#endif
912
0d6617c7 913#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
fa25c503
KM
914#ifdef CONFIG_ZONE_DMA
915#define TEXT_FOR_DMA(xx) xx "_dma",
916#else
917#define TEXT_FOR_DMA(xx)
918#endif
919
920#ifdef CONFIG_ZONE_DMA32
921#define TEXT_FOR_DMA32(xx) xx "_dma32",
922#else
923#define TEXT_FOR_DMA32(xx)
924#endif
925
926#ifdef CONFIG_HIGHMEM
927#define TEXT_FOR_HIGHMEM(xx) xx "_high",
928#else
929#define TEXT_FOR_HIGHMEM(xx)
930#endif
931
932#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
933 TEXT_FOR_HIGHMEM(xx) xx "_movable",
934
935const char * const vmstat_text[] = {
09316c09 936 /* enum zone_stat_item countes */
fa25c503 937 "nr_free_pages",
81c0a2bb 938 "nr_alloc_batch",
fa25c503
KM
939 "nr_inactive_anon",
940 "nr_active_anon",
941 "nr_inactive_file",
942 "nr_active_file",
943 "nr_unevictable",
944 "nr_mlock",
945 "nr_anon_pages",
946 "nr_mapped",
947 "nr_file_pages",
948 "nr_dirty",
949 "nr_writeback",
950 "nr_slab_reclaimable",
951 "nr_slab_unreclaimable",
952 "nr_page_table_pages",
953 "nr_kernel_stack",
954 "nr_unstable",
955 "nr_bounce",
956 "nr_vmscan_write",
49ea7eb6 957 "nr_vmscan_immediate_reclaim",
fa25c503
KM
958 "nr_writeback_temp",
959 "nr_isolated_anon",
960 "nr_isolated_file",
961 "nr_shmem",
962 "nr_dirtied",
963 "nr_written",
0d5d823a 964 "nr_pages_scanned",
91537fee
MK
965#if IS_ENABLED(CONFIG_ZSMALLOC)
966 "nr_zspages",
967#endif
fa25c503
KM
968#ifdef CONFIG_NUMA
969 "numa_hit",
970 "numa_miss",
971 "numa_foreign",
972 "numa_interleave",
973 "numa_local",
974 "numa_other",
975#endif
a528910e
JW
976 "workingset_refault",
977 "workingset_activate",
449dd698 978 "workingset_nodereclaim",
fa25c503 979 "nr_anon_transparent_hugepages",
65c45377
KS
980 "nr_shmem_hugepages",
981 "nr_shmem_pmdmapped",
d1ce749a 982 "nr_free_cma",
09316c09
KK
983
984 /* enum writeback_stat_item counters */
fa25c503
KM
985 "nr_dirty_threshold",
986 "nr_dirty_background_threshold",
987
988#ifdef CONFIG_VM_EVENT_COUNTERS
09316c09 989 /* enum vm_event_item counters */
fa25c503
KM
990 "pgpgin",
991 "pgpgout",
992 "pswpin",
993 "pswpout",
994
995 TEXTS_FOR_ZONES("pgalloc")
996
997 "pgfree",
998 "pgactivate",
999 "pgdeactivate",
1000
1001 "pgfault",
1002 "pgmajfault",
854e9ed0 1003 "pglazyfreed",
fa25c503
KM
1004
1005 TEXTS_FOR_ZONES("pgrefill")
904249aa
YH
1006 TEXTS_FOR_ZONES("pgsteal_kswapd")
1007 TEXTS_FOR_ZONES("pgsteal_direct")
fa25c503
KM
1008 TEXTS_FOR_ZONES("pgscan_kswapd")
1009 TEXTS_FOR_ZONES("pgscan_direct")
68243e76 1010 "pgscan_direct_throttle",
fa25c503
KM
1011
1012#ifdef CONFIG_NUMA
1013 "zone_reclaim_failed",
1014#endif
1015 "pginodesteal",
1016 "slabs_scanned",
fa25c503
KM
1017 "kswapd_inodesteal",
1018 "kswapd_low_wmark_hit_quickly",
1019 "kswapd_high_wmark_hit_quickly",
fa25c503
KM
1020 "pageoutrun",
1021 "allocstall",
1022
1023 "pgrotated",
1024
5509a5d2
DH
1025 "drop_pagecache",
1026 "drop_slab",
1027
03c5a6e1
MG
1028#ifdef CONFIG_NUMA_BALANCING
1029 "numa_pte_updates",
72403b4a 1030 "numa_huge_pte_updates",
03c5a6e1
MG
1031 "numa_hint_faults",
1032 "numa_hint_faults_local",
1033 "numa_pages_migrated",
1034#endif
5647bc29
MG
1035#ifdef CONFIG_MIGRATION
1036 "pgmigrate_success",
1037 "pgmigrate_fail",
1038#endif
fa25c503 1039#ifdef CONFIG_COMPACTION
397487db
MG
1040 "compact_migrate_scanned",
1041 "compact_free_scanned",
1042 "compact_isolated",
fa25c503
KM
1043 "compact_stall",
1044 "compact_fail",
1045 "compact_success",
698b1b30 1046 "compact_daemon_wake",
fa25c503
KM
1047#endif
1048
1049#ifdef CONFIG_HUGETLB_PAGE
1050 "htlb_buddy_alloc_success",
1051 "htlb_buddy_alloc_fail",
1052#endif
1053 "unevictable_pgs_culled",
1054 "unevictable_pgs_scanned",
1055 "unevictable_pgs_rescued",
1056 "unevictable_pgs_mlocked",
1057 "unevictable_pgs_munlocked",
1058 "unevictable_pgs_cleared",
1059 "unevictable_pgs_stranded",
fa25c503
KM
1060
1061#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1062 "thp_fault_alloc",
1063 "thp_fault_fallback",
1064 "thp_collapse_alloc",
1065 "thp_collapse_alloc_failed",
95ecedcd
KS
1066 "thp_file_alloc",
1067 "thp_file_mapped",
122afea9
KS
1068 "thp_split_page",
1069 "thp_split_page_failed",
f9719a03 1070 "thp_deferred_split_page",
122afea9 1071 "thp_split_pmd",
d8a8e1f0
KS
1072 "thp_zero_page_alloc",
1073 "thp_zero_page_alloc_failed",
fa25c503 1074#endif
09316c09
KK
1075#ifdef CONFIG_MEMORY_BALLOON
1076 "balloon_inflate",
1077 "balloon_deflate",
1078#ifdef CONFIG_BALLOON_COMPACTION
1079 "balloon_migrate",
1080#endif
1081#endif /* CONFIG_MEMORY_BALLOON */
ec659934 1082#ifdef CONFIG_DEBUG_TLBFLUSH
6df46865 1083#ifdef CONFIG_SMP
9824cf97
DH
1084 "nr_tlb_remote_flush",
1085 "nr_tlb_remote_flush_received",
ec659934 1086#endif /* CONFIG_SMP */
9824cf97
DH
1087 "nr_tlb_local_flush_all",
1088 "nr_tlb_local_flush_one",
ec659934 1089#endif /* CONFIG_DEBUG_TLBFLUSH */
fa25c503 1090
4f115147
DB
1091#ifdef CONFIG_DEBUG_VM_VMACACHE
1092 "vmacache_find_calls",
1093 "vmacache_find_hits",
f5f302e2 1094 "vmacache_full_flushes",
4f115147 1095#endif
fa25c503
KM
1096#endif /* CONFIG_VM_EVENTS_COUNTERS */
1097};
0d6617c7 1098#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
fa25c503
KM
1099
1100
3c486871
AM
1101#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1102 defined(CONFIG_PROC_FS)
1103static void *frag_start(struct seq_file *m, loff_t *pos)
1104{
1105 pg_data_t *pgdat;
1106 loff_t node = *pos;
1107
1108 for (pgdat = first_online_pgdat();
1109 pgdat && node;
1110 pgdat = next_online_pgdat(pgdat))
1111 --node;
1112
1113 return pgdat;
1114}
1115
1116static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1117{
1118 pg_data_t *pgdat = (pg_data_t *)arg;
1119
1120 (*pos)++;
1121 return next_online_pgdat(pgdat);
1122}
1123
1124static void frag_stop(struct seq_file *m, void *arg)
1125{
1126}
1127
1128/* Walk all the zones in a node and print using a callback */
1129static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1130 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1131{
1132 struct zone *zone;
1133 struct zone *node_zones = pgdat->node_zones;
1134 unsigned long flags;
1135
1136 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1137 if (!populated_zone(zone))
1138 continue;
1139
1140 spin_lock_irqsave(&zone->lock, flags);
1141 print(m, pgdat, zone);
1142 spin_unlock_irqrestore(&zone->lock, flags);
1143 }
1144}
1145#endif
1146
d7a5752c 1147#ifdef CONFIG_PROC_FS
467c996c
MG
1148static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1149 struct zone *zone)
1150{
1151 int order;
1152
1153 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1154 for (order = 0; order < MAX_ORDER; ++order)
1155 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1156 seq_putc(m, '\n');
1157}
1158
1159/*
1160 * This walks the free areas for each zone.
1161 */
1162static int frag_show(struct seq_file *m, void *arg)
1163{
1164 pg_data_t *pgdat = (pg_data_t *)arg;
1165 walk_zones_in_node(m, pgdat, frag_show_print);
1166 return 0;
1167}
1168
1169static void pagetypeinfo_showfree_print(struct seq_file *m,
1170 pg_data_t *pgdat, struct zone *zone)
1171{
1172 int order, mtype;
1173
1174 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1175 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1176 pgdat->node_id,
1177 zone->name,
1178 migratetype_names[mtype]);
1179 for (order = 0; order < MAX_ORDER; ++order) {
1180 unsigned long freecount = 0;
1181 struct free_area *area;
1182 struct list_head *curr;
1183
1184 area = &(zone->free_area[order]);
1185
1186 list_for_each(curr, &area->free_list[mtype])
1187 freecount++;
1188 seq_printf(m, "%6lu ", freecount);
1189 }
f6ac2354
CL
1190 seq_putc(m, '\n');
1191 }
467c996c
MG
1192}
1193
1194/* Print out the free pages at each order for each migatetype */
1195static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1196{
1197 int order;
1198 pg_data_t *pgdat = (pg_data_t *)arg;
1199
1200 /* Print header */
1201 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1202 for (order = 0; order < MAX_ORDER; ++order)
1203 seq_printf(m, "%6d ", order);
1204 seq_putc(m, '\n');
1205
1206 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
1207
1208 return 0;
1209}
1210
1211static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1212 pg_data_t *pgdat, struct zone *zone)
1213{
1214 int mtype;
1215 unsigned long pfn;
1216 unsigned long start_pfn = zone->zone_start_pfn;
108bcc96 1217 unsigned long end_pfn = zone_end_pfn(zone);
467c996c
MG
1218 unsigned long count[MIGRATE_TYPES] = { 0, };
1219
1220 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1221 struct page *page;
1222
1223 if (!pfn_valid(pfn))
1224 continue;
1225
1226 page = pfn_to_page(pfn);
eb33575c
MG
1227
1228 /* Watch for unexpected holes punched in the memmap */
1229 if (!memmap_valid_within(pfn, page, zone))
e80d6a24 1230 continue;
eb33575c 1231
a91c43c7
JK
1232 if (page_zone(page) != zone)
1233 continue;
1234
467c996c
MG
1235 mtype = get_pageblock_migratetype(page);
1236
e80d6a24
MG
1237 if (mtype < MIGRATE_TYPES)
1238 count[mtype]++;
467c996c
MG
1239 }
1240
1241 /* Print counts */
1242 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1243 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1244 seq_printf(m, "%12lu ", count[mtype]);
1245 seq_putc(m, '\n');
1246}
1247
1248/* Print out the free pages at each order for each migratetype */
1249static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1250{
1251 int mtype;
1252 pg_data_t *pgdat = (pg_data_t *)arg;
1253
1254 seq_printf(m, "\n%-23s", "Number of blocks type ");
1255 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1256 seq_printf(m, "%12s ", migratetype_names[mtype]);
1257 seq_putc(m, '\n');
1258 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1259
1260 return 0;
1261}
1262
48c96a36
JK
1263#ifdef CONFIG_PAGE_OWNER
1264static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1265 pg_data_t *pgdat,
1266 struct zone *zone)
1267{
1268 struct page *page;
1269 struct page_ext *page_ext;
1270 unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1271 unsigned long end_pfn = pfn + zone->spanned_pages;
1272 unsigned long count[MIGRATE_TYPES] = { 0, };
1273 int pageblock_mt, page_mt;
1274 int i;
1275
1276 /* Scan block by block. First and last block may be incomplete */
1277 pfn = zone->zone_start_pfn;
1278
1279 /*
1280 * Walk the zone in pageblock_nr_pages steps. If a page block spans
1281 * a zone boundary, it will be double counted between zones. This does
1282 * not matter as the mixed block count will still be correct
1283 */
1284 for (; pfn < end_pfn; ) {
1285 if (!pfn_valid(pfn)) {
1286 pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1287 continue;
1288 }
1289
1290 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1291 block_end_pfn = min(block_end_pfn, end_pfn);
1292
1293 page = pfn_to_page(pfn);
0b423ca2 1294 pageblock_mt = get_pageblock_migratetype(page);
48c96a36
JK
1295
1296 for (; pfn < block_end_pfn; pfn++) {
1297 if (!pfn_valid_within(pfn))
1298 continue;
1299
1300 page = pfn_to_page(pfn);
a91c43c7
JK
1301
1302 if (page_zone(page) != zone)
1303 continue;
1304
48c96a36
JK
1305 if (PageBuddy(page)) {
1306 pfn += (1UL << page_order(page)) - 1;
1307 continue;
1308 }
1309
1310 if (PageReserved(page))
1311 continue;
1312
1313 page_ext = lookup_page_ext(page);
f86e4271
YS
1314 if (unlikely(!page_ext))
1315 continue;
48c96a36
JK
1316
1317 if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1318 continue;
1319
1320 page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1321 if (pageblock_mt != page_mt) {
1322 if (is_migrate_cma(pageblock_mt))
1323 count[MIGRATE_MOVABLE]++;
1324 else
1325 count[pageblock_mt]++;
1326
1327 pfn = block_end_pfn;
1328 break;
1329 }
1330 pfn += (1UL << page_ext->order) - 1;
1331 }
1332 }
1333
1334 /* Print counts */
1335 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1336 for (i = 0; i < MIGRATE_TYPES; i++)
1337 seq_printf(m, "%12lu ", count[i]);
1338 seq_putc(m, '\n');
1339}
1340#endif /* CONFIG_PAGE_OWNER */
1341
1342/*
1343 * Print out the number of pageblocks for each migratetype that contain pages
1344 * of other types. This gives an indication of how well fallbacks are being
1345 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1346 * to determine what is going on
1347 */
1348static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1349{
1350#ifdef CONFIG_PAGE_OWNER
1351 int mtype;
1352
7dd80b8a 1353 if (!static_branch_unlikely(&page_owner_inited))
48c96a36
JK
1354 return;
1355
1356 drain_all_pages(NULL);
1357
1358 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1359 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1360 seq_printf(m, "%12s ", migratetype_names[mtype]);
1361 seq_putc(m, '\n');
1362
1363 walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1364#endif /* CONFIG_PAGE_OWNER */
1365}
1366
467c996c
MG
1367/*
1368 * This prints out statistics in relation to grouping pages by mobility.
1369 * It is expensive to collect so do not constantly read the file.
1370 */
1371static int pagetypeinfo_show(struct seq_file *m, void *arg)
1372{
1373 pg_data_t *pgdat = (pg_data_t *)arg;
1374
41b25a37 1375 /* check memoryless node */
a47b53c5 1376 if (!node_state(pgdat->node_id, N_MEMORY))
41b25a37
KM
1377 return 0;
1378
467c996c
MG
1379 seq_printf(m, "Page block order: %d\n", pageblock_order);
1380 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1381 seq_putc(m, '\n');
1382 pagetypeinfo_showfree(m, pgdat);
1383 pagetypeinfo_showblockcount(m, pgdat);
48c96a36 1384 pagetypeinfo_showmixedcount(m, pgdat);
467c996c 1385
f6ac2354
CL
1386 return 0;
1387}
1388
8f32f7e5 1389static const struct seq_operations fragmentation_op = {
f6ac2354
CL
1390 .start = frag_start,
1391 .next = frag_next,
1392 .stop = frag_stop,
1393 .show = frag_show,
1394};
1395
8f32f7e5
AD
1396static int fragmentation_open(struct inode *inode, struct file *file)
1397{
1398 return seq_open(file, &fragmentation_op);
1399}
1400
1401static const struct file_operations fragmentation_file_operations = {
1402 .open = fragmentation_open,
1403 .read = seq_read,
1404 .llseek = seq_lseek,
1405 .release = seq_release,
1406};
1407
74e2e8e8 1408static const struct seq_operations pagetypeinfo_op = {
467c996c
MG
1409 .start = frag_start,
1410 .next = frag_next,
1411 .stop = frag_stop,
1412 .show = pagetypeinfo_show,
1413};
1414
74e2e8e8
AD
1415static int pagetypeinfo_open(struct inode *inode, struct file *file)
1416{
1417 return seq_open(file, &pagetypeinfo_op);
1418}
1419
1420static const struct file_operations pagetypeinfo_file_ops = {
1421 .open = pagetypeinfo_open,
1422 .read = seq_read,
1423 .llseek = seq_lseek,
1424 .release = seq_release,
1425};
1426
467c996c
MG
1427static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1428 struct zone *zone)
f6ac2354 1429{
467c996c
MG
1430 int i;
1431 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1432 seq_printf(m,
1433 "\n pages free %lu"
1434 "\n min %lu"
1435 "\n low %lu"
1436 "\n high %lu"
08d9ae7c 1437 "\n scanned %lu"
467c996c 1438 "\n spanned %lu"
9feedc9d
JL
1439 "\n present %lu"
1440 "\n managed %lu",
88f5acf8 1441 zone_page_state(zone, NR_FREE_PAGES),
41858966
MG
1442 min_wmark_pages(zone),
1443 low_wmark_pages(zone),
1444 high_wmark_pages(zone),
0d5d823a 1445 zone_page_state(zone, NR_PAGES_SCANNED),
467c996c 1446 zone->spanned_pages,
9feedc9d
JL
1447 zone->present_pages,
1448 zone->managed_pages);
467c996c
MG
1449
1450 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1451 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1452 zone_page_state(zone, i));
1453
1454 seq_printf(m,
3484b2de 1455 "\n protection: (%ld",
467c996c
MG
1456 zone->lowmem_reserve[0]);
1457 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
3484b2de 1458 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
467c996c
MG
1459 seq_printf(m,
1460 ")"
1461 "\n pagesets");
1462 for_each_online_cpu(i) {
1463 struct per_cpu_pageset *pageset;
467c996c 1464
99dcc3e5 1465 pageset = per_cpu_ptr(zone->pageset, i);
3dfa5721
CL
1466 seq_printf(m,
1467 "\n cpu: %i"
1468 "\n count: %i"
1469 "\n high: %i"
1470 "\n batch: %i",
1471 i,
1472 pageset->pcp.count,
1473 pageset->pcp.high,
1474 pageset->pcp.batch);
df9ecaba 1475#ifdef CONFIG_SMP
467c996c
MG
1476 seq_printf(m, "\n vm stats threshold: %d",
1477 pageset->stat_threshold);
df9ecaba 1478#endif
f6ac2354 1479 }
467c996c
MG
1480 seq_printf(m,
1481 "\n all_unreclaimable: %u"
556adecb
RR
1482 "\n start_pfn: %lu"
1483 "\n inactive_ratio: %u",
6e543d57 1484 !zone_reclaimable(zone),
556adecb
RR
1485 zone->zone_start_pfn,
1486 zone->inactive_ratio);
467c996c
MG
1487 seq_putc(m, '\n');
1488}
1489
1490/*
1491 * Output information about zones in @pgdat.
1492 */
1493static int zoneinfo_show(struct seq_file *m, void *arg)
1494{
1495 pg_data_t *pgdat = (pg_data_t *)arg;
1496 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
f6ac2354
CL
1497 return 0;
1498}
1499
5c9fe628 1500static const struct seq_operations zoneinfo_op = {
f6ac2354
CL
1501 .start = frag_start, /* iterate over all zones. The same as in
1502 * fragmentation. */
1503 .next = frag_next,
1504 .stop = frag_stop,
1505 .show = zoneinfo_show,
1506};
1507
5c9fe628
AD
1508static int zoneinfo_open(struct inode *inode, struct file *file)
1509{
1510 return seq_open(file, &zoneinfo_op);
1511}
1512
1513static const struct file_operations proc_zoneinfo_file_operations = {
1514 .open = zoneinfo_open,
1515 .read = seq_read,
1516 .llseek = seq_lseek,
1517 .release = seq_release,
1518};
1519
79da826a
MR
1520enum writeback_stat_item {
1521 NR_DIRTY_THRESHOLD,
1522 NR_DIRTY_BG_THRESHOLD,
1523 NR_VM_WRITEBACK_STAT_ITEMS,
1524};
1525
f6ac2354
CL
1526static void *vmstat_start(struct seq_file *m, loff_t *pos)
1527{
2244b95a 1528 unsigned long *v;
79da826a 1529 int i, stat_items_size;
f6ac2354
CL
1530
1531 if (*pos >= ARRAY_SIZE(vmstat_text))
1532 return NULL;
79da826a 1533 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
75ef7184 1534 NR_VM_NODE_STAT_ITEMS * sizeof(unsigned long) +
79da826a 1535 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
f6ac2354 1536
f8891e5e 1537#ifdef CONFIG_VM_EVENT_COUNTERS
79da826a 1538 stat_items_size += sizeof(struct vm_event_state);
f8891e5e 1539#endif
79da826a
MR
1540
1541 v = kmalloc(stat_items_size, GFP_KERNEL);
2244b95a
CL
1542 m->private = v;
1543 if (!v)
f6ac2354 1544 return ERR_PTR(-ENOMEM);
2244b95a
CL
1545 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1546 v[i] = global_page_state(i);
79da826a
MR
1547 v += NR_VM_ZONE_STAT_ITEMS;
1548
75ef7184
MG
1549 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
1550 v[i] = global_node_page_state(i);
1551 v += NR_VM_NODE_STAT_ITEMS;
1552
79da826a
MR
1553 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1554 v + NR_DIRTY_THRESHOLD);
1555 v += NR_VM_WRITEBACK_STAT_ITEMS;
1556
f8891e5e 1557#ifdef CONFIG_VM_EVENT_COUNTERS
79da826a
MR
1558 all_vm_events(v);
1559 v[PGPGIN] /= 2; /* sectors -> kbytes */
1560 v[PGPGOUT] /= 2;
f8891e5e 1561#endif
ff8b16d7 1562 return (unsigned long *)m->private + *pos;
f6ac2354
CL
1563}
1564
1565static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1566{
1567 (*pos)++;
1568 if (*pos >= ARRAY_SIZE(vmstat_text))
1569 return NULL;
1570 return (unsigned long *)m->private + *pos;
1571}
1572
1573static int vmstat_show(struct seq_file *m, void *arg)
1574{
1575 unsigned long *l = arg;
1576 unsigned long off = l - (unsigned long *)m->private;
1577
1578 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1579 return 0;
1580}
1581
1582static void vmstat_stop(struct seq_file *m, void *arg)
1583{
1584 kfree(m->private);
1585 m->private = NULL;
1586}
1587
b6aa44ab 1588static const struct seq_operations vmstat_op = {
f6ac2354
CL
1589 .start = vmstat_start,
1590 .next = vmstat_next,
1591 .stop = vmstat_stop,
1592 .show = vmstat_show,
1593};
1594
b6aa44ab
AD
1595static int vmstat_open(struct inode *inode, struct file *file)
1596{
1597 return seq_open(file, &vmstat_op);
1598}
1599
1600static const struct file_operations proc_vmstat_file_operations = {
1601 .open = vmstat_open,
1602 .read = seq_read,
1603 .llseek = seq_lseek,
1604 .release = seq_release,
1605};
f6ac2354
CL
1606#endif /* CONFIG_PROC_FS */
1607
df9ecaba 1608#ifdef CONFIG_SMP
373ccbe5 1609static struct workqueue_struct *vmstat_wq;
d1187ed2 1610static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
77461ab3 1611int sysctl_stat_interval __read_mostly = HZ;
d1187ed2 1612
52b6f46b
HD
1613#ifdef CONFIG_PROC_FS
1614static void refresh_vm_stats(struct work_struct *work)
1615{
1616 refresh_cpu_vm_stats(true);
1617}
1618
1619int vmstat_refresh(struct ctl_table *table, int write,
1620 void __user *buffer, size_t *lenp, loff_t *ppos)
1621{
1622 long val;
1623 int err;
1624 int i;
1625
1626 /*
1627 * The regular update, every sysctl_stat_interval, may come later
1628 * than expected: leaving a significant amount in per_cpu buckets.
1629 * This is particularly misleading when checking a quantity of HUGE
1630 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1631 * which can equally be echo'ed to or cat'ted from (by root),
1632 * can be used to update the stats just before reading them.
1633 *
1634 * Oh, and since global_page_state() etc. are so careful to hide
1635 * transiently negative values, report an error here if any of
1636 * the stats is negative, so we know to go looking for imbalance.
1637 */
1638 err = schedule_on_each_cpu(refresh_vm_stats);
1639 if (err)
1640 return err;
1641 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
75ef7184 1642 val = atomic_long_read(&vm_zone_stat[i]);
52b6f46b
HD
1643 if (val < 0) {
1644 switch (i) {
1645 case NR_ALLOC_BATCH:
1646 case NR_PAGES_SCANNED:
1647 /*
1648 * These are often seen to go negative in
1649 * recent kernels, but not to go permanently
1650 * negative. Whilst it would be nicer not to
1651 * have exceptions, rooting them out would be
1652 * another task, of rather low priority.
1653 */
1654 break;
1655 default:
1656 pr_warn("%s: %s %ld\n",
1657 __func__, vmstat_text[i], val);
1658 err = -EINVAL;
1659 break;
1660 }
1661 }
1662 }
1663 if (err)
1664 return err;
1665 if (write)
1666 *ppos += *lenp;
1667 else
1668 *lenp = 0;
1669 return 0;
1670}
1671#endif /* CONFIG_PROC_FS */
1672
d1187ed2
CL
1673static void vmstat_update(struct work_struct *w)
1674{
0eb77e98 1675 if (refresh_cpu_vm_stats(true)) {
7cc36bbd
CL
1676 /*
1677 * Counters were updated so we expect more updates
1678 * to occur in the future. Keep on running the
1679 * update worker thread.
1680 */
7b8da4c7 1681 queue_delayed_work_on(smp_processor_id(), vmstat_wq,
f01f17d3
MH
1682 this_cpu_ptr(&vmstat_work),
1683 round_jiffies_relative(sysctl_stat_interval));
7cc36bbd
CL
1684 }
1685}
1686
0eb77e98
CL
1687/*
1688 * Switch off vmstat processing and then fold all the remaining differentials
1689 * until the diffs stay at zero. The function is used by NOHZ and can only be
1690 * invoked when tick processing is not active.
1691 */
7cc36bbd
CL
1692/*
1693 * Check if the diffs for a certain cpu indicate that
1694 * an update is needed.
1695 */
1696static bool need_update(int cpu)
1697{
1698 struct zone *zone;
1699
1700 for_each_populated_zone(zone) {
1701 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1702
1703 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1704 /*
1705 * The fast way of checking if there are any vmstat diffs.
1706 * This works because the diffs are byte sized items.
1707 */
1708 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1709 return true;
1710
1711 }
1712 return false;
1713}
1714
7b8da4c7
CL
1715/*
1716 * Switch off vmstat processing and then fold all the remaining differentials
1717 * until the diffs stay at zero. The function is used by NOHZ and can only be
1718 * invoked when tick processing is not active.
1719 */
f01f17d3
MH
1720void quiet_vmstat(void)
1721{
1722 if (system_state != SYSTEM_RUNNING)
1723 return;
1724
7b8da4c7 1725 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
f01f17d3
MH
1726 return;
1727
1728 if (!need_update(smp_processor_id()))
1729 return;
1730
1731 /*
1732 * Just refresh counters and do not care about the pending delayed
1733 * vmstat_update. It doesn't fire that often to matter and canceling
1734 * it would be too expensive from this path.
1735 * vmstat_shepherd will take care about that for us.
1736 */
1737 refresh_cpu_vm_stats(false);
1738}
1739
7cc36bbd
CL
1740/*
1741 * Shepherd worker thread that checks the
1742 * differentials of processors that have their worker
1743 * threads for vm statistics updates disabled because of
1744 * inactivity.
1745 */
1746static void vmstat_shepherd(struct work_struct *w);
1747
0eb77e98 1748static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
7cc36bbd
CL
1749
1750static void vmstat_shepherd(struct work_struct *w)
1751{
1752 int cpu;
1753
1754 get_online_cpus();
1755 /* Check processors whose vmstat worker threads have been disabled */
7b8da4c7 1756 for_each_online_cpu(cpu) {
f01f17d3 1757 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
7cc36bbd 1758
7b8da4c7
CL
1759 if (!delayed_work_pending(dw) && need_update(cpu))
1760 queue_delayed_work_on(cpu, vmstat_wq, dw, 0);
f01f17d3 1761 }
7cc36bbd
CL
1762 put_online_cpus();
1763
1764 schedule_delayed_work(&shepherd,
98f4ebb2 1765 round_jiffies_relative(sysctl_stat_interval));
d1187ed2
CL
1766}
1767
7cc36bbd 1768static void __init start_shepherd_timer(void)
d1187ed2 1769{
7cc36bbd
CL
1770 int cpu;
1771
1772 for_each_possible_cpu(cpu)
ccde8bd4 1773 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
7cc36bbd
CL
1774 vmstat_update);
1775
751e5f5c 1776 vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0);
7cc36bbd
CL
1777 schedule_delayed_work(&shepherd,
1778 round_jiffies_relative(sysctl_stat_interval));
d1187ed2
CL
1779}
1780
807a1bd2
TK
1781static void vmstat_cpu_dead(int node)
1782{
1783 int cpu;
1784
1785 get_online_cpus();
1786 for_each_online_cpu(cpu)
1787 if (cpu_to_node(cpu) == node)
1788 goto end;
1789
1790 node_clear_state(node, N_CPU);
1791end:
1792 put_online_cpus();
1793}
1794
df9ecaba
CL
1795/*
1796 * Use the cpu notifier to insure that the thresholds are recalculated
1797 * when necessary.
1798 */
0db0628d 1799static int vmstat_cpuup_callback(struct notifier_block *nfb,
df9ecaba
CL
1800 unsigned long action,
1801 void *hcpu)
1802{
d1187ed2
CL
1803 long cpu = (long)hcpu;
1804
df9ecaba 1805 switch (action) {
d1187ed2
CL
1806 case CPU_ONLINE:
1807 case CPU_ONLINE_FROZEN:
5ee28a44 1808 refresh_zone_stat_thresholds();
ad596925 1809 node_set_state(cpu_to_node(cpu), N_CPU);
d1187ed2
CL
1810 break;
1811 case CPU_DOWN_PREPARE:
1812 case CPU_DOWN_PREPARE_FROZEN:
afe2c511 1813 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
d1187ed2
CL
1814 break;
1815 case CPU_DOWN_FAILED:
1816 case CPU_DOWN_FAILED_FROZEN:
d1187ed2 1817 break;
ce421c79 1818 case CPU_DEAD:
8bb78442 1819 case CPU_DEAD_FROZEN:
ce421c79 1820 refresh_zone_stat_thresholds();
807a1bd2 1821 vmstat_cpu_dead(cpu_to_node(cpu));
ce421c79
AW
1822 break;
1823 default:
1824 break;
df9ecaba
CL
1825 }
1826 return NOTIFY_OK;
1827}
1828
0db0628d 1829static struct notifier_block vmstat_notifier =
df9ecaba 1830 { &vmstat_cpuup_callback, NULL, 0 };
8f32f7e5 1831#endif
df9ecaba 1832
e2fc88d0 1833static int __init setup_vmstat(void)
df9ecaba 1834{
8f32f7e5 1835#ifdef CONFIG_SMP
0be94bad
SB
1836 cpu_notifier_register_begin();
1837 __register_cpu_notifier(&vmstat_notifier);
d1187ed2 1838
7cc36bbd 1839 start_shepherd_timer();
0be94bad 1840 cpu_notifier_register_done();
8f32f7e5
AD
1841#endif
1842#ifdef CONFIG_PROC_FS
1843 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
74e2e8e8 1844 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
b6aa44ab 1845 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
5c9fe628 1846 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
8f32f7e5 1847#endif
df9ecaba
CL
1848 return 0;
1849}
1850module_init(setup_vmstat)
d7a5752c
MG
1851
1852#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
d7a5752c
MG
1853
1854/*
1855 * Return an index indicating how much of the available free memory is
1856 * unusable for an allocation of the requested size.
1857 */
1858static int unusable_free_index(unsigned int order,
1859 struct contig_page_info *info)
1860{
1861 /* No free memory is interpreted as all free memory is unusable */
1862 if (info->free_pages == 0)
1863 return 1000;
1864
1865 /*
1866 * Index should be a value between 0 and 1. Return a value to 3
1867 * decimal places.
1868 *
1869 * 0 => no fragmentation
1870 * 1 => high fragmentation
1871 */
1872 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1873
1874}
1875
1876static void unusable_show_print(struct seq_file *m,
1877 pg_data_t *pgdat, struct zone *zone)
1878{
1879 unsigned int order;
1880 int index;
1881 struct contig_page_info info;
1882
1883 seq_printf(m, "Node %d, zone %8s ",
1884 pgdat->node_id,
1885 zone->name);
1886 for (order = 0; order < MAX_ORDER; ++order) {
1887 fill_contig_page_info(zone, order, &info);
1888 index = unusable_free_index(order, &info);
1889 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1890 }
1891
1892 seq_putc(m, '\n');
1893}
1894
1895/*
1896 * Display unusable free space index
1897 *
1898 * The unusable free space index measures how much of the available free
1899 * memory cannot be used to satisfy an allocation of a given size and is a
1900 * value between 0 and 1. The higher the value, the more of free memory is
1901 * unusable and by implication, the worse the external fragmentation is. This
1902 * can be expressed as a percentage by multiplying by 100.
1903 */
1904static int unusable_show(struct seq_file *m, void *arg)
1905{
1906 pg_data_t *pgdat = (pg_data_t *)arg;
1907
1908 /* check memoryless node */
a47b53c5 1909 if (!node_state(pgdat->node_id, N_MEMORY))
d7a5752c
MG
1910 return 0;
1911
1912 walk_zones_in_node(m, pgdat, unusable_show_print);
1913
1914 return 0;
1915}
1916
1917static const struct seq_operations unusable_op = {
1918 .start = frag_start,
1919 .next = frag_next,
1920 .stop = frag_stop,
1921 .show = unusable_show,
1922};
1923
1924static int unusable_open(struct inode *inode, struct file *file)
1925{
1926 return seq_open(file, &unusable_op);
1927}
1928
1929static const struct file_operations unusable_file_ops = {
1930 .open = unusable_open,
1931 .read = seq_read,
1932 .llseek = seq_lseek,
1933 .release = seq_release,
1934};
1935
f1a5ab12
MG
1936static void extfrag_show_print(struct seq_file *m,
1937 pg_data_t *pgdat, struct zone *zone)
1938{
1939 unsigned int order;
1940 int index;
1941
1942 /* Alloc on stack as interrupts are disabled for zone walk */
1943 struct contig_page_info info;
1944
1945 seq_printf(m, "Node %d, zone %8s ",
1946 pgdat->node_id,
1947 zone->name);
1948 for (order = 0; order < MAX_ORDER; ++order) {
1949 fill_contig_page_info(zone, order, &info);
56de7263 1950 index = __fragmentation_index(order, &info);
f1a5ab12
MG
1951 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1952 }
1953
1954 seq_putc(m, '\n');
1955}
1956
1957/*
1958 * Display fragmentation index for orders that allocations would fail for
1959 */
1960static int extfrag_show(struct seq_file *m, void *arg)
1961{
1962 pg_data_t *pgdat = (pg_data_t *)arg;
1963
1964 walk_zones_in_node(m, pgdat, extfrag_show_print);
1965
1966 return 0;
1967}
1968
1969static const struct seq_operations extfrag_op = {
1970 .start = frag_start,
1971 .next = frag_next,
1972 .stop = frag_stop,
1973 .show = extfrag_show,
1974};
1975
1976static int extfrag_open(struct inode *inode, struct file *file)
1977{
1978 return seq_open(file, &extfrag_op);
1979}
1980
1981static const struct file_operations extfrag_file_ops = {
1982 .open = extfrag_open,
1983 .read = seq_read,
1984 .llseek = seq_lseek,
1985 .release = seq_release,
1986};
1987
d7a5752c
MG
1988static int __init extfrag_debug_init(void)
1989{
bde8bd8a
S
1990 struct dentry *extfrag_debug_root;
1991
d7a5752c
MG
1992 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1993 if (!extfrag_debug_root)
1994 return -ENOMEM;
1995
1996 if (!debugfs_create_file("unusable_index", 0444,
1997 extfrag_debug_root, NULL, &unusable_file_ops))
bde8bd8a 1998 goto fail;
d7a5752c 1999
f1a5ab12
MG
2000 if (!debugfs_create_file("extfrag_index", 0444,
2001 extfrag_debug_root, NULL, &extfrag_file_ops))
bde8bd8a 2002 goto fail;
f1a5ab12 2003
d7a5752c 2004 return 0;
bde8bd8a
S
2005fail:
2006 debugfs_remove_recursive(extfrag_debug_root);
2007 return -ENOMEM;
d7a5752c
MG
2008}
2009
2010module_init(extfrag_debug_init);
2011#endif