mm: page allocator: adjust the per-cpu counter threshold when memory is low
[linux-2.6-block.git] / mm / vmstat.c
CommitLineData
f6ac2354
CL
1/*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
2244b95a
CL
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
f6ac2354 10 */
8f32f7e5 11#include <linux/fs.h>
f6ac2354 12#include <linux/mm.h>
4e950f6f 13#include <linux/err.h>
2244b95a 14#include <linux/module.h>
5a0e3ad6 15#include <linux/slab.h>
df9ecaba 16#include <linux/cpu.h>
c748e134 17#include <linux/vmstat.h>
e8edc6e0 18#include <linux/sched.h>
f1a5ab12 19#include <linux/math64.h>
79da826a 20#include <linux/writeback.h>
36deb0be 21#include <linux/compaction.h>
f6ac2354 22
f8891e5e
CL
23#ifdef CONFIG_VM_EVENT_COUNTERS
24DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
25EXPORT_PER_CPU_SYMBOL(vm_event_states);
26
31f961a8 27static void sum_vm_events(unsigned long *ret)
f8891e5e 28{
9eccf2a8 29 int cpu;
f8891e5e
CL
30 int i;
31
32 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
33
31f961a8 34 for_each_online_cpu(cpu) {
f8891e5e
CL
35 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
36
f8891e5e
CL
37 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
38 ret[i] += this->event[i];
39 }
40}
41
42/*
43 * Accumulate the vm event counters across all CPUs.
44 * The result is unavoidably approximate - it can change
45 * during and after execution of this function.
46*/
47void all_vm_events(unsigned long *ret)
48{
b5be1132 49 get_online_cpus();
31f961a8 50 sum_vm_events(ret);
b5be1132 51 put_online_cpus();
f8891e5e 52}
32dd66fc 53EXPORT_SYMBOL_GPL(all_vm_events);
f8891e5e
CL
54
55#ifdef CONFIG_HOTPLUG
56/*
57 * Fold the foreign cpu events into our own.
58 *
59 * This is adding to the events on one processor
60 * but keeps the global counts constant.
61 */
62void vm_events_fold_cpu(int cpu)
63{
64 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
65 int i;
66
67 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
68 count_vm_events(i, fold_state->event[i]);
69 fold_state->event[i] = 0;
70 }
71}
72#endif /* CONFIG_HOTPLUG */
73
74#endif /* CONFIG_VM_EVENT_COUNTERS */
75
2244b95a
CL
76/*
77 * Manage combined zone based / global counters
78 *
79 * vm_stat contains the global counters
80 */
81atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
82EXPORT_SYMBOL(vm_stat);
83
84#ifdef CONFIG_SMP
85
88f5acf8
MG
86static int calculate_pressure_threshold(struct zone *zone)
87{
88 int threshold;
89 int watermark_distance;
90
91 /*
92 * As vmstats are not up to date, there is drift between the estimated
93 * and real values. For high thresholds and a high number of CPUs, it
94 * is possible for the min watermark to be breached while the estimated
95 * value looks fine. The pressure threshold is a reduced value such
96 * that even the maximum amount of drift will not accidentally breach
97 * the min watermark
98 */
99 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
100 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
101
102 /*
103 * Maximum threshold is 125
104 */
105 threshold = min(125, threshold);
106
107 return threshold;
108}
109
df9ecaba
CL
110static int calculate_threshold(struct zone *zone)
111{
112 int threshold;
113 int mem; /* memory in 128 MB units */
114
115 /*
116 * The threshold scales with the number of processors and the amount
117 * of memory per zone. More memory means that we can defer updates for
118 * longer, more processors could lead to more contention.
119 * fls() is used to have a cheap way of logarithmic scaling.
120 *
121 * Some sample thresholds:
122 *
123 * Threshold Processors (fls) Zonesize fls(mem+1)
124 * ------------------------------------------------------------------
125 * 8 1 1 0.9-1 GB 4
126 * 16 2 2 0.9-1 GB 4
127 * 20 2 2 1-2 GB 5
128 * 24 2 2 2-4 GB 6
129 * 28 2 2 4-8 GB 7
130 * 32 2 2 8-16 GB 8
131 * 4 2 2 <128M 1
132 * 30 4 3 2-4 GB 5
133 * 48 4 3 8-16 GB 8
134 * 32 8 4 1-2 GB 4
135 * 32 8 4 0.9-1GB 4
136 * 10 16 5 <128M 1
137 * 40 16 5 900M 4
138 * 70 64 7 2-4 GB 5
139 * 84 64 7 4-8 GB 6
140 * 108 512 9 4-8 GB 6
141 * 125 1024 10 8-16 GB 8
142 * 125 1024 10 16-32 GB 9
143 */
144
145 mem = zone->present_pages >> (27 - PAGE_SHIFT);
146
147 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
148
149 /*
150 * Maximum threshold is 125
151 */
152 threshold = min(125, threshold);
153
154 return threshold;
155}
2244b95a
CL
156
157/*
df9ecaba 158 * Refresh the thresholds for each zone.
2244b95a 159 */
df9ecaba 160static void refresh_zone_stat_thresholds(void)
2244b95a 161{
df9ecaba
CL
162 struct zone *zone;
163 int cpu;
164 int threshold;
165
ee99c71c 166 for_each_populated_zone(zone) {
aa454840
CL
167 unsigned long max_drift, tolerate_drift;
168
df9ecaba
CL
169 threshold = calculate_threshold(zone);
170
171 for_each_online_cpu(cpu)
99dcc3e5
CL
172 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
173 = threshold;
aa454840
CL
174
175 /*
176 * Only set percpu_drift_mark if there is a danger that
177 * NR_FREE_PAGES reports the low watermark is ok when in fact
178 * the min watermark could be breached by an allocation
179 */
180 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
181 max_drift = num_online_cpus() * threshold;
182 if (max_drift > tolerate_drift)
183 zone->percpu_drift_mark = high_wmark_pages(zone) +
184 max_drift;
df9ecaba 185 }
2244b95a
CL
186}
187
88f5acf8
MG
188void reduce_pgdat_percpu_threshold(pg_data_t *pgdat)
189{
190 struct zone *zone;
191 int cpu;
192 int threshold;
193 int i;
194
195 get_online_cpus();
196 for (i = 0; i < pgdat->nr_zones; i++) {
197 zone = &pgdat->node_zones[i];
198 if (!zone->percpu_drift_mark)
199 continue;
200
201 threshold = calculate_pressure_threshold(zone);
202 for_each_online_cpu(cpu)
203 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
204 = threshold;
205 }
206 put_online_cpus();
207}
208
209void restore_pgdat_percpu_threshold(pg_data_t *pgdat)
210{
211 struct zone *zone;
212 int cpu;
213 int threshold;
214 int i;
215
216 get_online_cpus();
217 for (i = 0; i < pgdat->nr_zones; i++) {
218 zone = &pgdat->node_zones[i];
219 if (!zone->percpu_drift_mark)
220 continue;
221
222 threshold = calculate_threshold(zone);
223 for_each_online_cpu(cpu)
224 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
225 = threshold;
226 }
227 put_online_cpus();
228}
229
2244b95a
CL
230/*
231 * For use when we know that interrupts are disabled.
232 */
233void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
234 int delta)
235{
12938a92
CL
236 struct per_cpu_pageset __percpu *pcp = zone->pageset;
237 s8 __percpu *p = pcp->vm_stat_diff + item;
2244b95a 238 long x;
12938a92
CL
239 long t;
240
241 x = delta + __this_cpu_read(*p);
2244b95a 242
12938a92 243 t = __this_cpu_read(pcp->stat_threshold);
2244b95a 244
12938a92 245 if (unlikely(x > t || x < -t)) {
2244b95a
CL
246 zone_page_state_add(x, zone, item);
247 x = 0;
248 }
12938a92 249 __this_cpu_write(*p, x);
2244b95a
CL
250}
251EXPORT_SYMBOL(__mod_zone_page_state);
252
2244b95a
CL
253/*
254 * Optimized increment and decrement functions.
255 *
256 * These are only for a single page and therefore can take a struct page *
257 * argument instead of struct zone *. This allows the inclusion of the code
258 * generated for page_zone(page) into the optimized functions.
259 *
260 * No overflow check is necessary and therefore the differential can be
261 * incremented or decremented in place which may allow the compilers to
262 * generate better code.
2244b95a
CL
263 * The increment or decrement is known and therefore one boundary check can
264 * be omitted.
265 *
df9ecaba
CL
266 * NOTE: These functions are very performance sensitive. Change only
267 * with care.
268 *
2244b95a
CL
269 * Some processors have inc/dec instructions that are atomic vs an interrupt.
270 * However, the code must first determine the differential location in a zone
271 * based on the processor number and then inc/dec the counter. There is no
272 * guarantee without disabling preemption that the processor will not change
273 * in between and therefore the atomicity vs. interrupt cannot be exploited
274 * in a useful way here.
275 */
c8785385 276void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
2244b95a 277{
12938a92
CL
278 struct per_cpu_pageset __percpu *pcp = zone->pageset;
279 s8 __percpu *p = pcp->vm_stat_diff + item;
280 s8 v, t;
2244b95a 281
908ee0f1 282 v = __this_cpu_inc_return(*p);
12938a92
CL
283 t = __this_cpu_read(pcp->stat_threshold);
284 if (unlikely(v > t)) {
285 s8 overstep = t >> 1;
df9ecaba 286
12938a92
CL
287 zone_page_state_add(v + overstep, zone, item);
288 __this_cpu_write(*p, -overstep);
2244b95a
CL
289 }
290}
ca889e6c
CL
291
292void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
293{
294 __inc_zone_state(page_zone(page), item);
295}
2244b95a
CL
296EXPORT_SYMBOL(__inc_zone_page_state);
297
c8785385 298void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
2244b95a 299{
12938a92
CL
300 struct per_cpu_pageset __percpu *pcp = zone->pageset;
301 s8 __percpu *p = pcp->vm_stat_diff + item;
302 s8 v, t;
2244b95a 303
908ee0f1 304 v = __this_cpu_dec_return(*p);
12938a92
CL
305 t = __this_cpu_read(pcp->stat_threshold);
306 if (unlikely(v < - t)) {
307 s8 overstep = t >> 1;
2244b95a 308
12938a92
CL
309 zone_page_state_add(v - overstep, zone, item);
310 __this_cpu_write(*p, overstep);
2244b95a
CL
311 }
312}
c8785385
CL
313
314void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
315{
316 __dec_zone_state(page_zone(page), item);
317}
2244b95a
CL
318EXPORT_SYMBOL(__dec_zone_page_state);
319
7c839120
CL
320#ifdef CONFIG_CMPXCHG_LOCAL
321/*
322 * If we have cmpxchg_local support then we do not need to incur the overhead
323 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
324 *
325 * mod_state() modifies the zone counter state through atomic per cpu
326 * operations.
327 *
328 * Overstep mode specifies how overstep should handled:
329 * 0 No overstepping
330 * 1 Overstepping half of threshold
331 * -1 Overstepping minus half of threshold
332*/
333static inline void mod_state(struct zone *zone,
334 enum zone_stat_item item, int delta, int overstep_mode)
335{
336 struct per_cpu_pageset __percpu *pcp = zone->pageset;
337 s8 __percpu *p = pcp->vm_stat_diff + item;
338 long o, n, t, z;
339
340 do {
341 z = 0; /* overflow to zone counters */
342
343 /*
344 * The fetching of the stat_threshold is racy. We may apply
345 * a counter threshold to the wrong the cpu if we get
346 * rescheduled while executing here. However, the following
347 * will apply the threshold again and therefore bring the
348 * counter under the threshold.
349 */
350 t = this_cpu_read(pcp->stat_threshold);
351
352 o = this_cpu_read(*p);
353 n = delta + o;
354
355 if (n > t || n < -t) {
356 int os = overstep_mode * (t >> 1) ;
357
358 /* Overflow must be added to zone counters */
359 z = n + os;
360 n = -os;
361 }
362 } while (this_cpu_cmpxchg(*p, o, n) != o);
363
364 if (z)
365 zone_page_state_add(z, zone, item);
366}
367
368void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
369 int delta)
370{
371 mod_state(zone, item, delta, 0);
372}
373EXPORT_SYMBOL(mod_zone_page_state);
374
375void inc_zone_state(struct zone *zone, enum zone_stat_item item)
376{
377 mod_state(zone, item, 1, 1);
378}
379
380void inc_zone_page_state(struct page *page, enum zone_stat_item item)
381{
382 mod_state(page_zone(page), item, 1, 1);
383}
384EXPORT_SYMBOL(inc_zone_page_state);
385
386void dec_zone_page_state(struct page *page, enum zone_stat_item item)
387{
388 mod_state(page_zone(page), item, -1, -1);
389}
390EXPORT_SYMBOL(dec_zone_page_state);
391#else
392/*
393 * Use interrupt disable to serialize counter updates
394 */
395void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
396 int delta)
397{
398 unsigned long flags;
399
400 local_irq_save(flags);
401 __mod_zone_page_state(zone, item, delta);
402 local_irq_restore(flags);
403}
404EXPORT_SYMBOL(mod_zone_page_state);
405
ca889e6c
CL
406void inc_zone_state(struct zone *zone, enum zone_stat_item item)
407{
408 unsigned long flags;
409
410 local_irq_save(flags);
411 __inc_zone_state(zone, item);
412 local_irq_restore(flags);
413}
414
2244b95a
CL
415void inc_zone_page_state(struct page *page, enum zone_stat_item item)
416{
417 unsigned long flags;
418 struct zone *zone;
2244b95a
CL
419
420 zone = page_zone(page);
421 local_irq_save(flags);
ca889e6c 422 __inc_zone_state(zone, item);
2244b95a
CL
423 local_irq_restore(flags);
424}
425EXPORT_SYMBOL(inc_zone_page_state);
426
427void dec_zone_page_state(struct page *page, enum zone_stat_item item)
428{
429 unsigned long flags;
2244b95a 430
2244b95a 431 local_irq_save(flags);
a302eb4e 432 __dec_zone_page_state(page, item);
2244b95a
CL
433 local_irq_restore(flags);
434}
435EXPORT_SYMBOL(dec_zone_page_state);
7c839120 436#endif
2244b95a
CL
437
438/*
439 * Update the zone counters for one cpu.
4037d452 440 *
a7f75e25
CL
441 * The cpu specified must be either the current cpu or a processor that
442 * is not online. If it is the current cpu then the execution thread must
443 * be pinned to the current cpu.
444 *
4037d452
CL
445 * Note that refresh_cpu_vm_stats strives to only access
446 * node local memory. The per cpu pagesets on remote zones are placed
447 * in the memory local to the processor using that pageset. So the
448 * loop over all zones will access a series of cachelines local to
449 * the processor.
450 *
451 * The call to zone_page_state_add updates the cachelines with the
452 * statistics in the remote zone struct as well as the global cachelines
453 * with the global counters. These could cause remote node cache line
454 * bouncing and will have to be only done when necessary.
2244b95a
CL
455 */
456void refresh_cpu_vm_stats(int cpu)
457{
458 struct zone *zone;
459 int i;
a7f75e25 460 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
2244b95a 461
ee99c71c 462 for_each_populated_zone(zone) {
4037d452 463 struct per_cpu_pageset *p;
2244b95a 464
99dcc3e5 465 p = per_cpu_ptr(zone->pageset, cpu);
2244b95a
CL
466
467 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
4037d452 468 if (p->vm_stat_diff[i]) {
a7f75e25
CL
469 unsigned long flags;
470 int v;
471
2244b95a 472 local_irq_save(flags);
a7f75e25 473 v = p->vm_stat_diff[i];
4037d452 474 p->vm_stat_diff[i] = 0;
a7f75e25
CL
475 local_irq_restore(flags);
476 atomic_long_add(v, &zone->vm_stat[i]);
477 global_diff[i] += v;
4037d452
CL
478#ifdef CONFIG_NUMA
479 /* 3 seconds idle till flush */
480 p->expire = 3;
481#endif
2244b95a 482 }
468fd62e 483 cond_resched();
4037d452
CL
484#ifdef CONFIG_NUMA
485 /*
486 * Deal with draining the remote pageset of this
487 * processor
488 *
489 * Check if there are pages remaining in this pageset
490 * if not then there is nothing to expire.
491 */
3dfa5721 492 if (!p->expire || !p->pcp.count)
4037d452
CL
493 continue;
494
495 /*
496 * We never drain zones local to this processor.
497 */
498 if (zone_to_nid(zone) == numa_node_id()) {
499 p->expire = 0;
500 continue;
501 }
502
503 p->expire--;
504 if (p->expire)
505 continue;
506
3dfa5721
CL
507 if (p->pcp.count)
508 drain_zone_pages(zone, &p->pcp);
4037d452 509#endif
2244b95a 510 }
a7f75e25
CL
511
512 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
513 if (global_diff[i])
514 atomic_long_add(global_diff[i], &vm_stat[i]);
2244b95a
CL
515}
516
2244b95a
CL
517#endif
518
ca889e6c
CL
519#ifdef CONFIG_NUMA
520/*
521 * zonelist = the list of zones passed to the allocator
522 * z = the zone from which the allocation occurred.
523 *
524 * Must be called with interrupts disabled.
525 */
18ea7e71 526void zone_statistics(struct zone *preferred_zone, struct zone *z)
ca889e6c 527{
18ea7e71 528 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
ca889e6c
CL
529 __inc_zone_state(z, NUMA_HIT);
530 } else {
531 __inc_zone_state(z, NUMA_MISS);
18ea7e71 532 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
ca889e6c 533 }
5d292343 534 if (z->node == numa_node_id())
ca889e6c
CL
535 __inc_zone_state(z, NUMA_LOCAL);
536 else
537 __inc_zone_state(z, NUMA_OTHER);
538}
539#endif
540
d7a5752c 541#ifdef CONFIG_COMPACTION
36deb0be 542
d7a5752c
MG
543struct contig_page_info {
544 unsigned long free_pages;
545 unsigned long free_blocks_total;
546 unsigned long free_blocks_suitable;
547};
548
549/*
550 * Calculate the number of free pages in a zone, how many contiguous
551 * pages are free and how many are large enough to satisfy an allocation of
552 * the target size. Note that this function makes no attempt to estimate
553 * how many suitable free blocks there *might* be if MOVABLE pages were
554 * migrated. Calculating that is possible, but expensive and can be
555 * figured out from userspace
556 */
557static void fill_contig_page_info(struct zone *zone,
558 unsigned int suitable_order,
559 struct contig_page_info *info)
560{
561 unsigned int order;
562
563 info->free_pages = 0;
564 info->free_blocks_total = 0;
565 info->free_blocks_suitable = 0;
566
567 for (order = 0; order < MAX_ORDER; order++) {
568 unsigned long blocks;
569
570 /* Count number of free blocks */
571 blocks = zone->free_area[order].nr_free;
572 info->free_blocks_total += blocks;
573
574 /* Count free base pages */
575 info->free_pages += blocks << order;
576
577 /* Count the suitable free blocks */
578 if (order >= suitable_order)
579 info->free_blocks_suitable += blocks <<
580 (order - suitable_order);
581 }
582}
f1a5ab12
MG
583
584/*
585 * A fragmentation index only makes sense if an allocation of a requested
586 * size would fail. If that is true, the fragmentation index indicates
587 * whether external fragmentation or a lack of memory was the problem.
588 * The value can be used to determine if page reclaim or compaction
589 * should be used
590 */
56de7263 591static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
f1a5ab12
MG
592{
593 unsigned long requested = 1UL << order;
594
595 if (!info->free_blocks_total)
596 return 0;
597
598 /* Fragmentation index only makes sense when a request would fail */
599 if (info->free_blocks_suitable)
600 return -1000;
601
602 /*
603 * Index is between 0 and 1 so return within 3 decimal places
604 *
605 * 0 => allocation would fail due to lack of memory
606 * 1 => allocation would fail due to fragmentation
607 */
608 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
609}
56de7263
MG
610
611/* Same as __fragmentation index but allocs contig_page_info on stack */
612int fragmentation_index(struct zone *zone, unsigned int order)
613{
614 struct contig_page_info info;
615
616 fill_contig_page_info(zone, order, &info);
617 return __fragmentation_index(order, &info);
618}
d7a5752c
MG
619#endif
620
621#if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
8f32f7e5 622#include <linux/proc_fs.h>
f6ac2354
CL
623#include <linux/seq_file.h>
624
467c996c
MG
625static char * const migratetype_names[MIGRATE_TYPES] = {
626 "Unmovable",
627 "Reclaimable",
628 "Movable",
629 "Reserve",
91446b06 630 "Isolate",
467c996c
MG
631};
632
f6ac2354
CL
633static void *frag_start(struct seq_file *m, loff_t *pos)
634{
635 pg_data_t *pgdat;
636 loff_t node = *pos;
637 for (pgdat = first_online_pgdat();
638 pgdat && node;
639 pgdat = next_online_pgdat(pgdat))
640 --node;
641
642 return pgdat;
643}
644
645static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
646{
647 pg_data_t *pgdat = (pg_data_t *)arg;
648
649 (*pos)++;
650 return next_online_pgdat(pgdat);
651}
652
653static void frag_stop(struct seq_file *m, void *arg)
654{
655}
656
467c996c
MG
657/* Walk all the zones in a node and print using a callback */
658static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
659 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
f6ac2354 660{
f6ac2354
CL
661 struct zone *zone;
662 struct zone *node_zones = pgdat->node_zones;
663 unsigned long flags;
f6ac2354
CL
664
665 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
666 if (!populated_zone(zone))
667 continue;
668
669 spin_lock_irqsave(&zone->lock, flags);
467c996c 670 print(m, pgdat, zone);
f6ac2354 671 spin_unlock_irqrestore(&zone->lock, flags);
467c996c
MG
672 }
673}
d7a5752c 674#endif
467c996c 675
d7a5752c 676#ifdef CONFIG_PROC_FS
467c996c
MG
677static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
678 struct zone *zone)
679{
680 int order;
681
682 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
683 for (order = 0; order < MAX_ORDER; ++order)
684 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
685 seq_putc(m, '\n');
686}
687
688/*
689 * This walks the free areas for each zone.
690 */
691static int frag_show(struct seq_file *m, void *arg)
692{
693 pg_data_t *pgdat = (pg_data_t *)arg;
694 walk_zones_in_node(m, pgdat, frag_show_print);
695 return 0;
696}
697
698static void pagetypeinfo_showfree_print(struct seq_file *m,
699 pg_data_t *pgdat, struct zone *zone)
700{
701 int order, mtype;
702
703 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
704 seq_printf(m, "Node %4d, zone %8s, type %12s ",
705 pgdat->node_id,
706 zone->name,
707 migratetype_names[mtype]);
708 for (order = 0; order < MAX_ORDER; ++order) {
709 unsigned long freecount = 0;
710 struct free_area *area;
711 struct list_head *curr;
712
713 area = &(zone->free_area[order]);
714
715 list_for_each(curr, &area->free_list[mtype])
716 freecount++;
717 seq_printf(m, "%6lu ", freecount);
718 }
f6ac2354
CL
719 seq_putc(m, '\n');
720 }
467c996c
MG
721}
722
723/* Print out the free pages at each order for each migatetype */
724static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
725{
726 int order;
727 pg_data_t *pgdat = (pg_data_t *)arg;
728
729 /* Print header */
730 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
731 for (order = 0; order < MAX_ORDER; ++order)
732 seq_printf(m, "%6d ", order);
733 seq_putc(m, '\n');
734
735 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
736
737 return 0;
738}
739
740static void pagetypeinfo_showblockcount_print(struct seq_file *m,
741 pg_data_t *pgdat, struct zone *zone)
742{
743 int mtype;
744 unsigned long pfn;
745 unsigned long start_pfn = zone->zone_start_pfn;
746 unsigned long end_pfn = start_pfn + zone->spanned_pages;
747 unsigned long count[MIGRATE_TYPES] = { 0, };
748
749 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
750 struct page *page;
751
752 if (!pfn_valid(pfn))
753 continue;
754
755 page = pfn_to_page(pfn);
eb33575c
MG
756
757 /* Watch for unexpected holes punched in the memmap */
758 if (!memmap_valid_within(pfn, page, zone))
e80d6a24 759 continue;
eb33575c 760
467c996c
MG
761 mtype = get_pageblock_migratetype(page);
762
e80d6a24
MG
763 if (mtype < MIGRATE_TYPES)
764 count[mtype]++;
467c996c
MG
765 }
766
767 /* Print counts */
768 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
769 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
770 seq_printf(m, "%12lu ", count[mtype]);
771 seq_putc(m, '\n');
772}
773
774/* Print out the free pages at each order for each migratetype */
775static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
776{
777 int mtype;
778 pg_data_t *pgdat = (pg_data_t *)arg;
779
780 seq_printf(m, "\n%-23s", "Number of blocks type ");
781 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
782 seq_printf(m, "%12s ", migratetype_names[mtype]);
783 seq_putc(m, '\n');
784 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
785
786 return 0;
787}
788
789/*
790 * This prints out statistics in relation to grouping pages by mobility.
791 * It is expensive to collect so do not constantly read the file.
792 */
793static int pagetypeinfo_show(struct seq_file *m, void *arg)
794{
795 pg_data_t *pgdat = (pg_data_t *)arg;
796
41b25a37
KM
797 /* check memoryless node */
798 if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
799 return 0;
800
467c996c
MG
801 seq_printf(m, "Page block order: %d\n", pageblock_order);
802 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
803 seq_putc(m, '\n');
804 pagetypeinfo_showfree(m, pgdat);
805 pagetypeinfo_showblockcount(m, pgdat);
806
f6ac2354
CL
807 return 0;
808}
809
8f32f7e5 810static const struct seq_operations fragmentation_op = {
f6ac2354
CL
811 .start = frag_start,
812 .next = frag_next,
813 .stop = frag_stop,
814 .show = frag_show,
815};
816
8f32f7e5
AD
817static int fragmentation_open(struct inode *inode, struct file *file)
818{
819 return seq_open(file, &fragmentation_op);
820}
821
822static const struct file_operations fragmentation_file_operations = {
823 .open = fragmentation_open,
824 .read = seq_read,
825 .llseek = seq_lseek,
826 .release = seq_release,
827};
828
74e2e8e8 829static const struct seq_operations pagetypeinfo_op = {
467c996c
MG
830 .start = frag_start,
831 .next = frag_next,
832 .stop = frag_stop,
833 .show = pagetypeinfo_show,
834};
835
74e2e8e8
AD
836static int pagetypeinfo_open(struct inode *inode, struct file *file)
837{
838 return seq_open(file, &pagetypeinfo_op);
839}
840
841static const struct file_operations pagetypeinfo_file_ops = {
842 .open = pagetypeinfo_open,
843 .read = seq_read,
844 .llseek = seq_lseek,
845 .release = seq_release,
846};
847
4b51d669
CL
848#ifdef CONFIG_ZONE_DMA
849#define TEXT_FOR_DMA(xx) xx "_dma",
850#else
851#define TEXT_FOR_DMA(xx)
852#endif
853
27bf71c2
CL
854#ifdef CONFIG_ZONE_DMA32
855#define TEXT_FOR_DMA32(xx) xx "_dma32",
856#else
857#define TEXT_FOR_DMA32(xx)
858#endif
859
860#ifdef CONFIG_HIGHMEM
861#define TEXT_FOR_HIGHMEM(xx) xx "_high",
862#else
863#define TEXT_FOR_HIGHMEM(xx)
864#endif
865
4b51d669 866#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
2a1e274a 867 TEXT_FOR_HIGHMEM(xx) xx "_movable",
27bf71c2 868
15ad7cdc 869static const char * const vmstat_text[] = {
2244b95a 870 /* Zoned VM counters */
d23ad423 871 "nr_free_pages",
4f98a2fe
RR
872 "nr_inactive_anon",
873 "nr_active_anon",
874 "nr_inactive_file",
875 "nr_active_file",
7b854121 876 "nr_unevictable",
5344b7e6 877 "nr_mlock",
f3dbd344 878 "nr_anon_pages",
65ba55f5 879 "nr_mapped",
347ce434 880 "nr_file_pages",
51ed4491
CL
881 "nr_dirty",
882 "nr_writeback",
972d1a7b
CL
883 "nr_slab_reclaimable",
884 "nr_slab_unreclaimable",
df849a15 885 "nr_page_table_pages",
c6a7f572 886 "nr_kernel_stack",
f6ac2354 887 "nr_unstable",
d2c5e30c 888 "nr_bounce",
e129b5c2 889 "nr_vmscan_write",
fc3ba692 890 "nr_writeback_temp",
a731286d
KM
891 "nr_isolated_anon",
892 "nr_isolated_file",
4b02108a 893 "nr_shmem",
ea941f0e
MR
894 "nr_dirtied",
895 "nr_written",
896
ca889e6c
CL
897#ifdef CONFIG_NUMA
898 "numa_hit",
899 "numa_miss",
900 "numa_foreign",
901 "numa_interleave",
902 "numa_local",
903 "numa_other",
904#endif
e172662d
WF
905 "nr_dirty_threshold",
906 "nr_dirty_background_threshold",
ca889e6c 907
f8891e5e 908#ifdef CONFIG_VM_EVENT_COUNTERS
f6ac2354
CL
909 "pgpgin",
910 "pgpgout",
911 "pswpin",
912 "pswpout",
913
27bf71c2 914 TEXTS_FOR_ZONES("pgalloc")
f6ac2354
CL
915
916 "pgfree",
917 "pgactivate",
918 "pgdeactivate",
919
920 "pgfault",
921 "pgmajfault",
922
27bf71c2
CL
923 TEXTS_FOR_ZONES("pgrefill")
924 TEXTS_FOR_ZONES("pgsteal")
925 TEXTS_FOR_ZONES("pgscan_kswapd")
926 TEXTS_FOR_ZONES("pgscan_direct")
f6ac2354 927
24cf7251
MG
928#ifdef CONFIG_NUMA
929 "zone_reclaim_failed",
930#endif
f6ac2354
CL
931 "pginodesteal",
932 "slabs_scanned",
933 "kswapd_steal",
934 "kswapd_inodesteal",
bb3ab596
KM
935 "kswapd_low_wmark_hit_quickly",
936 "kswapd_high_wmark_hit_quickly",
937 "kswapd_skip_congestion_wait",
f6ac2354
CL
938 "pageoutrun",
939 "allocstall",
940
941 "pgrotated",
748446bb
MG
942
943#ifdef CONFIG_COMPACTION
944 "compact_blocks_moved",
945 "compact_pages_moved",
946 "compact_pagemigrate_failed",
56de7263
MG
947 "compact_stall",
948 "compact_fail",
949 "compact_success",
748446bb
MG
950#endif
951
3b116300
AL
952#ifdef CONFIG_HUGETLB_PAGE
953 "htlb_buddy_alloc_success",
954 "htlb_buddy_alloc_fail",
955#endif
bbfd28ee
LS
956 "unevictable_pgs_culled",
957 "unevictable_pgs_scanned",
958 "unevictable_pgs_rescued",
5344b7e6
NP
959 "unevictable_pgs_mlocked",
960 "unevictable_pgs_munlocked",
961 "unevictable_pgs_cleared",
962 "unevictable_pgs_stranded",
985737cf 963 "unevictable_pgs_mlockfreed",
bbfd28ee 964#endif
f6ac2354
CL
965};
966
467c996c
MG
967static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
968 struct zone *zone)
f6ac2354 969{
467c996c
MG
970 int i;
971 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
972 seq_printf(m,
973 "\n pages free %lu"
974 "\n min %lu"
975 "\n low %lu"
976 "\n high %lu"
08d9ae7c 977 "\n scanned %lu"
467c996c
MG
978 "\n spanned %lu"
979 "\n present %lu",
88f5acf8 980 zone_page_state(zone, NR_FREE_PAGES),
41858966
MG
981 min_wmark_pages(zone),
982 low_wmark_pages(zone),
983 high_wmark_pages(zone),
467c996c 984 zone->pages_scanned,
467c996c
MG
985 zone->spanned_pages,
986 zone->present_pages);
987
988 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
989 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
990 zone_page_state(zone, i));
991
992 seq_printf(m,
993 "\n protection: (%lu",
994 zone->lowmem_reserve[0]);
995 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
996 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
997 seq_printf(m,
998 ")"
999 "\n pagesets");
1000 for_each_online_cpu(i) {
1001 struct per_cpu_pageset *pageset;
467c996c 1002
99dcc3e5 1003 pageset = per_cpu_ptr(zone->pageset, i);
3dfa5721
CL
1004 seq_printf(m,
1005 "\n cpu: %i"
1006 "\n count: %i"
1007 "\n high: %i"
1008 "\n batch: %i",
1009 i,
1010 pageset->pcp.count,
1011 pageset->pcp.high,
1012 pageset->pcp.batch);
df9ecaba 1013#ifdef CONFIG_SMP
467c996c
MG
1014 seq_printf(m, "\n vm stats threshold: %d",
1015 pageset->stat_threshold);
df9ecaba 1016#endif
f6ac2354 1017 }
467c996c
MG
1018 seq_printf(m,
1019 "\n all_unreclaimable: %u"
556adecb
RR
1020 "\n start_pfn: %lu"
1021 "\n inactive_ratio: %u",
93e4a89a 1022 zone->all_unreclaimable,
556adecb
RR
1023 zone->zone_start_pfn,
1024 zone->inactive_ratio);
467c996c
MG
1025 seq_putc(m, '\n');
1026}
1027
1028/*
1029 * Output information about zones in @pgdat.
1030 */
1031static int zoneinfo_show(struct seq_file *m, void *arg)
1032{
1033 pg_data_t *pgdat = (pg_data_t *)arg;
1034 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
f6ac2354
CL
1035 return 0;
1036}
1037
5c9fe628 1038static const struct seq_operations zoneinfo_op = {
f6ac2354
CL
1039 .start = frag_start, /* iterate over all zones. The same as in
1040 * fragmentation. */
1041 .next = frag_next,
1042 .stop = frag_stop,
1043 .show = zoneinfo_show,
1044};
1045
5c9fe628
AD
1046static int zoneinfo_open(struct inode *inode, struct file *file)
1047{
1048 return seq_open(file, &zoneinfo_op);
1049}
1050
1051static const struct file_operations proc_zoneinfo_file_operations = {
1052 .open = zoneinfo_open,
1053 .read = seq_read,
1054 .llseek = seq_lseek,
1055 .release = seq_release,
1056};
1057
79da826a
MR
1058enum writeback_stat_item {
1059 NR_DIRTY_THRESHOLD,
1060 NR_DIRTY_BG_THRESHOLD,
1061 NR_VM_WRITEBACK_STAT_ITEMS,
1062};
1063
f6ac2354
CL
1064static void *vmstat_start(struct seq_file *m, loff_t *pos)
1065{
2244b95a 1066 unsigned long *v;
79da826a 1067 int i, stat_items_size;
f6ac2354
CL
1068
1069 if (*pos >= ARRAY_SIZE(vmstat_text))
1070 return NULL;
79da826a
MR
1071 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1072 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
f6ac2354 1073
f8891e5e 1074#ifdef CONFIG_VM_EVENT_COUNTERS
79da826a 1075 stat_items_size += sizeof(struct vm_event_state);
f8891e5e 1076#endif
79da826a
MR
1077
1078 v = kmalloc(stat_items_size, GFP_KERNEL);
2244b95a
CL
1079 m->private = v;
1080 if (!v)
f6ac2354 1081 return ERR_PTR(-ENOMEM);
2244b95a
CL
1082 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1083 v[i] = global_page_state(i);
79da826a
MR
1084 v += NR_VM_ZONE_STAT_ITEMS;
1085
1086 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1087 v + NR_DIRTY_THRESHOLD);
1088 v += NR_VM_WRITEBACK_STAT_ITEMS;
1089
f8891e5e 1090#ifdef CONFIG_VM_EVENT_COUNTERS
79da826a
MR
1091 all_vm_events(v);
1092 v[PGPGIN] /= 2; /* sectors -> kbytes */
1093 v[PGPGOUT] /= 2;
f8891e5e 1094#endif
ff8b16d7 1095 return (unsigned long *)m->private + *pos;
f6ac2354
CL
1096}
1097
1098static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1099{
1100 (*pos)++;
1101 if (*pos >= ARRAY_SIZE(vmstat_text))
1102 return NULL;
1103 return (unsigned long *)m->private + *pos;
1104}
1105
1106static int vmstat_show(struct seq_file *m, void *arg)
1107{
1108 unsigned long *l = arg;
1109 unsigned long off = l - (unsigned long *)m->private;
1110
1111 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1112 return 0;
1113}
1114
1115static void vmstat_stop(struct seq_file *m, void *arg)
1116{
1117 kfree(m->private);
1118 m->private = NULL;
1119}
1120
b6aa44ab 1121static const struct seq_operations vmstat_op = {
f6ac2354
CL
1122 .start = vmstat_start,
1123 .next = vmstat_next,
1124 .stop = vmstat_stop,
1125 .show = vmstat_show,
1126};
1127
b6aa44ab
AD
1128static int vmstat_open(struct inode *inode, struct file *file)
1129{
1130 return seq_open(file, &vmstat_op);
1131}
1132
1133static const struct file_operations proc_vmstat_file_operations = {
1134 .open = vmstat_open,
1135 .read = seq_read,
1136 .llseek = seq_lseek,
1137 .release = seq_release,
1138};
f6ac2354
CL
1139#endif /* CONFIG_PROC_FS */
1140
df9ecaba 1141#ifdef CONFIG_SMP
d1187ed2 1142static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
77461ab3 1143int sysctl_stat_interval __read_mostly = HZ;
d1187ed2
CL
1144
1145static void vmstat_update(struct work_struct *w)
1146{
1147 refresh_cpu_vm_stats(smp_processor_id());
77461ab3 1148 schedule_delayed_work(&__get_cpu_var(vmstat_work),
98f4ebb2 1149 round_jiffies_relative(sysctl_stat_interval));
d1187ed2
CL
1150}
1151
42614fcd 1152static void __cpuinit start_cpu_timer(int cpu)
d1187ed2 1153{
1871e52c 1154 struct delayed_work *work = &per_cpu(vmstat_work, cpu);
d1187ed2 1155
1871e52c
TH
1156 INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update);
1157 schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
d1187ed2
CL
1158}
1159
df9ecaba
CL
1160/*
1161 * Use the cpu notifier to insure that the thresholds are recalculated
1162 * when necessary.
1163 */
1164static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
1165 unsigned long action,
1166 void *hcpu)
1167{
d1187ed2
CL
1168 long cpu = (long)hcpu;
1169
df9ecaba 1170 switch (action) {
d1187ed2
CL
1171 case CPU_ONLINE:
1172 case CPU_ONLINE_FROZEN:
5ee28a44 1173 refresh_zone_stat_thresholds();
d1187ed2 1174 start_cpu_timer(cpu);
ad596925 1175 node_set_state(cpu_to_node(cpu), N_CPU);
d1187ed2
CL
1176 break;
1177 case CPU_DOWN_PREPARE:
1178 case CPU_DOWN_PREPARE_FROZEN:
afe2c511 1179 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
d1187ed2
CL
1180 per_cpu(vmstat_work, cpu).work.func = NULL;
1181 break;
1182 case CPU_DOWN_FAILED:
1183 case CPU_DOWN_FAILED_FROZEN:
1184 start_cpu_timer(cpu);
1185 break;
ce421c79 1186 case CPU_DEAD:
8bb78442 1187 case CPU_DEAD_FROZEN:
ce421c79
AW
1188 refresh_zone_stat_thresholds();
1189 break;
1190 default:
1191 break;
df9ecaba
CL
1192 }
1193 return NOTIFY_OK;
1194}
1195
1196static struct notifier_block __cpuinitdata vmstat_notifier =
1197 { &vmstat_cpuup_callback, NULL, 0 };
8f32f7e5 1198#endif
df9ecaba 1199
e2fc88d0 1200static int __init setup_vmstat(void)
df9ecaba 1201{
8f32f7e5 1202#ifdef CONFIG_SMP
d1187ed2
CL
1203 int cpu;
1204
df9ecaba
CL
1205 refresh_zone_stat_thresholds();
1206 register_cpu_notifier(&vmstat_notifier);
d1187ed2
CL
1207
1208 for_each_online_cpu(cpu)
1209 start_cpu_timer(cpu);
8f32f7e5
AD
1210#endif
1211#ifdef CONFIG_PROC_FS
1212 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
74e2e8e8 1213 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
b6aa44ab 1214 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
5c9fe628 1215 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
8f32f7e5 1216#endif
df9ecaba
CL
1217 return 0;
1218}
1219module_init(setup_vmstat)
d7a5752c
MG
1220
1221#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1222#include <linux/debugfs.h>
1223
1224static struct dentry *extfrag_debug_root;
1225
1226/*
1227 * Return an index indicating how much of the available free memory is
1228 * unusable for an allocation of the requested size.
1229 */
1230static int unusable_free_index(unsigned int order,
1231 struct contig_page_info *info)
1232{
1233 /* No free memory is interpreted as all free memory is unusable */
1234 if (info->free_pages == 0)
1235 return 1000;
1236
1237 /*
1238 * Index should be a value between 0 and 1. Return a value to 3
1239 * decimal places.
1240 *
1241 * 0 => no fragmentation
1242 * 1 => high fragmentation
1243 */
1244 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1245
1246}
1247
1248static void unusable_show_print(struct seq_file *m,
1249 pg_data_t *pgdat, struct zone *zone)
1250{
1251 unsigned int order;
1252 int index;
1253 struct contig_page_info info;
1254
1255 seq_printf(m, "Node %d, zone %8s ",
1256 pgdat->node_id,
1257 zone->name);
1258 for (order = 0; order < MAX_ORDER; ++order) {
1259 fill_contig_page_info(zone, order, &info);
1260 index = unusable_free_index(order, &info);
1261 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1262 }
1263
1264 seq_putc(m, '\n');
1265}
1266
1267/*
1268 * Display unusable free space index
1269 *
1270 * The unusable free space index measures how much of the available free
1271 * memory cannot be used to satisfy an allocation of a given size and is a
1272 * value between 0 and 1. The higher the value, the more of free memory is
1273 * unusable and by implication, the worse the external fragmentation is. This
1274 * can be expressed as a percentage by multiplying by 100.
1275 */
1276static int unusable_show(struct seq_file *m, void *arg)
1277{
1278 pg_data_t *pgdat = (pg_data_t *)arg;
1279
1280 /* check memoryless node */
1281 if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
1282 return 0;
1283
1284 walk_zones_in_node(m, pgdat, unusable_show_print);
1285
1286 return 0;
1287}
1288
1289static const struct seq_operations unusable_op = {
1290 .start = frag_start,
1291 .next = frag_next,
1292 .stop = frag_stop,
1293 .show = unusable_show,
1294};
1295
1296static int unusable_open(struct inode *inode, struct file *file)
1297{
1298 return seq_open(file, &unusable_op);
1299}
1300
1301static const struct file_operations unusable_file_ops = {
1302 .open = unusable_open,
1303 .read = seq_read,
1304 .llseek = seq_lseek,
1305 .release = seq_release,
1306};
1307
f1a5ab12
MG
1308static void extfrag_show_print(struct seq_file *m,
1309 pg_data_t *pgdat, struct zone *zone)
1310{
1311 unsigned int order;
1312 int index;
1313
1314 /* Alloc on stack as interrupts are disabled for zone walk */
1315 struct contig_page_info info;
1316
1317 seq_printf(m, "Node %d, zone %8s ",
1318 pgdat->node_id,
1319 zone->name);
1320 for (order = 0; order < MAX_ORDER; ++order) {
1321 fill_contig_page_info(zone, order, &info);
56de7263 1322 index = __fragmentation_index(order, &info);
f1a5ab12
MG
1323 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1324 }
1325
1326 seq_putc(m, '\n');
1327}
1328
1329/*
1330 * Display fragmentation index for orders that allocations would fail for
1331 */
1332static int extfrag_show(struct seq_file *m, void *arg)
1333{
1334 pg_data_t *pgdat = (pg_data_t *)arg;
1335
1336 walk_zones_in_node(m, pgdat, extfrag_show_print);
1337
1338 return 0;
1339}
1340
1341static const struct seq_operations extfrag_op = {
1342 .start = frag_start,
1343 .next = frag_next,
1344 .stop = frag_stop,
1345 .show = extfrag_show,
1346};
1347
1348static int extfrag_open(struct inode *inode, struct file *file)
1349{
1350 return seq_open(file, &extfrag_op);
1351}
1352
1353static const struct file_operations extfrag_file_ops = {
1354 .open = extfrag_open,
1355 .read = seq_read,
1356 .llseek = seq_lseek,
1357 .release = seq_release,
1358};
1359
d7a5752c
MG
1360static int __init extfrag_debug_init(void)
1361{
1362 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1363 if (!extfrag_debug_root)
1364 return -ENOMEM;
1365
1366 if (!debugfs_create_file("unusable_index", 0444,
1367 extfrag_debug_root, NULL, &unusable_file_ops))
1368 return -ENOMEM;
1369
f1a5ab12
MG
1370 if (!debugfs_create_file("extfrag_index", 0444,
1371 extfrag_debug_root, NULL, &extfrag_file_ops))
1372 return -ENOMEM;
1373
d7a5752c
MG
1374 return 0;
1375}
1376
1377module_init(extfrag_debug_init);
1378#endif